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Name: Shaikh Saad

Date of Degree: JULY, 2017

Title of Study: FERMION MASSES AND MIXINGS, LEPTOGENESIS AND BARYON NUM-
BER VIOLATION IN UNIFIED THEORIES

Major Field: Physics

Abstract: In this dissertation, we study physics beyond the Standard Model (SM) of particle physics to incor-
porate some of its unexplained phenomenon. Grand Unified Theories (GUTs) are natural extensions of the SM,
since gauge coupling unification can be realized in these theories. Also in GUTs, charged quantization can be
explained, the hierarchical pattern of the charged fermion spectrum may be understood due to unification of
quarks and leptons into same multiplet, extremely small neutrino mass naturally arises via the seesaw mech-
anism, the cosmological baryon asymmetry of the universe can be explained within the GUT framework and
some of the unified theories naturally include Dark Matter candidates. Here, we study several different unified
theories that are potential candidates for theories beyond the SM. First we study a class of unified models based
on the SO(10) gauge symmetry without the presence of the Higgs in the fundamental 10H representation, as
has been used in the literature for most of the SO(10) constructions. Instead, a vector-like fermion in the
spinorial representations 16 + 16 is introduced to accommodate flavor mixing. In this new framework, two dif-
ferent non-supersymmetric models and four inequivalent supersymmetric models are studied. This framework
provides insights into the fermion masses and mixings. Proton decay branching ratios are also analysed in this
context. Then we study a non-supersymmetric SO(10) model and show that the most economic Yukawa sector
of such theories consists of a real 10H , a real 120H and a complex 126H Higgs, provided that SO(10) is the only
symmetry of the theory. Usual constructions based on non-supersymmetric SO(10) models complexify these
Higgs fields, which require additional symmetry exterior to the original gauge symmetry. We show that, with
SO(10) being the only symmetry of the theory, a good fit to the full fermion spectrum can be achieved with
the economic Higgs sector mentioned above. Furthermore, gauge coupling unification is studied and within this
theory the leading proton decay branching ratios are found to be p → νπ+ and p → e+π0. Then we study
a class of unified models with SU(5) gauge symmetry and follow statistical approach to predict the fermion
spectrum from the theory. The Yukawa coupling matrices in this theory are assumed to be non-hierarchical,
that is structure-less. The observed hierarchies in the fermion masses and mixings are reproduced with only
three parameters of the theory that are assumed to be hierarchical. A detail Monte Carlo analysis shows that,
with Yukawa couplings being uncorrelated random variables obeying Gaussian distributions, all observables in
the fermion sector can be nicely reproduced. Then we study a minimal partial unified model based on the
SU(2)L × SU(2)R × SU(4)C gauge symmetry. A good fit to the full fermion spectrum is achieved, where the
seesaw mechanism is responsible for generating neutrino masses and Leptogenesis mechanism can account for
the observed cosmological baryon asymmetry of the universe. On top of the gauge symmetry, an imposed
global Peccei-Quinn symmetry U(1)PQ solves the strong CP problem and simultaneously provides the axion
as the Dark Matter candidate. We also study nucleon decay modes and nuetron-antineutron oscillation in this
framework.
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CHAPTER 1

INTRODUCTION

1.1 The Standard Model of Particle Physics

1.1.1 The Structure of the Standard Model

The Standard Model (SM) of particle physics is a highly successful theory to explain the nature at very short dis-

tances. Within our limitations of the technical ability, the SM so far is consistent with experimental observations

and describing physics at the microscopic level. The SM describes the electromagnetic, the strong and the weak

interactions. All the observed microscopic phenomena can be explained within these three forces. According to

the SM, matter is made of two types of elementary particles, the quarks and the leptons. Elementary particle

are the constituents that do not have any substructure. The quarks and the leptons are fermions, that is spin 1
2

particles. In the SM, there are three lepton doublets, {`−, ν`} (` = e, µ, τ) the electron with electric charge −1

and its associated neutrino which is electrically neutral. There exist two different types of quarks, the up-type

quarks that carry electric charge of + 2
3 and down-type quark with − 1

3 charge. Like the leptons, three quark

doublets are present in the SM, {q+ 2
3 , q−

1
3 } (q+ 2

3 = u, c, t and q−
1
3 = d, s, b). In addition to fermions (spin 1

2 ),

SM also contains bosons (particles with either zero or integer spin) of two different types, vector bosons (spin-1

particles) and scalar bosons (spin-0 particles). The force experienced between two fundamental matter particles

are caused by the exchange of gauge (vector) bosons. For different types of forces, different gauge bosons need

to be present. To explain our nature, the structure of the SM consists of the following gauge group:

SM ≡ SU(3)C × SU(2)L × U(1)Y . (1.1.1)

The strong interactions

The SU(3)C gauge group is responsible for the strong interactions. In addition to electric charge, particles that

have strong interaction must be charged under SU(3) group. This new quantum number is known as color

charge. Not all elementary particles are charged under the color group. This strong dynamics described by

SU(3)C gauge group is also known as Quantum Chromodynamics (QCD). Among the fermions, since quarks

carry color charge, this group acts on the quarks. Each type of quark form a fundamental representation of

SU(3)C . The strong interaction between two colored particles are exchanged by the gauge bosons, called the

1



gluons, GAµ (µ is the Lorentz index). Since gauge bosons belong to the adjoint representation of the group,

there exist eight gluons (A = 1− 8) since SU(3) group has eight generators.

The QCD is a renormalizable gauge theory described by the following Lagrangian:

LQCD = qj(iγ
µDµ −mj)qj −

1

4
FA µνFAµν , (1.1.2)

where, qj are the quark fields in the triplet representation and j = 1− 3 is the generation index. mj represents

the mass of the quark qj (we will briefly discuss about the mass generation at the later part of this section) and

the covariant derivative is given by:

Dµ = ∂µ − igstAGAµ . (1.1.3)

Here, gs is the gauge coupling constant, that determines the strength of the strong interaction and tA (A = 1−8)

are the SU(3) generators. These generators obey the usual SU(3) commutation relation [tA, tB ] = ifABCt
C ,

where fABC are the group structure constants. And the field strength, FAµν is given by

FAµν = ∂µG
A
ν − ∂νGAµ − gsfABCGBν GCν . (1.1.4)

From this Lagrangian Eq. (1.1.2), it is clear that, just like Quantum Eelectrodynamics (QED), the usual

physical vertex fermion-antifermion-gauge boson is present (here gauge bosons are the gluons, instead of photons

in QED). The dynamics of QCD is richer than QED, which is due to the non-abelian nature of the group. From

Eqs. (1.1.2) and (1.1.4), one can see that, 3-gluon and 4-gluon vertices are possible (unlike QED). It is due to

the presence of the G2 term in Eq. (1.1.4), that leads to cubic and quartic interactions in the QCD Lagrangian.

The electroweak interactions

The SU(2)L × U(1)Y part of the SM describes the unified weak and electromagnetic interactions. SU(2)L is

the weak isospin group, acting on the left-chiral fermions and U(1)Y represents the hypercharge group. The

interactions of SU(2)L group is carried by three gauge bosons W a
µ (a = 1 − 3), whereas the gauge boson

corresponding to U(1)Y group is Bµ. Left-chiral fermions are in the doublet representation of SU(2)L, where

as the right-chiral fermions are the singlets and all the fermions of the SM carry non-zero charge under U(1)Y .

In Table 1.1, we show the quantum numbers of all the fermions in the SM.

The dynamics of the SU(2)L × U(1)Y interactions is given by the following Lagrangian:

Lew = ψLiγ
µDµψL + ψRLiγ

µDµψR −
1

4
F a µνF aµν −

1

4
BµνBµν . (1.1.5)

With the field strengths,

Bµν = ∂µBν − ∂νBµ and F aµν = ∂µW
a
ν − ∂νW a

µ − gεabcW b
νW

c
ν . (1.1.6)
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uL
dL

,

cL
sL

,

tL
bL

 : (3,2, 1
6
)

uR, cR, tR : (3,1, 2
3
)

dR, sR, bR : (3,1, - 1
3
)νeL

eL

,

νµL
µL

,

ντL
τL

 : (1,2, - 1
2
)

eR, µR, τR : (1,1, -1)

Table 1.1: Quantum numbers of the fermions (spin 1
2 ) under SU(3)C × SU(2)L × U(1)Y .

Here εabc, the Levi-Civita tensor (completely antisymmetric) are the structure constants of the group SU(2)

and g being the gauge coupling constant of SU(2)L group. The covariant derivative is given by:

Dµ = ∂µ − igtaW a
µ −

i

2
g′Y Bµ. (1.1.7)

Where, g′ is the gauge coupling constant associated with the hypercharge group U(1)Y . The generators of the

groups SU(2)L and U(1)Y are represented by ta (a = 1− 3) and 1
2Y respectively. The SU(2) generators follow

the same commutation relation as mentioned above for SU(3) group, with the structure constants fABC being

replaced by εabc. Now, using the normalization of the generators as follows:

Tr[tatb] =
1

2
δab, (1.1.8)

the electric charge operator, Q can be written as:

Q = t3 +
1

2
Y. (1.1.9)

The hypercharge of the particles are presented in Table 1.1, so one can straightforwardly compute the electric

charge of these particles.

From the charged-current interactions in the Lagrangian Eq. (1.1.5), it is straightforward to show that the

eigenstates of the charged gauge bosons are

W± = (W 1 ± iW 2)/
√

2, (1.1.10)

and from the neutral-current interactions, the eigenstates of the two neutral gauge bosons are given by

Aµ = cos θWBµ + sin θWW
3
µ , (1.1.11)

Zµ = − sin θWBµ + cos θWW
3
µ . (1.1.12)

Aµ is the photon field and Zµ mediates the weak neutral-current interactions. Here, θW represents the Weinberg

angle defined as:

tan θW =
g′

g
. (1.1.13)
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As usual, in the Lagrangian Eq. (1.1.5) the left-chiral (ψL) and the right-chiral (ψR) fermion fields are

obtained by using the left and right projection operators defined as:

L =
1− γ5

2
; R =

1 + γ5

2
. (1.1.14)

As explicitly shown in Table 1.1, the left-chiral and right-chiral fermions in the SM have different transformation

properties under the gauge group, hence their interactions are different. This is why the bare mass term, which

is of the form mψLψR is forbidden in the Lagrangian, since this combination is not gauge invariant. This is

why the SM is a chiral theory, since the left-chiral and right-chiral fields behave differently under the SM gauge

group. The gauge bosons of the SM are also massless in the symmetric limit. It will be pointed out below that,

the mechanism that generates the fermion mass, is also responsible for generating gauge boson masses.

At low energy the SU(2)L × U(1)Y group spontaneously breaks down to U(1)em, that explains the electro-

magnetic interactions. To realize such breaking pattern, the SM should contain another type of particle known

as the Higgs field, φα (α = 1, 2) which is a scalar boson (spin-0 particle). This Higgs field is in the doublet

(fundamental) representation of SU(2)L and has hypercharge of 1
2 under U(1)Y .

φ =

φ+

φ0

 : (2,
1

2
). (1.1.15)

This spontaneously symmetry breaking scenario is know as the Brout-Englert-Higgs-Kibble mechanism [1–4]

(Higgs mechanism for short) and the electro-weak theory, based on the spontaneous broken of SU(2)L×U(1)Y

symmetry down to U(1)em symmetry is known as the Glashow-Salam-Weinberg (GSW) model [5–7].

The Higgs mechanism

Now we will explain the Higgs mechanism very briefly. The part of the SM Lagrangian that contains the

interactions involving the Higgs field is given by:

LHiggs = (Dµφ)†(Dµφ)− V (φ)− (ψLiyijψRjφ+ h.c.). (1.1.16)

Here, yij are the Yukawa coupling constants that represnt the interaction of the fermion with the Higgs field.

The most general gauge invariant renormalizable potential can be written as

V (φ) = −1

2
µ2φ†φ+

1

4
λ(φ†φ)2. (1.1.17)

When the Higgs field acquires a vacuum expectation value (VEV), 〈φ0〉 = v 6= 0, the SM gauge group is

spontaneously broken down to U(1)em group.

Due to this symmetry breaking, three of the four gauge bosons will acquire mass due to Goldstone-Nambu

theorem [8–11]. The remaining massless gauge boson corresponds to the photon. The mass of the gauge bosons
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can be computed from the Higgs Lagrangian Eq. (1.1.16) in a straightforward way. Using the definitions of

the eigenstates of the gauge bosons given in Eqs. (1.1.10) and (1.1.11), it can be easily shown that the Higgs

kinetic term contains the following terms

LHiggs ⊃
1

2
g2v2W+

µ W
−µ +

1

2
g2v2/ cos2 θWZ

µZµ (1.1.18)

=
1

2
m2
WW

+
µ W

−µ +
1

2
m2
ZZ

µZµ. (1.1.19)

As mentioned earlier, this same mechanism is responsible for generating fermion masses as well. Which can

be seen from the Lagrangian Eq. (1.1.16). This is obvious, since φ will be reaplced by its VEV, v. Due to

the symmetry breaking, the fermions get mass which is proportionality to the corresponding Yukawa coupling

strength (mf = v yf ). In the SM these Yukawa couplings are not determined, rather needs to be measured

experimentally.

In the SM, there exist only one Higgs doublet. Its mass can also be computed form the Lagrangian Eq.

(1.1.16), and is given by m2
H = λv2, where the quartic coupling λ in the SM is also a free parameter. Even

though the existence of the Higgs field was predicted many years ago, only recently it has been discovered in

the experiments at the Large Hadron Collider (LHC) [12, 13] and its mass is measured to be 126 GeV. All the

elementary particles predicted by the SM have been discovered and the prediction of the SM are experimentally

verified. So far all the measurements are completely consistent with theory.

1.1.2 Shortcomings of the Standard Model

Despite of the extreme success of the SM, still there are some observed phenomena, that can not be explained

by the SM. In the SM, the neutrinos are assumed to be massless. However, non-vanishing mass of the neutrinos

have been firmly confirmed through the oscillations experiments [121–123]. The Yukawa couplings in the SM

are completely arbitrary parameters. Among the nineteen free parameters in the SM, fourteen of them are

associated with the flavor sector, six quark masses, three charged lepton masses, four quark mixing parameters

(three mixing angles and a Dirac type CP violating phase). Since neutrinos are observed to have mass, it adds

another nine parameter into the theory, the three masses, three mixing angles and three CP-violating phases.

Due to this enormous freedom available in the Yukawa sector, the SM is completely unable to provide any

insight into the fermion masses and mixings. This shortcoming of the SM is known as the falvor puzzle. The

other parameter lies in the strong sector, known as the θ parameter. The θ parameter is associated with an

additional term in the QCD Lagrangian given by:

Lθ =
θ

16π2
FAµν F̃

Aµν , (1.1.20)

where, F̃Aµνρσ = 1
2εµνρσF

Aρσ. This operator violates CP and through loop diagram, this term contributes to
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the neutron electric dipole moment. From the experimental constraints on the neutron electric dipole moment,

θ parameter needs to be very small, θ � 10−9. Whereas, due to naturalness, this parameter is expected to be

of the order of one. Theoretically, there is no understanding, why this needs to be so small and this is known

as the strong CP problem.

Also, charge quantization is not self-explanatory within the SM. Experimentally, the charge of the electron

and the proton are the same, |1−Qe/Qp| < 10−21. Proton is not an elementary particle and it consists of three

quarks, two up-type quarks and a down-type quark. In principle there is no reason for the charges of electron

and the proton to be the same. The electric charge of the fundamental particles are computed from the formula

given in Eq. 1.1.9. Since electric charge is an experimentally measured quantity, the hypercharges in the SM

are assigned accordingly to match with the observed electric charge. In short, fundamental understanding of

the charge quantization is lacking in the SM.

Furthermore, other phenomenological observations, such as the existence of Dark Matter (DM) and Baryon

asymmetry of the universe can not be incorporated in the SM. The existence of the DM in the universe was

a really surprising result. It is found that only 4.9% of the total mass-energy of the known universe is made

up of ordinary matter. Among the rest, 26.8% consists of DM and rest is contributed by the dark energy.

The most convincing, as well as one of the earliest evidence of DM was discovered from the galactic rotation

curves [17]. The most recent accurate critical density determination of DM is obtained from the global fits of

cosmological parameters [18]. The density of cold, non-baryonic matter and the density of baryonic matter,

using the measurements of the partial distributions of the galaxies and the anisotropy of the cosmic microwave

background are found to be:

ΩDMh
2 ∼ 0.1186± 0.0020, (1.1.21)

ΩBMh
2 ∼ 0.02226± 0.00023, (1.1.22)

where, h represents the Hubble constant in the units of 100km/s.Mpc.

The matter-antimatter asymmetry of the universe is another mystery which can not be solved within the

SM. Our observed universe is matter dominated and the presence of the animatter is almost negligible. At the

very early stages of the history of the universe after the big bang, matter and antimatter were present with

the creation and the annihilation reactions in thermal equilibrium. The energies in the cooling plasma at some

later times started to become small enough for pair production to take place and hence, matter and antimatter

annihilated with a small portion of the matter left in the plasma. Detonating nb and nb as the baryon and

antibaryon numbers, the baryon asymmetry of the universe is defined as:

η = [
nb − nb
nγ

]T=3K , (1.1.23)
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where, nγ is the photon number. The baryon asymmetric parameter in today’s universe is measured [19,20] to

be:

η ∼ 6× 10−10. (1.1.24)

Theoretically, this asymmetry in the baryon number may be generated dynamically and known as baryoge-

nesis. There exist three necessary conditions to accommodate successful baryogenesis, known as the Sakharov

conditions [21], that are: (i) baryon number violation, (ii) C and CP violation and (iii) deviation from ther-

mal equilibrium. Within the SM there is not enough CP-violation that can incorporate the observed baryon

asymmetry given in Eq. 1.1.24, new source of CP-violation is needed beyond the SM.

These are some clear indications that the SM is not a complete theory and begs for extension for a more

complete theory and for better understanding of the nature.

1.1.3 Organization of this Dissertation

The purpose of this dissertation is to incorporate some of the unexplained phenomena of the SM. This is certainly

done by extending the SM. Particular attention is paid to explain the flavor puzzle, baryon asymmetry and

baryon number violation. To solve these shortcoming of the SM, the attempt taken in this dissertation is

by embedding the SM in to unified theories. In chapter 2, we study a new class of unified theories based

on the SO(10) gauge symmetry. These proposed new models provide insights into the fermion masses and

mixings, both the charged fermions and the neutrinos. Unlike the conventional SO(10) models, the Higgs boson

belonging to the fundamental representation, 10H is not present in this new class of models. Instead a vector-like

fermions in the 16 + 16 representation is introduced to induce the flavor mixing. A variety of scenarios, both

non-supersymmetric and supersymmetric, are studied within this framework. For symmetry breaking purpose,

126H Higgs is accompanied by either a 45H or a 210H of Higgs boson. Our analysis shows that this framework,

by utilizing either type-I or type-II seesaw mechanism, an excellent fit to the fermion masses and mixings can

be obtained with a limited number of parameters. To test and distinguish these flavor models, proton decay

branching ratios are also computed.

In chapter 3, we construct a realistic model, based on the SO(10) gauge group with the most economic

Yukawa sector. Here we work in the non-supersymmetric framework. The group theory of the SO(10) demands

that the Higgs fields belonging to the 10H and 120H representations are real (126H is inherently complex),

whereas most constructions seem to compleixify these fields, this complexification is done to reduce the number

of the parameters of the theory for the sake of predictability. However, this complxification demands additional

symmetry into the theory which is exterior to the original SO(10) gauge symmetry, either discrete or continuous

symmetry. In this work, we prove that, a realistic model can be built without extending the symmetry of the
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theory and the minimal Higgs sector of such a theory consists of a real 10H , a real 120H and a complex 126H .

A good fit to the fermion masses and mixings, including the neutrino sector is found. We also study the gauge

coupling unification and proton decay branching ratios that can be tested experimentally.

In chapter 4, we attempt to solve the flavor puzzle in light of anarchy hypothesis. Here, we develop a

class of unified models based on the SU(5) gauge symmetry. In these theories, the fundamental Yukawa

coupling matrices are assumed to be completely structure-less, that is, no hierarchy among the different entries

is assumed. The observed hierarchies of the fermion masses and mixings are incorporated by the only three

model parameters, that are assumed to be hierarchical. The Yukawa couplings are treated to be completely

uncorrelated random variables that follow Gaussian distributions. In our statistical analysis, we follow Monte

Carlo simulations and show that, the observed fermion masses and mixings in the charged fermion and the

neutrino sector can be reproduced that is in good agreement with the experimental data.

In chapter 5, we build a model based on a partial unified theory, known as the Pati-Salam model. The gauge

symmetry of this model is SU(2)L × SU(2)R × SU(4)C , and we work in the non-supersymmetric framework.

We build a minimal model and show that, it can explain the flavor data. To explain the neutrino mass, seesaw

mechanism is assumed, which together with Leptogenesis scenario can explain the baryon asymmetry of the

universe. Pati-Salam model, extended by the global U(1)PQ Peccei-Quinn symmetry can simultaneously solve

the strong CP problem and provide a Dark Matter candidate, which is the axion. Even though the gauge bosons

of the Pati-Salam theory do not mediate proton decay, nucleon decay can be originated due to the presence of

scalar diquarks and leptoquarks. Possible nucleon decay modes and neutron-antineutron oscillation are studied.

In chapter 6, we conclude.
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CHAPTER 2

NEW CLASS OF SO(10) MODELS FOR FLAVOR

2.1 Introduction

Grand unified theories [22–24] based on SO(10) gauge symmetry [25] are attractive candidates for physics

beyond the Standard Model (SM). These theories predict the existence of right-handed neutrinos needed for the

seesaw mechanism, and unify all fermions of a given family into a single irreducible multiplet, the 16–dimensional

spinor representation. Quarks and leptons are thus unified, as are the three gauge interactions of the SM. The

unification of fermions into multiplets suggests that SO(10) may serve as a fertile ground for understanding the

flavor puzzle. There are challenges involved, since in particular, large neutrino mixing angles should emerge

from the same underlying Yukawa structure that allows for small quark mixing angles. This indeed has been

realized in a class of SO(10) models with a minimal set of Yukawa coupling matrices [26–34], and we shall

provide a new class of models that achieves this in this paper. Since SO(10) admits an intermediate symmetry,

the Pati-Salam symmetry SU(4)c × SU(2)L × SU(2)R or one of its subgroups, unification of gauge couplings

can occur consistently even without low energy supersymmetry. Of course, SO(10) may be realized in the

supersymmetric context as well, in which case the intermediate symmetry breaking scale may be the same as

the unification scale. As far as the Yukawa sector of the theory is concerned, the two scenarios (non-SUSY

versus SUSY) are not all that different. In this paper we shall study a new class of SO(10) models addressing

the flavor puzzle both in the non-supersymmetric and in the SUSY contexts.

One of our motivations for the present study is the difficulty faced by a widely studied minimal renormalizable

supersymmetric SO(10) [35–37] grand unified theory. This theory has attracted much attention in the past due

to several attractive features which include:

• natural generation of neutrino masses and mixings through type I [38] and type II [39] seesaw mechanism;

• relation between neutrino and charged fermion mass matrices [26];

• good fit of fermion masses and mixings with an economic Yukawa sector with only two symmetric Yukawa

matrices [26–34];

• automatic and exact low energy R-parity conservation leading to a compelling dark matter candidate
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[40–44];

• connection of the b−τ Yukawa unification and large atmospheric mixing angle in scenarios with dominant

type II seesaw mechanism [45–47].

The Yukawa sector of this theory has only two symmetric matrices (in flavor space), involving a 10H and a

126H of Higgs bosons. It is natural to include a 210H for completing the symmetry breaking. In such a scenario,

unfortunately, once the constraints from the Higgs sector are properly taken into account, the model can be

ruled out [48–51], assuming that the low energy supersymmetric threshold corrections to the fermion masses

are negligible. With the relatively large Higgs mass mH = 125 GeV, the split supersymmetric scenario [52, 53]

of the minimal SO(10) model [54] is also found to be inconsistent [56,57]1.

One should not abandon the whole elegant grand unified program simply because the simplest supersym-

metric realization does not work perfectly. The usual way to rule in a theory that was ruled out is to increase

the particle content and thus the number of model parameters. This was the approach of [58], where a new

120-dimensional Higgs representation has been added to the minimal model.2 In this way the Yukawa sector

increases by one antisymmetric matrix, which gives sufficient freedom to fit the data.

In this paper [59] we will go, surprisingly, in the opposite direction, and ask ourselves, if it is possible to

fit the data with less, not more, Yukawa matrices. This paradoxical question has obviously a hidden proviso,

otherwise we would get no mixing at all. To account for the correct low energy mass spectrum, mixings, and

CP violation we will thus make use of an extra vector-like generation 16 + 16, similar to the one used in [60].

The difference with [60] is that we will assume the bilinear spinors 16a to be coupled with 126H instead of 10H .

In this way we may hope to describe neutrino masses and mixings in a pattern similar to the charged fermions,

which is one of the great achievements of the SO(10) framework.

We shall see that this decreasing of the number of Yukawa matrices at the expense of an extra vector-

like family can be successful and we will show several examples where it works. Although we will consider

different possible Higgs sectors and take some of their constraints seriously, we will not consider a combined fit

of the Higgs and Yukawa parameters, which can obviously pose extra restrictions. This more modest approach

nevertheless shows that SO(10) Yukawa sectors with a single Yukawa matrix can be realistic.

The rest of the paper is organized as follows. In Sec. II we present the key features of the new class of

SO(10) models. In Sec. III we set up the framework and the formalism. In Sec. IV we adopt a specific basis

that removes redundancies, which is well suited for numerical analysis of the flavor observables. Sec. V discusses
1BB thanks Ketan Patel for pointing this out.
2Another possibility, not yet fully explored, is to increase the Higgs sector parameters, for example with a 54H , see Ref [28] for

fermion fits.
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the constraints imposed on the SUSY models from the minimization of the Higgs potential. Sec. VI has our

numerical fits to the fermion masses and mixings for the six models analyzed. Finally, in Sec. VII we conclude.

2.2 New class of SO(10) models

The key feature of the new proposed models is the absence of 10H . In its place we introduce a 16+16 vector-like

fermions. In addition to a 126H , we employ either a 45H or a 210H for symmetry breaking. These fields have

non-trivial couplings to the vector-like fermions, which is needed to avoid certain unwanted relations among

down-type quark and charged lepton masses. Additional Higgs fields (e.g. 54H) are needed for consistent GUT

symmetry breaking, but these fields do not enter into the Yukawa sector. The Yukawa Lagrangian of our models

has a very simple form,

LYuk = 16 (ma + ηa45H) 16a + 16a Yab 126H 16b + 16 ȳ 126H 16 + h.c. (2.2.1)

corresponding to the use of 45H as the symmetry breaking field (in addition to the 126H field). Here a, b = 1−4

are the generation indices which include a 16 from the vector-like family. We thus see that the Yukawa sector

has one 4 × 4 matrix Yab, and two four-vectors ma and ηa. Since Yab can be chosen to be diagonal and real,

this amounts to 4 + 4 + 4 flavor mixing parameters. The Yukawa coupling 16 ȳ 126H does not have any effect

on the light fermion masses and mixings. While in the diagonal and real basis for Yab the vectors ma and ηa

are in general complex, these being related to GUT scale masses, one complex combination disappears from low

energy masses and mixings. One should add to this set two (real) VEV ratios (one from the two SM singlets of

45H and one for the up-type and down-type Higgs doublet VEV ratio from the 126H), and an overall scale for

the right-handed neutrino masses. We thus see that the model has 14 real parameters and 7 phases to fit 18

observed values among quark masses, quark mixings and CP violation, charged fermion masses, neutrino mass-

squard differences and mixing angles. Thus these models are rather constrained, yet we show that excellent fits

are obtained. It may be noted that the minimal supersymmetric SO(10) models with two symmetric Yukawa

coupling matrices involving 10H and 126H have 12 real parameters and 7 phases that enter into the flavor sector.

The basic structure of Eq. (2.2.1) can be realized in several other ways. We study all such SO(10) models

in this paper. The Higgs field 45H in Eq. (2.2.1) may be replaced by a 210H . In this case, since the 210H

contains three SM singlet fields, there are two ratios of VEVs from the 210H , which would increase the number of

parameters by one. These models may be realized with or without low energy supersymmetry. In the non-SUSY

models, the VEVs of 45H and 210H are real, while in SUSY models they are in general complex (thus increasing

the phase parameters to 8). In the SUSY models we find that although the 210H has two associated VEV ratios,

only one of the two is independent, due to symmetry breaking constraints arising from the superpotential. In
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SUSY versions, additional fields other than 126H and 210H used in the Yukawa sector are often required, in

order to avoid new chiral supermultiplets that remain light and spoil unification of gauge couplings. A summary

of the models that fit into this classification and studied here is given below. All models contain a 126H (plus

a 126H in the case of SUSY), in addition to the Higgs fields shown below.

A. Non-SUSY Model with 45H + 54H

B. Non-SUSY Model with 210H + 54H or 210H + 16H

C. SUSY Model with 45H + 54H + 16H + 16H

D. SUSY Model with 210H + 54H

E. SUSY Model with 210H + 16H + 16H

F. SUSY Model with 210H + 54H + 16H + 16H

The VEV of the SM singlet in 126H will be found a posteriori to be around 1013 − 1014 GeV in all models.

This has an effect on the choice of Higgs fields, especially in the SUSY models: Very simple Higgs systems used

for GUT symmetry breaking would lead to certain sub-multiplets having mass of order 1011 GeV, which would

spoil perturbative unification of gauge couplings in SUSY SO(10). The choice of “other Higgs fields" shown

above are in part guided by this not happening. Furthermore, in some simplistic SUSY cases, the Higgs doublet

mass matrix becomes proportional to other color sector mass matrix. Making a pair of Higgs doublets light

would then lead to making a pair of colored states light as well, which affects perturbative unification. Such

cases are avoided in the scenarios shown above. In each of the models listed above, seesaw mechanism may

be realized via either type-I or type-II chain. Such sub-classes will be denoted by a label I or II when needed.

Thus AI would refer to type-I seesaw in Model A, and likewise AII for type-II seesaw in the same model.

Models A and B are nonsupersymmetric, while models C–F are supersymmetric. For model A, in addition

to 45H , a 54H is needed to break SO(10) down to the SM without going through an intermediate SU(5)-

symmetric limit. In Model B which uses a 210H , an additional field, either a 54H or a 16H is needed for the

following reason. As noted already, 126H acquires a VEV of order 1013−1014 GeV, which can be ignored for the

study of GUT symmetry breaking at around 1016 GeV. A single 210H would break SO(10) down to one of its

maximal little groups, such as SU(5)×U(1), SU(4)C ×SU(2)L×SU(2)R etc. The fermion mass matrix would

then reflect this unbroken symmetry, which is not realistic in the light fermion spectrum. Addition of a 54H

(or a 16H) with a GUT VEV would reduce the surviving symmetry and help with realistic fermion masses. For

SUSY SO(10), it is not a viable model if the symmetry is only broken by 45H+54H , since in this case, the Higgs

doublet (1,2,1/2) and the Higgs octet (8,2,1/2) mass matrices become identical. So one cannot make the MSSM

doublet fields light without also making the octet fields light. To break this degeneracy one needs to extend the

Higgs sector. For this purpose in model C, we enlarge the Higgs sector by adding 16H + 16H . SUSY SO(10)

model with 210H + 126H + 126H is also not a consistent model, because with the requirement vR ∼ 1013−14
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GeV, the octet (8, 3, 0) Higgs field becomes light with a mass of order ∼ 1010−11 GeV, so the theory does not

remain perturbative up to the GUT scale. Thus, in order to avoid this, in model D, we include 54H Higgs and

in model E, we include a 16H + 16H . It will be shown later in Sec. V that, in all these SUSY SO(10) models

with a 210H , there is only one independent VEV ratio involving the 210H field, owing to symmetry breaking

constraints. Including more Higgs multiplets, one can break such relationships among VEVs which can lead to

two independent VEV ratios for 210H . We also consider this general case which is labeled as model F, where

in addition to 210H , one has both 54H and 16H + 16H (or some unspecified) multiplets. It is to be mentioned

that, we do not consider any model where both the 45H and 210H are present simultaneously, which would lead

to more parameters and thus less predictions in the fermion sector. Details of the symmetry breaking schemes

will be explained further in Sec. V.

2.3 The set-up and formalism

All models we study have one vector like 16 + 16 pair plus 3 generations of chiral 16’s. Their mass terms and

couplings to a 45H given in Eq. (2.2.1) can be expanded to yield

16 (ma + ηa45H) 16a = L̄ (ma + ηa(3v1))La + Q̄ (ma + ηa(−v1))Qa

+ eca (ma + ηa(−3v1 − v2)) ēc + νca (ma + ηa(−3v1 + v2)) ν̄c

+ dca (ma + ηa(v1 − v2)) d̄c + uca (ma + ηa(v1 + v2)) ūc, (2.3.2)

where a = 1, . . . , 4 and

v1 = 〈45H〉(1,1,15) , v2 = 〈45H〉(1,3,1). (2.3.3)

These are the SM singlet components of 45H which acquire GUT scale VEVs denoted here as v1,2.

The mass terms are of the general form
ψ̄Maψa. (2.3.4)

Although by redefining the phases of ψa we can make all these Ma real, we will keep them complex in general.

Then we project to the heavy states as usual by

ψa → Uabψb, (2.3.5)

with

U =

 Λ Λx∗

−xTΛ Λ̄

 (U† = U−1) (2.3.6)

Λ = 1− x∗xT√
1 + |x|2(

√
1 + |x|2 + 1)

(Λ† = Λ) (2.3.7)

xT =
1

M4
(M1,M2,M3) , Λ̄ =

1√
1 + |x|2

. (2.3.8)
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To this we add the Yukawa couplings to 126H . Although we are free to choose this 4 × 4 Yukawa matrix

to be diagonal and real (in the original basis, i.e. before (2.3.5)), we will keep it to be complex symmetric and

choose a convenient basis later on. The 16 has coupling to the 126H , but this will turn out to not affect light

fermion masses. The relevant Yukawa couplings are (see Eq. (2.2.1))

16a Yab 126H 16b + 16 ȳ 126H 16. (2.3.9)

In this original basis we put all together:(
dca d

) Yabvd ma + ηa(v1 − v2)

mb + ηb(−v1) ȳvd


db
d̄c


+

(
uca u

) Yabvu ma + ηa(v1 + v2)

mb + ηb(−v1) ȳvu


ub
ūc


+

(
eca e

) −3Yabvd ma + ηa(−3v1 − v2)

mb + ηb(3v1) −3ȳvd


eb
ēc

 (2.3.10)

+

(
νca ν

) −3Yabvu ma + ηa(−3v1 + v2)

mb + ηb(3v1) −3ȳvu


νb
ν̄c


+

1

2

(
νca ν̄

)YabvR 0

0 ȳv̄L


νcb
ν̄

+
1

2

(
νa ν̄c

)YabvL 0

0 ȳv̄R


νb
ν̄c

 ,

where

vR = 〈126H〉(1,3,10) , vL = 〈126H〉(3,1,10)

v̄R = 〈126H〉(1,3,10) , v̄L = 〈126H〉(3,1,10) (2.3.11)

vu = 〈126H〉(2,2,15)u , vd = 〈126H〉(2,2,15)d .

Here vR and v̄R are close to, but somewhat below the GUT scale, while vu,d are the VEVs of the electroweak

Higgs doublets arising from the 126H . vL and v̄L denote the induced VEVs of the SU(2)L triplets from 126H

and 126H . In non-supersymmetric models, we have v̄R = v∗R, vd = v∗u and v̄L = v∗L.

After the transformation given in Eq. (2.3.5) the matrices Eq. (2.3.10) become
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→
(
dca d

)(UTdc)aeYefvd(UQ)fb Mdcδa4

MQδb4 ȳvd


db
d̄c


+

(
uca u

)(UTuc)aeYefvu(UQ)fb Mucδa4

MQδb4 ȳvu


ub
ūc


+

(
eca e

)(UTec)ae(−3)Yefvd(UL)fb Mecδa4

MLδb4 −3ȳvd


eb
ēc

 (2.3.12)

+

(
νca ν

)(UTνc)ae(−3)Yefvu(UL)fb Mνcδa4

MLδb4 −3ȳvu


νb
ν̄c


+

1

2

(
νca ν̄

)(UTνc)aeYefvR(Uνc)fb 0

0 ȳv̄L


νcb
ν̄


+

1

2

(
νa ν̄c

)(UTL )aeYefvL(UL)fb 0

0 ȳv̄R


νb
ν̄c

 .

To get the light fermion mass matrices defined as

L = dcTMDd+ ucTMUu+ ecTMEe+
1

2
νTMNν + h.c. (2.3.13)

we have to project to the light generations. In doing so we need to evaluate (Y is a 4× 4 matrix, while Y is its

3× 3 submatrix)

UT1 YU2 =

 ΛT1 −ΛT1 x1

x†1ΛT1 Λ̄1


 Y y

yT y4


 Λ2 Λ2x

∗
2

−xT2 Λ2 Λ̄2

 (2.3.14)

=

ΛT1 (Y − yxT2 − x1y
T + y4x1x

T
2 )Λ2 ΛT1 (Y x∗2 + y − x1y

Tx∗2 − y4x1)Λ̄2

Λ̄1(x†1Y + yT − x†1yxT2 − y4x
T
2 )Λ2 Λ̄1(x†1Y x

∗
2 + yTx∗2 + x†1Y + y4)Λ̄2

 ,

where we used Λx∗ = Λ̄x∗.

For charged fermions this is enough, and we get (mass matrices are defined as ψcMΨψ)

MD = vdΛ
T
dc
(
Y − yxTQ − xdcyT + y4xdcx

T
Q

)
ΛQ (2.3.15)

MU = vuΛTuc
(
Y − yxTQ − xucyT + y4xucx

T
Q

)
ΛQ (2.3.16)

ME = −3vdΛ
T
ec
(
Y − yxTL − xecyT + y4xecx

T
L

)
ΛL. (2.3.17)

For neutrinos things are slightly more involved, since there are two kinds of heavy neutrinos, the usual right-

handed ones, plus the new vector-like ones. The full symmetric Majorana mass matrix is 10 × 10. However,

in the leading order in yvR/ML,νc (ML,νc denote the masses of vector-like leptons), the situation returns to

ordinary with
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MνD = −3vuΛTνc(Y − yxTL − xνcyT + y4xνcx
T
L)ΛL (2.3.18)

MνR = vRΛTνc(Y − yxTνc − xνcyT + y4xνcx
T
νc)Λνc (2.3.19)

MνL = vLΛTL(Y − yxTL − xLyT + y4xLx
T
L)ΛL, (2.3.20)

so that as usual by using the seesaw [38] formula we arrive at the 3× 3 light neutrino mass matrix as

MN = MνL −MT
νDM

−1
νRMνD . (2.3.21)

If the approximation yvR/ML,νc � 1 is not good, we write the full symmetric matrix for (νi, ν
c
i , ν4, ν̄

c, νc4, ν̄):

(UTL (vLY)UL)ij (UTL (−3vuY)Uνc)ij (UTL (vLY)UL)i4 0 (UTL (−3vuY)Uνc)i4 0

(UTνc(−3vuY)UL)ij (UTνc(vRY)Uνc)ij (UTνc(−3vuY)UL)i4 0 (UTνc(vRY)Uνc)i4 0

(UTL (vLY)UL)4j (UTL (−3vuY)Uνc)4j (UTL (vLY)UL)44 0 (UTL (−3vuY)Uνc)44 ML

0 0 0 v̄Ry Mνc −3vuy

(UTνc(−3vuY)UL)4j (UTνc(vRY)Uνc)4j (UTνc(−3vuY)UL)44 Mνc (UTνc(vRY)Uνc)44 0

0 0 ML −3vuy 0 v̄Ly


.

(2.3.22)

One can integrate out ν4 and ν̄ without any trace, since they mix through a large ML, but otherwise feel just

the small VEVs. What remains is for (νi, ν
c
i , ν̄

c, νc4):



(UTL (vLY)UL)ij (UTL (−3vuY)Uνc)ij 0 (UTL (−3vuY)Uνc)i4

(UTνc(−3vuY)UL)ij (UTνc(vRY)Uνc)ij 0 (UTνc(vRY)Uνc)i4

0 0 v̄Ry Mνc

(UTνc(−3vuY)UL)4j (UTνc(vRY)Uνc)4j Mνc (UTνc(vRY)Uνc)44


. (2.3.23)

This has again the form MνL MT
νD

MνD MνR

 . (2.3.24)

and thus Eq. (2.3.21) applies with MνL given by Eq. (2.3.20), but now for 5 right-handed neutrinos with a

5× 3 matrix MνD and a 5× 5 symmetric matrix MνR :
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MνD = (−3vu)


Λνc(Y − yxTL − xνcyT + y4xνcx

T
L)ΛL

0

Λ̄νc(x
T
νcY + yT − xTνcyxTL − xTLy4)ΛL

 (2.3.25)

MνR =


vRΛνc(Y − yxTνc − xνcyT + y4xνcx

T
νc)Λνc 0 vRΛνc(Y xνc + y − xνcyTxνc − y4xνc)Λ̄νc

0 v̄Ry Mνc

vRΛ̄νc(x
T
νcY + yT − xTνcyxTνc − y4x

T
νc)Λνc Mνc vRΛ̄νc(x

T
νcY xνc + yTxνc + xTνcy + y4)Λ̄νc

 .

(2.3.26)

To conclude, let’s write down explicitly the various ~x’s:

~xL =
~m+ ~η(3v1)

m4 + η4(3v1)
, ~xQ =

~m+ ~η(−v1)

m4 + η4(−v1)
, (2.3.27)

~xec =
~m+ ~η(−3v1 − v2)

m4 + η4(−3v1 − v2)
, ~xνc =

~m+ ~η(−3v1 + v2)

m4 + η4(−3v1 + v2)
, (2.3.28)

~xdc =
~m+ ~η(v1 − v2)

m4 + η4(v1 − v2)
, ~xuc =

~m+ ~η(v1 + v2)

m4 + η4(v1 + v2)
. (2.3.29)

Defining

~x =
~m

m4
, u1,2 = η4

v1,2

m4
, ~z =

~η

η4
, (2.3.30)

we can rewrite the above as

~xL =
~x+ ~z(3u1)

1 + (3u1)
, ~xQ =

~x+ ~z(−u1)

1 + (−u1)
,

~xec =
~x+ ~z(−3u1 − u2)

1 + (−3u1 − u2)
, ~xνc =

~x+ ~z(−3u1 + u2)

1 + (−3u1 + u2)
, (2.3.31)

~xdc =
~x+ ~z(u1 − u2)

1 + (u1 − u2)
, ~xuc =

~x+ ~z(u1 + u2)

1 + (u1 + u2)
.

To get the masses and mixings we change the basis

x→ XLx , xc → X∗Rx
c (2.3.32)

for x = d, u, e, ν and X = D,U,E,N . This means that (for X = N , XR = X∗L)

MX = XRM
d
XX

†
L (2.3.33)

so that the CKM and PMNS matrices are defined as

VCKM = U†LDL (2.3.34)

VPMNS = E†LNL. (2.3.35)

So far we have been very general. However, there are redundancies that are present, which should be

removed for an efficient numerical fitting algorithm. In the next section we shall choose a specific basis, which

may appear at first to be less intuitive but which is well-suited for our numerical minimization. There are two
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obvious basis choices, one where Yab is diagonal, and a second one where the vectors ma and ηa have simple

forms. It is the second one that is used in the next section. For further use we give here the relations between

the two sets of parameters.

~x = (0, 0, tan θe−iφ) (2.3.36)

~z = (0, 0, 0) (2.3.37)

Yij = aij (2.3.38)

y = (a41, a42, a43) (2.3.39)

y4 = a44 (2.3.40)

and

u1 = −Te
−iφ

cos θ

ε

5
(2.3.41)

u2 = −Te
−iφ

cos θ

(
1 +

3ε

5

)
. (2.3.42)

2.3.1 210H instead of 45H

If the 45H is replaced by a 210H , we simply change Eq. (2.3.2) into:

16 (ma + ηa210) 16a = L̄ (ma + ηa(φ1 − 3φ2))La

+ Q̄ (ma + ηa(φ1 + φ2))Qa

+ eca (ma + ηa(−φ1 − 3φ2 + 3φ3)) ēc (2.3.43)

+ νca (ma + ηa(−φ1 − 3φ2 − 3φ3)) ν̄c

+ dca (ma + ηa(−φ1 + φ2 − φ3)) d̄c

+ uca (ma + ηa(−φ1 + φ2 + φ3)) ūc

where
φ1 = 〈210H〉(1,1,1) , φ2 = 〈210H〉(1,1,15) , φ3 = 〈210H〉(1,3,15) (2.3.44)

are the VEVs of the three SM singlets of 210H .

This then changes Eq. (2.3.31) into

~xL =
~x+ ~z(u1 − 3u2)

1 + (u1 − 3u2)
, ~xQ =

~x+ ~z(u1 + u2)

1 + (u1 + u2)
,

~xec =
~x+ ~z(−u1 − 3u2 + 3u3)

1 + (−u1 − 3u2 + 3u3)
, ~xνc =

~x+ ~z(−u1 − 3u2 − 3u3)

1 + (−u1 − 3u2 − 3u3)
, (2.3.45)

~xdc =
~x+ ~z(−u1 + u2 − u3)

1 + (−u1 + u2 − u3)
, ~xuc =

~x+ ~z(−u1 + u2 + u3)

1 + (−u1 + u2 + u3)
,

where now
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u1,2,3 = η4
φ1,2,3

m4
. (2.3.46)

For correspondence with the specific basis chosen in the next section, we still have Eqs. (2.3.36)- (2.3.40),

but Eqs. (2.3.41)-(2.3.42) are replaced by

u1 =
Te−iφ

cos θ
(2.3.47)

u2 =
Te−iφ

cos θ

ε1√
3

(2.3.48)

u3 =
Te−iφ

cos θ
ε2

√
2

3
. (2.3.49)

2.4 Analysis in a specific basis

The general formulas given in the previous section for the light fermion mass matrices have built-in redundancies.

Here we choose a specific basis where these redundancies are removed. We choose a basis where the four-vectors

in Eq. (2.2.1) have simple forms:

ηa = (0, 0, 0, 1) b, ma = (0, 0, sin θ, eiφ cos θ)M . (2.4.50)

These simple forms are achieved by 4 × 4 family rotation, which makes the vector ~η to have the form shown,

and a subsequent 3 × 3 family rotation that brings the vector ~m to this form. A further rotation in the first

two family space can be made, we choose this rotation to make the 4× 4 Yukawa matrix, denoted as aij in this

specific basis, to be diagonal in the 1-2 subspace, i.e., a12 = a21 = 0. The correspondence given in Eqs. (2.3.36)-

(2.3.40) as well as Eqs. (2.3.41)-(2.3.42) for the case of 45H arise from this choice of basis. (The parameters T

and ε will be defined shortly.) Let us denote Φ = 45H or 210H and the VEV of Φ to be 〈Φ〉 = Ω which has two

components (for Φ = 45H) or three components (for Φ = 210H). The Yukawa Lagrangian in this specific basis

takes the form:

LYuk =

4∑
i,j=1

aij 16i 16j 126H + ȳ 16 16 126H + b 16 164 Φ +M 16 (sin θ 163 + eiφ cos θ 164). (2.4.51)

The effective mass terms that arise after the VEV of Φ is inserted would depend on the VEV ratio of the two

SM singlets in 45H and on two VEV ratios of the three SM singlets in the case of 210H . For the former, we

can define an unbroken charge Q, which is not the electric charge, but a linear combination of hypercharge Y

and the U(1)X charge contained in SO(10) → SU(5) × U(1)X – the 45H leaves this charge Q unbroken. A

parameter ε can be introduced in terms of which the unbroken charge Q can be defined for each of the SM

fermions [60]:

Q = −1

5
X +

6(ε+ 1)

5

Y

2
= 2I3R +

6ε

5

Y

2
, (2.4.52)
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where X is normalized so that X10∈16 = 1, X5∈16 = −3 and X1∈16 = 5. Thus the charges of fermions ∈ 16 of

SO(10) for the case of 45H are:

Qu,d =
1

5
ε; Quc = −1− 4

5
ε; Qdc = 1 +

2

5
ε;

Qe,ν = −3

5
ε; Qec = 1 +

6

5
ε; Qνc = −1.

(2.4.53)

For 210H case the fermion charges are given in terms of two parameters ε1,2:

Qu,d = 1 +
ε1√

3
; Quc = −1 +

ε1√
3

+

√
2

3
ε2; Qdc = −1 +

ε1√
3
−
√

2

3
ε2;

Qe,ν = 1−
√

3ε1; Qec = −1−
√

3ε1 +
√

6ε2; Qνc = −1−
√

3ε1 −
√

6ε2.

(2.4.54)

These charges are obtained from Eq. (2.3.43) by setting φ1 = 1, φ2 = ε1/
√

3 and φ3 =
√

2/3 ε2.

For non-SUSY case, Qf = Q∗f as Φ is a real field in this case, while Qf is complex in the case of SUSY. Now,

writing b 16 164 〈Φ〉 = bΩ(fQff4 + f
c
Qfcf

c
4), the last two terms of the Yukawa Lagrangian in Eq. (2.4.51) can

be written as

LYuk ⊇ f [(M sin θ)f3 + (Meiφ cos θ + bΩQf )f4] + f
c
[(M sin θ)f c3 + (Meiφ cos θ + bΩQfc)f

c
4 ]. (2.4.55)

Then defining

T ≡ bΩ/M ; Nf,fc ≡
√

1 + T 2|Qf,fc |2 + T cos θ(e−iφQf,fc + eiφQ∗f,fc), (2.4.56)

the heavy (GUT scale) fields (f̂4, f̂
c
4) and the light SM fields (f̂3, f̂

c
3) can be identified as

(sin θ)f3 + (eiφ cos θ + TQf )f4

Nf
≡ f̂4 ;

(e−iφ cos θ+TQ∗f )f3−(sin θ)f4
Nf

≡ f̂3; (2.4.57)

(sin θ)f c3 + (eiφ cos θ + TQfc)f
c
4

Nfc
≡ f̂ c4 ;

(e−iφ cos θ+TQ∗fc )fc3−(sin θ)fc4
Nfc

≡ f̂ c3 . (2.4.58)

These expressions are valid for f = u, d, e, ν and f c = uc, dc, ec, νc. Then from the full Yukawa Lagrangian one

can compute the charged fermion and Dirac neutrino mass matrices for the light fermions written as f cMff as:

MT
f = vfkf


af11 0 af13

0 af22 af23

af31 af32 af33

 , (2.4.59)

where f = U,D,E, νD, ve = vd, vν = vu, ku,d = 1 and ke,ν = −3. We define the ratio vu/vd ≡ r. Note that

this ratio is not exactly equal to tanβ of MSSM, but is closely related to it. If we ignore the mixing of the up

and down-type Higgs doublets from 126H with other doublets present in the theory, r would be equal to tanβ

in MSSM. The following relations are then readily obtained:

20



af11 = a11 , (2.4.60)

af13 =
a13(eiφ cos θ + TQfc)− a14 sin θ

Nfc
, (2.4.61)

af22 = a22 , (2.4.62)

af23 =
a23(eiφ cos θ + TQfc)− a24 sin θ

Nfc
, (2.4.63)

af31 =
a13(eiφ cos θ + TQf )− a14 sin θ

Nf
, (2.4.64)

af32 =
a23(eiφ cos θ + TQf )− a24 sin θ

Nf
, (2.4.65)

af33 =
a33(eiφ cos θ + TQf )(eiφ cos θ + TQfc) + a44 sin2 θ − a34 sin θ[2eiφ cos θ + T (Qf +Qfc)]

NfNfc
. (2.4.66)

Note that a rotation in the 1-2 sector has been made which makes af12 = af21 = a12 = 0. These mass matrices

are not symmetric, since afij 6= afji, although the original matrix obeyes aij = aji. These four mass matrices for

f = U,D,D, νD are given in terms of the parameters ε, T, θ, φ and aij (with i, j = 1 − 4 and a12 = a21 = 0).

We choose to take elements of ME to be independent. One can then solve for a13 and a14 in terms of ae13 and

ae31; similarly a23 and a24 in terms of ae23 and ae32. From Eqs.(2.4.61), (2.4.63), (2.4.64), (2.4.65) and (2.4.53)

one sees that this is a valid choice provided that ε 6= −5/9 for Φ = 45H . (If ε = −5/9, ae13 = ae31 and ae23 = ae32,

which does not lead to realistic fermion masses.) Similarly for the case of Φ = 210H , the restriction is ε2 6= 0

is required as can be seen from Eq. (2.4.54). All these mass matrices have the same 1-2 sector and one can

choose a11 = ae11 and a22 = ae22. In addition, ae33, a
u
33, a

d
33 depend on 3 independent parameters a33, a34, a44

that appear only in the (3,3) sector of the light mass matrices. Since this linear system is invertible, one can

treat ae33, a
u
33, a

d
33 as independent parameters. The (3,3) element of the right-handed neutrino Majorana matrix

is then not free, and is determined in terms of ae33, a
u
33, a

d
33. Expressions for aij in terms of the independent

parameters chosen are given below:
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a13 =
Neca

e
13 −Neae31

T (Qec −Qe)
, (2.4.67)

a14 =
Neca

e
13(eiφ cos θ + TQe)−Neae31(eiφ cos θ + TQec)

sin θT (Qec −Qe)
, (2.4.68)

a23 =
Neca

e
23 −Neae32

T (Qec −Qe)
, (2.4.69)

a24 =
Neca

e
23(eiφ cos θ + TQe)−Neae32(eiφ cos θ + TQec)

sin θT (Qec −Qe)
, (2.4.70)

a33 = (au33NuNucC1 + ad33NdNdcC2 + ae33NeNecC3)/(T 2D1) , (2.4.71)

a34 = (au33NuNucC4 + ad33NdNdcC5 − ae33NeNecC6)/(T 2D1) , (2.4.72)

a44 = (au33NuNucC7 + ad33NdNdcC8 − ae33NeNecC9)/(T 2D1) , (2.4.73)

with
C1 = Qdc −Qec +Qd −Qe; (2.4.74)

C2 = Qec −Quc +Qe −Qu; (2.4.75)

C3 = −Qdc +Quc −Qd +Qu; (2.4.76)

C4 = csc θ
(
eiφ cos θ (Qdc −Qec) +Qd

(
TQdc + eiφ cos θ

)
−Qe

(
TQec + eiφ cos θ

))
; (2.4.77)

C5 = csc θ
(
Qe
(
TQec + eiφ cos θ

)
+ eiφ cos θ (Qec −Quc)−Qu

(
TQuc + eiφ cos θ

))
; (2.4.78)

C6 = csc θ
(
Qd
(
TQdc + eiφ cos θ

)
+ eiφ cos θ (Qdc −Quc)−Qu

(
TQuc + eiφ cos θ

))
; (2.4.79)

C7 = T 2QdQe csc2 θQdc − T 2QdQe csc2 θQec + T 2Qd csc2 θQdcQec − T 2Qe csc2 θQdcQec

+ e2iφ cot2 θQdc + 2TeiφQd cot θ csc θQdc − e2iφ cot2 θQec

− 2TeiφQe cot θ csc θQec + e2iφQd cot2 θ − e2iφQe cot2 θ; (2.4.80)

C8 = e2iφ cot2 θQec + T 2Qe csc2 θQuQec − T 2Qe csc2 θQuQuc + T 2Qe csc2 θQecQuc

− T 2 csc2 θQuQecQuc + 2TeiφQe cot θ csc θQec − 2Teiφ cot θ csc θQuQuc

− e2iφ cot2 θQuc + e2iφQe cot2 θ − e2iφ cot2 θQu; (2.4.81)

C9 = e2iφ cot2 θQdc + T 2Qd csc2 θQuQdc − T 2Qd csc2 θQuQuc + T 2Qd csc2 θQdcQuc

− T 2 csc2 θQuQdcQuc + 2TeiφQd cot θ csc θQdc − 2Teiφ cot θ csc θQuQuc

− e2iφ cot2 θQuc + e2iφQd cot2 θ − e2iφ cot2 θQu; (2.4.82)

D1 = QdQeQdc +QdQdcQec −QeQdcQec −QdQeQec −QdQuQdc −QdQdcQuc

+QuQdcQuc +QdQuQuc +QeQuQec −QeQuQuc +QeQecQuc −QuQecQuc . (2.4.83)

The elements ofME are independent parameters. We can expressMU andMD in terms of T, θ, φ, au33, a
d
33, a

e
ij

and ε (or ε1,2) for the case of 45H (or 210H), so in this basis the charged fermion mass matrices are:
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MT
E = −3vd


ae11 0 ae13

0 ae22 ae23

ae31 ae32 ae33

 ; (2.4.84)

MT
U = vu


ae11 0

ae13Nec (Qe−Quc )+ae31Ne(−Qec+Quc )
Nuc (Qe−Qec )

0 ae22
ae23Nec (Qe−Quc )+ae32Ne(−Qec+Quc )

Nuc (Qe−Qec )

ae13Nec (Qe−Qu)+ae31Ne(−Qec+Qu)
Nu(Qe−Qec )

ae23Nec (Qe−Qu)+ae32Ne(−Qec+Qu)
Nu(Qe−Qec ) au33

 ;

(2.4.85)

MT
D = vd


ae11 0

ae13Nec (Qe−Qdc )+ae31Ne(−Qec+Qdc )
Ndc (Qe−Qec )

0 ae22
ae23Nec (Qe−Qdc )+ae32Ne(−Qec+Qdc )

Ndc (Qe−Qec )

ae13Nec (Qe−Qu)+ae31Ne(−Qec+Qu)
Nu(Qe−Qec )

ae23Nec (Qe−Qu)+ae32Ne(−Qec+Qu)
Nu(Qe−Qec ) ad33

 .

(2.4.86)

Since Qu = Qd, we have ad31 = au31 and ad32 = au32, see Eqs. (2.4.64) and (2.4.65).

Now, the rotation that was made in the 1-2 sector to set a12 = 0 simultaneously can make ae11 and ae22 real.

This rotation will alter the column {(ME)13, (ME)23}T and the row {(ME)31, (ME)32} in such a way that the

forms of MU Eq. (2.4.85) and MD Eq. (2.4.86) are preserved. All parameters are complex, except that one

among au,d,e33 can be made real (we choose ad33 to be real), and that T can be chosen real. So the parameter set

is

{ε, r, T, θ, φ, ae11, a
e
22, a

e
13, a

e
31, a

e
23, a

e
32, a

e
33, a

u
33, a

d
33} for 45H or

{ε1, ε2, r, T, θ, φ, ae11, a
e
22, a

e
13, a

e
31, a

e
23, a

e
32, a

e
33, a

u
33, a

d
33} for 210H.

Of these sets, {ae13, a
e
31, a

e
23, a

e
32, a

e
33, a

u
33} are complex (with ad33 chosen to be real). For Φ = 45H , there are

13 magnitudes and 7 phases (in total 20 parameters) for non-SUSY case. In the case of SUSY, ε is complex,

so one additional phase enters (for a total 21 parameters). For Φ = 210H in the SUSY context with minimal

Higgs content, ε1 and ε2 are not independent of each other (see later), so there are again 13 magnitudes and 8

phases (in total 21 parameters). Later we will also consider a case with non-minimal Higgs sector where both

these VEV ratios ε1,2 can be in general independent of each other. In the neutrino sector (discussed in the next

subsection) the mass matrix is given by these same parameters except for an overall scale (vR,L for type-I and

type-II seesaw scenarios respectively) that adds one new parameter.

2.4.1 The neutrino sector

Type-I seesaw

To write down the mass matrix in the neutrino sector, we make the assumption that M, bΩ � vR, which is a

valid approximation provided that M, bΩ ∼ MGUT ∼ 1016 GeV. Note that in order to generate light neutrino
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masses by using the seesaw mechanism, one roughly needs vR ∼ 1012−14 GeV. In this approximation, no new

parameter comes into play in the neutrino mass matrix except the scale vR. For type-I seesaw mechanism the

Dirac neutrino mass matrix can be read off from Eq. (2.4.59):

MT
νD = −3vu


ae11 0

ae13Nec (Qe−Qνc )+ae31Ne(−Qec+Qνc )
Nνc (Qe−Qec )

0 ae22
ae23Nec (Qe−Qνc )+ae32Ne(−Qec+Qνc )

Nνc (Qe−Qec )

ae31 ae32 aν33

 . (2.4.87)

Since Qe = Qν , aν31 = ae31 and aν32 = ae32. The expressions for aν33 are given in Eqs. (2.4.88) and (2.4.89) for

Φ = 45H and 210H respectively are given by:

aν33 = au33

NuNuc

NνNνc
+ ad33

NdNdc

NνNνc

1 + ε/5

1 + ε
− ae33

NeNec

NνNνc

1 + ε/5

1 + ε
. (2.4.88)

And for the case of 210H we find:

aν33 = au33

NuNuc

NνNνc

C10

D2
+ ad33

NdNdc

NνNνc

C11

D2
+ ae33

NeNec

NνNνc

C12

D2
, (2.4.89)

with

C10 = 3
(

8
√

6ε21 − 4
(

2
√

3ε2 + 3
√

2
)
ε1 + ε2

(√
6ε2 + 6

))
, (2.4.90)

C11 = 3
(
−8
√

6ε21 + 12
√

2ε1 + ε2

(√
6ε2 − 6

))
, (2.4.91)

C12 = 8
√

6ε21 + 4
(

2
√

3ε2 + 3
√

2
)
ε1 − 3ε2

(√
6ε2 + 2

)
, (2.4.92)

D2 =
(

4ε1 −
√

2ε2

)(
2
√

6ε1 − 3
√

3ε2 + 3
√

2
)
. (2.4.93)

One can derive the right-handed neutrino Majorana mass matrix to be

MνR

vR
=


ae11 0

ae13Nec (Qe−Qνc )+ae31Ne(−Qec+Qνc )
Nνc (Qe−Qec )

0 ae22
ae23Nec (Qe−Qνc )+ae32Ne(−Qec+Qνc )

Nνc (Qe−Qec )

ae13Nec (Qe−Qνc )+ae31Ne(−Qec+Qνc )
Nνc (Qe−Qec )

ae23Nec (Qe−Qνc )+ae32Ne(−Qec+Qνc )
Nνc (Qe−Qec ) aR33

 ,
(2.4.94)

The expressions for aR33 are given in Eqs. (2.4.95) and (2.4.96) for Φ = 45H and 210H respectively are given

below. Using Eqs. (2.4.71), (2.4.72) and (2.4.73) for the 45H -case we have:

aR33 =
3

2
au33

NuNuc

N2
νc

1 + ε/5

1 + 3ε/5
− 5

4
ae33

NeNec

N2
νc

(1 + ε/5)2

ε(1 + ε)
+

5

4
ad33

NdNdc

N2
νc

1 + 3
5ε+ 3

25ε
2 + 33

125ε
3

ε(1 + ε)(1 + 3ε/5)
. (2.4.95)

And for 210H -case we have:

aR33 = au33

NuNuc

N2
νc

C13

D3
− ad33

NdNdc

N2
νc

C14

D3
+ ae33

NeNec

N2
νc

C15

D3
, (2.4.96)

with
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C13 = 18
√

3ε42 + 36
√

2ε32 − 45
√

6ε1ε
3
2 + 12

√
3ε22 − 156ε1ε

2
2 + 72

√
6ε31ε2 + 12

√
2ε21ε2 − 30

√
6ε1ε2

+ 48ε31 + 24
√

3ε21, (2.4.97)

C14 = 9
√

3ε42 + 18
√

2ε32 − 45
√

6ε1ε
3
2 + 72

√
3ε21ε

2
2 + 6

√
3ε22 − 96ε1ε

2
2 + 72

√
6ε31ε2 + 36

√
2ε21ε2

− 18
√

6ε1ε2 + 48ε31 + 24
√

3ε21, (2.4.98)

C15 = 16
√

6ε31 + 8
(

5
√

3ε2 + 6
√

2
)
ε21 + 6

(√
6ε22 + 8ε2 + 2

√
6
)
ε1 − 3ε2

(
3
√

3ε22 + 6
√

2ε2 + 2
√

3
)
, (2.4.99)

D3 = 2ε1

(
4ε1 −

√
2ε2

)(
2
√

6ε1 − 3
√

3ε2 + 3
√

2
)
. (2.4.100)

Then, the light neutrino mass matrix in the type-I seesaw scenario is given by

MN = −MT
νDM

−1
νRMνD . (2.4.101)

Type-II seesaw

In analogy to the the analysis done in Sec. 2.4.1 one can derive the type-II seesaw contributions to the the

neutrino mass matrix by replacing vR → vL and νc → ν. In this type-II seesaw scenario the neutrino mass

matrix is then given by

MνL = vL


ae11 0 ae31

0 ae22 ae32

ae31 ae32 aL33

 . (2.4.102)

The expressions for aL33 are given in Eqs. (2.4.103) and (2.4.104) for Φ = 45H and 210H respectively are given

by:

aL33 =
−4

5
ae33

Nec

Nν

ε

1 + ε
+

1

2
au33

NuNuc

N2
ν

5 + 9ε

5 + 3ε
+

1

10
ad33

NdNdc

N2
ν

25 + 50ε+ 9ε2

(1 + ε)(5 + 3ε)
. (2.4.103)

And for the case of 210H we have:

aL33 = au33

NuNuc

N2
ν

C16

D4
+ ad33

NdNdc

N2
ν

C17

D4
+ ae33

NeNec

N2
ν

C18

D4
, (2.4.104)

with

C16 = 3
(

8
(√

6ε2 − 2
)
ε21 − 4

(
2
√

3ε22 +
√

2ε2 − 2
√

3
)
ε1 + ε2

(√
6ε22 + 4ε2 − 2

√
6
))

, (2.4.105)

C17 = 3
(
−8
(√

6ε2 − 2
)
ε21 +

(
12
√

2ε2 − 8
√

3
)
ε1 + ε2

(√
6ε22 − 8ε2 + 2

√
6
))

, (2.4.106)

C18 = 8
√

3ε1ε2

(
2
√

2ε1 − ε2
)
, (2.4.107)

D4 = 2ε2

(√
2ε2 − 4ε1

)(
−2
√

6ε1 + 3
√

3ε2 − 3
√

2
)
. (2.4.108)
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2.5 Symmetry breaking constraints

In all models studied here, there is no 10H Higgs and matter fields couple to 126H + 126H and 45H or 210H

scalars. There are considerations as outlined in Sec. II that would require additional Higgs fields to be present

for consistent symmetry breaking. While there are no constraints on the VEV ratios when a 210H is employed in

the non-SUSY framework, these ratios are determined in the case of SUSY. We consider the various constraints

on the symmetry breaking sector in this section.

2.5.1 Non-SUSY SO(10) models A and B

Model A employs 126H , 45H and a 54H . Breaking of SO(10) down to SM via SU(5) channel is not viable due

to gauge coupling unification and proton decay limits. If only 45H and 126H (or 16H) Higgs multiplets are used

to break SO(10), breaking takes place through the SU(5)-symmetric channel [61–63]. The other two breaking

channels SO(10)→ SU(3)c×SU(2)L×SU(2)R×U(1)B−L → SM and SO(10)→ SU(4)c×SU(2)L×U(1)R →

SM do not have stable vacuum at the tree-level. Recently quantum corrections to the tree-level potential have

been taken into account [64, 65] and the validity of such breaking channels has been shown. However, we do

not rely on quantum corrections in this paper. This is why the Higgs sector needs to be extended with a 54H

for consistent SO(10) breaking down to SM [66, 67]. Note that a Higgs system consisting of 126H and 54H is

sufficient for symmetry breaking purposes if also a 10H is used [68], but without the 10H as in our case, a 45H

is necessary.

Since the SM Higgs doublet is part of the 126H in this model, a question arises as to the negativity of

its squared mass. Consistency of the GUT scale symmetry breaking would require all physical scalar squared

masses to be positive, which includes the SM Higgs doublet. There must then be a source that turns this positive

mass to negative value. It has been shown in Ref. [69] that indeed such a turn-around is possible, provided that

some scalar from any GUT multiplet remains light and has non-negligible couplings to the SM Higgs doublet.

The context in Ref. [69] is similar to our present case, where a 144H of SO(10) is used to break the GUT

symmetry as well as the electroweak symmetry. Since our present non-SUSY model has an intermediate scale,

we expect some of the scalars to survive down to the intermediate scale, which would enable turning the Higgs

mass-squared to negative value so as to trigger electroweak symmetry breaking.

In Model B we employ a 210H in addition to the 126H . This is not however sufficient for our purpose.

Since the VEV of 126H is much smaller than the GUT scale, a single 210H would break the GUT symmetry to

one of its maximal little groups, such as SU(5)× U(1) or SU(4)c × SU(2)L × SU(2)R [70]. The fermion mass

matrices will then carry traces of this unbroken symmetry, which would lead to unwanted mass relations. This

is why we extend the scalar sector by adding a 54H or 16H . For non-SUSY SO(10) model with Higgs multiplets
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210H + 54H , since 542 3 1s + 54s + 770s and 2102 3 1s + 54s + 770s, the scalar potential contains 2 non-trivial

quartic couplings between 210H − 54H . In addition, 210H has 3 non-trivial quartic couplings and 54H has one

cubic and one non-trivial quartic couplings. This counting of non-trivial couplings dictates that in general the

two VEV ratios ε1,2 from the 210H are free parameters. Similar argument can be provided if 54H is replaced

by 16H Higgs.

2.5.2 SUSY SO(10) Models C–F

The Higgs sector of ModelD consists of 210H+54H+126H+126H . This system is a subset of the SUSY SO(10)

models studied in Ref. [71]. The relevant part of the superpotential with only 210H , 54H and 126H + 126H is:

W =
1

2
m1Φ2 +m2∆∆ +

1

2
m5E

2 + λ1Φ3 + λ8E
3

+ λ2Φ∆∆ + λ10Φ2E + λ11∆2E + λ12∆
2
E.

(2.5.109)

Since the VEV of 126H is required to be in the intermediate scale ∼ 1013−14 GeV range from a fit to light

neutrino masses arising via the seesaw mechanism, in this analysis of the superpotential one can neglect the

contribution coming from this field as the other scalars 210H + 54H will get much larger VEVs of order the

GUT scale ∼ 1016 GeV. Then the relevant stationary equations are

0 = m1V1 +
λ1

2
√

6
V 2

3 +

√
3

5
V1VE ,

0 = m1V2 +
λ1

3
√

2
(V 2

2 + V 2
3 )− 2λ10√

15
V2VE ,

0 = m1V3 +
λ1√

6
V1V3 +

√
2λ1

3
V2V3 +

λ10

2
√

15
V3VE ,

0 = m5VE +

√
3λ8

2
√

5
V 2
E +

√
3λ10

2
√

5
V 2

1 −
λ10√

15
V 2

2 +
λ10

4
√

15
V 2

3 .

(2.5.110)

Here the V1 = 〈(1, 1, 1)〉, V2 = 〈(1, 1, 15)〉 and V3 = 〈(1, 3, 15)〉 are the VEVs of Φ(210H) and the 54H VEV is

VE = 〈(1, 1, 1)〉 under the Pati-Salam group SU(2)L × SU(2)R × SU(4)C decomposition. Compared to Eqs.

(2.3.44), here a different normalization is used and one can make the identifications V1 = φ1, V2 =
√

3φ2, V3 =√
3/2φ3.

The last relation in Eq. (2.5.110) can be solved for the free mass parameter m5. Taking differences of the

other three twice, we obtain two independent solutions,

V1 = −
√

3V2

2
or, V1 =

V2
3

2
√

3V2

. (2.5.111)

These correspond to the VEV ratios (ε1 = V2/V1, ε2 = V3/V1) given as

ε1 = − 2√
3

or, ε1 =
ε22

2
√

3
. (2.5.112)
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While studing the fermions masses and mixing numerically, we will consider both these cases. These models

are labelled as Da for the solution ε1 = − 2√
3
and Db for solution ε1 =

ε22
2
√

3
.

In Model E, we use a 210H along with a 16H + 16H for symmetry breaking purpose. These fields are in

addition to the 126H + 126H fields present. Just like the previous case, since the SO(10) breaking VEV of the

Higgs scalars 210H and 16H + 16H are ∼MGUT , one can neglect the terms involving the scalar 126H which has

a much lower VEV. The form of the superpotantial is identical to Eq. (2.5.109) with the 126H(126H) replaced

by 16H(16H). Denoting the 16H(16H) VEV as Vψ(V ψ) and its mass by mψ, the relevant stationary equations

in this case are

0 = m1V1 +
λ1

2
√

6
V 2

3 +
λ2

10
√

6
VψV ψ,

0 = m1V2 +
λ1

3
√

2
(V 2

2 + V 2
3 ) +

λ2

10
√

2
VψV ψ,

0 = m1V3 +
λ1√

6
V1V3 +

√
2λ1

3
V2V3 +

λ2

10
VψV ψ,

0 = VψV ψ[mψ +
λ2

10
√

6
V1 +

λ2

10
√

2
V2 +

λ2

10
V3].

(2.5.113)

There are two different solutions of this system of stationary equations

V1 =
V3√

6
, V2 =

V3√
2

;

or, V1 =
−36m2

1V3 + 5V 3
3 λ

2
1√

6(−6m1 + V3λ1)2
, V2 = −−36m2

1 + 12m1V3λ1 + V 2
3 λ

2
1√

2λ1(−6m1 + V3λ1)
.

(2.5.114)

So the VEV ratios are given by

ε1 =
√

3, ε2 =
√

6;

or, ε1 =

√
3(−6 + ε)(−36 + 12ε+ ε2)

ε(36− 5ε2)
, ε2 =

√
6(−6 + ε)2

−36 + 5ε2
; with ε ≡ V3

λ1

m1
,

(2.5.115)

where ε is a free parameter. We discard the first solution since this corresponds to SU(5)-symmetric case. The

surviving model will be labeled E.

By adding more Higgs multiplets in either of the models D or E, as for example 16H + 16H or adding

another 54H to model D, these relations for VEV ratios can be made invalid and ε1,2 can be made independent

parameters. We will also study this general case. We choose to add 16H + 16H in model D and 54H in model

E and label these classes of model as F. Finally, for SUSY model C, consisting of 126H + 126H + 45H + 54H +

16H + 16H , we stress that the 16H + 16H are needed for successfully tuning the MSSM doublets light without

making simultaneously any other submultiplet light. The parameter ε is arbitrary in this case.

2.6 Numerical analysis of fermion masses and mixings

In this section we show our fit results of fermion masses and mixings for different SO(10) models described in

Sections II and V. We do the fitting for both non-SUSY and SUSY cases, each with type-I and type-II seesaw
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scenarios. For optimization purpose we do a χ2-analysis. The pull and χ2-function are defined as:

Pi =
Oi th − Ei exp

σi
, (2.6.116)

χ2 =
∑
i

P 2
i , (2.6.117)

where σi represent experimental 1σ uncertainty and Oi th, Ei exp and Pi represent the theoretical prediction,

experimental central value and pull of observable i. We fit the values of the observables at the GUT scale,

MGUT = 2× 1016 GeV. To get the GUT scale values of the observables, for non-SUSY case, we take the central

values at the MZ scale from Table-1 of Ref. [72] and use the renormalization group equation (RGE) running

factors given in Ref. [73] to get the GUT scale inputs. For the associated one sigma uncertainties of the ob-

servables at the GUT scale, we keep the same percentage uncertainty with respect to the central value of each

quantity as that at theMZ scale. For SUSY case, the low scale values of the observables are taken from Table-2

of [72] at µ = 1 TeV where the values are converted to the DR scheme and then using the renormalization group

equation running for MSSM [74, 75] we get the GUT scale inputs. For all different SUSY SO(10) models, we

do the fitting for tanβ = 10. For the charged lepton masses, a relative uncertainty of 0.1% is assumed in order

to take into account the theoretical uncertainties arising for example from threshold effects. The inputs in the

neutrino sector are taken from Ref. [76]. For neutrino observables, we do not run the RGE from low scale to

the GUT scale, which is a relatively small effect, except for an overall rescaling on the neutrino masses that can

be absorbed in the corresponding scale vR or vL. In the case of inverted hierarchical neutrino mass spectrum,

RGE effects can be important, whereas for all our cases the spectrum turns out to be normal hierarchical.

Since the right-handed neutrino masses are extremely heavy, threshold corrections might also have effects on

the neutrino observables if the Dirac neutrino matrix elements are of order one, but in our case the elements

are much smaller than one. All these inputs are shown in the tables where the fit results are presented. Below

we present our best fit results and the corresponding parameters for different SO(10) GUT models as discussed

above.

Model A: Non-SUSY SO(10): 45H + 54H + 126H

The fit results and the predictions for model A are shown in Table 3.3 and 3.4 respectively. For model AI

(Model A with type-I seesaw) the parameter set is:

{au33, a
d
33, ε, T, θ, φ, vR, r} ={0.415986 + 0.0944114i, 0.0246549,−1.24753, 8.68487,

0.560999,−0.0127783, 1.58339 · 1013GeV, 6.76689}

and
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aeij = 10−2


0.0959072 0 −1.47328− 0.508307i

0 −0.00693205 −0.302045− 0.119282i

0.149467 + 0.0128315i 0.0534903 − 0.0345252i 0.461306 − 1.4512i

 . (2.6.118)

Masses (in GeV) and

Mixing parameters

Inputs

(at µ = MGUT )

Fitted values (AI)

(at µ = MGUT )

pulls

(AI)

Fitted values (AII)

(at µ = MGUT )

pulls

(AII)

mu/10−3 0.437±0.147 0.441 0.03 0.469 0.21

mc 0.236±0.007 0.236 0.003 0.236 0.02

mt 73.82±0.64 73.82 0.01 73.81 -0.01

md/10−3 1.12±0.11 1.14 0.16 1.12 -0.01

ms/10−3 21.93±1.07 21.82 -0.10 21.98 0.04

mb 0.987±0.008 0.987 -0.003 0.987 -0.003

me/10−3 0.469658±0.000469 0.469649 -0.01 0.469757 0.21

mµ/10−3 99.1474±0.0991 99.1555 0.08 99.0913 -0.56

mτ 1.68551±0.00168 1.68542 -0.05 1.68602 0.29

|Vus|/10−2 22.54±0.06 22.53 -0.01 22.54 0.005

|Vcb|/10−2 4.856±0.06 4.856 0.001 4.853 -0.03

|Vub|/10−2 0.420±0.013 0.420 0.07 0.420 0.02

δCKM 1.207±0.054 1.205 -0.03 1.205 -0.03

∆m2
sol/10−5(eV2) 7.56±0.24 7.56 0.01 7.54 -0.06

∆m2
atm/10−3(eV2) 2.41±0.08 2.40 -0.004 2.41 0.05

sin2 θPMNS
12 0.308±0.017 0.308 0.01 0.302 -0.29

sin2 θPMNS
23 0.387±0.0225 0.388 0.03 0.396 0.42

sin2 θPMNS
13 0.0241±0.0025 0.0238 -0.11 0.0239 -0.04

Table 2.1: Fitted values of the observables correspond to χ2 = 7 · 10−2 and 0.78 for models AI and AII respec-

tively. These fittings correspond to |aij |max = |a44| =1.9 and 3.3 for the type-I and type-II cases respectively

(see text for details). For the charged lepton masses, a relative uncertainty of 0.1% is assumed in order to take

into account the theoretical uncertainties arising for example from threshold effects.

For model AII (Model A with type-II seesaw) the parameter set is:

{au33, a
d
33, ε, T, θ, φ, vL, r} ={0.152744 + 0.399269i,−0.0244755,−0.393925, 11.4001, 0.560999,

0.105066, 1.69937 · 10−8GeV, 6.75824}

and
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Quantity Predicted Value (AI) Predicted Value (AII)

{m1,m2,m3} (in eV) {3.72 · 10−3, 9.45 · 10−3, 4.99 · 10−2} {4.38 · 10−3, 9.72 · 10−3, 5.00 · 10−2}

{δPMNS , αPMNS
21 , αPMNS

31 } {120.03◦, 144.92◦,−168.49◦} {104.80◦, 159.32◦, 95.05◦}

{mcos,mβ ,mββ} (in eV) {6.31 · 10−2, 6.55 · 10−3, 1.22 · 10−3} {6.42 · 10−2, 7.05 · 10−3, 2.24 · 10−4}

{M1,M2,M3} (in GeV) {8.65 · 107, 2.66 · 1010, 6.99 · 1011} -

Table 2.2: Predictions of the models A. mi are the light neutrino masses, Mi are the right-handed neutrino

masses, α21,31 are the Majorana phases following the PDG parametrization, mcos =
∑
imi, mβ =

∑
i |Uei|2mi

is the effective mass parameter for beta-decay and mββ = |∑i U
2
eimi| is the effective mass parameter for

neutrinoless double beta decay.

aeij = 10−2


0.127684 0 −0.0742479 + 0.0532305i

0 −0.00055042 0.0264824 + 0.0152045i

0.136072 + 0.0070994i 0.0582979 + 0.00164043i −0.398502− 2.1619i

 . (2.6.119)

In performing such optimization, solutions with lower values of χ2 exist but we are only interested in the

solutions for which the original couplings aij are also in the perturbative range. In the optimization process we

restrict ourselves to the case of (aij)max . 2. For all the solutions that are presented, we did find good fits with

this cut-off except for model AII where |a44| = 3.3 as can be seen from Eq. 2.6.132 . The original coupling

matrices aij can be computed with the parameter sets that result due to the minimization process.

In Table 3.4, the predicted quantities correspond to the best fit values. For example, for model AI, the

predicted value of the Dirac type CP violating phase in the neutrino sector is δPMNS = 2π/3. The fit result

presented in this case is very good since χ2 = 7 · 10−2. We have investigated the robustness of the predicted

value of δPMNS and found it to be not very robust. Since the χ2 for the best fit is extremely small, it is quite

fine to deviate from the minimum χ2 are still find acceptable fits. We find that the variation of δPMNS from

the predicted value can be quite large. In Fig. 2.1, we show the variation of δPMNS with χ2/nobs. Most of the

fit results presented in this work have small total χ2, so this conclusion on the robustness of δPMNS prediction

is valid for the other models as well. We present the variation plot only for model AI.

Model B: Non-SUSY SO(10): 210H + 54H + 126H (or 210H + 16H + 126H)

The fit results and the predictions for models B are shown in Table 3.5 and 3.1 respectively. The parameter

set for model BI is:

{au33, a
d
33, ε1, ε2, T, θ, φ, vR, r} ={−0.0380751− 0.424441i, 0.0244949, 1.61753, 1.67225, 0.764487,

0.541654,−2.91319, 2.23915 · 1013GeV, 6.74578}
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Figure 2.1: Variation of δPMNS with χ2/nobs for the model AI. In plotting this, we restrict to the regime for

which χ2 ≤ 10.

and

aeij = 10−2


−0.122115 0 0.899426 + 1.16951i

0 0.00569753 −0.104101− 0.15069i

−0.175821− 0.103765i 0.0325028 + 0.0638096i 1.46544 + 0.663581i

 . (2.6.120)

The parameter set for model BII is:

{au33, a
d
33, ε1, ε2, T, θ, φ, vR, r} ={0.174446 + 0.389832i, 0.0244585, 1.07061, 0.666248, 0.526787,

0.713998, 0.295856, 1.32386 · 10−8GeV, 6.74635}

and

aeij = 10−2


0.00424453 0 0.130198 − 0.0532261i

0 0.0963929 −0.386912− 0.75915i

−0.0711623− 0.0235054i 0.0531238 + 0.181145i −1.64856− 1.16034i

 . (2.6.121)
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Masses (in GeV) and

Mixing parameters

Inputs

(at µ = MGUT )

Fitted values (B I)

(at µ = MGUT )

pulls

(B I)

Fitted values (B II)

(at µ = MGUT )

pulls

(B II)

mu/10−3 0.437±0.147 0.436 -0.0007 0.437 0.0002

mc 0.236±0.007 0.236 0.006 0.236 -0.00009

mt 73.82±0.64 73.82 0.003 73.82 -0.00005

md/10−3 1.12±0.11 1.12 0.0 1.12 -0.0005

ms/10−3 21.93±1.07 21.95 0.01 21.93 -0.0003

mb 0.987±0.008 0.987 0.005 0.987 0.0003

me/10−3 0.469658±0.000469 0.469654 -0.008 0.469658 -0.0004

mµ/10−3 99.1474±0.0991 99.1412 -0.06 99.1476 0.002

mτ 1.68551±0.00168 1.68555 0.02 1.68551 -0.002

|Vus|/10−2 22.54±0.06 22.54 0.0009 22.54 -0.00004

|Vcb|/10−2 4.856±0.06 4.856 0.0001 4.856 0.0002

|Vub|/10−2 0.420±0.013 0.419 -0.001 0.419 -0.0001

δCKM 1.207±0.054 1.207 0.003 1.207 0.0005

∆m2
sol/10−5(eV2) 7.56±0.24 7.55 -0.001 7.56 0.00005

∆m2
atm/10−3(eV2) 2.41±0.08 2.40 0.004 2.41 0.0001

sin2 θPMNS
12 0.308±0.017 0.307 -0.004 0.307 -0.0003

sin2 θPMNS
23 0.387±0.0225 0.387 -0.002 0.387 0.00004

sin2 θPMNS
13 0.0241±0.0025 0.0241 0.01 0.0241 0.00009

Table 2.3: Best fit values of the observables correspond to χ2 = 5 · 10−3 and 1 · 10−5 for models BI and BII

respectively. These fittings correspond to |aij |max = |a44| =0.56 and 0.26 for the type-I and type-II cases

respectively. For the charged lepton masses, a relative uncertainty of 0.1% is assumed in order to take into

account the theoretical uncertainties arising for example from threshold effects.

Model C: SUSY SO(10): 45H + 54H + 16H + 16H + 126H + 126H

The fit results and the predictions for models C are shown in Table 2.5 and 2.6 respectively. The parameter

set for model CI is:

{au33, a
d
33, ε, T, θ, φ, vR, r} ={−0.22531 + 0.467722i, 0.0317632,−1.10245 + 0.269791i,

5.51352, 0.560999, 0.448339, 1.39544 · 1013GeV, 9.14437}

and

aeij = 10−2


0.113952 0 −1.52545− 0.861024i

0 0.0066433 0.103718 − 0.25156i

0.103242 − 0.07705i 0.0528824 + 0.0275714i −0.300714− 1.23388i

 . (2.6.122)
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Quantity Predicted Value (BI) Predicted Value (BII)

{m1,m2,m3} (in eV) {2.58 · 10−3, 9.07 · 10−3, 4.99 · 10−2} {2.61 · 10−3, 9.07 · 10−3, 4.99 · 10−2}

{δPMNS , αPMNS
21 , αPMNS

31 } {−38.38◦, 175.84◦,−131.48◦} {−65.38◦,−158.28◦,−96.19◦}

{mcos,mβ ,mββ} (in eV) {6.15 · 10−2, 5.67 · 10−3, 8.33 · 10−4} {6.16 · 10−2, 5.69 · 10−3, 3.93 · 10−4}

{M1,M2,M3} (in GeV) {5.47 · 108, 3.48 · 1010, 5.73 · 1011} -

Table 2.4: Predictions of models B. mi are the light neutrino masses, Mi are the right handed neutrino masses,

α21,31 are the Majorana phases following the PDG parametrization, mcos =
∑
imi, mβ =

∑
i |Uei|2mi is the

effective mass parameter for beta-decay and mββ = |∑i U
2
eimi| is the effective mass parameter for neutrinoless

double beta decay.

The parameter set for model CII is:

{au33, a
d
33, ε, T, θ, φ, vL, r} ={0.0307775 + 0.518792i,−0.0317378,−0.75526− 0.237386i,

4.66699, 0.713998,−0.0578946, 1.55237 · 10−8GeV, 9.1424}

and

aeij = 10−2


−0.104302 0 0.88437 − 0.647303i

0 0.00422339 0.0628707 − 0.166004i

−0.0805026− 0.140317i −0.0449238− 0.0524454i −0.793384 + 1.69782i

 . (2.6.123)
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Masses (in GeV) and

Mixing parameters

Inputs

(at µ = MGUT )

Fitted values (CI)

(at µ = MGUT )

pulls

(CI)

Fitted values (CII)

(at µ = MGUT )

pulls

(CII)

mu/10−3 0.502±0.155 0.502 0.001 0.501 -0.0005

mc 0.245±0.007 0.245 0.002 0.245 0.001

mt 90.28±0.90 90.28 -0.0005 90.28 -0.002

md/10−3 0.839±0.084 0.838 -0.006 0.839 -0.001

ms/10−3 16.62±0.90 16.62 -0.00005 16.62 0.002

mb 0.938±0.009 0.938 -0.001 0.938 -0.001

me/10−3 0.344021±0.000344 0.344021 0.0001 0.344018 -0.008

mµ/10−3 72.6256±0.0726 72.6273 0.02 72.6240 -0.02

mτ 1.24038±0.00124 1.24036 -0.01 1.24038 -0.001

|Vus|/10−2 22.53±0.07 22.53 0.002 22.53 0.001

|Vcb|/10−2 3.934±0.06 3.933 -0.001 3.934 0.001

|Vub|/10−2 0.340±0.011 0.340 -0.001 0.340 -0.004

δCKM 1.208±0.054 1.208 0.004 1.208 0.001

∆m2
sol/10−5(eV2) 7.56±0.24 7.56 0.001 7.55 -0.001

∆m2
atm/10−3(eV2) 2.41±0.08 2.41 0.001 2.40 -0.0006

sin2 θPMNS
12 0.308±0.017 0.308 0.005 0.308 0.003

sin2 θPMNS
23 0.387±0.0225 0.387 -0.0001 0.387 -0.002

sin2 θPMNS
13 0.0241±0.0025 0.0240 -0.002 0.0240 -0.003

Table 2.5: Best fit result for models C with inputs correspond to tanβ = 10. The fitted values correspond to

χ2 = 7 · 10−4 for model CI and 6 · 10−4 for model CII. These fittings correspond to |aij |max = |a44| =1.5 and

1.03 for the type-I and type-II cases respectively. For the charged lepton masses, a relative uncertainty of 0.1%

is assumed in order to take into account the theoretical uncertainties arising for example from threshold effects.
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Quantity Predicted Value (CI) Predicted Value (CII)

{m1,m2,m3} (in eV) {5.36 · 10−3, 1.02 · 10−2, 5.01 · 10−2} {3.68 · 10−3, 9.44 · 10−3, 4.99 · 10−2}

{δPMNS , αPMNS
21 , αPMNS

31 } {157.92◦, 158.41◦,−104.87◦} {85.15◦, 165.93◦, 138.22◦}

{mcos,mβ ,mββ} (in eV) {6.57 · 10−2, 7.90 · 10−3, 1.35 · 10−3} {6.31 · 10−2, 6.53 · 10−3, 7.55 · 10−4}

{M1,M2,M3} (in GeV) {1.91 · 108, 1.63 · 1010, 1.33 · 1012} -

Table 2.6: Predictions of the models C. mi are the light neutrino masses, Mi are the right handed neutrino

masses, α21,31 are the Majorana phases following the PDG parametrization, mcos =
∑
imi, mβ =

∑
i |Uei|2mi

is the effective mass parameter for beta-decay and mββ = |∑i U
2
eimi| is the effective mass parameter for

neutrinoless double beta decay.

Model D: SUSY SO(10): 210H + 54H + 126H + 126H

The fit results and the predictions for model DaI are shown in Table 2.7 and 2.8 respectively. The parameter

set for this fit of model DaI is:

{au33, a
d
33, ε2, T, θ, φ, vR, r} ={−0.343904 + 0.38917i, 0.0318629,−5.89976− 0.158839i, 0.77736,

0.532473, 2.76646, 1.95768 · 1013GeV, 9.15103}

and

aeij = 10−10


−0.00696426 0 0.289526 − 0.387539i

0 −0.0703536 1.4192 + 0.447705i

0.00893467 − 0.0548221i 0.11474 + 0.140445i 1.06975 − 1.07627i

 . (2.6.124)
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Masses (in GeV) and

Mixing parameters

Inputs

(at µ = MGUT )

Fitted values (DaI)

(at µ = MGUT )

pulls

(DaI)

mu/10−3 0.502±0.155 0.520 0.12

mc 0.245±0.007 0.243 -0.20

mt 90.28±0.90 90.17 -0.11

md/10−3 0.839±0.084 0.967 1.51

ms/10−3 16.62±0.90 16.49 -0.14

mb 0.938±0.009 0.939 0.14

me/10−3 0.344021±0.000344 0.343834 -0.54

mµ/10−3 72.6256±0.0726 72.4978 -1.75

mτ 1.24038±0.00124 1.23997 -0.32

|Vus|/10−2 22.53±0.07 22.53 -0.09

|Vcb|/10−2 3.934±0.06 3.920 -0.22

|Vub|/10−2 0.340±0.011 0.341 0.10

δCKM 1.208±0.054 1.192 -0.28

∆m2
sol/10−5(eV2) 7.56±0.24 7.52 -0.15

∆m2
atm/10−3(eV2) 2.41±0.08 2.42 0.13

sin2 θPMNS
12 0.308±0.017 0.290 -1.00

sin2 θPMNS
23 0.387±0.0225 0.399 0.55

sin2 θPMNS
13 0.0241±0.0025 0.0235 -0.20

Table 2.7: Fitting result for model DaI with inputs correspond to tanβ = 10. The fitted values correspond

to χ2 = 7.4 for type-I. It should be mentioned that, among all the fit results presented in this work, this

specific fit has the largest value of χ2 which is 7.4 for 18 observables. This fit correspond to |aij |max =

|a44| =1.55. For the charged lepton masses, a relative uncertainty of 0.1% is assumed in order to take into

account theoretical uncertainties arising for example from threshold effects. We did not find any acceptable fit

within the perturbative range for model DaII.
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Quantity Predicted Value (DaI)

{m1,m2,m3} (in eV) {1.58 · 10−3, 8.81 · 10−3, 4.99 · 10−2}

{δPMNS , αPMNS
21 , αPMNS

31 } {85.64◦, 139.76◦, 149.60◦}

{mcos,mβ ,mββ} (in eV) {6.03 · 10−2, 4.78 · 10−3, 1.21 · 10−3}

{M1,M2,M3} (in GeV) {8.89 · 107, 2.14 · 1010, 2.63 · 1012}

Table 2.8: Predictions of the model DaI. mi are the light neutrino masses, Mi are the right handed neutrino

masses, α21,31 are the Majorana phases following the PDG parametrization, mcos =
∑
imi, mβ =

∑
i |Uei|2mi

is the effective mass parameter for beta-decay and mββ = |∑i U
2
eimi| is the effective mass parameter for

neutrinoless double beta decay.

The fit results and the predictions for models Db are shown in Table 2.9 and 2.10 respectively. The parameter

set for DbI is:

{au33, a
d
33, ε2, T, θ, φ, vR, r} ={−0.416619− 0.310425i,−0.0317247, 3.76592 + 0.0145385i, 0.310345,

2.84818, 0.132797, 2.21257 · 1013GeV, 9.14124}

and

aeij = 10−2


0.0964978 0 −0.0230964 + 1.18352i

0 −0.00493562 0.00684639− 0.202567i

−0.0394903− 0.200904i 0.055507 + 0.0481135i 0.753644 + 1.64867i

 . (2.6.125)

And the parameter set for model DbII is:

{au33, a
d
33, ε2, T, θ, φ, vL, r} ={−0.365477− 0.36971i, 0.0316996, 3.53671− 0.311658i, 0.343597,

− 2.95969,−0.131357, 1.58947 · 10−8GeV, 9.14446}

and

aeij = 10−2


0.00324628 0 −0.026757 + 0.083972i

0 −0.148375 0.450875 + 0.843973i

−0.0190056− 0.0577497i −0.129264− 0.0587799i 1.86523 + 0.58344i

 . (2.6.126)
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Masses (in GeV) and

Mixing parameters

Inputs

(at µ = MGUT )

Fitted values (DbI)

(at µ = MGUT )

pulls

(DbI)

Fitted values (DbII)

(at µ = MGUT )

pulls

(DbII)

mu/10−3 0.502±0.155 0.501 -0.0006 0.502 0.001

mc 0.245±0.007 0.245 -0.004 0.245 0.003

mt 90.28±0.90 90.28 0.002 90.28 -0.00009

md/10−3 0.839±0.084 0.839 0.001 0.838 -0.004

ms/10−3 16.62±0.90 16.62 -0.001 16.62 -0.0001

mb 0.938±0.009 0.938 -0.001 0.938 0.001

me/10−3 0.344021±0.000344 0.344016 -0.01 0.344019 -0.007

mµ/10−3 72.6256±0.0726 72.6279 0.03 72.62249 -0.01

mτ 1.24038±0.00124 1.24035 -0.02 1.24039 0.004

|Vus|/10−2 22.53±0.07 22.53 0.0004 22.53 -0.0003

|Vcb|/10−2 3.934±0.06 3.934 0.002 3.933 -0.0005

|Vub|/10−2 0.340±0.011 0.340 -0.001 0.340 -0.0005

δCKM 1.208±0.054 1.208 0.002 1.208 -0.001

∆m2
sol/10−5(eV2) 7.55±0.24 7.56 -0.0004 7.55 -0.0003

∆m2
atm/10−3(eV2) 2.41±0.08 2.41 0.0008 2.40 -0.0003

sin2 θPMNS
12 0.308±0.017 0.308 -0.001 0.308 -0.0003

sin2 θPMNS
23 0.387±0.0225 0.387 0.0007 0.387 0.001

sin2 θPMNS
13 0.0241±0.0025 0.0241 0.001 0.02409 -0.001

Table 2.9: Fitting result for model Db with inputs correspond to tanβ = 10. The fitted values correspond to

χ2 = 1.9·10−3 and 2·10−4 for modelsDbI andDbII respectively. These fits correspond to |aij |max = |a44| = 0.81

and 0.99 for the two cases respectively. For the charged lepton masses, a relative uncertainty of 0.1% is assumed

in order to take into account theoretical uncertainties arising for example from threshold effects.

Model E: SUSY SO(10): 210H + 16H + 16H + 126H + 126H

The fit results and the predictions for models E are shown in Table 2.11 and 2.12 respectively. For model EI,

the parameter set is:

{au33, a
d
33, ε, T, θ, φ, vR, r} ={0.0873809 + 0.511807i, 0.0316596, 3.21783 + 0.31637i, 0.762371,

0.747998, 2.38528, 2.26917 · 1013GeV, 9.13917}

and

aeij = 10−2


0.00565532 0 0.0242668 + 0.230491i

0 0.10865 1.42287 − 0.445238i

−0.0636824− 0.00136495i −0.154896 + 0.137372i −1.56252 + 0.079592i

 . (2.6.127)
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Quantity Predicted Value (DbI) Predicted Value (DbII)

{m1,m2,m3} (in eV) {2.20 · 10−3, 8.96 · 10−3, 4.99 · 10−2} {4.72 · 10−3, 9.89 · 10−3, 5.00 · 10−2}

{δPMNS , αPMNS
21 , αPMNS

31 } {50.24◦, 169.13◦, 111.61◦} {66.63◦, 161.63◦, 0.41◦}

{mcos,mβ ,mββ} (in eV) {6.10 · 10−2, 5.38 · 10−3, 7.40 · 10−4} {6.47 · 10−2, 7.37 · 10−3, 4.54 · 10−4}

{M1,M2,M3} (in GeV) {9.40 · 108, 3.13 · 1010, 2.44 · 1011} -

Table 2.10: Predictions of models Db. mi are the light neutrino masses, Mi are the right handed neutrino

masses, α21,31 are the Majorana phases following the PDG parametrization, mcos =
∑
imi, mβ =

∑
i |Uei|2mi

is the effective mass parameter for beta-decay and mββ = |∑i U
2
eimi| is the effective mass parameter for

neutrinoless double beta decay.

For model EII, the parameter set is:

{au33, a
d
33, ε, T, θ, φ, vL, r} ={−0.43609 + 0.282193i,−0.0316974, 3.21172 + 0.154721i, 0.54795,

0.682955, 2.41863, 1.26299 · 10−8GeV, 9.1442}

and

aeij = 10−2


−0.00491523 0 0.0991935 + 0.158945i

0 −0.0989956 1.00507 − 0.775818i

−0.0677936− 0.0254017i 0.0688011 + 0.186132i −1.33307 + 1.14438i

 . (2.6.128)
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Masses (in GeV) and

Mixing parameters

Inputs

(at µ = MGUT )

Fitted values (EI)

(at µ = MGUT )

pulls

(EI)

Fitted values (EII)

(at µ = MGUT )

pulls

(EII)

mu/10−3 0.502±0.155 0.501 -0.001 0.502 0.0005

mc 0.245±0.007 0.245 -0.007 0.245 0.001

mt 90.28±0.90 90.28 0.001 90.28 -0.002

md/10−3 0.839±0.084 0.839 0.001 0.839 -0.0005

ms/10−3 16.62±0.90 16.62 0.00009 16.62 -0.0001

mb 0.938±0.009 0.938 -0.0002 0.938 -0.001

me/10−3 0.344021±0.000344 0.344022 0.004 0.344023 0.005

mµ/10−3 72.6256±0.0726 72.6250 -0.007 72.62641 0.01

mτ 1.24038±0.00124 1.24036 -0.01 1.24037 -0.009

|Vus|/10−2 22.53±0.07 22.53 0.001 22.53 -0.0001

|Vcb|/10−2 3.934±0.06 3.934 0.005 3.933 -0.0003

|Vub|/10−2 0.340±0.011 0.340 -0.007 0.340 0.0006

δCKM 1.208±0.054 1.208 0.007 1.208 0.004

∆m2
sol/10−5(eV2) 7.56±0.24 7.56 0.001 7.55 -0.0002

∆m2
atm/10−3(eV2) 2.41±0.08 2.409 -0.0007 2.41 0.0003

sin2 θPMNS
12 0.308±0.017 0.308 0.006 0.307 -0.002

sin2 θPMNS
23 0.387±0.0225 0.387 0.002 0.387 0.0008

sin2 θPMNS
13 0.0241±0.0025 0.0240 0.0001 0.0241 0.001

Table 2.11: Fitting result for models E with inputs correspond to tanβ = 10. The fitted values correspond to

χ2 = 4 · 10−4 for model EI and 2 · 10−4 for model EII respectively. These fittings correspond to |aij |max =

|a44| =0.76 and 0.89 for the type-I and type-II cases respectively. For the charged lepton masses, a relative

uncertainty of 0.1% is assumed in order to take into account theoretical uncertainties arising for example from

threshold effects.
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Quantity Predicted Value (EI) Predicted Value (EII)

{m1,m2,m3} (in eV) {2.06 · 10−3, 8.93 · 10−3, 4.98 · 10−2} {2.46 · 10−3, 9.03 · 10−3, 4.99 · 10−2}

{δPMNS , αPMNS
21 , αPMNS

31 } {46.84◦,−178.55◦, 141.46◦} {−53.69◦,−172.46◦,−123.70◦}

{mcos,mβ ,mββ} (in eV) {6.08 · 10−2, 5.28 · 10−3, 9.54 · 10−4} {6.14 · 10−2, 5.58 · 10−3, 7.05 · 10−4}

{M1,M2,M3} (in GeV) {2.79 · 108, 2.15 · 1010, 1.82 · 1012} -

Table 2.12: Predictions of models E. mi are the light neutrino masses,Mi are the right handed neutrino masses,

α21,31 are the Majorana phases following the PDG parametrization, mcos =
∑
imi, mβ =

∑
i |Uei|2mi is the

effective mass parameter for beta-decay and mββ = |∑i U
2
eimi| is the effective mass parameter for neutrinoless

double beta decay.

Model F: SUSY SO(10): 210H + 54H + 16H + 16H + 126H + 126H

The fit results and the predictions for models F are shown in Table 2.13 and 2.14 respectively. The parameter

set for model FI is:

{au33, a
d
33, ε1, ε2, T, θ, φ, vR, r} ={−0.508413 + 0.106596i, 0.0317542, 1.21369 + 0.393457i, 1.11752

+ 1.12726i, 0.652924, 0.682955,−2.69221, 2.17249 · 1013GeV, 9.14433}

and

aeij = 10−2


−0.101322 0 1.50945 + 0.641937i

0 0.00628798 −0.311418− 0.017807i

−0.0659206− 0.186996i −0.0254875 + 0.0490826i 0.979206 + 0.994616i

 . (2.6.129)

And the parameter set for model FII is:

{au33, a
d
33, ε1, ε2, T, θ,φ, vL, r} = {−0.0175831− 0.518919i,−0.0317748, 1.13488− 0.537296i,

0.934779− 0.810325i, 0.577852, 0.541654, 2.37836, 1.17202 · 10−8GeV, 9.14329}

and

aeij = 10−2


0.00631171 0 −0.244096− 0.0355119i

0 −0.106855 1.42499 − 0.0405503i

−0.00203514− 0.0627216i −0.159398 + 0.138939i 1.56233 + 0.439752i

 . (2.6.130)
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Masses (in GeV) and

Mixing parameters

Inputs

(at µ = MGUT )

Fitted values (FI)

(at µ = MGUT )

pulls

(FI)

Fitted values (FII)

(at µ = MGUT )

pulls

(FII)

mu/10−3 0.502±0.155 0.501 -0.003 0.501 -0.0005

mc 0.245±0.007 0.245 0.006 0.245 0.001

mt 90.28±0.90 90.28 0.003 90.28 0.001

md/10−3 0.839±0.084 0.839 0.004 0.839 0.001

ms/10−3 16.62±0.90 16.62 -0.001 16.62 0.001

mb 0.938±0.009 0.938 0.0001 0.938 -0.0001

me/10−3 0.344021±0.000344 0.344022 0.001 0.344022 0.002

mµ/10−3 72.6256±0.0726 72.6237 -0.02 72.62539 -0.002

mτ 1.24038±0.00124 1.24039 0.007 1.24038 0.0003

|Vus|/10−2 22.53±0.07 22.53 0.0002 22.53 0.0001

|Vcb|/10−2 3.934±0.06 3.933 -0.001 3.934 0.0001

|Vub|/10−2 0.340±0.011 0.340 -0.007 0.340 -0.001

δCKM 1.208±0.054 1.208 0.001 1.208 0.004

∆m2
sol/10−5(eV2) 7.56±0.24 7.56 0.00003 7.55 -0.0002

∆m2
atm/10−3(eV2) 2.41±0.08 2.41 0.0005 2.41 0.0001

sin2 θPMNS
12 0.308±0.017 0.308 0.0004 0.308 0.0004

sin2 θPMNS
23 0.387±0.0225 0.387 -0.001 0.387 0.001

sin2 θPMNS
13 0.0241±0.0025 0.0240 -0.0009 0.02409 -0.002

Table 2.13: Fitting result for models F with inputs correspond to tanβ = 10. The fitted values correspond to

χ2 = 9·10−4 and 3·10−5 for models FI and FII respectively. These fittings correspond to |aij |max = |a44| =0.67

and 1.08 for the type-I and type-II cases respectively. For the charged lepton masses, a relative uncertainty

of 0.1% is assumed in order to take into account theoretical uncertainties arising for example from threshold

effects.
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Quantity Predicted Value (FI) Predicted Value (FII)

{m1,m2,m3} (in eV) {1.84 · 10−3, 8.88 · 10−3, 4.98 · 10−2} {2.00 · 10−3, 8.92 · 10−3, 4.98 · 10−2}

{δPMNS , αPMNS
21 , αPMNS

31 } {−60.72◦,−175.43◦,−164.89◦} {44.97◦, 179.45◦, 133.12◦}

{mcos,mβ ,mββ} (in eV) {6.06 · 10−2, 5.11 · 10−3, 1.17 · 10−3} {6.08 · 10−2, 5.23 · 10−3, 9.61 · 10−4}

{M1,M2,M3} (in GeV) {3.92 · 108, 1.97 · 1010, 1.27 · 1012} -

Table 2.14: Predictions of models F. mi are the light neutrino masses,Mi are the right handed neutrino masses,

α21,31 are the Majorana phases following the PDG parametrization, mcos =
∑
imi, mβ =

∑
i |Uei|2mi is the

effective mass parameter for beta-decay and mββ = |∑i U
2
eimi| is the effective mass parameter for neutrinoless

double beta decay.

For all the fits to the different models presented in this work, these matrices are shown below:

Model AI:

aij = 10−2


0.0959072 0 0.579907 + 0.173698i 5.94255 + 2.20933i

0 −0.00693205 0.134449 + 0.0151987i 1.11642 + 0.685207i

0.579907 + 0.173698i 0.134449 + 0.0151987i 0.343854 + 2.01413i 16.4068 + 0.693589i

5.94255 + 2.20933i 1.11642 + 0.685207i 16.4068 + 0.693589i 192.42 + 53.2691i

 .

(2.6.131)

Model AII:

aij = 10−2


0.127684 0 −0.300661 + 0.102672i −2.93065 + 0.584561i

0 −0.00055042 −0.00799172 + 0.0297446i −0.450085 + 0.185354i

−0.300661 + 0.102672i −0.00799172 + 0.0297446i 0.164493 − 2.14188i 8.08605 + 16.5832i

−2.93065 + 0.584561i −0.450085 + 0.185354i 8.08605 + 16.5832i 96.688 + 321.511i

 .

(2.6.132)

Model BI:

aij = 10−2


−0.122115 0 0.711183 + 0.747142i −1.99272− 3.01439i

0 0.00569753 −0.0996008− 0.168017i 0.22039 + 0.476214i

0.711183 + 0.747142i −0.0996008− 0.168017i −1.6329− 3.89159i 2.08313 + 14.9094i

−1.99272− 3.01439i 0.22039 + 0.476214i 2.08313 + 14.9094i 10.1819 − 55.9358i

 .

(2.6.133)

Model BII:

aij = 10−2


0.00424453 0 −0.739696 + 0.100859i −0.261416− 0.180202i

0 0.0963929 1.59142 + 3.41719i −0.546982 + 1.75381i

−0.739696 + 0.100859i 1.59142 + 3.41719i 35.6473 + 92.8117i −22.3139 + 45.2696i

−0.261416− 0.180202i −0.546982 + 1.75381i −22.3139 + 45.2696i −25.416 + 7.30749i

 .

(2.6.134)
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Model CI:

aij = 10−2


0.113952 0 0.491463 + 0.565896i 3.76471 + 4.85316i

0 0.0066433 −0.0563066 + 0.107998i −0.804669 + 0.719013i

0.491463 + 0.565896i −0.0563066 + 0.107998i −1.4383 + 2.14192i −6.53535 + 21.208i

3.76471 + 4.85316i −0.804669 + 0.719013i −6.53535 + 21.208i −59.2957 + 144.035i

 .

(2.6.135)

Model CII:

aij = 10−2


−0.104302 0 −0.23862 + 0.777714i −1.41328 + 3.82589i

0 0.00422339 −0.0155148 + 0.115636i 0.0287095 + 0.732858i

−0.23862 + 0.777714i −0.0155148 + 0.115636i −0.0699652 + 2.31316i 0.347507 + 16.8414i

−1.41328 + 3.82589i 0.0287095 + 0.732858i 0.347507 + 16.8414i −5.81915 + 103.489i

 .

(2.6.136)

Model DaI:

aij = 10−10


−0.00696426 0 −0.245942 + 0.340282i −0.981934 + 1.05034i

0 −0.0703536 −1.2441− 0.347061i −3.9061− 2.2744i

−0.245942 + 0.340282i −1.2441− 0.347061i −11.3476 + 13.1125i −38.737 + 28.5679i

−0.981934 + 1.05034i −3.9061− 2.2744i −38.737 + 28.5679i −137.986 + 71.4185i

 .

(2.6.137)

Model DbI:

aij = 10−2


0.0964978 0 0.0463804 + 0.612925i 0.23948− 4.0549i

0 −0.00493562 −0.0692766− 0.122098i 0.0709726 + 0.757652i

0.0463804 + 0.612925i −0.0692766− 0.122098i −1.50677− 1.28146i 9.26908 + 9.93996i

0.23948− 4.0549i 0.0709726 + 0.757652i 9.26908 + 9.93996i −60.1029− 54.8455i

 .

(2.6.138)

Model DbII:

aij = 10−2


0.00324628 0 0.00619872 + 0.0924098i 0.0581533 + 0.495523i

0 −0.148375 0.234817 + 0.306995i 2.43678 + 3.11641i

0.00619872 + 0.0924098i 0.234817 + 0.306995i −0.940024− 1.19953i −10.2704− 9.213i

0.0581533 + 0.495523i 2.43678 + 3.11641i −10.2704− 9.213i −63.9596− 76.7709i

 .

(2.6.139)

Model EI:

aij = 10−2


0.00565532 0 −0.266188 + 0.0701303i 0.518805 − 0.533918i

0 0.10865 0.425618 + 1.82085i −3.18677− 2.87341i

−0.266188 + 0.0701303i 0.425618 + 1.82085i −14.7905 + 7.46579i 14.094 − 32.9412i

0.518805 − 0.533918i −3.18677− 2.87341i 14.094 − 32.9412i 19.4372 + 73.7643i

 .

(2.6.140)

Model EII:
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aij = 10−2


−0.00491523 0 −0.113267 + 0.379235i −0.0710291− 0.772947i

0 −0.0989956 1.91708 + 0.433922i −4.21969 + 0.992353i

−0.113267 + 0.379235i 1.91708 + 0.433922i −14.9942 + 2.32607i 31.5765 − 18.8751i

−0.0710291− 0.772947i −4.21969 + 0.992353i 31.5765 − 18.8751i −50.6035 + 73.4838i

 .

(2.6.141)

Model FI:

aij = 10−2


−0.101322 0 1.00796 − 1.0692i −3.40853 + 1.66912i

0 0.00628798 −0.117644 + 0.20702i 0.5911 − 0.454689i

1.00796 − 1.0692i −0.117644 + 0.20702i −3.59013 + 11.2045i 20.5757 − 20.2831i

−3.40853 + 1.66912i 0.5911 − 0.454689i 20.5757 − 20.2831i −63.553 + 23.8071i

 . (2.6.142)

Model FII:

aij = 10−2


0.00631171 0 −0.0913116− 0.224948i 0.708328 + 0.52168i

0 −0.106855 0.477564 + 1.57686i −4.01776− 3.01492i

−0.0913116− 0.224948i 0.477564 + 1.57686i 12.5721 − 5.02818i −18.1583 + 34.5582i

0.708328 + 0.52168i −4.01776− 3.01492i −18.1583 + 34.5582i −22.102− 106.709i

 .

(2.6.143)

2.7 d = 5 proton decay

Since the flavor dynamics occurs at the GUT scale in this class of models, the best hope for testing this idea

is by studying proton decay, in particular, its branching ratios into different modes. While such an analysis

can be done for both non-SUSY and SUSY models, here we confine our discussion to the more dominant d = 5

decay modes in SUSY mediated by the color-triplet Higgsinos.

We will bound ourselves to the (presumably) dominant d = 5 (charged) wino mediated mode, so that only

SU(2)L non-singlets will appear in the effective operators:

W ∝ (YQQ)ij (YQL)kl (QiQj) (QkLl) (2.7.144)

with

YQQ = ΛTQ
(
Y − yxTQ − xQyT + y4xQx

T
Q

)
ΛQ (2.7.145)

YQL = ΛTQ
(
Y − yxTL − xQyT + y4xQx

T
L

)
ΛL (2.7.146)

We have to project them to the mass eigenstates defined by the unitary matrices X = U,D,E,N which

diagonalize the mass matrices as
MX = XRM

d
XX

†
L (2.7.147)

We will use the notation (X = U,D)
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YXZ = XT
LYQQZL (for Z = U,D) (2.7.148)

= XT
LYQLZL (for Z = E,N) (2.7.149)

After 1-loop w̃± dressing and assuming degeneracy and negligible left-right sfermion mixing the normalized

amplitudes for different channels [77] are, in the mass eigenbasis,

A(K+ν̄l) = 〈K+| (ud)L sL|p〉 [(YUD)11 (YDN )2l − (YDD)21 (YUN )1l]

+ 〈K+| (us)L dL|p〉 [(YUD)12 (YDN )1l − (YDD)12 (YUN )1l] (2.7.150)

A(π+ν̄l) = 〈π+| (ud)L dL|p〉 [(YUD)11 (YDN )1l − (YDD)11 (YUN )1l] (2.7.151)

A(K0e+
l ) = 〈K0| (us)L uL|p〉 [(YUU )11 (YDE)2l − (YUD)12 (YUE)1l] (2.7.152)

A(π0e+
l ) = 〈π0| (ud)L uL|p〉 [(YUU )11 (YDE)1l − (YUD)11 (YUE)1l] (2.7.153)

A(ηe+
l ) = 〈η| (ud)L uL|p〉 [(YUU )11 (YDE)1l − (YUD)11 (YUE)1l] (2.7.154)

where the numerical values (with maximal error around 30%) of the hadron matrix elements can be found

in [78].

The unitary matrices X and the Yukawa matrix elements YQQ,QL are outputs of each successful fit done.

As an example, for model DaI we find
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YQQ =


−0.0000696426 0 −0.0105713 + 0.00524935i

0 −0.000703536 −0.0237115− 0.0274144i

−0.0105713 + 0.00524935i −0.0237115− 0.0274144i −1.05171− 0.204611i

 (2.7.155)

YQL =


−0.0000696426 0 −0.0000232394− 0.000554968i

0 −0.000703536 0.00140745 + 0.00114372i

−0.0105713 + 0.00524935i −0.0237115− 0.0274144i 0.00550524 − 0.00420826i


(2.7.156)

UL =


0.947932 + 0.154511i 0.0250533 − 0.277159i −0.00483953− 0.00916537i

0.0236485 + 0.277423i −0.948101 + 0.150221i −0.0314764 + 0.00505612i

−0.00438488− 0.00319527i 0.0288651 + 0.0161593i −0.895175− 0.444452i

 (2.7.157)

DL =


0.44376 + 0.785783i −0.114306− 0.415343i −0.00683343 + 0.0000682437i

−0.135958 + 0.408742i −0.484535 + 0.761308i 0.00448262 − 0.00785931i

−0.00402935− 0.00717747i −0.00772054− 0.00109752i −0.895597− 0.444722i


(2.7.158)

EL =


−0.914868 + 0.192948i −0.182083− 0.209497i −0.00368156 + 0.220751i

0.16774 − 0.285354i −0.612359− 0.228437i 0.639383 + 0.233362i

−0.0189384− 0.125958i −0.00319539 + 0.704116i −0.0568573 + 0.696242i

 (2.7.159)

NL =


−0.502397 + 0.721475i −0.139083− 0.437348i 0.047407 + 0.119192i

−0.43546 + 0.122682i −0.243261 + 0.682259i 0.24818 − 0.45725i

−0.0953668 + 0.115327i 0.0333823 + 0.513435i −0.0502508 + 0.842822i

 (2.7.160)

After squaring (2.7.150)-(2.7.154) and multiplying by the appropriate phase space factor (mP , mL, mp are

the pseudo-scalar, lepton and proton mass, respectively)(
1− 2

(
m2
P +m2

L

m2
p

)
+

(
m2
P −m2

L

m2
p

)2
)

(2.7.161)

one can calculate the branching fractions for different channels (for neutrino final states we sum over all 3 flavors),

the results are given for the different models in table 2.15. While as expected, the K+ν mode dominates, other

sub-leading modes, notably p→ π+ν, can be used to test and distinguish various models.

2.8 Conclusion

We have presented in this paper a new class of SO(10) models that can successfully address the flavor puzzle.

The key ingredient of our models is the absence of 10H that is conventionally used in most SO(10) models. Its
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CI CII Da I DbI DbII EI EII FI FII

K+ν̄ 88.39 94.36 50.39 92.71 75.26 89.03 77.91 94.78 90.65

π+ν̄ 10.85 5.55 48.33 7.12 24.62 10.48 21.58 4.95 9.17

K0e+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K0µ+ 0.35 0.04 0.49 0.08 0.05 0.23 0.21 0.13 0.09

π0e+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

π0µ+ 0.34 0.04 0.66 0.08 0.06 0.21 0.25 0.12 0.08

ηe+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ηµ+ 0.06 0.01 0.12 0.01 0.01 0.04 0.05 0.02 0.01

Table 2.15: Branching ratios for the main decay modes of the proton mediated by colored Higgsinos in SUSY

SO(10) models with successful fermion fits.

absence is compensated by the introduction of a vector-like family in the 16 + 16 representation. The Yukawa

sector of these models has just a single 4× 4 matrix, along with two four-vectors. As a consequence, there are

only 14 flavor parameters and 7 phases to fit all fermion masses and mixings, including the neutrino sector.

While the Yukawa system is highly nonlinear, by numerical optimization we have found excellent fits to

the fermion observables in a variety of models. A 126H is present in all models, to generate large right-

handed neutrino Majorana masses as well as to provide the SM Higgs doublet. The vector-like fermions have

couplings to either a 45H or a 210H that is used to complete the symmetry breaking. A total of six models,

four supersymmetric and two non-supersymmetric, have been studied. In each case type-I or type-II seesaw

mechanism was analyzed. In one case (Model D) with SUSY, minimization of the Higgs potential led to a

two-fold solution set, with each providing an excellent fit to flavor observables.

While this class of high scale models cannot be easily tested at collider experiments, proton decay provides

an avenue to probe such models. We have investigate the branching ratios for proton decay in the SUSY models,

with the results presented in Table 2.15. While it is an ambitious goal to test flavor models in proton decay

discovery, even without such a discovery it is heartening to learn that a large class of models can shed light

on the various puzzles of fermion masses observed in nature. In particular, starting from a highly symmetrical

quark and lepton sector these models produce large neutrino mixing simultaneously with small quark mixing,

a highly nontrivial achievement.
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CHAPTER 3

YUKAWA SECTOR OF MINIMAL SO(10) UNIFICATION

3.1 Introduction

Grand unified theories (GUTs) [79–81] based on the gauge group SO(10) [25] are very attractive candidates to

unify the strong, weak and electromagnetic forces into a single force, as well as to shed light on some of the open

questions of the Standard Model (SM). Quarks and leptons of each family are unified into a single irreducible

representations of SO(10) group, the 16-dimensional spinor, which also contains the right-handed neutrino.

The presence of the right-handed neutrino makes the seesaw mechanism [38, 82] for generating small neutrino

masses very compelling in these theories. Since SO(10) gauge symmetry is automatically anomaly-free [25], it

provides a nice explanation for the miraculous cancelation of anomalies that occurs within each fermion family.

The observed quantization of electric charges is also understood in these theories owing to their non-Abelian

nature. Unifying all fermions into a single multiplet gives us the hope of understanding some aspects of the

flavor puzzle in these theories. Unification of gauge couplings occurs naturally at an energy scale of ∼ 1015−16

GeV [64, 65, 68, 83–91], as SO(10) admits an intermediate symmetry group – unlike theories based on SU(5)

which must break directly to the SM. It is of course well known that if supersymmetry is assumed to be present

in its minimal version at the TeV scale, one-step breaking of SO(10) directly down to the SM can be realized

at an energy scale of 2 × 1016 GeV [92]. The focus of this paper [93] is, however, SO(10) theories without the

assumption of supersymmetry.

We wish to inquire what an economic Yukawa sector would look like in renormalizable SO(10) theories. This

may appear to be a well understood issue, but as we suggest here, this question has not been properly resolved.

Economy may be viewed as having the least number of Higgs fields as well as Yukawa parameters while being

realistic. Assuming that there are no new fermions beyond the three families of chiral 16s1 the answer to this

question may be found in the group theory of fermion bilinears:

16× 16 = 10s + 120a + 126s. (3.1.1)

Here the subscripts s and a stand for symmetric and antisymmetric components (in family space). The 10 and
1If vector-like fermions belonging to 16 + 16 (or other real representations) with GUT scale masses exist and mix with the chiral

16s, new possibilities are available, see for e.g., Ref. [?, 94].
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the 120 are real representations in SO(10), while the 126 is complex. The most general renormalizable Yukawa

couplings in SO(10) theories then would take the form

Lyuk = 16F (Y i1010iH + Y j120120jH + Y k126126
k
H)16F . (3.1.2)

Here the index i takes values i = 1, 2, ..n10 where n10 is the number of 10H fields employed, and similarly the

index j = 1, 2, ..n120 and k = 1, 2, ..n126 with n120 and n126 being the number of 120H and 126H present in the

theory. The Yukawa coupling matrices Y i10 and Y k126 are 3×3 complex symmetric matrices in family space, while

Y j120 are complex antisymmetric matrices. We wish to identify the smallest possible set of {n10, n120, n126} that

would lead to a realistic spectrum of quark and lepton masses as well as mixing angles. This set will turn out

to be the choice n10 = n120 = n126 = 1, as we shall see. This result is satisfying, as it suggests that nature has

utilized each possible Higgs field for fermion mass generation exactly once, without any replication.

Before establishing this assertion, which will be done in the next section, let us note that a complex 10

can be constructed from two real 10s in SO(10): 10c = (101 + i102)/
√

2. Similarly, a complex 120c may be

constructed from two real 120s. In these cases, the Yukawa couplings will involve terms of the type 16F 10c16F

as well as 16F 10∗c16F with completely independent Yukawa coupling matrices, and similarly for the 120c field.

It is possible to assign a charge exterior to SO(10) to these fields – such as the Peccei–Quinn U(1) motivated

on other grounds – so that the Yukawa couplings contain only the 16F 10c16F term, and not the 16F 10∗c16F

term. These restricted class of Yukawa couplings in SO(10) have been studied extensively [26, 32–34, 95–99].

While interesting, the predictions of such models are those of SO(10) × G where G is a symmetry exterior to

SO(10), and not of the true grand unified symmetry SO(10) itself. Our inquiry relates to the minimal Yukawa

sector in theories where only the SO(10) gauge symmetry plays a role.

It should be noted that in theories which assume supersymmetry (SUSY), which is not the focus of the

present work, chiral superfields are necessarily complex, thus requiring the complexification of 10 and 120 Higgs

fields. Holomorphy of the superpotential would imply that the coupling 16F 10∗c16F is not present simultaneously

with the superpotential term 16F 10c16F . These models share some of the features of non-SUSY models based

on SO(10) × U(1)PQ, although the renormalization group evolution of the fermion mass parameters between

the weak scale and the GUT scale would be different in the two classes of theories. Supersymmetric SO(10)

models have been studied extensively, and it has been shown that economic models where only a (complex)

10H and a 126H couple to fermions can be predictive and consistent with all fermion masses and mixings

[26–29,31,32,34,45,46,51,54,55]. If the additional Higgs fields needed for symmetry breaking are restricted to

a 126H and a 210H , split supersymmetry may be required for consistency [54]. Alternatively, a (complex) 120H

may be introduced to relax some of the restrictions imposed by the symmetry breaking sector [30, 100–102].2

2Symmetries external to SO(10) have also been applied in the context of renormalizable SUSY SO(10) with some success in
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Our goal in this paper is to identify the analog of the minimal SUSY SO(10) Yukawa sector, but for SO(10)

theories without supersymmetry.

The rest of the paper is organized as follows. In Sec. 2 we present our proof that the economic Higgs sector

will have n10 = n120 = n126 = 1. In Sec. 3 we analyze the predictions of this model for quark and lepton masses

and mixings. Here we present our numerical study which shows full consistency with experimental data. In Sec.

4 we present the constraints on these models from the unification of gauge couplings; in Sec. 5 we calculate the

proton decay branching ratios. In Sec. 6 we conclude.

3.2 Economic Yukawa Sector in SO(10)

In this section we establish the assertion that n10 = n120 = n126 = 1 is the economic choice of Yukawa sector in

non-supersymmetric SO(10) theories. This corresponds to choosing one real 10H , one real 120H and a complex

126H of Higgs bosons that have Yukawa couplings with the three chiral families of 16F . An additional Higgs

filed belonging to 45H , 54H or 210H would be needed for completing the symmetry breaking. These fields,

however, do not have Yukawa couplings with the 16F , and the precise choice is not so important for now. A

proof of our assertion would require that the choice n10 = n120 = n126 = 1 leads to a realistic fermion spectrum,

and no other simpler choice exists consistent with realism. The former part of the proof is delegated to Sec. 3

where we perform a numerical analysis of this economic Yukawa sector; here we address the latter part.

If only one Higgs field among 10H , 120H and 126H is present in a theory, there would be no flavor mixing –

as the Yukawa coupling matrix of this single Higgs field can be diagonalized using an SO(10) rotation. Thus at

least two Higgs fields are needed for realistic fermion spectrum. One of the fields used must be a 126H , since it

gives large Majorana masses to the righ-handed neutrinos directly. This field also plays a role in the symmetry

breaking sector, as it breaks SO(10) down to SU(5), reducing the rank. One could consider replacing the 126H

with a 16H which can play a similar role in rank reduction. In such a case the right-handed neutrino can acquire

a large Majorana mass via the two-loop Witten diagram [108] involving gauge boson and scalar loops. The

induced Majorana mass can be estimated [109] to be of order

Mνc ≈
(α10

4π

)2

Y10
v2
R

MGUT
(3.2.3)

where α10 is the SO(10) gauge coupling, Y10 is the Yukawa coupling of 10H , and vR is the B − L breaking

vacuum expectation value (VEV) of the 16H . In a nonsupersymmetric SO(10) theory vR is well below the GUT

scale for consistency with gauge coupling unification, with its range being vR ≈ (1011 − 1014) GeV depending

on the surviving intermediate symmetry. Mνc is then of order 108 GeV or less, which is too small to reproduce

explaining the fermion spectrum. See for example Ref. [103–107].
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the correct order of magnitude for the light neutrino masses.3

Keeping one 126H field in the theory, we seek if a realistic fermion spectrum can be generated with the

addition of a second Higgs field. This turns out to be not possible. If the second Higgs field is a 126H , the mass

relations mτ = −3mb,mµ = −3ms and me = −3md will result at the GUT scale, which are inconsistent with

observations. The ratiomτ/mb is found to be about 1.7 at the GUT scale (with small input errors) when the low

energy mass parameters are evolved up to the GUT scale using SM renormalization group equations. We found

that this ratio is more realistically in the range (1.4 − 1.7), when intermediate scale threshold effects arising

from the right-handed neutrino sector and the gauge bosons of SU(4)c are included. Each of the two threshold

effects causes a decrease in the ratio mτ/mb at the GUT scale. We conclude that the relation mτ = 3mb is

clearly excluded. The relation mµ = 3ms is not too far off (our RGE evolution shows the ratio mµ/ms to be

about 4 at the GUT scale), while me = 3md is off by an order of magnitude. Thus a minimal Yukawa sector

consisting of two copies of 126H is not realistic.

If the second Higgs field is a real 10H , two complex symmetric Yukawa matrices can be written down, one

with the 10H , and one with the 126H . However, the Higgs doublet in the 10H is self-conjugate, and is contained

in the (2, 2, 1) representation of the Pati-Salam subgroup SU(2)L×SU(2)R×SU(4)c. This field can be written

as

Φ∗ = τ2Φτ2 ⇒ Φ =

 φ0 φ+

−φ− φ∗0

 . (3.2.4)

In general, if the (1,1) element of Φ is independent from the (2,2) element, we can denote their respective

vacuum expectation values to be vu and vd with vu giving mass to the up-quarks and Dirac neutrinos, while vd

generates down-quark and charged lepton masses. The reality of 10H implies that vu = v∗d ≡ v10, and thus the

ratio r = |vu/vd| = 1. With r = 1, the needed splitting between the top and bottom quark masses cannot be

achieved. Note that r = 1 is a special case of the general SO(10)× U(1)PQ models with vu 6= v∗d. Such models

have been studied, which find the phenomenological requirement r ∼ mt/mb. A three generation analysis of

fermion masses and mixings with a complex 10H in Ref. [32] shows that a realistic fit requires r ∼ 70, which is

well outside of the prediction of r = 1 in the case of real 10H . Thus we conclude that one 126H and one real

10H is not realistic [99].

What about using one 126H and one 120H? As shown in Ref. [99], this case also cannot reproduce fermion

masses correctly. The ratio mt/mb comes out to be of order one, rather than the phenomenological value of

∼ 70. In addition, as we shall show, this model predicts the GUT scale mass ratio mτ/mb ' 3, with any
3This issue with the Witten mechanism may be resolved in split supersymmetry, where vR = MGUT [109]. The SUSY particle

masses should be of order the GUT scale to prevent additional suppression factor of MSUSY/MGUT in Eq. (3.2.3), which may

cause a problem with generating a Higgs boson mass of 125 GeV [56].
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deviation of order ms/mb ∼ 5%. As already noted, the ratio mτ/mb = (1.4− 1.7) at the GUT scale in SO(10)

models under discussion. Thus we conclude that only two Higgs fields being responsible for Yukawa couplings

cannot be realistic.

When three Higgs fields are introduced, the choice of one 10H , one 120H and one 126H appears attractive, as

there in no replication here. This choice can indeed lead to a realistic fermion mass spectrum, as we elaborate

in the next section. There would be two complex symmetric Yukawa coupling matrices in this case, along

with one complex antisymmetric matrix. If an alternative choice of one 126H and two copies of 120H can lead

to a realistic spectrum, that would have less parameters with one symmetric and two antisymmetric Yukawa

matrices. However, as we show in a subsection 3.2.1 below, this choice would lead to the relation mτ = 3mb

with corrections of order 5%, even when one allows for large off-diagonal contributions to the mass matrices

from the 120H . Models with one 126H and two copies of 10H would be realistic; however, these models would

have three complex symmetric Yukawa matrices which have more parameters compared to the case of one 10H ,

one 120H and one 126H . This completes the first part of the proof that n10 = n120 = n126 = 1 is the economic

choice for the Yukawa sector. To complete the proof we establish in the next section that this choice is indeed

realistic.

3.2.1 Proof of mτ ' 3mb in models with 126H and 2× 120H

Without loss of generality, we can diagonalize the Yukawa coupling of 126H . We focus on the second and third

generation down quarks and charged leptons. Their mass matrices can be written down as

MD =

 a c

−c b

 , ME =

−3a c′

−c′ −3b

 . (3.2.5)

This form persists even when many of 120H fields are used, with their mass contribution going into the off-

diagonal entries differently in MD and ME . The exact invariants of these matrices are then

m2
s +m2

b = |a|2 + |b|2 + 2 |c|2 (3.2.6)

m2
µ +m2

τ = 9 (|a|2 + |b|2) + 2 |c′|2 (3.2.7)

msmb = |ab+ c2| (3.2.8)

mµmτ = |9 ab+ c′2| (3.2.9)

From these relations it follows that

m2
µ +m2

τ = 9 (m2
s +m2

b) + 18
[∣∣∣c2 −msmbe

iα +
mµmτ

9
eiβ
∣∣∣− |c|2] . (3.2.10)

The undetermined parameter c is bounded by Eq. (3.2.6), and no matter how we vary c, the deviation from

3 in the ratio mτ/mb is of order ms/mb ∼ 5%. The inclusion of the first family is not expected to change
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considerably this result. This proves that a Higgs sector consisting of one 126H and two or any number of

copies of real 120H cannot lead to realistic fermion masses.

3.2.2 A comment on doublet-triplet splitting

As is well known, any grand unified theory has to address the question of making one Higgs doublet light, while

its color triplet GUT partner remains superheavy so as to not cause rapid proton decay. This doublet-triplet

splitting problem is present in both SUSY and non-SUSY minimal GUTs. If the Higgs doublet mass is not split

from the color triplet mass, either the electroweak symmetry would break at the GUT scale, or not break at all,

or the light color-triplet would lead to far too fast proton decay. A fine-tuning is necessary to bring the Higgs

doublet mass down to the weak scale. In supersymmetric versions, this fine-tuning is done at the tree level,

SUSY would guarantee its stability against quantum corrections. In non-supersymmetric SO(10) theories, the

tuning must be done after taking account of loop corrections to a very high order. The induced Higgs mass

from quantum loops would be at the n-loop level of order ∆m
(n)
H ∼MGUT(α/4π)n/2. For mH ∼ 125 GeV, the

tuning must be done after n = 12 loop corrections are included. We note that this is nevertheless only one

fine-tuning, albeit not easily enforceable by actual calculations. The Hermitian Higgs doublet mass matrix is

tuned to have near-zero determinant. In contrast, in minimal SUSY GUTs, the needed tree level tuning requires

the determinant of the complex doublet Higgsino mass matrix to be near zero. Recall that in SUSY all mass

parameters in the superpotential are complex in general. Such a tuning amounts to two conditions, unlike the

non-supersymmetric tuning, which requires only one such condition. Although the Higgs mass can be ensured

only after including very high order corrections in non-SUSY SO(10), we find it intriguing that the fine-tuning

condition is more minimal here compared to minimal SUSY SO(10).

3.3 Realistic Fermion Spectrum with Minimal Yukawa Sector

As argued in the previous section, the minimal Yukawa sector of SO(10) makes use of one real 10H , one real 120H

and one complex 126H of Higgs bosons that couple to the three families of fermions in the 16F representation.

Here we proceed to establish the consistency of such a theory with observed fermion masses and mixings.

With no symmetry other than the gauge symmetry of SO(10) imposed, the most general Yukawa interactions

of the model can be written down as

Lyuk = 16F (Y1010H + Y120120H + Y126126H)16F . (3.3.11)

Here Y10 and Y126 are complex symmetric Yukawa matrices, while Y120 is a complex antisymmetric matrix.
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Under the Pati-Salam subgroup GPS ≡ SU(2)L × SU(2)R × SU(4)c, these fields decompose as

16 = (2, 1, 4) + (1, 2, 4) (3.3.12)

10 = (2, 2, 1) + (1, 1, 6) (3.3.13)

120 = (2, 2, 1) + (1, 1, 10) + (1, 1, 10) + (3, 1, 6) + (1, 3, 6) + (2, 2, 15) (3.3.14)

126 = (1, 1, 6) + (3, 1, 10) + (1, 3, 10) + (2, 2, 15). (3.3.15)

The 10H has one SM doublet Higgs field contained in the bidoublet (2,2,1), while the 120H has two SM Higgs

doublets, one each belonging to (2,2,1) and (2,2,15). The reality condition for the (2,2,1) from 10H is listed

in Eq. (3.2.4), while those from the 120H would imply v(1)
u = v

(1)∗
d ≡ v

(1)
120 and v(15)

u = v
(15)∗
d ≡ v

(15)
120 with the

superscripts (1) and (15) denoting the (2,2,1) and the (2,2,15) fragments. The 126H contains two SM Higgs

fields contained in the complex bidoublet (2,2,15) fragment, which is not subject to the reality condition. We

denote the up-type and down-type electroweak VEVs of the 126H as vu126 and vd126 respectively. Note also

that the (1, 3, 10) fragment of 126H contains a SM singlet field which generates large Majorana masses for the

right-handed neutrinos once it acquires a VEV.

The up-quark, down-quark, charged leptons, Dirac neutrino and Majorana neutrino mass matrices derived

from Eq. (5.3.24)can be now written down:

MU = v10Y10 + vu126Y126 + (v
(1)
120 + v

(15)
120 )Y120, (3.3.16)

MD = v∗10Y10 + vd126Y126 + (v
(1)∗
120 + v

(15)∗
120 )Y120, (3.3.17)

ME = v∗10Y10 − 3vd126Y126 + (v
(1)∗
120 − 3v

(15)∗
120 )Y120, (3.3.18)

MνD = v10Y10 − 3vu126Y126 + (v
(1)
120 − 3v

(15)
120 )Y120, (3.3.19)

MνR,L = vR,LY126. (3.3.20)

Now defining

D = v10Y10, A = (v
(1)
120 + v

(15)
120 )Y120, S = vu126Y126, (3.3.21)

r1 =
vd126

vu126

, r2 =
v

(1)∗
120 − 3v

(15)∗
120

v
(1)
120 + v

(15)
120

, eiφ =
v

(1)∗
120 + v

(15)∗
120

v
(1)
120 + v

(15)
120

, cR,L =
vR,L
vu126

, (3.3.22)

and going into a phase convention where v10 is real (this can be done by an SU(2)L rotation), we get
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MU = D + S +A, (3.3.23)

MD = D + r1S + eiφA, (3.3.24)

ME = D − 3r1S + r2A, (3.3.25)

MνD = D − 3S + r∗2e
iφA, (3.3.26)

MνR,L = cR,LS. (3.3.27)

These matrices are written in a basis fiMijf
c
j . The light neutrino mass matrix, obtained from the see-saw

formula, is given by

MN = MνL −MνDM
−1
νRM

T
νD . (3.3.28)

Without loss of generality one can choose a basis where S is real, positive and diagonal. In this basis, S

would have 3 real parameters while D has 6 complex parameters. Since the matrix A is antisymmetric, it has

3 complex parameters. There are 4 additional complex parameters in r1,2, cR,L and one phase φ. An overall

phase either from cL or cR will be irrelevant in the matrix MN . Altogether there are then 16 real parameters

and 13 phases. With these parameters one should fit 18 observables: 6 quark masses, 3 quark mixing angles, 1

CKM phase, 3 charged lepton masses, 2 neutrino mass squared differences, and 3 mixing angles in the neutrino

sector. If we assume dominance of either type-I or type-II seesaw, then the parameter set is reduced by 1

magnitude and 1 phase. Although the number of model parameters is larger than the number of observables,

it is nontrivial to find an acceptable fit owing to the fact that 12 or 13 parameters are phases which cannot be

manipulated much.

The type-II contribution to the light neutrino mass matrix originates in the model from terms such as

102
H1262

H in the scalar potential. When decomposed into the the Pati-Salam symmetry group, this term would

contain terms of the type (3, 1, 10)(2, 2, 1)2(1, 3, 10). When the singlet VEV of (1, 3, 10) and the doublet VEV

of (2, 2, 1) are inserted in this term, a linear term in (3, 1, 10) would result, which leads to an induced VEV

for its neutral component: vL ∼ vRv
2/M2

GUT. We note that with the right-handed neutrino mass given as in

(5.3.33), the mass of the (X ′, Y ′) gauge bosons which are outside of SU(5) but mediate proton decay is given

as MX′,Y ′ =
√

2gvR, where g is the SO(10) gauge coupling.

3.3.1 Numerical analysis of the fermion masses and mixings

In this section we discuss the procedure we follow for the numerical analysis to the fermion masses and mixings

and present our fit results. For optimization purpose we do a χ2-analysis. The pull and χ2-function are defined

as:
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Pi =
Oi th − Ei exp

σi
, (3.3.29)

χ2 =
∑
i

P 2
i , (3.3.30)

where σi represent experimental 1σ uncertainty and Oi th, Ei exp and Pi represent the theoretical prediction,

experimental central value and pull of observable i. We fit the values of the observables at the GUT scale,

MGUT = 2 × 1016 GeV. To get the GUT scale values of the observables we take the central values at the MZ

scale from Table-1 of Ref. [72]. With this input we do the renormalization group equation (RGE) running of the

Yukawa couplings [110] and the CKM parameters [111] within the SM up to the GUT scale. For the associated

one sigma uncertainties of the observables at the GUT scale, we keep the same percentage uncertainty with

respect to the central value of each quantity as that at the MZ scale. For the charged lepton masses, a relative

uncertainty of 0.1% is assumed in order to take into account the theoretical uncertainties arising for example

from threshold effects. All these inputs are presented in Table 3.1. The RGE running factors for the Yukawa

couplings ηi = yi(MGUT )/yi(MZ) and for the CKM mixing angles ηCKM
ij = θCKM

ij (MGUT )/θCKM
ij (MZ) are taken

to be:

(ηu, ηc, ηt) = (0.382, 0.382, 0.434) (3.3.31)

(ηd, ηs, ηb) = (0.399, 0.399, 0.348) (3.3.32)

(ηe, ηµ, ητ ) = (0.967, 0.967, 0.967) (3.3.33)

(ηCKM
12 , ηCKM

23 , ηCKM
13 ) = (1.000, 1.154, 1.154) (3.3.34)

The low scale inputs as shown in Table 4.2.10 in the neutrino sector are taken from Ref. [76]. For neutrino

observables, we run the RGE for the dimension five operator from low scale to the vR scale [112] and use

these new values during the fitting produce. For this running purpose, we have assumed hierarchical structure

of the neutrinos and used the approximations m2 =
√

∆m2
sol and m3 =

√
∆m2

atm. The running values of

the observables at the high scale depend on the scale vR, this is why we present the neutrino mass squared

differences resulting from running in Table 3.3 at the relevant scale vR corresponding to two different fits (type-I

dominance and type-I+II case), while all the other inputs are at MGUT = 2× 1016 GeV.

In SO(10) GUT models such as the one we are considering, the (3,3) entry of the Dirac neutrino Yukawa

coupling matrix YνD is expected to be of the order of unity, and thus RGE corrections proportional to YνD

can be important in the momentum range Mνc ≤ µ ≤ MGUT. This effect could have a sizeable contribution

to the tau lepton mass only, since for the first and second generation Dirac Yukawa couplings turn out to be

small. Including this effect of the heavy right-handed neutrinos thresholds, the Dirac neutrino mass matrix gets

modified at the GUT scale as
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Yukawa Couplings

& CKM parameters
µ = MZ µ = MGUT

yu/10−6 6.65± 2.25 2.54± 0.86

yc/10−3 3.60± 0.11 1.37± 0.04

yt 0.9860± 0.00865 0.428± 0.003

yd/10−5 1.645± 0.165 6.56± 0.65

ys/10−4 3.125± 0.165 1.24± 0.06

yb/10−2 1.639± 0.015 0.57± 0.005

ye/10−6 2.79475± 0.0000155 2.70341± 0.00270

yµ/10−4 5.89986± 0.0000185 5.70705± 0.00570

yτ/10−2 1.00295± 0.0000905 0.97020± 0.00097

θCKM
12 0.22735± 0.00072 0.22739± 0.0006

θCKM
23 /10−2 4.208± 0.064 4.858± 0.06

θCKM
13 /10−3 3.64± 0.13 4.202± 0.13

δCKM 1.208± 0.054 1.207± 0.054

Table 3.1: Values of observables at MZ scale from Ref. [72]. Here experimental central values with associated

1σ uncertainties are quoted. The masses of fermions are given by the relations mi = v yi with v = 174.104

GeV. The corresponding values at the GUT scale are obtained by RGE evolution. For the associated one sigma

uncertainties of the observables at the GUT scale, we keep the same percentage uncertainty with respect to

the central value of each quantity as that at the MZ scale. For the charged lepton Yukawa couplings at the

GUT scale, a relative uncertainty of 0.1% is assumed in order to take into account the theoretical uncertainties

arising for example from threshold effects.

M ′νD =

[
1− 3

2(16π2)
YνD log(

MGUT

cRS
)Y †νD

]
MνD . (3.3.35)

while the modified charged lepton mass matrix becomes

M ′E =

[
1 +

3

2(16π2)
Y ′νD log(

MGUT

cRS
)Y ′†νD

]
ME . (3.3.36)

To be clear, the tau lepton mass decreases in going from the νR mass scale to the GUT scale due to the Dirac

neutrino Yukawa correction. In the fitting procedure it was thus M ′E from Eq. (3.3.36) to be compared to the

experimental values at MGUT , while in (3.3.28) MνD has been replaced by M ′νD (3.3.35). Notice that ME and

YνD = MνD/v in Eqs. (3.3.36) and (3.3.35) are defined in Eqs. (3.3.25) and (5.5.52).

We investigate three different scenarios, type-I dominance, type-II dominance and the general scenario where

both contributions are present, type-I+II. The fit results corresponding to our numerical analysis is presented in

Table 3.3. We found good solutions for both type-I and type-I+II with total χ2 = 0.45 and 0.004 respectively,

but not for type-II scenario (the total χ2 ∼ 1000 in this case). For the type-II case, our numerical analysis

shows that, for the best fit, the worst fitted quantity corresponds to ∆m2
sol that comes out to be ∼ 103 times
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smaller (with pull ∼ -32) than the experimental data. The other discrepancy is of the quantity θPMNS
23 that

is ∼1.5 times smaller compared to the experimental central value. With these fit results the predictions of the

model for these two scenarios are listed in Table 3.4. The parameter set corresponding to these best fit results

for type-I and type-I+II cases respectively are given below. We conclude that the model gives an excellent fit

to all observables in the fermion sector. This completes our proof of the minimality of the Yukawa sector in

SO(10) models.

Quantity Central Value

∆m2
sol/10−5eV 2 7.56±0.24

∆m2
atm/10−3eV 2 2.41±0.08

sin2 θPMNS
12 /10−1 3.08±0.17

sin2 θPMNS
23 /10−1 3.875±0.225

sin2 θPMNS
13 /10−2 2.41±0.25

Table 3.2: Observables in the neutrino sector used in our fits taken from Ref. [76].

From the best fit results presented in Table 3.3 one can see that the right-handed breaking scale for the

type-I and type- I+II solutions are very different. From Eq (3.3.22) vR = cR vu126 with cR = 5.8 × 1012 and

4.2 × 1010 respectively. Assuming vu126 ∼ 174 GeV, for the type-I scenario vR ∼ 1015 GeV, which corresponds

to high value for the heaviest right-handed neutrino mass M3 ∼ 5 × 1014 GeV (see Table 3.4) that naturally

can incorporate the extremely light neutrino masses. To see this, consider the basis we are working where the

matrix S is real and diagonal. Parameters corresponding to the best fit solutions for both the cases (type-I

and type-I+II) the (3, 3) entry of the Dirac type neutrino mass matrix is 3 times the (3, 3) entry of S matrix,

S33 = mt (A33 = 0 and D33 is negligible). Then the heaviest light neutrino mass is given by the approximate

relationm3 ∼MνD33
2/(cRS33) = 9mt/cR = 0.1 eV which is roughly the correct order. On the contrary, the best

fit solution corresponding to type-I+II scenario has vR scale which is about two orders of magnitude smaller

compared to the former case. As a consequence the heaviest right-handed neutrino mass is also smaller by

two orders of magnitude that overshoots the light neutrino mass. Naive estimation gives m3 ∼ 9mt/cR = 16

eV which is too large. Hence, to reproduce the light neutrino spectrum in this case some cancellations must

take place, so some degree of fine tuning in the setup Eqs (3.3.23)-(3.3.27) is needed to be consistent with the

neutrino data.
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Masses (in GeV) and

Mixing parameters

Inputs

(at µ = MGUT )

Fitted values

(type-I)

(at µ = MGUT )

pulls

(type-I)

Fitted values

(type-I+II)

(at µ = MGUT )

pulls

(type-I+II)

mu/10−3 0.442±0.149 0.444 0.009 0.442 -0.0002

mc 0.238±0.007 0.238 -0.002 0.238 0.0001

mt 74.51±0.65 74.52 0.009 74.52 -0.005

md/10−3 1.14±0.11 1.14 -0.0002 1.14 -0.00006

ms/10−3 21.58±1.14 21.60 0.007 21.59 0.0001

mb 0.994±0.009 0.994 0.002 0.994 0.000005

me/10−3 0.470692±0.000470 0.470674 -0.03 0.470675 -0.003

mµ/10−3 99.3658±0.0993 99.3618 -0.04 99.3621 -0.003

mτ 1.68923±0.00168 1.68925 0.01 1.68925 0.001

|Vus|/10−2 22.54±0.06 22.54 0.002 22.54 0.00008

|Vcb|/10−2 4.856±0.06 4.856 0.001 4.856 0.0007

|Vub|/10−2 0.420±0.013 0.420 -0.007 0.420 -0.0001

δCKM 1.207±0.054 1.207 0.01 1.207 0.005

∆m2
sol/10−4(eV2)

1.29±0.04 (1× 1015GeV)

1.27±0.04 (7.3× 1012GeV)
1.27 -0.48 1.27 0.04

∆m2
atm/10−3(eV2)

4.12±0.13 (1× 1015GeV)

4.05±0.13 (7.3× 1012GeV)
4.06 - 0.46 4.06 0.04

sin2 θPMNS
12 0.308±0.017 0.308 -0.01 0.308 0.00001

sin2 θPMNS
23 0.387±0.0225 0.387 -0.01 0.387 -0.00006

sin2 θPMNS
13 0.0241±0.0025 0.0241 0.01 0.0241 -0.0003

Table 3.3: Best fit values of the observables correspond to χ2 = 0.45 and 0.004 for type-I and type-I+II

scenarios respectively for 18 observables. For the charged lepton masses, a relative uncertainty of 0.1% is

assumed in order to take into account the theoretical uncertainties arising for example from threshold effects.

The neutrino mass squared differences are fitted at the vR scale, which for our solutions are ∼ 1 × 1015 GeV

and ∼ 7.3 × 1012 GeV for type-I and type-I+II respectively. Here the vR scale is determined by using the

relation vR = cRv
u
126 given in Eq. (3.3.22), we have taken vu126 = 174.104 GeV. One should note that due to the

right-handed neutrino threshold corrections the charged lepton mass matrix gets modified and is given in Eq.

(3.3.36). The fitted masses for the charged leptons presented in this table are the eigenvalues of this modified

matrix, M ′E . The effect of the right-handed neutrinos is to decrease the tau lepton mass in going from νR scale

to the GUT scale. For the fits presented in the table, the actual fitted mass of the tau lepton is mτ = 1.617

GeV (1.573 GeV) at the GUT scale for the type-I (type-I+II) scenario, which matches correctly with the

input value when the right-handed neutrino threshold correction is taken into account. For type-II scenario,

we have not found any acceptable solution as mentioned in the text.
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Quantity Predicted Value (type-I) Predicted Value (type-I+II)

{m1,m2,m3} (in eV) {1.51 · 10−4, 1.12 · 10−2, 6.47 · 10−2} {1.02 · 10−2, 1.52 · 10−2, 6.55 · 10−2}

{δPMNS , αPMNS
21 , αPMNS

31 } {2.81◦, 169.61◦, 27.25◦} {−150.82◦,−136.92◦,−106.50◦}

{mcos,mβ ,mββ} (in eV) {7.61 · 10−2, 5.05 · 10−3, 2.13 · 10−3} {9.10 · 10−2, 1.30 · 10−2, 4.09 · 10−3}

{M1,M2,M3} (in GeV) {1.04 · 105, 1.23 · 1012, 4.34 · 1014} {6.14 · 106, 1.12 · 1010, 3.14 · 1012}

Table 3.4: Predictions of the minimal non-SUSY SO(10) model for type-I and type-I+II scenarios. mi are

the light neutrino masses, Mi are the right handed neutrino masses, α21,31 are the Majorana phases following

the PDG parametrization, mcos =
∑
imi, mβ =

∑
i |Uei|2mi is the effective mass parameter for beta-decay and

mββ = |∑i U
2
eimi| is the effective mass parameter for neutrinoless double beta decay.

Now we present the parameter set corresponding to the χ2 best fit for the type-I scenario. 4.

The parameter set corresponding to the χ2 best fit for the type-I scenario is:

r1 = −3.5178190× 10−3 − 5.1827520× 10−3i (3.3.37)

r2 = −1.0441669 + 1.6253165× 10−1i (3.3.38)

φ = −7.9459769× 10−1 (3.3.39)

cR = 5.8035176× 1012 (3.3.40)

S =


1.7926501× 10−8 0 0

0 2.1219581× 10−1 0

0 0 7.4949627× 101

 GeV (3.3.41)

D =

 2.8344746× 10−4 − 5.3097883× 10−4i 4.501669× 10−3 − 1.7083332× 10−3i 6.0343793× 10−2 + 7.8900202× 10−3i

4.501669× 10−3 − 1.7083332× 10−3i 2.7783311× 10−2 − 1.5722435× 10−2i 3.0561540× 10−1 + 9.6327579× 10−2i

6.0343793× 10−2 + 7.8900202× 10−3i 3.0561540× 10−1 + 9.6327579× 10−2i −4.304058× 10−1 + 2.4126529× 10−1i

 GeV (3.3.42)

A =


0 −3.9710310× 10−3 − 1.6550999× 10−3i −4.0391236× 10−2 − 4.2504129× 10−2i

3.9710310× 10−3 + 1.6550999× 10−3i 0 −1.7267986× 10−1 − 3.2019088× 10−1i

4.0391236× 10−2 + 4.2504129× 10−2i 1.7267986× 10−1 + 3.2019088× 10−1i 0

 GeV (3.3.43)

4To reproduce the observables presented in Table. 3.3 for both the type-I and type-I+II scenarios, one must keep all the

significant digits of the parameters presented in here. This high level of accuracy is needed to reproduce the neutrino observables;

it is due to the fact that the right-handed neutrino mass spectrum in both cases shows extreme hierarchy among the generations,

see Table. 3.4. Since this hierarchy between the first and the second generations is extreme, chopping-off digits effects mainly the

quantity ∆m2
sol.
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The parameter set corresponding to the χ2 best fit for the type-I+II scenario is:

r1 = 4.1628007× 10−3 − 3.1705843× 10−3i (3.3.44)

r2 = −7.4367427× 10−1 + 3.5915531× 10−1i (3.3.45)

φ = −6.4632781× 10−1 (3.3.46)

cR = 4.2254013× 1010 (3.3.47)

cL = 1.5155879× 10−10 − 1.4499546× 10−11i (3.3.48)

S =


1.4547716× 10−4 0 0

0 2.6693088× 10−1 0

0 0 7.4473135× 101

 GeV (3.3.49)

D =


4.8953934× 10−4 − 2.6113522× 10−4i −1.6504521× 10−5 + 1.1420336× 10−2i −2.151214× 10−1 + 1.7234983× 10−2i

−1.6504521× 10−5 + 1.1420336× 10−2i −2.8562186× 10−2 + 2.8403787× 10−2i −3.7065300× 10−1 − 2.0521574× 10−1i

−2.151214× 10−1 + 1.7234983× 10−2i −3.7065300× 10−1 − 2.0521574× 10−1i 3.6722700× 10−2 + 2.6598904× 10−1i

 GeV

(3.3.50)

A =


0 2.518929× 10−3 − 1.1393329× 10−2i 1.7915567× 10−1 + 1.1538080× 10−1i

−2.518929× 10−3 + 1.1393329× 10−2i 0 1.6923025× 10−1 + 3.6425489× 10−1i

−1.7915567× 10−1 − 1.1538080× 10−1i −1.6923025× 10−1 − 3.6425489× 10−1i 0

 GeV (3.3.51)

3.4 Gauge Coupling Unification

As is well known, the three gauge couplings of the SM do not unify at a common scale. SO(10) models provide

a way to achieve coupling unification by virtue of an intermediate scale. In our proposed framework, the first

stage of symmetry breaking can be achieved by employing a real 45H , or a real 54H or a real 210H , along with a

complex 126H . Employing 45H Higgs would require relying on the quantum corrections in the Higgs potential

[64,65,91], while there is no such problem with the use of 210H . In both cases the discrete D Parity symmetry

would be broken at the GUT scale [85]. The intermediate gauge symmetry may be SU(2)L×SU(2)R×SU(4)c

when a 210H is used, while it is SU(2)L × SU(2)R × SU(3)c × U(1)B−L if the 45H is used. Alternatively, a

54H can break SO(10) down to Pati-Salam symmetry preserving D parity. In this case the unification scale

tends to be lower, of order 2× 1015 GeV, if threshold effects arising from the scalar multiplets are ignored. This

can potentially be in conflict with proton decay limits. It has been recently shown in Ref. [68] that symmetry

breaking with a 54H and a 126H can lead to higher values of MGUT consistent with proton lifetime, when
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Figure 3.1: 1-loop gauge coupling running of the three SM gauge couplings from low scale to intermediate PS

scale and from PS scale to GUT scale for minimal non-SUSY SO(10) model. The left plot corresponds to the

case when the GUT symmetry is broken by 54H Higgs that leaves the discrete symmetry gL = gR unbroken.

The right plot is for the case when 54H is replaced by 210H Higgs that does not preserve the discrete symmetry.

threshold effects are properly included. Here we present for completeness our results on the unification of gauge

couplings assuming the intermediate symmetry to be SU(2)L × SU(2)R × SU(4)c with or without D parity.

Since breaking SO(10) gauge group by 54H Higgs preserves the discrete parity, that demands the equality

of the SU(2)L and SU(2)R gauge couplings (gL = gR) at the PS intermediate scale. The low energy data

completely determines the value of this scale as well as the GUT scale with the assumption of survival hypothesis

[113–115]. The one-loop beta function coefficients for the evolution of the U(1), SU(2)L and SU(3)c gauge

couplings are bi = {41/10,−19/6,−7} [116]. To determine the intermediate scale, we use the low energy

values from Ref. [72]: α−1
1 (MZ) = 59.02, α−1

2 (MZ) = 29.57 and α−1
3 (MZ) = 8.44 (only the central values are

quoted here). Then from the intermediate scale to the GUT scale we run the RGEs with one-loop coefficients

bi = {67/6, 67/6, 10/3} for the group G224 that determines the GUT scale. The existence of the multiplets

(2, 2, 1) ⊂ 10H , (2, 2, 1) + (2, 2, 15) ⊂ 120H and (2, 2, 15) + (3, 1, 10) + (1, 3, 10) ⊂ 126H is assumed at the

intermediate scale while the rest of the multiplets are assumed to have GUT scale mass following the survival

hypothesis. One-loop running of the RGEs of the gauge couplings are shown in Fig. 3.1 (left plot).

From this Fig. 3.1 one sees that the GUT scale is ∼ 2 × 1015 GeV, which is about a factor of 2.5 smaller

compared to what is needed to save the theory from the experimental proton decay limit τp & 1.29 × 1034

yrs [117]. Certainly the assumption made that all scalar particles have a common mass at the assumed scale

is too restrictive: the Higgs multiplets are likely to have non-degenerate mass spectrum with masses scattered

around each scale under consideration. If one includes this threshold correction arising from the Higgses, the

unification scale can be raised as shown in an explicit calculation in Ref. [68]. There is no strict guideline,

however, on how much the mass spectrum may be scattered; this would lead to significant uncertainty in proton

lifetime estimate. As we show in the next section, the branching ratios for proton decay are much more stable

64



and can be used to test these theories.

If instead of a 54H a 210H is used to break the GUT symmetry, then the unification scale is naturally raised

to about 2 × 1016 GeV. This is because D parity is broken by the VEV of 210H , and as a result, with the

assumption of survival hypothesis, the intermediate scale scalar spectrum is left-right asymmetric. Although

210H allows for other intermediate symmetries, here we focus on the Pati-Salam symmetry. The gauge coupling

evolution with the PS intermediate symmetry is presented in Fig. 3.1 (right plot). Following survival hypothesis,

we consider the multiplets (2, 2, 1) ⊂ 10H , (2, 2, 1) ⊂ 120H and (2, 2, 15) + (1, 3, 10) ⊂ 126H at the intermediate

scale with the rest of the multiplets lying at the GUT scale. With these multiplets, the one-loop RGE coefficients

are bi = {2, 26/3,−7/3} for the group G224. This plot clearly shows that the GUT scale can be raised by about

an order of magnitude compared to the 54H scenario and one does not need to rely on the threshold correction

to save the theory from rapid proton decay. It should be noted that the scenario with 210H has a drawback that

the intermediate scale is relatively low ∼ 1011 GeV, which does not fit the right-handed neutrino mass spectrum

as well as the 54H model where this scale is around (1013 − 1014) GeV. A look at the heaviest right-handed

neutrino mass from Table 3.4 suggests that the case of type-I seesaw prefers symmetry breaking by a 54H , while

the type I + type II scenario can accommodate breaking by a 210H .

3.5 Proton Decay Branching Ratios

In non-SUSY SO(10) models, proton decay mediated by the gauge bosons are the most important. The lifetime

of the proton is extremely sensitive to the superheavy gauge bosons masses (M(X,Y )) since the lifetime goes as

τp ∼M4
(X,Y )/(g

4m5
p), where mp is the proton mass and g is the unified gauge coupling. As noted in the previous

section, there is a large uncertainty in the determination of MX from low energy data, owing to unknown high

scale threshold effects. On the other hand, proton decay branching ratios are less sensitive to these threshold

effects, and so we focus on the predictions of the model for branching ratios.

The gauge bosons of SO(10) belong to the adjoint 45. The decomposition of this field under the SM gauge

symmetry is given by:

45 = (1, 1, 1) + (1, 1, 0) + (1, 1,−1) + (1, 3, 0) + (3, 2,
1

6
) + (3, 2,−5

6
) + (3, 2,

1

6
) + (3, 2,

5

6
)

+ (1, 1, 0) + (3, 1,
2

3
) + (3, 1,−2

3
) + (8, 1, 0). (3.5.52)

The gauge bosons responsible for proton decay are the (X,Y )(3, 2,−5/6) and (X ′, Y ′)(3, 2, 1/6). The gauge
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interaction Lagrangian of these bosons with the fermions in the current eigenstate basis is given by [118]:

Lint =
g√
2
{[−eLγµX

i

µd
C
Li] + [νLγ

µY
i

µd
C
Li] + [dLiγ

µX
i

µe
C
L + εijku

Ck
L γµX

i

µu
j
L]

+ [−uLiγµY
i

µe
C
L + εijku

Ck
L γµY

i

µd
j
L] + [−εijkd

Ck

L γµX
′i
µd

j
L] + [−uRiγµX

′i
µν

C
R ] + [−uLiγµX

′i
µν

C
L ]

+ [εijkd
Ck

L γµY
′i
µu

j
L] + [−uRiγµY

′i
µe

+
R] + [−dLiγµY

′i
µν

C
L ] + h.c.}, (3.5.53)

where i, j, k are color indices and we have suppressed the family indices and SU(2)L indices.

The resulting d = 6 effective operators of the form QQQL responsible for proton decay can be constructed

from this Lagrangian [119,120]:

OB−LI = k2
1 εijk εαβ u

C
iaL γ

µ QjαaL eCb L γµ QkβbL; (3.5.54)

OB−LII = k2
1 εijk εαβ u

C
iaL γ

µ QjαaL dCkbL γµ LβbL; (3.5.55)

OB−LIII = k2
2 εijk εαβ d

C
iaL γ

µ QjβaL uCkbL γµ LαbL; (3.5.56)

OB−LIV = k2
2 εijk εαβ d

C
iaL γ

µ QjβaL νCb L γµ QkαbL. (3.5.57)

Here, k1 = gu/(
√

2M(X,Y )) and k2 = gu/(
√

2M(X′,Y ′), QL = (uL, dL) and LL = (νL, eL). The indices i, j, k are

color indices, a, b are family indices and α, β are SU(2)L indices. In the physical basis these operators will be

modified as:

O(eCα , dβ) = c(eCα , dβ) εijk uCi L γ
µujL eCαL γµ dkβL; (3.5.58)

O(eα, d
C
β ) = c(eα, d

C
β ) εijk uCi L γ

µujL dCkβL γµ eαL; (3.5.59)

O(νl, dα, d
C
β ) = c(νl, dα, d

C
β ) εijk uCi L γ

µ djαL dCkβL γµ νlL; (3.5.60)

O(νCl , dα, d
C
β ) = c(νCl , dα, d

C
β ) εijk dCiβL γ

µ ujL νCl L γµ dkαL; (3.5.61)

where

c(eCα , dβ) = k2
1

[
V 11

1 V αβ2 + (V1VUD)
1β
(
V2V

†
UD

)α1
]

; (3.5.62)

c(eα, d
C
β ) = k2

1V
11
1 V βα3 + k2

2

(
V4V

†
UD

)β1 (
V1VUDV

†
4 V3

)1α

; (3.5.63)

c(νl, dα, d
C
β ) = k2

1 (V1VUD)
1α

(V3VEN )
βl

+ k2
2V

βα
4

(
V1VUDV

†
4 V3VEN

)1l

; (3.5.64)

c(νCl , dα, d
C
β ) = k2

2

[(
V4V

†
UD

)β1 (
U†ENV2

)lα
+ V βα4

(
U†ENV2V

†
UD

)l1]
;α = β 6= 2. (3.5.65)

In the above V1, V2 etc are mixing matrices defined so that V1 = UTLUR, V2 = ETLDR, V3 = DT
LER, V4 = DT

LDR,

VUD = U†RDR, VEN = E†RN and UEN = ETLN , where U,D,E define the diagonalizing matrices given by
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U†L MU UR = Mdiag
U (3.5.66)

D†L MD DR = Mdiag
D (3.5.67)

E†L ME ER = Mdiag
E (3.5.68)

NT MN N = Mdiag
N . (3.5.69)

Then the partial decay width of the decay N → P + l (N = p, n, P = (π,K, η) and l is anti-lepton) is given

by:

Γ(N → P + l) =
mN

32π
[1− (

mP

mN
)2]2

∣∣∣∣∣∑
I

CIW I
0 (N → P )

∣∣∣∣∣
2

, (3.5.70)

where the coefficients CI are given in Eqs. (3.5.62)-(3.5.65) and the relevant form factors W0 are obtained by

using lattice QCD computations [78]:

〈π0|(u, d)RuL|p〉0 = −0.103, 〈π+|(u, d)RuL|p〉0 = −0.103, 〈K0|(u, s)RuL|p〉0 = 0.098,

〈K+|(u, s)RdL|p〉0 = −0.054, 〈K+|(u, d)RsL|p〉0 = −0.093, 〈η|(u, d)RuL|p〉0 = 0.015.

In Table 3.5 we present the d = 6 proton decay branching ratios calculated for our best fit parameter sets.

We find that the two dominant modes are p→ νπ+ and p→ e+π0. A comparison of these modes with those of

more general d = 6 proton decay studies [120] shows similarity. The near dominance of the νπ+ mode may be

taken as a test of the Yukawa sector presented here.

p decay modes type-I type-I+II

p→ ν + π+ 49.07% 48.77%

p→ e+π0 42.57% 35.16%

p→ µ+K0 4.13% 5.12%

p→ µ+π0 1.60% 5.62%

p→ νK+ 1.19% 2.64%

p→ e+K0 0.99% 2.28%

p→ e+η 0.40% 0.33%

p→ µ+η 0.01% 0.05%

Table 3.5: Proton decay branching ratios in minimal non-SUSY SO(10) GUT in type-I and type-I+II cases.

For neutrino final states, we sum over all three flavors.
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3.6 Conclusion

In this work, we have presented an economic Yukawa sector for SO(10) models. The main feature of this

construction is that only the SO(10) symmetry is used to constrain the Yukawa parameters. The Higgs system

consists of a real 10H , a real 120H and a complex 126H that have Yukawa couplings. In most nonsupersymmetric

SO(10) models in the literature symmetries outside of SO(10) – such as a Peccei-Quinn U(1) – are used to

constrain the Yukawa sector. That would require the complexification of the real 10H and real 120H . The

model presented here deviates from this, and yet is quite constraining. We showed that, with a limited number

of Yukawa parameters, a good fit to all fermion masses and mixings, including the neutrino sector is possible.

Once the flavor sector is fixed, we are able to calculate the proton decay branching ratios. The dominant decays

of the proton are found to be p→ νπ+ and p→ e+π0, which may provide partial tests of the model.
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CHAPTER 4

ANARCHY WITH HIERARCHY: A PROBABILISTIC APPRAISAL

4.1 Introduction

Although the Standard Model (SM) of particle physics has been highly successful, it does not address some

of the observed phenomena. For example, neutrinos in the SM are strictly massless. Non-zero masses for

the neutrinos have been firmly established through oscillations experiments conducted with atmospheric [121],

solar [122], accelerator [123] and reactor [124] neutrinos, requiring modification of the minimal model. An

aesthetic shortcoming of the SM, arising from the enormous freedom available in the Yukawa Lagrangian, is

that it provides very little insight into the masses and mixings of quarks and leptons. This shortcoming is often

dubbed as the “flavor puzzle” and many extensions of the SM are constructed to address this issue. The purpose

of this paper is to interpret the apparently diverse set of flavor parameters – quark masses, quark mixing angles,

charged fermion masses, neutrino masses and leptonic mixing angles – in a unified fashion probabilistically.

The observed masses in the charged fermion sector show a hierarchical structure, with the strongest hierarchy

seen in the up-type quark sector, and a somewhat milder hierarchy seen in the down-type quark and charged

lepton sectors. These mass parameters, at the momentum scale µ = MZ, are approximately given by (in units

of mt = 1):

mu ∼ 7.5× 10−6; mc ∼ 3.6× 10−3; mt ∼ 1;

md ∼ 1.6× 10−5; ms ∼ 3× 10−4; mb ∼ 1.6× 10−2;

me ∼ 3× 10−6; mµ ∼ 6× 10−4; mτ ∼ 1× 10−2.

(4.1.1)

In contrast, the two neutrino squared-mass differences measured in oscillation experiments yield values given

by [125]

∆m2
sol ∼ 7.5× 10−5 eV2 and ∆m2

atm ∼ 2.5× 10−3 eV2. (4.1.2)

Adopting a normal ordering of the mass spectrum with m1 < m2 � m3 with mi being the neutrino masses,

these values would indicate a mild or almost no hierarchy with m2/m3 ∼ 1/5, quite different from the hierarchy

seen in the other sectors (Cf: Eq. (4.1.1)). Additionally, the inter-generational mixing angles in the quark
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sector are found to be small, while the leptonic mixing angles are measured to be large:

θCKM
12 ∼ 13◦; θCKM

23 ∼ 2.4◦; θCKM
13 ∼ 0.2◦;

θPMNS
12 ∼ 34◦; θPMNS

23 ∼ 38◦; θPMNS
13 ∼ 9◦.

(4.1.3)

Understanding these patterns observed in the fermion spectrum is a fundamental unresolved problem in

particle physics. Various attempts have been made to explain the hierarchy in the charged fermion masses and

mixings, adopting highly regulated mass matrices supported by flavor symmetries (for a review see Ref. [126]).

On the other hand, random structure-less matrices may be better suited to explain the non-hierarchical mass

spectrum and the large mixing angles observed in the neutrino sector [127]. The use of such random matrices

to explain neutrino mixing angles has been termed “anarchy hypothesis”. A probability measure should be

specified for these random matrices such that the matrix elements remain random after a basis transformation.

For random unitary matrices this is achieved uniquely by the Haar measure [128]. Such matrices have been

shown to be successful in explaining the observed large mixing angles in the neutrino sector [127–135]. When

basis independence of the random matrix is combined with the requirement that each entry of the matrix has

a distribution independent of other entries, the measure gets determined uniquely to be Gaussian [136–139].

Anarchical neutrino mixing angles as well as mass ratios have been analyzed with the Gaussian measure in

Ref. [139].

In this paper [141] we unify the anarchy hypothesis in the neutrino sector with the hierarchy observed in the

quark and charged lepton sectors [140], [142], [143], [128] and analyze the resulting models from a probabilistic

perspective. Such a unification is achieved in the framework of SU(5) grand unified theories, which treat quarks

and leptons on similar footing. For concreteness we adopt a supersymmetric framework, which admits a one

step symmetry breaking of SU(5) down to the MSSM. These models have at most three parameters which

are hierarchical and determined from a fit to data. They also contain five complex Yukawa coupling matrices

which are taken to be structure-less or anarchical. Elements of these Yukawa coupling matrices are treated as

uncorrelated random variables obeying Gaussian distributions. We perform Monte Carlo simulations of this

framework and compare theoretical expectations with experimental data, which show good agreement.

Our main analysis is focused on the Yukawa coupling structure obtained in SUSY SU(5) unified theories

where the three families of 10i fermions mix with vector-like fermions belonging to 10α + 10α representations

that have GUT scale masses [140]. A variant of this model using the Froggatt-Nielsen mechanism [144], where

the three families of 10i fermions are distinguished by a flavor U(1) symmetry while the three families of 5i are

universal, is also analyzed allowing for effective non-renormalizable operators [128]. This class of models is a

special case of the general class, with only two hierarchical input parameters. A second variant, also using a

similar U(1) flavor symmetry, which now distinguishes the first family 51 from the 52,3 fields is also analyzed,
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with a single hierarchy parameter as input [145,146]. Good fit to the entire fermion spectrum is obtained in all

cases with the Yukawa couplings taking on uncorrelated Gaussian distributions.

It should be noted that ways to understand the neutrino mass anarchy along with charged fermion mass

hierarchy has been explored in extra dimensional models with some success [147–150]. These models have not

yet been subject to a detailed Monte Carlo analysis for testing quantitatively the goodness of the fit. The

(renormalizable) models we discuss here share some common qualitative features with these extra dimensional

models.

We also develop a constrained Monte Carlo simulation method to evaluate the figure of merit of the un-

correlated Gaussian distributions adopted for the random variables. In this method we calculate a specific

projection of the probability density distribution of the original random parameters onto a surface that corre-

sponds to random parameters that satisfy the experimental constraints. The figure of merit that is optimized

in this simulation is the distortion of the distributions of the random parameters with respect to their original

(unconstrained) distributions. This constrained Monte Carlo result can be thought of as a multi-dimensional

analog of the Kolmogorov-Smirnov statistical test for a single variable. Our analysis shows that the distortions

from the original Gaussian distributions are not much, suggesting a good quality fit.

While the class of models studied here cannot be tested in their precise predictions, they may become

strongly favored or disfavored once we know more about the neutrino mass and mixing parameters. With an

anarchical structure the CP-violating parameter sin δ in the neutrino sector is found to be peaked at maximal

values (±1), although variations from these peak values are not excluded. The probability distribution of the

neutrino mass ratio m1/m2 is peaked around 0.3, with the probability of measuring it below 1/100 found to be

about 4%.

This paper is organized as follows. In Sec. 2 we present our unified SUSY SU(5) model which allows for

the mixing of the three families of 10i with vector-like fermions in the 10α + 10α representations. Here we also

present special cases of this general framework making use of flavor U(1) symmetries. In Sec. 3 we present the

results of our Monte Carlo simulations for the fermion mass and mixing parameters for the main model as well

as for its variants. In Sec. 4 we develop a new constrained Monte Carlo method to evaluate the goodness of the

fits and compare the distortions of these new distributions from the original Gaussian distributions. In Sec. 5

we conclude.

4.2 Unifying Anarchy with Hierarchy in SU(5)

As noted in the introduction, grand unified theories based on SU(5) allow for a unified description of anarchy

in the neutrino sector and hierarchy in the quark sector. We work in the context of SUSY SU(5). The GUT
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symmetry breaks spontaneously down to the MSSM at an energy scale of 2×1016 GeV. The effective low energy

theory is the MSSM. Our focus is the Yukawa couplings of the quarks and leptons in these theories. At the

MSSM level, the Yukawa coupling matrices for the up quarks, down quarks, charged leptons, Dirac neutrinos

and the right-handed Majorana neutrinos derived from these models will take the form [140]:

YU = HTY 0
UH, (4.2.4)

YD = ε4 Y
0
DH, (4.2.5)

YL = ε4 H
TY 0

L , (4.2.6)

YN = Y 0
N , (4.2.7)

YR = Y 0
R. (4.2.8)

Here the superpotential couplings are written as (f ci (Yf )ijfj)Hf with Hu and Hd denoting the two Higgs fields

of MSSM. The fermion mass matrices obtained from Eqs. (4.2.4)-(4.2.8) have the form

MU = YUvu, MD = YDvd, ML = YLvd, and MN = YNvu, MR = YRvR (4.2.9)

with vu and vd being the VEVs of Hu and Hd. We have assumed the right-handed Majorana neutrino masses

arise through the vacuum expectation value (VEV) vR of a SM singlet field. In SU(5) unified theories, bare

Majorana masses for the gauge singlet right-handed neutrinos may be written down. If such bare masses are

adopted, the scale vR should be treated as an overall scale in the Majorana mass matrix. The light neutrino

mass matrix, obtained via the seesaw mechanism [38], has the form:

Mν =
(
Y TN Y

−1
R YN

) v2
u

vR
. (4.2.10)

An explicit derivation of the Yukawa matrices of Eqs. (4.2.4)-(4.2.8) based on SU(5) will be given in the next

subsection. Here we note their salient features which enable the unification of hierarchy and anarchy.

The matrix H in Eqs. (4.2.4)-(4.2.6) is Hermitian, which may be chosen to be diagonal, real and positive:

H = diag(ε1, ε2, ε3). (4.2.11)

Here ε1 � ε2 � ε3 ∼ 1 are input parameters of the model which take hierarchical values [140]. ε3 = 1 can be

chosen by redefining other parameters of the model. These parameters arise in the model by virtue of mixing

between the three chiral 10i-plets of fermions with vector-like 10α + 10α of fermions with GUT scale masses.

Y 0
f in Eqs. (4.2.4)-(4.2.8) are the “bare” Yukawa coupling matrices – coupling matrices in the absence of mixing

with the vector-like 10α+ 10α fermions – which will be assumed to have no specific structure. SU(5) invariance

implies that the same H multiplies all the bare Yukawa coupling matrices in Eqs. (4.2.4)-(4.2.6). Note that
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H appears on the right of Y 0
D, while it appears on the left of Y 0

L . This occurs in SU(5) since the dc field –

the SU(2)L singlet down-type anti-quark – is unified with the left-handed lepton doublet in a 5 representation.

As a consequence, the left-handed lepton mixing angles will be of order unity, simultaneously with order one

mixing in the right-handed down quark sector (which are unobservable). Note also that the mass matrices for

down quarks and charged leptons are “lopsided” [140, 151–154]. Furthermore, H appears on both sides of Y 0
U

in Eq. (4.2.4) (while it appears only on one side of Y 0
D and Y 0

E in Eqs. (4.2.5)-(4.2.6)), which is due to the

presence of u and uc fields in the same 10-plet of SU(5). As a result, the mass hierarchy in the up-quark sector

would be stronger compared to the hierarchy in the down-quark and charged lepton sectors:

md : ms : mb ∼ ε1 : ε2 : 1 (4.2.12)

me : mµ : mτ ∼ ε1 : ε2 : 1 (4.2.13)

mu : mc : mt ∼ ε21 : ε22 : 1 (4.2.14)

Such a pattern is consistent with observations.

As for the mixing angles, Eqs. (4.2.4)-(4.2.8) will lead to

V CKMij ∼ εi
εj
, i < j;

V leptonij ∼ 1, i < j.

(4.2.15)

That is, small quark mixings are realized along with large leptonic mixings in these models.

The parameter ε4 in Eqs. (4.2.5)-(4.2.6) is a third hierarchy parameter, corresponding to an overall suppres-

sion of YD and YL compared to YU , which has its origin in the mixing of Higgs doublets at the GUT scale. (In

certain minimal models such mixings may be absent, in which case ε4 = 1. We have investigated this scenario

and found that the goodness of the fit to data is poor.) Since there is no hierarchy parameter in YN and YR

in Eqs. (4.2.7)-(4.2.8), the light neutrino masses do not exhibit any hierarchy in this construction, see Eq.

(4.2.10)).

The form of the Yukawa matrices given in Eqs. (4.2.4)-(4.2.8) may also be obtained in other ways in the

context of SU(5) unification. It has been suggested that these forms may follow if the 10-plet fermions are

composite, while the 5-plet fermions are elementary [142]. Alternatively, if there is a flavor symmetry that

distinguishes the three families of 10-plets, with the 5-plets being indistinguishable by this symmetry [128], the

forms of Eqs. (4.2.4)-(4.2.8) may follow with the restriction that ε1 ' ε22. A flavor-dependent U(1) symmetry

that distinguishes 51 from 52,3 can lead to yet another constrained model, which may have only a single hierarchy

parameter [145,146]. We shall analyze these special cases as well.
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4.2.1 Anarchy and hierarchy via mixing with vector-like fermions

In this subsection we provide an explicit construction of the fermion Yukawa matrices of Eqs. (4.2.4)-(4.2.8)

based on SU(5) symmetry. The setup that we present here is quite general, we will discuss some of its special

cases in subsequent subsections. The construction involves mixing of the chiral families in the 10i representations

of SU(5) with vector-like 10α + 10α fermions which have GUT scale masses. Such mixings provide the needed

hierarchy factors to explain the charged fermion masses and quark mixing angles. All the Yukawa couplings of

the model will be assumed to be structure-less or anarchical. This applies to the Yukawa couplings in the quark

sector, charged lepton sector, and the neutrino sector universally. Thus, in the spirit of anarchy, these Yukawa

coupling matrix elements will all be taken as uncorrelated random variables with Gaussian distributions.

The three families of fermions belong to the 10i + 5i multiplets of SU(5) (i = 1− 3 is the generation index).

Quarks and leptons are unified in these multiplets as 10i = {eci , uci , Qi} and 5i = {Li, dci}, where Qi = (ui di)
T

and Li = (νi ei)
T . To generate small neutrino masses via the seesaw mechanism three SU(5) singlet fermions

1i (νci ) are introduced. If only a 5H + 5H Higgs pair is involved in the Yukawa couplings as usually assumed in

minimal SUSY SU(5), the relation ML = MT
D will result among the down-type quark and charged lepton mass

matrices, which is unacceptable. To correct for this at the renormalizable level, we extend the Higgs sector by

introducing a 45H + 45H pair [155]. Then the Yukawa superpotential is given by (assuming the usual R-parity)

WY = 10iY
5
ij10j5H + 10iY

45
ij 10j45H + 5iY

5
ij10j5H + 5iY

45
ij 10j45H

+ 5iY
1
ij1j5H +

1

2
(MR)ij1i1j , (4.2.16)

where Y 5, Y 45 and Y 1 are general complex matrices, while Y 5 and Y 45 are complex symmetric and antisym-

metric matrices. These “bare” Yukawa coupling matrix elements (as well as the Majorana mass terms MR for

the right-handed neutrinos, up to an overall scale) will all be taken to be random variables obeying Gaussian

distributions.

The model also contains a set of vector-like fermions belonging to 10α + 10α representations, where α =

1, 2, ..n where n is the number of copies used. The choice of n = 3 is natural, in which case there would be 3

pairs of such fields. The superpotential now admits additional mass terms given by

WY ⊃ mαj10α10j +Mαβ10α10β , (4.2.17)

where the first term represents the mixing of the ordinary fermions with the vector-like fermions and the second

term generates bare masses for these vector-like fermions. Other possible gauge invariant couplings are assumed

to be absent due to additional symmetries. An example of such a symmetry is a Z2 × Z2 with the vector-like

fermions 10α being odd under the first Z2, and the rest of the fields being even. This choice will prevent

unwanted terms of the type 10α10β24H and 10α10i24H , involving the SU(5) breaking Higgs field 24H . Such a
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Z2 is broken by the terms in Eq. (4.2.17), but only softly. Under the second Z2, both 10α and 10α fields are

odd, while the remaining fields are even. This Z2, which is also broken softly by the first term in Eq. (4.2.17),

will prevent mixed Yukawa coupling of the type 10i10α5H . (This second Z2 is optional, since the presence of

mixed Yukawa couplings of the type 10i10α5H do not have any effect on our analysis.)

In Eq. (4.2.17) the mass terms m andM are SM singlets, and will be assumed to be of order the GUT scale.

The presence of these terms in the Yukawa Lagrangian modifies the structure of the mass matrices of the SM

fermions. From Eq. (4.2.17), the heavy states are found to be 10Hα ∝ mαi10i + Mαβ10β , with the light states

10Li being orthogonal to the 10Hα states. This system can be inverted to express 10i and 10α in terms of 10L,H

states: 10i = (H 10L +H ′ 10H)i with

H = (I +mM−1M−1†m†)−
1
2 . (4.2.18)

Substituting this form of 10i in Eq. (4.2.16), one can write down the light quark and light lepton mass matrices

as [140]:

MU = HTM0
UH, (4.2.19)

MD = M0
DH, (4.2.20)

ML = HTM0
L, (4.2.21)

MN = M0
N , (4.2.22)

MR = M0
R, (4.2.23)

where MU,D are the up-type and down-type quark mass matrices, ML is the charged lepton mass matrix, MN

is the Dirac type neutrino mass matrix and MR is the right-handed neutrino Majorana mass matrix. In writing

these mass matrices we have defined [156]

M0
U = 〈5H〉Y 5 + 〈45H〉Y 45, (4.2.24)

M0
D = 〈5H〉Y 5 + 〈45H〉Y 45, (4.2.25)

M0
L = 〈5H〉Y 5

T
− 3〈45H〉Y 45

T
, (4.2.26)

M0
N = 〈5H〉 Y 1, (4.2.27)

M0
R = vR Y

0
R. (4.2.28)

Note that all matrices in Eqs. (4.2.24)-(4.2.27) are general complex, while M0
R in Eq. (4.2.28) is complex

symmetric. (M0
U has symmetric contributions from 〈5H〉 as well as antisymmetric contributions from 〈45H〉,

with the sum being neither symmetric nor antisymmetric.)

The Hermitian matrix H in Eq. (4.2.18) can be written as H = U†diag{ε1, ε2, ε3}U , with U being a unitary

matrix and εi’s being real and positive (i = 1, 2, 3). Substituting this form of H in Eqs. (4.2.19)-(4.2.21)
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and redefining the quark and lepton fields, one can absorb the unitary matrix U into the non-hierarchical

matrices M0
U,D,L without affecting the numerical results. Thus, we choose H = diag{ε1, ε2, ε3}. A hierarchy

ε1 � ε2 � ε3 ∼ 1 can be generated within the model by arranging for unequal mixings between the 10i and 10α

for different families. For example, for the third family, we may take M3 � m3 (ignoring generation mixing for

simplicity of explaining) while for the second and first families we may take M2 � m2 and M1 ≪ m1, see Eq.

(4.2.18) [140]. We shall set ε3 = 1, since this parameter is of order one, and redefining other parameters of the

theory enables this choice. Consequently, we will choose

H = diag{ε1, ε2, 1} (4.2.29)

for our analysis.

The MSSM up-type Higgs doublet Hu that remains light to low energies is a linear combination of up-type

doublets from the 5H , 45H and other possible up-type Higgs doublets present in the SU(5) model. Similarly

the light MSSM field Hd is a linear combination of down-type Higgs doublets from 5H , 45H and other possible

down-type Higgs doublets in the model. An example of such additional up-type and down-type Higgs doublets

is a pair of 5′H + 5
′
H fields with no Yukawa couplings to the fermions. We then have

Hu = αu h
u
5 + βu h

u
45 +

∑
i

γui h
′u
i (4.2.30)

Hd = αd h
d
5

+ βd h
d
45

+
∑
i

γdi h
′d
i (4.2.31)

with |αu|2 + |βu|2 +
∑
i |γui |2 = 1 = |αd|2 + |βd|2 +

∑
i |γdi |2. Here hu5 = (1, 2, 1

2 ) ⊂ 5H , hu45 = (1, 2, 1
2 ) ⊂ 45H ,

hd
5

= (1, 2,− 1
2 ) ⊂ 5H and hd

45
= (1, 2,− 1

2 ) ⊂ 45H , where the quantum numbers under the SM gauge symmetry

are indicated. The fields h′ui and h′di are (1, 2, 1
2 ) and (1, 2,− 1

2 ) fields from additional Higgs multiplets, such as

5′H + 5
′
H pairs. All fields orthogonal to Hu and Hd remain superheavy. The VEVs of the doublet components

of the various fields are related to the VEVs vu and vd of the MSSM fields Hu and Hd as

v5 = α∗uvu, v45 = β∗uvu, (4.2.32)

v5 = α∗dvd, v45 = β∗dvu. (4.2.33)

Substituting these relations, one can rewrite the effective mass matrices Eqs. (4.2.19)-(4.2.23) for the fermions

as:
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MU = vu H
TY 0

UH ≡ vu YU , (4.2.34)

MD = vd ε4 Y
0
DH ≡ vd YD, (4.2.35)

ML = vd ε4 H
TY 0

L ≡ vd YL, (4.2.36)

MN = vu Y
0
N ≡ vu YN , (4.2.37)

MR = vR Y
0
R ≡ vR YR. (4.2.38)

Here Y 0
U , Y

0
D etc are the bare Yukawa coupling matrices derived from Eqs. (4.2.24)-(4.2.27), using the definitions

given in Eq. (4.2.33):

Y 0
U = α∗u Y

5 + β∗u Y
45, (4.2.39)

Y 0
D = α∗d Y

5 + β∗d Y
45, (4.2.40)

Y 0
L = α∗d Y

5
T
− 3β∗d Y

45
T
, (4.2.41)

Y 0
N = α∗u Y

1 . (4.2.42)

Thus, we see that the effective Yukawa coupling matrices of the quarks and leptons with the MSSM Higgs fields

as given in Eqs. (4.2.4)-(4.2.8) are generated. The bare Yukawa couplings Y 0
U,D,L,N,R in these equations will

be treated as random variables obeying Gaussian distributions in our numerical analysis. The parameter ε4

appearing in Eqs. (4.2.35)-(4.2.36) arises from the Higgs doublet mixing expressed in terms of (αu,d, βu,d). To

realize values of ε4 in the range ε4 = (0.04 − 0.1) as our fits would prefer, it is sufficient to take αd and βd

somewhat smaller than one. Unitarity of the Higgs mixing matrix is maintained due to the presence of additional

Higgs doublets such as 5′H + 5
′
H in the model. The model also has tanβ = vu/vd as an input parameter. A

relation between the tanβ = vu/vd and ε4 can be obtained from Eqs. (4.2.34)-(4.2.35):

ε4 '
mb

mt
tanβ

(Y 0
U )33

|(−→d0)3|
(4.2.43)

where we have defined (
−→
d0)3 = {(Y 0

D)13, (Y
0
D)23, (Y

0
D)33}. Note that to set ε3 = 1 which we have adopted, we

redefine ε4 in Eqs.(4.2.35)-(4.2.36), and also redefine vu in Eq. (4.2.34).

Since the masses of the vector-like fermions are of the order of GUT scale, any effect of these particles at

low energies will be suppressed by a factor of 1/MGUT , except for the dimension four fermion mass operators

as discussed in the text. Hence their presence does not change the phenomenology of the MSSM or the Higgs

boson mass. Even though the super-heavy vector-like fermions decouple, they may leave imprints on the SUSY

flavor structure at low energies. However, SUSY models with large superpartner masses or gauge-mediated

SUSY breaking models can potentially suppress any such flavor violating effects.
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As noted previously, there are other ways of generating the Yukawa structure shown in Eqs. (4.2.4)-(4.2.8)

by assuming U(1) flavor symmetry that distinguishes the three families of 10i [128], and/or the first family

of 51 from 52,3 [145, 146], by hypothesizing that the 10i-plets are composite [142, 157], or postulating extra

dimensions [147, 148, 150]. Another interesting class of models proposed recently in Ref. [158, 159] has a very

similar structure for the mass matrices, which we shall not investigate here. We do analyze the flavor U(1)

models as special cases of the general class of models described here, which are described next.

4.2.2 SU(5)-inspired models with U(1) flavor symmetry

In this subsection we briefly describe a class of SU(5)-inspired models with U(1) flavor symmetry. Models of

this type can explain the hierarchical structure in the fermion masses and mixings by using the Fraggatt-Nielsen

mechanism [144]. Smaller entries in the mass matrices are induced as higher dimensional operators suppressed

by differing inverse powers of a fundamental mass scale. Assigning different charges to different families will

lead to a hierarchy in masses and mixings.

The models we study here are inspired by SUSY SU(5) unification – in the sense that the flavor U(1) charge

assignment will be compatible with SU(5) – but we can work just within the framework of MSSM. We shall

use the language of SU(5), however, for simplicity. The three fermion families are assigned to 10i + 5i, and we

include three families of SM singlet 1i (νci ) fields for the seesaw mechanism. In order to reproduce the observed

hierarchical structure in fermion masses, we make specific U(1) charge assignment to the fermion fields as shown

in Table 4.1. The integer charges q1, q2 and p are left unspecified in the table, two different choices will be

presented below.

Field UA(1) charge

101, 102, 103 2q1, q1, 0

51, 52, 53 q2 + p, p, p

11, 12, 13 q2, 0, 0

Table 4.1: The flavor U(1) charge assignment of the fermion fields in SU(5) notation. The Yukawa matrices

of Eqs. (4.2.4)-(4.2.8) will be induced with the choice q1 = 1, q2 = p = 0. Yukawa couplings given in Eqs.

(4.2.46)- (4.2.48) will result with the choice q1 = 2, q2 = 1, p = 0, 1 or 2, corresponding to large, medium and

small tanβ. These models also contain a flavon field S with U(1) charge of −1 that acquires a VEV. The Higgs

doublets Hu and Hd of MSSM are neutral under this U(1).

In these models, the U(1) flavor symmetry is broken by a single parameter ε = 〈S〉/M∗, where 〈S〉 is the
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VEV of an SU(5) singlet flavon field S with U(1) charge −1 and M∗ > MGUT is a fundamental scale such as

the string scale. The Yukawa superpotential contains higher dimensional terms suppressed by inverse powers

of M∗, with coefficients which are all of order one. These couplings have the form

WY ⊃ Y uijQiucjHu

(
S

M∗

)nuij
+ Y dijQid

c
jHd

(
S

M∗

)ndij
+ Y `ijLie

c
jHd

(
S

M∗

)n`ij
+ Y νijLiν

c
jHu

(
S

M∗

)nνij
+ vRY

R
ij ν

c
i ν
c
j

(
S

M∗

)nνcij
. (4.2.44)

Here the integers nuij etc are chosen such that the corresponding Yukawa coupling Y uij is charge neutral. The

couplings Y uij etc are all taken to be of order unity. Still hierarchical masses and mixings are induced since the

(ij) entry in the mass matrix has a suppression factor εnij .

In our first flavor U(1) model we choose the U(1) charges of Table 4.1 to be {q1 = 1, q2 = 0, p = 0} [128]. In

this case the Yukawa coupling matrices will have the same form as in Eqs. (4.2.4)-(4.2.8). Note that in this model

the three families of 5i are neutral under U(1), while the 10i carry differing charges given as (2, 1, 0). Since

the U(1) symmetry is broken by a single parameter, the Hermitian matrix H appearing in Eqs. (4.2.4)-(4.2.8)

is now given by

H =


ε2 0 0

0 ε 0

0 0 1

 . (4.2.45)

The only difference from the general model of the previous subsection is that here ε2 ≡ ε and ε1 = ε2.1 This

model will be analyzed separately, with the assumption that the Yukawa couplings entering Eq. (4.2.44) are

random variables taking Gaussian distributions. The light neutrino mass matrix retains exactly the same

structure-less pattern as before, since the νc fields as well as the Li fields are all neutral under the U(1). If

the model is embedded in SU(5) minimally, the wrong relation YL = Y TD would result. This would require the

extension of the scalar sector by a 45H + 45H pair. As before, the parameter ε4 has the same definition as in

Eqs. (4.2.4)-(4.2.8), and such models have two hierarchical parameters {ε, ε4}.

A second flavor U(1) model is obtained by the choice of U(1) charges in Table 4.1 as {q1 = 2, q2 = 1, p =

0, 1, or 2} along with the charges of the scalar fields given by {Hu, Hd, S} = {0, 0,−1}. Here the first family 51

has a shifted charge compared to 52,3. This is the only difference of this model compared to the first flavor U(1)

model just discussed. Such a model has been studied in Ref. [145, 146], where the Yukawa coupling matrices

written in the basis f ci (Yf )ijfj are shown to take the form:

1Strictly, ε1 = O(1)ε2, but this O(1) coefficient may be absorbed into other O(1) Yukawa couplings, which is what we shall do.
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YU ∼


ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 , YD ∼ εp


ε5 ε3 ε

ε4 ε2 1

ε4 ε2 1

 , (4.2.46)

YL ∼ εp


ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1

 , YN ∼ εp


ε2 ε ε

ε 1 1

ε 1 1

 , (4.2.47)

YR ∼


ε2 ε ε

ε 1 1

ε 1 1

 , Yν ∼ ε2p


ε2 ε ε

ε 1 1

ε 1 1

 . (4.2.48)

Here Yν determines the light neutrino mass matrix via the seesaw relation Mν = Yνv2
u/vR. The integer p

is allowed to take three different values, p = 0, 1 or 2, corresponding to large, medium, and small values of

tanβ. In Eqs. (4.2.46)-(4.2.48), each matrix element has an O(1) coefficient cfij that is not explicitly shown.

These entries are taken to be of order unity. For our statistical analysis of the model, we shall take these cfij to

be random variables obeying uncorrelated Gaussian distributions. One clearly sees that although the charged

fermion mass matrices here are quite similar to the previously discussed models, the light neutrino mass matrix

is significantly different. Unlike the previous cases, it is no longer given by a matrix with order unity entries

everywhere; rather it has somewhat of a hierarchical structure. In this model, it is possible to correct the

SU(5) relation ML = MT
D via higher dimensional operators involving the 24H field, and therefore, a parameter

analogous to ε4 is not required. As we shall see, a good fit to all data is obtained in this model with a single

hierarchy parameter ε.

4.3 Statistical Analysis of Flavor Parameters in SU(5)-based Models

In this section we perform a statistical analysis of the general class of unified theories based on SU(5). The

general model described in Sec. 4.2.1 contains three hierarchical input parameters {ε1, ε2, ε4} as well as tanβ

in the flavor sector. In addition, these models have five complex Yukawa coupling matrices, see Eqs. (4.2.4)-

(4.2.8), the elements of which are treated as uncorrelated random variables with Gaussian distributions. After

a detailed analysis of this general setup, we repeat the analysis for the two SU(5)-inspired flavor U(1) variants.

These variants have either two set of hierarchical parameters {ε, ε4}, or a single parameter ε.

The primary goal of this section is to investigate how well the theoretical predictions of this class of models

agree with the experimentally observed quantities on average. We perform a Monte Carlo simulation and derive

the theoretical expectations for these models. We start with the MSSM Yukawa coupling matrices given in
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Eqs. (4.2.4)-(4.2.8). As noted before, the matrices Y 0
F in Eqs. (4.2.4)-(4.2.8) are random matrices with all

elements of order O(1). The matrices Y 0
F for F = U,D,L,N are of the Dirac-type and in general complex

matrices. The right-handed neutrino Yukawa coupling matrix Y 0
R in Eq. (4.2.8) is of the Majorana-type which

is complex symmetric. We assume that each of these matrix elements is a random variable independent of other

elements. The probability distributions of the matrix elements are assumed to be completely independent of the

hierarchical model parameters {ε1, ε2, ε4}. Basis independence as well as absence of correlation between various

matrix elements determine uniquely the probability measures for these random variables to be Gaussian [137,

139]:

dY 0
D =

∏
ij

dY 0
ij e
−|Y 0

ij |
2

,

dY 0
M =

∏
i

dY 0
ii e
−|Y 0

ii|
2 ∏
i<j

dY 0
ij e
−2|Y 0

ij |
2

,

(4.3.49)

Here the subscripts D and M represent Dirac-type and Majorana-type respectively. These measures are defined

up to a scale factor e−c, which has been set equal to 1. (When Gaussian distributions are applied to mass

matrices, this scale factor can be used to fix the overall scale of the VEV, see Ref. [139] for details). From

Eq. (4.3.49), all the elements of a general complex random matrix are independently generated with Gaussian

distribution of variance 0.5 for both the real and imaginary parts separately. Similarly, for the complex sym-

metric random matrix, the real and imaginary parts are generated independently with Gaussian distribution of

variance 0.5 and 0.25 for diagonal and off-diagonal entries respectively.

The class of models with Yukawa matrices given in Eqs. (4.2.4)-(4.2.8) has three input parameters, εi

(i=1,2,4) and 84 random variables (72 in four general complex random matrices and 12 in one random complex

symmetric matrix). In this section we present a Monte Carlo analysis of these models adopting Gaussian

measure for the random matrix elements. The parameters εi are however not random, instead they are fixed

by χ2-function minimization. We have seen previously that these parameters do not enter in the neutrino

sector. Thus, in order to fix the numerical values of these parameters we only include in the χ2-minimization

the observables in the charged fermion sector. The minimization is carried out at the GUT scale with 3 input

parameters to fit 13 observables.

To perform the χ2-minimization at the GUT scale we take the experimentally observed values of the charged

fermion observables at the MZ scale from Ref. [72]. These values are quoted in Table 5.2. We use the renor-

malization group running factors corresponding to MSSM, ηi = mi(MGUT)/mi(MZ), taken from Ref. [73] for

the evolution of the Yukawa couplings from the MZ scale to the GUT scale. These running factors are listed in

Table 4.3. We perform the Monte Carlo analysis for two values of the parameter tanβ, 10 and 50. The Yukawa

couplings at the GUT scale are obtained from the couplings determined at µ = MZ with the help of these
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Yukawa Couplings

and CKM parameters
µ = MZ

yu/10−6 6.65± 2.25

yc/10−3 3.60± 0.11

yt 0.9860± 0.00865

yd/10−5 1.645± 0.165

ys/10−4 3.125± 0.165

yb/10−2 1.639± 0.015

ye/10−6 2.79475± 0.0000155

yµ/10−4 5.89986± 0.0000185

yτ/10−2 1.00295± 0.0000905

θCKM12 0.22735± 0.000072

θCKM23 /10−2 4.208± 0.064

θCKM13 /10−3 3.64± 0.13

δCKM 1.208± 0.054

Table 4.2: Observables in the charged fermion sector at the MZ scale taken from Ref. [72]. For quantities with

asymmetrical error bars, we have symmetrized and presented the experimental central values with associated 1

σ uncertainties. The fermion masses are given by the relations mi(MZ) = v ySM
i (MZ), with v = 174 GeV.

renormalization running factors by using the relations yMSSM
ui

(MGUT) = ySM
ui

(MZ)ηui
/ sinβ for up-type quarks

and yMSSM
di ,ei

(MGUT) = ySM
di ,ei

(MZ)ηdi ,ei/ cosβ for down-type quarks and charged leptons. We also run the CKM

mixing parameters from MZ to the GUT scale using the MSSM renormalization group equations [75,111]. The

renormalization running factors of the CKM matrix elements are presented in Table 4.3. The Yukawa couplings

and the CKM mixing parameters at the GUT scale are presented in Table 5.3. For the associated one sigma

uncertainties of these observables at the GUT scale, we take the same percentage uncertainty with respect to

the central value of each quantity as that at the MZ scale. For the charged lepton Yukawa couplings, a relative

uncertainty of 1% is assumed, instead of smaller experimental statistical errors, in order to take into account

the theoretical uncertainties such as SUSY and GUT scale threshold effects.

With these GUT scale inputs, using the Eqs. (4.2.4)-(4.2.8), we perform χ2 minimization by treating ε1,

ε2 and ε4 as parameters and fit the data in the charged fermion sector. Here nobs = 13 is the number of

observables, with 3 parameters to fit them. The elements of the random matrices pick up random values

independently according to Gaussian distribution. For our analysis the error, pull and χ2-function are defined

as follows:
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tanβ 10 50

(ηu, ηc, ηt) (0.385, 0.381, 0.536) (0.377, 0.382, 0.551)

(ηd, ηs, ηb) (0.241, 0.236, 0.273) (0.175, 0.181, 0.211)

(ηe, ηµ, ητ ) (0.583, 0.583, 0.585) (0.423, 0.423, 0.442)

(ηCKMus , ηCKMcb , ηCKMub ) (0.999, 0.890, 0.890) (0.999, 0.826, 0.826)

Table 4.3: Renormalization group running factors for the masses, ηi = mi(MGUT)/mi(MZ) (taken from

Ref. [73]). These values are obtained with two-loop MSSM renormalization group evolution with appro-

priate one-loop matching conditions. In the last row the renormalization group running factors ηCKMij =

Vij(MGUT)/Vij (MZ) of the CKM matrix elements are listed, which are obtained by evolving the RGEs for these

parameters [75,111] from low energy to MGUT.

σi =
√
σ2
i th + σ2

i exp,

Pi =
Oi th − Ei exp

σi
,

χ2 =
∑
i

P 2
i ,

(4.3.50)

where σi th and σi exp represent the theoretical standard deviation (TSD) and experimental 1σ uncertainty

respectively and Oi th, Ei exp and Pi represent the theoretical mean value (TMV), experimental central value

(ECV) and pull of an observable i.

We find the minimum with χ2/nobs ∼ 1 along with the model parameters shown in Table 4.5. The best fit

values of the observables obtained with these fixed model parameters resulting from our Monte Carlo optimiza-

tion are shown in Table 4.6. In Fig. 5.2 we plot the histogram distributions of the observables in the quark and

the charged lepton sectors corresponding to the fixed model parameters given in Table 4.5 for the case where

tanβ = 10 (plots for the case tanβ = 50 are similar). In producing these distributions we have taken the sample

size to be 104 and chose the bin size (N bins) to be 50.

The blue plots in Fig. 5.2 show histograms of the theoretical distributions of the up-type quark Yukawa

couplings. Overlaid on these distributions are the experimental values of these couplings. We find very good

agreement between theoretical expectations and observations. Among all the charged fermions, the eigenvalue

spectrum of the up-type quarks shows the most hierarchical structure which is nicely reproduced. This is not

surprising, as the stronger hierarchy is built into the model, see Eqs. (4.2.4)-(4.2.8).

For the down-type quark Yukawa couplings, theoretical distributions are shown in green in Fig. 5.2. Overlaid

on these distributions are the experimental values of these parameters. These are in good agreement with

observations for down-quark and bottom-quark, whereas for the strange-quark, the theoretical mean value
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Yukawa Couplings and

CKM mixing parameters

tanβ = 10

(at µ = MGUT)

tanβ = 50

(at µ = MGUT)

yu/10−6 2.57± 0.86 2.51± 0.84

yc/10−3 1.37± 0.04 1.37± 0.04

yt/10−1 5.31± 0.04 5.43± 0.04

yd/10−4 0.39± 0.04 1.44± 0.14

ys/10−3 0.74± 0.03 2.84± 0.14

yb/10−2 4.49± 0.04 17.29± 0.15

ye/10−5 1.63± 0.01 5.91± 0.05

yµ/10−3 3.45± 0.03 12.49± 0.12

yτ/10−2 5.89± 0.05 22.21± 0.22

|Vus|/10−2 22.53± 0.07 22.53± 0.07

|Vcb|/10−2 3.74± 0.05 3.47± 0.05

|Vub|/10−3 3.24± 0.11 3.00± 0.10

ηW 0.35± 0.01 0.35± 0.01

Table 4.4: Input values at MGUT used in our fits. Central values and 1 σ errors are quoted. For

Yukawa couplings, these numbers are found with the help of Tables 5.2 and 4.3 and by using the equations

yMSSM
ui

(MGUT) = ySM
ui

(MZ)ηui/ sinβ for up-type quarks and yMSSM
di ,ei

(MGUT) = ySM
di ,ei

(MZ)ηdi ,ei/ cosβ for down-

type quarks and charged leptons. For the charged lepton Yukawa couplings, a relative uncertainty of 1% is

assumed, instead of smaller experimental statistical errors, in order to take into account the theoretical uncer-

tainties from threshold effects. For the CKM mixing parameters, we evolve the quantities from low scale to

MGUT by using the RGEs provided in Ref. [75, 111].

tends to be a little higher than the experimentally measured value, but it is still within acceptable range. In

the eigenvalue spectrum of charged leptons, which is shown in pink in Fig. 5.2, the theoretical mean value for

the muon Yukawa coupling tends to be a little lower than the experimental central value. The reason for these

small discrepancies can be understood from the approximate relations ys
yb
∼ ε2 and

yµ
yτ
∼ ε2 present in the

model. At the GUT scale one has roughly yb ∼ yτ , which implies within the model ys ∼ yµ. This is why the

histograms of Yukawa couplings for both strange-quark and muon Yukawa couplings are almost identical with

approximately the same theoretical mean values, but observation dictates, ys ∼ 4yµ at the GUT scale. This

small discrepancy, inherent to these models, is still not major and is within acceptable range.

The probability distributions of the CKM parameters are shown in purple in Fig. 5.2. Overlaid on these
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tanβ 10 50

ε1 0.00181±0.00010 0.00169±0.00009

ε2 0.0388±0.00222 0.03659±0.00215

ε4 0.04055±0.00229 0.15716±0.00894

Table 4.5: Model parameters determined by χ2 minimization for the SU(5)-based GUTs defined in Eqs. (4.2.4)-

(4.2.8).

Observables TMV±TSD TMV
ECV

pull

tanβ = 10 tanβ = 50 tanβ = 10 tanβ = 50 tanβ = 10 tanβ = 50

yu/10−6 7.23±7.76 6.39±6.93 2.81 2.54 0.59 0.55

yc/10−3 2.55±2.53 2.26±2.37 1.85 1.64 0.46 0.37

yt 0.88±0.46 0.89±0.46 1.67 1.63 0.77 0.74

yd/10−4 0.64±0.33 2.3±1.23 1.61 1.62 0.73 0.73

ys/10−3 2.10±0.77 7.59±2.79 2.83 2.67 1.75 1.69

yb/10−1 0.67±0.19 2.61±0.76 1.50 1.51 1.13 1.15

ye/10−4 0.64±0.34 2.34±1.22 3.96 3.96 1.42 1.42

yµ/10−3 2.10±0.75 7.63±2.74 0.60 0.61 -1.79 -1.76

yτ/10−1 0.67±0.19 2.59±0.76 1.14 1.16 0.42 0.48

|Vus|/10−2 8.17±7.80 8.07±7.87 0.36 0.35 -1.83 -1.83

|Vcb|/10−2 6.15±6.37 5.99±6.34 1.64 1.72 0.37 0.39

|Vub|/10−3 3.42±3.67 3.23±3.75 1.05 1.07 0.04 0.06

ηW 0.05±3.13 0.05±2.59 0.14 0.14 -0.09 -0.11

Table 4.6: χ2 best fit values of the observables for the SU(5)-based GUTs defined in Eqs. (4.2.4)-(4.2.8) with

the fixed model parameters given in Table 4.5. The best fit values shown in this table correspond to χ2/nobs =

1.13 and 1.12 for tanβ = 10 and 50 respectively. Here TMV=theoretical mean value, TSD=theoretical standard

deviation, ECV=experimental central value and pull is defined in Eq. (4.3.50).

distributions are the experimental values of these observables. These distributions 2 are also in very good

agreement with data. The theoretical distribution for Vus has a mean value that tends to be somewhat smaller

than the experimental value. This feature may be understood since the model has Vus ∼ ε1/ε2. It also predicts

yd/ys ∼ 0.05 ∼ ε1/ε2, which makes Vus to peak around 0.05, rather than the observed value of ∼ 0.2. But there

is still acceptable agreement.
2Similar distributions for the CKM parameters are obtained in Ref. [160] from a completely different statistical approach.
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We can do a consistency check for the value of tanβ used. From Eq. (4.2.43) we have, tanβ ' ε4 mt/mb
|(
−→
d0)3|

(Y 0
U )33

.

Since O(1) random variables are present in this equation, tanβ in these models follows a distribution shown in

Fig. 5.4. Both histograms have a long tail behaviour with the mean values of the distributions being tanβ = 14

and 71.4 respectively. For histograms with such behaviour, median may be a better measure, which are tanβ =

9.4 and 48.3 respectively. We see broad consistency with the input values of tanβ used in each case.

Since the small parameters εi do not enter into the neutrino sector, in the optimization process we did

not include the neutrino observables. Once the model parameters are fixed as in Table 4.5, one can include

the neutrino sector in the sampling process and investigate how well the observed quantities in this sector are

reproduced by these models. Since the matrix structure is the same as the ones considered in earlier works

assuming anarchical hypothesis only in the neutrino sector [127,128], the histogram distributions of the neutrino

observables should be similar, which is what we find. In Figs. 4.3 and 4.4 we present plots for the theoretical

predictions of the neutrino observables. The theoretical average values of these observables resulting from the

Monte Carlo analysis are shown in Table 4.7. The input values for neutrino observables are taken from Ref. [76]

corresponding to the case of normal ordering of the neutrino mass spectrum. We restrict our analysis to normal

ordering, since the random matrix structure for the neutrinos strongly prefers this over inverted ordering. In our

Monte Carlo simulations we found a 95.6% probability for normal ordering and a 4.4% probability for inverted

ordering, which is similar to the results of Ref. [139]). To ensure normal ordering, we assume m1 ≤ m2 < m3

and we put the constraint r < 1 (r ≡ ∆m2
sol/∆m

2
atm with ∆m2

sol = m2
2 −m2

1 and ∆m2
atm = m2

3 −m2
2) in the

sampling procedure.

86



Figure 4.1: Histogram plots showing the distributions of the observables in the charged fermion sector. Blue

(green, pink and purple) plots are the theoretical distributions of the up-type quarks (down-type quarks, charged

leptons and CKM mixing parameters) according to the SU(5)-based GUTs with 104 occurrences for the case of

tanβ = 10 corresponding to the model parameters given in Table 4.5. Red (magenta, blue and black) curves

represent the corresponding experimental 1σ uncertainty range. For the charged leptons, a relative uncertainty

of 1% is assumed in order to take into account theoretical uncertainties arising from SUSY and GUT scale

threshold effects. The number of bins (N bins) is chosen to be 50.
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Figure 4.2: Histograms showing theoretical distributions of tanβ given by Eq. (4.2.43) for the SU(5)-based

GUTs with sample size of 104. Left plot corresponds to the case where tanβ = 10 and the right plot for tanβ =

50. The number of bins (N bins) is chosen to be 50.

Figure 4.3: Probability density plots for the neutrino mixing parameters for SU(5)-based GUTs. The left plot is

for the mixing angles, sin2 2θij for (ij) = (12), (23) and (13), and the right plot is for the CP-violating parameter

sin δ. In these probability density plots, the area under the curve within a certain range represents the probability

of finding the quantity within that particular range. Here TMV=theoretical mean value, TSD=theoretical

standard deviation.
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Observables ECV 1σ exp TMV TSD TMV
EMV

pull

∆m2
sol

∆m2
atm

0.031 0.001 0.135 0.186 4.37 0.56

sin2 θ12 0.308 0.017 0.504 0.287 1.63 0.68

sin2 θ23 0.3875 0.0225 0.501 0.290 1.29 0.39

sin2 θ13 0.0241 0.0025 0.334 0.235 13.8 1.31

Table 4.7: Theoretical sampling results of the SU(5)-based model obtained from Monte Carlo simulation in

the neutrino sector. Experimental central values with associated one sigma uncertainties are also quoted taken

from Ref. [76]. Here TMV=theoretical mean value, TSD=theoretical standard deviation, ECV=experimental

central value and pull is defined in Eq. (4.3.50). The theoretical results presented here are for sample size of

104. The best fit values shown in this table correspond to χ2/nobs = 0.66.

In Fig. 4.3 we plot the probability density for the neutrino mixing parameters. The area under the curve

in a probability density plot between any two values of the observable represents the probability of finding the

observable within that particular range and the total area is normalized to unity. From these plots it is clear

that for this class of models all the mixing parameters sin2 2θij in the neutrino sector take preferentially large

values. The CP-violating parameter sin δ is peaked at its maximal values of ±1. Preference of all the mixing

parameters to be large is a consequence of the complete anarchical form of the neutrino mass matrix as their

distributions are uniquely fixed by the invariant Haar measure.

In Fig. 4.4 we plot theoretical distributions of log10(∆m2
sol/∆m

2
atm) and log10(mi/mj). The upper left plot

in Fig. 4.4 shows that the anarchic structure of the neutrino mass matrix prefers small values of the ratio of

the two mass squared differences, r and the theoretical mean value is quite close to the experimental central

value. The upper right plot reveals that anarchy predicts mild hierarchy in the neutrino mass spectrum. The

lower plots in Fig. 4.4 exhibits the probability densities for the two different neutrino mass ratios, m1/m3 and

m1/m2. As can be seen, the ratio m1/m2 peaks around 0.3. Extreme small values of m1 are strongly disfavored

in this model. For example, m1/m2 < 0.01 will be favored only with a 4% probability.

4.3.1 Monte Carlo analysis of SU(5)-inspired U(1) flavor models

Models with two parameters {ε, ε4}

In this subsection, we present our Monte Carlo results for the SU(5)-inspired U(1) flavor models with U(1)

charges chosen to be {q1 = 1, q2 = 0, p = 0} as explained in Sec. 4.2.2. Models of this type have two parameters,

{ε, ε4}. The only modification needed compared to our general setup is in the charged fermions sector where the
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Figure 4.4: Two histogram plots showing the theoretical distributions of log10(∆m2
sol/∆m

2
atm) (upper left) and

log10(mij) = log10(mi/mj) (upper right; blue, green and orange histograms are for log10(m1/m3), log10(m1/m2)

and log10(m2/m3) respectively). The black curve in the upper left plot represents the experimental 1σ uncer-

tainty range. The two bottom plots are the probability density functions for the neutrino mass ratios mi/mj

(blue and green plots are for m1/m3 and m1/m2). In these probability density plots, the area under the curve

within a certain range represents the probability of finding the quantity within that particular range. These

plots are the results from our Monte Carlo analysis for the anarchical neutrino mass models with normal mass

ordering. Here TMV=theoretical mean value, TSD=theoretical standard deviation. For the two histogram

distributions the number of bins is chosen to be 50 and for all the plots the sample size is taken to be 104.

matrix H is given by Eq. (4.2.45). This set of models has one less parameter compared to the general model.

We have performed a fit as before in this two parameter case and the fitted model parameters are presented in

Table 4.8. From this Table one finds, ε ∼ λ2, where λ ∼ 0.22. With this fixed parameters, the corresponding

best fit values of the observables are shown in Table 4.9 and the theoretical distributions of these quantities are

presented in Fig. 4.5. By comparing the fit results of Tables 4.6 and 4.9 one sees that a slightly better fit is

obtained for the three parameter case compared to the analysis done here with one less parameter. In Table 4.6,

all the observables are reproduced within 2σ error on average, whereas in Table 4.9, with one less parameter,

two of the observables are in the (2 − 3)σ range for the case of tanβ = 10 and for the case of tanβ = 50, one

of the observables is little above 2σ error on average. Since the neutrino sector is exactly the same for all these

models belonging to SU(5)-based GUTs, the analysis in the previous subsection remains unchanged.
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Figure 4.5: Histograms showing the theoretical distributions of the observables in the charged fermion sector

in the SU(5)-inspired U(1) flavor symmetric models with the charge assignment {q1 = 1, q2 = 0, p = 0} defined

by Eqs. (4.2.4)-(4.2.8) and (4.2.45) (tanβ = 10). The color code is the same as in Fig. 5.2.

Monte Carlo analysis of U(1) model with one parameter {ε}

In this subsection we apply a Monte Carlo analysis to the SU(5)-inspired flavor symmetry model with the U(1)-

flavor charge assignment of {q1 = 2, q2 = 1, p = 0, 1, 2} as discussed in Sec. 4.2.2. As explained there, the matrix
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tanβ 10 50

ε 0.02855±0.00150 0.03847±0.00215

ε4 0.03909±0.00220 0.14537±0.00826

Table 4.8: Model parameters determined by χ2 minimization for the SU(5)-inspired U(1) flavor symmetry

models with two parameters.

Observables TMV±TSD TMV
ECV

pull

tanβ = 10 tanβ = 50 tanβ = 10 tanβ = 50 tanβ = 10 tanβ = 50

yu/10−6 3.49±3.89 4.96±5.55 1.35 1.97 0.23 0.43

yc/10−3 2.08±2.15 2.50±2.57 1.51 1.82 0.32 0.43

yt 0.88±0.46 0.88±0.46 1.65 1.63 0.76 0.74

yd/10−4 0.44±0.23 1.92±1.00 1.10 1.32 0.17 0.46

ys/10−3 1.90±0.69 7.45±2.71 2.56 2.62 1.67 1.69

yb/10−1 0.67±0.19 2.42±0.71 1.49 1.40 1.11 0.96

ye/10−4 0.44±0.23 1.90±1.00 2.69 3.21 1.41 1.31

yµ/10−3 1.90±0.75 7.38±2.71 0.55 0.59 -2.24 -1.87

yτ/10−1 0.68±0.19 2.42±0.70 1.15 1.09 0.42 0.28

|Vus|/10−2 8.17±7.80 6.81±6.86 0.36 0.30 -2.68 -2.29

|Vcb|/10−2 5.75±5.93 6.19±6.30 1.53 1.78 0.33 0.43

|Vub|/10−3 2.73±3.03 2.81±2.96 0.84 0.93 -0.16 -0.06

ηW 0.006±2.509 0.003±2.30 0.01 0.006 -0.15 -1.13

Table 4.9: χ2 best fit values of the observables for the SU(5)-inspired U(1) flavor symmetry models with

two parameters. The fixed model parameters are given in Table 4.8. The best fit values shown in this table

correspond to χ2/nobs = 1.44 and 1.41 for tanβ = 10 and 50 respectively.

elements in Eqs. (4.2.46)-(4.2.48) have order one complex coefficients cfij . We assume that the coefficients are

random complex variables with Gaussian distribution of variance 0.5 for both real and imaginary parts. For

the off-diagonal terms of the complex symmetric matrix YR the coefficients have variance of 0.25. We generate

this unbiased set of random variables following Gaussian distribution in a manner similar to the one described

earlier. By taking the sample size to be 104, we study the theoretical probability distributions of the observables

in the fermion sector. We carry out the Monte Carlo analysis for three cases with p = 0, 1, 2 (corresponding to

tanβ = 55, 25, 5 respectively) and present the values of the parameter ε that minimizes the χ2 for each case.

For these values of tanβ the RGE running factors are not given in Ref. [73] and hence we run the two loop
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MSSM RGEs [74,75] from low scale to the GUT scale 3. We take the low scale central values of the observables

from Table 2 of Ref. [72] at µ = 1 TeV where the observables are converted to the DR scheme, use the SUSY

matching formula (without taking into account the threshold corrections) for the Yukawa couplings and evolve

them upto the GUT scale and use these values as inputs (shown in Table 4.10) during the optimization. Like

before, for the charged leptons, we assume a relative 1% uncertainty in order to take into account the theoretical

uncertainties such as SUSY and GUT scale threshold effects.

Yukawa Couplings and

CKM mixing parameters

tanβ = 5

(at µ = MGUT)

tanβ = 25

(at µ = MGUT)

tanβ = 55

(at µ = MGUT)

yu/10−6 2.98± 1.00 2.88± 0.96 2.96± 0.99

yc/10−3 1.45± 0.04 1.4± 0.04 1.44± 0.04

yt/10−1 5.43± 0.04 5.23± 0.04 5.85± 0.05

yd/10−4 0.24± 0.02 1.24± 0.12 3.55± 0.36

ys/10−3 0.48± 0.024 2.47± 0.12 7.04± 0.35

yb/10−2 2.73± 0.02 14.33± 0.12 49.61± 0.44

ye/10−4 0.10± 0.001 0.51± 0.005 1.45± 0.01

yµ/10−2 0.21± 0.002 1.08± 0.01 3.07± 0.03

yτ/10−1 0.36± 0.003 1.89± 0.01 6.53± 0.06

|Vus|/10−2 22.53± 0.07 22.53± 0.07 22.53± 0.07

|Vcb|/10−2 3.72± 0.05 3.70± 0.05 3.37± 0.05

|Vub|/10−3 3.22± 0.11 3.21± 0.11 2.92± 0.10

ηW 0.35± 0.01 0.35± 0.01 0.35± 0.01

Table 4.10: Experimental central values with associated 1σ uncertainties at MGUT scale used in our fits. The

low scale central values of the observables are taken from the Table 2 of Ref. [72] at µ = 1 TeV. For the charged

leptons, a relative uncertainty of 1% is assumed in order to take into account the theoretical uncertainties as

for example SUSY threshold and GUT scale effects.

p 2 1 0

tanβ 5 25 55

ε 0.1956±0.0097 0.1985±0.0105 0.1755±0.0098

Table 4.11: Model parameters fixed by minimization for the flavor symmetry based models defined in Eqs.

(4.2.46)-(4.2.48) by employing Monte Carlo analysis with different values of p.

3We also performed the running for the cases with tanβ = 10 and 50 and found consistency with Ref. [73] and hence the values

presented in Table 5.3.
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The numerical values of the model parameter determined by χ2-minimization are presented in Table 4.11.

These values are similar to the ones computed in Table 2 of Ref. [145]. The best fit values resulting from the

χ2 minimization for the three cases with p = 0, 1, 2 are presented in Table 4.12. From this Table one sees

that, for this class of models with a single parameter, the fit to the charged fermion observables is not very

different from that of the models with 3 parameters. For Vus, the pull is greater than 2σ, but the rest of the

observables are in good agreement. The main difference of this model compared to the previous two models is

in the neutrino mixing parameters. In the SU(5)-based GUTs, the set of models where the left-handed light

neutrino Yukawa coupling matrix elements are all ∼ O(1), large values of mixing angles are preferred for all

three mixing parameters sin2 2θij (see Fig. 4.3). On the other hand, the present model which is described by

the Yukawa matrices given in Eqs. (4.2.46)-(4.2.48), O(1) entries exist only in the 2-3 sector that give rise to

large sin2 2θ23. But due to a suppression factor ε in the 1-3 sector, sin2 2θ13 naturally comes out to be smaller

than unity. The probability density plots of sin2 2θij are shown in Fig. 4.7, the patterns remain the same for

different values of p for this set of models (Fig. 4.8) compared to the previous set analyzed before (Fig. 4.4).

Except for the three mixing parameters, the theoretical distributions of the observables in the fermion sector

remain similar in pattern and are shown in Figs. 4.6 for the case of p = 2 (histograms for other values of p’s

are similar, and are not shown).
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Figure 4.6: Histograms showing the theoretical distributions of the observables in the charged fermion sector

according to the SU(5)-inspired U(1) flavor symmetry based models with the charge assignment {q1 = 2, q2 =

1, p = 2} defined by Eqs. (4.2.46)-(4.2.48) (tanβ = 5). The color code is the same as in Fig. 5.2.
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Observables TMV±TSD TMV
ECV

pull

tanβ = 5 tanβ = 25 tanβ = 55 tanβ = 5 tanβ = 25 tanβ = 55 tanβ = 5 tanβ = 25 tanβ = 55

yu/10−6 4.88±5.61 5.42±6.06 2.00±2.26 1.63 1.88 0.67 0.33 0.41 -0.38

yc/10−3 2.42±2.47 2.59± 2.66 1.62±1.76 1.66 1.84 1.12 0.39 0.44 0.10

yt 0.89±0.46 0.89±0.46 0.88±0.46 1.64 1.70 1.51 0.76 0.79 0.64

yd/10−5 1.97±1.39 11.0±7.78 30.8±22.6 0.80 0.88 0.86 -0.33 -0.18 -0.20

ys/10−3 1.37±0.65 7.31±3.49 28.4±13.6 2.83 2.95 4.04 1.36 1.38 1.57

yb/10−1 0.51±0.18 2.65±0.94 13.4±4.77 1.86 1.85 2.71 1.30 1.29 1.77

ye/10−5 1.96±1.14 11.10±7.88 31.06±22.69 1.95 2.16 2.13 0.67 0.75 0.72

yµ/10−3 1.36±0.64 7.24±3.45 28.42±13.85 0.64 0.67 0.92 -1.16 -1.02 -0.16

yτ/10−1 0.51±0.18 2.66±0.93 13.40±4.75 1.43 1.40 2.05 0.85 0.82 1.44

|Vus|/10−1 0.75±0.72 0.77±0.69 0.61±0.59 0.33 0.34 0.27 -2.05 -2.11 -2.75

|Vcb|/10−1 0.65±0.62 0.66± 0.65 0.53±0.54 1.74 1.79 1.57 0.44 0.45 0.35

|Vub|/10−2 0.31±0.36 0.32±0.36 0.20±0.24 0.98 1.01 0.69 -0.01 0.01 -0.36

ηW 0.04±5.56 0.01±2.49 0.04±2.72 0.11 0.02 0.11 -0.05 -0.13 -0.11
∆m2

sol

∆m2
atm

0.09±0.16 0.10± 0.16 0.09±0.16 3.17 3.27 3.21 0.42 0.43 0.41

sin2θPMNS
12 0.17±0.19 0.17±0.19 0.15±0.18 0.56 0.57 0.50 -0.70 -0.66 -0.84

sin2θPMNS
23 0.47±0.29 0.47±0.29 0.48±0.29 1.22 1.24 1.22 0.31 0.30 0.30

sin2θPMNS
13 0.09±0.12 0.10±0.12 0.08±0.11 3.97 4.14 3.44 0.57 0.58 0.51

Table 4.12: χ2 best fit values of the observables for the SU(5)-inspired flavor symmetry based models defined in

Eqs. (4.2.46)-(4.2.48) with fixed values of the model parameters given in Table 4.11. The best fit values shown

in this table correspond to χ2/nobs = 0.73, 0.74 and 1.05 for p = 2, 1 and 0 respectively. Here TMV=theoretical

mean value, TSD=theoretical standard deviation, ECV=experimental central value and pull is defined in Eq.

(4.3.50).
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Figure 4.7: Probability density plots for the neutrino mixing parameters for the SU(5)-inspired flavor symmetry

based models defined in Eqs. (4.2.46)-(4.2.48). The upper plots are for the mixing angles, sin2 2θij and the

lower plot is for CP-violating parameter sin δ.

Figure 4.8: The theoretical distributions and the probability density plots of the observables in the neutrino

sector for the SU(5)-inspired flavor symmetry based models defined in Eqs. (4.2.46)-(4.2.48). The notation is

the same as in Fig. 4.4.
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4.4 A Variant Monte Carlo Analysis of the SU(5)-based Models

The Monte Carlo analysis of Sec. 4.3 treats the random variables as unbiased set with Gaussian distribution

and investigates the likelihood of these models to procreate the experimental values. The results presented in

the previous section show that, on average, the agreement of the theoretical mean values with the experimental

central values is very good, except for few observables for which the theoretical mean values do not coincide with

the experimental central values but still the experimental central values lie within the range of values predicted

by the theory. Since we have no control over the random variables, the theoretical standard deviations of each

observables are quite large (as can be seen from columns 4 and 5 of Table 4.6) and of the same order as the

theoretical mean values. In this section, we present a modified version of the Monte Carlo analysis, where the

model parameters, εi are not fixed but rather treated as constrained random parameters. As before, we start

with the set of uncorrelated random variables having Gaussian distribution and analyze the class of models with

Yuwaka coupling matrices given by Eqs. (4.2.4)-(4.2.8). We consider a projection of these distributions onto a

subspace of the original space of random parameters defined by the experimental constraints. These constraints

create correlations between the random parameters, and therefore their distributions in the constrained subspace

are in general different from the original (unconstrained) distributions. We optimize the model parameters by

minimizing the difference between the complete set {r} of random parameters describing a given class of models,

and the subset {r∗} of random parameters describing the models that satisfy the experimental constraints

Oi th = Ei exp, which we call the distortion and denote by D ({r∗}, {r}). The condition of optimization is then

εbest = argmin
ε

D ({r∗}, {r}) . (4.4.51)

To implement the optimization procedure, we modify the χ2 minimization approach described in the previous

sections by introducing an additional step which, starting from initial set of random parameters {r0}, tries to

update the current set of random parameters {r} by minimizing D = D(O,E) +D ({r}, {r0}), where

D(O,E) =
∑(

Oi th − Ei exp

σi exp

)2

(4.4.52)

accounts for discrepancy between the model prediction and experiment, and the measure of distortion is chosen

to be
D ({r}, {r0}) =

∑ (Cjk −E [Cjk])
2

E [Cjk]
, (4.4.53)

where Cjk is the number of occurrences of the binned value of the expected cumulative distribution function

(cdf) of random variable rj , and the sum is taken over all cdf bins k and all elements of all random matrices

j in the model. The method we use is an iterative procedure that alternates the χ2 minimization and {r}

optimization steps. The best fit results of this procedure obtained for the SU(5)-based GUTs defined in Eqs.
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Observables TMV±TSD TMV
ECV

pull

yu/10−6 2.57±0.09 1.00 0.00

yc/10−3 1.40±0.03 1.02 0.39

yt 0.545±0.053 1.02 0.25

yd/10−4 0.39±0.04 0.99 -0.05

ys/10−3 0.75±0.03 1.02 0.28

yb/10−2 4.49±0.22 0.99 -0.02

ye/10−5 1.64±0.001 1.00 0.18

yµ/10−3 3.46±0.002 1.00 0.11

yτ/10−1 0.589±0.001 0.99 -0.09

|Vus| 0.225±0.0009 0.99 -0.29

|Vcb|/10−2 3.75±0.017 1.00 0.04

|Vub|/10−3 3.24±0.03 0.99 -0.01

ηW 0.35±0.004 1.00 0.00

Table 4.13: Best fit values of the observables for the SU(5)-based GUTs defined in Eqs. (4.2.4)-(4.2.8) by

employing the modified Monte Carlo analysis. Here we have considered the case with tanβ = 10 as input. As

explained in the text, this results correspond to minimization of the function D = D(O,E) + D ({r∗}, {r}).

This fit corresponds to D(O,E)/nobs = 0.03. Here TMV=theoretical mean value, TSD=theoretical standard

deviation, ECV=experimental central value and pull is defined in Eq. (4.3.50).

(4.2.4)-(4.2.8) is presented in Table 4.13. Here we have considered the case with tanβ = 10 as input. The

models parameters that are extracted from this procedure are given in Eq. (4.4.54).

ε1 = 0.00106± 0.00001,

ε2 = 0.08023± 0.00044, (4.4.54)

ε4 = 0.03294± 0.00024.
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Observables TMV±TSD TMV
ECV

pull

∆m2
sol

∆m2
atm

0.031 ± 0.0002 1.0 0.01

sin2 θ12 0.31 ± 0.02 0.99 0.17

sin2 θ23 0.39 ± 0.03 0.99 0.23

sin2 θ13 0.024 ± 0.001 1.0 0.12

Table 4.14: Best fit values of observables using the modified approach of Monte Carlo analysis in the neutrino

sector for SU(5)-based GUTs defined in Eqs. (4.2.4)-(4.2.8). The best fit values shown in this table correspond

to χ2/nobs = 0.1. Here TMV=theoretical mean value, TSD=theoretical standard deviation, ECV=experimental

central value and pull is defined in Eq. (4.3.50).

Figure 4.9: Probability density plots of the experimentally unmeasured quantities in the neutrino sector, the

sine of the Dirac type phase (upper) and neutrino mass ratios m1/m3 (lower left) and m1/m2 (lower right) by

employing the modified Monte Carlo analysis for SU(5)-based GUTs defined in Eqs. (4.2.4)-(4.2.8).

The best fit values presented in Table 4.13 corresponds to D(O,E) = 0.43. In this modified approach, all

the theoretically predicted values of the observables almost coincide with the experimental measured values.

Compared to the approach explained in the previous sections, theoretical errors are greatly reduced and com-

parable to the experimental uncertainties. Histogram distributions of the observables in the charged fermion

sector corresponding to this result are presented in Fig. 4.10 and the distributions of the restricted set {r∗} are

shown in Figs. 4.11, 4.12 and 4.13 for the matrices Y 0
U , Y

0
D and Y 0

L respectively. We also employ this approach in
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the neutrino sector Eq. (4.2.10) separately, where the model parameters εi are absent. The results are presents

in Table 4.14 that correspond to D(O,E) = 0.1. The histogram distributions of the theoretical predictions of

these quantities in the neutrino sector are shown in Fig. 4.14 and the modified set {r∗} in Figs. 4.15 and

4.16. The sin δ and the two neutrino mass ratios m1/m3 and m1/m2 are shown in Fig. 4.9. This variant of the

Monte Carlo analysis shows that with the subspace {r∗} which does not have much deviation from the original

landscape r, excellent agreement of the observables to the experimental measured values can be achieved. One

can in principle apply this modified approach to the special cases of the SU(5)-based GUTs explained in Sec.

4.2.2 but we do not include those analysis here.
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Figure 4.10: Histogram distributions of the observables in the charged fermion sector according to the modified

Monte Carlo method for SU(5)-based GUTs defined in Eqs. (4.2.4)-(4.2.8) with tanβ = 10. Color code is the

same as Fig. 5.2. Note the change of scales compared to Fig. 5.2 for few of the plots (yu × 105 → yu × 106,

ys × 102 → ys × 103, ye × 104 → ye × 105, yµ × 102 → yµ × 103, |Vcb| → |Vcb| × 102, |Vub| → |Vub| × 103).
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Figure 4.11: Distributions of the O(1) random entries in the matrix Y 0
U from the modified Monte Carlo analysis that produce

the observables in Fig.4.10 for tanβ = 10. The first nine of the plots are for the real parts and the next nine for imaginary parts

of the matrix, Y 0
U . For all these plots sample size and number of bins are taken to be 104 and 50 respectively.
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Figure 4.12: Distributions of the O(1) random entries in the matrix Y 0
D from the modified Monte Carlo analysis that produce

the observables in Fig.4.10 for tanβ = 10. The first nine of the plots are for the real parts and the next nine for imaginary parts

of the matrix, Y 0
D. For all these plots sample size and number of bins are taken to be 104 and 50 respectively.
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Figure 4.13: Distributions of the O(1) random entries in the matrix Y 0
L from the modified Monte Carlo analysis that produce

the observables in Fig.4.10 for tanβ = 10. The first nine of the plots are for the real parts and the next nine for imaginary parts

of the matrix, Y 0
L . For all these plots sample size and number of bins are taken to be 104 and 50 respectively.
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Figure 4.14: Histogram distributions of the observables in the neutrino sector according to the modified Monte

Carlo approach for SU(5)-based GUTs with structure-less neutrino mass matrix. The top histogram plot (dark

cyan) shows the theoretical distribution of the quantity ∆m2
sol/∆m

2
atm and the bottom three plots (red) are

for the mixing parameters sin2 θij . The black curves represent the experimental 1σ ranges. The sample size is

taken to be 104 and number of bins is taken to be 50.
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Figure 4.15: Distributions of the O(1) random entries in the matrix Y 0
N from the modified Monte Carlo approach that produce

the observables in Fig.4.14.
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Figure 4.16: Distributions of the O(1) random entries in the matrix Y 0
R from the modified Monte Carlo approach that produce

the observables in Fig.4.14.

4.5 Conclusion

In this paper we have extended the idea of anarchy from the neutrino sector to the quark and charged lepton

sectors. This is made possible in the context of SU(5) unified theories where the 10i fermions mix with vector-

like 10α + 10α fermions having GUT scale masses. While all the Yukawa couplings in these models are of order

one, these mixings provide three hierarchical parameters which explain all the hierarchies in the charged fermion

masses and quark mixing angles. The neutrino sector is immune to such mixings, and remain anarchical. We

have also studied special cases of this general SU(5) setup with smaller number of input parameters – either 2

or 1 – by introducing a flavor U(1) symmetry that distinguishes the three families of 10i fermions.

We have presented detailed quantitative analysis of these models following a probabilistic approach. The
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Quantity Structureless Neutrino Matrix Hierarchical Neutrino Matrix

m1/m2

≤0.01 4.24% 20.38%

≤0.1 33.77% 74.57%

≤0.2 56.23% 88.33%

sin δ

[0,0.25] 8.15% 8.9%

(0.25,0.5] 8.79% 9.82%

(0.5,0.75] 9.68% 10.16%

(0.75,1.0] 23.87% 21.18%

Table 4.15: Comparison of probabilities of the two unmeasured quantities in the neutrino sector for the SU(5)-

based GUTs with different neutrino mass matrix structures. For the quantity sin δ, these probabilities in the

negative side remain roughly the same in the separate domains as for the positive side. Square bracket represents

the end points are included in the set whereas for the round bracket the end points are not included.

Yukawa couplings of the model are assumed to be uncorrelated random variables obeying Gaussian distributions.

Our Monte Carlo analysis shows that the combined anarchy-hierarchy scenario gives very good fit to all the

fermion masses and mixings. We have also presented a variant Monte Carlo method where the model parameters

are not kept fixed but have certain distributions constrained by the phenomenological considerations. This

approach is proposed to systematically explore the subspace of the original Gaussian landscape that becomes

consistent with all experimental constraints with greater accuracy. A figure of merit in this approach is the

distortion of the distributions compared to the original Gaussian distributions. The framework is found to

provide a good quality fit.

The theoretical distributions of the observables in the charged fermion sector remain roughly the same for the

various models studied here. There is one important difference in the neutrino mixing parameters in the flavor

U(1) model that distinguishes the 51 from 52,3 fields: The mixing parameter sin θ13 comes out to be somewhat

smaller than sin θ23. Anarchy prefers normal ordering of neutrino mass spectrum with a mild hierarchy in the

masses. A comparison of the two experimentally unmeasured quantities in the neutrino sector, the mass ratio

m1/m2 and the CP-violating parameter sin δ predicted by our statistical analysis for the two different sets of

models studied here is presented in Table 4.15.
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CHAPTER 5

FERMION MASSES, LEPTOGENESIS AND BARYON NUMBER VIOLATION IN

PATI-SALAM MODEL

5.1 Introduction

Despite being a very successful theory, the Standard Model (SM) has many shortcomings. The SM does

not provide any insights for understanding the hierarchical pattern of the masses and mixings of the charged

fermions. Also the origin of the neutrino oscillations is unexplained in the SM. In addition, it is also not obvious

the observed quantization of electric charge in the SM. To explain these shortcoming of the SM, extensive search

for finding new physics beyond the SM has been carried out. One of the most attractive extensions of the SM

proposed in Refs. [79, 161, 162] are based on partial unification with gauge group G224 = SU(2)L × SU(2)R ×

SU(4)C . This Pati-Salam (PS) group is the minimal quark-lepton symmetry model based on the SU(4)C group

with the lepton number as the fourth color [79]. The minimal gauge group respecting symmetry between the

left and right representations and that contains SU(4)-color and ensures electric charge quantization is the

PS group. Due to quark-lepton unification, one can hope to understand the flavor puzzle in the PS model.

The fermion multiplets of this theory contain the right-handed neutrino, this is why seesaw mechanism [38]

is a natural candidate in PS model to explain the tiny neutrino masses. Furthermore, our Universe does not

show symmetry between matter and antimatter. The origin of this matter-antimatter asymmetry may have

link with the origin of neutrino mass. In seesaw scenario, the Majorana mass term violates the lepton number

conservation, so employing the seesaw mechanism in this PS framework, the observed baryon asymmetry of the

Universe can be incorporated by the Baryogenesis via Leptogenesis mechanism. In such a framework, the lepton

asymmetry that is generated dynamically, later converted into the baryon asymmetry by the (B +L)-violating

sphaleron interactions that exist in the SM. In the SM conservation of baryon number and lepton number

are accidental, however, violation of these quantum numbers are natural in the PS model and baryon number

violation induces interesting processes like nucleon decay and neutron-antineutron oscillation.

In this paper, we construct a minimal realistic model based on PS gauge group in the non-supersymetric

framework. In addition to unifying quarks and leptons, seesaw mechanism arises in G224 framework naturally

due to the automatic presence of the right-handed neutrinos. Assuming an economical Higgs sector, we construct
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the complete Higgs potential and analyse it. This minimal set is required not only to realize successful symmetry

breaking of the PS group down to the SM and further down to SUC(3)×Uem(1), but also to reproduce realistic

fermion masses and mixings. We discuss the possibility of baryon violating processes such as nucleon decay and

n − n oscillation in this set-up. Nucleon decay processes in this framework are, nucleon → lepton + meson,

nucleon → antilepton + meson and nucleon → lepton + antilepton + antilepton. Relative branching fractions

of different modes of nucleon decay processes arising in this theory are computed in certain approximations.

We also analyze the predictions of this model for quark and lepton masses and mixings. Our numerical

study shows full consistency with the experimental data. To solve the matter-antimatter asymmetry of the

Universe, we implement the novel idea of Baryogenesis via Leptogenesis. Utilizing the type-I seesaw scenario,

the Baryogenesis via Leptogenesis mechanism can link between the matter-antimatter asymmetry and the CP

violation in the neutrino sector. In search of successful baryon asymmetry, we scan over the relevant parameter

space. In this work, on top of the PS gauge symmetry, we impose a global U(1)PQ Peccei-Quinn (PQ) symmetry,

that solves the strong CP problem. If the PQ symmetry is broken at the high scale ∼ 1011−12 GeV, then the

pseudo-scalar Goldstone boson associate with this breaking can explain the observed dark matter relic density of

the universe. The presence of this global U(1) symmetry puts some additional restrictions on the Higgs potential

and hence reduce the number of parameters in the theory. With the economic choice of Higgs multiplets, we do a

general study in SU(2)L×SU(2)R×SU(4)C×U(1)PQ set-up; a special case with the imposed parity symmetry

is also considered and additional restrictions due to the consequence of the discrete symmetry are mentioned

explicitly through out the text. We also explore another interesting possibility, where with the absence of the

parity symmetry and low scale PS breaking, gL = gR unification can be realized at the PQ breaking scale.

5.2 The model

5.2.1 The gauge group and spontaneous symmetry breaking chain

Breaking chain and particle content

We work on a left-right symmetric partial unification theory based on the PS gauge group, SU(2)L×SU(2)R×

SU(4)C . SU(4)C is an extension of the QCD gauge group, SU(3)C with lepton as the fourth color and SU(2)R

is right-handed gauge group similar to the SM SU(2)L weak interactions. Starting from this group, to reach the

SM group, several different breaking chains are possible, but in this paper we assume the one step spontaneous

symmetry breaking (SSB) of the PS group to that of the SM group,
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G224
MX−−→ SU(2)L × U(1)Y × SU(3)C (5.2.1)

MEW−−−−→ U(1)em × SU(3)C . (5.2.2)

In our model, we assume the existence of the following Higgs multiplets (under the PS group):

Φ = (2, 2, 1), Σ = (2, 2, 15), ∆R = (1, 3, 10). (5.2.3)

Instead of G224, if parity symmetry is also preserved (in this case we denote the group as G224P ), the existence

of the Higgs field ∆L = (3, 1, 10) is needed due to the presence of the initial left-right parity symmetry. This

choice of the Higgs multiplets is minimal. This one step breaking of PS group to the SM can be achieved by

the VEV, vR = 〈∆R〉 [163]. If the group is G224P then breaking of the parity scale may not coincide with

the breaking of the PS symmetry. Breaking the G224P group by the VEV of (1, 3, 10) automatically breaks

the parity symmetry. The multiplet ∆R, breaking SU(4)C , B − L and left-right symmetry spontaneously also

provides masses to the heavy right-handed neutrinos. In an alternative approach the parity symmetry can be

broken before breaking the PS group by a parity odd singlet Higgs and then the PS symmetry can be broken

by the usual (1, 3, 10) VEV. The SM group can be broken by the scalar field Φ that contains the SM doublet.

The VEV of Φ field,

〈Φ〉 =

k1 0

0 k′1

⊗ diag(1, 1, 1, 1) (5.2.4)

is responsible for generating Dirac mass terms for the SM fermions. But if only Φ is responsible for generating

fermion masses, one gets the unacceptable relations, me = md, mµ = ms and mτ = mb. These lead to

me/mµ = md/ms, which are certainly not in agreement with experimental measured values. These bad relations

are the consequence of the multiplet Φ being color singlet (in the SU(4)C space the fourth entry is also 1) and

cannot differentiate fermions with different colors. To cure these bad relations, the existence of the Higgs

multiplet Σ is assumed which is not color singlet, and by acquiring VEV of the form

〈Σ〉 =

k2 0

0 k′2

⊗ diag(1, 1, 1,−3) (5.2.5)

can correct the bad mass relations [79,162,163], me = mΦ
e − 3mΣ

e , md = mΦ
d +mΣ

d and so on. Even though the

field Φ treats quarks and lepton on the same footing, Σ field being color non-singlet, distinguishes them and

brings additional (−3) Clebsch factor for the leptons.

Renormalization group equations and the vR scale

According to phenomenological consideration, the required hierarchical pattern of the VEVs is:
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〈∆R〉 >> 〈Φ〉 ∼ 〈Σ〉 >> 〈∆L〉. (5.2.6)

As previously mentioned, in the model without the parity symmetry ∆L field need not to be present. Even

when this field is present, we assume that this field does not get any explicit VEV. However, this field does get

small VEV due to the presence of specific types of quartic terms in the Higgs potential that are linear in ∆L.

After the EW symmetry breaking such acquired VEV is of the form, 〈∆L〉 ∼ λ v2
ew/vR (where λ is the relevant

quartic coupling). If parity is assumed to be a good symmetry, vR can be fixed by the renormalization group

equations (RGEs) running of the gauge coupling constants by using low energy data. This additional discrete

symmetry on top of the PS symmetry demands gL = gR. The one-loop RGEs for the gauge couplings are given

by [?]
dα−1

i (µ)

dlnµ
=
ai
2π
. (5.2.7)

For the SM group, G321 bi = (−7,−19/6, 41/10) [116]. Applying proper matching condition for the coupling

constants

α−1
1Y (MX) =

3

5
α−1

2R(MX) +
2

5
α−1

4 (MX), α−1
2R(MX) = α−1

2L (MX), α−1
4C(MX) = α−1

3C(MX), (5.2.8)

and using the low energy data, αs(MZ) = 0.1184, α−1(MZ) = 127.944 and s2
θW

= 0.23116 taken from Ref. [72]

(only the central values are quoted here), we find MX = 1013.71 GeV. From now on, for models with parity

symmetry broken by the ∆R VEV, we set vR = 1014 GeV for the rest of the analysis. Specially when we will

discuss the Baryogenesis via Leptogenesis, we stick to this value of vR. On the other hand, If parity is absent,

then the scale vR is not fixed by the RGEs running. The differences in results for the cases with G224 and G224P

are mentioned explicitly through out the text when needed.

Left-right gauge coupling unification at the Peccei-Quinn scale

Breaking the parity symmetry that demands gL = gR along with the breaking of the PS symmetry by the

(1, 3, 10) multiplet restricts the PS breaking scale to be high ∼ 1014 GeV. If parity symmetry is absent, this

scale is not determined by the RGEs running from the low energy experimental data and the PS breaking can

happen at much lower scale. The experimental limits on the branching ratio forK0
L → µ±e∓ processes, mediated

by the new gauge bosons Xa (a is the Lorentz index) with (B − L) charge of (4/3), implies that the vR scale

that breaks the SU(4)C must be greater than 1000 TeV [164, 165]. Here we explore the possibility of low scale

PS scale breaking where gL = gR unification can still be realized at the PQ scale ∼ 1011−13 GeV. For example,

by including an extra (1, 3, 10) multiplet and a real (1, 3, 15) multiplet on top of the minimal Higgs content that

are a complex (2, 2, 1), a complex (2, 2, 15) and a (1, 3, 10) multiplet, left-right unification can happen at the
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PQ scale as presented in Fig. 5.1. For this set of scalars, the RGE coefficients are bi = (2, 61/3, 8/3) for the

group G224.

1.
×

10
6

G
eV

1.
4
×

10
12

G
eV

100 104 106 108 1010 1012

10

20

30

40

50

60

70

μ GeV

α
-

1

α1 Y
-1

α2 L
-1

α3 c
-1

α2 R
-1

α4 c
-1

Figure 5.1: One-loop gauge coupling running of PS model without parity symmetry. By including an extra

(1, 3, 10) multiplet and a real (1, 3, 15) multiplet on the top of the minimal Higgs content that are a complex

(2, 2, 1), a complex (2, 2, 15) and a (1, 3, 10) multiplet, gL = gR unification at the PQ scale ∼ 1011−13 GeV can

be realized.

Notation

Our notation for indices is as follows: the indices for SU(2)L group are α, β, γ, δ, κ = 1, 2, for SU(2)R group

α̇, β̇, γ̇, δ̇, κ̇ = 1̇, 2̇ and for SU(4)C group µ, ν, ρ, τ, λ, χ = 1, 2, 3, 4. For SUC(3)C ⊂ SU(4)C we use the same

symbols as for SU(4)C as indices but with a bar on them, for example, µ̄, ν̄ = 1, 2, 3. While writing the gauge

bosons and the covariant derivatives, we use index a as the Lorentz index.

In the PS model, the fermions belong to the representations ΨLµα = (2, 1, 4)k and ΨRµα̇ = (1, 2, 4)k with

ΨL,R =

ur ug ub ν

dr dg db e


L,R

(5.2.9)

and k (= 1, 2, 3) is the generation index. In group index notation the scalar fields can be written as:

(2, 2, 1) = Φα̇
α, (2, 2, 15) = Σν α̇

µ α,

(1, 3, 10) = ∆ β̇
R µν α̇ , (3, 1, 10) = ∆ β

L µν α .

(5.2.10)

The SM decomposition of these fields are as follows:
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(2, 2, 1) = (1, 2,
1

2
) + (1, 2,−1

2
), (5.2.11)

(2, 2, 15) = (1, 2,
1

2
) + (1, 2,−1

2
) + (3, 2,

1

6
) + (3, 2,−1

6
) + (3, 2,

7

6
) + (3, 2,−7

6
)

+ (8, 2,
1

2
) + (8, 2,−1

2
), (5.2.12)

(1, 3, 10) = (1, 1, 0) + (1, 1,−1) + (1, 1,−2) + (3, 1,
2

3
) + (3, 1,−1

3
) + (3, 1,−4

3
)

+ (6, 1,
4

3
) + (6, 1,

1

3
) + (6, 1,−2

3
), (5.2.13)

(3, 1, 10) = (1, 3,−1) + (3, 3,−1

3
) + (6, 3,

1

3
). (5.2.14)

5.2.2 Gauge boson mass spectrum

In the PS model, there are in total 21 gauge bosons, WL a ≡(3,1,1) of SU(2)L, WR a ≡(1,3,1) of SU(2)R and

Va ≡(1,1,15) of SU(4)C . The decomposition of these fields under the SM are:

(3, 1, 1) = (1, 3, 0), (5.2.15)

(1, 3, 1) = (1, 1, 1) + (1, 1, 0) + (1, 1,−1), (5.2.16)

(1, 1, 15) = (1, 1, 0) + (3, 1,
2

3
) + (3, 1,−2

3
) + (8, 1, 0). (5.2.17)

The gauge bosons WR are the right-handed analogue of the three SM SU(2)L gauge bosons, WL. The decom-

position of 15⊂ SU(4)C under the group SU(3)C×U(1)B−L ⊂ SU(4)C is 15 = 1(0)+3(+4/3)+3(−4/3)+8(0),

where 8(0) are the massless gluons of SU(3)C . The triplets, Xa ≡ 3(+4/3) and X∗a ≡ 3(−4/3) with non-zero

B − L quantum numbers are the exotic particles (leptoquark gauge bosons). Contrary to the Grand Unified

Theories (GUT) based on simple groups, the leptoquark gauge bosons of the PS model do not mediate proton

decay as explained below. The transition between quarks and leptons are given by the following interactions

that is part of the total Lagrangian

LX ⊃
g4√

2
{Xa(uγaν + dγae) +X∗a(ucγaνc + d

c
γaec)}. (5.2.18)

Since U(1)B−L is already a part of the gauge symmetry, B − L is a conserved quantity. In addition to this,

the above gauge interactions of the leptoquarks Eq. (5.2.18) has the accidental global B + L symmetry, these

two conserved quantities ensure the conservation of both B and L separately, this is why the gauge bosons of

PS group do not mediate proton decay. On the other hand, minimal SU(5) GUT model is ruled out due to

too rapid proton decay mediated by the gauge leptoquarks. Since one can assign specific baryon and lepton

numbers to these gauge bosons, in contrast to SO(10) model, proton decay does not take place via these gauge

bosons. Unification scale in SO(10) model needs to be really high > 1015 GeV to save the theory from too rapid

proton decay.
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The breaking G224 → G213, that does not break the SU(2)L group, the WL a gauge bosons remain massless.

Due to this breaking, among the 18 (15 of SU(4)C and 3 of SU(2)R) massless gauge bosons, 9 of them become

massive after eating up the 9 Goldstone bosons (will be identified at the later part of the text), from the field ∆R

and the other 9 of them (8 of SU(3)C and 1 of U(1)Y ) remain massless. Here we compute the mass spectrum

of the gauge bosons. Following Ref. [166] the covariant derivative can be written as

Da∆R = ∂a∆
β̇

Rµν α̇ − igRW γ̇
aRα̇∆ β̇

Rµν γ̇ + igRW
β̇

aRγ̇∆ γ̇
Rµν α̇

− igCXρ
a µ∆ β̇

Rρν α̇ − igCXρ
a ν∆

β̇
Rρµ α̇ , (5.2.19)

where a represents the Lorentz index. When the PS symmetry gets broken by the VEV of the ∆R field, using

this covariant derivative, the gauge boson mass spectrum can be computed

MW±R
=
√

2gRvR, (5.2.20)

MV (i) =
√

2gCvR. (5.2.21)

Here i = 9−14 and their electric charge are ±2/3. The third component, W (3)
R of the (1,3,1) gauge boson mixes

with the V (15) component from (1,1,15), then in the basis {W (3)
R , V (15)} the mass squared matrix is given by

M2 = 2

 g2
Rv

2
R −gRgCv2

R

−gRgCv2
R g2

Cv
2
R

 , (5.2.22)

where we have defined gc =
√

3/2 gC . One can easily calculate the two eigenvalues, one of the eigenvalues is

zero and the corresponding eigenstate is given by

Aa =
1√

g2
R + g2

C

(
gCW

(3)
R a + gRX

(15)
a

)
. (5.2.23)

This is the massless gauge boson of U(1)Y group. Its orthogonal eigenstate acquires mass given by
√

2vR

√
g2
R + g2

C .

In addition, for the unbroken SU(3)C group, the massless gauge bosons are identified with V (i) (i = 1 − 8)

fields.

5.2.3 Peccei-Quinn symmetry

On top of the PS gauge symmetry we assume the existence of global Peccei-Quinn (PQ) symmetry, U(1)PQ [167–

170] (for a relation between leptonic CP violation with strong CP phase in the context of left-right symmetric

models see Ref. [171]). The PQ symmetry naturally solves the strong CP problem and simultaneously provides

the axion solution to the dark matter problem [172, 173]. So the complete symmetry of our theories are either

G224×UPQ(1) or G224P ×UPQ(1). The SM singlet present in ∆R that break the PS symmetry and the singlet

S, each can break one U(1) symmetry. If the VEV of the singlet, 〈S〉 = vS > vR, then this VEV breaks the
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U(1)PQ. On the contrary, if vR > vS , it leaves U(1)B−L+PQ group unbroken since it carries a PQ charge,

which is then further broken via U(1)B−L+PQ → U(1)B−L by the S VEV. Due to the presence of the U(1)PQ

symmetry, the complex scalar fields carry PQ charge which consequently puts additional restrictions on the

Higgs potential, this reduces the number of parameters in the Higgs potential.

The VEV of the singlet field, 〈S〉 breaks the PQ symmetry at the scale MPQ and phenomenological require-

ment of this scale is MPQ ∼ 1011−13 GeV. The miltiplets (2,2,1) and (2,2,15) are assumed to be complex and

have non-zero charges under the PQ group. We choose the following charge assignment of the Higgs fields under

U(1)PQ:

fields Φ(2,2,1) Σ(2,2,15) ∆R(1,3,10) ∆L(3,1,10) ΨL(2,1,4) ΨR(1,2,4) S(1,1,1)

QPQ +2 +2 -2 +2 +1 -1 +4

Table 5.1: U(1)PQ charge assignment of the scalars.

5.3 Fermion masses and mixings

In this section we discuss the fermion masses and mixings in the PS model. The model under consideration is

very predictive in explaining the data in the fermion sector. The Yukawa part of the Lagrangian is given by:

LY = Y1ij ΨLiΦΨRj + Y15ij ΨLiΣΨRj + {Y R10ijΨ
T
RiC∆∗RΨRj +R↔ L}+ h.c (5.3.24)

where, Y1, Y15 and Y R,L10 are the Yukawa coupling matrices resulting due to the interactions of the fermions with

the (2,2,1), (2,2,15), (1,3,10) and (3,1,10) multiplets respectively. Generically Y1 and Y15 are general complex

matrices and due to Majorana nature, Y R,L10 are complex symmetric. When parity is imposed (see Eq. (5.6.64))

the matrices Y1 and Y15 become Hermitian and Y R,L become identical, i.e,

Y1 = Y †1 , Y15 = Y †15, Y R10 = Y L10 = Y10 = Y T10. (5.3.25)

For the analysis of the fermion masses and mixings we restrict ourselves to the case when parity summery

is realized since this significantly reduces the number of parameters in the fermion sector due to constraints

mentioned in Eq. (5.3.25), so the model becomes very predictive. The VEV of the (1,3,10) multiplet 〈∆R〉,

breaks the G224 group down to the SM group and generates the right-handed Majorana neutrino masses given

by vRY10. The Higgs fields Φ and Σ each contains two doublets of the SM acquire non-zero VEVs and are

responsible for generating charged fermion masses. From the Lagrangian one can write down the fermion mass
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matrices as:

Mu = kuY1 + vuY15, Md = kdY1 + vdY15, (5.3.26)

MD = kuY1 − 3vuY15, Me = kdY1 − 3vdY15, (5.3.27)

MR = vRY10. (5.3.28)

Mu, Md are the up-type and down-type quark mass matrices, Me is the charged lepton mass matrix, MD is

the neutrino Dirac mass matrix and MR is the right-handed Majorana neutrino mass matrix. ku,d, vu,d are the

VEVs of the four doublets. In general these VEVs are complex and there is one common phase for ku and kd

and different phases for each of vu and vd. Only two relative phases will be physical and we bring these phases

(θ1,2) with vu and vd. The analysis done in Sec. 5.6.2 shows that the VEV ratios are complex and can not be

made real. One can absorb the VEVs into the coupling matrices and redefine them, leaving two relevant VEV

ratios (r1,2). Following these arguments, we can rewrite the mass matrices as,

Mu = M1 + eiθ1M15, Md = r1M1 + r2e
iθ2M15, (5.3.29)

MD = M1 − 3eiθ1M15, Me = r1M1 − 3r2e
iθ2M15, (5.3.30)

MR = vRY10, (5.3.31)

where we have defined M1 = kuY1, M15 = vuY15, r1 = kd/ku and r2 = vd/vu. As mentioned earlier, due to

parity symmetry the matrices M1 and M15 are Hermitian, so without loss of generality one can take the M1

matrix to be diagonal and real (3 real parameters) and one can also rotate away the two phases from the M15

matrix leaving only one phase in it (5 real and 1 complex parameters). So in total there are 11 magnitudes

and 3 phases i.e, 14 free parameters in the charged fermion sector to fit 13 observables for the case of hard

CP-violation. The fit result in the charged fermion sector is presented in Sec. 5.5.1 1.

Let us now discuses the neutrino sector. The right-handed Majorana mass matrix is complex symmetric

matrix and the corresponding Yukawa coupling matrix Y10 is arbitrary since it decouples from the charged

fermion sector which is unlike the case of SO(10) models. In unified theories due to the presence of right-

handed neutrinos seesaw mechanism is a very good candidate to explain the extremely small observed light

neutrino masses. One should note that due to the presence of terms linear in ∆L in the Higgs potential (Eq.

(5.6.55)), this field will acquire a small VEV, vL as mentioned above, that would be responsible for generating

left-handed Majorana neutrino mass, ML = vLY10. In this paper, we assume the dominance of type-I seesaw

scenario, then the light neutrino mass matrix is given by the type-I seesaw [38] formula,
1For spontaneous CP-violation scenario, the Yukawa coupling matrices are real, so there are 11 magnitudes and 2 phases i.e, 13

free parameters to fit 13 observables. In the next section we will perform numerical study to fit the fermion masses and mixings

in the charged fermion sector. Our finding is that the spontaneous CP-violation case is unable to reproduce the observables (we

found large total χ2 ∼ 125), so from now on we will only consider the hard CP-violation case.

118



Mν = −MDM
−1
R MT

D . (5.3.32)

Inverting the type-I seesaw formula one can write MR as ,

MR = −MT
DM−1

ν MD. (5.3.33)

There is no new parameter in the MD matrix and is completely fixed by the charged fermion sector. The light

neutrino mass matrix,Mν can be diagonalized as

Mν = UνΛνU
T
ν , (5.3.34)

with
Λν = diag(m1,m2,m3), (5.3.35)

with m′is being real and in the basis where the charged lepton mass matrix is diagonal,

Uν = UPMNS diag(e−iα, e−iβ , 1) (5.3.36)

where α and β are Majorana phases and UPMNS is the CKM type mixing matrix with only one Dirac type phase

δ in it.

We assume normal hierarchy 2 in the light neutrino sector, which leads upto a good approximation, m2 ∼√
∆m2

sol and m3 ∼
√

∆m2
atm

3 . The quantities (∆m2
sol, ∆m2

atm, θfermionfitPMNS
ij ) in the neutrino sector have

already been measured experimentally with good accuracy. The quantities m1, α, β and δ are yet to be

determined experimentally. So in Eq. (5.3.33), using the experimentally measured quantities in the neutrino

sector, the right-handed Majorana mass matrix can be determined as a function of these four unknown quantities.

In Sec. 5.5.2, we will explain the algorithm we follow while searching for the allowed parameter space to

reproduce successful Leptogenesis in this model and also present our results. In addition to normal ordering of

neutrino mass, we also investigated the case of inverted ordering following the similar algorithm but have not

found any solution for the later case.

5.4 Baryogenesis via Leptogenesis

In unified theories the Baryogenesis via Leptogenesis [174] is a natural candidate to explained the observed

matter-antimatter asymmetry [21]. This simple mechanism can be implemented in theories where light neutrino

mass is generated via seesaw mechanism. For previous studies on Leptogenesis in the framework of G224/SO(10)

see for example Refs. [27,33,175–179]. In this mechanism, the baryon asymmetry of the Universe is generated by
2For inverted ordering we have not found any solution that can generate successful baryon asymmetry, so we only concentrate

on normal ordering.
3As we have assumed normal hierarchy, the lightest left-handed neutrino mass gets restricted as 0 ≤ m1 . 70% m2.

119



the lepton asymmetry which is initially produced dynamically and later converted into the baryon asymmetry

via the (B + L)-violating sphaleron process [180] that exist in the SM. Computing the baryon-asymmetric

parameter involves solving the coupled Boltzmann equations. The asymmetry is generated when the decay

rates of the heavy neutrinos < H (H being the Hubble expansion rate), so Leptogenesis is expected to occur at

a temperature of order of the mass of the lightest right-handed heavy neutrino, M1. For hierarchical spectrum

of the right-handed neutrinos, i.e, M1 �M2 < M3, the lightest heavy neutrino is responsible for generating the

baryon asymmetry and known as N1-dominated Leptogenesis. In this work we concentrate on N1-dominated

Leptogenesis. It is showed that flavor can play significant role in the mechanism of Leptogenesis. Flavored

Leptogenesis has been studied with great details, see for example Refs. [181–186].

The minimum required reheat temperature of the universe depends on the details of the flavor structure of

the lepton asymmetry. Without taking into account the flavor effects, the lower bound to produce successful

baryon asymmetry is M1 > 109 GeV [187]. Including the flavor effects relaxes this lower bound a little bit (for

details see Ref. [182]). Approximate analytical solutions of the Boltzman equations have been derived that are in

good agreement with the exact solutions (see for example Ref. [183]). While scanning over the parameter space

in search for successful Leptogenesis we apply these analytical solutions to compute the baryon asymmetry.

The analytical formula depends on the interaction rate of the charged lepton Yukawa couplings [186]. We

are interested in the two different regions, first, when only the tau Yukawa coupling is in equilibrium which

corresponds to range 109GeV . M1 . 1012 GeV. In this first case, the flavor effects are important. The second

region where no charged lepton Yukawa couplings are in equilibrium that corresponds to the case M1 & 1012

GeV. In this second case all flavors are indistinguishable and is no different than the one flavor scenario.

Here we briefly mention the approximate analytical solutions that are derived in the literature as mentioned

above. In the regime where flavors are indistinguishable, the CP asymmetry generated by the N1 decay is

ε1 =
1

8π

∑
j 6=1

Im[(Y †DYD)2
j1]

(Y †DYD)11

g

(
M2
j

M2
1

)
, (5.4.37)

where,

g(x) =
√
x

[
1

1− x + 1− (1 + x)ln

(
1 + x

x

)]
. (5.4.38)

Beside the CP parameter ε1, the final asymmetry depends on the wash-out parameter,

K =
m̃1

m̃∗
, (5.4.39)

with m̃∗ ∼ 10−3 eV and

m̃1 =
(Y †DYD)11v

2

M1
. (5.4.40)
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In the strong wash-out regime, i.e, for K >> 1, the lepton asymmetry is given by the following approximate

formula

YL ' 0.3
ε1
g∗

(
0.55× 10−3eV

m̃1

)1.16

, (5.4.41)

with g∗ being the effective number of spin-degrees of freedom in thermal equilibrium, which is ∼ 108 in the SM

with a single generation of right-handed neutrinos. With these the baryon asymmetry is given by YB ' 12/37 YL.

Another useful relation is ηB = 7.04 YB, where ηB is the number of baryons and anti-baryons normalized to the

number of photons. On the other hand, in the weak wash-out regime, the approximate analytical formula is,

YL ' 0.3
ε1
g∗

(
m̃1

3.3× 10−3eV

)
. (5.4.42)

On the contrary, the regime where the flavor effects are important, the CP asymmetry in the α-th flavor is

given by

εαα =
1

8π(Y †DYD)11

∑
j 6=1

Im[(Y †D)1α(Y †DYD)1j(Y
T
D )jα] g

(
M2
j

M2
1

)
. (5.4.43)

And the wash-out parameter is

Kαα '
m̃αα

10−3eV
, m̃α1 =

|(YD)α1|2v2

M1
(5.4.44)

that parametrizes the decay rate of N1 to the α-th flavor. In the strong wash-out regime for all flavor, i.e,

Kαα >> 1, the total asymmetry is YL =
∑
α Yαα, where the approximate analytical formula for Yαα is

Yαα ' 0.3
εαα
g∗

(
0.55× 10−3eV

m̃αα

)1.16

. (5.4.45)

And in the weak wash-out regime the formula is,

Yαα ' 1.5
εαα
g∗

(
m̃1

3.3× 10−3eV
)(

m̃αα

3.3× 10−3eV
). (5.4.46)

The Baryon asymmetric parameter has been measure experimentally, ηB = (5.7 ± 0.6) × 10−10 4 [19, 20].

Since this scenario of generating baryon asymmetry requires the right-handed neutrino mass scale to be high,

for this analysis we fix this scale to be vR = 1014 GeV as discussed before in the text.

5.5 Fit to fermion masses and mixings and parameter space for successful Leptogenesis

5.5.1 Numerical analysis of the charged fermion sector

In this sub-section we show our fit results of the fermion masses and mixings in the charged fermion sector. For

optimization purpose we do χ2-analysis. The pull and χ2-function are defined as:
490% CL - deuterium only.
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Masses (in GeV) and

CKM parameters

Inputs

(at µ = MPS)
Best fit values Pulls

mu/10−3 0.48± 0.16 0.48 0.009

mc 0.26± 0.008 0.26 -0.03

mt 80.78± 0.69 80.78 0.001

md/10−3 1.24± 0.12 1.26 0.020

ms/10−3 23.50± 1.23 22.21 -1.04

mb 1.09± 0.009 1.09 0.11

me/10−3 0.482669± 0.004826 0.482645 -0.05

mµ/10−3 101.8943± 1.0189 101.898 0.03

mτ 1.732205± 0.017322 1.73223 0.01

θCKM
12 /10−2 22.543± 0.071 22.541 -0.02

θCKM
23 /10−2 4.783± 0.072 4.799 0.22

θCKM
13 /10−2 0.413± 0.014 0.412 -0.01

δCKM 1.207± 0.054 1.198 -0.15

Table 5.2: χ2 fit of the observables in the charged fermion sector. This best fit correspond to χ2 = 1.2 for 13

observables. For charged leptons, a relative uncertainty of 0.1% is assumed to take into account the uncertainties,

for example threshold corrections at the PS scale.

Pi =
Oi th − Ei exp

σi
, (5.5.47)

χ2 =
∑
i

P 2
i , (5.5.48)

where σi represent experimental 1σ uncertainty and Oi th, Ei exp and Pi represent the theoretical prediction,

experimental central value and pull of an observable i. We fit the values of the observables at the PS breaking

scale, MPS = 1014 GeV. To get the PS scale values of the observables, we take the central values at the MZ

scale from Table-1 of Ref. [72] and run the RGEs [110] to get the inputs at the high scale. For the associated one

sigma uncertainties of the observables at the PS scale, we keep the same percentage uncertainty with respect to

the central value of each quantity as that of the MZ scale. For the charged lepton Yukawa couplings, a relative

uncertainty of 0.1% is assumed in order to take into account the theoretical uncertainties, for example threshold

effects at the PS scale. The inputs are shown in the Table 5.2 where the fit results are presented.

As noted before, for this case, we have 14 parameters, 11 magnitudes and 3 phases. We perform the χ2

function minimization and the best minimum corresponds to total χ2 = 1.2 is obtained for 13 observables which
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is a good fit 5. The result corresponding to the best fit is shown in Table 5.2. The values of the parameters

corresponding to the best fit are:

θ1 = 7.83759 · 10−4, θ2 = −3.131385, r1 = 1.29347 · 10−2, r2 = −9.13047 · 10−3, (5.5.49)

M1 =


0.2988234 0. 0.

0. 5.066234 0.

0. 0. 94.801891

GeV, (5.5.50)

M15 =


−0.212786 0.367673 −2.85309

0.367673 −3.53464 −11.8404− 0.699369i

−2.85309 −11.8404 + 0.699369i −15.8963

GeV. (5.5.51)

5.5.2 Parameter space for successful Leptogenesis

Using the seesaw formula Eq. (5.3.32), one can in principle fit all the neutrino observables since the matrix

MR which is in general a complex symmetric matrix contains 6 complex parameters. Instead, we will follow

an alternative procedure. The right-handed neutrino mass matrix is given by inverting the seesaw formula Eq.

(5.3.33). After the fitting of the fermion masses and mixings has been done, the Dirac neutrino mass matrix

gets fixed. For our fit, this Dirac neutrino mass matrix is

MD =


0.937182 + 0.00050032i −1.10302− 0.000864501i 8.55928 + 0.00670841i

−1.10302− 0.000864501i 15.6702 + 0.00831092i 35.5195 + 2.12595i

8.55928 + 0.00670841i 35.5228− 2.07027i 142.491 + 0.0373765i

GeV. (5.5.52)

Then for observed known values of ∆m2
sol,atm and sin2 θPMNS

ij , we are left with 4 unknown parameters m1, α,

β and δ, so one can express the right-handed Majorana mass matrix as a function of these free parameters,

MR = MR(m1, α, β, δ), this is why the baryon asymmetric parameter in Leptogenesis mechanism is also become

a function of these, i.e, ηB = ηB(m1, α, β, δ). We search the parameter space of these parameters that correspond

to successful Leptogenesis. While hunting for the parameter space, the algorithm we follow is, we vary the

experimentally measured quantities (∆m2
sol,atm, sin

2 θPMNS
ij ) in the neutrino sector within the 2σ allowed range.

In Eq. (5.3.36) the Dirac phase δ is varied in the range [0, 2π] whereas the Majorana phases α, β are varied

within [0, π], these are the physical ranges for these phases (for details see Ref. [188]). Baryon asymmetric

parameter is computed in a basis where both the charged lepton and the right-handed neutrino mass matrices
5Note that the total χ2 6= 0 even though the number of parameters is 1 more than the number of observables, it is because

among the 14 parameters 3 of them are phases that can only be varied between 0 to 2π.
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are real and diagonal. We diagonalize these mass matrices as,

Me = UeLΛeU
†
eR , MR = UνRΛRU

T
νR , (5.5.53)

with Λe = diag(me,mµ,mτ ) and ΛR = diag(M1,M2,M3). In this basis, the Dirac neutrino mass matrix is given

by U†eLMDU
T
νR where

UeL =


0.964706 −0.259692 + 0.00589944i 0.0432075 + 0.00025877i

0.246127 + 0.00525722i 0.947897 0.201767 + 0.0132524i

−0.0934313 + 0.00250479i −0.184011 + 0.0125101i 0.97839

 , (5.5.54)

which is fixed from the fit parameters in the charged fermions and UνR can be computed as a function of the

free parameters m1, α, β, δ. The inputs in the neutrino sector are taken from [76] and shown in Table 5.3.

While scanning over the parameter space, if 109GeV . M1 . 1012 GeV, we compute the baryon asymmetric

parameter by taking into account the flavor effects and for M1 & 1012 GeV, calculating ηB involving the case

where flavors are indistinguishable. For perturbitivity reason, we put a cut-off of M3 . 2 · 1014 GeV. For both

the scenarios, unflavored or flavored, we use the formula for the strong wash-out regime when the wash-out

parameter > 1 (K and Kαα) and the formula for weak wash-out regime when it is < 1 (instead of � 1 and

� 1 respectively). It is to be mentioned that our investigation shows that the parameter space only permits

solution in the strong wash-out regime.

In Fig. 5.2, ηB is plotted against α, β and δ phases respectively for the two different values of m1 = 1, 2 meV

where the other quantities are varied over the whole range as mentioned before. Whether or not flavor effects

are involved, depending on that, the allowed region in the parameter space is pretty much different. In Fig.

5.3, the permitted region for mβ and mββ to have successful Leptogenesis is shown, where mβ =
∑
i |Uν ei|2mi

is the effective mass parameter for the beta-decay and mββ = |∑i U
2
ν eimi| is the effective mass parameter for

neutrinoless double beta decay. The correlations between the phase δ and the angle θ13 is presented in Fig. 5.4.

The relations between the heavy right-handed neutrino mass spectrum permitted by successfully reproducing

ηB is shown in Fig. 5.5. The plots presented here are the result of 108 iterations.
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m1 = 1 meV (Flavored) m1 = 2 meV (Flavored) m1 = 2 meV (Unflavored)

Figure 5.2: As mentioned in the text, the baryon asymmetric parameter is function of the four unknown

quantities, ηB = ηB(m1, α, β, δ). Allowed parameter space for ηB corresponding to these unknown quantities

α, β, δ for two different values of m1 = 1, 2 meV are presented here. While searching for the parameter space,

the other quantities in the neutrino sector, ∆m2
sol,atm, sin

2 θPMNS
ij that have been measured experimentally, are

varied within their 2σ experimental allowed range. The horizontal black lines represent the experimental 1σ

range of ηB . The green and orange set correspond to Leptogenesis scenario where flavor effects are important,

whereas, the blue and pink set is the flavor blind solutions. For these two different scenarios, green and blue

represent solutions where ∆m2
sol,atm, sin

2 θPMNS
ij are varied within experimental 1σ range and orange and pink

within 2σ range.
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Quantity 1σ range 2σ range

∆m2
sol/10−5eV 2 7.32-7.80 7.15-8.00

∆m2
atm/10−3eV 2 2.33-2.49 2.27-2.55

sin2 θPMNS
12 /10−1 2.91-3.25 2.75-3.42

sin2 θPMNS
23 /10−1 3.65-4.10 3.48-4.48

sin2 θPMNS
13 /10−2 2.16-2.66 1.93-2.90

Table 5.3: Observables in the neutrino sector taken from [76].

parameters 109GeV . M1 . 1012 GeV M1 & 1012 GeV

m1 = 1 meV m1 = 2 meV m1 = 2 meV

α 1.52000 1.58856 2.98463

β 3.05225 0.41436 1.20953

δ -0.03128 0.96204 5.70804

∆m2
sol/10−5eV 2 7.60680 7.62805 7.71611

∆m2
atm/10−3eV 2 2.37437 2.33256 2.30159

sin2 θPMNS
12 0.29188 0.29219 0.29036

sin2 θPMNS
23 0.36578 0.39725 0.38922

sin2 θPMNS
13 0.02581 0.02213 0.02642

ηB/10−10 5.65 5.74 6.27

Table 5.4: Benchmark points for computing baryon asymmetric parameter is presented. ηB is computed by

taking into account the flavor effects if 109GeV . M1 . 1012 GeV or in the flavor indistinguishable regime if

M1 & 1012 GeV. Two different values of the lightest left-handed neutrino masses are considered, m1 = 1 and 2

meV, where for the second case, solutions exists for both flavored and unflavored scenarios.
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m1 = 1 meV (Flavored) m1 = 2 meV (Flavored) m1 = 2 meV (Unflavored)

Figure 5.3: The correspondence between the baryon asymmetry and mβ,ββ are plotted, where mβ =∑
i |Uν ei|2mi is the effective mass parameter for the beta-decay and mββ = |∑i U

2
ν eimi| is the effective

mass parameter for neutrinoless double beta decay. Color code is the same as in Fig. 5.2.
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m1 = 1 meV (Flavored) m1 = 2 meV (Flavored) m1 = 2 meV (Unflavored)

Figure 5.4: Correlation between the quantities δ and sin2
θPMNS13

is plotted for three different values of m1 =

0.8, 1, 2 meV. Color code is the same as in Fig. 5.2.

The general behaviour is, for larger values of m1, the parameter space gets more populated. For smaller

values of m1, the parameter space is mostly preferred by flavored Leptogenesis scenario. For example, setting

m1 = 0.8 meV, we found that a very small portion of the parameter space permits baryon asymmetry in the

right range. Only flavored Leptogenesis scenario is allowed in this case provided that not all the varied quantities

are restricted within 1σ range. The plots for this case are presented in Fig. 5.7. If m1 is set to a higher value,

for example m1 = 1 meV, again only solutions exits for flavored Leptogenesis case but in this case solutions are

permitted even if all the varied quantities are within 1σ range. For even higher value of the lightest left-handed

neutrino mass, parameter space allows solutions for both flavored and unflavored Leptogenesis scenarios. We

demonstrate such case by setting m1 = 2 meV. Our investigation shows that, when m1 is set to higher and

higher values, the parameter space gets even more and more crowded. For example with m1 = 2 meV, we

see that the regions corresponding to these different settings are distinct. Higher the value of m1, more the

overlapping in the parameter space for the two distinct scenarios. As a demonstration, plots corresponding to

this scenario with m1 = 4 meV are presented in Fig. 5.7.

In the neutrino sector, among the four different experimentally unmeasured quantities, particularly the

Dirac type phase δ is the most important one, since it has the potential to be measured in the upcoming

neutrino experiments. In Fig. 5.6, we present the allowed values for this CP violating phase to have successful

Leptogenesis is presented for different values of the lightest neutrino mass m1. For the readers convenience,

benchmark points corresponding to few different cases are presented in Table 5.4.
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m1 = 1 meV (Flavored) m1 = 2 meV (Flavored) m1 = 2 meV (Unflavored)

Figure 5.5: The correspondence between the baryon asymmetry and the heavy right-handed neutrino mass

spectrum Mi are plotted. Color code is the same as in Fig. 5.2.
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0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

δ/π

m1=0.8 meV (Flavored)

m1=1.0 meV (Flavored)

m1=2.0 meV (Unflavored)

m1=2.0 meV (Flavored)

m1=4.0 meV (Unflavored)

m1=4.0 meV (Flavored)

Figure 5.6: Allowed range of the CP violating phase δ for successful Leptogenesis for different values of m1.
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m1 = 0.8 meV (Flavored) m1 = 4 meV (Flavored) m1 = 4 meV (Unflavored)

Figure 5.7: Allowed parameter space for ηB corresponding to the unknown quantities α, β, δ for two different

values of m1 = 0.8, 4 meV are presented here. Color code is the same as in Fig. 5.2.

5.6 The Higgs potential and scalar mass spectrum

5.6.1 The Higgs potential

In this sub-section we construct the complete scalar potential with G224 × U(1)PQ symmetry. As mentioned

earlier, the field ∆L which is present if the group is G224P but need not be present if the gauge group is

131



G224 instead. But for generality, we construct the scalar potential containing (2, 2, 1), (2, 2, 15), (1, 3, 10) and

(3, 1, 10) fields that respects G224×U(1)PQ symmetry and then discuss the constraints introduced by imposing

the parity symmetry. For G224 with the absence of (3, 1, 10) one can set ∆L = 0 to attain the relevant terms

in the potential. The most general Higgs potential respecting G224 × U(1)PQ symmetry with the scalars given

in Eq. (5.2.10) is:
V = VΦ + VΣ + V∆ + VΦΣ + VΦ∆ + VΣ∆ + VΦΣ∆ + VS , (5.6.55)

with,

VΦ = −µ2
Φ Φα̇

αΦ∗αα̇ + λ1Φ Φα̇
αΦ∗αα̇ Φβ̇

βΦ∗β
β̇

+ λ2Φ Φα̇
αΦ∗α

β̇
Φβ̇
βΦ∗βα̇ , (5.6.56)

VΣ = −µ2
Σ Σν α̇

µ αΣ∗ µ αν α̇ + λ1Σ Σν α̇
µ αΣ∗ µ αν α̇ Στ β̇

ρ βΣ∗ ρ β
τ β̇

+ λ2Σ Σν α̇
µ αΣ∗ ρ ατ α̇ Σµ β̇

ν βΣ∗ τ β
ρ β̇

+ λ3Σ Σν α̇
µ αΣ∗ τ αρ α̇ Σρ β̇

τ βΣ∗ µ β
ν β̇

+ λ4Σ Σν α̇
µ αΣ∗ ρ αν α̇ Στ β̇

ρ βΣ∗ µ β
τ β̇

+ λ5Σ Σν α̇
µ αΣ∗ µ ατ α̇ Σρ β̇

ν βΣ∗ τ β
ρ β̇

+ λ6Σ Σν α̇
µ αΣ∗ τ αρ α̇ Σµ β̇

τ βΣ∗ ρ β
ν β̇

+ λ7Σ Σν α̇
µ αΣ∗ µ α

ν β̇
Στ β̇
ρ βΣ∗ ρ βτ α̇ + λ8Σ Σν α̇

µ αΣ∗ ρ α
τ β̇

Σµ β̇
ν βΣ∗ τ βρ α̇

+ λ9Σ Σν α̇
µ αΣ∗ ρ α

ν β̇
Στ β̇
ρ βΣ∗ µ βτ α̇ + λ10Σ Σν α̇

µ αΣ∗ µ α
τ β̇

Σρ β̇
ν βΣ∗ τ βρ α̇ + λ11Σ Σν α̇

µ αΣµ γ̇
ν γ ε

αγε α̇γ̇Σ
∗ τ
ρ ββ̇

Σ∗ ρ κτ κ̇ ε βκε
β̇κ̇

+ λ12Σ Σν α̇
µ αΣρ γ̇

τ γε
αγε α̇γ̇Σ

∗ µ β
ν β̇

Σ∗ τ κρ κ̇ ε βκε
β̇κ̇ + λ13Σ Σν α̇

µ αΣρ γ̇
ν γε

αγε α̇γ̇Σ
∗ τ β
ρ β̇

Σ∗ µ κτ κ̇ ε βκε
β̇κ̇

+ λ14Σ Σν α̇
µ αΣτ γ̇

ρ γ ε
αγε α̇γ̇Σ

∗ µ β
τ β̇

Σ∗ ρ κν κ̇ ε βκε
β̇κ̇, (5.6.57)

V∆ = {−µ2
∆R

∆ β̇
Rµν α̇∆∗µν α̇

R β̇
+ λ1R ∆ β̇

Rµν α̇∆∗µν α̇
R β̇

∆ κ̇
Rρτ γ̇ ∆∗ρτ γ̇R κ̇ + λ2R ∆ β̇

Rµν α̇∆∗µν γ̇R κ̇ ∆ α̇
Rρτ β̇

∆∗ρτ κ̇R γ̇

+ λ3R ∆ β̇
Rµν α̇∆∗µν κ̇R γ̇ ∆ γ̇

Rρτ κ̇∆∗ρτ α̇
R β̇

+ λ4R ∆ β̇
Rµν α̇∆∗νρ α̇

R β̇
∆ κ̇
Rρτ γ̇ ∆∗τµ γ̇R κ̇

+ λ5R ∆ β̇
Rµν α̇∆∗νρ γ̇R κ̇ ∆ α̇

Rρτ β̇
∆∗τµ κ̇R γ̇ + R↔ L}+ λ6 ∆ β̇

Rµν α̇∆∗µν α̇
R β̇

∆ β
Lρτ α∆∗ρτ αL β

+ λ7 ∆ β̇
Rµν α̇∆∗νρ α̇

R β̇
∆ β
Lρτ α∆∗τµ αL β + λ8 ∆ β̇

Rµν α̇∆∗ρτ α̇
R β̇

∆ β
Lρτ α∆∗µν αL β

+ (λ̃9 ∆ β̇
Rµν α̇∆ α̇

Rρτ β̇
∆ β
Lλχ α∆ α

Lζω βε
µρλζεντχω + λ̃9

∗
∆∗µν β̇Rα̇ ∆∗ρτ α̇

Rβ̇
∆∗λχ βLα ∆∗ζω αLβ εµρλζεντχω), (5.6.58)
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and the mix terms,

VΦΣ = α1 Φα̇
αΦ∗αα̇ Σν β̇

µ βΣ∗µ β
ν β̇

+ α2 Φα̇
αΦ∗α

β̇
Σν β̇
µ βΣ∗µ βν α̇ + α3 Φα̇

αΦ∗βα̇ Σν β̇
µ βΣ∗µ α

ν β̇
+ α4 Φα̇

αΦ∗β
β̇

Σν β̇
µ βΣ∗µ αν α̇

+ (α̃5 Φα̇
αΦβ̇

βΣ∗ν αµ α̇Σ∗µ β
ν β̇

+ α̃∗5 Φ∗αα̇ Φ∗β
β̇

Σν α̇
µ αΣµ β̇

ν β ) + (α̃6 Φα̇
αΦβ̇

βΣ∗ν αµ β̇Σ∗µ βν α̇ + α̃∗6 Φ∗αα̇ Φ∗β
β̇

Σν β̇
µ αΣµ α̇

ν β ),

(5.6.59)

VΦ∆ = {β1R Φα̇
αΦ∗αα̇ ∆ γ̇

Rµνβ̇
∆∗µνβ̇R γ̇ + β2R Φα̇

αΦ∗α
β̇

∆ γ̇
Rµνα̇∆∗µνβ̇R γ̇ + R↔ L}

+ (β̃3Φ
α̇
αΦβ̇

βεακε
α̇κ̇∆∗µν β̇Rκ̇ ∆ β

Lµν κ + β̃∗3Φ∗αα̇ Φ∗β
β̇
εβκεβ̇κ̇∆

κ̇
Rµν β̇

∆∗µν βLκ ), (5.6.60)

VΣ∆ = {γ1R Στ α̇
ρ αΣ∗ρ ατ α̇∆ γ̇

Rµνβ̇
∆∗µνβ̇Rγ̇ + γ2R Στ α̇

ρ αΣ∗µ ατ α̇∆ γ̇

Rµνβ̇
∆∗νρβ̇Rγ̇ + γ3R Στ α̇

ρ αΣ∗ρ αµ α̇∆ γ̇

Rτνβ̇
∆∗νµβ̇Rγ̇

+ γ4R Στ α̇
ρ αΣ∗ν αµ α̇∆ γ̇

Rτνβ̇
∆∗ρµβ̇Rγ̇ + γ5R Στ α̇

ρ αΣ∗ρ α
τ β̇

∆ γ̇
Rµνα̇∆∗µνβ̇Rγ̇ + γ6R Στ α̇

ρ αΣ∗µ α
τ β̇

∆ γ̇
Rµνα̇∆∗νρβ̇Rγ̇

+ γ7R Στ α̇
ρ αΣ∗ρ α

µ β̇
∆ γ̇
Rτνα̇∆∗νµβ̇Rγ̇ + γ8R Στ α̇

ρ αΣ∗ν αµ β̇∆ γ̇
Rτνα̇∆∗ρµβ̇Rγ̇ + R↔ L}

+ (γ̃9R Σν α̇
µ αΣτ β̇

ρ βε
αβεα̇β̇∆ γ̇

Rνλ κ̇∆ κ̇
Rτχ γ̇ ε

µρλχ + γ̃∗9R Σ∗µ αν α̇Σ∗ρ β
τ β̇
εαβε

α̇β̇∆∗νλγ̇R κ̇ ∆∗τχ κ̇R γ̇ εµρλχ)

+ (γ̃10R Σν α̇
µ αΣτ β̇

ρ βε
αβεα̇κ̇∆

γ̇

Rνλ β̇
∆ κ̇
Rτχ γ̇ ε

µρλχ + γ̃∗10R Σ∗µ αν α̇Σ∗ρ β
τ β̇
εαβε

α̇κ̇∆∗νλ β̇R γ̇ ∆∗τχ γ̇R κ̇ εµρλχ)

+ (γ̃9L Σ∗µ αν α̇Σ∗ρ β
τ β̇
εαβε

α̇β̇∆ γ
Lµλ κ∆ κ

Lρχγ ε
ντλχ + γ̃∗9L Σν α̇

µ αΣτ β̇
ρ βε

αβεα̇β̇∆∗µλ γL κ ∆∗ρχ κL γ εντλχ)

+ (γ̃10L Σ∗µ αν α̇Σ∗ρ β
τ β̇
εακε

α̇β̇∆ κ
Lµλ γ∆ γ

Lρχβ ε
ντλχ + γ̃∗10L Σν α̇

µ αΣτ β̇
ρ βε

ακεα̇β̇∆∗µλ γL κ ∆∗ρχ βL γ εντλχ)

+ (η̃1 Σν α̇
µ αΣ∗τ β

ρ β̇
∆ β̇
Rνλ α̇ ∆ α

Lτχ β ε
µρλχ + η̃∗1 Σ∗ν αµ α̇ Στ β̇

ρ β∆∗µλα̇
R β̇

∆∗ρχβL α εντλχ)

+ (η̃2 Σν α̇
µ αΣµ β̇

ν β ε
ακεα̇κ̇∆

κ̇
Rλχ β̇

∆∗λχ βL κ + η̃∗2 Σ∗µ αν α̇ Σ∗ν β
µ β̇

εακε
α̇κ̇∆∗λχ β̇R κ̇ ∆ κ

Lλχ β )

+ (η̃3 Σν α̇
µ αΣµ β̇

ρ β ε
ακεα̇κ̇∆

κ̇
Rντ β̇

∆∗τρ βL κ + η̃∗3 Σ∗µ αν α̇ Σ∗ρ β
µ β̇

εακεα̇κ̇∆
∗ντ β̇
R κ̇ ∆ κ

Lτρ β )

+ (η̃4 Σν α̇
µ αΣτ β̇

ρ βε
ακεα̇κ̇∆

κ̇
R ντ β̇

∆∗µρβL κ + η̃∗4 Σ∗µ αν α̇ Σ∗ρ β
τ β̇

εακε
α̇κ̇∆∗ντ β̇R κ̇ ∆ κ

Lµρ β ), (5.6.61)

VΦΣ∆ = {(χ̃1R Φ∗αα̇ Σν α̇
µ α∆ γ̇

Rνρβ̇
∆∗ρµβ̇Rγ̇ + χ̃∗1R Φα̇

αΣ∗ν αµ α̇ ∆ γ̇

Rνρβ̇
∆∗ρµβ̇Rγ̇ )

+ (χ̃2R Φ∗αα̇ Σν β̇
µ α∆ γ̇

Rνρβ̇
∆∗ρµα̇Rγ̇ + χ̃∗2R Φα̇

αΣ∗ν α
µ β̇

∆ γ̇
Rνρα̇∆∗ρµβ̇Rγ̇ ) + R↔ L}

+ (χ̃3 Φα̇
αΣν β̇

µ βε
ακεα̇κ̇∆

κ̇
Rντ β̇

∆∗τµ βL κ + χ̃∗3 Φ∗αα̇ Σ∗µ β
ν β̇

εακε
α̇κ̇∆∗ β̇

Rντ κ̇ ∆ κ
Lτµ β ), (5.6.62)

VS = −µ2
S SS∗ + λS SS∗SS∗ + (ξ1 Φα̇

αΦ∗αα̇ + ξ2 Σν α̇
µ αΣ∗µ α̇ν α + {ξ3R ∆ β̇

Rµνα̇∆∗µνα̇
R β̇

+ R↔ L})SS∗

+ (ζ̃Φα̇
αΦβ̇

βε
αβεα̇β̇S∗ + ζ̃∗Φ∗αα̇ Φ∗β

β̇
εαβε

α̇β̇S) + (ω̃Σν α̇
µ αΣµ β̇

ν β ε
αβεα̇β̇S∗ + ω̃∗Σ∗ν α̇µ αΣ∗µ β

ν β̇
εαβε

α̇β̇S). (5.6.63)

To differentiate the complex couplings from the real ones in the potential we put tilde on the top of the

complex ones. All the index contractions are shown explicitly. The parameters with dimension of mass are

µφ, µΣ, µ∆, µS , ζ̃, ω̃. To find the maximum possible number of invariants of each kind one needs to use the

group theoretical rules of tensor product decomposition (for details see Ref. [189]). Note that in general there

can be more gauge invariant terms in the Higgs potential, but those are absent in out theory due to the presence

of the U(1)PQ symmetry. Below we discuss the constraints on the cubic and quartic couplings in the potential
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due to additional left-right parity symmetry.

Scalar potential in the left-right parity symmetric limit

If the parity symmetry is assumed to be a good symmetry then there are further restrictions on the potential

Eq. (5.6.55). Under left-right parity, the fermions and the scalar fields transform as

ΨL ←→ ΨR, Φ←→ Φ∗, Σ←→ Σ∗, ∆R ←→∆L, S ←→ S∗. (5.6.64)

The terms that are achieved by R↔ L in Eq. (5.6.55) have exactly the same coupling constants, for example,

µ2
∆L

= µ2
∆R

, λiL = λiR (i = 1 − 5) and so on. Also due to the invariance under parity, some of the complex

couplings in the potential will become real, they are,

α̃5,6, β̃3, η̃4,5,6, χ̃3, ζ̃, ω̃ ∈ R. (5.6.65)

The only six couplings in the potential that remain complex are

λ̃9, γ̃9,10, η̃1, χ̃1,2 ∈ C. (5.6.66)

Note that, under parity, if the singlet field is odd, i.e, instead of S ←→ S∗, if the transformation property is

S ←→ −S∗, then the cubic couplings ζ̃ and ω̃ become purely imaginary. If the VEV of the parity odd singlet is

vS > vR, then the parity breaking scale and the SU(2)R breaking scale can be decoupled and in this scenario

the PS breaking scale can be as low as 106 GeV as mentioned earlier.

5.6.2 The scalar mass spectrum

Mass spectrum of ∆R scalar fields

The Yukawa Lagrangian of the theory is given in Eq. (5.3.24), where the first two terms are the Dirac type

Yukawa couplings. The third term generates the right-handed neutrino Majorana masses when the PS symmetry

is broken by the VEV 〈(1, 3, 10)〉. Expanding this term of the Yukawa coupling one gets (here ∆ represents

∆R):

LMajorana = Y R10ij{νTRiCνRj∆∗νν − eTRiCeRj∆∗ee − (eTRiνRj + νTRiCeRj)∆
∗
eν + uTRiCuRj∆

∗
uu

− dTRiCdRj∆∗dd − (uTRiCdRj + dTRiCuRj)∆
∗
ud + (uTRiCνRj + νTRiCuRj)∆

∗
uν

− (eTRiCdRj + dTRiCeRj)∆
∗
de − (dTRiCνRj + νTRiCdRj + eTRiCuRj + uTRiCeRj)∆

∗
ue}+ h.c (5.6.67)

with the following identification
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∆∗νν(1, 1, 0) = ∆∗44 1̇
2̇

; ∆∗ee(1, 1, 2) = ∆∗44 2̇
1̇

; ∆∗eν(1, 1, 1) = ∆∗44 1̇
1̇

; (5.6.68)

∆∗uu(6, 1,−4

3
) = ∆∗µ̄ν̄ 1̇

2̇
; ∆∗dd(6, 1,

2

3
) = ∆∗µ̄ν̄ 2̇

1̇
; ∆∗ud(6, 1,−

1

3
) = ∆∗µ̄ν̄ 1̇

1̇
; (5.6.69)

∆∗uν(3, 1,−2

3
) = ∆∗µ̄4 1̇

2̇
; ∆∗de(3, 1,

4

3
) = ∆∗µ̄4 2̇

1̇
; ∆∗ue(3, 1,

1

3
) = ∆∗µ̄4 1̇

1̇
. (5.6.70)

Only the neutral component gets VEV, vR = 〈∆νν〉. With this identification and by minimizing the potential

Eq. (5.6.55), one can compute the mass spectrum of ∆R. The PS breaking minimization conditions is

∂V∆

∂vR
= vR[2v2

R(λ1R + λ3R + λ4R)− µ2
∆] = 0. (5.6.71)

Choosing the non-trivial solution with vR 6= 0, this equation is used to eliminate µ2
∆ from the potential. Imposing

this extremum condition back to the potential one gets the following mass spectrum for ∆R :

m2
∆νν

= 2 v2
R (λ1R + λ3R + λ4R), (5.6.72)

m2
∆ee

= 4 v2
R (λ2R + λ5R), (5.6.73)

m2
∆eν

= 0, (5.6.74)

m2
∆uu

= −2 v2
R λ4R, (5.6.75)

m2
∆dd

= 2 v2
R (λ2R − λ3R − λ4R), (5.6.76)

m2
∆ud

= −2 v2
R (λ3R + λ4R), (5.6.77)

m2
∆uν

= 0, (5.6.78)

m2
∆de

= 2 v2
R (2 λ2R − 2 λ3R − λ4R + 2 λ5R), (5.6.79)

m2
∆ue

= −2 v2
R (2 λ3R + λ4R). (5.6.80)

There is a mass relation which is given by

m2
∆ee

= m2
∆de
−m2

∆ud
+m2

∆uu
. (5.6.81)

There exist seven physical Higgs states ∆νν ,∆ee,∆uu,∆dd,∆ud,∆de,∆ue and three Nambu-Goldstone boson

states ∆eν ,∆uν and i(∆ 2̇
44 1̇
−∆∗44 1̇

2̇
)/2 ≡∆G. As mentioned in Sec. 5.2.2, due to the G224 → G213 breaking,

9 of the gauge bosons become massive after eating up the 9 Goldstone bosons. These Goldstone bosons

correspond to ∆eν , ∆uν and ∆G (real field) fields. We note that these sextets can have rich phenomenology if

their masses are relatively low, for example, these sextets can be responsible for generating baryon asymmetry

after the sphaleron decoupling, see Ref. [190–193]. By considering the sextet masses at the TeV scale flavor

physics constraints are also computed in Ref. [194].

If both the PS and PQ symmetry breaking are taken into account together, where the PQ symmetry is

broken by the complex singlet VEV, 〈S〉 = vS the minimization conditions are

135



∂V

∂vR
= vR[2v2

R(λ1R + λ3R + λ4R + v2
Sξ3R)− µ2

∆] = 0 and (5.6.82)

∂V

∂vS
= vS [2v2

SλS + v2
Rξ3R − µ2

S ] = 0. (5.6.83)

Assuming the general symmetry breaking solutions vS 6= 0 and vR 6= 0, these equations can be used to solve for

µ2
∆ and µ2

S . Using these minimization conditions like before one can easily derive the mass spectrum for the

∆R and S fields. The mass spectrum essentially remain unchanged except ∆νν mixes with the real part of the

singlet field. The two by two mass squared matrix of this mixing in the basis {∆νν , Re[S]} is given by2 v2
R (λ1R + λ3R + λ4R) 2vSvRξ3R

2vSvRξ3R 4v2
SλS

 . (5.6.84)

The imaginary part of S remains massless after the PQ symmetry breaking. After EW symmetry breaking,

this field will eventually mix with the components from the four doublets coming from Φ and Σ and receive a

mass of the order of vew/vS . Since vew � vS , this field will remain essentially massless and can be identified as

the axion field.

The doublet (1, 2,±1/2) mass square matrix

In the model, there are two complex bidoublets (2,2,1) and (2,2,15) that contain four SUL(2) doublets. Among

them, two of them are Φ1̇
α and Σ1̇

α ≡ − 2√
3
Σ4 1̇

4 α that have the quantum number (1, 2,−1/2) under the SM and

the other two are Φ2̇
α and Σ2̇

α ≡ − 2√
3
Σ4 2̇

4 α which have quantum number of (1, 2,+1/2) under the SM. Writing

as,
h(i)
α = {Φ1̇

α,Σ
1̇
α,Φ

∗β
2̇
εβα,Σ

∗β
2̇
εβα} (5.6.85)

and similarly

h̄(i)α = {Φ∗α
1̇
,Σ∗α

1̇
,Φ2̇

βε
βα,Σ2̇

βε
βα} (5.6.86)

the doublet mass squared matrix, D in the flavor basis can be found from the potential as

h̄α(j)Dijh(i)
α . (5.6.87)

It is straightforward to compute this doublet mass square matrix,

D =



−µ2
φ + v2

R (β1 + β2) + v2
S ξ1 −

√
3

2 v
2
R (χ̃∗1 + χ̃∗2) 2 vS ζ̃ 0

−
√

3
2 v

2
R (χ̃1 + χ̃2) −µ2

Σ + v2
R A2 + v2

S ξ2 0 2 vS ω̃

2 vS ζ̃
∗ 0 −µ2

φ + v2
R β1 + v2

Sξ1 −
√

3
2 v

2
R χ̃1

0 2 vS ω̃
∗ −

√
3

2 v
2
R χ̃
∗
1 −µ2

Σ + v2
R A1 + v2

S ξ2


(5.6.88)
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where we have defined

A1 = γ1 +
3

4
(γ2 + γ3 + γ4), A2 = A1 + γ5 +

3

4
(γ6 + γ7 + γ8). (5.6.89)

Recall that if parity symmetry is imposed, ζ̃ and ω̃ will be real but χ̃1,2 entering in this matrix will remain

complex, so in general D will have two independent phases entering in this matrix.

The Hermitian matrix, D can be diagonalized as D = UΛU† where U is an unitary matrix (Λ is the diagonal

matrix) that relates the flavor basis, h(i)
α and mass basis, h′(i)α states as,

h̄α(i)Dijh(j)
α = h̄α(i)UilΛlkU

∗
jkh

(j)
α = h̄α′(i)Λijh

′(j)
α . (5.6.90)

So

h′(k)
α = U∗jkh

(j)
α . (5.6.91)

The doublet mass matrix written here is before the EW phase transition, so the SM Higgs doublet will correspond

to the zero eigenvalue solution, which can be found by imposing the fine tuning condition det(D) = 0. One can

write the SM Higgs doublet that is a linear combination of the four doublets as,

H ≡ h′(1)
α = U∗j1h

(j)
α , that gives, h(i)

α = Ujih
′(j)
α . (5.6.92)

When the SM doublet acquires VEV, 〈H〉 = vEW, the EW phase transition takes place and one gets,

〈h(1)
α 〉 = U11vEW ≡ α vEW, 〈h(2)

α 〉 = U12vEW ≡ β vEW, (5.6.93)

〈h(3)
α 〉 = U13vEW ≡ γ vEW, 〈h(4)

α 〉 = U14vEW ≡ δ vEW. (5.6.94)

By finding the matrix elements Uij it can be shown that the combinations αγ∗ and βδ∗ will remain complex

and so all the VEVs in Eq. (5.6.93) cannot be taken to be real. This is why the VEV ratios of the doublets that

appears in the fermion mass matrices are in general complex. This conclusion is also applicable for the case

with parity symmetry imposed, since χ̃1,2 that are complex couplings will introduce two independent phases in

D.

The triplet (3, 2,± 1
6 ) mass square matrix

The color triplets are Σ4 1̇
µ̄ α and Σµ̄ 2̇

4 α that are (3, 2,+1/6) and (3, 2,−1/6) under the SM group respectively.

The mass square matrix is given as follows

(
Σ4 1̇
µ̄ α Σ∗4 β

µ̄ 2̇
εβα

)−µ2
Σ + v2

R(γ1 + γ3 + γ5 + γ7) + v2
Sξ2 2 vS ω̃

2 vS ω̃
∗ −µ2

Σ + v2
R(γ1 + γ2) + v2

S ξ2


 Σ∗µ̄ α

4 1̇

Σµ̄ 2̇
4 σε

σα

 .

(5.6.95)

137



Note that if the parity symmetry is imposed, all the matrix elements in this mass squared matrix will become

real.

The triplet (3, 2,± 7
6 ) mass square matrix

The color triplets are Σ4 2̇
µ̄ α and Σµ̄ 1̇

4 α that are (3, 2,+7/6) and (3, 2,−7/6) under the SM group respectively.

The mass square matrix is given as follows

(
Σ4 2̇
µ̄ α Σ∗4 β

µ̄ 1̇
εβα

)−µ2
Σ + v2

R(γ1 + γ3) + v2
Sξ2 −2 vS ω̃

−2 vS ω̃
∗ −µ2

Σ + v2
R(γ1 + γ2 + γ5 + γ6) + v2

S ξ2


 Σ∗µ̄ α

4 2̇

Σµ̄ 1̇
4 σε

σα

 .

(5.6.96)

Again if the parity symmetry is imposed, all the matrix elements in this mass squared matrix will become real.

The octet (8, 2,± 1
2 ) mass square matrix

The color octets are Σν̄ 1̇
µ̄ α and Σν̄ 2̇

µ̄ α that are (8,2,-1/2) and (8,2,+1/2) under the SM group respectively. The

mass square matrix is given as follows

(
Σν̄ 1̇
µ̄ α Σ∗ν̄ β

µ̄ 2̇
εβα

)−µ2
Σ + v2

R(γ1 + γ5) + v2
Sξ2 2 vS ω̃

2 vS ω̃
∗ −µ2

Σ + v2
R γ1 + v2

S ξ2


 Σ∗µ̄ α

ν̄ 1̇

Σµ̄ 2̇
ν̄ σε

σα

 . (5.6.97)

Just like the previous cases, if parity is a good symmetry, this mass squared matrix will become real.

The mass spectrum of ∆L field

The identification of the (3, 1, 10∗) field under the SM multiplets is (here ∆ represents ∆L):

∆∗qq(6, 3,−
1

3
) = ∆∗µν βα , ∆∗ql(3, 3,

1

3
) = ∆∗µ4 β

α , ∆∗ll(1, 3,−1) = ∆∗44 β
α . (5.6.98)

The mass spectrum of these fields are given as follows:

m2
∆ll

= −µ2
∆L

+ v2
R (λ6L + λ7L + λ8L) + v2

S ξL3 (5.6.99)

m2
∆qq

= −µ2
∆L

+ v2
R λ6L + v2

S ξL3 (5.6.100)

m2
∆ql

= −2µ2
∆L

+ v2
R (2λ6L + λ7L) + 2v2

S ξL3. (5.6.101)
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5.7 Baryon number violation

5.7.1 Nucleon decay

Though nucleon decay is not mediated by the gauge bosons of the PS group, depending on the detail of the

scalar sector, nucleon may decay. A PS model with scalars (2,2,1), (1,3,10) and (3,1,10) nucleon is absolutely

stable. The reason of the stability is due to the existence of a hidden discrete symmetry [195] in the model

qµ → eiπ/3qµ, ∆µν → e−2iπ/3∆µν , ∆µ4 → eiπ/3∆µ4. The Lagrangian is invariant under the discrete symmetry

even after SSB. But the scalar sector Eq. (5.2.3) that we are considering which also contains (2,2,15) multiplet,

in principle can lead to baryon(B) and lepton(L) violating processes by nucleon decay [163, 196], due to the

presence of some specific quartic terms in the scalar potential Eq. (5.6.55). In our model, the part of the

potential VΣ∆ in Eq. (5.6.61) contains terms that can cause the nucleon to decay. The terms with coupling

coefficients γ̃9, γ̃10, η̃1 in Eq. (5.6.61) in combination with Yukawa interactions Eq. (5.3.24) are responsible for

|∆(B − L)| = 2 processes when the symmetry gets broken spontaneously by 〈∆R〉. These (B + L) conserving

processes cause the proton to decay into leptons and mesons. The feynman diagrams corresponding to such

quartic terms involving processes like 3q → qql (p, n → l+ mesons, with l = e−, µ−, νe, νµ; meson= π,K, etc.)

contain SU(3)C triplets, Σ3 and octets, Σ8 originating from the multiplet (2,2,15). The feynman diagram

corresponding to this processes are as shown in Fig. 5.8 (left diagram).

qR

qc
R

qL ℓR

qR

〈∆νν〉

qL

∆qq
R

Σ3

Σ8

qR

ℓcR

qL ℓR

ℓR

〈∆νν〉

qL

∆qℓ
R

Σ3

Σ3

Figure 5.8: Feynman diagrams for nucleon decay with the vR = 〈∆R〉 VEV insertions. The left diagram induces

nucleon decay processes like nucleon → lepton + mesons and the right digram nucleon → lepton + lepton +

antilepton processes.

For PS model with this minimal set of scalars, another feynman digram that contributes to the nucleon
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decay can be constructed by replacing the color octet Σ8 by a color triplet Σ3 and the sextet ∆6 by color triplet

∆3 as shown in Fig. 5.8 (right diagram). This kind of diagrams will lead to nucleon decay 3q → lll̄. The

processes shown in Fig. 5.8 are generated by the dimension nine (d = 9) operators. Shortly we will show that

in our set-up d = 9 operators only give rise to the decay processes of the type nucleon→ lepton+ meson(s) but

not nucleon → lepton + lepton + antilepton processes since these three lepton decays always involve νR in the

final state and hence are extremely suppressed.

However, three lepton decay processes of nucleon can take place in our model via the d = 10 operators

[197–199]. The feynman diagrams corresponding to nucleon decay processes mediated by d = 10 operators are

shown in Fig. 5.9. These decay modes are: nucleon→ antilepton + meson and nucleon→ lepton + antilepton+

antilepton. Below we present the effective Lagrangians corresponding to d = 9 and d = 10 and discuss the

different nucleon decay modes and compute the branching fractions in certain approximations. For operator

analysis regarding baryon and lepton number violation see Ref. [200–203].

qR

qL

qL ℓcL

qc
L

〈Σ1〉

qL

Σ8

∆qℓ
L

∆qq
L

qR

ℓL

qL ℓcL

ℓcL

〈Σ1〉

qL

Σ3

∆qℓ
L

∆qℓ
L

Figure 5.9: Feynman diagrams for nucleon decay with the SM doublet VEV insertions. The left diagram induces

nucleon decay processes like nucleon → lepton + mesons and the right digram nucleon → lepton + antilepton

+ antilepton processes.

d = 9 proton decay

The effective Lagrangian describing these d = 9 six-fermion vertex that corresponds to nucleon decay can be

written down by using Eqs. (5.3.24) and (5.6.61),

Ld=9
eff = L(a)

eff + L(b)
eff + L(c)

eff , (5.7.102)
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with,

L(a)
eff = −(2γ̃9RvR)εµρλY ∗15pqY

∗
15klY

R
10mn

dTRmχCdRnλ
m2

∆
R(6,1, 2

3
)

{ uχRpuLqµ

m2
Σ

(8,2, 1
2
)

 eRkdLlρ
m2

Σ
(3,2,− 7

6
)


−

 d
χ

RpuLqµ

m2
Σ

(8,2,− 1
2
)

 νRkdLlρ
m2

Σ
(3,2,− 1

6
)

−
 uχRpdLqµ

m2
Σ

(8,2, 1
2
)

 eRkuLlρ
m2

Σ
(3,2,− 7

6
)

+

 d
χ

RpdLqµ

m2
Σ

(8,2,− 1
2
)

 νRkuLlρ
m2

Σ
(3,2,− 1

6
)

},
(5.7.103)

L(b)
eff = −(2γ̃10RvR)εµρλY ∗15pqY

∗
15klY

R
10mn ×{ uχRpuLqµ

m2
Σ

(8,2, 1
2
)

 νRkdLlρ
m2

Σ
(3,2,− 1

6
)

dTRmχCuRnλ
m2

∆
R(6,1,− 1

3
)

+

 eRkdLlρ
m2

Σ
(3,2,− 7

6
)

dTRmχCdRnλ
m2

∆
R(6,1, 2

3
)


−

 uχRpdLqµ

m2
Σ

(8,2, 1
2
)

 νRkuLlρ
m2

Σ
(3,2,− 1

6
)

dTRmχCuRnλ
m2

∆
R(6,1,− 1

3
)

+

 eRkuLlρ
m2

Σ
(3,2,− 7

6
)

dTRmχCdRnλ
m2

∆
R(6,1, 2

3
)


+

 νRpuLqµ
m2

Σ
(3,2,− 1

6
)

 νRkdLlρ
m2

Σ
(3,2,− 1

6
)

eTRmCuRnλ
m2

∆
R(3,1, 1

3
)

+

 eRkdLlρ
m2

Σ
(3,2,− 7

6
)

eTRmCdRnλ
m2

∆
R(3,1, 4

3
)


−

 νRpdLqµ
m2

Σ
(3,2,− 1

6
)

 νRkuLlρ
m2

Σ
(3,2,− 1

6
)

eTRmCuRnλ
m2

∆
R(3,1, 1

3
)

+

 eRkuLlρ
m2

Σ
(3,2,− 7

6
)

eTRmCdRnλ
m2

∆
R(3,1, 4

3
)

}, (5.7.104)

L(c)
eff = −(η̃1vR)εζτχY ∗15pqY15klY

L
10mn

1

m2
Σ

(3,2,− 1
6
)

{(
νRpuLqζ

) uρLkdRlτ
m2

Σ
(8,2, 1

2
)

dTLmρCuLnχ
m2

∆
L(6,1,− 1

3
)


+
(
νRpuLqζ

) d
ρ

LkdRlτ
m2

Σ
(8,2, 1

2
)

dTLmρCdLnχ
m2

∆
L(6,1,− 1

3
)

−
 νRpdLqζ
m2

Σ
(3,2,− 1

6
)

 uρLkdRlτ
m2

Σ
(8,2, 1

2
)

 uTLmρCuLnχ
m2

∆
L(6,1,− 1

3
)


+
(
νRpuLqζ

) νLkdRlτ
m2

Σ
(3,2,− 1

6
)

eTLmρCuLnχ
m2

∆
L(3,1, 1

3
)

+

 νRpuLqζ
m2

Σ
(3,2,− 1

6
)

 eLkdRlτ
m2

Σ
(3,2,− 1

6
)

eTLmρCdLnχ
m2

∆
L(3,1, 1

3
)


−
(
νRpdLqζ

) νLkdRlτ
m2

Σ
(3,2,− 1

6
)

νTLmρCuLnχ
m2

∆
L(3,1, 1

3
)

}, (5.7.105)

here k, l,m, n, p, q are the generation indices. The terms involving color octets mediate nutron decay via the

channels n→ π+e−R,K
+e−R, π

+µ−R,K
+µ−R, π

0νR,K
0νR and proton decay via p→ π+νR,K

+νR. And the terms

where the color triplets replacing color octets, the decay modes are, n→ νL
cνLνR, e+

Re
−
RνR, µ

+
Re
−
RνR, e

+
Rµ
−
RνR,

µ+
Rµ
−
RνR, e

+
Le
−
LνR, e

+
Lµ
−
LνR, µ

+
Le
−
LνR, µ

+
Lµ
−
LνR and p→ e+

RνRνR, µ
+
RνRνR, e

+
LνLνR, µ

+
LνLνR.

Note that for all the three lepton decays of the nucleon as well as some of the two body decay modes with the

lepton being the neutrino, these decays can not be observed due to the additional suppressions of large right-

handed neutrino mass. For the three lepton decay channels, always one of the leptons is a right-handed neutrino
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and for the two body decay channels with neutrino as the lepton, it is always the right-handed neutrino. This is

not true in general within the PS framework. But in our model due to the U(1)PQ symmetry, Σ has coupling with

ψLψR and Σ∗ has coupling with ψRψL, see Eq. (5.3.24). Also PQ charge conservation does not allow quartic

terms of the form Σ2∆∗R
2 rather allowed term is of the form Σ2∆R

2. The combined effect of these two facts

restricts some of the modes of nucleon decay in our model as mentioned above. However, neutron decay into a

lepton and a meson (n→ e−Rπ
+, e−RK

+, µ−Rπ
+, µ−RK

+) can be within the observable range with specific choice of

the parameter space. There will be similar modes of proton decay (p→ e−Rπ
+π+, e−RK

+π+, µ−Rπ
+π+, µ−RK

+π+)

with an additional pion in the final state and hence will be suppressed compared to neutron decay.

On the dimensional ground the decay rate of these n→ lepton + meson processes is given by

Γd=9
n→`+meson ∼

1

8π

∣∣∣∣∣vR Λ5
QCD

M6

∣∣∣∣∣
2

mp. (5.7.106)

Here mp is the mass of the proton and the mass of the Higgs bosons involved are taken to be of the same order

and is denoted byM . While computing this, the amplitude of such processes get multiplied by the factor Λ5
QCD,

here a factor of Λ3
QCD enters due to the hadronization of 3 quarks into a nucleon and a factor of Λ2

QCD comes

into play due to the hadronization of qq to a meson (for numerical computations, we take ΛQCD = 170 MeV).

Assuming the Higgs bosons masses equal to the PS breaking scale, i.e, M = vR, the decay rate (τ = Γ−1) of

such processes to be within the observables range (τ ∼ 1034 yrs) requires the PS breaking scale to be as low as

vR ∼ 3.5× 105 GeV.

For high scale breaking of PS group vR ∼ 1014 GeV required for the case with imposed parity symmetry

makes the nucleon decay completely unobservable. On the other hand if the parity symmetry gets broken at

the high scale by the VEV of the singlet, odd under parity that breaks the PQ symmetry, vR scale can be

much lowered ∼1000 TeV as explained earlier. Though the mentioned required vR scale for the nucleon decay

to be observable is computed in the naive dimensional ground, by choosing right values of the quartic couplings

involved in these processes, nucleon decay can be within the observable range while simultaneously satisfying

the lower bound of the PS scale breaking. Certainly the Higgs bosons masses are not degenerate and the

parameters can be choose in such a way that their masses can be significantly lower than the PS breaking scale

and hence nucleon decay can happen in the interesting observable range in our theory.

On the other hand, decay rate of the p→ lepton + mesons processes is given by

Γd=9
p→`+mesons ∼

1

8π

∣∣∣∣∣vR Λ7
QCD

M6

∣∣∣∣∣
2

m−3
p . (5.7.107)

The additional factor of Λ2
QCD is due to the presence of an extra pion in the final state. By a similar com-

putation one finds that vR ∼ 9.5 × 104 GeV is required for such processes to be within the observable range.

Again this required vR is computed naively. Even though additional suppression factor is present due to an extra
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pion in the final state, appropriate choice of the model parameters can make this proton decay modes observable.

d = 10 proton decay

The effective Lagrangian describing the d = 10 six-fermion vertex that correspond to nucleon decay can be

written down by using Eqs. (5.3.24) and (5.6.61),

Ld=10
eff = L(d)

eff + L(e)
eff , (5.7.108)

L(d)
eff = (γ̃9Lvew)ετλχY15pqY
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L(e2)
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L(e3)
eff = (γ̃10Lvew)ετλχY15pqY
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L(e4)
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where L(e) =
∑
i L(ei) with i = 1− 4. The terms involving color octets mediate neutron decay via the channels

n→ νL
cπ0, e+

Lπ
−, µ+

Lπ
−, νL

cK0,K−e+
L ,K

−µ+
L and proton decay via p→ νL

cπ+, e+
Lπ

0, νL
cK+, e+

LK
0, µ+

Lπ
0, µ+

LK
0.

And the terms where the color triplets replacing color octets, the decay modes are, n → νLνL
cνL

c, e−Le
+
LνL

c,

e−Lµ
+
LνL

c, µ−Le
+
LνL

c, µ−Lµ
+
LνL

c and p→ e+
LνLνL

c, µ+
LνLνL

c, e−Le
+
Le

+
L , µ

−
Le

+
Le

+
L , µ

−
Lµ

+
Le

+
L , µ

−
Lµ

+
Lµ

+
L .

Six fermion vertex d = 9 nucleon decay operators mediate processes like n→ lepton + meson and p→ lepton

+ mesons, whereas, n → antilepton + meson and p → antilepton + meson processes arise through d = 10 six

fermion vertex operators. d = 10 operators also induce processes with three lepton final state, which is not the

case with d = 9. The decay width for processes like n, p→ antilepton + meson is

Γd=10
n,p→`c+meson ∼

1

8π

∣∣∣∣∣vew Λ5
QCD

M6

∣∣∣∣∣
2

mp, (5.7.114)

and for the three lepton final state processes

Γd=10
n,p→``c`c ∼

1

256π3

∣∣∣∣∣vew Λ3
QCD

M6

∣∣∣∣∣
2

m5
p. (5.7.115)

For n, p→ antilepton + meson to be within the observable range (τ ∼ 1034 yrs [117]), the requirement on the

PS scale is vR ∼ 105 GeV. The three lepton final state also requires vR ∼ 105 GeV (here τ ∼ 1033 yrs [204]).
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Again, as mentioned above, by appropriate choice of the quartic couplings involved in these decay rate of these

processes can simultaneously satisfy the lower bound of the PS breaking but still be in the interesting observable

range. As mentioned earlier, if the parity symmetry is not imposed, the presence of ∆L is not required. It is to

be noted that in the absence of this field, only the nucleon decay mode allowed is nucleon→ lepton + mesons

via the d = 9 operators.

Nucleon decay relative branching fractions

By using the formulae as mentioned above one can compare the decay widths of the different modes. A naive

estimation of the relative branching fractions reveal

Γd=9
p→`+mesons

Γd=9
n→`+meson

∼
Λ4
QCD

m4
p

∼ 10−3, (5.7.116)

Γd=10
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Γd=9
n→`+meson

∼ v2
ew

v2
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∼ 10−8, (5.7.117)
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Λ4
QCD

∼ 10−5, (5.7.119)
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∼ 1
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Γd=10
n,p→`c+meson

Γd=10
n,p→``c`c

∼ 32π2
Λ4
QCD

m4
p

∼ 0.34. (5.7.121)

Here we have chosen vR = 106 GeV. This estimation shows that for the d = 9 case, neutron decay will be

dominating over the proton decay due the the presence of extra pion in the final state. Again d = 10 processes

are suppressed compared to the d = 9 processes due to the extra suppression factor of v2
ew/v

2
R. We remind

the readers that this may not be true in general, since the Higgs boson mass spectrum is non-degenerate and

appropriate hierarchical pattern can be realized to make these two processes comparable.

Since nucleon decay processes involve more than one quartic coupling, definite predictions about the relative

branching fractions of different decay channels can not be firmly predicted. However, they are calculable in

certain approximations. Here for the purpose of illustration we set γL9 = γR9 and the rest of the couplings

responsible for nucleon decay to be zero. γL9 = γR9 can be realised if parity symmetry is imposed. For the

nucleon decay to be within the observable range vR scale also needs to be low. If the parity symmetry gets

broken by the singlet VEV that is odd under parity, γL9 ≈ γR9 can be realized and still the PS breaking scale

can be as low as vR ∼ 106 GeV. Recall that with the parity symmetry imposed, Y L10 = Y R10 is also realized. Note

than in these decay width formulae the dimensionless Yukawa couplings are ignored. However, they may play
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significant role in the branching ratios and one needs to include them when comparing specific decay channels.

Comment on d = 7 B-violating operators

In unified theories, another interesting B-violating operators involving Higgs bosons that can mediate nucleon

decay correspond to the case of d = 7. In addition to the leptoquark color triplets present in our theory, if also

diquark color triplets exist, then d = 7 operators can mediate nucleon decay. For example, quartic terms in the

Higgs potential involving a triplet leptoquark, a triplet diquark, a Higgs doublet and the neutral component

from ∆R is responsible for generating nucleon decay processes [205] when the B − L violating VEV of ∆R is

inserted. In our minimal model due to the absence of diquark color triplets, d = 7 operators are not present.

Due to many uncertainties, here we do not have definite predictions on the branching rations.

5.7.2 n− n Oscillation

Another phenomenologically interesting process that can take place in PS model is the ∆B = 2 interactions

that leads to n−n oscillation. A PS model with the presence of only (1,3,10) scalar can have nucleon transition

at the tree level that includes six-fermion ∆B = 2 vertex [195,206] as shown in Fig. 5.10. Such transitions are

again lead by a specific type of term in the scalar potential with the help of the Majorana type mass term in

the Yukawa coupling. The term in the potential responsible for such processes has the form ∆4. The only such

existing term in our potential is

V∆ ⊃ λ̃9 ∆ β̇
Rµν α̇∆ α̇

Rρτ β̇
∆ β
Lλχ α∆ α

Lζω βε
µρλζεντχω + h.c. (5.7.122)

Interactions generated by Eq. (5.7.122) and Eq. (5.3.24) after the spontaneous PS symmetry breaking by 〈∆R〉

cause n− n oscillation. The existing term is of the form ∆2
R∆2

L, which indicates that if parity is not imposed

which does not demand the need of ∆L field, n−n transition is forbidden due to the added U(1)PQ symmetry.

In PS model without U(1)PQ symmetry, n− n transition takes place via terms of the form ∆4
R, such terms are

forbidden in our theory since this field carries non-zero PQ charge.

The effective Lagrangian describing the six-fermion vertex (d = 9 operators) that corresponds to n − n

oscillation can be written down by using Eqs. (5.3.24) and (5.6.58),

Ln−neff = −λ̃9(2vR)ερλζετχωY R10klY
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,

(5.7.123)

here k, l,m, n, p, q are the generation indices.
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Figure 5.10: Feynman diagrams for n− n oscillation.

Again on the dimensional ground, the n− n oscillation transition time can be computed as

τn−n =
M6

vR Λ6
QCD

. (5.7.124)

The present limit on this transition time is constraint by the matter disintegration, which is τn−n ≥ 2 × 108

sec. [207]. A slightly weaker bound but with less uncertainty is obtained from the free neutron oscillation search,

τn−n ≥ 108 sec. [208]. By taking τn−n = 108 sec. one can find the lower bound on the scale vR ∼ 3.2× 105 GeV

(like before M = vR is assumed). Certainly by choosing the relevant parameters of the model one can have

n− n transition time within the interesting observable range.

5.8 Conclusion

In this work, we have presented a minimal renormalizable nonsupersymmetric model based on the Pati-Salam

group, SU(2)L × SU(2)R × SU(4)C that unifies quark and leptons by treating leptons as the fourth color. We

extend the symmetry of our theory by imposing global Peccei-Quinn symmetry, U(1)PQ, that automatically

solves the strong CP problem and provides axion as a dark matter candidate. This economic choice of the

Higgs set makes the theory very predictive and with only 14 parameters in the Yukawa sector a good fit to

the charged fermion masses and mixings are obtained. The origin of the baryon asymmetry of the Universe is

linked to the seesaw mechanism that is responsible for neutrino oscillations. Detail search of the parameter space

for successful generation of matter-antimatter asymmetry is carried out. The complete Higgs potential with

minimal scalar content is constructed and the full mass spectrum of the fields are computed. Possible nucleon

decay modes arising from dimension 9 and dimension 10 operators are discussed and branching fractions of
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different channels are computed with certain approximations. Neutron-antineutron oscillation via dimension 9

operators in this framework is also analysed. Both the nucleon lifetime and neutron-antineutron transition time

can be within the observable range.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

As mentioned throughout the text, the Standard Model (SM) of particle physics, even though highly successful,

fails to explain many observed phenomena, hence, this theory needs to be extended. A dedicated study in

search of the physics beyond the SM has been the main focus of this dissertation. Here, we presented various

well motivated new unified models to resolve some of the shortcoming of the SM. Each model presented in this

dissertation, has its own distinct features, hence can be experimentally distinguished.

In chapter 2 we present a new class of unified models based on SO(10) symmetry which provides insights

into the masses and mixings of quarks and leptons, including the neutrinos. The key feature of our proposal

is the absence of Higgs boson 10H belonging to the fundamental representation that is normally employed.

Flavor mixing is induced via vector-like fermions in the 16 + 16 representation. A variety of scenarios, both

supersymmetric and otherwise, are analyzed involving a 126H along with either a 45H or a 210H of Higgs boson

employed for symmetry breaking. It is shown that this framework, with only a limited number of parameters,

provides an excellent fit to the full fermion spectrum, utilizing either type-I or type-II seesaw mechanism. These

flavor models can be potentially tested and distinguished in their predictions for proton decay branching ratios,

which are analyzed.

In chapter 3 we show that in SO(10) models, a Yukawa sector consisting of a real 10H , a real 120H and a

complex 126H of Higgs fields can provide a realistic fit to all fermion masses and mixings, including the neutrino

sector. Although the group theory of SO(10) demands that the 10H and 120H be real, most constructions

complexify these fields and impose symmetries exterior to SO(10) to achieve predictivity. The proposed new

framework with real 10H and real 120H relies only on SO(10) gauge symmetry, and yet has a limited number

of Yukawa parameters. Our analysis shows that while there are restrictions on the observables, a good fit to

the entire fermion spectrum can be realized. Unification of gauge couplings is achieved with an intermediate

scale Pati-Salam gauge symmetry. Proton decay branching ratios are calculable, with the leading decay modes

being p→ νπ+ and p→ e+π0.

As mentioned repeatedly throughout the text, the masses of the charged fermion and the mixing angles

among quarks are observed to be strongly hierarchical, while analogous parameters in the neutrino sector

appear to be structure-less or anarchical. In chapter 4 we develop a class of unified models based on SU(5)
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symmetry that explains these differing features probabilistically. With the aid of three input parameters that

are hierarchical, and with the assumption that all the Yukawa couplings are uncorrelated random variables

described by Gaussian distributions, we show by Monte Carlo simulations that the observed features of the

entire fermion spectrum can be nicely reproduced. We extend our analysis to an SU(5)-based flavor U(1)

model making use of the Froggatt-Nielsen mechanism where the order one Yukawa couplings are modeled as

random variables, which also shows good agreement with observations.

In chapter 5, a predictive model based on an unified theory possessing the gauge symmetry of the Pati-Salam

group, SU(2)L×SU(2)R×SU(4)C is studied. A detail analysis of the Higgs potential and the Yukawa couplings

is carried out in this partially unified theory, which is one of the most attractive extensions of the Standard

Model. The minimal Pati-Salam model can successfully incorporate the hierarchies in the charged fermion

masses and mixings and seesaw mechanism is a natural way to explain the extremely small neutrino masses

in this framework. Seesaw mechanism together with Baryogenesis via Leptogenesis scenario can account for

the observed cosmological baryon asymmetry of the Universe. Along with solving the strong CP problem, the

assumed U(1)PQ Peccei-Quinn symmetry can provide the ingredient for Dark Matter candidate. Even though

the nucleon decay is not mediated by the gauge bosons in Pati-Salam theory, the scalar diquarks and leptoquarks

together can cause nucleon to decay. Nucleon decay processes in this framework are, nucleon→ lepton + meson,

nucleon→ antilepton + meson and nucleon→ lepton + antilepton + antilepton. With appropriate choice of the

parameters of theory, these processes can be within the observable range. In this theory neutron-antineutron

oscillation takes place that can also be observed in the ongoing experiments.
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