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Abstract:  

 

This dissertation consists of three research projects aimed at better understanding 

grassland vegetation dynamics under drought and predicting vegetation dynamics using 

soil moisture and other vegetation parameters. The objective of the first project was to 

develop nondestructive methods of estimating aboveground biomass and fuel moisture 

content in our study area. We calibrated and validated both stepwise multiple linear 

regression (SMLR) and artificial neural network (ANN) models for Above-Ground 

Biomass (AGB) and Fuel Moisture Content (FMC) using data collected in grasslands 

near Stillwater, OK, USA. Our study spanned two growing seasons and nine patches 

located within three pastures under patch burn management. Day of year, canopy height, 

Normalized Difference Vegetation Index (NDVI), and percent reflectance at five spectral 

bands were candidate input variables for the models. For AGB, the ANN and SMLR 

models performed similarly (RMSE = 110 g m
-2

 versus 114 g m
-2

).  For FMC, the ANN 

models proved better than SMLR models (RMSE = 23.3% versus RMSE = 27.7%). 

Given the large variability in the underlying datasets, these models may prove useful for 

nondestructive estimation of AGB and FMC in other similar grassland environments. The 

objective of the second study was to quantify the temporal dynamics of  LFMC (live 

FMC), live fuel mass, dead fuel mass, and soil moisture expressed as fraction of available 

water capacity (FAW), and to describe how LFMC and live to dead fuel transition are 

related to FAW. LFMC exhibited a nonlinear, threshold-type relationship with FAW, 

with LFMC being insensitive to FAW at FAW levels above approximately 0.56 and 

positively related to FAW below that threshold.  Live to dead fuel transitions occurred 

around a FAW value of approximately 0.34, with the rate of transition increasing linearly 

as FAW dropped below that threshold. In light of these findings and the increasing 

availability of soil moisture data, a logical next step would be to develop ways to 

incorporate soil moisture information into dynamic fuel bed models for improved fire 

danger assessments and enhanced wildfire preparedness. The objective of the third study 

was to evaluate the CROPGRO perennial forage model for simulating forage production 

and soil moisture in tallgrass prairie using the previously calibrated plant parameters from 

the literature. The uncalibrated forage model was not effective in estimating live mass but 

it was reasonably accurate in estimating the soil moisture. In light of this finding, the next 

step would be calibrating the model’s plant parameters from the observed live mass data 

to allow improved prediction accuracy from the model. 
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CHAPTER I 

 

GENERAL INTRODUCTION 

 

Grasslands and grazing systems are essential to agricultural communities in the 

United States Southern Great Plains (SGP) and in similar climatic regions around the 

world. In the SGP states of Kansas, Oklahoma, and Texas, cattle and calf production 

added about $100 billion to the economy in 2011. Additionally, hay production in 2011 

was 10 million Mg which added another $1 billion to the region’s economy. The SGP 

contains 55 million ha of total pasture area, including permanent pasture, and cropland 

used for pasture and pasture woodland. Of that 55 million ha, 9 million ha of pasture 

were located in Oklahoma in 2011 (NASS-USDA, 2012). Wise management of these 

grasslands and grazing systems is necessary not only for economic reasons, but also to 

conserve soil, protect water quality, and maintain ecosystem services (Belsky et al., 1999; 

Follett and Reed, 2010; Worrall et al., 2007). However, grassland management in the 

SGP is challenging because the variable climate creates large uncertainties regarding the 

vegetation productivity both within and between seasons.   

Extreme temperature and erratic rainfall patterns are characteristic features of the 

climate in the drought-prone SGP (Basara et al., 2013). For example, in 2011 Oklahoma 

suffered an estimated $1 billion in losses for crop production and $707 million in loss for 

livestock production due to drought. The 2012 drought losses in Oklahoma reached $239 
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million for crops, $157 million for livestock, and $27 million in losses due to wildfires 

(Shideler et al., 2013). Drought related wildfires in state of Oklahoma in the growing 

burned 59,449 ha in 2011 and 93,012 ha in 2012. The drought of 2011/2012 also led to 

reduced herd sizes for beef cow operations in the SGP.  Beef cow numbers in Texas were 

reduced by 13.1 % and by 14.3 % in Oklahoma (LMIC, 2012).  

Given the potentially severe impacts of drought on grasslands and grazing 

systems in the SGP, effective decision support tools are needed to assist managers. In 

order to strengthen the scientific basis for such tools, this dissertation consists of three 

main projects from which we gained new understanding on the impacts of drought in 

grasslands and to better predict vegetation dynamics using soil moisture and other 

vegetation parameters. 

I. Accurate estimates of dynamic grassland vegetation parameters, such as above-

ground biomass (AGB) and herbaceous fuel moisture content (FMC), are needed 

in the context of grazing management and wildfire preparedness. AGB and FMC   

are often measured by hand clipping, which is costly and labor intensive. Ocular 

estimates of biomass have been used to avoid destructive sampling of AGB in 

rangelands (Twidwell et al., 2009), but these ocular estimates are subjective and 

have limited precision.  In contrast, spectral reflectance data could potentially 

provide non-destructive, objective, and relatively inexpensive estimates of AGB 

and FMC. An attractive feature of reflectance-based methods is their potential, 
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when combined with satellite observations, to monitor changes on a global scale. 

For example, Normalized Difference Vegetation Index (NDVI) has been widely 

used in assessments of grassland biomass. However, when used alone, NDVI 

showed a weak relationship with standing forage biomass (r
2
 = 0.13) in tallgrass 

prairie in Kansas (Olson and Cochran, 1998). In that study, prediction of biomass 

was improved by also using day of year (DOY) and canopy height (CH). Stepwise 

multiple linear regression (SMLR) and Artificial Neural Networks (ANN) (Olson 

and Cochran, 1998) were effective methods for above-ground biomass in a prior 

study in tallgrass prairie in Kansas, so the aim of the first study in this dissertation 

was to evaluate the potential for similar nondestructive methods to estimate AGB 

and FMC in our study area.  

II. Fire is an integral part of many SGP ecosystems. Fire helps in nutrient and water 

cycling, ecosystem restoration, and livestock and timber production (Bidwell et 

al. 2003). However, wildfires also increase greenhouse gas emissions and cause 

major economic losses to society (Yebra et al., 2013). According to National 

Interagency Fire Center (2013), a cost of $2 billion annually has been associated 

with wildfire loss in the US. Minimizing catastrophic wildfires requires 

development of improved fire danger assessments. Two critical and poorly 

understood factors influencing growing season wildfire danger are live fuel 

moisture content (LFMC) and transition of live fuel to dead fuel. Current fire 

danger models do not adequately describe LFMC dynamics or live to dead 
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transitions, but recent evidence suggests both may be strongly influenced by soil 

moisture conditions. FMC is an important variable in fire ignition and propagation 

modeling (Pellizzaro et al., 2007), however, direct measurement by oven drying 

of fresh samples is slow and time consuming.  Most of the current fire behavior 

models predict FMC using weather parameters, or remote sensing indices such as 

Normalized Difference Vegetation Index (NDVI) and Normalized Difference 

Water Index (NDWI).  The disadvantages associated with satellite images are the 

low frequency of observations (sometimes weeks to months between readings) 

and challenges with calibration (Chuvieco et al., 2004c). Some studies suggested 

that soil moisture measurements have good potential as proxies for FMC 

(Chuvieco et al., 2009; Krueger et al., 2015; Pellizzaro et al., 2007; Qi et al., 

2012). However, there are currently no models capable of dynamic FMC 

prediction in grasslands using soil moisture information. Therefore, the aims of 

the second study were to quantify the temporal dynamics of  LFMC, live fuel 

mass, dead fuel mass, and soil moisture expressed as fraction of available water 

capacity (FAW), and to describe how LFMC and live to dead fuel transition are 

related to FAW. 

III. Rangelands are an important part of grassland ecosystem, characterized by high 

inter-annual variability in precipitation amounts leading to inter-annual variation 

in forage production that ultimately determines appropriate stocking rates in 

grazing livestock production. Accurate and timely forecasts of forage production 
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several months in advance could be helpful for grazing management, allowing 

farmers, ranchers, and livestock managers to maintain the sustainability of their 

operations against adverse conditions such as droughts. Rainfall, soil moisture, 

and standing crop (measured biomass) have shown potential as predictors of 

future levels of above-ground biomass in prior studies. Yet, prior studies have not 

resulted in a proven method for in season forage forecasts informed by soil 

moisture observations. Such forecasts could be generated using process-based 

crop simulation models driven by historical or forecasted weather scenarios, if the 

models effectively described vegetation growth in grazing lands. Therefore, the 

aim of the third study is to evaluate the performance of the CROPGRO perennial 

forage model to accurately simulate live mass and soil moisture in grazed tallgrass 

prairie. 

 

Thesis Outline 

The overall objective of this thesis is to improve the ability of researchers and 

resource managers in the SGP to monitor drought impacts in grasslands and to predict 

grassland vegetation dynamics using soil moisture information along with other existing 

information sources.  In order to accomplish this overall objective, three distinct projects 

will be pursued, and a chapter of this thesis will be devoted to each.  Those chapters are 

titled:  
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1. Nondestructive estimation of aboveground biomass and herbaceous fuel moisture 

content in tallgrass prairie. 

2. Live fuel moisture content and live to dead fuel transitions in Tallgrass Prairie 

exhibit threshold-type relationships with soil moisture. 

3. Preliminary evaluation of a DSSAT model for forage forecasting in Southern 

Great Plains grasslands. 
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CHAPTER II 
  

NONDESTRUCTIVE ESTIMATION OF ABOVE-GROUND BIOMASS AND 

HERBACEOUS FUEL MOISTURE CONTENT IN TALLGRASS PRAIRIE 

Abstract: 

Accurate estimation of above-ground biomass (AGB) and herbaceous fuel 

moisture content (FMC) are important for grazing management and for wildfire 

preparedness. Destructive sampling techniques can been used to accurately estimate AGB 

and FMC, but the process is laborious and time consuming. Therefore, our objective was 

to develop robust models for nondestructive estimation of AGB and FMC in tallgrass 

prairie. We calibrated and validated both stepwise multiple linear regression (SMLR) and 

artificial neural network (ANN) models for AGB and FMC using data collected in 

grasslands near Stillwater, OK, USA. Day of year, canopy height, Normalized Difference 

Vegetation Index (NDVI), and percent reflectance at five spectral bands were candidate 

input variables for the models. Our study spanned two growing seasons and nine patches 

located within three pastures under patch burn management. For AGB, the ANN and 

SMLR models performed similarly (RMSE = 110 g m
-2

 versus 114 g m
-2

).  For FMC, the 

ANN models proved better than SMLR models (RMSE = 23.3% versus RMSE = 27.7%). 

Given the large variability in the underlying datasets, these models may prove useful for 

nondestructive estimation of AGB and FMC in other similar grassland environments. 
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Introduction 

Grasslands and grazing systems are essential to agricultural communities in the 

US Southern Great Plains (SGP) and in similar climatic regions worldwide. More than 55 

million ha are classified as grassland or pasture in the SGP states of Kansas, Oklahoma 

and Texas (NASS, 2012). Accurate estimates of dynamic grassland vegetation parameters 

are needed for research, grazing management decisions, and wildfire preparedness. Two 

key parameters in the context of grazing management and wildfire preparedness are 

above-ground biomass (AGB) and herbaceous fuel moisture content (FMC). Destructive 

measurement techniques, such as hand clipping have often been used to estimate AGB 

and FMC at the quadrat scale. Hand clipping is considered to be objective and accurate, 

but it is also laborious and time consuming, particularly when sampling large, 

heterogeneous areas. Ocular estimates of biomass have been used to avoid destructive 

sampling of AGB in rangelands (Twidwell et al., 2009), but these ocular estimates are 

subjective and have limited precision. 

In contrast, spectral reflectance data can potentially provide non-destructive, 

objective, and relatively inexpensive estimates of AGB and FMC. An attractive feature of 

reflectance-based methods is their potential, when combined with satellite observations, 

to monitor changes on a global scale. For example, Normalized Difference Vegetation 

Index (NDVI) has been widely used in assessments of grassland biomass (Paruelo et al., 

1997; Tarr et al., 2005; Zhang et al., 2016). However, when used alone, NDVI showed a 
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weak relationship with standing forage biomass (r
2
 = 0.13) in tallgrass prairie in Kansas 

(Olson and Cochran, 1998). In that study, prediction of biomass was improved by also 

using day of year (DOY) and canopy height (CH). Similarly, in another study conducted 

in rangeland in northern California, the plant height-ground cover  interaction was  

strongly correlated with forage biomass with correlation coefficients ranging from 0.538 

to 0.988 (Evans and Jones, 1958).  

Just as with AGB, the use of nondestructive reflectance-based methods may also 

overcome some of the obstacles related with field sampling of FMC.  For example, FMC 

on grasslands and shrub lands were accurately estimated (r
2
= 0.907 and 0.732) using a 5-

year time series (2001-2005) of Terra Moderate Resolution Imaging Spectroradiometer 

(MODIS) NDVI in Cabañeros National Park in Central Spain (Yebra et al., 2008).  

Similarly, multitemporal composites derived from four years of  NDVI data from the 

National Oceanic and Atmospheric Administration (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR) along with surface temperature and day of year were 

used to estimate FMC (R
2
 over 0.8) in Mediterranean grassland in central Spain 

(Chuvieco et al., 2004b). 

Two key methods used to estimate vegetation parameters from reflectance data 

are stepwise multiple linear regression (SMLR) and Artificial Neural Networks (ANN) 

(Olson and Cochran, 1998).  SMLR is an automated process of building a model by 

sequentially adding or removing variables based on a specified statistical criterion. An 
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ANN is a model consisting of multiple interconnected processing elements, called nodes 

or neurons, that respond dynamically to external inputs (Warner and Misra, 1996). One 

main advantage of ANNs over SMLR models is that ANNs do not require linear 

relationships between the variables (Sudheer et al., 2010).  

In this study, our objective was to develop robust models for nondestructive 

estimation of AGB and FMC in tallgrass prairie. We calibrated and validated both 

stepwise multiple linear regression (SMLR) and artificial neural network (ANN) models 

for AGB and FMC using data collected in grasslands near Stillwater, OK, USA. 

Measurements were conducted from May to December of 2012 and from March to 

November of 2013, and during this time, the sites experienced diverse weather 

conditions, from drought in the 2012 growing season to normal precipitation during the 

2013 growing season. 

Materials and Methods 

Study area 

Research was conducted in tallgrass prairie at the Oklahoma State University 

Range Research Station located near of Stillwater, Oklahoma. Major vegetation species 

were little bluestem (Schizachyrium scoparium (Michx), big bluestem (Andropogon 

gerardii), Indiangrass (Sorghastrum nutans), post oak (Quercus stellate (Wang), and 

eastern redcedar (Juniperus virginiana). The dominant soils at this site included the 

Grainola series (fine, mixed, thermic Vertic Haplustalf) covering approximately 60% of 
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the area, and the Coyle series (fine-loamy, siliceous, thermic Udic Argiustoll) covering 

approximately 35% of the area (Gillen et al., 1990). 

The study site consisted of three pastures ranging in size from 50 to 63 ha. Those 

pastures were subdivided into six approximately equal sized unfenced patches. These 

patches were used in a patch burning treatment designed to increase ecological 

heterogeneity while preventing woody plant encroachment (Fuhlendorf and Engle, 2004). 

Each year, two of the six patches were burned:  one during the latter months of the 

dormant season (March-April) and one during the latter months of the growing season 

(July-October).  Patches were burned every three years to represent different successional 

stages culminating in full recovery for this site after the third year (Fuhlendorf and Engle, 

2004). The patch burning sequence has been continuous since the pastures were 

established in 1999. In the present study, sampling occurred in the patches burned at the 

end of the growing season. The experimental design was thus a randomized complete 

block with three treatments, i.e. patches with three different levels of time since burning, 

and three replications, i.e. the three pastures (Fuhlendorf and Engle, 2004).  

In-situ measurements 

AGB and FMC were measured at 12 locations in each patch once every two 

weeks during the 2012 and 2013 growing seasons. Measurements involved hand-clipping 

all above ground vegetation (both live and dead) in a 0.25-m
2
 quadrat, weighing the fresh 

sample, and drying the vegetation for three days at 70ºC. AGB was calculated on an oven 
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dry weight basis, and FMC was calculated as the ratio of the weight of water in the 

sample to its dry weight. Canopy height was also measured at the time of sampling. 

Canopy reflectance data were collected at each sampling location prior to clipping using 

a handheld multispectral radiometer (MSR5R, Cropscan, Inc., Rochester, Minnesota, 

USA) at 2 m above ground between 1200 and 1700 hours. The radiometer measured 

percentage reflectance in five bands in the 460-1750 nm region (approximate center 

wavelengths = 485, 560, 660, 830, and 1650 nm). Radiometer calibration was conducted 

before the start of each growing season using diffusing opal glass, alternately held over 

the up and down sensors facing the same incident irradiation to calibrate the up and down 

sensors relative to each other. Normalized Difference Vegetation Index (NDVI) was 

calculated based on reflectance at wavelengths of 660 and 830 nm (Rouse  et al., 1974). 

Modeling Procedures 

As a preliminary analysis, we performed a simple linear regression of NDVI 

versus AGB. The purpose of this analysis was to facilitate comparison of our data with 

the earlier data of Olson and Cochran (1998) and to illustrate the inadequacy of NDVI 

alone as a predictor of AGB. Subsequently, day of year (DOY), canopy height (CH), 

percent reflectance in five bands, and Normalized Difference Vegetation Index (NDVI) 

were used to estimate AGB and FMC using the SMLR model. SMLR fits an observed 

dependent data set using two or more explanatory variables in a linear equation. SMLR 

attempts to identify the major variables that influence the dependent variable using a 

stepwise process of adding and removing terms from a multilinear model. We used the 
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stepwiselm function in Matlab (2016a, The Mathworks, Inc., Natick, MA). Importance 

for the candidate independent variables was determined by the p-value for the F-statistic 

on the change in the model’s sum of squared errors by adding or removing the variables. 

SMLR starts with only a constant term in the model and then uses forward and backward 

stepwise regression to construct the final model. The routine adds a variable to the model 

in a given step if the p-value for that variable is less than 0.05 and is the lowest of all the 

p-values for the variables not currently in the model. The fitting process is repeated until 

no excluded variables have p < 0.05. Then the routines remove a variable from the model 

in a given step if its p-value is greater than 0.10 and is the largest of all the p-values for 

the variables in the model. The fitting process is continued until no included variables 

have p > 0.10.  

The general equation is as follows: 

 N
X

N
PXPPY  ...

110  [1] 

where Pi (i = 0,1, …, N) are the parameters and Xi (i = 1,...., n) are the 

explanatory variables. We used 85% of the data (randomly selected) for calibration and 

the remaining 15% for validation. We used the coefficient of determination (R
2
), root 

mean square error (RMSE), adjusted R
2
, and bias to evaluate the predictive quality of the 

models. Lilliefors test was also used to test the model residuals for normality. We used 

the lillietest function in Matlab.  
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 In addition to SMLR, we evaluated the ability of ANNs to estimate AGB and 

FMC. An ANN is a mathematical structure for representing potentially nonlinear 

processes by formulating the relationship between inputs and outputs. A three-layer feed-

forward network was used with the input layer consisting of eight independent variables 

(DOY, CH, percent reflectance in five bands, and NDVI). The ANN also included one 

hidden layer consisting of fifteen neurons, and one output layer. A feed-forward network 

is an architecture where each variable in the input layer is connected to each neuron in the 

hidden layer for processing. The processing was accomplished by passing the input signal 

for each neuron through a hyperbolic tangent transfer function. Each neuron in the hidden 

layer is also connected to the single neuron in the output layer, which represents the 

dependent variable, in this case AGB or FMC. A linear transfer function was applied in 

the output layer. Each connection has a certain weight, a numerical estimation of the 

connection strength, which is optimized during training. We used the nntraintool function 

in Matlab with the Bayesian regularization-training algorithm to train the model (The 

Mathworks, Inc., Natick, MA).  For the ANN, 70% of the data were used for training 

(calibration) while 15% of the data were used for the testing phase, which is part of the 

training process. In the training phase, the network parameters are iteratively adjusted, 

while the testing phase tests the trained network after each iteration to avoid overfitting to 

the training data. Training ends when there are no further improvements in predicting the 

test data. The remaining 15% of the data were used to validate the ANN models. We used  
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the coefficient of determination (R
2
), root mean square error (RMSE), and bias to 

evaluate the predictive quality of the ANN models. The relative importance of the 

candidate independent variables was determined based on the connection weights in the 

trained ANN model using the ‘Weight method’ as described in Gevrey et al. (2003). For 

both SMLR and ANN models, we also calculated the RMSE-observations standard 

deviation  ratio (RSR) to allow us to categorize the quality of model performance using 

the scheme of Moriasi et al. (2007). In addition, we also calculated adjusted R
2
 value. 

The adjusted R
2
 value was chosen as it allowed a more fair comparison of SMLR and 

ANN models with different numbers of independent variables in the models. 

Results and Discussion 

AGB exhibited large variability in space and time with values ranging from 0 to 

852 g m
-2

. The AGB was positively related to NDVI; however the relationship was 

relatively weak with an r
2
 = 0.32 (p < 0.05) and RMSE of 191 gm

-2
 (Fig 1). Similarly, 

AGB was positively but weakly related to NDVI in tallgrass prairie in Kansas (Olson and 

Cochran, 1998). These results show that NDVI alone cannot be used to accurately 

estimate AGB in tallgrass prairie. We also tested the multiple regression model described 

by Olson and Cochran (1998) using NDVI, CH, and DOY for estimating AGB in our 

dataset. This model proved not to be applicable in our study area (R
2
 = -3.76 and RMSE 

of 401 gm
-2

). R
2
 < 0 indicates that the mean of the dataset is a better predictor than the 
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model. This demonstrates the need to develop new and robust models for estimating 

AGB and FMC.  

Stepwise Multiple Linear Regression (SMLR) models 

a) Estimation of above-ground biomass (AGB) 

DOY, CH, NDVI, and percent reflectance at 560 nm, 660 nm, and 1650 nm were 

included as significant predictors in the final model for AGB (Table 1). The percent 

reflectance at 485 nm and 830 nm were insignificant predictors of AGB and not included 

in the final model directly, although the 830 nm band is used to calculate NDVI.  The 

final model also included several interaction terms between the predictors. In fact, the p-

value for NDVI was above the exit criterion, but NDVI was retained in the model 

because of its significant interactions with DOY and 1650 nm reflectance (Table 1). This 

is consistent with the result shown in Fig. 1 and with the results of Olson and Cochran 

(1998) who found that NDVI was not strongly related to AGB, but NDVI was retained in 

their SMLR model to estimate AGB. Although NDVI has been used in prior studies to 

estimate AGB (r
2 

= 0.96 and 0.89 respectively) in grasslands (Anderson et al., 1993; 

Paruelo et al., 1997), the heterogeneity of the grassland in our study apparently limited 

the value of NDVI measured at canopy level as a predictor. The patch burn treatment 

created heterogeneity in both vegetation and grazing pressure. In a similar study with 

both grazed and ungrazed sites (Todd et al., 1998), NDVI also failed to be significantly 

related to AGB.  
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  The SMLR model estimated AGB for the validation data with R
2
 = 0.59 and RMSE 

= 114 g m
-2

 (Fig. 2). The adjusted R
2
 value computed for the validation datasets in the 

SMLR was 0.59. The SMLR model of Olson & Cochran (1998) which used NDVI, CH, 

and DOY as predictors achieved a greater R
2
 = 0.83 and lower RMSE = 73 g m

-2
 on the 

data set for which it was calibrated. However, that data set spanned only one growing 

season, included far fewer observations than our data set, and did not include validation 

data. The SMLR model performance in estimating AGB was classified as satisfactory 

based on the RSR value of 0.63.   

The model underestimated biomass for levels above about 600 g m
-2

. A Lilliefors test 

on the residuals indicated that the residuals were not normally distributed (p < 0.05). This 

may be due to the inability of SMLR to describe nonlinear relationships between the 

predictors and AGB. Estimation of AGB for grasslands with values > 500 g m
-2

 may 

necessitate the use of nonlinear functions (Pearson et al., 1976). The problem may arise 

from the radiometer’s inability to equally detect reflectance from the lower layers of the 

canopy.  We explored the use of quadratic terms in the SMLR models but they also failed 

to produce normally distributed residuals. Nonlinear relationships between NDVI and 

green biomass index have been developed, but these have not yet been adapted for use in 

multivariate models like the ones in this study (Santin-Janin et al., 2009).  
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b) Estimation of herbaceous moisture content (FMC) 

DOY, CH, NDVI, and percent reflectance at 660 nm, 830 nm, and 1650 nm were 

included as significant predictors in the final SMLR model for FMC (Table 1). The 

percent reflectance at 485 nm and 560 nm were excluded in the final model. The final 

model also included several interaction terms between the predictors. In fact, the p-value 

for CH  was above the exit criterion, but CH was included in the model because of 

significant interactions with DOY, NDVI, and 1650 nm reflectance. For Mediterranean 

grasslands in Cababeros National Park located in Central Spain, significant predictors for 

FMC model included integrals of  spectral reflectance at 485 nm, 560 nm, 660 nm, 1650 

nm, 2200 nm, and the NDVI (Chuvieco et al., 2002b). Spectral reflectance at 2200 nm 

was not available in our study, but the inclusion of reflectance at 660 nm, 1650 nm, and 

NDVI in the models from our study and that of Chuvieco et al. (2002b) suggest these 

three may be useful for FMC estimation in a variety of environments. In the same study , 

FMC was also estimated effectively using multitemporal analysis of NDVI, surface 

temperature, and a function of the day of year (Chuvieco et al., 2004b). Thus, inclusion of 

DOY also appears to be beneficial for FMC estimation across different locations.  

The SMLR model estimated FMC for the validation  with R
2
 = 0.631 and RMSE = 

27.7%  (Fig. 3). The adjusted R
2
 value was computed for the validation datasets in SMLR 

model with a value of 0.63. The SMLR model used in Chuvieco et al. (2002a) estimated 

FMC with R
2
 = 0.84 and RMSE = 23.4-40%. Although the R

2
 was greater in that study, 
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our RMSE was within  the range that they reported. Their greater R
2
 value may be 

associated with their lower frequency data collection. They used only three reflectance 

measurements  per year from 1996- 1999 with only one measurement in 1999, while in 

our study, measurements were  collected in biweekly intervals. In their follow-up study, 

FMC was estimated with  R
2
 over 0.8 and standard error = 31% in grassland (Chuvieco et 

al., 2004b), which again is comparable to the RMSE from our SMLR model. The SMLR 

model performance in estimating FMC was classified as satisfactory based on the RSR 

value of 0.60.   

 The model underestimated FMC for levels above about 150%. A Lilliefors test on 

the residuals indicated that the residuals were not normally distributed (p < 0.05). This 

may be due to the inability of SMLR to describe nonlinear relationships between 

predictors and FMC as we have noted for AGB. Prior research relating spectral 

reflectance to FMC has also shown that correlation with FMC was strongest at low FMC 

values < 100% and weaker at high FMC values (Danson and Bowyer, 2004). The authors 

in that study hypothesized that changes in specific leaf weight and leaf internal structure 

may be influencing the relationship between FMC and spectral reflectance (Danson and 

Bowyer, 2004).  
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Artificial Neural Network (ANN) model 

a) Estimation of above-ground biomass (AGB) 

As ANN model was better in estimating AGB than an SMLR model in tallgrass 

prairie in Kansas (Olson and Cochran, 1998), we also wanted to evaluated ANN 

performance in our datasets. All of the candidate variables (DOY, CH, NDVI, and 

percent reflectance at 485 nm , 560 nm , 660 nm, 830 nm, and 1650 nm) were included as 

predictors in the ANN model for estimating AGB because the ANN modeling process did 

not include a way to eliminate non-significant predictors. Based on the weight method, 

DOY was the most important independent variable while percent reflectance at 460 nm 

was the least important variable in the ANN model for AGB (Table 2). These results 

were consistent with the independent variables retained in the SMLR model where DOY 

was retained and 460 nm was not retained for estimating AGB (Table 1). For detailed 

information on the ANN connection weights, see the Appendix.   

The fully trained ANN model estimated AGB for the validation data with R
2
 = 0.63 

and RMSE = 109 gm
-2

 (Fig 4.). The adjusted R
2
 value computed for the validation 

datasets in ANN model was 0.63. This ANN model resulted in similar performance as the 

SMLR model in estimating AGB (R
2
 = 0.63 vs 0.59, RMSE = 109 g m

-2
 vs 114 g m

-2
). 

The ANN model for AGB actually performed substantially better than the SMLR model 

for the calibration dataset (R
2
 = 0.72 vs 0.62 and RMSE = 97.8 g m

-2
 vs 114 g m

-2
), but 

that performance advantage did not carry over to the validation dataset. The decrease in 
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performance from the calibration set to the validation set was more pronounced for the 

ANN model (Fig. 4) than for the SMLR model (Fig. 2). This may indicate some degree 

of over-fitting the ANN model to the calibration set because of 15 hidden neurons to 

trained with eight independent variables in the model. Although an ANN model for AGB 

in tallgrass prairie out-performed an SMLR model in a prior study, neither of those 

models was tested with an independent validation set (R
2
 = 0.79 vs 0.59, RMSE = 70 g 

m
-2

 vs 103 g m
-2

) (Olson and Cochran, 1998).  

Like the SMLR model, the ANN model also underestimated biomass for levels above 

600 g m
-2

. A Lilliefors test on the residuals indicated that the residuals were not normally 

distributed (p < 0.05). Although the ANN model should be able to account for 

nonlinearity in the relationships between the predictors and response variable, yet the 

ANN model did not substantially out-perform the SMLR model for estimating AGB in 

our study. This could be due to an inadequate number of AGB observations with high 

biomass levels in the calibration data set for the ANN model. The ANN model 

performance in estimating AGB was classified as satisfactory based on the RSR value of 

0.61. This suggests that there is still further room for improvement in the input data, the 

ANN structure, or the ANN training process.  

b) Estimation of herbaceous moisture content (FMC) 

Using the same set of input variables, the fully trained ANN model estimated 

FMC for the validation set with R
2
 = 0.75 and RMSE = 22.7% (Fig. 5). The adjusted R

2
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value computed for the valdiation datasets in ANN model was 0.75. DOY was the most 

important input variable while NDVI was the least important variable in this ANN model 

for FMC (Table 2). CH was less important for estimating FMC than it was for estimating 

AGB in both the ANN and SMLR models. An interesting feature was that percent 

reflectance at 460 nm was the second most important variable in the ANN model for 

FMC (Table 2), but for the SMLR model, percent reflectance at 460 nm was not retained 

(Table 1). For detailed information on the ANN model connection weights, see the 

Appendix. The ANN model showed substantial improvement over the SMLR model in 

estimating FMC for validation set (R
2
 = 0.75 vs 0.63, RMSE = 22.7% vs 27.7%) (Fig. 5 

vs Fig. 3). The RMSE for the ANN model estimates of FMC were equal to that of the 

best SMLR model among those developed by Chuvieco et al. (2004; 2002b). Few, if any, 

prior studies have directly compared ANN and SMLR models for estimating FMC, and 

the superior performance of the ANN model in our study suggests ANN models may 

have good potential for improving FMC estimation in other contexts, e.g. remote sensing 

of FMC.   

Despite the overall good performance of the ANN model for estimating FMC, there 

was still an underestimation of FMC for values over about 150%. This underestimation 

again might be due to fewer observations with high values in training the ANN model. A 

Lilliefors test on the residuals indicated that the residuals were not normally distributed 

(p<0.05). In addition, we also calculated the RSR to allow us to categorize the quality of 
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model performance using the scheme of Moriasi et al. (2007). The ANN model 

performance in estimating FMC was classified as good based on the RSR value of 0.51. 

Conclusion 

Both the SMLR and ANN models used in our study effectively estimated seasonal 

changes in above-ground biomass (AGB) and fuel moisture content (FMC). The models, 

developed from DOY, CH, NDVI, and percent reflectance in five bands, were able to 

estimate AGB and FMC for tallgrass prairie in Oklahoma with accuracy comparable to 

that observed in similar studies at other grassland sites. ANN proved better in estimating 

FMC than SMLR, while for AGB, ANN did not result in substantialy improved estimates 

in the validation set for our study area. Both types of  models underestimated AGB for 

levels above 600 g m
-2

 and  underestimated FMC for levels above 150%. Despite these 

limitations, the models developed here have been validated using data spanning nine 

large patches with different burn histories across three different pastures in two years 

with distinctly different growing conditions. Given this relatively large variance in the 

underlying datasets, these models should be useful for nondestructive estimation of AGB 

and FMC in other similar grassland environments, particularly when monitoring large, 

heterogenous areas for grazing management or wildfire preparedness. 
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Fig. 1: Linear regression of aboveground biomass (AGB) versus Normalized Difference 

Vegetation Index (NDVI)  
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Table 1: Independent variables retained in stepwise multiple regression models for AGB (aboveground 

biomass) and FMC (herbaceous moisture content) along with corresponding parameter estimate, standard 

errors (SE), and p-values. The independent variables are day of year (DOY), canopy height (CH), 

normalized difference vegetation index (NDVI), and spectral reflectance at different wavelengths. 

  

  AGB (g m
-2

) FMC (%) 

Ind. Variables Estimate SE p-values Estimate SE p-values 

Intercept -249 93 0.007 62.5 29.2 0.03 

DOY -0.58 0.11 < 0.00 0.18 0.07 0.015 

CH (m) 472 110 < 0.001 9.46 45.4 0.83 

NDVI 69.5 134 0.6 205 32.9 <0.001 

560 nm (%) 43.7 8.8 < 0.001    

660 nm (%) -25.6 3.99 < 0.001 -5.45 2.655 0.04 

830 nm (%)    1.52 0.289 < 0.001 

1650 nm (%) 17.8 3.24 < 0.001 -3.73 0.475 < 0.001 

DOY × CH  -0.67 0.32 0.04 0.44 0.073 < 0.001 

DOY × NDVI 3.4 0.36 < 0.001 -0.72 0.095 < 0.001 

DOY × 660 nm    -0.009 0.005 0.06 

CH  × NDVI    -110.3 32.348 < 0.001 

CH  × 1650 nm    -4.78 0.995 < 0.001 

NDVI × 660 nm    11.7 2.006 < 0.001 

CH × 660 nm 29.1 8.52 < 0.001    

NDVI × 1650 nm -21.4 4.04 < 0.001    

560 nm × 1650 nm -0.7 0.28 0.02    

660 nm × 1650 nm    0.18 0.042            < 0.001 
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Table 2: Relative importance (RI) of various independent variables in trained Artificial Neural Network for 

AGB and FMC. The relative importance is shown as percentage. The independent variables are day of year 

(DOY), canopy height (CH), normalized difference vegetation index (NDVI), and percent reflectance at 

five spectral bands. 

 DOY CH  NDVI 460 nm  560 nm  660 nm  830 nm  1650 nm 

  m  % % % % % 

AGB 15.0 13.7 11.38 9.24 12.0 14.9 10.41 13.1 

FMC 17.7 11.6 10.11 14.5 11.1 10.5 11.2 13.27 
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Fig. 2.  Estimation of above-ground biomass (AGB) using stepwise multiple linear regression. Candidate 

independent variables included NDVI, canopy height, day of year and all the five spectral bands. The 

model was calibrated using 85% of the data and validated using the remaining 15%.  
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Fig 3. Estimation of fuel moisture content (FMC) using stepwise multiple linear regression. Candidate 

independent variables included NDVI, canopy height, day of year and all the five spectral bands. The 

model was calibrated using 85% of the data and validated using the remaining 15%.  
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Fig. 4. Estimation of above-ground biomass (AGB) using artificial neural network. Candidate independent 

variables included NDVI, canopy height, day of year and all the five spectral bands. The model was 

calibrated using 85% of the data and validated using the remaining 15%.  
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Fig. 5. Estimation of fuel moisture content (FMC) using artificial neural network. Candidate independent 

variables included NDVI, canopy height, day of year and all the five spectral bands. The model was 

calibrated using 85% of the data and validated using the remaining 15%.  
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CHAPTER III 
 

 

LIVE FUEL MOISTURE CONTENT AND LIVE TO DEAD FUEL 

TRANSITIONS IN TALLGRASS PRAIRIE EXHIBIT THRESHOLD -TYPE 

RELATIONSHIP WITH SOIL MOISTURE 

 

Abstract: 

Fire is an integral part of grassland ecosystems, exerting a strong influence on ecosystem 

processes, biodiversity, and livestock production, but, wildfires cause major socio-

economic losses in regions such as the US Great Plains. Two critical and poorly 

understood factors influencing growing season wildfire danger are live fuel moisture 

content (LFMC) and transition of live fuel to dead fuel. Current fire danger models do not 

adequately describe LFMC dynamics or live to dead transitions, but recent evidence 

suggests both may be strongly influenced by soil moisture conditions. Therefore, the 

objectives of this study were i) to quantify the temporal dynamics of  LFMC, live fuel 

mass, dead fuel mass, and soil moisture expressed as fraction of available water capacity 

(FAW), and ii) to describe how LFMC and live to dead fuel transition are related to 

FAW. During the growing seasons of 2012-13, LFMC, live mass, dead mass, and FAW 

were monitored in tallgrass prairie under patch burn management near Stillwater, OK.  

LFMC exhibited a nonlinear, threshold-type relationship with FAW, with LFMC being 

insensitive to FAW at FAW levels above approximately 0.56 and positively related to 
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FAW below that threshold.  Live to dead fuel transitions occurred around a FAW value 

of approximately 0.34, with the rate of transition increasing linearly as FAW dropped 

below that threshold. In light of these findings and the increasing availability of soil 

moisture data, a logical next step would be to develop ways to incorporate soil moisture 

information into dynamic fuel bed models for improved fire danger assessments and 

enhanced wildfire preparedness. 

Introduction 

Fire is an integral part of grassland ecosystems worldwide, exerting a strong influence on 

ecosystem processes including nutrient and water cycling and ecosystem services 

including biodiversity and livestock production. However, wildfires also increase 

greenhouse gas emissions and cause major economic losses to society (Yebra et al., 

2008). According to the National Interagency Fire Center (2013), a cost of $2 billion 

annually has been associated with wildfire loss in the US. The US Southern Great Plains, 

with its strong winds and frequent droughts, is a region where wildfire is a significant 

threat. A single group of wildfires (the NW Oklahoma Complex) in March 2017, burned 

over 337 thousand ha in Oklahoma and Kansas (Wildfire Today, 2017) and resulted in 

almost $15 million in losses to the Oklahoma cattle industry alone (OSU Extension, 

2017). There were eighteen large wildfires in Arizona, Utah, California, New Mexico, 

Nevada and Oregon burning over 1 million ha during the first seven months of 2017 

(NIFC, 2017)Minimizing wildfire damages requires development of improved fire danger 
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assessments (Yebra et al., 2013). One approach to improving those assessments is 

through better monitoring of changes in fuel moisture content.  

Fuel moisture content (FMC) is an important variable driving fire ignition and fire 

spread (Cheney and Sullivan, 2008) and FMC is a key input variable in models of 

ignition and propagation (Pellizzaro et al., 2007). However, direct measurement of FMC 

by oven drying of fresh samples is slow and time consuming. Currently, estimates of 

FMC in fire danger assessments are based on static fuel models, weather data, or 

vegetation indices from satellite remote sensing.  Weather data are mainly used to 

estimate the moisture content of dead fuels important to ignition and the spread of 

wildfires (Cheney et al., 1998). However, live fuel moisture and the transition of live fuel 

to dead fuel, also important contributors to ignition and spread potential, are less well 

understood and difficult to obtain, and therefore are generally included in fire models in 

simple forms such as heuristic variables. State and national fire danger systems have used 

weather factors such as air temperature, relative humidity and wind speed to assess 

wildfire danger rating, but neither system captures the dynamic nature of LFMC and the 

transition of live fuel to dead fuel (Bradshaw et al., 1984; Carlson and Burgan, 2003). 

Satellite data have been used to estimate live fuel moisture content (LFMC). The 

better spatial coverage provided by satellite images provides advantages over weather 

data for estimating LFMC across large areas. LFMC values have shown statistically 

significant correlations with remote sensing indices such as Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) in 
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Mediterranean species of grasslands and shrublands (Chuvieco et al., 2003; Chuvieco et 

al., 2004c; Yebra et al., 2008). However, satellite images have disadvantages such as low 

frequency of observations (sometimes weeks to months between readings) and challenges 

with calibration to ground truth data (Chuvieco et al., 2004a; Wang et al., 2014). There is 

a clear need for better method to describe dynamics of spatially and temporally variable 

LFMC. 

Soil moisture has potential to serve as a useful predictor for LFMC in fire danger 

assessments. In North Western Sardinia in Italy, soil moisture was more highly correlated 

with LFMC than weather variables for four Mediterranean shrubs species (Pellizzaro et 

al., 2007). Likewise, soil moisture was also more strongly related with LFMC for shrub 

species of Gambel oak and big sagebrush than was remotely sensed NDVI or NDWI  

across ten sites in northern Utah, USA (Qi et al., 2012). A strong relationship between 

soil moisture in form of fraction of available water capacity (FAW) and growing-season 

wildfire size in Oklahoma provides indirect evidence that  soil moisture may strongly 

influence LFMC and the transition from live fuel to dead fuel during the growing season 

(Krueger et al., 2015). Soil moisture also played a major role in controlling the 

probability of large growing-season wildfires in Oklahoma (Krueger et al., 2016).  The 

development of large-scale soil moisture monitoring networks (Ochsner et al., 2013) has 

provided the opportunity to use soil moisture data to estimate LFMC and the transition 

from live fuel to dead fuel.  
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Considering this, we aimed to assess the potential of using FAW to enable early 

warning of rapidly declining LFMC and the transition from live fuel to dead fuel in the 

growing season of grasslands dominated by warm-season grasses. The specific objectives 

of this study were i) to quantify the temporal dynamics of  LFMC, live fuel mass, and 

dead fuel mass, and FAW, and ii) to describe how LFMC, and live to dead fuel transition 

are related to FAW. 

Materials and Methods 

Research was conducted at the Oklahoma State University Range Research 

Station (Lat = 36.06, Lon = -97.21) located near of Stillwater, Oklahoma. The location is 

primarily tallgrass prairie dominated by warm-season grasses. Major vegetation species 

were little bluestem (Schizachyrium scoparium Michx), big bluestem (Andropogon 

gerardii), Indiangrass (Sorghastrum nutans), post oak (Quercus stellate Wang), and 

eastern redcedar (Juniperus virginiana). The predominant soils at this site included the 

Grainola series (fine, mixed, thermic Vertic Haplustalf) covering approximately 60% of 

the area, and the Coyle series (fine-loamy, siliceous, thermic Udic Argiustoll) covering 

approximately 35% of the area (Gillen et al., 1990). The study site consists of three 

pastures ranging in size from 50 to 63 ha. Those pastures were subdivided into six 

approximately equal sized unfenced patches. These patches were used to apply a patch 

burning treatment designed to increase ecological heterogeneity while preventing woody 

plant encroachment (Fuhlendorf and Engle, 2004). Each year, two of the six patches were 

burned: one during the late dormant season (February-April) and one during the late 



46 
 

growing season (July-October). Patches were burned every three years to represent 

different successional stages culminating in full recovery for this site after the third year 

(Fuhlendorf and Engle, 2004). The patch burning sequence has been continuous since the 

pastures were established in 1999. In the present study, sampling occurred in the three 

patches in each pasture that were burned during the growing season for a total of nine 

patches (Fuhlendorf and Engle, 2004). Each pasture was moderately grazed by cattle and 

cattles were grazing freely either on burned or unburned patches.  

Data collection 

LFMC, live fuel mass, and dead fuel mass were measured every two weeks in 

each patch during the growing season for years 2012 and 2013. The growing season was 

defined as the months of May through October. Twelve vegetation samples in randomly 

selected 0.25 m
2
 quadrats were clipped after noon in each of the nine patches during each 

sampling period.  LFMC for each patch and sampling period was calculated as the mean 

value of fuel moisture content of six pure live herbaceous sub-samples. The mixture of 

live and dead herbaceous material were clipped from each quadrat, collected, weighed, 

and dried in a 70°C drying oven for 48 h. The percentage of live and dead in each sample 

was calculated based on the constituent differential method (Gillen and Tate, 1993). This 

method is based on the difference in moisture content of pure live and pure dead 

subsamples. Live mass was calculated as the product of the proportion of live fuel in the 
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mix and the dry weight of each quadrat sample, whereas dead mass is calculated as the 

product of the proportion of dead fuel in the mix and the sample mass. 

Soil moisture in form of volumetric water content was measured hourly at four 

different depths (i.e. 5, 10, 20 and 50 cm) using reflectometry-based sensors (Model 655, 

Campbell Scientific, Logan, UT) installed at one location in each sample patch in all 

three pastures. The soil moisture sensors were calibrated using Coyle-Lucien complex 

soil obtained from one of the patches (36.06142ºN, 97.21727ºW). Soil properties were 

determined from the soil sampling done on March 13, 2013. The soil properties measured 

included volumetric water content retained at -10 and at -1500 k Pa. Fraction of available 

water capacity (FAW) was calculated based on the daily-averaged volumetric water 

content and the measured soil properties. Trapezoidal numerical integration was used to 

calculate FAW for the 0–40 cm layer as follows: 
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where 𝜃 is measured volumetric water content, 𝜃WP is volumetric content at permanent 

wilting point estimated at -1500 k Pa; 𝜃FC is the volumetric water content at field capacity 

estimated at -10 k Pa, and z represents the soil depth. L represents the maximum depth of 

interest. Values of FAW are typically between 0 (no plant available soil water) and 1 

(maximum available water capacity is filled). Values of FAW less than approximately 0.5 

typically indicate conditions of vegetative moisture stress (Allen et al., 1998). In addition, 
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reference evapotranspiration (ET0) was obtained using FAO-56 method (Allen et al. 

1998) from weather data including maximum and minimum air temperature (˚C), 

minimum and maximum relative humidity (%), average wind-speed (m s
-1

), rainfall 

(mm), and solar radiation (W m
-2

) at the Marena Mesonet site (McPherson et al., 2007). 

Data Analysis  

Because the patch burning treatment can dramatically alter the fuel bed properties, 

the vegetation and soil data were composited for each level of time since fire. In each 

growing season, there are three patches in their first year since fire, three in their second 

year, and three in their third year. The time series of LFMC (%), live mass (g m
-2

), dead 

mass (g m
-2

), and FAW were plotted to visualize the relationship between the variables. 

The relationship of LFMC and FAW was described using a box and whisker plot as 

described in Krueger et al. (2015). Live fuel moisture content classes were assigned as 0-

100%, 100-200%, 200-300%, 300-400%, and 400-500%. The relationship between live 

fuel mass and cumulative FAW was also evaluated with a box and whisker plot. Live 

mass classes were assigned as 0-50 g m
-2

, 50- 150 g m
-2

, 150-250 g m
-2

, 250-350 g m
-2

 , 

and >350 g m
-2

. For live mass, the data were taken from the patches in their second and 

third year since fire because the lack of standing dead fuel in the first year after fire alters 

the live mass accumulations. The changes in live and dead mass between sampling dates 

for each patch were calculated to find the transition of live to dead fuel. Identifying these 

transition period allowed us to estimate the critical threshold of FAW where live fuel 
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transitioned to dead fuel. Transition periods were defined as intervals when live mass 

decreased and dead mass increased. The FAW during each of these intervals was 

determined. We also plotted time series ETO and precipitation for two calendar years for 

comparing with time series response of LFMC, live and dead mass.  

 

Results 

Weather Conditions 

Cumulative precipitation was approximately 50 mm above average by end of 

April 2012, creating favorable conditions for early season vegetative growth. However, 

below average rainfall in end of May 2012 resulted in cumulative precipitation falling 

below average by the start of June. That precipitation deficit increased through June and 

July, and the deficit reached approximately150 mm by end of July before abating slightly 

following rain in mid-August. By end of 2012, the cumulative precipitation was 

approximately 300 mm below average (Fig. 1). The low precipitation corresponded with 

high temperatures as reflected in the relatively high reference ET values for 2012 (Fig. 2). 

The atmospheric water deficit (ET-P) reached approximately 1600 mm by end of 2012. 

In contrast, cumulative precipitation was near or above average throughout 2013, 

reference ET was lower than in 2012 because of lower temperatures, and the end of year 

atmospheric water deficit was only approximately 400 mm (Fig. 2).  
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Fraction of Available Water Capacity  

Sampling began on 22 May 2012 after the start of the period of below average 

precipitation, so the initial FAW measurements were < 0.6. FAW reached a maximum 

value of 0.67 on 5 June 2012 then declined steadily until 14 August 2012 as drought 

conditions developed. FAW fell below 0.5 on 20 June 2012. Minimum FAW values were 

below 0.2. After rainfall totaling 67 mm between 25 August and 26 August, FAW briefly 

increased to > 0.5 on 29 August 2012, but dropped again to < 0.3 by 12 September 2012, 

and remained low for the rest of the growing season (Fig. 3a). In 2013, FAW reached 

maximum values above 0.9 on 11 June 2013 and did not drop below 0.5 until 8 July 

2013, 18 days later than in 2012. July and August rainfall caused FAW to increase 

through July and August.  However, dry conditions in September caused a secondary 

decline in FAW, reaching a minimum of 0.17 on 16 September 2013 (Fig. 3b). 

Live Fuel Moisture Content 

In 2012, the maximum LFMC value of 206% was recorded on the first sampling 

date 24 May 2012. A relatively large drop in LFMC occurred between the second and 

third sampling dates as FAW value decreased from > 0.6 to < 0.6. The minimum 

recorded LFMC values occurred during the first three weeks of August 2012 when 

LFMC was < 100%, coincident with the minimum values of FAW (Fig 3c).  Low 

(<100%) LFMC occurred relatively in the early growing season in 2012.  In 2013, the 

maximum LFMC of 879% was again recorded on the first sampling date of the growing 
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season, 13 May 2013.  LFMC declined as the season progressed until stabilizing at values 

of ~200% through July and August. LFMC never fall below 100% in 2013. The 

minimum was 128% on 19 Oct 2013, as the vegetation senesced at the end of growing 

season (Fig 3d). The patches burned in October 2012 had much lower LFMC values than 

the other patches in May-August of 2013.  

Live mass 

Above average rainfall and relatively warm temperatures produced rapid early growth 

in 2012, with live mass of 141 gm
-2

 on the first sampling date 24 May 2012. Live mass 

increased until 20 June 2012, reaching peak values > 200 g m
-2

, and then declined until 

mid-August as drought developed and FAW dropped. Minimum live mass for 2012 was 

46.7 g m
-2

 on 14 August 2012 (Fig. 3e) In 2013, cooler spring temperatures resulted in 

lower levels of initial live mass, but live mass increased continuously from May- August, 

reaching maximum values > 200 g m
-2

 in August and early September. Live mass 

dropped sharply in mid-September and early October 2013, and FAW fell to < 0.2 during 

this same time period. The patches burned on 15 October 2012, had higher live biomass 

than the other patches from May- September 2013 (Fig. 3f). 

Dead mass 

In 2012, dead mass increased dramatically in July as FAW fell below 0.4, after 

that dead mass was relatively constant with values of 200-300 g m
-2

 until the end of 

growing season in 2012. In 2013, after the controlled burn on 15 October 2012, the dead 
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mass remained in the recently burned patch was zero until 22 August 2013 (Fig. 3g). The 

dead mass in the recently burned patches increased to > 300 g m
-2

 in September 2013 

after FAW dropped below 0.2. The dead mass was higher at the starting of growing 

season for the patches which were not burned in October 2012, but these patches also 

showed an increased in dead mass during September 2013 (Fig. 3h).   

Relationship of LFMC and FAW 

LFMC  > 300%  coincided with FAW > 0.7, and LFMC < 100%  coincided with 

FAW <0.35. LFMC was sensitive to FAW at low FAW values but was insensitive above 

some threshold of FAW. The threshold below which LFMC is sensitive to FAW was 

estimated using the average of the FAW values for the third LFMC category (200- 

300%), in the sensitive range, and the fourth LFMC categories (300-400%), the 

insensitive range. The estimated FAW threshold for LFMC sensitivity was 0.56 (Fig. 4).  

Relationship of Live to dead fuel transition and FAW  

The maximum rate of live to dead fuel transition reached 17 g m
-2

 d
-1

 when FAW 

during the interval between sampling events averaged 0.19. The average FAW value at 

which live to dead fuel transitions occurred was 0.34. There is an apparently linear 

relationship between FAW and transition rate below this threshold. As FAW decreases, 

the rate of transition from live to dead increases (Fig. 5). Similarly, LFMC values < 

100% only occurred when FAW was < 0.34 (Fig. 4). 
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Discussion 

 

The severe drought in 2012 and near average weather conditions in 2013 provided 

an ideal environment for studying the relationship between LFMC and FAW and the 

influence of FAW on live to dead fuel transitions. The precipitation deficits in the Central 

Great Plains during May-August 2012 were more severe than any in the past century, 

including the Dust Bowl years (Hoerling et al., 2014). This rapid-onset (flash) drought 

was reflected in soil moisture data from Oklahoma Mesonet stations across central and 

eastern Oklahoma (Ford et al., 2015), with statewide average FAW values below 0.2 in 

July and August 2012 (Krueger et al., 2015).The drought conditions led to major growing 

season wildfire outbreaks with 93,043 ha burned across the state (Krueger et al., 2015).  

The grassland LFMC levels observed in this study are generally consistent with 

previously reported values, showing the expected phenologically-driven decline from the 

start to the end of the growing season (Chuvieco et al., 2009). The high moisture content 

of the tissues produced in early vegetative growth gives way to lower moisture content as 

the tissues mature. The maximum LFMC values (>400%) in this study are high relative 

to those in prior studies. For example, in grasslands in Hawaii, LFMC varied between 45 

and 294% (Ellsworth et al., 2017). The higher values observed here may be related to the 

constituent difference sampling method used, which relied on direct measurements of 

pure live sub-samples. The live mass values observed here are also consistent with those 

in prior studies in similar environments. For example, a previous study of tallgrass prairie 
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at the same research station resulted in live standing crop estimates ranging from 84 to 

387 g m
-2

 (Gillen and Tate, 1993).  

Grassland LFMC values displayed a threshold-type response to measured soil 

moisture in this study, in contrast to the simple linear relationships which have been 

previously reported for other fuel types. For example, in Italy, LFMC of four shrub 

species was positively correlated with soil moisture (r > 0.6) (Pellizzaro et al., 2007). 

Likewise, LFMC for Gambel oak (Quercus gambelii Nutt) and big sagebrush (Artemisia 

tridentate Nutt) in Utah showed positive linear relationships with measured soil moisture, 

stronger relationships than observed for LFMC and various remotely-sensed vegetation 

indices (Qi et al., 2012). Grassland LFMC became sensitive to soil moisture only after 

FAW dropped below a threshold of approximately 0.56. The nonlinear response of 

LFMC to FAW may help to explain the previously reported nonlinear relationship 

between FAW and wildfire probability in Oklahoma (Krueger et al., 2016). In that study, 

the probability of large wildfire, on a day with low relative humidity and high wind 

speed, increased nonlinearly from 0.18 to 0.60 as FAW decreased from 0.5 to 0.2. Indeed 

most large wildfires in Oklahoma occur when FAW < 0.2 (Krueger et al., 2015), 

conditions capable of producing LFMC < 100% in this study.  

We hypothesize that the lowest category of grassland LFMC values (0-100%) is 

strongly controlled by FAW, while intermediate LFMC values (100-300%) occur across 

a wider range of FAW suggesting multiple controlling factors. We hypothesize that these 
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intermediate levels of FAW are influenced by the interactions of phenology, available 

soil moisture, and atmospheric water demand, i.e. reference ET. The highest LFMC 

values (>300%) are likely strongly influenced by phenology as they occur only in the 

early growing season.  

The relationship between LFMC and FAW suggests some new possibilities for 

modeling the dynamics of fuel behavior. The standard fire behavior fuel models (Scott 

and Burgan, 2005) describes the concept of live herbaceous load transferred to dead as 

function of LFMC, but does not indicate how LFMC can be monitored in practice. In 

these models, the live to dead transition begins when LFMC drops below 120%. The data 

from this study show that growing season LFMC values <100% only occur when FAW 

<0.34 and that live to dead transitions occur at these levels of FAW. Thus, these results 

are at least consistent with the standard fire behavior fuel models, but with a key added 

benefit—the ability to use in situ FAW monitoring as a surrogate for LFMC. This study 

provides a first step toward understanding the dynamics of the mechanism of herbaceous 

live to dead fuel transition in the growing season. FAW might prove an effective 

indicator for transferring live to dead and is easier to monitor than LFMC, thus FAW 

could contribute to better dynamic representations of fuel bed parameters in fire danger 

models.  
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Conclusion 

Two growing seasons of intensive sampling of the temporal dynamics of live fuel 

moisture content (LFMC), live fuel mass, and dead fuel mass in tallgrass prairie provided 

new insights into the relationships between fuel bed parameters and soil moisture, 

expressed as fraction of available water capacity (FAW).  LFMC exhibited a nonlinear, 

threshold-type relationship with FAW, with LFMC being insensitive to FAW at FAW 

levels above 0.56 and positively related to FAW below that threshold. In addition, this 

study provides a first step toward understanding the causal mechanism of live to dead 

fuel transition in the growing season in relation to FAW.  Live to dead fuel transitions 

occurred around a FAW value of 0.34, with the rate of transition increasing 

approximately linearly as FAW dropped below that threshold.  

Prior studies showed that large growing season wildfires in Oklahoma occur 

primarily when FAW < 0.2 (Krueger et al., 2015) and that the probability of wildfire can 

increase three-fold as FAW decreases from 0.5 to 0.2 (Krueger et al., 2016). This study 

provides the missing link between FAW and wildfire behavior, showing that LFMC 

declines as FAW drops below 0.56 and that live herbaceous fuel transitions to dead fuel 
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as FAW drops below 0.34.  When FAW falls below 0.2, representing extreme drought 

conditions, grassland LFMC can drop below 100% and live to dead fuel transition can 

reach rates up to ~18 g m
-2

 d
-1

.  

As soil moisture data become increasingly available due to the development of in 

situ monitoring networks and of soil moisture satellites, the prospect of using soil 

moisture data in fire danger assessments becomes increasingly attractive. Estimating 

LFMC and transferring live fuels to dead based on observed FAW could contribute to 

better dynamic representations of fuel bed parameters in fire danger models. Improved 

fire danger ratings could enhance wildfire preparedness and response, which could help 

reduce the devastating impacts of wildfire on property and lives. 
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Figure 1: Cumulative precipitation for 2012 and 2013 at the Marena station of the Oklahoma Mesonet 

along with 30 years average monthly precipitation for the site 
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Figure 2: Reference evapotranspiration for 2012 and 2013 at the Marena station of Oklahoma Mesonet 
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Figure 3: Time series of fraction of available water capacity (FAW) for the 0-40 cm layer, live fuel 

moisture content (LFMC), live mass, and dead mass, grouped by burn date for the 2012 and 2013 growing 

seasons. Each data point is the mean across three pastures. 
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Figure 4:  Fraction of available water capacity (FAW) measured for the 0-40 cm soil layer. Live fuel 

moisture content (LFMC) during the growing season for tallgrass prairie in Oklahoma from 2012-2013 as 

influenced by soil layer. Median lines are the black lines near the middle of each box, the 25
th

 and 75
th

 

percentile values are the left and right sides of boxes, the whiskers indicates the range of data, and the 

outliers are represented as individual points outside of the whiskers. 
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Figure 5: Transitions from live fuel to dead fuel versus fraction of available water capacity (FAW) for the 

0-40 cm soil layer. 
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CHAPTER IV 
 

Preliminary evaluation of a DSSAT model for forage forecasting in  

Southern Great Plains grasslands 

 

Abstract: 

Rangelands are an important part of grassland ecosystems, characterized by high inter-annual 

variability in precipitation amounts leading to inter-annual variation in forage production that 

ultimately determines appropriate stocking rates in grazing livestock production. Accurate and 

timely forecast of forage production several months in advance could be helpful for grazing 

management, allowing farmers, ranchers, and livestock managers to maintain the sustainability 

of their operations against adverse conditions such as droughts. Rainfall, soil moisture, and 

standing crop (measured biomass) have shown potential as predictors of future levels of above-

ground biomass in prior studies. Yet, none of the prior studies have resulted in a proven method 

for in season forage forecasts informed by soil moisture observations. The CROPGRO perennial 

forage model has been successfully used to simulate growth of tropical guinea grass and palisade 

grasses in South America but the accuracy of this model in North American tallgrass prairie is 

unknown. To evaluate the potential use of this model for in season forage forecasting in the US 

Great Plains, it was necessary to first quantify the model’s  accuracy using plant parameters 

taken or adapted from the existing literature. During the growing season of 2012-2013, live mass 

and soil moisture in form of volumetric water content was measured in tallgrass prairie near 
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Stillwater, OK.  The study spanned nine patches located within three pastures under patch burn 

management. The uncalibrated forage model was not effective in estimating the average RMSE 

of live mass but it was reasonably accurate in estimating the average RMSE of soil moisture. In 

light of this finding, the next step would be using calibrating the model’s plant parameters from 

the observed live mass data to allow improved prediction accuracy from the model. 

 

Introduction 

Rangelands span approximately 54% of terrestrial ecosystems and they support 30% of world’s 

population (Sala et al., 2017). In the United States, rangelands  occupy 31% of total land area, 

approximately 308 million ha, mainly in the western US, including the grasslands of the 

Southern Great Plains (Havstad et al., 2009).  These rangelands are characterized by variability 

in precipitation amounts leading to inter- annual variation in forage production that ultimately 

determines appropriate stocking rates in grazing livestock production. Accurate and timely 

forecasts of forage production several months in advance could be helpful for grazing 

management, allowing farmers, ranchers, and livestock managers to protect rangelands from 

degradation and to maintain the sustainability of their operations against adverse conditions such 

as droughts (Don and Woodmansee, 1975; Zhao et al., 2007).  

The dynamics of forage production in grasslands are influenced by multiple 

environmental factors including soil texture, landscape position, land use (fire and grazing), soil 

fertility, precipitation, and temperature (Alhamad et al., 2007; Andales et al., 2006; Dahl, 1963; 
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Fuhlendorf and Engle, 2004; Lauenroth and Sala, 1992; Pequeno et al., 2014; Smoliak, 1956; 

Torell et al., 2011). However, precipitation, more than any other single factor, has been the focus 

in prior studies. For example, April — July precipitation and biomass production were positively 

correlated (r = 0.76) in native sod of mixed prairie type in Mandan, North Dakota (Rogler and 

Haas, 1947). May and June precipitation had a strong linear relationship (r
2
 = 0.738) with 

biomass production in a shortgrass prairie which included Western wheatgrass (Agropyron 

smithii), Blue gamma (Bouteloua gracilis), June grass (Koeleria cristata), and needle-and-thread 

(Stipa Comata) in Southeastern Alberta (Smoliak, 1956). Biomass production had a stronger 

relationship with both seasonal and annual precipitation than with temperature in shortgrass 

steppe site in north-central Colorado (Lauenroth and Sala, 1992).   

However, various studies found that inter-annual variations in biomass production at 

single site were not adequately explained by annual precipitation alone (Lauenroth and Sala, 

1992; Oesterheld et al., 2001). Instead, inter-annual variation in above ground net primary 

productivity (ANPP) was related to both precipitation in the current year and ANPP of the 

previous year in shortgrass steppe of Colorado, USA (Oesterheld et al., 2001). One possible 

mechanism proposed to explain this lag effect included carry-over of water, i.e. soil moisture, 

from one year to the next and changes in plant community structure, e.g. plant density or leaf 

area. If these mechanisms are, in fact, significant drivers of inter-annual variations in forage 

production, then soil moisture data and remotely sensed vegetation indices may have potential 

for use in forage forecasting.  
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Soil moisture was found to be a useful predictor of forage production in native mixed 

prairie in North Dakota (Rogler and Haas, 1947). Stored spring soil moisture was related to 

seasonal forage production in Eastern Colorado Range Station (Dahl, 1963). In New Mexico, end 

of season forage production was estimated more effectively using soil moisture measurement 

instead of seasonal rainfall (Torell et al., 2011).  The development of large-scale soil moisture 

monitoring networks and satellites (Ochsner et al., 2013) has provided the opportunity to use soil 

moisture data to estimate forage production, but doing so will require the identification or 

development of models that accurately describe the interactions between soil moisture conditions 

and forage production. 

 Models that can utilize soil moisture observations for forage forecasting may be either 

statistical models or process-based simulation models. For example, a statistical model (Box and 

Jenkins auto-regressive integrated moving average) informed by available forage measurements 

and Normalized Difference Vegetation Index data was used to provide 6 weeks forecasts of 

forage production for three sites in southwestern Texas (Alhamad et al., 2007). Process-based 

simulation models considered mechanism of crop growth and developmental whereas statistical 

models do not consider mechanisms of crop parameters such as light extinction coefficient, 

radiation use efficiency, maximum rooting depth and optimum temperature. The process-based 

simulation model, Phytomass Growth Model (PHYGROW), has been used to model forage 

production and availability in Africa (Stuth et al., 2005).  The Great Plains Framework for 

Agricultural Resource Management (GPFARM) forage growth model has been used to forecast 
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within-season mixed-grass prairie in Wyoming, USA (Andales et al., 2006). These forecast 

results were then compared to observations from 1983 to 2001, and the model explained 66% of 

the variability in above-ground biomass (Andales et al., 2006). The GPFARM–Range model was 

also used to accurately simulate forage growth under different grazing managements in the 

northern part of the Great Plains (Adiku et al., 2011). And, the ALMANAC (Agricultural Land 

Management Alternatives with Numerical Assessment Criteria) model has been used to simulate 

forage production in perennial grass at El Reno, Oklahoma (Kiniry et al., 2013). Yet, none of the 

studies mentioned above produced in season forage forecasts informed by soil moisture 

observations.  

One of the most extensively developed families of crop growths models is the Decision 

Support System for Agrotechnology Transfer family of model (DSSAT) (Jones et al., 2003). The 

DSSAT models include the CROPGRO perennial forage model  that was used to simulate forage 

production of palisade grass (Brachiaria brizantha)  in state of Sao Paulo, Brazil (Pequeno et al., 

2014). The CROPGRO perennial forage model has also been successfully used  to simulate 

growth of tropical guineagrass (Panicum maximum) (Lara et al., 2012), but the accuracy of this 

model in North American tallgrass prairie is unknown. To evaluate the potential  use of this 

model for in season forage forecasting in the US Great Plains, it was necessary to first quantify 

the model’s  accuracy using plant parameters taken or adapted from the existing literature. Thus, 

the objective of this study was to evaluate the CROPGRO perennial forage model for simulating 
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forage production and soil moisture in tallgrass prairie using the previously calibrated plant 

parameters from the literature.  

Materials and Method 

Study Site 

The study site were located in tallgrass prairie at the Oklahoma State University Range 

Research Station (36.06˚N, -97.21˚E) located near Stillwater, Oklahoma. Major vegetation 

species were little bluestem (Schizachyrium scoparium Michx), big bluestem (Andropogon 

gerardii), Indiangrass (Sorghastrum nutans), post oak (Quercus stellate Wang), and eastern 

redcedar (Juniperus virginiana). The predominant soils included the Grainola series (fine, mixed, 

thermic Vertic Haplustalf) covering approximately 60% of the area, and the Coyle series (fine-

loamy, siliceous, thermic Udic Argiustoll) covering approximately 35% of the area (Gillen et al., 

1990). The study site consisted of three pastures ranging in size from 50–63 ha. Those pastures 

were sub-divided into six approximately equal sized unfenced patches. These patches were used 

in a patch burning treatment designed to increase ecological heterogeneity while preventing 

woody plant encroachment (Fuhlendorf and Engle, 2004). Each year, two of the six patches were 

burned:  one during the late dormant season (February-April) and one during the late growing 

season (July-October).  Patches were burned every three years to represent different successional 

stages culminating in full recovery for this site after the third year (Fuhlendorf and Engle, 2004). 

The patch burning sequence has been continuous since the pastures were established in 1999. In 

the present study, sampling occurred in the patches burned at the end of the growing season. The 

experimental design was thus a randomized complete block with three treatments, i.e. patches 
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with three different levels of time since burning, and three replications, i.e. the three pastures 

(Fuhlendorf and Engle, 2004).  

 

Field Data for Model Evaluation 

Aboveground live biomass (g m
-2

) was measured every two weeks primarily during 

growing seasons of 2012 and 2013. The growing season was defined as the months of May 

through October but sampling spanned from March to November. Vegetation samples in twelve 

randomly selected 0.25 m
2
 quadrats were clipped after noon in each of the nine patches during 

each sampling period. The mixture of live and dead herbaceous material were clipped from each 

quadrat, collected, weighed, and dried in a 70°C drying oven for 48 h. The percentage of live and 

dead in each sample was calculated based on the constituent differential method (Gillen and 

Tate, 1993). This method is based on the difference in moisture content of pure live and pure 

dead subsamples. Live mass was calculated as the product of the proportion of live in the mix 

and the dry weight of each quadrat sample.  

Soil moisture in form of volumetric water content was measured hourly at four different 

depths (5, 10, 20 and 50 cm) using reflectometry-based sensors (Model CS655, Campbell 

Scientific, Logan, UT) in each sampled patch in all three pastures. Those hourly data were 

averaged to produce daily data. The CS655 soil moisture sensors were calibrated using soil from 

the Coyle-Lucien complex (36.06142ºN, 97.21727ºW). Soil physical properties required by the 

model were determined from the soil sampling done on March 13
th

, 2013. The following soil 
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properties were measured: i) bulk density, ii) volumetric water content retained at -10, and at -

1500 kPa, and iii) percent of sand, silt, and clay. Weather data for the period of 2012-2013 were 

obtained from the Marena Station of the Oklahoma Mesonet (McPherson et al., 2007), and all 

three pastures were within 6 km of this station. Weather data included daily maximum and 

minimum air temperature (˚C), minimum and maximum relative humidity (%), average wind-

speed (m s
-1

), rainfall (mm), and solar radiation (W m
-2

). 

Model parameters and initialization 

The DSSAT system is a collection of different crop simulation models that account for 

the effects of soil, weather and crop management and have been extensively tested with 

experimental data (Jones et al., 2003). The CROPGRO perennial forage module of DSSAT has 

been adapted and calibrated for guinea grass (Panicum maximum) (Lara et al., 2012), palisade 

grass (Brachiaria brizantha cv. Xares) (Pequeno et al., 2014), and bahiagrass (Paspalum 

notatum Flugge) (Rymph et al., 2004). Plant parameters from Pequeno et al. (2014) were used 

for this study because little bluestem, the most common grass species at the study site, shares 

some common features with palisade grass (Table 1). Both have good drought resistance are 

moderately tolerant of reduced light, are warm season C4 grasses, are perennials with short 

rhizomes (Forages; Tober and Jensen, 2013). However, little bluestem often reproduces by 

tillering (NDMC) whereas palisade grass can be propagated vegetatively by sod, stolon’s and 

rhizomes (FAO).  
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Parameters such as fraction of incoming solar radiation intercepted by leaf canopy and 

maximum leaf photosynthetic rate were based on published values for light extinction coefficient 

(k) and radiation use efficiency (RUE) for little bluestem (Kiniry et al., 2002). The fraction of 

incoming solar radiation intercepted by canopy was calculated following Beer’s Law: 

 LAIkeFraction  1     [1] 

where k = 0.36, RUE = 3.4 g MJ
-1

, LAI = Leaf Area Index = 2.9 . LAI is defined as changes in 

leaf canopy and it is function of plant density and growing degree days. The fraction of incoming 

solar radiation when calculated, we obtained = 4.63. RUE is defined as the increase in 

aboveground dry weight with an increase in unit of photosynthetically active radiation (PAR) 

and RUE quantifies the biomass production with an assumption of sufficient nutrient 

management. The maximum leaf photosynthetic rate (LFMAX) was calculated using the canopy 

model as adapted from Boote and Jones (1987). 

   RUEe
k

PGLF LAIk

C
*1

1
max      [2]  

where PGc = amount of photosynthetically active radiation hitting the leaf and it is assumed to be 

2000 J m
-2

 s
-1

, and LFmax is the maximum value (mg CO2 m
-2

 s
-1

), and RUE = 3.4 g MJ
-1

. Using 

Eq [2], we obtained LFmax = 1.48 mg CO2 m
-2

 s
.1
 (Table 1). In addition, a base temperature of 

12˚C, optimum temperature of 25.8˚C and thermal units to reach maturity was 1800 degree days 
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as taken from Kiniry et al. (2002). The photoperiod requirement for plant growth, culm 

elongation, and flower elongation for little bluestem was taken as 13-15 h (Phan, 2000).  

Soil data from the nine patches was imported in DSSAT and a .soil file with multiple soil 

profiles was created. Initial plant weights as measured on the first sampling date in each growing 

season were used to initialize the conditions of each patch. In addition, to account for the effects 

of grazing, the amount of biomass consumed by livestock on an animal unit (AU) basis was 

estimated to be 12 kg AU
-1

 d
-1

 and forage disappearance was estimated at 12 kg AU
-1

 d
-1

. 

Disappearance of biomass could be due to trampling effects and biomass eaten by other animals 

or insects rather than livestock animals. The stocking rate, in terms of animal units (AU), was 

calculated based on average weight of the cows, average calving dates and weaning weights for 

each pasture: 

ha

paircalfcow
rateStocking

87.6

/1
       [3] 

  05.1
1000

1001155

1000

100








cowofweight
AUCow     [4] 

  175.0
1000

10075

1000

100








calfofweight
AUCalf     [5] 

Therefore, the combined consumption and disappearance of biomass based on equation 3, 

4 and 5 was estimated at 4.30 kg ha
-1

 d
-1 but due to an error in calculation, for the simulation for 

live mass in this dissertation, we used the value of 9.84 kg ha
-1

 d
-1

. Grazing was represented in 
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the model by removing the total value of consumption and disappearance of biomass from the 

leaf and stem state variables in the model on a daily basis. The value of 9.84 kg/ha/day was 

constant for each patch. For initializing soil moisture, the measured values at four different 

depths (5, 10, 20 and 50 cm) for each patch on the first vegetation sampling date of each season 

were used. There were some missing values in the soil moisture data, so we used two 

approaches: i) for missing data at 20 cm, we used a multiple linear regression model with 10 and 

50 cm data as independent variables and 20 cm as the dependent variable and ii) for missing data 

at 50 cm in one patch, we used 50 cm data from the remaining two patches in the same pasture 

and 20 cm data from the same patch in multiple linear regression models.  

Initialization of values 

The aboveground biomass and belowground biomass at the start of each season were 

initialized by setting the MOW parameter in the .GOT file. For initializing, we used the initial 

aboveground biomass measured in each patch during the first sampling event of each year. The 

MOW parameter is defined as the amount of stubble remaining after harvest in the prior year and 

includes the above and below-ground biomass. For belowground biomass, we estimated the 

initial belowground biomass based on biomass of the rhizomes, and upper and lower roots 

measured for big bluestem in tallgrass prairie in Kansas (Hayes, 1986). These estimated values 

were constant for each location. We simulated that there is no effect of nitrogen on our study. 

Soil organic matter was modeled using the Parton model from the Century-SOM module (Parton 

et al., 1987). 
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Parameterization of values 

The CROPGRO forage model adapted for palisade grass was used in our study (Pequeno 

et al., 2014). We adjusted some parameters including the maximum leaf photosynthetic rate, base 

temperature, and first optimum temperature based on values for little bluestem from Kiniry et al. 

(2002). We did not modify the growth partitioning parameters (YLEAF, YSTEM and YSTOR 

values) from Pequeno et al. (2014).  The MVS parameter (hypothetical number of leaves left on 

a primary tiller axis after harvest) was defined in the MOW file and was set at 2. Similarly, the 

temperature have effects on leaf area expansion and internode elongation resulting in change in 

specific leaf area (SLA). The base temperature that affects SLA was kept at 10.3˚C and optimum 

temperature of 24.2˚C when expansion occurred at optimum rate. The optimized value for 

specific leaf area of cultivar was taken as 190 cm
2
 g

-1
 under standard growth conditions with 

optimum temperature, water and high light for early vegetative phase. The specific leaf areas 

representing the thinnest and thickest leaves under low and high light respectively were set to 

340 and 139 cm
2
 g

-1
. 

Statistical evaluation of model performance  

Simulated live mass and soil moisture were compared with measured live mass and soil 

moisture. For evaluating model performance, we used root mean square error (RMSE), 

coefficient of determination (R
2
), the ratio of measured and simulated data, and the Willmott 

agreement index (d-statistic) (Willmott et al., 1985). RMSE is calculated as: 
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where N is the total number of observations, Yi is observed value while Ŷi is predicted value 

simulated by model. Better models have smaller RMSE values. The Willmott agreement index is 

calculated as follows: 
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where N is the total number of observations, Yi is measured data while Ŷ is the simulated value 

and Ȳ is the mean of the measured data. A d index near one represents a good model.  

Results  

Precipitation patterns 

The cumulative precipitation was approximately 50 mm above average by end of April 

2012, creating favorable conditions for early season vegetative growth as seen in Fig 1. 

However, below average rainfall in end of May 2012 resulted in cumulative precipitation falling 

below average. There was an increase in precipitation deficit in the months of June and July and 

the deficit reached approximately 150 mm by end of July. There was some precipitation in the 

middle of August of 2012 but by end of 2012, the cumulative precipitation was approximately 
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300 mm below average. Whereas, the cumulative precipitation was near or above average over 

throughout (Fig. 1). 

Simulation of live mass and comparison with observed live mass  

In 2012, there was high live mass at the beginning of growing season for all the patches 

(Fig 2). The observed live mass peaked to as high as 6000 kg ha
-1 

on 5
th

 and 19
th

 July, 2012. The 

simulated live mass for 2012 ranged from 0–5000 kg ha
-1

 (Fig. 2), with most of the locations 

within 0–4000 kg ha
-1

. The simulated model worked well in response of the difference between 

simulated and measured live mass for all the locations except for patch 1 of Pasture 9 and 17, 

where the simulated model overestimated the live mass by approximately 1000 kg ha
-1 

(Fig 2). 

The simulation model explained approximately 0.6 proportional differences in the observed and 

simulated means and variance (Willmott’s d > 0.6) for pasture 5 with an exception of patch 5 for 

2012, which explained only 0.35 proportional difference in the observed and simulated means 

and variance (Table 2). The model explained at least 0.3 of difference between measured and 

simulated data in reference to Willmott’s d values and d- index of 0.3 suggested that it had poor 

agreement in the model for most of the patches. If we compared the ratio of observed and 

simulated, the model overestimated live mass (Table 2). In most of the forage model, the ratio of 

observed to simulated values were taken in consideration for evaluating the performance of 

model. 

  In 2013, there was steady increase of measured live mass through the growing season, it 

peaked in the latter part of growing season. The measured live mass reached as high as ~ 8000 
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kg ha
-1

 on September 15, 2013 with the range from 0–6000 kg ha
-1

 for most of the locations. The 

simulation model performed better for live mass compared to year 2012 (Fig 3). The range of the 

simulated live mass was 0–6000 kg ha
-1

 for all the patches. The simulated model was better in 

2013 than in 2012 at explaining the variability of live mass for pasture 9 and 5 (Table 2) as 

shown by the higher Willmott’s d values. For pasture 17, the model performed fairly poor for 

both years (d < 0.6). If we compared the ratio of observed and simulated live mass, the model 

was relatively unbiased for patch 1 and 3 of Pasture 5 (~ 1:1 ratio), but for other patches, it 

overestimated live mass (Table 2).   

Soil Moisture Dynamics 

During 2012, near surface, i.e. 5 cm, soil moisture reached maximum values around 0.30 

cm
3
 cm

-3
 or less in most patches for the early part of growing season (Fig. 4). A fairly extreme 2-

month dry period began in mid-June, and soil moisture levels dropped to 0.10 cm
3
 cm

-3
 or less 

by mid-August. We saw the similar dynamics for simulated soil moisture (Fig 4). Most of the 

time in 2012, the model underestimated soil moisture. The model explained at least 0.7 of 

difference between measured and simulated data (Willmott et al., 2012) for all the locations in 

2012 (Table 3) in reference to Willmott’s d values. As far as ratio of observed and simulated soil 

moisture, we found that both simulated and observed soil moisture are mostly on ~1:1 ratio. We 

also saw the similar dynamics for other depth (10-20 cm, 20-50 cm, and >50 cm) as shown in 

Appendix (Fig. 1, 3 and 5 of CHAPTER IV).  
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 We observed the soil moisture as high as 0.4 cm
3
 cm

-3
 in the early and middle part of 

growing season of 2013 while for simulated soil moisture, it was high as 0.5 for 2013 in the early 

and middle part of growing season (Fig. 5) while for 2012, the soil moisture reached maximum 

values of 0.3 cm
3
 cm

-3
 on the surface. The soil moisture dropped to as low as 0.1 cm

3
 cm

-3
 during 

September and October of 2013.  The simulated model underestimated soil moisture in most of 

the locations (Fig. 5), expect the seasonal trends are mostly as expected.  The model explained at 

least more than 0.8 of difference between simulated and observed data and model with d-index 

near one indicates a good model prediction. The wetting and drying effects were same for 

simulated and measured soil moisture for other depth (10, 20, and 50 cm) for 2013 as shown in 

Appendix (Fig. 2, 4 and 6 of CHAPTER IV). The RMSE for soil moisture was less than 0.03 

cm
3
 cm

-3
 for most of the locations. Similarly, the ratio of observed and simulated soil moisture 

were almost ~ 1: 1 (Table 3). 

Discussion 

  The drought conditions which developed starting in late June of 2012 resulted in the 

decline in both measured and simulated live biomass (Fig. 2). The severe drought in 2012 could 

have decreased the accuracy of the predictions of live mass due to incomplete representation of 

drought effects. Similar difficulties have been observed in related studies. For example, there 

was under prediction of peak standing crop in Wyoming, USA in 2000 due to severe drought 

using GPFARM forage growth model (Andales et al., 2006). The model also could not simulate 

late-season recovery of vegetation in the drought year 2001.  
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Another potential deficiency in the simulations is that they do not account for the 

prescribed fire treatment and its potential effects on live mass. The transient maxima hypothesis 

states that periodic fires due to increased light availability and nutrient availability (Blair, 1997) 

can enhanced aboveground net primary productivity.  Therefore, the prescribed fire treatment 

might have influenced live mass in our study through alterations of light and nutrient availability 

that were not represented in the model. Grass growth is sensitive to day lengths (Marousky et al., 

1992), and the 14 h photoperiod adapted for our study might not be optimal. Furthermore, 

correctly predicting the impacts of grazing on live mass is complicated by uncertainties about 

consumption rates and selective grazing influenced by the patch burn management (Fuhlendorf 

and Engle, 2004). In addition, we have not accounted for the shading effects caused by standing 

dead biomass and the effects of nitrogen in the study area.  

Cumulative precipitation was near or above average throughout 2013, and the model 

performed slightly better in 2013 for most of the locations compared 2012, as evidenced by the 

Willmott’s d values. But, still the accuracy of the biomass estimation was relatively poor (d < 

0.75) compared to prior studies in which the model was calibrated for a particular grass species. 

The CROPGRO model was able to simulate biomass for palisade grass in Piracicaba, Brazil for 

2005- 2008 with Willmot’s d = 0.83 (Pedreira et al., 2011).The CROPGRO model was able to 

simulated biomass for guinea grass at the same study site  from 2003 to 2004 with d of 0.98 

(Lara et al., 2012). The same model adapted for Xaraes cultivar of palisade grass improved the 

simulation of biomass for both irrigated and rainfed conditions at the same study sites from 2011 
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to 2013 with d of greater than 0.90 (Pequeno et al., 2014). Improved agreement for tallgrass 

prairie could likely to be attained if we calibrated the model parameters using the observed live 

mass data.  

The model effectively simulated soil moisture with the d index for the 5 cm depth 

typically greater than 0.8 (Table 3). There is better performance in 2013 than 2012 as we also 

saw for live mass. The better performance of the model for simulating soil moisture than for live 

mass could be related to the fact that the soil properties were measured for each location whereas 

there was no site-specific calibration done for any of the plant parameters. The CERES-Maize 

model of DSSAT v 3.5 was used to simulate soil moisture content in the central region of 

Thailand for 1999 and 2000 and both simulated and observed soil moisture showed similar 

variation with depth and time although that study did not provide the statistical measure for 

comparing for simulated and observed soil moisture data. The simulated soil moisture were 

within the 95% confidence interval of the observed data (Asadi and Clemente, 2003). In 

southwestern Ontario, DSSAT v. 4.5 simulated the soil water content for 2000 under free tile 

drainage and controlled tile drainage with sub-irrigation with d index of 0.72 and 0.74 

respectively for depth of 0–30 cm, while for 2001, it was 0.73 for free tile drainage and 0.83 for 

controlled tile drainage in corn and soybean (Liu et al., 2011). This result from the study at 

Ontario is consistent with our study suggesting that the DSSAT models accurately simulate soil 

moisture.  
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Conclusion 

The results of this study suggest that improved plant and grazing parameters will be 

needed in order for the CROPGRO perennial forage model to be useful for near time forecasting 

of forage production in rangeland. The next step to enhance this simulation model would be 

calibrating the model with the measured live mass data from 2012-2013 and then using 

additional site-years of data to validate the predictions of potential forage production for the 

growing season. The B. brizantha version of CROPGRO perennial forage model, although 

adapted for little bluestem, did not accurately simulate the live mass for tallgrass prairie in this 

study. The severe drought and uncertainties about consumption rates and selective grazing 

influenced by the patch burn management could have complicated live mass estimation. Though 

the CROPGRO perennial forage model has proven useful in simulating forage production in 

study sites in South America, the model requires further parameterization to effectively simulate 

forage production in tallgrass prairie in Southern Great Plains of the United States. The results 

from simulation of soil moisture data suggest that the CROPGRO perennial forage model 

accurately described soil moisture dynamics. We recommend further improvement of plant and 

grazing parameters based on the observed live mass data collected in this study to facilitate 

improved forage predictions in tallgrass prairie. 

  



86 
 

REFERENCES 

Adiku, S.G.K., Ahuja, L.R., Dunn, G.H., Derner, J.D., Andales, A.A, Garcia, L., and Bartling, 

P.N.S. (2011). Parameterization of the GPFARM-Range Model for simulating rangeland 

productivity. Methods of Introducing System Models into Agricultural Research, 209-

228.  

Alhamad, M. N., Stuth, J., & Vannucci, M. (2007). Biophysical modelling and NDVI time series 

to project near‐ term forage supply: spectral analysis aided by wavelet denoising and 

ARIMA modelling. International Journal of Remote Sensing, 28(11), 2513-2548.  

Andales, A. A., Derner, J. D., Ahuja, L. R., & Hart, R. H. (2006). Strategic and tactical 

prediction of forage production in northern mixed-grass prairie. Rangeland Ecology & 

Management, 59(6), 576-584.  

Blair, J. M. (1997). Fire, N availability, and plant response in grasslands: a test of the transient 

maxima hypothesis. Ecology, 78(8), 2359-2368. 

Dahl, B. E. (1963). Soil Moisture as a Predictive Index to Forage Yield for the Sandhills Range 

Type. Journal of Range Management, 16(3), 128-132. doi: 10.2307/3895105 

Fuhlendorf, S. D., & Engle, D.M. (2004). Application of the fire–grazing interaction to restore a 

shifting mosaic on tallgrass prairie. Journal of Applied Ecology, 41(4), 604-614.  

Gillen, R. L., McCollum, F. T., Brummer, J. E. (1990). Tiller defoliation patterns under short 

duration grazing in tallgrass prairie. Journal of Range Management, 95-99.  

Havstad, K., P., D., Allen-Diaz, B., Bartolome, J., Bestelmeyer, B., Briske, D.,, Huntsinger, L. 

(2009). The Western United States rangelands, a major resource. Grasslands: Quietness 

and Strength for a New American Agriculture. Soil Science Society of America: 

Madison, WI, USA, 75-93.  

Hayes, D. C. (1986). Seasonal root biomass and nitrogen dynamics of big bluestem (Andropogon 

gerardii Vitman) under wet and dry conditions: Kansas State Univ., Manhattan (USA). 

Hoogenboom, G. (2000). Contribution of agrometeorology to the simulation of crop production 

and its applications. Agricultural and forest meteorology, 103(1), 137-157.  



87 
 

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L.A., Ritchie, 

J. T. (2003). The DSSAT cropping system model. European journal of agronomy, 18(3), 

235-265.  

Kiniry, J. R., Johnson, M. V. V., Venuto, B. C., & Burson, B. L. (2013). Novel application of 

ALMANAC: Modelling a functional group, exotic warm-season perennial grasses. 

American Journal of Experimental Agriculture, 3(3), 631.  

Kiniry, J.R., Sanchez, H., Greenwade, J., Seidensticker, E., Bell, J.R., Pringle, F., Rives, J. 

(2002). Simulating grass productivity on diverse range sites in Texas. Journal of soil and 

water conservation, 57(3), 144-150.  

McKeon, G. M., & Howden, S.M. (1992). Adapting grazing management to climate change and 

seasonal forecasting. Paper presented at the Proceedings of the 7
th

 Biennial Conference of 

the Australian Rangeland Conference. Cobar, NSW. 

Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper, C. S., Hagimoto, Y. ,& 

Zreda, M. (2013). State of the art in large-scale soil moisture monitoring. Soil Science 

Society of America Journal, 77(6), 1888-1919.  

Pequeno, D. N. L., Pedreira, C. G. S., & Boote, K. J. (2014). Simulating forage production of 

Marandu palisade grass (Brachiaria brizantha) with the CROPGRO-Perennial Forage 

model. Crop and Pasture Science, 65(12), 1335-1348.  

Phan, A. T. (2000). Genetic diversity of blue grama, Bouteloua gracilis, and little bluestem, 

Schizachyrium scoparium, as affected by selection.  

Rogler, G. A., & Haas, H. J. (1947). Range production as related to soil moisture and 

precipitation on the Northern Great Plains. J. Amer. Soc. Agron, 39, 378-389.  

Rymph, S. J., Boote, K. J., Irmak, A., Mislevy, P., & Evers, G.W. (2004). Adapting the 

CROPGRO model to predict growth and composition of tropical grasses: developing 

physiological parameters. Paper presented at the Proceedings. 

Sala, O. E., Yahdjian, L., Havstad, K., & Aguiar, M. R. (2017). Rangeland Ecosystem Services: 

Nature’s Supply and Humans’ Demand Rangeland Systems (pp. 467-489): Springer. 



88 
 

Seligman, N. G., & Keulen, H. V. (1980). 4.10 PAPRAN: A simulation model of annual pasture 

production limited by rainfall and nitrogen. Simulation of nitrogen behaviour of soil-plant 

systems, 192.  

Stuth, J. W., Angerer, J., Kaitho, R., Jama, A., & Marambii, R. (2005). Livestock early warning 

system for Africa rangelands. Monitoring and predicting agricultural drought: a global 

study, 283-296. 

Torell, L. A., McDaniel, K. C., & Koren, V. (2011). Estimating Grass Yield on Blue Grama 

Range From Seasonal Rainfall and Soil Moisture Measurements. Rangeland Ecology & 

Management, 64(1), 56-66. doi: 10.2111/REM-D-09-00107.1 

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., 

Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of 

Geophysical Research: Oceans, 90(C5), 8995-9005.  

 

  



89 
 

 

Table 1: Model parameter names, definition, values for base and optimum temperatures, photoperiod effects on 

vegetative partitioning, and maximum leaf photosynthetic rate for our study. 

Name Definition Values  Source 

PRO_ _ G ‘Normal growth’ protein conc ; 

fraction of tissue (leaf, LF; root, RT; 

stem, ST; storage organ, SR) 

LF = 0.16, RT = 0. 04, ST 

= 0.08, SR = 0.092 

(Pequeno et al., 2014)  

PRO_ _ I ‘Maximum protein concentration of 

tissue 

LF = 0.24, RT = 0.101, ST 

= 0.12, SR = 0.092 

(Pequeno et al., 2014) 

PRO _ _ F ‘Final’ protein concentration of tissue  

(at senescence) 

LF = 0.035 , RT = 0.022, 

ST = 0.025 , SR = 0.056 

(Pequeno et al., 2014) 

 

Tb Base temperature for vegetation 

development (˚C) 

12.0 (Kiniry et al., 2002) 

T01 First optimum temperature for 

vegetative development (˚C) 

25.8 (Kiniry et al., 2002) 

T02 Second optimum temperature for 

vegetative development (˚C) 

40.0 (Kiniry et al., 2002) 

TM Maximum temperature for vegetative 

development (˚ C) 

45.0 (Kiniry et al., 2002) 

LFMAX Maximum leaf photosynthetic rate at 

30 ˚C, 350 ppm CO2, and high light 

1.48 Calculated 
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Table 2: Summary statistics for simulated and observed live mass from 2012-2013 in Stillwater, Oklahoma 

Pasture-Patch Year RMSE  

(kg ha
-1`

) 

R
2
 Ratio  

(obs. /sim.) 

 

Willmot’s d 

5-1 2012 1579 0.47 0.37 0.58 

 2013 1762 0.21 0.99 0.63 

5-3 2012 1243 0.36 0.67 0.60 

 2013 2143 0.12 0.96 0.58 

5-5 2012 1924. 0.38 0.37 0.51 

 2013 1936 0.40 0.73 0.68 

9-1 2012 2468 0.30 0.22 0.32 

 2013 1819 0.41 0.62 0.63 

9-3 2012 2169 0.14 0.44 0.44 

 2013 2189.5 0.44 0.63 0.67 

9-5 2012 806.8 0.52 0.55 0.73 

 2013 1092.4 0.44 0.51 0.73 

17-1 2012 2714 0.38 0.22 0.35 

 2013 3178.9 0.20 0.61 0.43 

17-3 2012 1276.1 0.10 0.72 0.51 

 2013 3097.0 0.12 0.53 0.36 

17-5 2012 1691.7 0.30 0.46 0.55 

 2013 2782.2 0.40 0.56 0.55 

 Average 1760 0.34 0.56 0.59 
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Table 3: Summary statistics for simulated and observed soil moisture at 5 cm  from 2012-2013 in OK 

Pasture-Patch Year RMSE  

(cm
3
 cm

-3
) 

R
2
 Ratio  

(obs. /sim.) 

Willmot’s d 

5-1 2012 0.03 0.65 0.96 0.89 

 2013 0.06 0.66 0.87 0.83 

5-3 2012 0.04 0.61 0.83 0.80 

 2013 0.04 0.73 0.94 0.92 

5-5 2012 0.04 0.65 0.88 0.81 

 2013 0.05 0.62 0.94 0.85 

9-1 2012 0.05 0.5 0.81 0.68 

 2013 0.07 0.59 0.78 0.78 

9-3 2012 0.05 0.33 1.31 0.68 

 2013 0.07 0.56 0.79 0.79 

9-5 2012 0.02 0.57 1.02 0.86 

 2013 0.04 0.54 0.84 0.84 

17-1 2012 0.03 0.64 1.21 0.85 

 2013 0.04 0.65 1.09 0.88 

17-3 2012 0.04 0.51 0.77 0.74 

 2013 0.04 0.6 0.83 0.82 

17-5 2012 0.03 0.69 1.14 0.88 

 2013 0.05 0.62 1.09 0.88 

 Average 0.04 0.58 0.91 0.81 
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Fig. 1: Cumulative precipitation for 2012 and 2013 at the Marena station of Oklahoma Mesonet along with 

30 year average monthly precipitation for the site 
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Fig. 2: Simulated and observed live mass (g m
-2

) for year 2012 at the tallgrass prairie in Stillwater, 

Oklahoma for each patch of each pasture.  The black line represents the simulated live biomass and black 

dot represents the measured live mass.  
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Fig. 3:  Simulated and observed live mass (g m
-2

) for year 2013 at the tallgrass prairie in Stillwater, 

Oklahoma for each patch of each pasture.  The black line represents the simulated live biomass and black 

dot represents the measured live mass 



95 
 

 

Fig. 4: Simulated and observed soil moisture for year 2012 at the tallgrass prairie in Stillwater, Oklahoma. 

The red line represents the simulated soil moisture whereas blue color represents the measured soil 

moisture 
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Fig. 5: Simulated and observed soil moisture for year 2013 at the tallgrass prairie in Stillwater, Oklahoma. 

The red line represents the simulated soil moisture whereas blue color represents the measured soil 

moisture 
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CHAPTER V 
 

 

GENERAL CONCLUSION 

Grasslands and grazing systems are essential to agricultural communities in the 

United States Southern Great Plains (SGP) and in similar climatic regions around the 

world. In the SGP states of Kansas, Oklahoma, and Texas, cattle and calf production 

added about $100 billion to the economy in 2011. Additionally, hay production in 2011 

was 10 million Mg which added another $1 billion to the region’s economy. The SGP 

contains 55 million ha of total pasture area, including permanent pasture, and cropland 

used for pasture and pasture woodland. Of that 55 million ha, 9 million ha of pasture are 

located in Oklahoma (NASS-USDA, 2012). Wise management of these grasslands and 

grazing systems is necessary not only for economic reasons, but also to conserve soil, 

protect water quality, and maintain ecosystem services (Belsky et al., 1999; Follett and 

Reed, 2010; Worrall et al., 2007). However, grassland management in the SGP is 

challenging because the variable climate creates large uncertainties regarding the vegetat 

ion productivity both within and between seasons.  
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 In our first study, we examined the potentials of estimating aboveground 

biomass and fuel moisture content in tallgrass prairie and the study revealed that both the 

SMLR and ANN models used in our study effectively estimated seasonal changes in 

above-ground biomass (AGB) and fuel moisture content (FMC). The models, developed 

from DOY, CH, NDVI, and percent reflectance in five bands, were able to estimate AGB 

and FMC for tallgrass prairie in Oklahoma with accuracy comparable to that observed in 

similar studies at other grassland sites. ANN proved better in estimating FMC than 

SMLR, while for AGB, ANN did not result in substantialy improved estimates in the 

validation set for our study area. Both types of  models underestimated AGB for levels 

above 600 g m
-2

 and  underestimated FMC for levels above 150%. Despite these 

limitations, the models developed here have been validated using data spanning nine 

large patches with different burn histories across three different pastures in two years 

with distinctly different growing conditions. Given this relatively large variance in the 

underlying datasets, these models should be useful for nondestructive estimation of AGB 

and FMC in other similar grassland environments, particularly when monitoring large, 

heterogenous areas for grazing management or wildfire preparedness. 

The second study described live fuel moisture content (LFMC)  and live to dead 

transition as function of soil moisture and we found out that temporal dynamics of 

LFMC, live fuel mass, and dead fuel mass in tallgrass prairie revealed strong 
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relationships between fuel bed parameters and soil moisture, expressed as fraction of 

available water capacity (FAW).  LFMC exhibited a nonlinear, threshold-type 

relationship with FAW, with LFMC being insensitive to FAW at FAW levels above 0.56 

and positively related to FAW below that threshold. In addition, this study provides a first 

step toward understanding the causal mechanism of live to dead fuel transition in the 

growing season in relation to FAW.  Live to dead fuel transitions occurred around a FAW 

value of 0.34, with the rate of transition increasing approximately linearly as FAW 

dropped below that threshold. Estimating LFMC and transferring live fuels to dead based 

on observed FAW could contribute to better dynamic representations of fuel bed 

parameters in fire danger models. Improved fire danger ratings could enhance wildfire 

preparedness and response, which could help reduce the devastating impacts of wildfire 

on property and lives. 

In the third study, we evaluated the potential of an existing forage model to see if 

we can simulate live mass and soil moisture using the previously calibrated plant 

parameters from the literature. The results indicated that improved plant and grazing 

parameters will be needed in order for the CROPGRO perennial forage model to be 

useful for near time forecasting of forage production in rangeland. The next step to 

enhance this simulation model would be calibrating the model with the data from 2012-

2013 and then using additional site-years of data to validate the predictions of potential 

forage production for the growing season. The B. brizantha version of CROPGRO 
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perennial forage model, although adapted for little bluestem, did not accurately simulate 

live mass for 2012 and 2013. The severe and uncertainties about consumption rates and 

selective grazing influenced by the patch burn management could have complicated in 

live mass estimation. Though the CROPGRO perennial forage model was useful in 

simulating forage production in study sites in South America, the model requires 

improved parameter estimates to accurately simulate forage production in tallgrass prairie 

in Southern Great Plains of the United States. In contrast, the results from simulation of 

soil moisture suggest that the CROPGRO perennial forage model was useful for soil 

moisture prediction.  
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APPENDICES 
 

CHAPTER II 

Appendix A:  

 This appendix provides the connection weights to determine the importance of variables of interest 

as described in (Gevrey et al., 2003). This method involved the neural network with eight input variables, 

15 hidden neurons and one output neuron with the connection weights as shown below, 

   Weights (AGB)  

Output                

 

 CH NDVI 460 nm 560 nm 660 nm 830 nm 1650  nm Output 

Hidden 1 -0.46 -1.45 -0.94 0.99 0.69 0.78 -1.14 -1.12 0.93 

Hidden 2 -0.17 0.01 0.18 0.19 0.77 1.34 -0.09 -2.04 2 

Hidden 3 -0.24 1.33 1.06 0.37 0.39 0.41 1.12 -0.14 -1.78 

Hidden 4 -0.58 -0.82 0.56 -0.25 -0.29 0.053 -0.35 0.11 2.39 

Hidden 5 -1.32 0.4 0.51 -0.45 1.74 -1.04 0.87 -0.75 1.81 

Hidden 6  -0.22 -1.15 -0.7 0.33 -0.19 0.96 -0.20 -0.07 -1.43 

Hidden 7 -0.04 1.3 -0.3 0.86 -0.002 -2.24 -0.70 1.23 1.33 

Hidden 8 -4.35 0.44 -0.67 0.25 -0.32 0.81 -1.12 0.14 0.7 

Hidden 9 0.34 -0.51 -0.81 -1.73 0.96 0.67 0.13 1.04 1.74 

Hidden 10 -2.82 0.06 1.71 0.006 0.78 -0.75 1.07 -0.76 -0.9 

Hidden 11 -0.98 0.56 0.51 -1.37 1.33 0.92 -0.29 0.27 -2.04 

Hidden 12 -0.39 -1.04 -0.68 -0.69 -1.41 -0.54 -1.62 2.12 -1.56 

Hidden 13 -0.56 0.74 0.59 0.05 -1.65 0.60 0.77 1.38 1.62 

Hidden 14 -0.52 -1.02 0.07 0.3 0.19 -1.62 -0.44 -0.27 -1.07 

Hidden 15 2.42 0.65 1.19 -0.72 0.82 -0.41 -0.13 1.33 1.07 
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 Weights (FMC)   

 DOY CH NDVI 460 nm 560 nm 660 nm 830 nm 1650nm Output 

Hidden 1 -0.54 -1.21 -0.95 1.41 0.48 -0.59 -0.91 -0.42 -1.88 

Hidden 2 0.08 0.96 0.67 -1.03 0.22 1.13 0.68 -1.17 -1.82 

Hidden 3 -0.39 -0.13 0.08 -0.91 -1.3 -0.05 0.09 -1.01 -1.10 

Hidden 4 0.53 0.86 -0.39 1.95 -0.20 0.55 0.84 -0.38 -1.56 

Hidden 5 0.71 1.01 0.53 0.40 2.24 -0.22 0.18 -1.37 1.38 

Hidden 6  -0.73 1.04 -0.6 0.25 0.62 -1.0 -0.90 -0.14 -1.09 

Hidden 7 0.27 -0.45 -0.38 -0.16 0.75 -0.06 -0.21 1.4 -1.94 

Hidden 8 0.83 0.42 0.87 1.05 0.56 -1.24 -0.21 -0.11 -2.06 

Hidden 9 0.63 -1.05 0.72 -1.39 -0.43 0.25 -1.30 0.96 -1.5 

Hidden 10 1.93 -0.07 0.22 -0.63 -0.55 0.75 -0.39 -0.06 2.44 

Hidden 11 1.61 1.29 -1.18 0.07 -0.43 1.37 0.41 -1.70 -0.95 

Hidden 12 0.42 0.58 0.35 0.64 -0.02 -0.52 -1.32 0.87 1.40 

Hidden 13 3.73 -0.03 1.18 0.45 0.34 -0.21 -1.35 0.06 1.02 

Hidden 14 -2.37 -0.12 0.18 1.01 -0.67 0.19 -0.25 -0.47 1.63 

Hidden 15 -1.12 -1.36 -1.11 1.04 -0.077 1.27 -0.97 -1.04 1.08 
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In addition, ANN provides bias parameters which are enumerated as follow.  

bias AGB  FMC 

Hidden 1 -0.44 -0.53 

Hidden 2  0.90  1.12 

Hidden 3  0.24 -0.15 

Hidden 4 -0.20  0.41 

Hidden 5  0.25  1.39 

Hidden 6  -0.12  0.05 

Hidden 7 -0.09 -0.45 

Hidden 8  0.97  0.66 

Hidden 9  0.06 -0.40 

Hidden 10  0.19  1.06 

Hidden 11  0.79  2.07 

Hidden 12 -0.01 -0.77 

Hidden 13  0.30 -0.69 

Hidden 14 -0.07 -0.10 

Hidden 15  0.03  0.19 

Output neuron -0.10 0.28 
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CHAPTER   IV 

 

 

 

Fig. 1: Simulated and observed soil moisture for year 2012 at the tallgrass prairie at 10-20 cm depth in 

Stillwater, Oklahoma. The red line represents the simulated soil moisture whereas blue color represents the 

measured soil moisture 
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Fig. 2: Simulated and observed soil moisture for year 2013 at the tallgrass prairie for 10- 20 cm depth in 

Stillwater, Oklahoma. The red line represents the simulated soil moisture whereas blue color represents the 

measured soil moisture. 
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Fig. 3: Simulated and observed soil moisture for year 2012 at the tallgrass prairie for 20–50 cm depth in 

Stillwater, Oklahoma. The red line represents the simulated soil moisture whereas blue color represents the 

measured soil moisture. 
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Fig. 4:  Simulated and observed soil moisture for year 2013 at the tallgrass prairie for 20–50 cm depth in 

Stillwater, Oklahoma. The red line represents the simulated soil moisture whereas blue color represents the 

measured soil moisture 
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Fig. 5: Simulated and observed soil moisture for year 2012 at the tallgrass prairie for > 50 cm depth in 

Stillwater, Oklahoma. The red line represents the simulated soil moisture whereas blue color represents the 

measured soil moisture 
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Fig. 6:  Simulated and observed soil moisture for year 2013 at the tallgrass prairie for > 50 cm depth in 

Stillwater, Oklahoma. The red line represents the simulated soil moisture whereas blue color represents the 

measured soil moisture 
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