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Abstract: Behind Armor Blunt Trauma (BABT) is an emerging problem in body armor 

due to excessive deformation resulting from projectile impact.  A potential to reduce 

BABT has been identified by incorporating a honeycomb layer in a Hybrid Composite 

Armor (HCA).  Honeycombs along with other cellular solids have been used primarily 

for low velocity impact absorption and in some cases for vehicle mounted armor.  Their 

role in body armor remains unexplored and is the focus of this study.  A new HCA with 

aluminum honeycomb was designed and evaluated using ballistic testing in compliance 

with the level III NIJ 0101.06 body armor standard.  Performance improvement of the 

armor was verified from these tests using Back Face Signature (BFS) and V50 metrics.  

Effects of honeycomb attributes on ballistic performance were successfully correlated 

using an analytical scheme that showed good agreement with the experimental results.  

HCA was found to qualify for the standard, while demonstrating a maximum BFS 

reduction of 40.8% (and hence BABT) in comparison to a baseline of the same weight.  

Limitations to the use of honeycombs in armor were also identified.  Performance 

benefits of honeycomb inclusion in armor observed experimentally were supplemented 

by numerically derived results from FEA in ABAQUS®.  This HCA design has the 

highest known propensity to reduce injury both due to the light weight and improved 

trauma performance compared to existing designs.  A selection methodology was 

demonstrated to further extend this advantage by inclusion of other commercially 
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CHAPTER 1. PROBLEM DESCRIPTION AND MOTIVATION 

 

The science of developing structures and systems for protection against impacting 

projectiles is one of the oldest known to man.  Evolution of these structures (shields, 

barriers, armors, and clothing) will continue as long as the impending threats they protect 

against improve in their lethality.  Advancement in penetration capacity and impact 

velocities of projectiles renders contemporary solutions obsolete over time and new 

methods of protection have to be sought.  

The majority of current projectile impact protection structures utilize both reversible 

and irreversible modes of energy conversion to maximize dissipation upon impact.  

Weight sensitive applications like those in the defense and aerospace sectors involve 

constraints that necessitate thinner, more flexible protection offering better stability with 

strength and ease of handling per unit mass.  In such cases, an irreversible mode of 

conversion is predominant as it positively ensures that damages sustained through intense 

impact loads are minimal.  The extent of irreversible energy conversion is governed by 

the material properties and mechanical behavior of the components in the protective 

system.  The design geometry and structural constitution of the components in turn 

determine the mechanical behavior. It is thus vital to find ways to quantify and compare  
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each of these aspects while designing any protection system that suits a particular 

application.  Over the past few decades, review publications have summarized the factors 

that affect the ballistic impact resistance of materials through combined use of 

experimental and numerical, analytical or micromechanical evaluation methods to gauge 

the performance of materials and protective system designs [1-5].  

Table 1 A list of review publications summarized by Ben-Dor et al. [1] that highlights the materials 

that gained research focus for use in protection plates against ballistic impact by projectiles. 

Reference Year Material Publication Type 

Kennedy 1976 Concrete Survey 

Backman and Goldsmith 1978 Metal, soil Survey 

Jonas and Zukas 1978 Metal, soil Survey 

Zukas 1982 Metal Book 

Brown 1986 Metal, soil, concrete Survey 

Anderson and Bodner 1988 Metal, soil Survey 

Heuzé 1989 Geological materials Report 

Recht 1990 Metal Book 

Zukas and Walters 1990 Metal, soil, concrete Book 

Abrate 1991 Composites Survey 

Abrate 1994 Composites Survey 

Dancygier and Yankelevsky 1996 Concrete Article 

Corbett et al. 1996 Metal, soil, concrete Survey 

Abrate 1998 Composites Book 

Teland 1998 Concrete Report 

Børvik et al. 1998 Metal Report 

Kasano 1999 Fiber Composites Survey 

Goldsmith 1999 Metal, soil Survey 

Cheeseman and Bogetti 2003 Fiber Composites Survey 

Phoenix and Porwal 2003 Fiber Composites Article 

It can be seen from the list presented in Table 1 that metals, fiber-based composites, 

and concrete-based materials dominate investigative focus on protection against ballistic 

projectile impact.  Since most current commercially used protective systems are 

multilayered composite structures, research attention in the last decade has consequently 

adapted from a single-component single-material analysis to a simultaneous investigation 
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of involved materials, their behavior and inter-dependence under impact, and the 

cumulative effect on the overall protective performance.  Cellular solids are a relatively 

new class of materials in the multilayered protective structures domain.  Their primary 

use has been as cores or fillers in sandwich designs that protect against low velocity 

impacts [5].  Their role in high velocity impact protection applications like armor has 

seen limited research attention.  

1.1 Research problem, hypothesis, and objectives 

Behind Armor Blunt Trauma (BABT) covers a range of non-penetrating injuries to 

the human torso resulting from projectile impacts on personal armor.  Even when the 

armor prevents complete penetration of the impacting projectile, the energy imparted to 

the armor backing and body wall can be high.  This can cause serious injury to the wearer 

by damaging thoracic and abdominal contents behind the armor plate and even result in 

fatality [6].  BABT manifests itself due to stress wave transfer from the local point of 

impact on the armor to the underlying tissue.  The rear of the armor deforms at high 

velocities and accelerates underlying viscera locally, which is then followed by 

distributed load on the thorax by movement of the whole plate.  Current armor standards 

like the National Institute of Justice (NIJ) 0101.06 quantify this deformation in terms of 

Back Face Signature (BFS) measured on a Roma Plastilina® #1 clay backing.  The 

problem of BABT is prominent in high strength fabric composite armors (classified as 

level III by the NIJ).  Fiber volume percentage in these composites is kept high for 

maximum utilization of the fiber properties in projectile defeat mechanisms.  The low 

resin content aids in pliability at relatively high thicknesses, which although this 

improves the wearer’s mobility and comfort, it increases the BFS and chances of BABT.  
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This problem can be solved by coupling these composites with stiffer armor materials 

like ceramics and metals (hybrid armor) but not without a significant weight penalty.  A 

new solution lies in pairing armor composites with cellular solids in a sandwich 

construction.  

 

Figure 1 (a) Behind Armor Blunt Trauma1 (b) side view schematic showing how it occurs. 

Cellular solids have high specific stiffness and strength-to-weight ratio due to 

porosity.  When used in a sandwich construction, the cellular solid layer creates a 

bending axis offset between the composite face layers.  This increases the cumulative 

moment of inertia of the sandwich, thereby improving the flexural stiffness and rigidity, 

while keeping the weight addition to a minimum.  Such a design also allows for 

maximum reduction in stress wave energy transfer due to acoustic impedance2 by the 

cellular solid (giving gradual dissipation of shock loads).  These benefits have been 

successfully proven by integrating aluminum-based cellular solids in vehicle mounted 

                                                           
1 Image courtesy: http://co-ironwill.blogspot.com/2012/02/bullet-proof-vests.html. 

2 Acoustic impedance directly depends on density and elastic modulus difference between 

materials. The difference is high between contemporary armor composites and cellular 

solids due to porosity. 
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multilayered armor [7-9].  Other advantages include reduction in individual layer de-

bonding, and BFS bulge velocity. 

These advantages can also achieve BABT reduction in body armor—an overall 

research objective of the present study.  This is an extension to earlier research efforts 

where Hybrid Composite Armor (HCA) with an amorphous metal based honeycomb was 

ballistic tested [10].  A hypothesis of this research is:  inclusion of a minimum thickness 

honeycomb in multilayered body armor improves ballistic performance compared to the 

same areal density armor without honeycomb.  The minimum honeycomb thickness 

depends on the face material and material properties of the honeycomb and here will be 

identified for a subset of the possible material combinations. 

Objective 1:  Experimental evaluation of the performance influence of honeycomb 

inclusion in level III body armor.  

Attributes and constraints for vehicle mounted armor and body armor are markedly 

different.  Body armors are more weight-sensitive.  Tolerances on allowable areal 

densities of constituent materials in the armor are stringent.  Similarly, thickness 

limitations in body armor are higher due to smaller deployment volumes available in the 

carrier vest pockets. Proximity of armor to the human body makes propensity of injury 

more likely.  If enough space is allowed, deformed vehicle armor would not contact 

occupants.  Hence, strict armor BFS limits, as stated by the NIJ body armor standard for 

example, may not be required in vehicle mounted armor3.  These factors eventually affect 

the armor design and in turn govern the functionality of any included cellular solids.  

Hence, a first objective of this study is to identify the role of the honeycomb in body 

                                                           
3 Refer NIJ standard 0108.01. 
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armor and its contribution to projectile defeat mechanisms with the imposed constraints 

of the NIJ standard.  

This objective demonstrates a fabrication process that allows integration of 

honeycomb cellular solids in body armor.  Ballistic performance of the aluminum 

honeycomb included body armor was compared with the current state-of-the-art material 

used in level III body armor as a baseline:  Dyneema® HB50 fabric cross-ply laminate 

composite.  This study is the first to present detailed ballistic test data for HB50, not 

currently available in published literature.  Similarly, it is the first to verify the influence 

of honeycomb attributes like base material, strength, height, location in the multilayered 

armor on armor ballistic performance.  The method used for design, testing, and 

obtaining data can serve as a guideline for the inclusion of other cellular solids in hybrid 

armor and related protective structures.  The experimental investigation of the aluminum 

honeycomb included in HCA is presented in Chapter 3. 

Objective 2: Numerical modeling of the Hybrid Composite Armor under ballistic 

impact. 

Experimental ballistic tests and results give a macro-mechanical insight in the 

behavior of the HCA and its potential to reduce BABT.  Evaluation of micro-mechanical 

data for BABT characterization through in-situ observation of the projectile defeat 

mechanism, identifying individual layer performance, and armor time dependent 

properties (armor rear face velocity, its acceleration and stress wave impedance) are 

difficult to conduct experimentally.  Numerical modeling or finite element analysis 

(FEA) is an effective tool to address these issues.  Along with corroborating and 

supplementing experimentally observed results, FEA allows for rapid design 
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modifications and to simulate multiple ballistic impact scenarios that are cost and time 

prohibitive to conduct experimentally. 

Prior attempts to conduct FEA of high velocity ballistic impact on composite armor 

have seen limited success.  Several deficiencies exist in the modeling of constituent 

materials involved in FEA.  Successful completion of this objective primarily provided 

valuable insights on honeycomb behavior in HCA under ballistic impact. It also set a 

precedent in FEA methodology that can be adopted for similar research.  Numerical 

investigation of HCA is presented in Chapter 4 and 5. 

Objective 3: Selection criteria for honeycombs 

No specific selection criteria has been presented for cellular solids used in 

multilayered armor [7-9].  This information is vital to distinguish between cellular solid 

parameters (base material, density and cell size) and identify those that have a significant 

influence on the ballistic behavior.  Gibson and Ashby have presented a selection method 

for foam-based energy absorption structures in their text [11].  The process considers 

direct contact of the cellular solid with the impacting object.  A similar method was also 

presented for flexural stiffness improvement of sandwich beams.  Here, theories were 

adapted to develop selection criteria for honeycombs used in high velocity impact 

applications including HCA. 

Literature pertaining to armor is often restricted.  A review is presented in Chapter 2 

to familiarize the reader with their basic concepts and provide more details on the 

scientific background leading to this thesis. 
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

 

2.1 Review of published literature and concepts pertaining to body armor 

Any impact protection application demands a specific design and material choice that 

will provide maximum efficiency and the desired level of safety.  It demands a design 

selection that enables energy dissipation at a predetermined rate and controlled manner.  

As described by Lu et al. [12], the most fundamental principles that act as guidelines for 

designing any impact protection system can be briefly outlined as follows: 

 The energy conversion by the structure should be irreversible by plastic 

deformation and other dissipation processes, rather than storing it elastically. 

 The peak reaction force should be kept below a threshold and an ideally constant 

reaction force should be maintained throughout the deformation process. 

 The displacement by deformation or the stroke in the structure should be 

sufficiently long to absorb the large amount of input energy. 

 The deformation mode and energy absorption capacity of the designed structure 

should be stable and repeatable to ensure reliability during service. 

 The structure should be as light as possible with high specific energy absorption 

capacity.
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 Manufacturing, installation and maintenance should be easy and cost effective.  

For body armor, safety of the human user is of utmost importance.  Body armor designs 

have to provide this safety without being bulky or restricting mobility.  Their close 

proximity to the torso requires curvature for a comfortable fit.  As a result, the principles 

of high specific energy absorption capacity, reliability, manufacturing and handling ease 

gain prominence.  Thickness limitations and issues like BABT restrict the maximum 

allowable stroke or deformation displacement.  

Over the years, the need for high specific energy absorption capacity has led to the 

development of body armor made from high strength fabrics and ceramic materials [13].  

They are lightweight and perform better than their metal predecessors.  As described by 

Hazell [13], these materials can be further categorized as disruptors or absorbers.  This 

classification is based on the material property that is specifically utilized to deal with the 

projectile kinetic energy.  Disruptors function as the first impact layers of protective 

systems that erode the projectile in to fragments and thus disperse the energy.  In order to 

successfully erode the projectile, disruptors are made from materials that have high 

strength and high hardness compared to the threat (for example: ceramics).  In contrast, 

absorbers work by absorbing the kinetic energy through plastic deformation modes.  

These systems also serve as spall liners to prevent unwanted projectile fragments from 

penetrating and inflicting damage post impact (high strength fabric composites). 

Modern body armor systems are multilayered and combine the advantages of both 

high strength fabric composites and ceramics.  Extensive failure in ceramics due to brittle 

cracking can be reduced when combined with a fabric composite backing, giving 

increased multi-hit capability.  Also, fabric composite based armor by themselves are not 
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efficient in defeating armor piercing threats.  They need ceramic face layers to delocalize 

the concentrated forces.  General projectile defeat mechanics utilized in modern 

multilayered body armor can be described as follows.  Upon initiation of ballistic impact, 

the ceramic face layer erodes the projectile tip and absorbs some kinetic energy.  Most of 

the structural loads during this period are sustained by the fabric composite backing.  

After the blunted projectile penetrates the ceramic layer (which will typically fail and 

fragment by reflected tensile waves), it is slowed down to a stop by the fabric composite 

backing via kinetic energy absorption through plastic deformation modes.  A portion of 

the structural loads and kinetic energy in this stage is then transferred to the wearers’ 

body wall as the composite backing deforms.  

 Ultimately, parameters for body armor designs (material choice and areal density for 

example) are based on the performance requirements set by the threat specific body 

armor standards.  The most commonly used standards are from the National Institute of 

Justice (NIJ), MIL specifications, and similar European designations (DIN, CEN, and 

STANAG). 

2.1.1 Contemporary materials used in body armor applications 

2.1.1.1 High strength fabrics used in body armor 

The first fabrics introduced in armor applications were Nylon based which were used 

in Flak vests designed to protect against shrapnel [14].  The invention of Kevlar in 1969, 

by DuPont, lead to the first patented use of fabrics in body armor as a protection against 

bullet threats (K-15 vests) [15].  Since then, several other fabrics have been introduced 

for commercial use in armor similar to Kevlar in woven and non-woven form.  Namely: 

Aramids like Twaron, Gold Flex, and Zylon; and Ultra High Molecular Weight Poly 
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Ethylenes (UHMWPE) like Spectra and Dyneema.  Other similar fibers as listed by 

Machalaba et al. [16] are Terlon, SVM, Armos, and Technora.  The high fiber tenacity 

exhibited by these materials was used to improve in-plane properties of woven and non-

woven composite laminates or fabric bundles. 

Table 2 Comparison of mechanical properties of fabrics used in body armor  [17-18]. 

Material 
Density 

(g/cc) 
Modulus (GPa) 

Tensile Strength 

(GPa) 

Failure Strain 

(%) 

Generic properties 

Aramid 1.39-1.44 60-115 2.8-3.2 1.5-4.5 

HWMPE 0.97-0.98 90-140 2.8-4.0 2.9-3.8 

LCP 1.40-1.42 64-66 2.7-2.9 3.3-3.5 

PBO 1.54-1.56 270-290 5.4-5.6 2.4-2.6 

PIPD 1.69-1.71 320-340 3.9-4.1 1.1-1.3 

Specific properties 

1500 den Kevlar 29 

1.39-1.44 

74 2.90 3.38 

1140 den Kevlar 49 120 3.04 1.20 

840 den Kevlar 129 99 3.24 3.25 

850 den Kevlar KM2 74 3.34 3.80 

Spectra 1000 0.97 120 2.57 3.50 

E-Glass 2.47-2.67 74 3.50 4.70 

S-Glass 2.47-2.49 87 4.65 5.3-5.5 

Nylon 1.07-1.17 10 0.91 1.5-2.5 

Twaron 1.44 80 2.8 3.3 

Dyneema 0.96 172 3.1 4.5 

Carbon Fiber-IM7 1.8 304 6.1 1.9 

Fabric based body armor functions well against deformable threats by distributing the 

kinetic energy through the high strength fibers with dissipation modes including fiber 

shear or fracture, fiber tensile failure, or straining and associated delamination or pullout 

[19].  Other factors that affect their ballistic performance have also been discussed in the 

overview presented by Cheeseman et al. [20].  The ballistic performance of these 

composites is quantified with respect to their ability to:  (a) absorb the projectile’s kinetic 
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energy locally; and (b) spread out the absorbed energy fast before local conditions for the 

failure are met [21-22].  Energy absorption capacity per unit mass (Esp) of armor is 

directly proportional to failure stress (σfail) and strain (fail) and inversely proportional to 

density (ρ). Mathematically, it is expressed as: 

𝐸𝑠𝑝 =  
0.5 𝜎𝑓𝑎𝑖𝑙휀𝑓𝑎𝑖𝑙

𝜌
 (2.1) 

Also, the ability to spread out the absorbed energy is directly proportional to the speed of 

sound in the material and in turn to the material stiffness (E) and inversely to its density 

(ρ). 

𝑣𝑠𝑜𝑢𝑛𝑑 =  (
𝐸

𝜌
)

1/2

 (2.2) 

Hence, the fibers used in the composite are required to have high specific tenacity, 

rupture strain, and in-plane stiffness to achieve maximum performance.  A comparison of 

ballistic grade fibers using these material property values (Table 2) suggests UHMWPE is 

the best material.  Fine fiber diameter UHMWPE laid in [0°/45°] or [0°/90°] cross-ply 

layups of unidirectional plies provides a high number of yarn crossover points that 

facilitate stress dissipation by transverse waves in primary yarns, improving ballistic 

performance.  The layup also provides orthotropic properties to the laminate.  UHMWPE 

further benefits from the lack of kinks typically observed in woven fabrics that lead to 

stress reflections and yarn failure.  

Commercial brands of UHMWPE are Dyneema® by DSM Dyneema and Spectra 

Shield® by Honeywell.  Mechanical energy absorption capacity and the tensile strength 

of Dyneema is higher than Spectra Shield [23-24].  Ballistic test data for hard laminate 
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variants of Dyneema available in the public domain are shown in Table 3.  Since different 

types of projectiles have been used to test armor of different densities while carrying out 

V50 evaluations, an effective performance comparison can be achieved by calculating the 

Specific Energy Absorbed (SEA) for each Dyneema type.  SEA (J m2/kg) is the ratio of 

the kinetic energy corresponding to the V50 velocity with the laminate areal density.  

Comparison of SEA values presented in Table 3 indicates Dyneema HB50 has the 

highest propensity to defeat small arms threats.  HB50 is a [0°/90°]s cross-ply hard 

laminate fabricated by hot pressing monolayer plies.  Each ply has 82% volume fraction 

of gel spun SK76 Dyneema fibers mated with a styrene-isoprene-styrene triblock 

copolymer matrix known commercially as Kraton®. 

Table 3 Ballistic test data for hard laminate variants of Dyneema®. 

Dyneema type Projectile V50 (m/s) Areal Density (kg/m2) SEA (Jm2/kg) Reference 

HB2 
7.62 NATO ball 885 17 223 

 [22] 
AK47 steel core 769 17 140 

HB2 AK47 steel core 848 19 153 
 [25] 

HB25 AK47 steel core 878 19 164 

HB2 
7.62 NATO ball 920 17 241 

 [26] 
AK47 steel core 773 17 141 

HB50 
7.62 NATO ball 1010 16 309 

AK47 steel core 830 16 172 

Again, the performance of ballistic fabrics against non-deformable material 

projectiles (armor piercing) is limited since the concentration of force over a small area 

causes penetration.  Attempts to retain the flexibility and strength of these fabric systems 

along with high deformation capability of disruptors have been made.  Inter-laminar 

strength of fabric laminates have been improved using 3D weave patterns instead of 

conventional 2D weaves, resulting in better ballistic performance [27].  Impregnation of 
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woven Kevlar fabrics with colloidal shear thickening fluid have also been used as a 

method of improving strength of ballistic fabrics without affecting their flexibility [28]. 

2.1.1.2 Ceramics used in body armor 

Ceramics are the class of materials most resistant to compressive stresses.  They have 

been increasingly used in armor applications [29-32].  They show high compressive 

hardness and high stiffness with low bulk density compared to metals like steels, 

titanium, and aluminum alloys.  These properties make ceramics an excellent choice as 

disruptors against armor piercing projectiles.  The most common non transparent 

ceramics for armor are tungsten carbide (WC), silicon carbide (SiC), silicon nitride 

(Si3N4), boron carbide (B4C), titanium diboride (TiB2), and alumina (Al2O3).  

As summarized in [13, 33], the choice of a ceramic material for a specific armor 

application is usually based on performance to cost appraisal.  SiC and B4C are harder 

materials with lower densities than alumina but cost more.  However, their ability to 

defeat more tenacious threats with lower weight penalties results in their favor.  Si3N4 and 

alumina have similar performance, but the higher availability of alumina gives it a 

reduced cost.  TiB2 is a high performing ceramic but is one of the most expensive 

ceramics due to processing limitations.  WC, owing to its high mass is primarily used in 

projectile cores instead of armor.  The mode of manufacture is essentially what dictates 

the properties of the final ceramic product (density, hardness, grain size, amount of minor 

phase, phase stability, fracture mode — all of which in turn affect performance) and also 

determines its end cost [33].  Performance was also found to vary with different 

manufacturers who may utilize the same manufacturing process [13].  A comparison of 

ceramic armor plates is illustrated in Table 4.  This comparison is based on their 
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calculated Mass Efficiency Factor (Em) which represents the factor by which the areal 

density of the Rolled Homogenous Armor witness material (of thickness tc) has to be 

multiplied to provide the same protection.  In brief, higher Em represents better 

performance. 

Table 4 Comparison of Ceramic armor materials against Level IV 7.62 mm x 51 mm FFV AP (WC –

Co core) threat [13]. 

Ceramic Manufacturer tc (mm) Calculated Em Witness Material 

HP SiC 

 

 

Ceradyne Inc. 

6.5 5.0 

 

 

Al 6082-T651 

YS = 250 MPa 

Depth of 

penetration: 75 

mm without 

ceramic. 

HP B4C 6.5 2.5 

RS Si3N4 6.5 2.2 

HP TiB2 6.6 3.4 

Sintered SiC Morgan AM&T 5.9 3.7 

Sintered SiC Wacker-Chemie 6.1 4.8 

LPS SiC AME 6.1 3.3 

RB SiC Morgan AM&T 7.2 1.3 

RB SIC Haldenwanger 6.2 1.2 

RB SiC Schunk 6.0 1.5 

RB B4C M-Cubed 7.0 1.2 

HP: Hot Pressed, RB: Reaction Bonded, RS: Reaction Sintered, LPS: Liquid Phase Sintered 

2.1.2 Multilayered armor and the use of cellular solids 

Stress waves tend to lose energy when they encounter materials of different 

mechanical properties.  This is due to acoustic impedance which directly depends on 

density and elastic modulus of the material.  Hence, most modern armors tend to be 

multilayered armor systems (hybrid composite/integral armors) with ceramics and high 

strength fiber composites forming their adhesively bonded layered components. The 

choice of materials suitable for armor relies on factors like permissible areal density, 

multi-hit capability, impact velocity, and the maximum allowable BFS for the expected 

projectile threat.  The order of layering of these materials and their chosen areal densities 
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are optimized to maximize the energy absorption capacity of the armor system during 

each stage of the projectile impact with consideration of wave propagation effects.  

Mahfuz et al. [34] investigated the stress distributions and damage modes in an 

integral armor concept to conclude that the structural integrity of multilayered armors 

depended extensively on inter-laminar shear stresses between individual layers.  The 

study showed stress wave reflections at interfaces caused complete delamination of 

ceramic and composite layers on impact.  In-plane stresses combined with high 

compressive through-thickness stress resulted in severe damage to the ceramic layer.  A 

way to prevent complete delamination of layers could be to increase inter-laminar bond 

strength by use of more adhesive.  The effect of adhesive and its thickness on ballistic 

performance of armor has been investigated [35].  The study showed that although a 

thicker adhesive layer helped in widening the area of plastic deformation in the backing 

(thus absorbing more kinetic energy), it exacerbated the damage in the ceramic layer due 

to stress wave reflection.  It recommended the thickness of the adhesive layer should be 

reduced as far as possible so as to delay ceramic fragmentation.  Another way to 

minimize inter-laminar stresses at the ceramic-composite interface is by increasing the 

obliquity of the projectile impact [36].  An oblique impact causes increased area of 

contact between the projectile and the ceramic as well as offers a higher ceramic 

thickness in the projectile path.  It results in higher erosion of the projectile improving the 

ballistic performance.  The mechanism of ceramic face obliquity to improve ballistic 

performance has been used in armor design as early as 1984 [37].  Individual layer areal 

density in the integral armor system is the most critical factor governing the ballistic 

performance of the unit.  Grujicic et al. [38] confirmed that the ratio of composite 
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backing to facing ceramic areal densities for a fixed overall density was a critical design 

parameter.  Results from the study showed that there is an optimal composite areal 

density at which the ballistic performance of the unit peaks.  Any further increase in 

composite areal density for the same total areal density of the unit adversely affected its 

performance.  

Collapsible energy absorbers like honeycombs and foams have also been incorporated 

in armor systems to improve energy dissipation and attenuation of stress wave 

propagation.  The use of such porous/cellular solid materials can be particularly effective 

as they allow maximum acoustic impedance due to their high elastic modulus difference 

compared to contemporary armor materials.  Also, their gradual cell collapse allows 

designers to control the rate of deformation via regulation of the geometric parameters of 

the material. 

The impact absorbing armor design by Dunn in 1994 is likely the first published 

reference to  use of honeycombs in multilayered armors [7].  The honeycomb layer was 

used as a spacer between layers to improve the ballistic performance of the unit.  Its 

function was to minimize energy transfer and the propagation of stress waves that 

prematurely failed successive armor layers upon impact.  This thereby isolated these 

successive layers from initial stages of impact and helped in gradual dissipation of shock.  

In process, the honeycomb also helped in absorbing some portion of the kinetic energy.  

A study by Senf et al. [8] showed that aluminum honeycomb helped in reducing back 

face bulging in a multilayered armor.  Results also showed the honeycomb assisted in 

reducing the bulging velocity.  This decrease in bulging velocity was found to be 

proportional to the increase in the honeycomb layer thickness.  Benefits of the 
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honeycomb were found to be more prominent against deformable projectiles than armor 

piercing ones.  Alavi Nia et al. [39] concluded ballistic performance of honeycombs can 

be improved by increasing the panel thickness and the cell wall thickness or by reducing 

the cell size.  This way, energy dissipation through cell wall folding and shearing can be 

increased.  A summary of research efforts to incorporate aluminum foams as a constituent 

material in integral armors has been presented in a review by David et al. [9].  The 

review states that aluminum foams attenuated stress waves of ballistic impact by 

undergoing densification under dynamic nonlinear deformation.  The time lapse for 

complete densification corresponds to the time delay in stress transfer to the backing 

layer.  Armors with foam layers were found to perform better than baselines without 

foam of the same areal densities.  Apart from acting as a stress wave filter, the foam also 

helped to reduce individual layer debonding and back face bulging.  Other significant 

developments pertaining to body armor, similar to those discussed in this section, have 

also been summarized in this review. 

2.1.3 Finite Element Analysis (FEA) of armor ballistic tests 

The study of energy absorption modes and failure patterns observed in armor first 

prompted the use of numerical codes that could predict their ballistic performance.  

Similar to analytical modeling of an impact problem, FEA codes can also be used to 

combine the various energy dissipation modes in one analysis and predict the ballistic 

resistance and impact worthiness of armor.  This method is far more effective than actual 

testing, as making variations in design is easy and time effective.  Failure modes and 

deformations from FEA also can be visually inspected to compare accuracy with 
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experimental results.  This comparison is a necessary validation step as accuracy of 

results from FEA is variable since there are no standards to the way FEA is conducted.  

The Material model selection and assigned property values govern the nature of the 

final output result.  Evolution in simulation codes and material failure models has 

improved the efficiency of FEA, leading up to the development of commercial simulation 

codes and software options (LS DYNA®, AUTODYN®, ABAQUS®) to carry out the 

numerical investigations.  Errors in model selection and assigned properties reflect in 

incorrect visual and numerical response from the simulations.  Property assignment for 

any material can be segregated into four basic inputs:  (a) elastic property inputs, (b) 

plastic property inputs, (c) damage initiation input, and (d) damage evolution inputs.  

Each input conforms to the desired material model that best represents the actual material 

behavior when under impact.  The following sub-sections will categorize references 

according to the primary materials involved in armor FEA and discusses material models. 

2.1.3.1 Material modeling of metals in armor FEA 

In the earliest FEA attempts, simple material models were used to model the material 

properties of metal objects undergoing impact.  Energy conservation equations and 

dimensional analysis were the primary modes for evaluation which were later replaced by 

specific numerical models.  Elastic modulus, density, plastic stress-strain relationship, 

shear, and tensile limits were considered as relevant material inputs.  However, the 

material in its entire sense was not considered, as strain rate dependent and adiabatic 

effects were largely excluded.  To incorporate strain rate effects and adiabatic heating, a 

material model by Johnson and Cook was proposed in 1983 [40].  The model was an 

extension of the Von Mises criteria where in the flow stress was defined by:  
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𝜎𝑒𝑞 =  [𝐴 + 𝐵휀𝑛][1 + 𝐶휀 .∗][1 −  𝑇∗𝑚] (2.3) 

where A, B, C, n and m are material constants, T*m = (T − T0)/(Tm − T0) is the homologous 

temperature, where T0 is the room temperature and Tm is the melting temperature. ε is the 

strain, and ε˙* = ε˙/ε˙0 is a dimensionless strain-rate given by the ratio of instantaneous 

strain rate ε˙ and a user-defined reference strain-rate ε˙0.  Chamacho et al. [41] then 

modified the strain-rate sensitivity term in the above equation to avoid unwanted effects 

if p˙ * < 1.  The modified version of the Johnson–Cook model can be written as: 

𝜎𝑒𝑞 =  [𝐴 + 𝐵휀𝑛][1 + 휀 .∗]𝐶[1 −  𝑇∗𝑚] (2.4) 

In 1985, a fracture model was proposed by Johnson and Cook which estimated the failure 

strain (εf) for materials under different stress states, strain rate and temperature [42].  The 

model equation was a five parameter based expression given by: 

휀𝑓 =  [𝐷1 +  𝐷2𝑒𝑥𝑝(𝐷3𝜎∗)][1 +  휀 .∗]𝐷4[1 +  𝐷5𝑇∗] (2.5) 

where the stress triaxiality ratio is defined as σ* = σH /σeq, σH being the hydrostatic stress, 

σeq being the total equivalent stress and D1 to D5 are material constants.  A combination 

of these two equations can predict the onset and evolution of plasticity with failure 

initiation in a variety of metals. 

Steels, aluminum alloys, lead, and copper or brass are the most often encountered 

metals in numerical analysis of armors.  Tool steel and lead are the constituents of the 

bullet projectile core while the outer gliding jacket is copper or brass.  Other metals are 

typically found in the target plates.  A range of Johnson-Cook material parameters have 

been chosen by research groups for modeling the steel core, lead, and the gliding jacket 
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[43-52].  A summary of these parameters is presented in Table 5.  The stress versus strain 

plots derived from the Johnson-Cook strength model (equation 2.3) parameters for the 

steel core are shown in Figure 2.  It highlights the significant variations in material 

properties used by research groups for numerically simulating the same type of 7.62 

APM2 bullet core.  This makes the numerically obtained results subjective to the chosen 

inputs.  As pointed out by Kilic and Ekici [52], material data for the bullet materials is 

generally not disclosed in literature and the process to experimentally evaluate it from 

actual rounds is difficult.  Most research groups get around this problem by considering 

APM2 ammunition as a rigid body.  This, however, is not a realistic assumption against 

hard targets as core fracture is excluded leading to higher penetration depths.  It is also 

not possible to neglect the lead filler and the jacket material as it has a proven influence 

on the penetration capacity of the bullet [53]. 

 

Figure 2 Stress - Strain plots for steel core derived from Johnson-Cook strength model parameters 

used by research groups in armor FEA. 
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Table 5 Material parameters of metal constituents of bullets used in armor FEA 

  Elastic Johnson-Cook strength model Johnson-Cook fracture model   EOS 

  
Modulus 

E, (GPa) 

Poisson's 

ratio, ν 

A 

(MPa) 

B 

(MPa) 
β C m n 

ε'0 

(/s) 
Tmelt 

(K) 
Tref 
(K) 

D1 D2 D3 D4 D5 εf 

Bulk 

speed, 

C0 

(km/s) 

S Г0 

Material parameters for steel core 

Kilic, Ekici [52]  - - 1900 1100 0.579 0.05 1 0.3 0.001 -  - - - - - - 2-3% 4.57 1.49 1.93 

Niezgoda et al. [49] - - 2700 211 0.078 0.005 1.17 0.065 - - - 0.4 0 0 0 0 - 4.57 1.49 1.93 

Burger et al. [51] 200 0.33 490 807 1.647 0.012 0.94 0.73 0.0005 1800 300 0.071 1732 -0.54 -0.012 0 - - - - 

Borvik et al. [48] 210 0.33 1200 50000 41.67 0 1 1 0.0005 1800 293 - - - - - 2% - - - 

Anderson et al.[46] 210 0.29 1034 18095 17.5 0.005 1 0.64 1 1790 300 - - - - - 10% 4.5 - - 

Buchar et al.[44] - - 1650 807 0.489 0.008 1 0.1 - - - 0.051 0.018 -2.44 0.0001 0.55 - - - - 

Material parameters for gliding jacket  

Burger et al. [51] 124 0.34 440 150 0.341 0.025 1.09 0.31 1 1357 300 0.3 0.28 -3.03 0.014 1.12 - - - - 

Hazell et al.[47] - - 575 0 0 0 1.09 1 - 1323 - - - - - - 5% 3.94 1.49 2.02 

Borvik et al.[48] 115 0.31 206 505 2.45 0.01 1.68 0.42 0.0005 1189 293 - - - - - - - - - 

Anderson et al. [46] 140 0.35 500 0 0 0.025 1 1 - 1360 300 - - - - - - 3.94 - - 

Preece, Berg [45] 120 0.33 70 - - - - - - - - - - - - - - 3.94 1.49 1.99 

Material parameters for lead core 

Krishnan et al.[50] 17 0.4 8 - - - 1 -  - - - - - - - - - - - - 

Hazell et al.[47] - - 40 0 0 0 1 1 - 525 - - - - - - 20% 2.006 1.43 - 

Borvik et al. [48] 1 0.42 24 300 12.5 0.1 1 1 0.0005 760 293 - - - - - - - - - 

Anderson et al.[46] - 0.44 27.6 3036 110 0.116 0.00116 0.52 - 760 300 - - - - - - 2.05 - - 

Preece, Berg [45] 16 0.44 5 - - - - - - - - - - - - - - 2.051 1.46 2.77 
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Similarly, material modeling of the 7.62 mm lead core round has proven to be a 

difficult task for the scientific community.  A wide range of values have been chosen 

with minimal effort dedicated to verification through mechanical testing.  This is evident 

from the data in Table 5.  Lead is a relatively soft metal that behaves fluid-like at high 

strain rates.  The high density, low modulus of lead results in low wave velocities whose 

magnitude during high speed impacts can be even lower than the deformation progression 

velocities.  This manifests in FEA as excessive contact overclosures, mesh distortions 

from unresolved large deformations, and unrealistic strains leading to premature failure 

of the Lagrangian scheme.  Adaptive meshing (described by Camacho and Ortiz [41]) 

was used by Borvik et al. [48] to tackle this problem.  The authors observed limited 

success on its implementation.  Attempts were made to use Arbitrary Lagrangian 

Eulerian integration codes in GRALE software to model fluidity of the lead core.  It was 

found that even this method did not give a good description of the perforation process as 

global target deformation was too large.  The authors also point out that similar 

difficulties were faced by Schwer [54] with a Smooth Particle Hydrodynamics approach 

for modeling lead cores.  Owing to these difficulties, the majority of the scientific 

community preferred numerical analysis of APM2 rounds instead [55]. 

The Mie-Grüneisen Equation of State (EOS) model that defines the pressure-volume 

relationship depending on whether the material is compressed or expanded has also been 

used in conjunction with the Johnson-Cook model [45, 47, 49, 52, 55].  This model has 

been used in it linear and non-linear forms to provide a hydrodynamic governing model 

for a material’s volumetric strength.  In the linear form, the shock velocity Us and particle 

velocity Up are related by the expression: 
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Us = c0 + sUp (2.6) 

where, c0 is the bulk sound speed and s is the slope of the Us - Up curve.  This expression 

can be further represented in a Hugoniot form as: 

 𝑃 =  
𝜌0𝑐0 𝜂

2

(1−𝑠 𝜂)2  (1 −  
Г0 𝜂

2
) + Г0𝜌0𝐸𝑚  (2.7) 

where, P is the pressure, ρ0 is reference density, Г0 is material Grüneisen constant, Em is 

internal energy per unit mass and η is the nominal volumetric compressive stress.  A 

summary of these parameters is presented in Table 5.  

Material models need to be robust to capture effects like fragmentation, petal and 

plug formation, stripping of the gliding jacket along with core bulging, and fractures that 

occur during ballistic impact.  Numerical modeling has been close in predicting gross 

performance like penetration depths and ballistic limits.  However, it has not been able to 

perfectly replicate all abovementioned ballistic impact effects.  A part of making the 

models robust would be to use precise material parameters.  The process of evaluating 

these material parameters is extensive [40].  Few research groups have tried to obtain 

their values using material taken from actual bullets or by fabricating test samples [43-44, 

56-57].  

2.1.3.2 Material modeling of ceramics in armor FEA 

Ceramics are brittle materials that exhibit a high compressive strength, but poor 

tensile behavior.  Ceramics are known to show pressure-hardening ability and this 

response is typically non-linear.  Hence, a polynomial expression relating the pressure 

and strain response is more appropriate for ceramics [13]. 
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P = K1μ + K2μ
2 + K3μ

3  (2.8) 

where, P is the pressure and μ is the volumetric strain.  Johnson and Holmquist developed 

a model to for simulating dynamic impact response of ceramics considering this pressure-

hardening law [58].  Similar to metals, a scalar damage parameter D is used to regulate 

failure based on accumulated plastic strains.  As damage initiates, an additional pressure 

term is added to account for dilation or bulking and its value is calculated by energy 

considerations.  Johnson and Holmquist proposed two variants of the model (JH-1 and 

JH-2).  JH-1 has an instantaneous transition from intact strength curve to the failed 

strength curve, for the ceramic when it fails.  While, JH-2 allows for a more gradual 

change in strength response as failure progresses.  The P-μ relationship for the JH-2 

model is given by: 

P = K1μ + K2μ
2 + K3μ

3 + ∆P      if μ ≥ 0 (compression) 

P = K1μ   if μ ≤ 0 (tension) 

(2.9A) 

(2.9B) 

The strength of the material is expressed in terms of the normalized von Mises equivalent 

stress as: 

σ* = σi* - D(σi* - σf*) 

σi* = A(P* + T*)N (1 + C ln p˙*) 

σf* = B(P*)M (1 + C ln p˙*) 

(2.10) 

(2.10A) 

(2.10B) 

where, σi* is the normalized intact equivalent stress and σf* is the normalized fractured 

equivalent stress.  Stress normalizations are done using the stress at the Hugoniot Elastic 

Limit (HEL).  P* is the normalized actual pressure and T* is the normalized maximum 
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tensile hydrostatic pressure the material can withstand.  Again, pressure normalizations 

are done using the pressure at the HEL.  A,B,C,M and N are material constants.  The JH-2 

model can account for strain rate effects similar to the Johnson-Cook model using a p˙* 

term.  Plastic strain required to estimate the scalar damage parameter, D, for simulating 

failure is calculated by: 

εf = D1(P* + T*)D2  (2.11) 

where, D1 and D2 are material constants.   

Table 6 Summary of JH-2 parameters from published literature for ceramics [59]. 

 
B4C SiC AlN Al2O3 Glass 

Density (kg/m3) 2510 3163 3226 3700 2530 

Shear modulus (GPa) 197 183 127 90.16 30.4 

Strength Constants 
     

A 0.927 0.96 0.85 0.93 0.93 

B 0.7 0.35 0.31 0.31 0.088 

C 0.005 0 0.013 0 0.003 

M 0.85 1 0.21 0.6 0.77 

N 0.67 0.65 0.29 0.6 0.77 

p.* 1 1 1 1 1 

Tensile strength (GPa) 0.26 0.37 0.32 0.2 0.15 

Normalized fracture strength 0.2 0.8 - - 0.5 

HEL (GPa) 19 14.567 9 2.79 5.95 

HEL Pressure (GPa) 8.71 5.9 5 1.46 2.92 

HEL Volumetric Strain 0.0408 - 0.0242 0.01117 - 

HEL Strength (GPa) 15.4 13 6 2 4.5 

Damage Constants 
     

D1 0.001 0.48 0.02 0.005 0.053 

D2 0.5 0.48 1.85 1 0.85 

Equation of State 
     

Bulk Modulus, K1 (GPa) 233 204.785 201 130.95 45.4 

K2 (GPa) -593 0 260 0 -138 

K3 (GPa) 2800 0 0 0 290 

Beta 1 1 1 1 1 
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A summary of JH-2 parameters from published literature for alumina (Al2O3), boron 

carbide (B4C), silicon carbide (SiC), and aluminum nitride (AlN) have been presented 

[59].  They are listed in Table 6. Similar to metals, evaluating material parameters for 

ceramics is complicated since many cannot be determined directly and have to be 

inferred.  The JH-2 model is able to balance accurate representations of the physical 

phenomenon while maintaining computational efficiency.  Validation tests of the model 

by Johnson and Holmquist showed a correct prediction of the final-buckling pressure and 

the stress-pressure history.  However, phase changes at elevated pressures may not be 

adequately described by the model. 

2.1.3.3 Material modeling of composites in armor FEA 

Composites exhibit anisotropy in mechanical properties, meaning their values are 

directionally dependent.  The stress-strain relationship in this case will be represented by 

a thirty six constant second-order stiffness tensor.  Based on the inherent symmetry the 

material may possess, fewer constants can generally describe this relationship 

(orthotropic materials require only nine constants).  A detailed explanation on the 

mechanics of composites is available [60].  The damage in laminated composites results 

from matrix cracking, fiber-matrix debonding, fiber fracture and delamination.  The onset 

of damage causes a reduction in load carrying capacity of the plies and numerically this is 

computed by estimating the corresponding reduction of the stiffness matrix components.  

Classical laminate analysis can then calculate the overall resulting mechanical properties 

of the laminate, post stiffness reduction.  

Ballistic impact on layered composite armor involves a three-dimensional stress state 

which needs failure prediction models that can capture both in-plane and inter-laminar 
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stress components.  These models also need to allow for interaction of various damage 

modes to act simultaneously to closely resemble the actual event.  Failure modeling is 

done on a ply to ply basis when the objective is to predict the failure behavior of the 

entire laminate.  Failure is assumed to initiate when any of the stress components for the 

ply equal or exceed the nominal values.  This is therefore a direct comparison between 

normal stress components (σ1, σ2, σ3) with ply normal strengths (X, Y, Z) in tension 

(subscript T) or compression (subscript C) along the (1,2,3) directions.  Similarly, shear 

stress components (σ4, σ5, σ6) are compared with ply shear strengths (R, S, T) in the (23, 

13, 12) planes (subscript: longitudinal L, transverse T), respectively.  Typically, when a 

failure criterion is met, stiffness reduction within a ply is done point wise ensuring 

gradual degradation of properties.  Composite failure models are tensor polynomial 

criteria involving these normal and shear stress comparison terms.  Most models use:  the 

maximum stress criterion, the Tsai-Hill criterion, the Tsai-Wu criterion, the Azzi-Tsai-

Hill criterion, or the Hoffman’s criterion (detailed theory and expressions available in 

[60]).  These criteria essentially predict failure initiation without regard to the failure 

mode.  Hashin put forth a criterion that had the ability to predict failure modes as well 

[61].  Four failure modes are considered in this criterion:  tensile and compressive failure 

of the fibers and matrix.  Failure is controlled by a quadratic interaction between stress 

components in the tensor polynomial for each mode.  

As mentioned in [62], Hashin criteria does not consider a delamination mode of 

failure and can be supplemented with the Hou criterion [63] to include this mode in the 

analysis.  Authors of [62] consider Hashin and Hou criterion as a three-dimensional 

version of the Chang-Chang model [64], which has also been used for failure prediction 
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in composites.  Hashin’s criteria has also been used in combination with Puck’s criteria 

for simulating matrix failure [65].  Puck’s criterion is based on the assumption that 

fracture occurs only on fracture planes inclined at a fixed angle to the material plane.  

The normal and shear stresses acting on this plane are calculated by stress tensor rotation 

from the material co-ordinate system to the fracture plane system. 

Table 7 Polynomial expressions of Hashin and Hou criteria [62]. 

Failure 

mode 
Hashin criterion Hou criterion  

Fiber tension 𝑑𝑓𝑡
2 =  (

𝜎11

𝑋𝑇

)
2

+  (
𝜎12

2 +  𝜎13
2

𝑆𝐿
2 ) 

𝑑𝑓
2 =  (

𝜎11

𝑋𝑇

)
2

+  (
𝜎12

2 +  𝜎13
2

𝑆𝐿
2 )  

(2.12A) 

Fiber 

compression 
𝑑𝑓𝑐

2 =  (
𝜎11

𝑋𝐶

) (2.12B) 

Matrix 

cracking 

𝑑𝑚𝑡
2 =  (

𝜎22 + 𝜎33

𝑌𝑇

)
2

+ (
𝜎12

2 +  𝜎13
2

𝑆𝐿
2 )

+  (
𝜎23

2 − 𝜎22𝜎33

𝑆𝑇
2 )

2

 

𝑑𝑚𝑡
2 =  (

𝜎22

𝑌𝑇

)
2

+  (
𝜎12

𝑆𝐿

)
2

+ (
𝜎33

𝑆𝑇

)
2

 

(2.13) 

Matrix 

crushing 

𝑑𝑚𝑐
2 =  

1

𝑌𝐶

[(
𝑌𝐶

2𝑆𝑇

)
2

−  1] (𝜎22 + 𝜎33)

+  (
𝜎22 +  𝜎33

2𝑆𝑇

)
2

+  
(𝜎23

2 + 𝜎22𝜎33)

𝑆𝑇
2

+  
(𝜎12

2 + 𝜎13
2)

𝑆𝐿
2  

𝑑𝑚𝑐
2 =  

1

4
(

−𝜎22

𝑆𝑇

)
2

+ 
𝑌𝐶

2𝜎22 

4𝑆𝑇
2𝑌𝐶

− 
𝜎22

𝑌𝐶

+  (
𝜎12

𝑆𝐿

)
2

 

(2.14) 

Delamination - 

𝑑𝑑𝑒𝑙
2 =  (

𝜎33

𝑍𝑇

)
2

+  (
𝜎23

𝑆𝑇

)
2

+ (
𝜎31

𝑆𝐿

)
2

 

(2.15) 

Delamination can also be simulated by use of a Cohesive Zone Model (CZM) which 

considers a separate constitutive law for the interlayer matrix material between laminate 

layers [65].  CZM theory relates the tractions to the displacement jumps at the interface 

where a crack may occur.  The strength of the interface governs the damage initiation 
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whereas damage evolution is related to the critical strain energy release rate.  Residual 

traction force by the interface is reduced to zero when the total area under the traction-

separation curve becomes equal to its critical fracture toughness.  CZM considers a linear 

elastic traction-separation law for the undamaged material and a stress based criterion for 

damage initiation.   

2.1.4 Behind Armor Blunt Trauma (BABT), NIJ 0101.06 standard and Injury 

Tolerance Criteria  

2.1.4.1 Behind Armor Blunt Trauma (BABT) 

BABT covers a range of non-penetrating injuries to the human torso resulting from 

projectile impacts on personal armor.  Even if the armor prevents complete penetration, 

the energy imparted to the armor backing and body wall can be high enough to cause 

serious injury to the thoracic and abdominal contents behind the armor plate.  This may 

even result in fatality.  BABT has gained prominence since the 1970s for two principal 

reasons.  First, increases in projectile caliber and energy over time, and second the 

success of armor designers in developing working armor solutions with less areal density 

in order to reduce the gross gear weight carried by personnel in the field [6].  

BABT manifests itself due to stress wave transfer from the local point of impact on 

the armor to the underlying tissue.  The rear of the armor deforms at high velocities and 

accelerates underlying viscera locally causing tissue shearing.  This is then followed by 

distributed load on the thorax by movement of the whole plate resulting in organ 

stretching and contusion.  The type and extent of BABT injuries depend on the 

magnitude of body wall deflection and the rate at which it occurs.  Evidence collected 

from survey of known BABT cases with hard armor shows that it occurs for projectile 
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caliber of 7.62 mm or higher.  No known cases of BABT from 5.56 mm caliber exist 

[66].  

2.1.4.2 National Institute of Justice (NIJ) 0101.06 body armor standard 

Current armor standards like the NIJ 0101.06 quantify armor rear face deformation in 

terms of Back Face Signature (BFS) measured on a Roma Plastilina® clay backing.  BFS 

is the perpendicular distance between two tangential planes of the deformation indent, 

both of which are parallel to the front surface of the clay backing material.  The standard 

permits a maximum allowable BFS of 44 mm for armor against 7.62 mm caliber rifle 

rounds.  V50 is another ballistic parameter that defines the armor performance.  It is the 

velocity at which the armor panel can stop 50% of the bullets.  It is calculated by plotting 

the measured velocity values for complete and partial penetration against probability of 

penetration (complete penetration value assigned: 0, partial penetration value assigned: 1) 

in a Sigmoidal or Logistic function plot. NIJ standard recommends V50 values to be equal 

or higher than the conditioned armor test velocities listed in Table 8. 

Table 8 Threat specifications and requirements of NIJ 0101.06 standard. 

Armor 

type 

Test 

bullet 

Bullet 

mass 

Conditioned 

armor test 

velocity 

Normal 

hits per 

panel 

Maximum 

BFS 

depth 

Level III 
7.62 mm 

NATO FMJ 

9.6 g 

147 gr 

847 m/s 

2780 ft/s 
4 - 6 

44 mm 

1.73 in 

Level IV 
.30 Cal. 

M2 AP 

10.8 g 

166 gr 

878 m/s 

2880 ft/s 
1 - 6 

44 mm 

1.73 in 

NIJ 0101.06 is a part of The Standards and Testing Program as a basic and applied 

research effort to set minimum performance standards for specific devices, commercially 

available equipment nationally and internationally, that form a part of the body armor 

system.  It also specifies the methods that are to be used to test their performance.  Body 
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armor models that meet the minimum performance requirements are selected for 

inclusion on the NIJ Compliant Products List.  The tests and methods prescribed by the 

standard are also used by other agencies for equipment selection according to their own 

requirements.  The standard classifies ballistic performance according the caliber and 

type of projectile threat that can be defeated.  

 

Figure 3 Measurement of Back Face Signature (BFS) as stated by NIJ 0101.06 standard. 

2.1.4.3 Injury Tolerance Criteria 

Categorizing ballistic performance, resulting BABT injury and survival probability 

based on BFS size (diameter and depth) in clay has limitations.  The 44 mm clay BFS 

limit has been adopted from the 1977 Prather blunt impactor study [67] on anaesthetized 

goats, gelatin, clay, and other backing materials.  It concluded 44 mm deformation 
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magnitude correlated to a 4% probability of death in goats.  No tests were done on human 

cadavers.  Roma Plastilina® #1 clay emerged from this study as a cheap alternative BFS 

recording medium to the then prevalent expensive gelatin with high speed camera.  [68] 

points out that the selection of clay as a recording medium by Prather was based on 

recorded deformation-time histories at low speed impacts which may not apply to 

impacts at high speeds.  Clay is a highly plastic material which undergoes viscous flow 

not identical to the human body.  Hence, clay only serves as a “convenient” recording 

medium and not a body simulant.  Recently, research groups have tried to address this 

issue by attempting to develop the maximum allowable clay BFS lethality relationship by 

corresponding body armor tests on clay, porcine surrogates, and human cadaver torsos.  

Gryth et al. [69] concluded a maximum allowable clay BFS should be 28 mm to ensure 

the highest probability of survival.  Bass et al. [70], on the other hand, found clay BFS 

did not correlate well with impact velocity and in turn the corresponding human body 

BABT response. 

The lack of a substantial medical basis to correlate clay BFS to human BABT injury 

tolerance level has led the scientific community to reassess its phenomenon.  Studies on 

animals, human cadavers, bio-fidelic surrogates, numerical models, and instrumented 

dummies have extended the understanding of injury mechanisms.  Observations have 

resulted in quantification of human tolerance levels, and the development of numerical 

relationships between injury and measurable engineering parameters, termed as injury 

tolerance criteria [68, 71-72].  Detailed description of each criterion is presented in these 

references.  Current accepted standard for assessment of thoracic injury is the 

Abbreviated Injury Scale (AIS) with range 0 to 6 for increased severity.  AIS-code 3 
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relates to serious injury such as fractures with 8-10% probability of death.  Most studies 

report injury tolerance criteria for AIS-code 3+ or AIS-code 4 (up to 50% probability of 

death). 

Table 9 Injury tolerance criteria published in literature for frontal chest impact. 

Criterion AIS-code Magnitude  Reference 

Whole body peak acceleration 3 60-80g  [71] 

Peak sternal force 3 3.3 kN † [71] 

 
3 21 kN *   

[70] 
  4 25 kN * 

Percent compression of chest 3 20% 
[71] 

(low velocity impact) 4 34% 

Viscous injury 3 1.0 m/s [71] 
† From a 15 cm diameter pendulum impact, * 7.62 NATO Ball impact on hard UHMWPE armor. 

Injury tolerance criteria are still in a preliminary stage.  Additional experimentation is 

necessary to make it robust for design applications.  Until that point, body armor must be 

designed to comply with existing criteria using a method that allows easy adaptation of 

newly evaluated biomechanical parameters. 

2.2 Summary of observations from the literature review 

A review of published literature on impact protection structures like armor reveals the 

evolution of their design over the years.  Scientific research has been particularly directed 

to improve the fidelity of material selection and optimization process for this application 

through various performance verification methods and testing procedures.  A primary 

objective of this research has been to make these structures lightweight and ever more 

efficient by improving properties of the materials chosen and how the structure exploits 

them to advance its performance.  Basic concepts pertaining to modern armor and 
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involved materials were identified through this review and they are summarized as 

follows:    

 Modern projectile impact protective structures like body armor are multilayered 

hybrid composite systems that combine advantages of different materials in a unified 

solution for providing the desired level of protection.  These structures are also 

known as integral armors. 

 Design parameters for such structures are based on the regulations set by standards 

like those by NIJ or MIL.  For example, the NIJ standards categorize body armor 

according to the perceived threat type to be defeated; and set primary requirement 

limits for areal density, maximum allowable BFS, and working projectile velocity 

range.  Secondary requirements are set by desired ergonomics and in-field handling.  

All these factors govern material choice and layup, method of fabrication, desired 

curvature, and permissible thickness for the final body armor product. 

 Survey of review publications indicate most contemporary materials used in projectile 

impact protective structures are metals, ceramics, and high strength fabric 

composites.  In the case of hard plate body armor, material choice depends on 

whether the projectile to be defeated is armor piercing (AP) or soft core deformable.  

Armor protecting against AP projectiles utilize both ceramics and high strength fabric 

composites, whereas those protecting against soft core projectiles can be solely 

composite based. 

 Ceramics help in breaking/blunting the AP projectile (hence termed disruptors).  

Composites help in kinetic energy absorption through plastic deformation modes 

(termed absorbers) and reduce the extent of brittle cracking in ceramics. 
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 A variety of high strength fabrics like Aramids, UHMWPE, glass etc. have been used 

in composite based armor.  Fabric based body armor functions well against 

deformable threats by distributing the kinetic energy through the high strength fibers 

with dissipation modes including fiber shear or fracture, fiber tensile failure, or 

straining and associated delamination or pullout.  Their performance is quantified by 

their ability to absorb a projectile’s kinetic energy and spread it out fast before local 

failure occurs.  UHMWPE is the leading candidate material available at present for 

composite armors. 

 Ceramics are the most resistant materials to compressive stresses and are an excellent 

choice as disruptor layer first facing the impact.  The choice of a ceramic material for 

a specific armor application is usually based on performance to cost.  For example, 

SiC and B4C are harder materials with lower densities than alumina but cost more.  

However, their ability to defeat more tenacious threats with lower weight penalties 

has resulted in their favored use in armor.  Ballistic performance of ceramics is also 

susceptible to variations in manufacturing processes and parameters used therein.  A 

performance survey by Hazell [13] indicates HP SiC has the highest tenacity to defeat 

AP threats. 

 Impact stress waves tend to lose energy when they encounter materials of different 

mechanical properties due to acoustic impedance.  Multilayered armor benefits from 

this aspect.  The order of layering constituent materials in such armor along with their 

chosen areal densities thus have to be optimized to maximize the energy absorption 

capacity of the system during each stage of projectile impact with due consideration 

of wave propagation effects. 
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 Structural integrity of multilayered armor depends extensively on inter-laminar shear 

stresses between individual layers.  Although it is possible to achieve this with the use 

of more adhesive, thicker adhesive layers exacerbate damage in ceramic layers.  A 

solution to this problem is using the highest specific strength adhesive with minimal 

thickness to bond constituent layers.  Another way to decrease inter-laminar shear 

stress is by increasing the obliquity of projectile impact on the facing ceramic layer. 

 Individual layer areal density is a critical factor that affects performance of 

multilayered armor.  Research indicates that there is an optimal composite areal 

density in a fixed weight multilayered unit at which its performance peaks [38].  

Further areal density increase may not improve the armor performance while adding 

non-functional weight. 

 Collapsible energy absorbers (cellular solids) like honeycombs and foams have 

potential to be used as a constituent layer in multilayered armors.  The use of such 

materials can be particularly effective as they allow maximum acoustic impedance 

due to their high elastic modulus difference compared to contemporary armor 

materials.  Unlike compliant materials like rubber which have been used for 

increasing acoustic impedance, cellular solids can do this while maintaining the 

required structural stiffness.  A review of prior publications on this topic [7-9, 39] 

indicates: 

- Their use in armor can be considered fairly recent as the first published reference 

indicating this is dated to 1994.  A honeycomb layer was used in a multilayered 

armor as a spacer to minimize energy transfer and stress propagation that 
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prematurely failed successive layers on impact.  Isolation of successive layers 

from initial stages of impact and helped in gradual dissipation of shock. 

- A honeycomb layer also helped to reduce back face bulging in a multilayered 

armor.  The decrease in bulging velocity was found to be proportional to the 

increase in honeycomb layer thickness.  However, this phenomenon was only 

prominent against soft core deformable projectiles and not AP ones. 

- Ballistic performance of honeycombs can be improved by increasing the cell wall 

as well as panel thickness or by reducing its cell size. 

- Review on use of aluminum foam in armors indicates that the time lapse for foam 

densification corresponded to the delay in stress wave transfer to the back layer.  

Inclusion of foam also helped to reduce the back face bulging and individual layer 

debonding in armor.  Most importantly, armor plates with foam layers were found 

to perform better than the non-foam baselines of same areal density. 

- Use of cellular solids has predominantly been in mounted armor like those on 

vehicles.  Their role in close contact protection units similar to body armor 

remains largely unexplored. 

Information summarized above can serve as a guideline to innovate new armor 

designs.  The introduction of cellular solids as constituent materials in integral armor 

presents new horizons for stress wave mitigation to be explored.  Successful preliminary 

use in vehicle armor application supports introducing these materials to the personal body 

armor domain.  Publications reveal most research groups have relied on 3 design steps (a) 

material selection, (b) experimental evaluation, and (c) numerical, analytical or 

micromechanical evaluation to verify the performance of their armor concepts.  
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Experimental testing followed with numerical corroboration has continued to gain 

impetus as commercial FEA software codes enable a cost-effective and faster turn-over 

of verification and optimization steps.  Accuracy of FEA results depends largely on the 

chosen material models for simulations.  Errors in inputs for the material models results 

in incorrect visual and numerical responses.  Hence, significant research effort has been 

dedicated to improve the fidelity of the material models.   

Metallic constituents involved in dynamic impact simulations (both in projectiles and 

impacted plates) have been predominantly modeled using the Johnson-Cook plasticity 

and fracture criteria.  The following observations were made after reviewing publications 

pertaining to this topic: 

 A range of Johnson-Cook material parameters have been chosen by research groups 

for modeling the steel core, lead core, and gliding brass jacket of bullet projectiles.  

The numerically obtained results are subjective to the chosen inputs. 

 Data for these bullet materials is generally not disclosed in literature and a process to 

experimentally evaluate it is difficult. 

 Estimation of plasticity in the steel core appears as a contentious topic amongst 

research groups.  Most research groups have considered the core to be a rigid body.  

This may be true for impact simulations on soft materials but it is a gross over 

estimation of penetration capability for simulations on hard materials.  Experiments 

have shown the core to undergo mid-plane fracture when used for tests on thick 

ceramic plates.  Neglecting the lead filler can also be erroneous as it also has a proven 

influence on the penetration capacity of the bullets as seen through experiments. 
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 Material modeling of the lead core has proved difficult.  Lead being a relatively soft 

material behaves fluid-like at high strain rates.  This, coupled with its high density, 

manifests in FEA as excessive contact overclosures, mesh distortions from 

unresolved high deformations, and unrealistic strain.  The Lagrangian scheme is 

unable to tackle this problem causing research groups to apply other techniques like 

adaptive meshing, ALE, and SPH.  The Mie-Grüneisen EOS model coupled with 

Johnson-Cook has also been implemented to supplement Von Mises flow stress based 

computations with a pressure-volume relationship.  Limited success has come out of 

these efforts as these methods did not give a good description of the perforation 

process.  

Shortcomings of the current modeling schemes for these metals are a research gap.  

Modeling ceramics using JH-2 criterion has proven successful.  JH-2 is able to balance 

accurate representations of the physical phenomenon while maintaining computational 

efficiency.  Apart from phase change effects at elevated pressures this model can 

correctly predict final-buckling pressure and stress pressure history.  Similarly for 

composites, Hashin criterion proves suitable for impact simulations.  Ballistic impact of 

armor involves a three-dimensional stress state which needs failure prediction models 

that can capture both in-plane and inter-laminar stress components.  This can be achieved 

by the Hashin criterion when supplemented by delamination models like the Hou or Puck 

criterion or the use of CZM.  Strain-rate dependence and adiabatic effects have not been 

considered in these composite models. 

Behind Armor Blunt Trauma (BABT) is a rising issue in body armor primarily due to 

increases in penetration capacity of projectiles and a decrease in areal density of armor 



41 
 

solutions.  BABT manifests itself due to stress wave transfer from the local point of 

impact on the armor to the underlying tissue.  Hence, a hybrid composite body armor 

concept with increased acoustic impedance by inclusion of a cellular solid layer is a 

candidate to solve this issue. 
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CHAPTER 3. EXPERIMENTAL INVESTIGATION OF BACK FACE SIGNATURE 

(BFS) REDUCTION IN A LEVEL III HYBRID COMPOSITE ARMOR 

(HCA) INCLUDING A HONEYCOMB CELLULAR SOLID LAYER  

 

3.1 Introduction 

Body armor designed to protect against rifle caliber small arms with deformable (lead 

core) projectiles are now typically made of hard laminates of high strength fabric 

composites without ceramic components.  These are classified as level III armor 

according to the National Institute of Justice (NIJ) 0101.06 standard.  They function by 

dissipation of a projectile’s kinetic energy through fiber failure modes including:  shear or 

fracture, tensile failure, or straining, fiber-pullout, and associated matrix failure causing 

delamination [73].  For best performance, fibers with high tenacity like Ultra High 

Molecular Weight Polyethylene (Spectra®, Dyneema®) and Aramids (Kevlar®, 

Twaron®, Zylon®) are used to achieve maximum energy dissipation [17-18].  Fiber 

volume percentage in these composites is kept high to achieve maximum utilization of 

the fiber properties.  The low resin content aids in pliability at relatively high thicknesses 

which, although it improves the wearer’s mobility and comfort, it adversely affects the 

armor’s back face deformation post projectile impact.   
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Higher magnitudes of back face deformation leads to higher body wall deflections 

and blunt trauma, which may even be fatal.  This problem can be solved by coupling 

these composites with stiffer armor materials like ceramics and metals but not without a 

significant weight penalty.  A new solution lies in pairing armor composites with cellular 

solids in a sandwich construction.  Aluminum based cellular solids have been 

successfully integrated in hybrid armor and have brought forth other benefits apart from 

reduction in back face deformation.  These include reduction in:  energy transfer and the 

propagation of stress waves (giving gradual dissipation of shock loads), individual layer 

debonding, and bulging velocity [7-9].  

Application of cellular solids in body armor remains unexplored.  Recently, a 

multilayered hybrid composite body armor (HCA) insert was designed using Dyneema® 

HB50 laminates and amorphous metal based honeycomb (AMH) for protection against 

deformable lead core 7.62 mm NATO Ball FMJ projectiles in accordance to the NIJ 

0101.04 level III standard [74].  It utilized the abovementioned advantages of cellular 

solids through AMH for BFS reduction.  Preliminary experimental evaluation through 

ballistic testing indicated this HCA was able to reduce the BFS by 16.7% and damage 

cross section area per shot by 9.7% compared to the HB50 monolith baseline.  The study 

also concluded that if design deficiencies in AMH could be solved the BFS reduction 

could be increased up to 37%.  An interim alternative to solving these deficiencies is 

selecting a new honeycomb for HCA that can achieve the set objective.  

A focus of this investigation is to experimentally validate the ballistic performance 

benefits from HCA for a new prototype that includes an aluminum honeycomb as a 

replacement for AMH.  Background information on the design hypothesis, involved 
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materials and inherent deficiencies of AMH are discussed in the following section 3.2.  

Details of the new HCA prototype and fabrication process are presented in section 3.3.  

Ballistic testing procedure and objectives are presented in section 3.4.  Tests are aimed to 

verify the role and influence of the honeycomb in the functioning of HCA through 

specific lay-up scenarios of individual constituents of the HCA.  Observed results and 

pertaining discussion is in section 3.5.  In some tests, the performance comparisons of 

HCA are drawn with monolith HB50 baseline inserts of similar areal densities to negate 

the influence of incurred weight penalty from the honeycomb addition. 

3.2 Background on the first HCA prototype (HCA-P1) and deficiencies of AMH 

HCA-P1 was a multilayered sandwich concept (AMH sandwiched between Dyneema 

HB50 laminates) aimed to function as a stand-alone insert providing protection following 

the level III specifications of NIJ 0101.04.  It could be placed in the Improved Outer 

Tactical Vest (IOTV) pocket of the Multiple Threat Body Armor (MTBA) similar to the 

Enhanced Small Arms Protective Insert (ESAPI) currently used by U. S. ground troops.  

Design constraints for HCA-P1 were specified by the Naval Research Lab (ONR Grant 

N00173-071-G001) requiring the functional areal density of inserts to be around 18.5 

kg/m2 (3.8 lb/ft2) with Back Face Signature (BFS) less than 44 mm at V50 velocities 

above 838 m/s.  The front facing HB50 laminate of HCA-P1 intercepted the projectile 

first and deformed it, distributing the energy over a significantly large region to avoid 

local failures by force concentration.  During partial penetration of the front layer, AMH 

functioned as an energy diffuser, thereby reducing the armor BFS and the resulting blunt 

trauma.  AMH inclusion also helped to limit the spread of fabric delamination damage 
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allowing an improved multi-hit capability.  As a final layer of protection against 

fragmentation, a thin laminate of HB50 formed the backing spall liner. 

 
Figure 4  Schematic of the armor inserts used for ballistic test (not to scale). (a) Baseline HB50 insert 

(b) assembled HCA-P1 with the AMH core.  Orientation and thickness of each constituent layer is 

shown. 

The front HB50 layer had adequate areal density to avoid complete penetration.  This 

was because, in case of penetration, the out-of-plane oriented porosity of AMH will result 

in minimal resistance to projectile traverse thereafter, negating its benefits.  From the data 

in [26], a 16 kg/m2 areal density HB50 laminate (close to 68 plies) is adequate to defeat 

the 7.62 mm NATO Ball FMJ threat.  This laminate areal density corresponds to 

approximately 17 mm in thickness.  For HCA-P1, this HB50 laminate was divided in a 

14 mm front laminate and a 3 mm backing spall liner.  AMH was bonded between these 

laminates using a cyano-acrylate adhesive.  Observed performance improvements of 

HCA-P1 are summarized in Section 3.1 and [74]. 

The size limitation barrier seen in amorphous metal cellular solids was lifted by 

making AMH with slip-cast MetGlas® MB2826 ribbons [75].  The bottom-up AMH 
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fabrication process relied on manual periodic elastic bending on the ribbon precursor to 

form overlap joints which were then bonded using adhesive.  This process had inherent 

deficiencies: 

a. Fabricated samples from the manual process had defects such as cell wall 

misalignment, bonding mismatch, and incorrect cell size.  This resulted in a drop 

in crush strength from ideal 10.8 MPa to 4.8 MPa. 

b. Adhesive bonding resulted in 20-30% non-functional weight addition to AMH 

giving a non-optimal density while reducing the specific strength of the 

honeycomb.  Inadequate bond strength does not allow for stress stabilization 

during cell wall bending, resulting in a steady decline in crush strength until 

densification. 

c. The production rate of AMH was low to sustain frequent fabrication of large 

samples required for inclusion in armor plates (15 mm2/min approximately). 

While these issues are being resolved, an interim solution can be achieved by inclusion of 

conventional high specific strength aluminum honeycombs in the HCA.  

3.3 Revised HCA with Aluminum honeycomb (HCA-P2) 

Quasi-static (as per ASTM C365M-05) and dynamic compression tests using a Split 

Hopkinson Pressure Bar setup were done on AMH samples for mechanical property 

evaluation [76].  Aluminum CR-PAA 1/8-5052-0.003 corrugated honeycomb (Al-CH) 

was selected as a replacement for AMH for its relatively close mechanical properties 

among commercially available options (Table 10).  The design principles, applied 
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constraints, layup sequence, and constituent layer thicknesses of HCA-P2 were kept 

identical to that HCA-P1. 

Table 10 Mechanical property comparison of honeycombs included in HCA. 

Honeycomb type 
Density 

(kg/m3) 

Elastic 

modulus 

(GPa) 

Peak 

strength 

(MPa) 

Crush 

strength 

(MPa) 

Energy absorption 

capacity (MJ/m3) 

Amorphous Metal Honeycomb 290.0 2.0 13.2 5.7 4.0 

Aluminum, CR-PAA 1/8 - 

5052 - .003 
192.2 6.2 18.6 9.3 6.5 

Thermoplastic modified polyolefin based adhesive films were used as the bonding 

adhesive in HCA-P2.  Nylon based Cordura wrap was used instead of Kevlar 49.  Inserts 

were fabricated using a hand layup process and consolidated with a hot press at 104°C. 

3.4 Ballistic testing of HCA-P2 

Ballistic testing of all inserts was done in accordance to the specification for a level 

III armor in the NIJ 0101.06 standard.  The test was conducted at 28°C ambient 

temperature with 50% relative humidity in a stand-alone setup (testing target plates alone 

without putting them inside a vest pocket).  The projectile selected for tests was the 

7.62 mm NATO ball M80 round.  Projectile velocity was adjusted by reloading the 

rounds with controlled powder charge weights.  Parameters for performance comparison 

between the baseline and HCA inserts were BFS and the V50.  

BFS readings were taken from the Roma Plastilina® #1 clay backing using a high 

precision Vernier scale (least count 0.01 mm).  Temperature of the clay during the test 

duration was kept close to 38°C to maintain the minimum BFS requirements monitored 

by drop weight calibration tests. BFS readings were adjusted to that at the control 
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temperature in order to compensate for temperature drop during tests using correction 

factors (additional details in Appendix 1).  Inserts were mounted on the clay backing 

using Velcro straps.  The setup was adequately rigid to maintain uniformity and 

repeatability in tests.  Precautions were taken to maintain the prescribed minimum shot-

to-shot distance.  A CED M2 chronograph was used for velocity measurements.  

 

Figure 5 Schematic of the ballistic testing setup used as per the NIJ 0101.06 body armor standard. 

Velocities corresponding to complete and partial penetration were plotted against 

probability of penetration (complete penetration: 0, partial penetration: 1).  V50 was 

calculated by taking the arithmetic mean of an equal number of the highest partial and the 

lowest complete penetration impact velocities as per MIL-STD-662F as recommended in 

NIJ 0101.06 standard.  Each insert was shot multiple times to meet the test result 

requirements.  NIJ recommends a minimum shot-to-shot distance of 51 mm to avoid 

performance interference from previous shots in assessing fairness of the test.  The shot-

to-shot distance in all the tests exceeded more than twice the minimum requirement.  A 

schematic of the test setup is shown in Figure 5.  
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The experimental investigation spanned over 4 tests with each test aimed at a specific 

objective.  Schematic in Figure 6 presents a flow chart representation of the investigation. 

Detailed description of each test is presented in the following sub-sections. 

 

Figure 6 A flowchart schematic that illustrates the experimental test protocol used in the present 

study to test the hypothesis. 

After conducting the tests, shot inserts were cut in the through-thickness direction 

using water-jet machining and visually inspected to identify failure mechanisms in the 

insert constituent materials and categorize the role of the honeycomb in the projectile 

defeat mechanisms of HCA. 

3.4.1 Test 1: Preliminary testing and BFS comparison with baseline 

HCA-P1 results indicated performance benefits of honeycomb inclusion in the armor.  

An aim of this preliminary ballistic test was to prove that inclusion of the chosen Al-CH, 

with better mechanical properties than early AMHs, will result in a better ballistic 

performing HCA-P2 compared to a baseline of similar areal density.  BFS was chosen as 
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the parameter for comparison, and hence shot velocity was not intentionally increased up 

to complete penetration.  Details of the tested inserts are presented in Table 11.   

Table 11 Details of armor inserts manufactured for preliminary ballistic test. 

Armor type Layup description 

Functional unit 

areal density  

(kg/m2) 

Final areal density 

with wrap  

(kg/m2) 

Number of 

inserts 

Baseline 
14 mm HB50 + 3 mm 

HB50, compact bonded  
15.2 16.53 2 

HCA-P2 

14 mm HB50 + 8 mm 

Al-CH + 3 mm HB50, 

compact bonded 

16.51 ± 0.06 17.97 ± 0.06 2 

 

3.4.2 Test 2: Critical areal density evaluation using V50 

The second set of ballistic tests was conducted to verify if the areal density of HB50 

can be reduced in HCA-P2 by inclusion of Al-CH; thereby reducing the required total 

areal density of the armor.  Since the front HB50 laminate had the highest areal density, 

its thickness was selected as the test variable.  Reduction in areal density was likely to 

have a proportionate reduction in penetration resistance of the inserts.  Hence, V50 was 

chosen as the parameter for comparison.  Three variants of HCA-P2 were manufactured 

and tested.  Their details are presented in Table 12.  For effective one-to-one comparison, 

baseline HB50 monolith inserts of similar areal density as HCA-P2 variants were also 

manufactured and tested.  Shot velocities were gradually increased until complete 

penetration was achieved and then varied as per MIL-STD-662F.  The test objective was 

to identify a minimum areal density of baseline and HCA-P2 with V50 of 847 m/s; the 

reference velocity recommended by the NIJ 0101.06 standard.  This minimum areal 

density is termed hereon as the Critical Areal Density (CAD). 
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Table 12 Details of armor inserts manufactured for V50 evaluation. 

Armor type Layup description 

Functional unit 

areal density  

(kg/m2) 

Final areal density 

with wrap  

(kg/m2) 

Number of 

inserts 

Baseline Variant-1 

10 mm HB50 + 10 

mm HB50, compact 

bonded  

18.99 20.02 1 

HCA-P2 Variant-1† 

14 mm HB50 + 8 mm 

Al-CH + 2 mm HB50, 

compact bonded 

19.14  20.17 2 

Baseline Variant-2 15.5 mm HB50 15.14 16.36 1 

HCA-P2 Variant-2 

12 mm HB50 + 8 mm 

Al-CH + 2 mm HB50, 

compact bonded 

15.58 16.58 ± 0.01 2 

Baseline Variant-3 

12 mm HB50 + 2 mm 

HB50, compact 

bonded 

13.92 14.94 1 

HCA-P2 Variant-3 

10 mm HB50 + 8 mm 

Al-CH + 2mm HB50, 

compact bonded 

13.75 ± 0.22 14.76 ± 0.24 2 

† Variant-1 is identical to the HCA-P2 plate used in preliminary testing. Higher functional areal density 

seen here is due to HB50 laminates procured from a different supplier. 

3.4.3 Test 3: Effect of back laminate thickness on ballistic performance of HCA 

Test 3 was performed to verify the ballistic performance influence of back laminate 

thickness.  HCA-P2 variant-2 and variant-3, which had reduced front laminate areal 

densities, were supplemented with a commercially available level IIIA vest liner (areal 

density: 9.77 kg/m2).  This approach is similar to increasing the areal density of the spall 

liner back laminate relative to the front laminate without having to fabricate new inserts.  

In doing so, the location of the honeycomb layer was raised along the out-of-plane 

direction with respect to the armor rear face in contact with the backing clay.  BFS and 

V50 were chosen as the comparison parameters.  Observed results were compared with 

those of variant-1 HCA-P2 insert.  A commercially available standard level III insert was 
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also included in the test for performance comparison with HCA-P2 inserts.  Details of the 

test inserts are in Table 13. 

Table 13 Details of armor inserts tested for verifying performance influence of honeycomb location 

and comparison with commercial plate. 

Armor type Layup description 

Functional unit 

areal density  

(kg/m2) 

Final areal density 

with wrap  

(kg/m2) 

Number 

of inserts 

HCA-P2 Variant-2 

combination 

HCA-P2 Variant-2 + 

level IIIA vest liner  
25.34 26.37 2 

HCA-P2 Variant-3 

combination 

HCA-P2 Variant-3 + 

level IIIA vest liner 
23.29  24.27 1 

Level III standard insert 
Alumina ceramic + 

polymer wrap 
- 38.57 1 

 

3.4.4 Test 4: Effect of honeycomb areal density and specific strength on ballistic 

performance of HCA 

Geometric attributes and base material of a honeycomb govern its total energy 

absorption capacity Ehc. This can be illustrated through the expression: 

𝐸ℎ𝑐 =  ∫ 𝜎𝑐𝑟

𝜀𝐷

0

𝑑휀 × 𝐴 × 𝑐. (3.1) 

Assuming a constant densification strain εD, crush strength σcr and contact area A, 

increasing the thickness c of the honeycomb layer (which is synonymous to increasing its 

areal density) should predictably improve Ehc and the ballistic performance of the insert 

as more material is available to participate in the energy absorption process.  Similarly, 

decreasing honeycomb cell size or increasing its foil thickness, which thereby reduces the 

amount of porosity, should improve the performance.  Variation in honeycomb thickness 
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c is relatively easy and less cost prohibitive.  New inserts of HCA-P2 were made using 6 

mm (variant-4) and 10 mm (variant-5) thickness Al-CH and tested along with the 8 mm 

Al-CH variant-1 to study the effects of thickness variation. BFS was the chosen 

parameter for comparison.  Based on the limited strain rate effects in Al-CH observed 

from the preliminary test data and analytical model considerations, the change in 

honeycomb thickness by a constant magnitude should predictably reflect in the BFS 

versus velocity plot in the form of parallel and proportionate curve translation. This 

hypothesis was experimentally tested here.  

Table 14 Details of HCA-P2 inserts manufactured for verifying ballistic performance influence of 

honeycomb thickness. 

Armor type Layup description 

Functional unit 

areal density  

(kg/m2) 

Final areal density 

with wrap  

(kg/m2) 

Number 

of inserts 

Baseline 
10mm HB50 + 10mm HB50, 

compact bonded  
19.56 ± 0.03 20.08 ± 0.03 4 

HCA-P2 Variant-1 

14mm HB50 (4+10)  + 8mm 

Al-CH + 2mm HB50 (1+1), 

compact bonded 

18.38 ± 0.02 18.89 ± 0.03 2 

HCA-P2 Variant-4 

14mm HB50 (4+10) + 6mm 

Al-CH + 2mm HB50 (1+1), 

compact bonded 

18.26 ± 0.04 18.82 ± 0.03 3 

HCA-P2 Variant-5 

14mm HB50 (4+10) + 10mm 

Al-CH + 2mm HB50 (1+1), 

compact bonded 

18.90 ± 0.03 19.47 ± 0.03 2 

 

HB50 ply layup was modified during insert fabrication in Test 4 for streamlining 

inventory.  The front 14 mm HB50 laminate in all HCA inserts was consolidated by 

compact bonding four individual 1 mm laminates to a 10 mm laminate using the 

polyolefin based adhesive film in a hot press.  The 2 mm back laminate was similarly 
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consolidated by bonding two individual 1 mm laminates.  The temperature and pressure 

conditions during bonding were identical to that of HCA-P2 inserts made for earlier tests.  

Increasing the volume fraction of the stronger polyolefin adhesive within HCA-P2 inserts 

was expected to correspondingly increase the inter-laminar shear strength and decrease 

the extent of delamination.  Increased flexural stiffness as a consequence was to aid in 

BFS reduction.  Details of the fabricated inserts are in Table 14.  Baseline inserts made 

by compact bonding two 10 mm laminates were included in the test for performance 

comparison. 

An alternate approach to vary Ehc is by changing the honeycomb crush strength σcr via 

the base material type.  New variants of HCA-P2 were made with an inclusion of a meta-

aramid based Nomex™ honeycomb (NH) to study its influence on ballistic performance 

and gauge the extent of honeycomb participation in the energy absorption process.  The 

honeycomb was selected among commercially available options of this base material 

type to have intermediate crush strength between AMH and Al-CH (refer Table 10).  

Honeycomb cell size and foil thickness is similar to that of Al-CH.  The gradual strength 

increments between the honeycombs help to visualize a performance transition, if any.  

Details of the chosen honeycomb are in Table 15. 

Table 15 Mechanical property details of the chosen Nomex™ honeycomb. 

Honeycomb type 
Density 

(kg/m3) 

Elastic 

modulus 

(GPa) 

Peak 

strength 

(MPa) 

Crush 

strength 

(MPa) 

Energy absorption 

capacity (MJ/m3) 

Nomex™, PN2- 1/8 - 9.0 149.1 < 1* 14.79 7.4 5.1 

* Elastic modulus not specified in the product data sheet. Value stated here is experimentally observed for 

similar honeycombs of this type. 
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Inserts made using 8 mm (variant-6), 6 mm (variant-7) and 10 mm (variant-8) thickness 

NH were tested for BFS measurement.  Identical thickness to Al-CH based variants will 

aid in a one-to-one comparison and assist in testing the hypothesis stated earlier for Test 

4.  Details of the NH based HCA-P2 inserts are in Table 16. 

Table 16 Details of NH based HCA-P2 inserts manufactured for verifying ballistic performance 

influence of honeycomb specific strength and thickness. 

Armor type Layup description 

Functional unit 

areal density  

(kg/m2) 

Final areal density 

with wrap  

(kg/m2) 

Number 

of inserts 

HCA-P2 Variant-6 

14mm HB50 (4+10)  + 

8mm NH + 2mm HB50 

(1+1), compact bonded 

18.13 ± 0.01 18.65 ± 0.03 2 

HCA-P2 Variant-7 

14mm HB50 (4+10) + 

6mm NH + 2mm HB50 

(1+1), compact bonded 

17.77 18.33 ± 0.02 2 

HCA-P2 Variant-8 

14mm HB50 (4+10) + 

10mm NH + 2mm HB50 

(1+1), compact bonded 

18.31 ± 0.06 18.89 ± 0.06 2 

 

3.5 Results and discussion 

A summary of test results is presented in Table 17.  Error in the velocity readings was 

±5 m/s as seen during chronograph calibration.  Error in BFS diameter size and depth 

measurement is compounded human and instrument error with a magnitude of ±0.1 mm.  

Measured values of BFS for both insert types were plotted against the corresponding 

projectile velocity (Figure 7).  A semi-empirical model based on energy balance, and an 

analytical model based on conservation of momentum with classical yarn theory was 

developed to determine the regression fit for BFS versus projectile velocity (V) for 

deformable projectiles against Dyneema® based armor and presented in [74].  These 

models were adaptations of those in [22] and [77] respectively, that were designed 
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specifically for V50 estimation.  It was shown using both methods that BFS varies with 

velocity according to a second order polynomial function given by: 

𝐵𝐹𝑆 = 𝐴𝑉2 + 𝐵𝑉 − 𝐶. (3.2) 

Table 17 Summary of results from the preliminary ballistic test. 

Armor type Shot number Velocity (m/s) BFS (mm) 

Baseline Insert 1 

1 780 33 

2 804 42.4 

3 812 45.3 

4 788 35 

Baseline Insert 2 

1 803 40.9 

2 792 33.9 

3 799 36.4 

4 811 44.7 

HCA-P2 Insert 1 

1 810 31.7 

2 807 34.1 

3 804 32.1 

4 804 30.6 

HCA-P2 Insert 2 

1 803 32.2 

2 814 35.1 

3 822 37.3 

4 799 29.5 

The second order terms of this function represent the projectile kinetic energy, 

whereas, the first order terms and the intercept constant represent the energy absorbed by 

the HB50 laminate.  In the case of HCA, the energy absorbed by the honeycomb will also 

be represented by the first order terms if the honeycomb has significant strain rate 

dependence.  Else, it will be a part of the intercept constant.  A detailed explanation for 

both methods is provided in Appendix 1.  Predicted BFS values and calculations using 

these methods have also been detailed.  Resulting trends for calculated BFS have been 

added to Figure 7 and show good agreement with the experimental results for both the 

baseline and HCA-P2 inserts.  
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Figure 7 Plot of BFS measured from clay backing versus projectile velocity from the preliminary test 

for the baseline and HCA-P2 inserts. Calculated BFS plots using semi-empirical and analytical 

scheme have been added and show a good agreement with the experimental data. Error in velocity 

and BFS measurement was ±5 m/s and ±0.1 mm respectively. 

 The analytical model aided to extrapolate the BFS value for each insert at the 

reference velocity of 838 m/s according to the cited NIJ 0101.04 standard in [74].  It is 

similarly used here to predict BFS at the NIJ 0101.06 standard reference velocity of 847 

m/s.  BFS values estimated at 847 m/s were 54.1 mm and 45.8 mm for the baseline and 

HCA-P2 inserts, respectively.  A BFS of 49.3 mm is predicted for a 16.51 kg/m2 areal 

density baseline (same functional areal density as HCA-P2) using the analytical model.  

BFS of HCA-P2 was 7.1% lower than this value for the same areal density.  A summary 

of BFS and BFS per unit functional areal density comparison is shown in Figure 8.  

Values for HCA-P1 from [74] are also included.   
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Figure 8 Summary of BFS based comparison for the tested inserts at the NIJ reference velocity of 

847 m/s.  Percentage difference between observed values in comparison to the baseline insert from 

preliminary test (referred as Baseline-1 here) is shown in tabulated form.  For effective one-to-one 

comparison, values predicted for a baseline insert of same weight as HCA-P2 (referred as Baseline-2 

here) using analytical model are also included.  

BFS per unit functional areal density is a measure of potential BFS resulting at a 

given weight.  Lower numbers indicate superior performance.  By this metric HCA-P1 

with the AMH honeycomb has the best performance.  However, since BFS is inversely 

proportional to areal density BFS per unit areal density will always be least for the 

heaviest inserts.  Appropriate comparison metric is ΔBFS / ΔAD which represents how 

much BFS reduction was achieved with the incurred weight penalty with reference to the 
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lower areal density baseline.  A higher number indicates superior performance.  HCA-P2 

with Al-CH has the best performance improvement with this metric. 

General observation from visual imaging of water-jet cut vertical sections at the point 

of impact suggested the failure modes in the HB50 laminates reflect those observed for 

cross-plied fabric composites namely:  (i) dual stage ply shear due to force localization, 

(ii) sequential delamination in the successive layers, and (iii) combined fiber elongation / 

pullout and fiber tensile failure.  In the cross-plied laminates, fibers in the projectile 

facing plies are typically found to shear along the edges of the projectile indicated by a 

penetration cavity with the same size of the projectile’s diameter (first stage).  

Consequently, the projectile deforms and undergoes petal-like stripping of the jacket and 

pancaking of the soft core projecting a larger diameter cross-section on the later plies.  

Failure of these plies is by shear combined with the listed types of fiber tensile failure. 

The presence of honeycomb partially isolated the front laminate rear face bulging 

from the back laminate resulting in the reduced BFS.  This is inferred from the difference 

in bulge curvature radius for these laminates.  It delayed the time of interaction between 

the front laminate bulge, caused by progressing delamination during impact, and the back 

laminate.  This created an isolation of the actual projectile arresting process within the 

front laminate from the armor rear face thereby reducing the concentration of transferred 

shock loads.  The result was a reduction in observed BFS.  These attributes suggest that 

the honeycomb may be behaving as a spacer.  At the same time, participation of the 

honeycomb in energy absorption was confirmed from good agreement of the analytical fit 

with the experimental data.  The honeycomb did not affect the energy absorption 

mechanisms in HB50 laminates, as the variation of laminate thickness failing in first 
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stage shear with velocity is identical for both insert types (Appendix 4).  This hints 

towards a rigid plastic behavior of the honeycomb during impact, which is a common 

assumption made during analysis of conventional sandwich composites under projectile 

impact.  Failure in the honeycomb layer was due to core crushing and shear in the 

immediate vicinity of the projectile zone with extensive plastic deformation by bending 

in surrounding areas.  It is to be noted that average size of the impact zone on Al-CH was 

35.4 cm2, which is much less than that seen for AMH in [74].   

 

Figure 9 V50 representation for variant-1 baseline and HCA-P2 using Boltzman sigmoidal fit to the 

penetration probability versus velocity data. 

Crush strength of the honeycomb appears to affect the extent of honeycomb 

participation in the energy absorption process.  This can be due to restriction of the 

delamination process in the front laminate during impact by presence of a stronger 
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honeycomb layer at the laminate base arresting the membrane like bending of individual 

plies. 

A summary of test results for V50 evaluation is presented in Appendix 2A.  V50 for the 

inserts was calculated by taking the arithmetic mean of equal number of highest partial 

and the lowest complete penetration impact velocities from the data.  V50 for variant-1 

baseline and HCA-P2 inserts is represented using a Boltzman sigmoidal fit to the 

penetration probability versus velocity data and shown in Figure 9.  V50 of all baseline 

and HCA-P2 variants were then plotted as a function of their areal density (Figure 10).  

The data agreed well with linear regression fits for both baseline and HCA-P2 insert 

types.  Baseline and HCA-P2 of functional areal densities 14.5 and 15.7 kg/m2 

respectively were predicted using this linear model to satisfy the minimum V50 

requirement of 847 m/s; the NIJ standard level III reference velocity.  V50 of the baseline 

was found to exceed that of HCA-P2 until the transition point of 914 m/s, after which, the 

trend was reversed.  The areal density of HCA-P2 corresponding to this point was termed 

the Critical Areal Density (CAD), as it was an indicator for the initiation of performance 

benefit of honeycomb inclusion.  CAD for HCA-P2 was 17.34 kg/m2 and corresponds to 

13 mm thickness of the front laminate. 
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Figure 10 Plot of V50 of baseline and HCA-P2 variants versus respective functional areal densities. 

Minimum requirement by NIJ is shown.  The Critical Areal Density (CAD) or the transition point 

beyond which V50 of HCA-P2 exceeds that of baseline is also indicated. 

It can be inferred from the results that, below the CAD, monolith baselines will have 

better ballistic performance than HCA for the same areal density.  Hence, as a design 

criterion for HCA, CAD should be the chosen parameter and not minimum areal density 

at which V50 meets the NIJ reference velocity.  Since the V50 is a measure of penetration 

resistance of armor, the observed phenomenon can be explained by a consideration of 

involved mechanisms for the baseline and HCA-P2 inserts.  Direct resistance to 

penetration for the honeycomb will always be minimal and lower than HB50 due to its 

geometric porosity oriented along the direction of projectile traverse.  Therefore, in an 

event of front laminate penetration by the projectile in HCA-P2, any additional resistance 

will only be provided by the rear spall liner laminate.  Al-CH cell walls will be sheared 

off and it will not undergo complete compression for maximum energy absorption to 



63 
 

occur.  In contrast, when the same number of plies as the front laminate are penetrated in 

the baseline, more plies with areal density equal to that of the honeycomb and spall liner 

back laminate combined are available to offer higher penetration resistance.  This in turn 

results in a higher V50 for the baseline.  In summary, for a successful HCA-P2 design that 

has maximum utilization of the Al-CH’s capabilities, it is imperative that the front HB50 

laminate areal density is 17.34 kg/m2 or higher.  Inclusion of Al-CH does not allow 

reduction of the areal density of HB50 below the critical thickness.  Its role in HCA was 

proven as a passive absorber.  

Maximum projectile kinetic energy that can be exactly consumed by the target is at 

the V50.  The sum of the areal densities undergoing shear plugging and subsequent 

bulging is equal to the target areal density up to this impact velocity.  Prediction of the 

transition point between these areal densities is a critical input for both the semi-

empirical and analytical model used to estimate BFS earlier.  It is represented in 

Appendix 1 by the ratio R = ts/t, where ts is the thickness of the target material 

undergoing shear plugging and t is the total target thickness.  FSP impact experiments on 

HB26 by Nguyen et al. [77] demonstrated a dependence of this transition point on impact 

velocity as well as the total target areal density.  Dependence on velocity is linearly 

proportional as an increase in velocity will result in more plies failing by shear plugging.  

Similarly, an increase in target thickness or areal density increases the flexural stiffness 

by a cubic relationship thereby causing more shear failure.  Thus, mathematically, R has 

to represent both velocity and areal density simultaneously which is uniquely possible at 

V50.  
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Figure 11 Shear plugging thickness ratio plotted as a function of velocity.  Empirical relationship for 

the ratio is derived from the linear regression fit to the intersection data points between the thickness 

function and the V50 velocity for that insert. 

The thickness of a target insert undergoing shear plugging is easy to measure from 

water-jet cut vertical sections of target plates at the point of impact as done earlier after 

preliminary testing.  These measurements were taken for all baseline inserts used for V50 

tests (Appendix 4) and were plotted as a function of impact velocity (Figure 11).  The V50 

velocity for each insert was then added to the plot.  The ratio R is represented 

mathematically by the linear ts/t regression fit to the intersection points between the 

thickness function and the V50 velocity of that insert. 

A summary of test results for the HCA-P2 variants with level IIIA liners and the level 

III standard plate is presented in Appendix 2B.  V50 for both HCA-P2 variants was 

calculated as done earlier.  Complete penetration of the insert and not the back liner was 

considered for a probability of 1.  V50 could not be calculated for the standard insert as no 
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instances of penetration occurred.  The observed BFS values were plotted against 

velocity (Figure 12).  BFS values for the HCA-P2 variant-2 inserts showed a reasonable 

correlation with velocity.  This is indicated by the adjusted R2 value of 0.9143 using the 

second order polynomial fit of equation 3.2.  The limited number of data points available 

for the variant-3 insert did not make the use of this regression fit for BFS extrapolation 

practical.  The variation observed for the standard level III Alumina ceramic based insert 

was extensive.  An attempt to fit the second order polynomial curve to the data resulted in 

negative values for A and B coefficients which is physically incorrect (Appendix 1).  

Average of data values for shots above 800 m/s gives a BFS of 42.5 mm at 847 m/s for 

the standard insert.   

 

Figure 12 Plot of BFS measured from clay backing versus projectile velocity for the HCA-P2 variants 

with level IIIA vest liner and a standard Alumina ceramic based level III insert. Second order 

polynomial regression fit is used for the HCA-P2 variants. Error in velocity and BFS measurement 

was ±5 m/s and ±0.1 mm respectively. 
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V50 comparison with HCA-P2 variant-1 indicates its superiority in ballistic 

performance over both variant combinations (Table 18).  Increasing the areal density of 

ballistic resistant material after the Al-CH layer offers no significant improvement in 

performance.  The weight penalty incurred by use of the level IIIA liner offsets the BFS 

improvement for the variant-2 combination and the standard insert.  The V50 calculation 

assumed complete penetration, if the insert rear face was breached but not of the liners.  

Comparing V50 for with and without liner (Figure 10) indicates minimal improvement, 

and the performance of baseline plates exceeds both cases.  The addition of the liner layer 

does not affect the projectile defeat mechanisms suggesting similar extent of Al-CH 

utilization in defeating the projectile.  This reaffirms the previous conclusion that 

honeycomb inclusion improves ballistic performance only when its areal density is higher 

than the CAD with a front HB50 laminate thickness of 13 mm or higher. 

Table 18 Summary of BFS based comparison between HCA-P2 variant-1, and variant-2 and 3 with 

liner combination.  The Level III standard insert is also included. 

Armor type 

  BFS at 847 m/s   BFS/AD   ΔBFS / ΔAD   V50 

  (mm) 
% 

change 
  

(mm per 

kg/m2) 
  

(mm per 

kg/m2) 
   (m/s) 

% 

change 

HCA-P2 Variant-1   45.8 -   2.77    -   989 - 

HCA-P2 Variant-2 

combination 
  33.4 27.1%   1.32   1.4   870 12.0% 

HCA-P2 Variant-3 

combination 
  -* -    -*   -*    835 15.6% 

Level III standard 

insert 
  42.5 -7.2%   1.10   0.15   - - 

 *BFS not estimated as reference velocity is higher than the insert V50, †V50 could not be calculated as no 

instances of penetration occurred during testing.  

A summary of results from Test 4 are in Appendix 2C.  The temperature of the clay 

backing in the vicinity of the BFS location during test shots was recorded and measured 

BFS values were corrected to reflect desired clay temperature of 38°C (100°F).  
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Correction factors were derived from drop weight tests on the clay backing material.  

Details for the drop tests are in Appendix 3.  Observed BFS values for the baseline inserts 

were plotted against velocity (Figure 13).  The average size of the BFS diameter was 9.3 

cm.  Observed BFS values showed a good correlation with velocity.  However, the slope 

of the BFS versus velocity trend was different than the analytical model prediction, 

suggesting material properties for these baselines were different than those tested during 

the preliminary test.  A curve fitting method was used to derive the regression fit.  A 

second order polynomial fit following equation 3.2 was used and showed a good 

agreement with the experimental data, as seen from the R2 value.  A BFS value of 50.1 

mm was derived for the baselines at the reference velocity of 847 m/s using data 

interpolation with the regression fit. 

 

Figure 13 Plot of BFS measured from clay backing versus projectile velocity for the baseline inserts.  

A second order polynomial regression fit is overlayed with the test data points. Error in velocity and 

BFS measurement was ±5 m/s and ±0.1 mm respectively. 
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Similarly, BFS results variant-1, 4, and 5 inserts were plotted versus velocity (Figure 

14).  BFS values for all inserts showed good agreement with their second order 

polynomial regression fits as can be seen through the individual R2 values.  Confirming 

the test hypothesis, any change in energy absorption capacity (Ehc) of the honeycomb 

(due to a change in thickness, as in the present case) should cause a corresponding change 

in only the intercept coefficient C.  Accordingly, a parallel transition of the regression fit 

should occur.  This is true if the involved honeycomb is strain rate independent.  From 

Figure 14, an apparent parallel transition does seem to occur between the baseline as well 

as the HCA-P2 variants, implying strain rate independence of Al-CH.  However, a similar 

test for lower velocity regimes (giving lower strain rates for the honeycomb compression) 

will have to be conducted to confirm this observation.  Also, if the change in honeycomb 

thickness is kept equal (2 mm in the present study between variant-1 and variant-4 and 5), 

an equal and proportionate transition of data regression fits should occur.  This is 

confirmed from the results in Figure 14 and corroborates the physical relevance of the 

analytical scheme presented in Appendix 1.  BFS values of 39.1 mm, 48.7 mm, and 30.2 

mm were derived for variant-1, 4, and 5 respectively using data interpolation with the 

regression fit.  The average BFS diameter for these inserts was 8.56 cm.  

BFS versus velocity plot for NH based HCA-P2 variant-6, 7and 8 is shown in Figure 

15.  Once again, near parallel, equal and proportionate transition of data fits is observed 

similar to Al-CH based HCA-P2 variants for an equal change in included honeycomb 

thickness.  This confirms the test hypothesis.  BFS values of 39.2 mm, 45.4 mm, and 

34.2 mm were derived for variant-6, 7, and 8 respectively using data interpolation with 

the regression fit. 
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Figure 14 Plot of BFS measured from clay backing versus projectile velocity for the HCA-P2 variants 

with different Al-CH honeycomb layer thicknesses. Second order polynomial regression fits are 

overlayed with the test data points. Error in velocity and BFS measurement was ±5 m/s and ±0.1 mm 

respectively. 

  

Figure 15 Plot of BFS measured from clay backing versus projectile velocity for the NH based HCA-

P2 variant-6, 7, and 8 with different honeycomb layer thicknesses.  Regression fits are overlayed with 
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the test data points.  A near parallel transition similar to Al-CH based HCA-P2 variants is again 

observed. Error in velocity and BFS measurement was ±5 m/s and ±0.1 mm respectively. 

Results from Test 4 are summarized in a BFS (at 847 m/s reference velocity) versus 

areal density combined plot for all tested inserts (Figure 16).  BFS values for the 

preliminary test baseline are also included in the plot.  Ideally the trend lines for Al-CH 

and NH based HCA-P2 data should converge to a point on the baseline plot as this point 

represents the front and back HB50 laminates together without any honeycomb.  

However, for practical laminates the plot can still permit direct performance 

comparisons.  Benefits of the HCA-P2 design are clearly seen by the significant BFS 

reductions achieved from inclusion of honeycombs.  Maximum BFS reduction was 

observed for variant-5 with 10 mm Al-CH which was 40.8% lower than that of a similar 

areal density baseline insert. Increasing the honeycomb thickness predictably improves 

the BFS reduction ability of the HCA.  It is to be noted that the magnitude of the BFS 

reductions achieved exceeds the change in honeycomb thickness in each case further 

confirming that its participation in HCA is not only as a spacer.  According to equation 

3.1, NH with lower crush strength than Al-CH should demonstrate higher BFS values. 

Data indicates a possibility of this phenomenon for the 10 mm thick included honeycomb 

variants but not for the 6 and 8 mm honeycomb variants.  More data points are needed to 

confirm the observation. 
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Figure 16 Summary of results from Test 4 shown as a BFS at 847 m/s reference velocity versus areal 

density plot. Advantages of honeycomb inclusion in ballistic performance are clearly indicated by the 

lower BFS values for all HCA variants in comparison to baseline HB50 inserts of same areal density.  

This BFS for the 8 mm honeycomb variants is 23.6% lower than that of a similar 

areal density baseline insert. Percentage of BFS reduction achieved is much higher than 

HCA-P2 variant-1 from Test 1.  The new fabrication process utilized for inserts in Test 4 

clearly has improved inter-laminar shear rigidity.  However, as seen from results in 

Appendix 2C this modification has potentially reduced the V50 of all HCA-P2 inserts, as 

penetration occurred for almost all impact instances above 860 m/s.  Since the V50 for 

variant-1 HCA-P2 from Test 2 was higher than the baseline, the reduction in V50 is not 

due to honeycomb inclusion but due to the construction of the front laminate.  This can 

also be corroborated by the fact that penetration velocities of 860 m/s or higher were 

almost identical and independent of the included honeycomb thickness.  Compact 

bonding the laminates with the polyolefin based adhesive film increased the inter-laminar 
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shear strength but made inserts more rigid and prone to shear.  Figure 17 illustrates the 

penciling effect seen in the HCA-P2 inserts through computerized tomography scan 

images of shot inserts.  This is indicated by the localized dense concentration of the 

projectile fragments close to the line of impact.  In comparison, the baseline insert 

demonstrates extensive spread of the fragments by undergoing delamination and resulting 

in no instances of penetration. 

 

Figure 17 CT scan images of baseline and Al-CH based HCA-P2 inserts showing the extent of 

projectile fragmentation post impact. Baseline insert demonstrates fragments spread over a wider 

region compared to HCA-P2 where fragmentation is more localized and dense and close to the line of 

impact. 

An increase in the extent of front laminate thickness undergoing shear plugging is 

evident from the ts/t data in Appendix 4, also hinting toward a penciling effect.  

Consequently, the extent of honeycomb participation is also reduced as seen from the 

impact area diameter measurements which are almost identical for both honeycomb 
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types.  The effect of crush strength on the size of impact area could not be studied.  

Information on a honeycomb thickness effect on the size of the impact area could not be 

obtained, which may provide valuable insights on its role in HCA.  These will be part of 

future work. 

The problem of increased shear plugging can be easily alleviated by retaining the 

original fabrication process for the front laminate allowing an increased membrane like 

behavior for the front laminate plies and increasing their resistance to shear.  Rigid 

projectile impact experiments at high velocities on HB26 by Heisserer et al. [78] 

confirmed higher energy absorbed per unit areal density for thin targets than thick ones.  

Similarly, a study by Karthikeyan et al. [79] showed higher penetration resistance for 

HB50 than HB26 due to lower inter-laminar shear strength, facilitating individual ply 

response and maximum utilization of fibers via lamina stretching on impact.  

Delamination and lateral ply movement are crucial to maintain the penetration resistance 

of HB50 but are in principal opposed to the mechanisms of BFS reduction.  Maximum 

improvement in performance can thus be realized if initial layers where shear failure is 

dominant are flexible and later layers where bending and bulging is dominant are rigid. 

3.6 Conclusion 

A new HCA prototype (HCA-P2) was fabricated with the inclusion of an aluminum 

honeycomb, selected as a replacement for AMH through mechanical property 

comparison under quasi-static and dynamic comparison.  Ballistic tests were successfully 

carried out on variants of HCA-P2 to evaluate the role and influence of the honeycomb in 

the ballistic performance of the armor. 
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1. Preliminary test BFS results indicated superior ballistic performance of HCA-P2 

compared to a baseline of similar areal density.  Calculated BFS values from 

semi-empirical and analytical models developed in the study were in good 

agreement with the test data.  A 7.1% reduction in BFS (hence BABT) was 

calculated using the analytical model based second order polynomial regression 

fit compared to the baseline monolith Dyneema® HB50 of same areal density.  

∆BFS/∆AD calculations show improvement in performance for HCA-P2 

compared to HCA-P1 and the baseline.  Al-CH has higher energy absorbed per 

unit weight than HB50. 

2. General observation of tested inserts suggest the failure modes in the HB50 

laminates are identical to those reported earlier [74].  The presence of honeycomb 

appeared to partially isolate the front laminate rear face bulging from the back 

layer resulting in reduced BFS.  Resulting isolation of the projectile arresting 

process from the armor rear face and reduced time of interaction between 

laminates decreased the concentration of transferred shock loads that cause 

BABT.  Participation of the honeycomb in mechanical energy absorption without 

affecting performance of HB50 was confirmed by correlation of an analytical 

model to the experimental data.  This suggests rigid plastic behavior of the 

honeycomb under impact, which is commonly seen for conventional sandwich 

composites in similar scenarios. 

3. V50 for HCA-P2 variants were evaluated to verify if honeycomb inclusion 

allowed for a reduction in front laminate areal densities and hence the total areal 

densities of the armor.  A plot of V50 versus areal density from the test results 
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indicated V50 for the monolith baseline HB50 inserts exceeded that of HCA-P2 up 

to a transition point, after which the trend reversed.  This transition point was 

termed the critical areal density (CAD) with a value of 17.34 kg/m2 (13 mm front 

laminate) and corresponds to a V50 of 914 m/s.  Improvement in V50 by 

honeycomb inclusion above the CAD further corroborates higher energy 

absorption capacity per unit weight for Al-CH compared to HB50 in the bulging 

stage.  Test data was also successfully used to derive the transition point for HB50 

from shear plugging to bulging failure modes. 

4. As a design criterion for HCA, CAD should be the chosen parameter and not only 

the minimum areal density that satisfies the NIJ V50 requirement.  For the NIJ 

Level III example tested here, the honeycomb contribution to the projectile defeat 

mechanism of the HCA insert was optimal only when its front HB50 laminate 

was equal or greater than 13 mm, as indicated by the CAD. 

5. HCA-P2 variants tested in combination with level IIIA liners did not show 

performance benefits.  Increasing the areal density of ballistic resistant material 

after the honeycomb layer results in a weight penalty that offsets perceived BFS 

and V50 improvements.  Results confirmed the previous test observation that the 

optimal honeycomb contribution in insert performance occurred only if the front 

HB50 laminate areal density was 17.34 kg/m2 or higher. 

6. Inserts with varying honeycomb thickness demonstrated a proportionate variation 

on their BFS performance.  This was observed for both aluminum and Nomex™ 

based HCA-P2 inserts.  Second order polynomial regression fits to the BFS versus 

velocity data showed a parallel transition of fits with the transition extent 
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consistent to the change in honeycomb thickness.  These observations validate the 

physical relevance of the analytical model used to derive the second order 

polynomial regression fits.  A significant BFS reduction was observed in HCA-P2 

inserts compared to similar weight baselines.  The magnitude of reduction 

exceeded the included honeycomb thickness proving their participation in HCA is 

not merely as a spacer.  A 23.6% BFS reduction was observed for HCA-P2 with 8 

mm included honeycomb, which is much higher than results from earlier tests.  

Maximum BFS reduction was observed for 10 mm Al-CH included HCA-P2 

which was 40.8% lower than that of a similar areal density baseline insert. The 

improvement in performance was due to the revised fabrication process that 

improved the shear rigidity through inter-laminar shear strength of the HB50 

laminates.  The process however adversely affected the insert V50.  It was 

concluded that an optimum balance of laminate flexural stiffness is needed to 

promote the membrane like behavior in HB50 plies without increasing the BFS. 

Experimental ballistic tests and results presented in this chapter offered a macro-

mechanical insight in the behavior of the HCA and its potential to reduce BABT.  The 

method used for design, testing, and obtained data can serve as a guideline for inclusion 

of other cellular solids in other hybrid armors and related protective structures.  

Evaluation of micro-mechanical data for BABT characterization through in-situ 

observation of the projectile defeat mechanism and time dependent properties like armor 

rear face velocity, its acceleration and stress wave impedance are difficult to conduct 

experimentally.  This provides a motivation for the next chapter in which numerical 
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modeling by finite element analysis (FEA) is demonstrated as a tool to provide those 

results. 
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CHAPTER 4. PRELIMINARY NUMERICAL ANALYSIS OF PROJECTILE IMPACT 

ON HCA FOR PROCEDURE FAMILIARIZATION 

 

4.1 Introduction 

Advantages of finite element analysis (FEA) for simulating ballistic impacts on armor 

have been discussed in section 2.1.3. Capacity of any armor to defeat a projectile is 

highly dependent on the localized material response under rapid loading rates making far 

field considerations of lesser influence in the event. A micro-mechanical FEA of the 

impact event can provide vital insights on interactions of different materials, especially 

for multilayered armors like HCA.  It is an effective means to substantiate experimentally 

established ballistic test results while providing additional understanding of involved 

critical time dependent properties that govern them. In-situ observations of individual 

layer performance under ballistic impact are not feasible experimentally. Visual results 

obtained from simulations could also be used to compare the damage distribution pattern 

and evolution of temporal back face bulge for multilayered armors like HCA which can 

only observed otherwise through difficult flash X-ray techniques and post-test CT scans. 

As mentioned in the introduction of Chapter 3, BABT manifests itself due to stress wave 

transfer and local acceleration of the underlying viscera. Acoustic impedance and stress  
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wave analysis for high velocity ballistic impact is extremely difficult to conduct using an 

experimental set-up, but feasible in FEA using certain assumptions [80].  

Objective set for numerical analysis in the present study is to supplement the findings 

from the experimental investigation of performance influence of honeycomb inclusion in 

the HCA inserts under dynamic projectile impact. Desired outputs from the numerical 

analysis are the time dependent properties that can prove the performance improvement 

by use of honeycomb.  

Feasibility and flexibility of the FEA scheme used in the present study was 

demonstrated in [10] through ballistic impact modeling of monolith steel plates by steel 

and copper projectiles. The FEA scheme was streamlined to address issues of excessive 

distortions, convergence problems, node penetrations, and warping of elements during 

the dynamic contact. Section controls, mass scaling, and material modeling options were 

explored to solve these problems. Resulting simulations were able to calculate the effect 

of model size and mesh dependency on numerical outputs derived from the analysis. 

Stress distributions, ballistic limits, and projectile velocity versus time plots were 

estimated from the nodal outputs. 

An extension to these capabilities is explored in this chapter (from single plate to 

multiple plates, with or without spacing or inclusion of honeycomb layer). FEA 

simulations, being problem specific, do not have set procedures to ensure positive results. 

Hence, this chapter presents a preliminary analysis aimed at streamlining the adapted 

FEA scheme further, readdressing its procedural shortcomings, and identifying 

significant factors that affect simulation results. Simulated models presented in this 
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chapter have a progressive increase in complexity and computational load than those in 

[10] and lay the foundation of subsequently more complex model iteration in Chapter 5; 

serving as a guideline and ensuring a smooth transition in result fidelity. 

General details of the FEA scheme are in section 4.2. Preliminary models with steel 

plates and copper projectiles are presented in the initial part of section 4.3. First 

preliminary model extends monolith steel plate impact by copper projectile to spaced 

plates. Second preliminary model extends the first model by inclusion of a honeycomb 

shell layer. Observed results and discussion is in section 4.4. 

4.2 Finite Element Analysis (FEA) 

Impact problems have been analyzed using finite elements with the basic objectives 

of numerically deriving ballistic limits of structures and also to visualize and compare 

their damage distribution patterns [18, 48, 81-83]. Referring to these listed publications 

as guidelines, the dynamic explicit simulations in ABAQUS® were designed for the 

current study. 

4.2.1 Explicit 3D FEA 

The explicit code in ABAQUS® works by direct computation of the dependent 

variables in terms of known quantities or provided inputs. An explicit dynamic analysis 

was also selected for the reason that it was computationally efficient and consistent for 

large models with relatively short dynamic response times, comparatively larger 

deformations, and large number of small time increments. This analysis system was also 

quite flexible and allowed for fixed or automatic time incrementation depending upon the 

requirement. The General Contact algorithm was used to formulate the contact between 
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the impacting projectile and the armor plates. This algorithm accounts for contact through 

element based surfaces that allows for material degradation. The classic erosion model in 

ABAQUS® was used to simulate the material damage response by individual element 

deletion as the damage parameter D reached unity. The software also allowed selection of 

post-damage-initiation material response and how failure evolved. Dynamic impact 

models for high velocity (>400 m/s) are prone to issues of excessive distortions, 

convergence problems, node penetrations, and warping of elements during the dynamic 

contact. Section controls, mass scaling, and material modeling options were used in the 

present study to solve these problems. 

4.2.2 Model development 

The primary components of the finite element model were the constituents of the 

target plate and the impacting projectile. The geometry of the impacting projectiles was 

modeled to exactly match the volumetric attributes of the 7.62 mm FMJ round. 3D 

dynamic FEA is computationally extensive due to the large number of elements, nodes, 

and integration points involved. Only a quadrant of the actual volume was considered 

owing to the axisymmetric nature of the problem enabling faster execution of the analysis 

procedure and solution computation time reduction (similar to [18, 83]). As the total time 

duration of the dynamic impact is in the order of 2 x 10-4 seconds, the choice of reduced 

volume does not affect the solution with wave propagation issues. The time duration also 

allows for neglecting friction effects on contact.  Solid part meshes were created using 

hexagonal or hexagonal dominated elements (C3D4) and then structured and sweep mesh 

construction was done as required. For later simulations involving the cellular 

honeycomb, conventional shell elements (S4R) were used with wall thickness assignment 



82 
 

through section properties.  Section controls were assigned to all elements in the models 

to control excessive distortion. The mesh was generated in discrete biased zones (denser 

in the contact region, coarser at the far edge to improve result quality without severely 

increasing computation time). The element sizes varied across the length of the plate 

model. Meshed parts were created to enable mesh surface generation required for the ease 

of element erosion. Necessary boundary conditions had to be evaluated and assigned to 

accurately model the field experiments. As only a quadrant of the entire volume was 

considered for analysis, the inside edge surfaces of the model were subjected to 

symmetry conditions along the X and Y axes. For the outer rear edges, their motion being 

completely restricted due to the test setup, a pinned boundary condition was chosen 

(Figure 18). Additional details on boundary conditions are available in [10]. Initial 

velocity assignment to the projectile was done by regulating the predefined field values. 

Values for velocity change with time were procured as an output through a node set near 

the center of mass of the projectile. 

4.3 Simulated models for projectile impact 

 

4.3.1 Preliminary FEA with plate spacing and aluminum honeycomb 

Experimental test results suggest honeycomb inclusion in HCA isolates the front 

laminate from the back laminate during impact while absorbing energy resulting in BFS 

reduction. As a first step, pure spacing was created between steel plates and simulated for 

ballistic impact. The model was then modified to include an aluminum honeycomb layer 

in the spacing and simulated for impact. 
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4.3.1.1 Model details 

First preliminary model evaluated effect of spacing on ballistic performance by 

comparing projectile velocity versus time plots for a monolith 6 mm thick plate with two 

3 mm thick plates with spacing distance of 1.5 mm, 3 mm and 6 mm respectively.  

Contribution of the honeycomb layer to the overall performance during ballistic 

impact was evaluated in the second preliminary model by comparing similar projectile 

velocity versus time plots and ballistic limits for with-honeycomb (6 mm steel + 8 mm 

Al-CH + 1 mm steel), spaced plate (6 mm steel + 8 mm spacing + 1 mm steel), and non-

spaced plate (6 mm steel + 1 mm steel) configurations. Ballistic limit of each 

configuration was calculated using a plot of the impact velocities and the corresponding 

residual velocities post impact. Volumetric stress distribution plots were used to identify 

damage zone sizes for each configuration. Typical steps for model build up are shown in 

Figure 18. 

 

Figure 18 Steps involved in development of the FEA model are shown. Assembly of parts is followed 

by application of boundary conditions described in section 4.2.2. 

4.3.1.2 Materials 

For each preliminary model, OHFC copper projectiles were used. Lead was not 

chosen in the preliminary study due to the excessive deformation problems associated 
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with its use in high velocity impact FEA. Description of the issues faced is available 

elsewhere [10].  Choice of steel for front and back laminate was based on prior success in 

simulation. Properties for both OHFC copper and steel were taken from the ABAQUS 

user’s manual [84]. The extended Shear and Ductile damage model was used for this 

steel while the Johnson-Cook plasticity and damage criterion was used for copper (see 

Section 2.1.3.1 in Chapter 2). Strain and strain energy based damage evolution was used 

for both these materials. Johnson-Cook plasticity and damage was also considered for 

aluminum. Material properties for Al 2024 were adopted [85]. 

4.4 Results and discussion 

FEA scheme adopted in this study was successful in simulating ballistic impact for 

both preliminary models.  Simulations were able to compute projectile velocity versus 

time plots during the period of impact and predict the residual velocity after penetration 

for all simulated configurations.  The time period for this plot corresponds to the contact 

time of the projectile with the components of the armor plate.  Results from the first 

preliminary model with varying spacing distance are presented in Figure 19.  Increasing 

the spacing distance appeared to decrease the residual velocity — an indication of 

improvement in ballistic performance, qualitatively similar to the observations from the 

experimental results.  An 11% decrease in residual velocity was observed for a 4X 

increase in the spacing.  However, no significant change in rear face peak stress and rear 

face deflection was seen in the simulated spaced configuration. This is contrary to the 

observations from experiments and suggests that a pure spacer is not adequate to achieve 

BFS reduction. 
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Figure 19 Projectile velocity versus time plot for increasing plate spacing computed from the first 

preliminary model. 

For the second preliminary model, a similar comparison of the residual velocities for 

with-honeycomb, spaced plate and non-spaced plate configurations was obtained through 

the projectile velocity versus time plots.  Such a plot for the with-honeycomb 

configuration is shown in Figure 20.  The plot indicates that the ballistic limit of the with-

honeycomb configuration is 650 m/s. Similar results were computed for the spaced and 

the non-spaced configurations.  The summary of the results is shown in Figure 21 in the 

form of Lambert-Jonas curves for ballistic limit. The residual velocity gives an indication 

of the amount of kinetic energy absorbed during the deformation process.  Results show 

no significant variation in performance between the configurations (< 7.5%).  The extent 

of variation observed from the first preliminary spaced plate simulation was not 

replicated here.  
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Figure 20 Projectile velocity versus time plot for with-honeycomb configuration from the second 

preliminary model. 

 

Figure 21 Ballistic limit prediction from velocity versus time plots for the with-honeycomb, with-

spacing and without-spacing configurations using Lambert-Jonas curves. No significant change is 

observed. 
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The trends observed in all the change in velocity plots shown in Figure 20 show no 

specific discretization in slope of the curve based on resistance to perforation. This is due 

to the high magnitude of impact velocities considered in this study (>640 m/s) and 

smaller plate thicknesses; resulting in minimized interaction time between plate and 

projectile. Typically, impact at low velocities for thin face sheet high thickness 

honeycombs sandwich plate would result in three discrete zones in the change in velocity 

plots. 

Experimental testing provides limited information concerning damage evolution and 

the process of projectile penetration during the impact. FEA simulations were able to 

provide information on these aspects through 3-D visualization of volumetric stress field 

distributions. This proves an effective way to compare the size of the damaged area for 

all individual components of the target plate. 

 

Figure 22 Stress distribution in the back layer at 850 m/s and 100 μs after impact; (a) with-

honeycomb configuration, (b) non-spaced configuration. 

The stress distribution versus time history for the backing layer is an indicator of the 

communication of stresses through the thickness of the target plate. Delayed stress 
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transfer and minimized damage zones enable minimizing the BFS as well as the 

corresponding BABT. Figure 22 shows the stress distribution observed in the backing 

steel layer for the with-honeycomb and non-spaced configurations at time interval of 100 

μs at 850 m/s impact velocity. The size of the damaged zone observed in the with-

honeycomb configuration is smaller than the non-spaced one, similar to what was 

observed in experimental testing of the HCA-P2. 

This was also indicated by the through-thickness damage evolution observed from 

volumetric stress distribution plots at increasing time increments for each configuration. 

Sample volumetric plots for the with-honeycomb plate are shown in Figure 23. Results 

from the present FEA are in agreement to those by Ivanez et al. [86]. Observations made 

from change in velocity plots, ballistic limits, and 3-D volumetric stress distribution plots 

portray similar trends for the impact characteristics of the aluminum based collapsible 

absorber core they presented.  

Visual results from the current modeling procedure do not clearly match the expected 

damage zone sizes seen experimentally on HCA-P2. This difference can be attributed to 

the use of steel face and backing layers in the current model instead of UHMWPE. Since 

steel is isotropic, a high through thickness modulus results in localization of damage 

before the projectile interacts with the honeycomb layer. Resulting bending creates 

separation between the laminates and the honeycomb. Not more than three honeycomb 

cells were seen to undergo compression and are in extended contact with the laminates. 

In the case of HCA-P2, delamination in the front HB50 laminate causes honeycomb 

compression over an approximate area of about 30X its cell size.  
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Figure 23 Volumetric stress distribution plots for the with-honeycomb configuration at varying time increments (impact velocity 640 m/s). 
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The reduced number of interacting honeycomb cells in the current FEA has led to 

minimal kinetic energy absorption by the honeycomb layer. This is evident through 

negligible change of residual velocity in comparison to non-spaced plates. 

4.5 Conclusion 

A preliminary FEA was developed using dynamic explicit code in ABAQUS® to 

evaluate the influence of a honeycomb layer on the ballistic performance of the armor 

plate.  

1. Verification of performance improvement by inclusion of a honeycomb layer was 

also done through FEA in ABAQUS®.  Three configurations (with-honeycomb, 

spaced-plate, non-spaced) were subjected to ballistic impact simulations by a copper 

projectile.  Change in velocity plots and ballistic limit predictions from obtained 

results did not indicate high variation as expected by honeycomb inclusion.  A 2.3% 

reduction in residual velocity was calculated for the with-honeycomb configuration in 

comparison to the spaced plate one for the high velocity regime (impact velocity 

>750 m/s).  Verification of residual velocity as a function of plate spacing was also 

carried out for this high velocity regime.  An 11% decrease in residual velocity was 

observed for a 4X increase in the spacing.  Further numerical investigations can 

confirm and elaborate on this dependence. 

2. The stress distribution versus time history for the backing layer was used an indicator 

of the communication of stresses through the thickness of the target plate.  The size of 

the damaged zone observed in the with-honeycomb configuration was smaller than 

the non-spaced one, similar to what was observed in the experimental testing of the 
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HCA-P2.  This delayed stress transfer and minimized damage zones indicated 

minimizing of the BFS as well as the corresponding BABT.  

3. Discrepancies in the FEA scheme were identified from the preliminary models.  

Localization of damage by inclusion of steel as well as high velocity and interaction 

time kinetics appear to have a significant influence on the observed results.  Limited 

participation of the honeycomb seen in the preliminary models as separation of layers 

occurred.  Incorporation of adhesive in the model is necessary to alleviate this issue. 
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CHAPTER 5. NUMERICAL INVESTIGATION OF HONEYCOMB PARTICIPATION 

DURING DYNAMIC PROJECTILE IMPACT ON HCA 

 

5.1 Introduction 

Preliminary numerical analysis was successful in demonstrating the flexibility of the 

adopted FEA scheme to accommodate increased complexity in the dynamic impact 

simulation with inclusion of spacing and honeycomb layer. Results from this effort were 

able to indicate the ballistic performance influence of these inclusions to a limited extent. 

It was observed that participation of the honeycomb in the ballistic impact event can be 

increased by incorporating inter-layer bonding via adhesives. Reducing damage 

localization by considering more pliant actual cross-ply composite material instead of 

steel could also potentially alleviate the issue. This will be the focus of the preconceived 

more complex simulation iteration than the preliminary models and presented in this 

chapter. Outputs of interest from the simulations include: 

a. time dependent: change in displacement, velocity, and acceleration of insert rear 

face, through-thickness stress distribution, delay in stress wave arrival at rear face, 

b. time independent: extent of kinetic energy absorption, BFS, peak stress at rear 

face, maximum delamination damage area, observed failure modes along each 

layer.
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Based on the simulation results from the preliminary models, the FEA scheme was 

adapted to include actual HCA-P2 materials: HB50 laminates with inter-ply bonding, and 

Al-CH. Successful implementation of this scheme would set up a reference method that 

can be followed to verify influence of other factors on the ballistic performance of HCA. 

5.2 Material constitutive models 

5.2.1 Dyneema® HB50 

HB50 composite laminates are fabricated by hot pressing cross plied stack of 

monolayer plies and have a fiber volume fraction of 82%. Available volume fraction of 

the matrix material and high fiber-matrix strength offset results in lower inter-laminar 

bond strength than in-plane ply strength. Consequently, mechanical response of these 

orthotropic laminates under a complex loading scenario, such as a projectile impact, has 

to be numerically analyzed on a ply-to-ply level. A discretized-ply composite part 

generation method is thus adopted in Chapter 5 instead of a homogenized one used in 

Chapter 4.  

Ballistic impact on armors FEA is a three-dimensional stress state analysis which 

requires a composite failure prediction model that can capture both in-plane and inter-

laminar stress components. In-built composite models available in ABAQUS® neglect 

out-of-plane tensile and shearing stresses and are only suitable for a 2D plane-stress 

analysis. Hence, a user defined 3D material model was implemented through a virtual 

user material (VUMAT) subroutine to capture these stresses. The subroutine uses 

Hashin’s failure criteria for a fiber constitutive model and Puck’s action plane theory for 

the matrix material (see Section 2.1.3.2 in Chapter 2). Results from the preliminary FEA 
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in Chapter 4 highlight the requirement to include delamination and individual layer 

bonding to facilitate adequate interaction of the honeycomb during the impact process. 

Element based cohesive zone modeling (CZM) with quadratic traction-separation rules 

was used for both inter-ply and inter-layer delamination. 

A review of most recent publications on numerical analysis of high velocity ballistic 

impacts on armors having UHMWPE as a constituent material indicate partial success. 

Grujicic et al. [83] and Burger et al. [51] applied material user subroutines for UHMWPE 

in their continuum composite models. The model scheme adopted in [83] was able to 

correlate the calculated BFS bulge diameter evolution during impact with experiments 

but was unable to retain similar accuracy for the BFS bulge depth or the extent of 

delamination. Similarly, the model adopted in [51] was able to match the energy 

absorption capacity of HB25, but had under prediction of BFS and it was unsuccessful in 

simulating delamination. Krishnan et al. [50] used an in-built material model from the 

commercial software code for their simulations. Although the modeling scheme and use 

of cohesive elements captured delamination, the BFS was under predicted by about 50%. 

Material properties used for UHMWPE were adjusted to match the penetration response 

but not corroborated using other mechanical tests.  Present study aims to combine 

advantages perceived from these publications by mating the chosen Hashin-Puck 

VUMAT subroutine with the discretized part geometry having CZM.  

3D stress tensor with a cross-ply composite laminate schematic is shown in Figure 

24a illustrating the directionality of the stresses with respect to the laminate co-ordinate 

geometry. Directions 1 and 2 (represented by x1 and x2) are aligned in-plane with the 0° 

and 90° plies in the laminate respectively, whereas, direction 3 (represented by x3) is 
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aligned out-of-plane with the laminate and is the direction of the projectile impact. Figure 

24b shows a water-jet cut cross-section image of a ballistic tested HB50 laminate with 

prominent deformation and failure modes from the projectile impact. This cross-section 

image is considered to be aligned along the x1-x3 plane with perpendicular direction x2 as 

the normal to the plane of the paper. The co-ordinate system for the VUMAT subroutine 

and the element based CZM follows this exact orientation and is a reference to all 

material properties listed in this section. 

 

Figure 24 (a) Schematic of a 3D stress tensor with a cross-ply laminate shown to illustrate the 

direction of stresses with respect to the laminate co-ordinate geometry; (b) cross-section image of a 

ballistic tested HB50 laminate shows prominent deformation and failure modes from the projectile 

impact.  
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5.2.1.1 HB50 laminate material properties for VUMAT 

Uniaxial quasi-static in-plane tensile response of cross-ply HB26 and HB50 laminates 

was evaluated experimentally by Karthikeyan et al. [87]. Both laminate types exhibited 

near identical tensile strengths of ~780 MPa. This could be due to the same SK76 fiber 

system common to both laminates types and accounting for 83% volume of the 

composite. The specimen used for the test were customized to have wider gripping areas 

with a bolting arrangement and narrow gage width to negate sample slippage (inter-ply 

shear and pull-out within the grips), which is a persistent problem for UHMWPE 

composites (due to high fiber tensile strength, low shear strength and low coefficient of 

friction). An independent investigation by Lassig et al. [88], who adopted the same test 

specimen geometry, has also corroborated the observed peak tensile strength for HB26. 

ASTM D3039 standard for uniaxial tensile testing of composites recommends 

specimen geometry to ensure failure occurs within gage length and that specimen cross-

section has adequate fiber count to suitably represent the bulk material. A typical 

minimum specimen geometry as per the standard is rectangular, with 25 mm width and 

2.5 mm thickness for cross-plied composites. The customized sample geometry used in 

[87-88] had a reduced gage cross section area (less than half, 4 mm width and 6 mm 

thickness) than the minimum standard recommendation; to avoid slippage. The authors 

confirmed test validity based on observed failure modes in the post-test specimen. Since 

neither study presents data variation for multiple cross-section sizes, it is difficult 

ascertain if measured response correlates to bulk properties. Cutting specimen to such 

small dimensions from larger laminates may introduce pre-test damage or exacerbate 

edge effects that can then result in a premature failure response. Russell et al. [89] has 
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shown a significant decrease in measured strength from single fiber to a [0/90]48 laminate 

for HB26 (~3.8 GPa for single fiber and ~780 MPa for the laminate) which they attribute 

to differences due to processing route. They conclude practical laminates display tensile 

strengths in agreement with yarn strengths as tested by rollers (~2.2 GPa).  

Present study considers an average laminate tensile strength of 1.5 GPa for the 

numerical analysis. Similar estimate was also used by Attwood et al. [90] for their 

numerical study. Average elastic modulus for HB50 from the referred experimental data 

was 61 GPa. HB26 yarn tensile data in [89] at varying strain rates suggests no strain rate 

sensitivity for strain rates up to about 103 s-1. Again, since HB26 and HB50 have a 

common SK76 fiber system, we assume no strain rate dependence for HB50.  

Quasi-static tensile response of HB50 laminate in the ±45° orientation was also 

evaluated in [87]. ASTM D3518 is referred for such a test which provides the in-plane 

shear properties of the composite (direction 12, Figure 24). As the dominant failure mode 

in the composite during the test was matrix shear, a low strength high ductility response 

was observed as compared to uniaxial tension test. Measured shear modulus was 300 

MPa with peak shear strength of 1.6 MPa. Again, the standard recommends test specimen 

dimensions to be identical to ASTM D3039, which was not the case in the study, and 

may have resulted in under-prediction of strength as less cross-section area was available 

for load bearing. This is evident from data presented for HB26 in [87] and [88] for this 

test. Specimen with gage geometry close to the ASTM standards was used in [88] for 

tests and a peak strength twice higher than in [87] was reported. Moreover, double-notch 

specimen shear tests from [87] indicate a significant strain rate dependence in matrix 

dominated mechanical response. The study reports data at only two strain rates making 
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prediction of extrapolation models difficult. A peak strength of 77 MPa is therefore 

assumed in this study [51]. Shear failure in direction 12 is not prominent during ballistic 

impact and is expected to have minimal influence on the numerical analysis.  

Through-thickness shear behavior (direction 13 and 23, Figure 24; identical as HB50 

is orthotropic) in cross-ply Dyneema® laminates is fiber dominated due to their high 

volume fraction. Conventional Losipescu test setup as per ASTM D5379 is permissible 

for use only for flexurally rigid composites that allow for fiber shear or matrix cracking at 

quasi-static strain rates. Such a test setup cannot be used for relatively pliant cross-ply 

Dyneema® laminates as they are more prone to bending than shear. A new test 

configuration was presented in [88] to evaluate through-thickness shear behavior for 

HB26. Observed average shear modulus was 31 MPa. Failure was not seen from the tests 

as the test setup was limited in maximum achievable displacement to avoid collision 

between loading arm and fixed support. An alternate method to evaluate shear failure 

stress is by Depth of Penetration (DoP) impact tests with rigid projectiles like FSPs [77-

78]. Mechanical behavior of thin plates is different than that of thick plates under DoP 

impact tests. Thin plates show a coupled bending-shear failure with a more membrane 

like response (single stage), whereas, thick plates show shear failure followed with 

delamination and extensive bulging (two stage). At a certain intermediate thickness, 

failure behavior transition occurs between thin and thick plates as demonstrated in [77]. 

Ideal scenario for measuring through-thickness shear failure stress would be a partial 

penetration by a rigid projectile in a plate with thickness corresponding to this transition 

point. In doing so, energies associated with bending, compressive flow, delamination, ply 

tension and bulging, and shock induced heating can be neglected. A perforation by shear 
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model presented in [77] assumed complete conversion of projectile impact kinetic energy 

in to work done in forming shear plug due to penetration by pure transverse shearing, can 

then. As per the model: 

1

2
 𝑚 𝑉2 =  𝜏𝑚𝑎𝑥𝜋𝑟𝑝𝐷𝑜𝑃2 (5.1) 

where, m is the projectile mass, V is the projectile velocity, rp is the projectile radius, and 

τmax is the through-thickness shear strength. Average effective shear strength of 560 MPa 

was reported for HB26 using Equation 5.1. Kinetic energy versus DoP data for HB26 

under steel sphere impact was also presented for two areal densities. Applying equation 

5.1 to this data results in a higher average effective shear strength of 700 MPa for the 

thicker laminate. As a first approximation, average effective shear strength of 630 MPa is 

used here for HB50. 

Out-of-plane compressive response of Dyneema® composite laminates was matrix 

dominated and found to be sensitive to specimen length and thickness [90]. As seen from 

the shear tests, matrix dominated material properties of these composites are also strain 

rate sensitive. Peak nominal compressive strength of 1600 MPa and modulus of 10 GPa 

for HB50 is used in the present study. Similarly, it is expected the out-of-plane tensile 

response will also be size and strain rate dependent. An extrapolated peak nominal tensile 

strength of 10 MPa is used [88].  

Poissons’ ratio values for HB50 were not available experimentally and were assumed 

as 0.1 for the VUMAT. Summary of all material properties for the VUMAT subroutine 

are in Table 19. 
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Table 19 Material properties for HB50 virtual user material subroutine. 

Required Property Value Units 

Density 980 kg/m3 

Young’s modulus along direction 1 61 

GPa Young’s modulus along direction 2 61 

Young’s modulus along direction 3 10 

Poisson’s ratio 12 0.1 

 
Poisson’s ratio 13 0.1 

Poisson’s ratio 23 0.1 

Shear modulus in 1-2 plane 0.3 

GPa Shear modulus in 1-3 plane 0.031 

Shear modulus in 2-3 plane 0.031 

Coefficient for stiffness proportional damping 1.00E-09   

Tensile failure stress in direction 1 1500 

MPa 

Compressive failure stress in direction 1 64.3 

Tensile failure stress in direction 2  1500 

Compressive failure stress in direction 2 64.3 

Tensile failure stress in direction 3 10 

Compressive failure stress in direction 3 1200 

Shear strength in 1-2 plane 77 

Shear strength in 1-3 plane 630 

Shear strength in 2-3 plane 630 

 

5.2.1.2 Inter-ply material properties for element based CZM 

Cohesive Zone Modeling (CZM) is mesh-relative. The traction separation rules used 

to define the cohesive behavior depend upon the length measures of when unrecoverable 

damage initiates (crack length δ0) and the point where complete failure occurs (crack 

length δf). Elastic response of the bonding material is then defined by the slope of the 

linear elastic traction separation curve which is the effective initial material stiffness per 

unit area (Keff) and given by: 

𝐾𝑒𝑓𝑓 =  
𝑇𝑢𝑙𝑡

𝛿0
  (5.2) 
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where, Tult is the effective ultimate nominal stress of the bonding material. It is to be 

noted that Tult is not the ultimate stress of the bulk version of the bonding material but a 

parameter that defines the behavior between the bonding material and bonded material 

pair. The effective elastic modulus Eeff is then related to Keff via: 

𝐸𝑒𝑓𝑓 =  𝐾𝑒𝑓𝑓  ℎ𝑒𝑓𝑓  (5.3) 

where, heff is the initial geometric thickness of the solid cohesive element from the mesh. 

Damage initiation was modeled by quadratic stress behavior which assumed damage to 

initiate when a quadratic interaction function involving the nominal stress ratios for the 

normal and shear modes reaches a value of one. This criterion can be represented as: 

(
𝑇𝑛

𝑇𝑢𝑙𝑡 𝐼
)

2

+  (
𝑇𝑠

𝑇𝑢𝑙𝑡 𝐼𝐼
)

2

+  (
𝑇𝑡

𝑇𝑢𝑙𝑡 𝐼𝐼𝐼
)

2

= 1  (5.4) 

where, each bracketed term represents the ratio of the actual nominal stress to the 

ultimate nominal stress for each mode. A damage evolution law was used to describe the 

rate at which the material stiffness is degraded once the corresponding initiation criterion 

is reached. The dependence of the fracture energy GC on the mode mix was defined based 

on a power law fracture criterion. The power law criterion considers failure under mixed-

mode conditions to be governed by a power law interaction of the energies required to 

cause failure in the individual modes. It is given by 

(
𝐺𝑛

𝐺𝐶 𝐼
)

𝜆

+  (
𝐺𝑠

𝐺𝐶 𝐼𝐼
)

𝜆

+  (
𝐺𝑡

𝐺𝐶 𝐼𝐼𝐼
)

𝜆

= 1  (5.5) 
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where, each bracketed term again represents the energy ratio for each mode similar to the 

damage initiation criterion. The power exponential λ was taken as 1 in this study. 

Properties of the HB50 bonding matrix required for CZM not entirely available in 

published literature. Only preliminary tests have been done thus far. Evaluated material 

properties were at quasi-static strain rates and show significant strain rate dependence. 

Data from Mode I DCB test as per ASTM D5528 published by Lassig et al. [88] and 

Mode II double notched shear test published by Liu et al. [91] were used to derive 

properties required for CZM. Properties for Mode III have been approximated to those of 

Mode II. They are summarized in Table 20.  

Table 20 Material properties for cohesive zone model used for inter-laminar behavior of HB50. 

Required Property Value Units 

Density 1026 kg/m3 

Effective elastic stiffness per unit area, Mode I 20 

GPa/m Effective elastic stiffness per unit area, Mode II 20 

Effective elastic stiffness per unit area, Mode III 20 

Maximum nominal stress, Mode I 5 

MPa Maximum nominal stress, Mode II 5 

Maximum nominal stress, Mode III 5 

Mode I inter-laminar fracture toughness 790 

J/m2 Mode II inter-laminar fracture toughness 1460 

Mode III inter-laminar fracture toughness 1460 

 

5.2.2 Aluminum honeycomb 

Aluminum 2024 material properties were used for the corrugated honeycomb in the 

preliminary FEA as the Johnson-Cook parameters for this aluminum grade were available 

in published literature. Numerical simulations of a honeycomb compression test were 

conducted to verify if the resulting honeycomb response was close to the actual 

experimental results (as per ASTM C365M-05). FEA model for this test was based on the 
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numerical modeling scheme by Aktay et al. [92] to evaluate honeycomb crush behavior.  

Honeycomb was modeled using shell elements similar to the preliminary FEA and was 

dimensionally identical to the samples used for experimental compression test. 

Compression platens were modeled as rigid bodies. Compression loads were applied on 

the honeycomb structure using motion of the upper compression plate through 

displacement amplitude that corresponded to 103 s-1 test strain rate. High strain rate of 

compression was chosen for faster computation time. Comparison with the quasi-static 

experiment is still fair since Al-CH demonstrated no strain rate sensitivity during ballistic 

testing as shown in Chapter 3. Bottom plate had fixed non-movable boundary conditions. 

Contact between platens and the honeycomb as well as within the honeycomb itself upon 

initiation of plasticity was modeled using general contact algorithm with self-contact 

definitions. Contact penalty was enforced through friction coefficient of 0.4. Schematic 

of the simulated test setup in is Figure 25a. An alternate method to simulate honeycombs 

is by applying crushable foam material model to a homogenous solid section. This 

approach is typically used in very large models where honeycomb micromechanical 

behavior is irrelevant to primary objective of the numerical simulation. The crushable 

foam model takes direct honeycomb property inputs and was included in this exercise to 

confirm the fidelity of the modeling scheme. Shell element based honeycomb underwent 

cell wall folding and collapse during compression similar to the experimental test sample 

(Figure 25b).  
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Figure 25 (a) Schematic of the honeycomb compression test setup modeled in ABAQUS®. 

Compression plates were modeled as rigid bodies. Shell element based model used for the aluminum 

honeycomb. (b) Honeycomb after compression has crushing failure through cell wall folding and cell 

collapse. 

Stress versus strain curve from experiment and simulation of crushable foam model 

show good agreement (Figure 26). Magnitudes of peak and average crush strength are as 

specified in the technical data sheet by the manufacturer. However, the shell honeycomb 

response shows gross over prediction.  It was found that decreasing the magnitude of 

yield strength and the strain hardening coefficient (parameters A and B in equation 2.3) 

brought the plastic response of the honeycomb closer to that of experimentally evaluated. 

Best correlation was observed when the base material was considered as elastic-perfectly 

plastic with yield stress of 165 MPa. No transition from peak to crush strength was 

observed due to lack of micro-inertial effects. However, potential change in the energy 

absorption capacity of the simulated honeycomb due to no transition would be minimal 

and not affect the honeycombs participation in sandwich composite scenarios like in 

present study. 
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Figure 26 Stress versus strain plot for aluminum honeycomb. Results from numerical simulation 

show good agreement with experimental values. Material properties used in preliminary FEA over 

predicted the honeycomb behavior. Decreasing the magnitude of yield strength and strain hardening 

coefficient of the base material improved the correlation between numerical and experimental 

response. 

 

5.3 Simulated impact model for wave impedance analysis 

BABT manifests itself due to stress wave transfer from the local point of impact on 

the armor to the underlying tissue.  The rear of the armor deforms at high velocities and 

accelerates underlying viscera locally causing tissue shearing. Delaying and attenuation 

of the propagating stress waves by generating wave impedance via inclusion of a 

honeycomb layer can thus reflect as performance improvement. Preliminary FEA was 

aimed at testing this hypothesis but had limited success due to reduced participation of 

the honeycomb. As a solution to this issue, the preliminary model was revised to now 

include the actual HB50 composite with inter-layer bonding through CZM in a new FEA 

model. The model generation process, orientation, projectile geometry, contact 
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assignment, applied boundary conditions and predefined field was identical to the 

preliminary model where a quadrant of the actual insert was simulated for impact. 

Individual solid HB50 plies and inter-ply solid cohesive zone was created from a single 

part using the partition tool. VUMAT and CZM material models detailed in the previous 

sections were implemented for these discrete parts. Similarly, use of shell element based 

honeycomb for Al-CH was continued here from the preliminary model but with refined 

material properties derived earlier. Material properties for brass jacket and lead core were 

taken from [46] and are listed in Chapter 2 Table 5. In addition to the node set on the 

projectile for procuring velocity values, an additional node set was also created on the 

insert rear face to get time dependent outputs listed at the beginning of the chapter. 

Schematic of the baseline model assembly is shown in Figure 27. 

 

Figure 27 Schematic of baseline model assembly with part details. Target portioned to create 

individual HB50 plies and modeled with VUMAT subroutine. Inter-ply bonding achieved by CZM.  

Execution of the high fidelity FEA model was not successful due to limitation in 

VUMAT subroutine available. Mesh refinement, model size and involved complexity 

resulted in an initial stable time increment on the order of 10-12 seconds (giving ~108 

increments per microsecond during analysis) and non-convergence. Single precision of 
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the VUMAT subroutine resulted in error round off and caused severe node penetrations. 

Excessive distortion of elements occurred even with mesh refinement to an element size 

of 0.2 mm. Deformation speed exceeded wave speed due to high impact velocities which 

led to premature termination of the analysis. Modifying the VUMAT subroutine code 

was beyond the scope of this study and can be attempted as a part of future work. 

However, a qualitative comparison between baseline and HCA was still feasible for a 

non-penetrative soft impact scenario at lower velocities similar to the foam impact 

experiments done in [87]. FEA of such scenarios can allow evaluation of time dependent 

outputs and stress wave propagation analysis set as the study objective. 

Stress wave propagation analysis for multilayered armors is complex as impact events 

produce planar-shear, spherical-shear and dilatational wave fronts, which are typically 

non-planar. Gama et al. [80] have presented a stress wave propagation analysis that 

assumed a planar wave front for the through-thickness stress wave close to the impact 

centerline. A similar stress wave propagation analysis was conducted by using the nodes 

along the impact centerline. Baseline model assembly used for the analysis was identical 

to that shown in Figure 27. The 7.62 bullet projectile was replaced with aluminum foam 

(trade name Alporas) of 15% relative density. Diameter of the projectile was 40 mm with 

30 mm length. Material and size of the projectile was specifically chosen to ensure 

minimal distortion of elements on contact while achieving a linear wave front in the 

target region directly in the line of impact. Properties for the Alporas aluminum foam 

ware taken from [93] and applied with crushable foam plasticity model available in 

ABAQUS®. Mesh sensitivity analysis was conducted for the projectile and eventually 

element size of 0.5 mm was chosen.  Node set was created on the back face of the target 
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to retrieve displacement, velocity and acceleration variation with time. For HCA-P2, 8 

mm thickness shell honeycomb model was incorporated within the HB50 laminates. 

Thickness of the front laminate was reduced HCA-P2 to match the cumulative areal 

density to that of the baseline for effective one-to-one comparison. Honeycomb bonding 

to HB50 laminates was enforced using tie constraints. Projectile impact velocity was 

reduced to 250 m/s in order to resolve issues with excessive element distortion and node 

penetrations. Schematic of the model is in Figure 28a. 

5.4 Results and discussion 

 

Figure 28 (a) Schematic of HCA-P2 model assembly for the foam impact simulation is shown.  (b) 

Stress distribution on the front laminate top face is shown at the point of impact. Magnitude of peak 

stress was determined from nodes within the impact zone. (c) Stress distribution in the honeycomb is 

shown 10 µs post impact. Plastic deformation in honeycomb is by cell wall folding and cell collapse 

similar to compression test FEA. 

Revised foam projectile impact model with VUMAT and CZM was successfully 

executed. Computation time for baseline and HCA model was about 48 hours with 

parallel execution on 16 cores. Increased participation of the honeycomb during impact 

was observed. Shock induced delamination occurred in the front laminate along the line 

of impact due to compressive stress wave reflectance as tensile. Velocity versus time 
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plots and ballistic limits for the projectile were not evaluated as the FEA was inherently 

of non-penetrative nature. An alternate metric used for comparison was extent of kinetic 

energy absorbed by means of plastic deformation in both inserts. Normalized energy 

absorbed through plastic deformation with kinetic energy was plotted as a function of 

time (Figure 29).   

 

Figure 29 Normalized energy absorbed by plastic deformation with kinetic energy plotted as a 

function of time. Plot indicates significant increase in energy absorbed by HCA-P2 after plastic 

deformation initiates in the honeycomb.  

Since projectile does not penetrate on impact, observed plastic deformation is 

physically synonymous to the later instances of the bulging stage where there is intact 

translation of plies along the line of impact. Experimental results have shown honeycomb 

to be most effective in such a scenario and absorbs more energy than an equal weight 

HB50 laminate. This observation is also corroborated from Figure 29. Cumulative energy 

absorbed by plastic deformation higher in HCA-P2. Discretization is observed in the 
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slope of the normalized energy plot for HCA-P2 with transition occurring at the point of 

plastic deformation initiation in honeycomb. Plot slope is similar for both baseline and 

HCA-P2 till the transition point, which indicates proportionate energy absorption by 

HB50 in both cases. Inclusion of honeycomb did not affect energy absorption 

mechanisms in HB50 similar to the inference from ballistic tests. Magnitude of 

normalized energy absorbed at a given time before transition is slightly lower in HCA-P2 

as included areal density of HB50 is lower than baseline (corresponding to the areal 

density of added honeycomb). Energy absorbed in HCA-P2 increases much rapidly after 

initiation of plastic deformation in honeycomb. This effect was more pronounced in FEA 

than experiments in Chapter 3 as impact was simulated by a larger diameter cylindrical 

projectile resulting in near-uniform vertical load distribution on the honeycomb and over 

a wider area. 

Isolation of stress fields in the front laminate was again seen in HCA-P2 as in 

preliminary FEA. Stress distribution in the front laminate top face is shown at the point of 

impact in Figure 28b. Plastic deformation in honeycomb occurred by cell wall folding 

and cell collapse indicating predominant uniaxial compression. Stress distribution in 

honeycomb 10 µs post impact is shown in Figure 28c. Through-thickness normal stress 

(σZ) in the back face of the target was made non-dimensional by normalizing with the 

maximum compressive stress (σZmax) developed close to the point of impact in the front 

laminate and plotted as a function of time for comparing stress transfer in baseline and 

HCA-P2 (Figure 30). A delay in arrival of peak stress was seen in HCA-P2 by the 

inclusion of honeycomb. Amplitude of the peak compressive stress impulse in baseline 

was higher than that in HCA-P2. It was inferred that honeycomb inclusion increased 
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stress wave impedance by demonstrating more than 50% reduction in shock loads for the 

current impact scenario. A corresponding decrease in peak sternal force can thus be 

expected which correlates to a reduction in BABT. 

 

Figure 30 Normalized stress in the back layer plotted as a function of time. A delay in the time of 

arrival of peak stress in the back layer is seen for HCA-P2. Amplitude of the stress impulse is more 

than 50% lower by inclusion of honeycomb resulting in reduced shock loads and therefore potential 

reduction in BABT. 

Similarly, time delay was also seen in displacement, velocity, and acceleration of 

central region of the impact zone in HCA-P2 back laminate. This is summarized in a 

time-history plot of these variables for baseline and HCA-P2 at foam impact velocity of 

250 m/s (Figure 31). Significant reduction in the displacement magnitude projects a 

higher flexural stiffness in HCA-P2 and lower BFS. The extent of reduction is again 

more pronounced than ballistic experiments due to the simulated blunt impact and larger 

area participation of the honeycomb. 
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Figure 31 Time- history plot of displacement, velocity, and acceleration of the back laminate for 

baseline and HCA-P2 at foam impact velocity of 250 m/s. Difference in the time of initiation of these 

parameters between baseline and HCA is termed as time delay. Negative values indicate 

compression. 
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 Reduced back face velocity and acceleration with incurred time delay indicate a 

slower distension of the back face than the baseline which may reduce the propensity of 

viscous injury occurring in the underlying viscera of the chest cavity. Inferences derived 

from FEA of foam impact at 250 m/s were not altered by varying impact velocity. 

Increasing the yield strength of the honeycomb base material and height of the 

honeycomb further reduced normalized stress in the back layer. Changes in the time 

dependent variables from Figure 31 were minimal and difficult to gauge. Overall, foam 

impact FEA was able to highlight the potential performance benefits that can be achieved 

by honeycomb inclusion by gauging pertinent parameters linked to BABT. Successful 

execution of actual 7.62 NATO ball projectile impact FEA can follow the same method 

presented here while accounting for penetration mechanisms and enable a direct 

comparison of injury tolerance criteria hard limits (Table 9) with those evaluated 

numerically. Predicted ballistic limits and BFS can then be compared to experimental 

data from Chapter 3. 

5.5 Conclusions 

BABT reduction potential by honeycomb inclusion in HCA-P2 was successfully 

demonstrated through foam projectile impact FEA. A combined VUMAT user subroutine 

and CZM material modeling approach was successfully implemented in the soft impact 

FEA to simulate three-dimensional stress state analysis with delamination in the HB50 

composite. Normalized plastic deformation energy plot derived from the simulations 

indicated higher energy absorption by honeycomb than HB50 in bulging stage 

corroborating observations from experiments. Honeycomb inclusion did not alter energy 

absorption mechanisms in HB50 as also seen experimentally.  Aluminum honeycomb 
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was found to reduce the amplitude of the stress wave pulse in the back laminate as well 

as delay the time of its arrival creating stress wave impedance and gradual dissipation of 

shock loads. A corresponding decrease in peak sternal loads can then be assumed 

correlating to a decrease in BABT. Time-history plot of displacement, velocity and 

acceleration derived from the simulation also proved a reduction in amplitude and time 

delay that can also be correlated to reduction in the propensity of viscous injury occurring 

in the underlying viscera of the chest cavity. 

Foam impact FEA projects a significant performance improvement in HCA-P2 if load 

distribution on the honeycomb is kept uniform and over a larger area. Including a 

honeycomb with higher energy absorption capacity can further extend that advantage. 

Design methodology of HCA-P2 can be potentially modified to incorporate these factors. 

If deficiencies of VUMAT subroutine are solved, an actual 7.62 NATO ball projectile 

impact FEA can be carried out for direct comparison of injury tolerance criteria hard 

limits using the method presented here. This will be a part of the future work. 



115 
 

 

 

CHAPTER 6. SELECTION CRITERIA FOR HONEYCOMB INCLUSION IN LEVEL 

III HCA 

 

6.1 Introduction 

Ballistic tests on HCA revealed that honeycomb responds as a rigid plastic passive 

absorber under impact. Its inclusion improved armor performance by reducing BFS 

incurred on impact. BFS reduction was shown to be proportional to the energy absorption 

capacity of the honeycomb with the aid of analytically derived model based on energy 

conservation approach. Honeycomb inclusion also improved V50 in comparison to similar 

weight baseline when the front laminate areal density was above the critical. Honeycomb 

thus increased the energy absorption capacity per unit weight in the bulging stage than 

HB50 by increasing the flexural rigidity. It may be inferred that advantages by 

honeycomb inclusion can potentially be extended further by selecting other honeycombs 

with higher stiffness and crush strength than Al-CH. However, as seen from ballistic Test 

4 results in Chapter 3, significant increase in armor stiffness reduces BFS, but it also 

adversely affects V50 by increased shear failure in HB50. Mechanisms of improving V50 

and reducing BFS in HB50 are hence functionally opposite. It is possible achieve both 

objectives only if these mechanisms can be isolated. 
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A solution to this problem can be in isolation of the front laminate from the 

honeycomb sandwich. Inclusion of the spacer will allow HB50 plies to have a membrane 

like response critical to their penetration resistance, while the increased stiffness 

sandwich can then facilitate in BFS reduction. The spacer material can be low-relative-

density polymeric foam for minimum weight addition, with lower bending stiffness than 

HB50 for minimum resistance to membrane like motion of the plies. Consequently, a 

larger area of honeycomb will be directly involved in the energy absorption process, and 

as numerically proven in Chapter 5, will also improve stress wave impedance with 

gradual shock load dissipation.  Detailed experimental evaluation is necessary to confirm 

effectiveness of the spacer and can be a part of the future work. It is assumed here that 

the proposed solution is adequate to maintain a constant energy absorption capacity of the 

HB50 laminates in HCA while retaining their functionality irrespective of the included 

honeycomb. A methodology of honeycomb selection is then proposed here that can allow 

to choose suitable candidates from commercially available honeycombs in order to 

achieve a higher BABT reduction than by Al-CH. Objective of this study is to present 

selection criteria that are based on the functional contributions of the honeycomb in HCA 

identified through experiments and numerical simulations. Each criterion considers 

certain human BABT tolerance parameters stated in section 2.1.4.3 of Chapter 2. This is 

done keeping in mind that current parameter thresholds could be premature and their 

values can be updated in future with more focused studies. The scheme for each criterion 

is purposely devised for easy adaptation in case of such an eventuality. The process 

utilized can serve as a guideline for similar applications. 
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6.2 Honeycombs applicable in composite armor 

Technical data sheets for commercially available honeycombs manufactured by 

Hexcel Co. and Plascore Inc. were referred to identify the highest specific strength 

honeycombs available. As a first step, only those honeycombs with crush strength of 7.4 

MPa or higher were selected considering the Nomex™ honeycomb used in Chapter 3 as a 

baseline. These honeycombs are listed in Table 21 with their mechanical properties. 

Table 21 Commercial honeycombs with crush strength of 7.4 MPa or higher. Designation and 

mechanical property details are listed. Permissible thickness values on applying design constraints 

are also stated. 

Base Material  Honeycomb designation 
Density 

(kg/m3) 

Elastic 

Modulus, 

Ec (GPa) 

Crush 

strength 

(MPa) 

ct  
† 

 

(mm) 

c * 

 

(mm) 

Al 5052 Rigicell™ 1/8 - 2 - .006-STD 354.00 6.69 28.3 6.5 6.5 

Al 5052 Rigicell™ 1/8 - 2 - .0038-STD 232.26 4.48 14.8 9.9 9.9 

Al 5052 Rigicell™ 1/8 - 2 - .003-STD 192.22 3.86 10.0 12.0 10.0 

Al 5052 CR-PAA 1/8 - 5052 - .003 192.22 6.21 9.3 12.0 10.0 

Al 5052 CR-PAA 1/16 - 5052 - .0015 198.62 4.48 8.3 11.6 10.0 

Fiberglass-PR HRP - 3/16 - 12.0 192.22 1.79 7.9 12.0 10.0 

Al 5052 CR-PAA 1/8 - 5052 - .0025 160.18 3.45 7.2 14.4 10.0 

Nomex PN2 - 1/8 - 9.0 144.16 0.62 7.4 16.0 10.0 
† Maximum permissible thickness in compliance to the maximum allowable areal density constraint. * 

Adjusted maximum permissible thickness based on constraints related to insert ergonomics. 

Any honeycomb that is to be included in a revised HCA design must continue to 

follow the primary design constraint of maximum permissible weight. A functional areal 

density limit of 18.5 kg/m2 set in the insert preliminary design phase was used to stay 

relevant with contemporary body armor solutions. Maximum permissible areal density 

for honeycomb inclusion was then 2.3 kg/m2, after accounting for the front and back 

laminates. Maximum permissible thickness for each honeycomb corresponding to this 

areal density was calculated. Honeycomb panels of specific thickness are typically cut 
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out of a larger hobe. Minimum thickness of these panels cannot be less than 6 mm owing 

to manufacturing difficulties. Similarly, ergonomics associated with the body armor 

insert restrict its total thickness to less than 38 mm (1.5 inches). These constraints limit 

permissible honeycomb thickness to within 6 – 10 mm. Maximum permissible thickness 

for each honeycomb was adjusted after complying with all design constraints and is also 

listed in Table 21. 

6.3 Selection criteria for honeycombs 

6.3.1 Specific strength criterion for minimum BFS 

BFS at NIJ 0101.06 standard reference velocity of 847 m/s can be predicted using the 

experimentally verified analytical model detailed in Appendix 1. Energy absorbed at this 

velocity by the HB50 laminates and a chosen honeycomb can be calculated with the 

model in a similar way as done for Al-CH. Remainder of the energy transferred to the 

clay then correlates to a BFS prediction. Using this method, BFS at 847 m/s was 

calculated for each honeycomb listed in Table 21 with the adjusted thickness value. As a 

conservative estimate, surface area of honeycomb participating in the energy absorption 

process was kept identical to that observed in Test 4 of Chapter 3. Predicted BFS values 

are in Table 22. BFS diameter size of 8.56 cm was used for the calculation. Plot of energy 

absorption capacity of the honeycomb versus its crush strength shows only Al-CH and 

similar corrugated honeycombs of Rigicell™ type are able to meet the minimum BFS 

criterion by NIJ (Figure 32). For more stringent BFS limits, 28 mm as concluded by 

Gryth et al. [69] for example, set design constraints will have to be relaxed to achieve the 

desired performance even with the best Rigicell™ honeycomb inclusion.  
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Table 22 Predicted BFS values for selected honeycombs by using experimentally verified analytical 

model detailed in Appendix 1. 

Designation 

Maximum energy 

absorbed per unit 

volume 

(MJ/m3) 

Adjusted 

thickness 

(mm) 

Energy 

absorption 

capacity, 

Ehc (J) 

Predicted BFS 

at 847 m/s 

Rigicell™ 1/8 - 2 - .006-STD 19.8 6.5 454.8 33.7 

Rigicell™ 1/8 - 2 - .0038-STD 10.4 9.9 363.2 37.8 

Rigicell™ 1/8 - 2 - .003-STD 7.0 10 247.5 43.0 

CR-PAA 1/8 - 5052 - .003 6.5 10 230.4 43.8 

CR-PAA 1/16 - 5052 - .0015 5.8 10 204.8 44.9 

HRP - 3/16 - 12.0 5.6 10 196.3 45.3 

CR-PAA 1/8 - 5052 - .0025 5.1 10 179.2 46.1 

PN2 - 1/8 - 9.0 5.2 10 183.0 45.9 

 

 

Figure 32 Energy absorption capacity versus axial strength plot for the selected honeycombs shows 

only corrugated honeycombs like Al-CH are able to meet the minimum BFS requirement by NIJ at 

the reference velocity of 847 m/s. 
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ΔBFS / ΔAD was calculated for the honeycombs with BFS less than 44 mm keeping 

a baseline of 14 + 2 HB50 laminate configuration as a reference (Table 23). BFS for this 

baseline was 54.1 mm, as experimentally found in preliminary ballistic test of Chapter 3. 

ΔBFS / ΔAD values were seen to be predictably proportional to the included honeycomb 

specific strength (refer equation 3.1). It can therefore be implied that specific strength of 

a honeycomb is an acceptable criterion for its selection in armor applications. Highest 

specific strength is most desirable. 

Table 23 Comparison of candidate honeycombs using ΔBFS / ΔAD values calculated using using 

experimentally verified analytical model detailed in Appendix 1. 

Property 

CR-PAA 

1/8 - 5052 - 

.003 

Rigicell™, 

1/8 - 2 - .003-

STD 

Rigicell™, 

1/8 - 2 - 

.0038-STD 

Rigicell™, 

1/8 - 2 - .006-

STD 

Added areal density, ΔAD (kg/m2) 1.922 1.922 2.300 2.301 

Analytically predicted BFS (mm)  43.8 43 37.8 33.7 

Specific strength (MPa / kg/m3) 0.048 0.052 0.064 0.080 

ΔBFS / ΔAD calculated with baseline 

(14+2 HB50 configuration) BFS of 54.1 

mm as reference 

5.36 5.78 7.09 8.87 

  

6.3.2 Bending deflection criterion for maximum rigidity 

Termination of shear damage coupled with delamination at the end of bulging stage 

of projectile penetration in HB50 results in near-intact rear plies’ traverse along the 

projectile direction creating the back face bulge. Considering the sandwich construction 

of the HCA, bulging of the rear plies of the front laminate causes corresponding 

deflections in the following honeycomb and back liner layers. The cumulative deflection 

profile of the front laminate rear layers with the honeycomb and back liner (section 

ABCD in Figure 33a) resembles that of a simply supported sandwich beam undergoing 
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bending under a central load. Deflection magnitude and velocity is inversely proportional 

to the beam’s resistance to bending. Hence, it is possible to analytically correlate the 

extent of deflection or back face bulge for each type of honeycomb by applying bending 

theory to HCA. 

 
Figure 33 (a) Vertical cross section of HCA after deformable projectile impact indicating shear and 

delamination zones in the front HB50 laminate resulting in back face bulging. Corresponding 

deflections are also transferred to the successive honeycomb and back liner layers (b) deflection 

profile of HCA (shown by section ABCD) resembles that of a simply supported sandwich beam 

undergoing bending under a central load. 

The deflections in sandwich beams undergoing bending can be derived from the 

analysis presented by Allen [94]. This analysis assumes that the cross-sections which are 

plane and perpendicular to the longitudinal axis of the unloaded beam will remain so 

when the bending is taking place. The simplest form of this analysis considers the 

sandwich beam undergoing bending has thin faces of equal thickness and an antiplane 

core (shear stresses in the core are constant and independent of z location). However, in 

case of HCA we have thick face layers of unequal thickness and the honeycomb core is 
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not antiplane. Allen’s analysis is modified to accommodate these changes and an 

expression for deflection in the z direction is evaluated for the HCA.  

 
Figure 34 Section X'X" for the bending beam (a) if the beam was a regular sandwich (b) if it 

resembles HCA. 

Deflections in a bending beam result from a combined effect of bending moments and 

shear stresses. Maximum deflection will occur at the beam’s central plane and is 

calculated by summation of bending and shear components. The bending component is 

calculated by using the flexural rigidity D of the beam which is a product of the modulus 

of elasticity E and the second moment of area I. The sandwich beam being composite in 

nature, D is a sum of the products EI for the individual faces and the honeycomb core.  

The shear component of deflection is calculated using the shear rigidity AG. Since the 

faces for HCA sandwich are of unequal thickness, the centroidal axis of the bending 

beam (axis shown by C-C in Figure 34) no longer coincides with the horizontal mid plane 

of the core. The z location of the centroidal axis of HCA zc is given by: 
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𝑧𝑐 =  
𝑡1

2
+ 

𝑑𝑡2

𝑡1 + 𝑡2
 (6.1) 

where, d is the distance between centroids of the faces, t1 and t2 are the thicknesses of the 

face sheets. The second moment of area for each face and the core is evaluated about the 

centroidal axis using the parallel axis theorem. For a regular sandwich beam undergoing 

bending with thin faces of equal thickness, Allen neglects the contribution of I for the 

faces and the core about their own axis in the equivalent moment of area as they account 

to 1% or less in magnitude compared to the moment-transfer-to-centroidal-axis term. In 

the present analysis, all terms are retained as the equations to verify negligible 

contribution are not satisfied (see Table 24). The sum of the second moment of area for 

the faces bending separately is given by: 

𝐼𝐹 =  
𝑏𝑑2𝑡1𝑡2

2
+  

𝑏

12
[𝑡1

3 + 𝑡2
3] (6.2) 

Table 24 Verification of conditions stated by Allen [94] to select second moment of area terms to be 

retained in flexural rigidity analysis. 

For a regular sandwich beam: Flexural rigidity, 𝐷 =  𝐸𝐹
𝑏𝑡3

6
+ 𝐸𝐹

𝑏𝑡𝑑2

2
+ 𝐸𝐶

𝑏𝑐3

12
 

where, EF = Axial modulus of elasticity for the faces 

           EC = Modulus of elasticity for the core in the z direction 

           b = beam width, c = core thickness, d = distance of separation between centroids of the faces, and t 

=   thickness of the face sheets, as shown in Figure 34a. 
 

First term in the above D equation amounts to less 

than 1% of the second if:  

d/t > 5.77 

 

For HCA, t1 = 14mm, t2 = 2mm, and 6 ≤ c ≤ 10mm, 

giving d ≤ 22mm. As t1 ≠ t2, using tavg = 8mm, we 

get, 

d/tavg < 5.77 

Condition is not satisfied and the term is retained in 

the analysis. 

 

Third term in the above D equation amounts to less For HCA, EF = 10 GPa, EC = 6-11 GPa, tavg/c < 1, 
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than 1% of the second if: 

6
𝐸𝐹

𝐸𝐶

𝑡

𝑐
(

𝑑

𝑐
)

2

> 100 

 

and d/c < 2, 

6
𝐸𝐹

𝐸𝐶

𝑡

𝑐
(

𝑑

𝑐
)

2

< 100 

Condition is not satisfied and the term is retained in 

the analysis. 

 

The second moment of area for the honeycomb core is given by: 

𝐼𝑐 =  
𝑏𝑐3

12
+  𝑏𝑐 [

𝑡1 + 𝑐

2
−  

𝑑𝑡2

𝑡1 + 𝑡2
]

2

 (6.3) 

Equivalent flexural rigidity (D)eq for HCA is given by the summation: 

(𝐷)𝑒𝑞 =  𝐸𝐹 [
𝑏𝑑2𝑡1𝑡2

2
+  

𝑏

12
[𝑡1

3 + 𝑡2
3]] +  𝐸𝐶 [

𝑏𝑐3

12
+ 𝑏𝑐 [

𝑡1 + 𝑐

2
−  

𝑑𝑡2

𝑡1 + 𝑡2
]

2

] (6.4) 

The local bending stiffness of the faces has an effect on the shear deformation of the core. 

If the faces and the core are to remain in contact during bending, there has to be a smooth 

transition of shear deflections across the beam. Faces reduce shear deflection 

discontinuity at the expense of introducing additional bending moments and shear forces 

in the faces. This effect is prominent if the faces are thick with a weak core and has to be 

accounted for during estimation of the shear rigidity of the beam. In the present analysis, 

although the faces are thick, the core material is not weak and therefore no correction is 

necessary while calculating the shear rigidity. The deflection due to shear is obtained by 

the integral expression: 

𝛥𝑠 =  ∫
𝑄

𝐴𝐺
𝑑𝑥 =  

𝑄

𝐴𝐺
𝑥 + 𝐶 (6.5) 
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where, Q is the shear force, G is effective shear modulus of the core material and A 

equals bd2/c. For a simply supported beam with central load W, the shear force Q is W/2. 

The integration constant C will also cancel out as at x=0, Δs=0. The expression simplifies 

to: 

𝛥𝑠 =  
𝑊

2𝐴𝐺
𝑥 (6.6) 

Also, maximum deflection will occur at beam central plane (x=L/2) giving (Δs)max = 

WL/4AG. Now, as the honeycomb core is not antiplane in nature, the shear stress is not 

constant over the depth. To account for this change, Allen recommends replacing G with 

G’ to give the correct deflection magnitude where, 

𝐺′ =  
𝐺

1 +
𝐸𝐶

6𝐸𝐹

𝑐2

𝑡(𝑐 + 𝑡)

 
(6.7) 

The total beam deflection by load W acting over beam span L is given by the sum: 

(𝛥)𝑒𝑞 =  (𝛥𝑏)𝑚𝑎𝑥 + (𝛥𝑠)𝑚𝑎𝑥 =  
𝑊𝐿3

48(𝐷)𝑒𝑞
+

𝑊𝐿

4𝐴𝐺′
 (6.8) 

Calculation for equivalent deflection as per the theory presented above is shown in Table 

25. It was observed that the best choice honeycomb according to the specific strength or 

energy absorption criterion displayed maximum deflection per kN load. The propensity 

of viscous injury scales directly with back face bulge velocity and acceleration which are 

time derivatives of this maximum deflection. It is desirable to have highest specific 

stiffness and thickness of the included honeycomb to maximize flexural rigidity for 
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reducing deflection by bending. High bond strength between HB50 plies and at the face 

sheet–core interface is desired to maximize shear rigidity. 

Table 25 Comparison of candidate honeycombs by bending deflection analysis. 

Property 

CR-PAA 

1/8 - 5052 - 

.003 

Rigicell™, 

1/8 - 2 - 

.003-STD 

Rigicell™, 

1/8 - 2 - 

.0038-STD 

Rigicell™, 

1/8 - 2 - .006-

STD 

Foil thickness, t (mm) 0.0762 0.0762 0.09652 0.1524 

Cell edge, l (mm) 1.833 1.833 1.833 1.833 

Density, ρ (kg/m3) 192.2 192.2 232.3 354 

Elastic modulus, EC (GPa) 6.2 3.9 4.5 6.7 

Crush strength (MPa) 9.3 10 15 28 

Specific strength (MPa/ kg/m3) 0.048 0.052 0.065 0.079 

Shear modulus, G13 (GPa) 0.6 0.6 0.8 1.2 

Shear modulus, G23 (upper) 1.0 1.0 1.3 2.1 

Shear modulus, G23 (lower) 0.9 0.9 1.2 1.9 

Average shear modulus, G (GPa) 0.9 0.9 1.1 1.7 

     
Maximum permissible height, c (mm) 10.0 10.0 9.9 6.5 

Face material modulus, EF (GPa) 10.0 10.0 10.0 10.0 

Effective core shear modulus, G' (GPa) 0.8 0.8 1.0 1.7 

     
Beam width, b ( length CD in Figure 33, m) 0.131 0.131 0.131 0.131 

Beam span, L (m) 0.131 0.131 0.131 0.131 

Face centroid separation distance, d (m) 0.0180 0.0180 0.0179 0.0145 

Equivalent flexural rigidity, Deq (N.m2) 1146.1 834.6 904.6 730.2 

Equivalent shear rigidity, AG' (kN) 3446.13 3522.89 4434.15 7060.94 

     
Deflection per kN load, Δeq (mm) 0.050 0.065 0.059 0.069 

 

6.3.3 Stress wave impedance criteria for minimum stress transfer 

Numerical analyses conducted as a part of this study have shown stress wave transfer 

in materials undergoing impact is a three-dimensional event. However, it is possible to 

utilize a one dimensional stress wave analysis as a crude tool to characterize stress wave 

impedance potential in materials. Analytical scheme for one dimensional analysis has 

been presented by Hazell [13] to estimate stress transfer on impact in multilayered armor 
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through geometric wave impedance calculations at material interfaces. Consider an X-t 

diagram for a bi-material interface as shown in Figure 35a.  

 

Figure 35 X-t diagram schematic for one-dimensional (a) elastic and (b) in-elastic wave analysis at a 

bi-material interface. 

As per elastic wave analysis, when the incident stress wave (denoted by σI) in 

material A reaches the interface, a part of it is transmitted to material B (denoted by σT) 

while the remainder is reflected back (denoted by σR). The amplitude of the elastic wave 

transmitted to material B is given by: 

𝜎𝑇 =  2𝜎𝐼 (
√𝐸𝐵𝜌𝐵

√𝐸𝐴𝜌𝐴 −  √𝐸𝐵𝜌𝐵

) (6.9) 

where, E is the material elastic modulus and ρ is the material density. The term (E ρ)1/2 

represents the elastic impedance at the material interface with suffixes denoting the 

corresponding material. If material B is considered to be elastic-plastic then in-elastic 

wave analysis applies whereby the transmitted wave is represented by a summation of 

elastic wave corresponding to the yield stress (denoted by σY) and the plastic wave 
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corresponding to the peak stress (denoted by σT 
P). This is represented by the X-t diagram 

in Figure 35b. The amplitudes of the transmitted elastic and plastic waves are given by: 

𝜎𝑇
𝑃 =  

𝜎𝐼

𝐴
(

𝐵 − 𝐴

𝐵 − 𝐶
) − 

𝜎𝑅

𝐴
 (

𝐵 + 𝐴

𝐵 − 𝐶
) (6.10a) 

𝜎𝑌 =  
𝜎𝐼

𝐴
(

𝐶 − 𝐴

𝐶 − 𝐵
) −  

𝜎𝑅

𝐴
 (

𝐶 + 𝐴

𝐶 − 𝐵
) (6.10b) 

where, 𝐴 =  √𝐸𝐴𝜌𝐴   𝐵 =  √𝐸𝐵𝜌𝐵    𝐶 =  √𝑆𝐵𝜌𝐵  

and, SB denotes the reduced modulus in material B after the onset of plasticity. For HCA-

P2, the HB50 laminates can be assumed to be pure elastic in accordance to tensile 

behavior and higher strains to failure. For the honeycomb, the stress at yield is 

represented by the bare compressive strength of the honeycomb, whereas, the peak plastic 

stress is represented by the crush strength of the honeycomb that stays constant up to 

densification. Since the bare compressive strength has a higher magnitude than the crush 

strength, σY > σT 
P and peak stress transfer will occur during the elastic regime. It is 

therefore sufficient to apply elastic wave transfer theory to the HCA honeycomb 

sandwich in order to evaluate stress wave impedance by each selected honeycomb from 

the earlier section. The interface between front face sheet and honeycomb core is 

identical to the interface between the core and the back face sheet for a sandwich 

composite with same face sheet material. Stress transmitted through this two-interface 

system is given by: 

𝜎𝑇 =  4𝜎𝐼

√𝐸𝐹𝜌𝐹√𝐸𝐶𝜌𝐶

(𝐸𝐹𝜌𝐹 +  𝐸𝐶𝜌𝐶)2
 (6.11) 
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where, suffix F denotes HB50 material while suffix C denotes the selected honeycomb 

core. Transmitted stress to the back laminate was estimated for each honeycomb using 

equation 6.11 and the calculations are presented in Table 26. Stress wave dispersion by 

bonding adhesive was neglected in the analysis. Elastic modulus for HB50 in the 

through-thickness direction (EF) is 10 GPa and density (ρF) is 980 kg/m3.  

Table 26 Comparison of candidate honeycombs by elastic stress wave impedance analysis. 

Property 
CR-PAA 1/8 - 

5052 - .003 

Rigicell™, 

1/8 - 2 - 

.003-STD 

Rigicell™, 

1/8 - 2 - 

.0038-STD 

Rigicell™, 

1/8 - 2 - 

.006-STD 

Core density ρC (kg/m3) 192.2 192.2 232.3 354 

Core elastic modulus, EC (GPa)  6.2 3.9 4.5 6.7 

σT / σI x 10-4 1.13 0.97 1.09 1.30 

Honeycomb with maximum difference in elastic modulus compared to HB50 has the 

highest stress wave impedance. According to this criterion, honeycomb with the least 

elastic modulus is desirable. 

6.4 Summary from selection methods 

Three selection criteria that are based on the functional contributions of the 

honeycomb in HCA were successfully developed. It was now possible to use these 

criteria simultaneously to select a candidate honeycomb with optimum performance that 

can potentially achieve a higher BABT reduction than by Al-CH. This is demonstrated in 

Table 27 by applying a ranking system for each criterion. Rigicell™ 1/8-2-.0038-STD 

honeycomb demonstrated optimum performance. No single honeycomb had the best 

performance according to more than one criterion. As a part of future work, new HCA-P2 

variant including the optimum performing Rigicell™ honeycomb can be ballistic tested 

and compared with Al-CH. Rigicell™ 1/8-2-.003-STD honeycomb with next near-
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optimum performance can also be included in the test scheme to observe performance 

transitions, if any.  

Table 27 Selection of candidate honeycomb with optimum performance to achieve higher BABT 

reduction than Al-CH by simultaneous consideration of developed criteria by applying a ranking 

system. Optimal choice is highlighted.  

Criterion 
Performance ranking of candidate honeycombs 

Worst → Best 

Highest specific strength A B C D 

Minimum bending deflection D B C A 

Highest stress wave impedance D A C B 

A - CR-PAA 1/8 - 5052 - .003 B - Rigicell™ 1/8 - 2 - .003-STD 

C - Rigicell™ 1/8 - 2 - .0038-STD D - Rigicell™ 1/8 - 2 - .006-STD 

Steps followed during the selection procedure are summarized and represented in the 

form of a flow chart schematic in Figure 36. The method used for selection can be easily 

adapted to suit other armor application. For example, the primary threshold metric for 

initial choice refinement was BFS in this study, which can be switched to V50 by altering 

the analytical model. The selection criteria used in the ranking system can be similarly 

changed based on the end design functionality of the honeycomb sandwich.  
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Figure 36 Flowchart schematic for the selection process used to determine honeycomb with optimum 

performance to achieve higher BABT reduction than Al-CH. The selection method presented here 

can be easily adapted to suit other armor applications. 

Peak sternal force threshold as per AIS-code 3 (no permanent injury) is 21 kN (Table 

9). It correlates to a maximum permissible stress of 3.5 MPa, if considered to act over 

experimentally observed BFS area of ~60 cm2.  No candidate honeycomb from the 

preliminary selection can meet this requirement while achieving the desired BFS 

reduction. Therefore, a polymeric foam liner as a trauma attenuating backing (TAB) 

between the insert and user body cannot be avoided. TAB foam thickness again governs 

how much energy it can absorb.  As permissible values are again limited by ergonomics 

to within 6-10 mm, maximum absorbable energy by the foam up to densification is 5-10 

J. Ideal foam candidate for the TAB can then be selected using the iterative procedure 

with energy absorption diagram (EAD) presented by Gibson and Ashby [11]. Peak stress 

and energy limits derived here will be the applicable constraints. A combination of 

improved ballistic performance HCA and the foam TAB can ensure minimum BABT 

injury to the wearer. 
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

 

A fabrication process and design method for integration of honeycomb cellular solids 

in body armor was successfully established in this study.  Ballistic tests showcased the 

benefits of honeycomb inclusion in HCA by demonstrating a maximum BABT reduction 

of 40.8% compared to a same weight HB50 baseline.  BFS reduction capabilities of the 

HCA improved proportionately with increase in the included honeycomb thickness.  This 

confirmed the first part of the research hypothesis that inclusion of a minimum thickness 

honeycomb in multilayered body armor improves ballistic performance compared to the 

same areal density armor without honeycomb.  The later part of this hypothesis implied 

that this minimum honeycomb thickness depends on the face material and material 

properties of the honeycomb was successfully confirmed by good agreement shown 

between experimental data and the analytical model developed as a part of this study.  

V50 analysis and BFS tests were able to show that a critical areal density of the front 

laminate is necessary for honeycomb to be useful.   

Gauging the effect of honeycomb properties on its area extent undergoing impact is 

the next logical research gap to be filled.  A meta-aramid base material (Nomex™) 

honeycomb has been identified with properties intermediary to AMH and Al-CH. 
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Ballistic test on inserts with varying Nomex honeycomb and Al-CH thickness could be 

repeated after addressing the penciling effect seen due to the applied fabrication process.  

Ballistic testing of these plates can be conducted along with accelerometer or piezo-

pressure sensors (mounted on clay backing or an instrumented dummy) for a possible 

stress wave impedance analysis.  Tests would primarily focus on obtaining data on BFS 

depth and size at each shot velocity.  Observed results would provide additional time 

dependent metrics for direct comparison between the baseline, Al-CH-based HCA, and 

Nomex-based HCA.  Ballistic gel as an alternate backing material can prove useful to 

obtain visual cues on ballistic performance through high-speed imaging. 

Numerical analysis results obtained in this study were able to supplement 

experimental observations by proving performance benefits of honeycomb inclusion in 

HCA.  The method developed here for modeling HB50 cross-ply composite and 

honeycomb can serve as a guideline for future FEA.  Modifying the VUMAT subroutine 

code for convergence and stability under high velocity impact is envisioned as a 

necessary next step for future work.  An actual 7.62 NATO ball projectile impact FEA 

can be carried out for direct comparison of injury tolerance criteria hard limits using the 

method presented here. 

It was proved through this study that mechanisms of improving V50 and reducing BFS 

in HB50 are functionally opposite.  It is possible to achieve both objectives only if these 

mechanisms can be isolated by inclusion of a low stiffness polymeric foam spacer 

between the front laminate and honeycomb sandwich.  Inclusion of the spacer can permit 

membrane-like ply motion in HB50 which is critical to maintain its penetration resistance 

while simultaneously allowing the honeycomb sandwich to be as rigid as possible for 
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reducing BFS.  Rigicell™ 1/8-2-.0038-STD honeycomb that demonstrated optimum 

performance through the selection scheme devised in this study can be the included 

honeycomb.  This hypothesis could also be tested as a part of future work.  This revised 

HCA insert design is envisioned to have the greatest BABT reduction capability.  
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APPENDICES 
 

 

 

Appendix 1: 

Semi-empirical and analytical model for the prediction of BFS 

Fabric composite armors defeat deformable projectiles by absorbing their kinetic 

energy through a range of plastic deformation modes.  The prominent modes include 

fiber - shear, elongation and pullout coupled with the resulting delamination.  A part of 

this kinetic energy is spent on deforming the projectile by petal-like stripping of the 

jacket and pancaking of the soft core.  The extent of projectile deformation depends upon 

the core and armor materials, impact obliquity, and the projectile velocity.  The 

remainder of the kinetic energy and structural loads during impact are transferred to the 

backing material.  Bulging of the armor back wall during the entire process creates a 

spherical dent in the backing material termed the BFS.  The extent of this energy 

transferred to the backing material can be estimated by the size of the BFS.  Other 

dissipation processes (like gross mechanical excitation and conversion to heat) consume 

less than 2% of the initial projectile kinetic energy and can be ignored. The energy 

absorption process can then be represented by the equation: 
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𝐸𝐾.𝐸. =  𝐸𝑝𝑑 +  𝐸𝑏𝑎𝑐𝑘 (A1.1) 

where, EK.E. is the initial kinetic energy of the projectile, Epd is the energy absorbed by the 

composite through plastic deformation modes, and Eback is the energy transferred to the 

clay backing material. 

Semi-empirical model for BFS prediction:  

Jacobs and van Dingenen presented an empirical model for V50 prediction of 

Dyneema® based armors against deformable soft core projectiles like the 7.62 NATO 

Ball [22]. It was an extension of the model developed for similar estimation against 

Fragment Simulating Projectiles (FSPs). The FSP model approximated the relation 

between the strike face area S which is the projectile cross-sectional area projected on the 

target, the energy absorbed Epd and the areal density of the target AD by: 

 𝐸𝑝𝑑 𝑆⁄ =  𝐴𝐷 × 𝑘1 (A1.2) 

with Epd in Joules, S in mm2, AD in kg/m2 and k1 is a ballistic material related constant. It 

assumed the strike face area to be constant throughout the penetration process and the 

contribution of each layer in energy absorption was the same. FSPs penetration in 

relatively thick Dyneema® based armors is a two stage process as shown in Figure 37a. 

Jacobs and van Dingenen adapted Equation A1.2 for deformable projectiles by 

considering penetration as a three stage process. Stage 1 considers projectile penetration 

while retaining pre-impact strike face area, similar to an FSP. In stage 2, the projectile 

undergoes deformation consuming some energy and then continues penetration with 
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increased strike face area again like a FSP in the stage 3.  The energy absorbed by the 

composite under deformable projectile impact can then be represented by the relation: 

𝐸𝑝𝑑 =  𝐸𝑝𝑑1 +  𝐸𝑏𝑑 + 𝐸𝑝𝑑2 =  𝐴𝐷1 × 𝑆1 × 𝑘1 +  𝐸𝑏𝑑 +  𝐴𝐷2 × 𝑆2 × 𝑘1 (A1.3) 

with Epd1 as the absorbed energy during initial shearing corresponding to composite areal 

density AD1 and initial strike face area S1, Ebd as the energy absorbed in bullet 

deformation, which is experimentally observed to be relatively constant (160-300J) for a 

given deformable projectile type; and Epd2 as the absorbed energy corresponding to the 

deformed strike face S2 and involved the composite areal density AD2. Equation A1.3 was 

successfully used to predict V50 for Dyneema® HB2 under 7.62 NATO Ball impact [22]. 

 

Figure 37 (a) Cross-section schematic of Dyneema® based armor tested with a Fragment Simulating 

Projectile (FSP) showing two distinct stages of penetration however with constant a constant strike 

face area, (b) cross-section schematic of Dyneema® based armor tested with a deformable soft core 

projectile like the 7.62 NATO Ball showing a three stage penetration process where the projectile 

strike face area increases due to deformation. 
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The bullet deformation is near instantaneous and the transition from stage 1 to stage 3 

can be considered immediate. If R is the ratio of stage 1 areal density AD1 with the total 

areal density AD (with AD1 + AD2 = AD), the model can be expressed as: 

𝐸𝑝𝑑 =  (𝑅𝑆1 +  (1 −  𝑅)𝑆2)𝐴𝐷 × 𝑘 +  𝐸𝑏𝑑 . (A1.4) 

The ratio R is linearly proportional to the projectile velocity V, as increase in V will result 

in more number of plies failing with shear dominated failure. Consider R = xV + y, and, 

S2 - S1 = S (with S2 > S1), Epd can be expressed as: 

𝐸𝑝𝑑 =  𝑓(𝑉) × 𝐴𝐷 +  𝐸𝑏𝑑 (A1.5a) 

where, f(V) is also a linear function of variable V given by: 

 𝑓(𝑉) =  (𝑆2 − 𝑆 𝑥 𝑉 − 𝑆 𝑦)𝑘 =  −𝑎 𝑉 + 𝑏 (A1.5b) 

 

Experimental data from FSP impact tests on HB26 was presented in [77]. It was used 

to plot the energy absorbed per unit strike face area versus panel areal density curve 

which is non-linear (Figure 38a). Regions of single stage tensile failure by bulging 

(characteristic for thin plates) and two stage shear with tensile bulging failure modes as 

observed from the tests have been delineated in the plot. Narrowing the focus to practical 

body armor insert areal densities (≤ 24 kg/m2) and single stage perforation zone where 

the stated assumptions of empirical FSP model apply, the linear fit approximation for 

energy absorbed per stage with areal density in Equation A1.2 becomes fair (Figure 38b).  
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Figure 38 (a) Energy absorbed per unit strike face area versus target areal density plot for HB26 

made using experimental data from FSP impact tests presented in [77]. Curve shows a non-linear 

trend, (b) zoomed-in section of the same plot with focus on practical body armor areal densities (≤ 24 

kg/m2) showing a linear fit to the energy absorbed per stage data as a fair assumption. 
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Similar expression is required for estimating Eback.  Results from a recent study on 

damage characterization of 7 different types of projectiles indicates that recorded BFS 

from Roma Plastilina clay backing scales better with kinetic energy density of the 

impacting projectile than the kinetic energy itself [95].  This is highlighted in Figure 39 

where kinetic energy density versus BFS has a much higher R2 value.  This implies size 

and depth of the BFS indent are both important factors to correlate it to the energy 

transferred to the clay.  Eback can be estimated for a known BFS and impact zone size 

using: 

𝐸𝑏𝑎𝑐𝑘 =  (
𝜋

4
 𝐷2) ×  𝑔(𝐵𝐹𝑆). (A1.6) 

where, Eback is the energy transferred to the clay backing in Joules, D is the diameter of 

the impact zone in cm, and g(BFS) is the empirical relation relating the kinetic energy 

density with the BFS (in mm) as shown by the linear regression fit in Figure 39. 

Substituting equations A1.5 and A1.6 in equation A1.1 and rearranging terms, we get: 

𝑔(𝐵𝐹𝑆) =  
4

𝜋𝐷2
[𝐸𝐾.𝐸. − (−𝑎𝑉 + 𝑏)𝐴𝐷 − 𝐸𝑏𝑑]. (A1.7) 

Substituting terms for the kinetic energy of bullet with mass m and empirical expression 

of g(BFS), we get: 

𝐵𝐹𝑆 =  
3.346

𝐷2
[
𝑚𝑉2

2
+  𝑎 𝐴𝐷 𝑉 −  (𝐸𝑏𝑑 + 𝑏 𝐴𝐷)]. (A1.8) 

With further rearrangement of terms for simplification: 

𝐵𝐹𝑆 = 𝐴𝑉2 + 𝐵𝑉 − 𝐶 (A1.8a) 
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with, 

𝐴 =  
1.6731𝑚

𝐷2
  , 𝐵 =  

3.346 𝑎 𝐴𝐷

𝐷2
 , 𝐶 =  

3.346

𝐷2
[𝐸𝑏𝑑 + 𝑏 𝐴𝐷] (A1.8b) 

 

Figure 39 Relationship between a projectile’s kinetic energy and kinetic energy density with the 

recorded BFS on Roma Plastilina clay backing post impact [95]. 

The increase of BFS with velocity can be analytically estimated for any particular 

areal density laminate of HB50 by calculating the energy transferred to the clay backing 

using the second order polynomial expression (equation A1.8). This scheme developed 

for the baseline can also be adapted for HCA to include the participation of the 

honeycomb in the energy absorption process.  The energy balance equation for HCA is: 

𝐸𝐾.𝐸. =  𝐸𝑝𝑑 +  𝐸ℎ𝑐 + 𝐸𝑏𝑎𝑐𝑘 (A1.9) 
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where, the additional term Ehc corresponds to the energy absorbed by the honeycomb.  

For metal based honeycombs with plastic buckling as the primary failure mode, the 

magnitude of Ehc depends on the honeycomb’s crush strength σcr (in MPa) and 

densification strain εD: 

𝐸ℎ𝑐 =  ∫ 𝜎𝑐𝑟

𝜀𝐷

0

𝑑휀 × 𝐴 × 𝑐 (A1.10) 

where, A is the face area of the honeycomb that undergoes compression during impact in 

m2 and c is the honeycomb layer thickness in m.  The product of A and c gives the 

honeycomb volume participating in the energy absorption process.  The definite integral 

term denotes the energy absorption capacity during compression which is equal to the 

area under the stress versus strain curve for the honeycomb.  The magnitude of Ehc will 

depend on the velocity only when the cellular solid has significant strain rate dependence. 

Crush strength of the honeycomb is directly proportional to the flow stress of the base 

material (σeq) whose variation with strain rate can be well represented by the Johnson – 

Cook flow stress model: 

𝜎𝑒𝑞 =  [𝐴 + 𝐵휀𝑛][1 + 𝐶휀 .∗][1 −  𝑇∗𝑚] (A1.11) 

where, A,B,C, n and m are material constants, T *m is the homologous temperature, ε is 

the strain, and ε˙* = ε˙/ε˙0 is a dimensionless strain-rate given by the ratio of the present 

strain rate ε˙ and the reference strain-rate ε˙0.  If adiabatic effects are ignored, only the 

first two terms of the expression are considered.  The strain rate is related to the impact 

velocity by: 
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휀 =  (
𝑣𝑖 −  𝑣0

2𝑐
) (A1.12) 

where, vi is the initial impact velocity and vo is the final velocity.  The magnitude of Ehc 

will depend on the velocity only when the cellular solid has significant strain rate 

dependence.  In such a case, the second order equation for evaluating BFS at a given 

velocity will need an additional velocity dependent first order term.  As a result, the BFS 

versus velocity curve will have a different trend than that of the baseline. If the cellular 

solid is strain rate independent, Ehc will be of a constant magnitude and its addition will 

not change the curve’s trend but its intercept, translating it parallel to the original baseline 

curve. The revised constants in the second order polynomial equation are given by the 

expression: 

𝐴 =  
1.6731𝑚

𝐷2
, 𝐵 =  

3.346 𝑎 𝐴𝐷

𝐷2
, 𝐶 =  

3.346

𝐷2
[𝐸𝑏𝑑 + 𝐸ℎ𝑐 + 𝑏 𝐴𝐷] (A1.13) 

It is to be noted that the semi-empirical relations derived here are of a 

phenomenological nature and do not provide explanation for the ballistic results but serve 

as an instrument to predict BFS values for the inserts. The relations in Equation A1.8b 

and A1.13 are optimal for use for practical projectile impact scenarios on baseline and 

HCA-P2 laminates. 

Analytical model for BFS prediction: 

An analytical model based on energy and momentum conservation was developed by 

Nguyen et al. [77] to describe the two-stage perforation process in thick Dyneema® 

laminates under FSP impact. This model estimated the energy absorbed in the first stage 

by characterizing it in terms of work required to produce a shear plug in the target 
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material. Similarly, energy absorbed in the second stage was characterized by momentum 

transfer and classical yarn theory for membrane tension. The model was found to provide 

a good agreement with experimental results from FSP tests on thick plates that 

demonstrated the two stage perforation process. 

For the first stage, the energy to perforate the target material around the projectile 

perimeter is equated to the work required to produce the shear plug, where the shear area 

is the product of the projectile strike face circumference and the target thickness 

perforated in this stage. This is given by: 

𝐸𝑝𝑑1 =  𝜏𝑚𝑎𝑥𝜋 𝑟 𝑡𝑠
2 =  𝜏𝑚𝑎𝑥𝜋 𝑟 (

𝐴𝐷1

𝜌𝑡
)

2

 (A1.14) 

where, r is the projectile radius in m corresponding to initial strike face area S1, ts is the 

target thickness in m corresponding to the stage 1 areal density AD1, ρt is the target 

material density in kg/m3 and τmax is the effective through-thickness shear strength of the 

laminate. It is assumed during this process there is no forward momentum transfer to the 

plug and plug material is considered to be ejected from the target front face. Energies 

associated with fiber tension and compression, delamination, fiber-matrix debonding and 

shock induced heating are ignored.  

For the bulging stage, the target laminate is treated as a membrane with dominant 

failure mode considered as fiber tension. Individual plies are considered to have minimal 

bending resistance. Nguyen et al. [77] combined conservation of momentum with 

classical yarn theory for wave propagation to derive an expression for the projectile 
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velocity just before breakout to bulging. It was then used in the kinetic energy equation to 

get energy absorbed during bulging stage given by: 

𝐸𝑝𝑑2 =  
1

2
𝑚 (1 +  

𝛽2𝐴𝐷2𝑆2

𝑚
)

2

𝑘2 (A1.15) 

where, m is the projectile mass in kg. AD2 and S2 are identical to those used in the semi-

empirical model described earlier and used here in SI metric units. β is the non-

dimensional multiplier for projectile radius that accounts for the fact that the initial 

momentum transfer to the target just after breakout occurs over a radius larger than the 

projectile radius. k2 is a material related constant that accounts for strain energy by tensile 

failure in load carrying longitudinal fibers in the cross-ply layup. It is given by: 

𝑘2 =  
𝐸𝑓

𝜌𝑓
 
𝑣𝑓 

2
 (2휀𝑚𝑎𝑥√휀𝑚𝑎𝑥 + 휀𝑚𝑎𝑥

2 −  휀𝑚𝑎𝑥
2) (A1.16) 
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where, Ef is the fiber modulus for the target composite, ρf is the fiber density in kg/m3, vf 

is the fiber volume fraction in the composite and εmax is the fiber failure strain. Energy 

absorbed by the composite can now be found similar to that in equation A1.3, by 

summation of equation A1.14, A1.15 and Ebd. BFS can then be estimated using the same 

scheme described in the semi-empirical model. The process to incorporate the energy 

absorption by the honeycomb is identical as well. The relation is again a second order 

polynomial of variable velocity (V). 

Calculations for preliminary experimental results: 

Experimental BFS results from the preliminary ballistic test for the baseline HB50 

laminate of areal density 15.2 kg/m2 were correlated to the predictions made using the 

semi-empirical and analytical model described here. A summary of calculations for all 

the significant terms required in the semi-empirical model are shown in Table 28. 

Average impact zone diameter size has been directly recorded from the clay backing 

during the preliminary test. The linear function for the ratio R was derived from the data 

presented in Figure 11 from the V50 tests on baseline inserts. It was observed that the 

material constant k1 played a significant role in the analysis. Initial value was chosen as 

1.42 from the slope of the energy absorbed per stage per unit strike face area versus areal 

density plot shown in Figure 38. This over-estimated the energy absorbed by the 

composite by a significant margin. This could be attributed to: (a) impacting projectile 

shape effects on the laminate as penetration potential of FSPs with a blunt strike face is 

different than ogival shaped 7.62 NATO Ball, (b) tests used to collect the data were 

performed with bolted edge constraints and no clay backing which are significantly 
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different boundary conditions than a NIJ level III ballistic test. Selecting a lower k1 value 

of 0.97 provides a good correlation with the experimental data. 

Table 28 Estimation of BFS for HB50 baseline using semi-empirical model and comparison with 

experimental values. 

Description Value 

Projectile mass 9.8 g 

Total areal density (AD) of HB50 laminate 15.2 kg/m2 

Initial strike face (S1)  [22] 65 mm2 

Deformed strike face (S2) [22] 200 mm2 

Energy absorbed in bullet deformation (Ebd) [22] 250 J 

Diameter of the impact zone, D (cm) 8.65 

Impact zone size (cm2) 58.76 

Material constant for HB50 (k1) [22] 0.97 

     
Projectile velocity (m/s) 780 788 804 812 

Projectile kinetic energy, EK.E (J) 2981.2 3042.6 3167.4 3230.8 

     
Penetration ratio for areal density, R 0.4628 0.4657 0.4714 0.4743 

Areal density in shear, AD1 (kg/m2) 7.03 7.08 7.17 7.21 

Areal density in bulging, AD2 (kg/m2) 8.17 8.12 8.03 7.99 

     
Energy absorbed by composite in shear, Epd1 (J) 443.5 446.3 451.8 454.6 

Energy absorbed by composite in bulging, Epd2 (J) 1584.1 1575.6 1558.6 1550.1 

     
Energy absorbed by the composite, Epd (J) 2277.6 2271.9 2260.4 2254.7 

Eback = EK.E - Epd (J) 703.5 770.7 907.0 976.1 

Calculated BFS (mm) 31.5 34.5 40.6 43.7 

Actual BFS from experiments (mm) 33.0 35.0 42.4 45.3 
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Similarly, pertinent calculations for the analytical model are presented in Table 29. 

Material property values required to calculate constant k2 were taken from [77]. Values 

for other parameters in the calculation are the same as those used in the semi-empirical 

model. 

Table 29 Estimation of BFS for HB50 baseline using analytical model and comparison with 

experimental values. 

Description Value 

Projectile mass 9.8 g 

Total areal density (AD) of HB50 laminate 15.2 kg/m2 

Initial strike face (S1)  [22] 65 mm2 

Deformed strike face (S2) [22] 200 mm2 

Energy absorbed in bullet deformation (Ebd) [22] 250 J 

Diameter of the impact zone, D (cm) 8.65 

Impact zone size (cm2) 58.76 

Total areal density (AD) of HB50 laminate 15.2 kg/m2 

Material constant for HB50 (k2) [77] 297.72 kJ/kg 

     
Projectile velocity (m/s) 780 788 804 812 

Projectile kinetic energy, EK.E (J) 2981.2 3042.6 3167.4 3230.8 

     
Penetration ratio for areal density, R 0.4628 0.4657 0.4714 0.4743 

Areal density in shear, AD1 (kg/m2) 7.03 7.08 7.17 7.21 

Areal density in bulging, AD2 (kg/m2) 8.17 8.12 8.03 7.99 

     
Energy absorbed by composite in shear, Epd1 (J) 411.5 416.7 427.1 432.3 

Energy absorbed by composite in bulging, Epd2 (J) 1614.5 1612.8 1609.5 1607.9 

     
Energy absorbed by the composite, Epd (J) 2276.0 2279.5 2286.5 2290.1 

Eback = EK.E - Epd (J) 705.2 763.2 880.9 940.6 

Calculated BFS (mm) 31.5 34.1 39.4 42.1 

Actual BFS from experiments (mm) 33.0 35.0 42.4 45.3 
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Strain rate effects for the aluminum honeycomb in HCA-P2 have been neglected. The 

average energy absorption capacity for aluminum honeycomb is 6.5 MJ/m3.  The average 

face area of the honeycomb undergoing compression during impact was 35.4 cm2. 

Substituting these values in equation A1.10 gives Ehc = 184 J.  The resulting semi-

empirical and analytical data curves correlates well with the experimental data points as 

shown in Figure 7. 

 

 

 

Appendix 2A: 

Summary of ballistic test results for V50 evaluation of HCA-P2 variants 

Armor type Shot number Velocity (ft/s) Velocity (m/s) Penetration probability V50 (m/s) 

Baseline Var1 

1 3157 962 1 

952 
2 3032 924 0 

3 3090 942 0 

4 3156 962 1 

HCA-P2 Var1 

insert 1 

1 2997 913 0 

983 

2 3131 954 0 

3 3200 975 0 

4 3325 1013 1 

5 3250 990 1 

HCA-P2 Var1 

insert 2 

1 2959 902 0 

995 

2 3360 1024 1 

3 3272 997 0 

4 3316 1011 1 

5 3261 994 1 

Baseline Var2 

1 2756 840 0 

868 2 2994 913 1 

3 2943 897 1 
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4 2908 886 1 

5 2789 850 0 

HCA-P2 Var2 

insert 1 

1 2849 868 1 

852 
2 2810 856 0 

3 2831 863 1 

4 2800 853 1 

HCA-P2 Var2 

insert 2 

1 2746 837 1 

831 
2 2703 824 0 

3 2713 827 0 

4 2747 837 1 

Baseline Var3 

1 2731 832 1 

826 
2 2670 814 0 

3 2720 829 1 

4 2714 827 0 

HCA-P2 Var3 

insert 1 

1 2746 837 1 

754 

2 2702 824 1 

3 2625 800 1 

4 2576 785 1 

5 2519 768 1 

6 2392 729 0 

7 2429 740 0 

HCA-P2 Var3 

insert 2 

1 2742 836 1 

774 

2 2688 819 1 

3 2619 798 1 

4 2495 760 0 

5 2513 766 0 

6 2565 782 1 

 

 

Appendix 2B: 

Summary of test results for the HCA-P2 variants with level IIIA liners and the level 

III standard plate. 

Armor Type 
Velocity 

(ft/s) 

Velocity 

(m/s) 

BFS 

(mm) 

Penetration 

probability 

V50 

(m/s) 

HCA-P2 Variant-3 combination 

2721 829 44 0 

835 

 

2704 824 38 0 

2731 832 43 0 

2742 836 - 1 
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2797 853 - 1 

HCA-P2 Variant-2 combination, 

insert 1 

 

2778 847 42 0 

870 

 

2845 867 38 0 

2852 869 34 0 

2919 890 29 0 

2965 904 41 0 

HCA-P2 Variant-2 combination, 

insert 2 

2785 849 30 0 

2783 848 33 0 

2769 844 31 0 

2776 846 - 1 

2804 855 - 1 

Level III standard insert 

 

2786 849 47 0 

- 

2724 830 38 0 

2538 774 48 0 

2799 853 49 0 

2799 853 43 0 

2806 855 53 0 

 

 

Appendix 2C: 

Summary of test results for Baseline inserts from Test 4 

Armor type 
Shot 

number 
Velocity (m/s) BFS (mm) 

Temp 

deg F 

Corrected 

BFS (mm) 

Baseline Insert 1 

1 830 43.0 90 50.2 

2 775 34.9 90 42.1 

3 805 40.9 90 48.1 

4 743 32.1 90 39.3 

Baseline Insert 2 

1 831 49.1 100 49.1 

2 663 34.5 98 36.4 

3 755 42.4 100 42.4 

4 768 44.5 100 44.5 

Baseline Insert 3 

1 668 38.2 100 38.2 

2 707 37.8 100 37.8 

3 822 46.1 100 46.1 

4 849 50.8 100 50.8 

5 669 35.8 100 35.8 

Baseline Insert 4 
1 734 46.1 103 42.7 

2 832 52.6 103 49.2 
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3 767 46.5 100 46.5 

4 888 52.6 100 52.6 

 

 

Summary of test results for HCA-P2 variant-1, variant-4 and variant-5 to verify 

effect of honeycomb thickness on ballistic performance from Test 4. 

Armor type 
Shot 

number 

Velocity 

(m/s) 

BFS 

(mm) 

Temp 

deg F 

Corrected BFS 

(mm) 

HCA-P2 Variant 1 Insert 1 

1 766 29.6 90 36.8 

2 718 24.8 90 32.0 

3 869 - 90 - 

4 738 24.1 90 31.3 

5 676 21.4 90 28.6 

HCA-P2 Variant 1 Insert 2 

1 860  - 100 -  

2 674 29.3 100 29.3 

3 758 33.2 100 33.2 

4 785 35.0 100 35.0 

HCA-P2 Variant 4 Insert 1 

1 863 - 100 - 

2 652 37.0 100 37.0 

3 740 43.9 100 43.9 

4 806 44.8 100 44.8 

5 832 47.3 100 47.3 

HCA-P2 Variant 4 Insert 2 

1 868 - 100 - 

2 700 37.8 100 37.8 

3 780 46.0 100 46.0 

HCA-P2 Variant 4 Insert 3 

1 711 40.1 100 40.1 

2 863 - 100 - 

3 781 42.5 100 42.5 

HCA-P2 Variant 5 Insert 1 

1 867 - 100 - 

2 607 17.2 100 17.2 

3 684 21.6 100 21.6 

4 766 25.6 100 25.6 

5 797 27.7 100 27.7 

6 724 21.1 100 21.1 

HCA-P2 Variant 5 Insert 2 

1 864 - 100 - 

2 630 19.0 100 19.0 

3 698 23.7 100 23.7 

4 767 26.5 100 26.5 

5 790 29.7 100 29.7 
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6 830 30.3 100 32.0 

 

 

Summary of test results for HCA-P2 variant-6, variant-7, and variant-8 to verify 

effect of honeycomb type and thickness on ballistic performance from Test 4. 

Armor type 
Shot 

number 

Velocity 

(m/s) 
BFS (mm) 

Temp deg 

F 

Corrected 

BFS (mm) 

HCA-P2 Variant-6 Insert 1 

1 735 36 100 36.0 

2 884 - 100 - 

3 773 36 100 38.7 

4 885 38.5 98 41.2 

HCA-P2 Variant-6 Insert 2 

1 720 33.3 100 33.3 

2 888 - 100 - 

3 787 32.6 98 34.5 

4 889 38.6 98 40.5 

HCA-P2 Variant-7 Insert 1 

1 725 36.8 98 38.7 

2 868 - 98 - 

3 785 38.6 98 40.5 

4 890 39.8 98 47.8 

HCA-P2 Variant-7 Insert 2 

1 728 38.5 97 41.2 

2 878 - 97 - 

3 773 35.2 97 42.9 

4 887 -  97  - 

HCA-P2 Variant-8 Insert 1 

1 725 29.1 100 29.1 

2 875 - 100 - 

3 782 31.2 100 31.2 

4 891 33.9 98 35.8 

HCA-P2 Variant-8 Insert 2 

1 723 32.8 102 30.6 

2 878 - 102 - 

3 751 33.8 102 31.6 

4 889  - 102  - 
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Appendix 3 

Drop weight tests for clay calibration and BFS correction factors. 

NIJ 0101.06 standard mandates testing of armor for BFS measurements using Roma 

Plastilina® #1 clay backing that is calibrated using a drop weight test. This calibration 

test is used to condition the clay at a specific temperature that results in an average depth 

of penetration of 19 mm ± 2 mm from a steel sphere drop at 2 meters. This steel sphere 

must weigh 1.043 kg and have a diameter of 63.5 mm ± 0.05 mm. As clay is a 

viscoplastic material, calibration is mandatory to ensure standardized test process for BFS 

measurement and enables effective comparison between tested inserts. Data for change 

depth of penetration with temperature during this standard drop test has been presented 

[68, 96].  

 

Figure 40 Plot for depth measured in clay versus its temperature from the calibration test as per NIJ 

0101.06 standard. Similar data from cited references is included in the plot. Clay backing used in the 

present study meets the stated minimum depth criterion at 100° F.  
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A similar experiment was conducted to validate behavior of the clay backing used in 

present study. Results from the experiment are shown in Figure 40. Data from present 

experiment correlates well with that from the cited references. The plot indicates clay 

backing used in present study must be at 38°C (100°F) to meet the specified depth of 

penetration criterion. As found in [96], approximately 60 minutes span is available to 

conduct a ballistic test with the clay retaining calibration. Reduced BFS will be observed 

beyond this time frame. During Test 4, clay backing temperature for some inserts varied a 

few degrees above and below the stipulated temperature. BFS readings for these cases 

could be corrected to the reference temperature of 38°C if a model was available to 

provide the necessary corrections. Factors that govern the depth of penetration in the clay 

backing are kinetic energy of the dropped weight, its shape attributes and the clay 

temperature. It may thus be possible to evaluate the model if the relation between depth 

of penetration at a constant kinetic energy versus temperature is known, similar to the 

calibration test, by using the same dropped weight at different drop heights for a longer 

test duration. This experiment was conducted in the present study by conducting the steel 

sphere drop test from an increased height of 3.5 meters. Results from the test are shown 

in Figure 40. Curve from the standard test is also included.  

It is observed that increase in kinetic energy causes the depth versus temperature 

curve to translate parallel to the original curve retaining a similar trend. Change in the 

kinetic energy of impact does not appear to affect the difference between depth of 

penetration values measured at two given temperatures. This is valid only when the 

impacting mass and its shape stay constant. This criterion is met if an insert is shot at a 

specific velocity at two different temperatures, where its average BFS diameter is fairly 
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constant as seen experimentally in this study. Depth differences between the two specific 

temperatures can then be considered as the required correction factors (within 10% error 

margin). They are listed in  

Table 30. 

 

Figure 41 Drop weight calibration test conducted from different drop heights. Increase in kinetic 

energy appears to translate the parent curve parallel to the original trend. 

 

Table 30 Depth difference as correction factors for BFS. 

Temp F Depth (mm) Difference 

90 12.3 7.2 

97 16.8 2.7 

98 17.6 1.9 

99 18.5 1.0 

100 19.5 0.0 

101 20.6 -1.1 

102 21.7 -2.2 

103 22.9 -3.4 
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Figure 42 indicates BFS versus velocity plot for baseline insert 1 from Test 4 before (at 

90°F) and after correction (at 100°F). Post corrected insert 1 data agrees well with the 

rest of the baseline inserts tested at the reference temperature. 

 

Figure 42 BFS versus velocity plot for baseline inserts from Test 4. Correction factors derived here 

are applied to baseline insert 1. Observed change is shown on the plot. 

 

 

Appendix 4 

Measurements from water-jet cut vertical cross-sections of tested inserts. 

ts: Thickness of front HB50 laminate undergoing shear plugging 

t: Total thickness of HB50 

S2: Diameter of the deformed projectile in bulging stage 
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hcd: Diameter of the honeycomb undergoing crushing and shear on impact 

ts/t: denoted by ratio R in the semi-empirical and analytical model and represents the 

transition from shear plugging to bulging. 

Armor type Shot# Velocity t ts S2 hc d ts/t 

Test 1 Baseline Insert 1 

1 780 17 7.02 14.1 - 0.41 

2 804 17 7.11 16.76 - 0.42 

3 812 17 7.3 14.47 - 0.43 

4 788 17 7.16 15.58 - 0.42 

Test 1 Baseline Insert 2 

1 803 17 5.96 19.38 - 0.35 

2 792 17 5.12 21.96 - 0.30 

3 799 17 6.61 17.71 - 0.39 

4 811 17 6.82 19.54 - 0.40 

Test 1 HCA-P2 Insert 1 

1 810 17 6.83 18.89 65.4 0.40 

2 807 17 7.22 14.98 61.7 0.42 

3 804 17 6.78 19.2 68.3 0.40 

4 804 17 7.14 16.4 63.4 0.42 

Test 1 HCA-P2 Insert 2 

1 803 17 7.02 15.81 69.2 0.41 

2 814 17 6.76 14.66 63.7 0.40 

3 822 17 7.55 17.62 69.3 0.44 

4 799 17 6.78 16.14 66.2 0.40 

 

Armor type Shot# Velocity t ts S2 hc d ts/t 

Test 2 Baseline Variant 1 

1 962 20 10.76 16.83 - 0.54 

2 924 20 9.81 12.49 - 0.49 

3 942 20 10.13 14.67 - 0.51 

4 962 20 10.67 14.92  - 0.53 

Test 2 Baseline Variant 2 

1 840 15.5 7.16 15.07 - 0.46 

2 913 15.5 8.37 13.52 - 0.54 

3 897 15.5 8.12 13.05 - 0.52 

4 886 15.5 7.85 14.28 - 0.51 

5 850 15.5 7.18 11.79  - 0.46 

Test 2 Baseline Variant 3 

1 832 14 7.02 11.58 - 0.50 

2 814 14 6.13 13.93 - 0.44 

3 829 14 6.86 12.57 - 0.49 

4 827 14 6.71 14.98 - 0.48 

 

Armor type Shot# Velocity t ts S2 hc d ts/t 

HCA-P2 Variant 1 Insert 1 1 766 16 6.69 18.68 60.1 0.42 
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2 718 16 6.11 19.13 57.29 0.38 

3 822 16 7.35 17.63 47.14 0.46 

4 738 16 6.53 15.86 46.4 0.41 

5 676 16 6.03 16.86 55 0.38 

HCA-P2 Variant 1 Insert 2 

1 860 16 10.42 12.36 49.53 0.65 

2 674 16 6.79 16.1 50.56 0.42 

3 758 16 8.26 22.8 60.03 0.52 

4 785 16 8.42 16.84 57.79 0.53 

HCA-P2 Variant 4 Insert 1 

1 863 16 10.86 10.16 39.76 0.68 

2 652 16 7.62 15.75 51.68 0.48 

3 740 16 9.02 17.22 54.64 0.56 

4 806 16 9.36 17.77 57.5 0.59 

5 832 16 9.64 16.84 60.72 0.60 

HCA-P2 Variant 4 Insert 2 

1 868 16 11.42 14.9 50.67 0.71 

2 700 16 8.86 16.77 54.24 0.55 

3 780 16 10.25 17.27 59.42 0.64 

HCA-P2 Variant 4 Insert 3 

1 711 16 6.6 22.47 59.36 0.41 

2 863 16 9.98 17.49 58.22 0.62 

3 781 16 7.74 22.19 57.12 0.48 

HCA-P2 Variant 5 Insert 1 

1 867 16 10.24 10.1 51.58 0.64 

2 607 16 6.45 20.34 60.86 0.40 

3 684 16 7.81 17.21 61.38 0.49 

4 766 16 8.93 22.81 67.4 0.56 

5 797 16 9.04 16.95 60.03 0.57 

6 724 16 8.48 16.94 64.1 0.53 

HCA-P2 Variant 5 Insert 2 

1 864 16 10.73 9.4 44.95 0.67 

2 630 16 6.65 18.47 57.3 0.42 

3 698 16 7.92 22.4 60.47 0.50 

4 767 16 8.7 20.3 67.4 0.54 

5 790 16 8.98 17.4 61.32 0.56 

6 830 16 9.46 16.4 58.79 0.59 

 

Armor type Shot# Velocity t ts S2 hc d ts/t 

HCA-P2 Variant-6 Insert 2 

1 720 16 6.56 20.1 63.34 0.41 

2 888 16 10.83 15.7 54.58 0.68 

3 787 16 8.23 18.86 61.12 0.51 

4 889 16 10.6 18.24 65.63 0.66 

HCA-P2 Variant-7 Insert 1 

1 725 16 7.96 20.16 63.08 0.50 

2 868 16 10.08 16.35 56.62 0.63 

3 785 16 8.65 17.26 60.02 0.54 
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4 890 16 9.76 16.78 59.35 0.61 

HCA-P2 Variant-8 Insert 1 

1 725 16 7.62 18.79 62.95 0.48 

2 875 16 9.27 16.39 59.88 0.58 

3 782 16 8.41 23.73 62.2 0.53 

4 891 16 10.03 21 62.56 0.63 
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