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ABSTRACT: A cylindrical rolling robot is developed that generates torque by chang-
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called trigger angle. The robot is equipped with a sensing/control system by which
it measures angular position and angular velocity, computes error with respect to a
desired step velocity profile, and changes shape of the outer surface at these times
accordingly. A series of trial rolls are conducted using various trigger angles, and en-
ergy consumed by the robot’s singular servo motor is measured and used to calculate
energy consumed per unit roll distance. Results show that for each of three desired
velocity profiles tested, there exists one or more trigger angle values that result in
relatively low energy consumption per unit roll distance. When the robot operates
within this optimal trigger angle range, it undergoes minimal actuation burdening
and inadvertent braking, both of which are inherent to the robot’s control system
and act to lower the robot’s energy economy during locomotion. Moreover, this
optimal range generally shifts towards the vertical as angular velocity of the robot
increases. A mathematical model of the robot’s motion is developed and applied in
a simulation program that is used to predict, analyze and further understand the
robot’s locomotion.
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CHAPTER 1

Introduction

Ground based robots typically move from place to place using wheels, legs, or by

changing shape in a biomimetic fashion, as with peristaltic or slithering locomotion

[1, 2, 3]. Wheeled robots are the most common of these three locomotion styles,

because in general, wheeled robots are efficient and they can move faster than other

types of ground based robots [1]. A special class of wheeled robots is the rolling

robot, which rolls exclusively on an outer, driven surface that entirely envelopes the

system [4]. Rolling robots, whether spherical or cylindrical in form, have several

advantages over traditional wheeled and legged robots. The outer surface of a rolling

robot restricts the possibility of tipping over on a side from which the robot cannot

recover, and it provides mechanical and environmental protection for the vulnerable

systems on the robot. Also, the outer surface is typically large in diameter and can

therefore act as an effective traction device for traversing paths of varied terrains, and

can even be equipped to jump and bounce over otherwise insurmountable obstacles

[5].

A rolling robot that moves by its own energy, in contrast to one moved by wind,

for example, must somehow generate torque to make itself roll. The study herein

investigates velocity control of an autonomous rolling robot, developed at the Un-

manned Systems Laboratory at Oklahoma State University (OSU) and pictured in

Fig. 1.1, that generates torque through changing shape of its outer surface, which is

flexible and can be morphed to retain oblongness about one of two notional ellipti-

cal axes that are fixed to the robot and roll with it. When the OSU rolling robot,

1



Figure 1.1: The OSU rolling robot has a mass of 0.950 kg with a perimeter of 2.095 m.

as it is entitled, is configured as a tilted, upright ellipse, traction and gravity forces

generate torque about the robot center, causing the robot to simultaneously fall and

roll, similar to the motion of a cam or egg when placed on end. Once in motion,

the robot repeatedly and automatically changes its outer surface shape in order to

continue rolling forward.

In addition to being a shape changing and a partially gravity powered robot,

locomotion of the OSU rolling robot is categorized as dynamic [6], meaning it has a

natural rocking tendency and exhibits inertial motion. In other words, if the outer

surface were to suddenly stop changing shape in the middle of a roll, the robot would

likely require significant time to come to rest. Non-dynamic rollers, such as crawling

rolling robots, move slowly in comparison and do not exhibit dramatic inertial effects

after surface transformation or other motion input has ceased [7, 8]. The OSU rolling

robot is also an underactuated system [9], referring to how the robot exploits its own

natural dynamics in order to achieve steady, rolling locomotion.
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1.1 Motivation

Various previous investigations have shown shape change to be a viable method for

controlling rolling robots [10, 6, 11, 7]. Rolling loops, through shape change alone,

have been controlled to commence from rest and move forward quickly and efficiently

[6, 11]. Up to now, however, the challenge of controlling a dynamic rolling robot to

follow a desired velocity profile through shape change alone has largely been unex-

plored by robotics researchers. In a New Scientist article that showcased the rolling

robot of Sugiyama and Hirai [7], a roboticist at the University of Manchester alluded

to this fact when he commented that rolling robots using shape change to produce

locomotion will be difficult to control accurately [12, 13]. One reason why this next

step in the research has not yet been taken is that such robots require lightweight

yet nimble actuation, along with accurate sensing of position and velocity, in order

to achieve satisfactory onboard control. It is only during the last ten years that ad-

vances in sensor technology have made it possible for gyroscopes, for example, to be

lightweight, low-power and accurate enough for employment onboard rolling robots

that simultaneously translate and rotate [14]. Actuating devices, too, such as servo

motors, have become lighter and stronger. Thus, implementation of velocity control

onboard a shape changing rolling robot is not only an attractive challenge, but an

opportune beckoning. The work presented herein is motivated by this challenge and

the potential applications that could result from successfully meeting it.

At least three previously documented research projects [6, 11, 15] involving shape

changing rolling robots have used the modular loop configuration, in which six or

more servo modules are stacked end-to-end to form a loop robot. These modular

loops typically have a high number of degrees of freedom [13], allowing them to

potentially attain divers shapes and thereby experiment with various rolling gaits [11].

In addition, modular loops can easily be scaled by simply adding or subtracting one

or more modules. Yet with all the benefits of the modular platform, rolling modular
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loops are bulky and overly complicated. An attractive challenge – and one that is

undertaken by the study herein – is to strive for velocity control of a dynamic rolling

robot whose outer surface is, in contrast to the modular loops, thin and lightweight

and can be morphed using a singular servo motor. Such a design is simpler and more

elegant than the modular loop design. A conceivable, future extraction of this idea

is a dynamic roller whose outer surface is composed of an adaptive material such as

Nitinol, pneumatic muscles, or a thermally tunable foam that acts as frame, wheel

and actuator. Imagining a robot such as this one, which is perhaps not too far-off in

the future, highlights how shape changing rolling robots have potential to be simple,

ultralightweight, efficient robots for use in various applications.

As an example of possible application, shape changing rolling robots offer a com-

pelling architecture for robots that would be used as rovers in space exploration.

NASA has expressed interest in developing exploration rovers for the Martian surface

whose mobility would be derived from the planet’s powerful surface winds. According

to a NASA technical document [16], the concept that NASA would like to investigate

is a lightweight, low-power data collection robot that would be blown about the sur-

face of Mars like a terrestrial tumbleweed. A worthwhile candidate design for NASA’s

vision is a robot akin to the rolling robot investigated herein; one imagines a spherical,

dynamic roller with a shape changing outer surface, several feet in diameter, that fully

envelopes the payload, such as sensors and power source, protecting it from the harsh

Martian environment. When winds are high, the robot would roll like a tumbleweed,

but in low winds the robot could move to locations of interest by changing the shape

of its outer surface to generate roll torque. Possibly the roller could be empowered

with a self-induced bouncing ability in order to hop over otherwise insurmountable

obstacles.
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1.2 Contribution

Compared to other shape changing, dynamic rolling robots, the OSU rolling robot

is unique in that it performs autonomous velocity control relative to a desired pro-

file using all onboard sensing of angular position and velocity. Also, the robot is

considerably simpler in design and lighter than the modular loops that have been

developed in recent years. It possesses a flexible and continuous outer surface made

of everyday plastic whose shape is periodically changed using the same servomotor

model that’s used on toy boats and planes. Power is supplied by two 9 V batteries

that are sufficient for dozens of 30-meter trial rolls. Although the robot itself is a

new and simple design, the subtle aspects associated with its shape changing, rolling

locomotion are complicated, and such aspects of this locomotion style have previously

not been unearthed. The main contribution of the research contained herein is that

it provides insight concerning these aspects. It is the author’s wish that the lessons

learned herein will be applied to future research projects involving shape changing

rolling robots that would improve upon the design of the OSU rolling robot.

1.3 Goals and Objectives

Three goals are associated with the research contained herein. The first goal is to

develop an autonomous rolling robot whose only means of generating roll torque is

to change shape of its outer surface in order to accurately follow a desired, step

angular velocity profile. The second goal is to identify shape change actuation timing

strategies that minimize energy per unit roll distance of the robot for a range of

desired velocity profiles. Finally, the author wishes to understand and communicate

why, given the locomotion dynamics of the robot and its mechanical system, certain

actuation timing strategies are superior in terms of energy economy.

Associated with these goals are six objectives that partition the goals into specific,
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tractable steps with each subsequent step building upon the last. The six objectives

of the research are:

1. Design and develop the rolling robot, including outer surface, actuator, sensing

systems, control system, and communication system.

2. Define stability for robot locomotion, and demonstrate that the robot is stable

while rolling in a controlled manner on a flat and level surface.

3. Develop a mathematical model for the robot and a related simulation computer

program that predicts robot behavior and can be used to analyze and further under-

stand it.

4. Perform a series of trial rolls of the robot using three different desired step angular

velocities, in which a control parameter that governs timing of shape change actuation

is varied from roll to roll, while energy consumed by the actuator is measured.

5. Using results from 4, identify a value or range of values of the control parameter

for each desired steady state velocity that results in minimal energy consumed per

unit distance rolled.

6. Provide an explanation for why the range of optimality for the timing parameter

exists.

1.4 Outline

This study herein is outlined as follows. Chapter two is titled Previous Research.

It presents several previous research projects that are relevant to the OSU rolling

robot. Some of these previous works provide creative or technical incentive, and others

are included because they illustrate the limits of past achievements. Chapter three,

System Design, describes the OSU rolling robot in detail, including the robot outer

surface, actuator, onboard sensors and general behavior. It also describes formulation
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of the mathematical model and explains how the robot control system works. Chapter

four, Experimental Methodology, explains how and where the primary experiment is

conducted. Chapter five, Results, presents results from the primary experiment and

also contains a section that compares simulation predictions to trial rolls. The last

section, entitled Discussion and Conclusion, describes the lessons of the research,

gives suggestions for future work, and summarizes the research as a whole.
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CHAPTER 2

Previous Work

The OSU rolling robot is characterized by three principal traits that describe its form

and function. Namely, the robot is (a)a loop that generates torque by (b)changing

its shape in order to (c)achieve locomotion that is partially gravity powered. The

first of these traits refers to the ribbon-like shape of the robot outer surface, which

causes it to roll in a straight line as if it were on a restrictive track. This trait

differentiates motion of the robot from that of spherical rolling robots, for example,

that are typically not restricted to roll in any one direction. The second trait, shape

changing, means the OSU robot generates roll torque by morphing it’s overall form,

something that sets the OSU rolling robot apart from traditional walking or wheeled

robots whose parts are essentially spinning, rigid bodies. The third trait refers to the

falling/rolling motion that is germane to controlled locomotion of the robot. This

trait differentiates the robot from other locomotion styles that do not leverage the

gravity force in a significant way to produce motion. These traits designate areas of

previous work upon which the OSU rolling robot draws, and they are reviewed in this

chapter.

Locomotion via gravity power has previously been studied as a field of interest

in biomechanics. In [17], Mochon and McMahon presented a mathematical model of

human gait using a notional three-link machine with muscles. It was assumed the

muscles acted only to periodically configure the gait, leaving the machine to move

entirely under the force of gravity for most of its motion. Others [18, 19] investigated

gaits in which gravity alone generated motion of simple link-composed machines down
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a slanted ramp. Authors of [17]-[19] point to the simplicity and efficiency of gravity

powered gaits, and the authors of [18] and [19] suggest that power and control could

be added using small, strategically timed energy inputs that do not interrupt the

machine’s natural motion. Although the OSU rolling robot is not a simple, linked

machine, the concept of applying strategically timed inputs during a gravity-powered

gait is, in essence, how the OSU rolling robot works.

One of the earliest projects that pursued the idea of changing robot shape to

produce a gravity-powered gait was performed by Lee and Sanderson in [20]. In that

study, researchers formulated a model of a notional rolling truss, dubbed Tetrobot,

that was composed of interlinked strut-and-node sections. By changing lengths of

certain struts, the truss was repeatedly reconfigured into a shape that tipped and fell

onto an adjacent side, thereby sustaining a continuous yet stuttered rolling locomo-

tion. Timing of the reconfiguration was automatic and was based on node position

feedback. Although the research performed by Lee and Sanderson did not include

documented implementation, the idea of driving a rolling robot via shape change had

largely been unexplored in previous robot studies.

Since Lee and Sanderson’s work, researchers have developed various systems that

change shape as a means to leverage the gravity force and ultimately produce rolling

locomotion [6, 15, 13, 21]. Most of these newer systems are faster and more sophisti-

cated than the Tetrobot. What’s remarkable about shape changing rolling robots is

that traditional actuation systems, such as motorized wheels or limbs, are foregone

in favor of newly developed actuation systems, such as electroactive polymers [21] or

SuperBot modules [15], that bring about profound changes to robot shape in order

to produce locomotion. Rather than having a part of the robot dedicated to spinning

while another part is dedicated to actuation or framing, the deformable parts of shape

changing robots can act, for example, as frame, wheel and actuator all-in-one. The

resulting styles of locomotion exhibited by shape changing, rolling robots are often
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Figure 2.1: A representative illustration of the rolling motion of the Tetrobot truss. By
changing lengths of certain struts, the truss changed into a shape that repeatedly tipped
and fell onto an adjacent side. Image is from [20].

awe-inspiring as well as operationally efficient [6, 21].

With the rise in popularity of modular robotics, several rolling robots have been

developed using SuperBot [2, 15] or CKBot [6] servo motor modules. In these module-

composed robots, six or more modules are stacked end-to-end to form a loop. Each

module in the loop has a set of sensors, and each module moves with respect to

neighboring modules via individually controlled servo motors [2, 15] that are set into

each module. When merged into a loop, the resulting system of stacked modules is

highly configurable and can retain various shapes, allowing roboticists to experiment

with different locomotion strategies and gaits.

Recognizing the potential of the modular platform, Shen et al. investigated motion

of a notional rolling robot composed of six SuperBot modules connected end-to-end in

a loop[10]. The robot had the capability to retain two shapes: a regular hexagon and a

deformed hexagon with a tip-over tendency. Using orientation of the modular sections
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Figure 2.2: The modular robot envisioned by Shen could retain the shape of a hexagon with
a tip-over tendency. Image is from [10].

with respect to the vertical as feedback, model simulations predicted the notional

robot could roll along by automatically switching between its two allowable shapes, as

illustrated in Fig. 2.2. Simulation results of Shen’s rolling robot mirrored those of the

Tetrobot. However, Shen’s work was progressive because it demonstrated notional

capability of a shape changing, loop-shaped robot to perform feedback controlled

locomotion.

In [6], Sastra et al. presented a modular robot that realized the notions proposed

by Shen et al. Sastra’s rolling robot was composed of ten individually motorized

CKBot modules connected end-to-end in a decagonal loop. When configured with a

tip-over tendency, the loop retained a dual-arc shape that resembled the outline of

an on-end American football. On each module of the robot there was a touch sensor

for knowing when a side of the loop was in contact with the ground, so that when the

robot rolled and a side of the decagon touched down, the loop quickly morphed into a

newly configured football shape, now with its long axis aligned closer to the vertical,

and continued rolling forward until the next side of the loop touched down. In this

manner, the rolling loop sustained a dynamic roll using touch sensor information as

feedback. Terminal velocity during experimental rolls was arbitrarily increased or

decreased by changing width of the football shape; a thin, longer football resulted in

faster motion on average than a wider football. Power consumption of the robot was
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Figure 2.3: The CKBot roller developed by Sastra et al. had ten individually motorized
modules connected end-to-end in a loop. Image is from [6].

measured over several trial rolls of the robot, and it was found that efficiency of the

robot locomotion decreased as terminal velocity of the robot increased. The CKBot

roller developed by Sastra et al. is pictured in Fig. 2.3.

Mellinger et al. presented a CKBot roller composed of twelve modules with the

capability to assume elliptical polygonal shapes as it rolled [11]. Three different gaits

were envisioned and implemented on the robot. In one of these gaits, the robot

maintained a constant elliptical shape with a perpetual off-balance orientation while

modules moved around the loop like a tank tread. Researchers implemented two other

gaits that involved changing eccentricity of the ellipse as it rolled. These gaits included

start-up phases where the robot commenced from rest in a stable position and reached

constant angular velocity. During experimental rolls, an external motion capture

system tracked roll angle and angular velocity of the robot, which were communicated

back to the robot and used as control feedback.

Melo et al. presented a model of a notional modular rolling loop with up to

14 modules connected end-to-end. The model assumed an elliptical shape for the

loop and approximated motion of the loop by treating it as an inverted pendulum

[22]. In simulations of robot motion, the loop maintained a constant elliptical shape

with a tilted orientation, while modules moved around the shape like a tank tread,

similar to the off-balance gait demonstrated Mellinger et al. in [11]. The purpose of

the investigation was to see if varying orientation angle of the ellipse would produce
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different terminal velocities of the robot center of mass. Two shapes were used for the

ellipse in the simulations, one which was slightly eccentric and one which was highly

eccentric. Also, the number of modules in the loop was varied. Results showed that,

in theory, orientation angle could be varied in order to produce different terminal

velocities of the rolling robot.

Chiu et al. constructed a modular rolling loop using six SuperBot modules accord-

ing to the vision of Shen in [10]. The robot was programmed to deform its shape in

a manner similar to the gait style proposed in [10]. Using their modular rolling loop,

researchers performed an experiment that measured efficiency by lapping the robot

around an inside building corridor for a total distance of over one kilometer while

voltage in the modules’ batteries was monitored. The robot traveled along a straight

line, and turning was done by manually redirecting the robot. Results showed that

the rolling robot was able to travel 1142.5 m in 54 minutes before at least one of the

modules’ batteries became exhausted.

Sugiyama and Hirai presented a shape-changing rolling robot (Fig. 2.4) that re-

sembled a bicycle wheel with a deformable outer surface that was supported by several

spokes made of a shape memory alloy [7]. When some of the spokes were energized

with electric current, they contracted and deformed the outer surface into an ellipti-

cal shape. By repeatedly applying current to successive spokes, researchers produced

a slow and steady crawling motion. Locomotion of the robot was not categorized

as dynamic; however, this research demonstrated that specialized materials could be

used to compose and actuate a rolling robot with a shape changing, continuous outer

surface.
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Figure 2.4: The shape changing rolling robot presented by Sugiyama and Harai had a
deformable outer surface with spokes made of a shape memory alloy that contracted with
current. Image is from [7].
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CHAPTER 3

System Design and Modeling

This chapter describes the physical characteristics of the OSU robot, how it works,

and how it is modeled. The first section provides general description of the robot,

including details about its outer surface and the actuator that causes it to change

shape. Because the robot control system relies on measurements taken onboard, at-

tention is given to the robot sensors in the second section. Mathematical modeling of

the robot, described in the third section, is attained through establishing a coordinate

system that quantifies robot motion, constructing a free body diagram, and applying

Newton’s Second Law to formulate differential equations of motion. Static bending

of the outer surface and rolling resistance is included in the model, as well as charac-

terization of the actuator, which is achieved through high speed video measurement.

Detailed description of the robot velocity control system is included in the fifth sec-

tion, and the last section describes a computer program, based on the mathematical

model of the robot, that is developed to simulate controlled motion of the robot.

3.1 Robot General Description

The outer surface of the rolling robot is a flat, 0.318 cm by 5.1 cm, strip of polyvinyl

chloride plastic put into the shape of an open, elliptical cylinder with a perimeter

of 2.095 m (Fig. 1.1). The cylinder is firm enough to provide a steady, dynamic roll

surface for the robot yet limber enough to be significantly reshaped by the pull of a

servo motor located inside the volume of the cylinder. On a smooth and level floor,

the robot rolls in one direction along a straight path without leaning to the side or
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tipping over. Where the robot meets the floor, the outer surface bends slightly under

the weight and motion of the robot. Total mass of the robot is 0.950 kg.

Contained onboard the robot and inside the cylindrical outer surface are a mi-

croprocessor board, inertial measurement unit (IMU) board, two rechargeable 9 V

batteries, mechanical switches that measure angular position of the robot, a linear

actuator, and an electrical energy sensor whose components are set mostly in a plastic

breadboard. There is also a radio transmitter, an radio frequency module [23], that

sends data regarding the robot locomotion to a receiver-equipped, external laptop

computer for further analysis. The microprocessor [24] reads position, angular veloc-

ity, and energy data from the sensors. Using angular position and angular velocity

as feedback, the microprocessor brings about shape change of the robot outer surface

in order to affect velocity.

3.2 Batteries

The two 9 V batteries that power the robot are EBL’s “high volume” 6F22 model [25],

a rechargeable lithium battery with a capacity of 600 mA. The batteries are attached

to the robot via Velcro, so they can be easily removed for recharging and then be

reattached. When power in the batteries is depleted, the batteries are removed from

the robot and placed into a dual-receptacle recharging unit that plugs into a standard

120 V electrical outlet. There is a light-emitting diode (LED) on the charger, one

for each receptacle, that turns on when a battery is placed into unit for recharging.

According to instructions that come with the batteries/charger, the LED stays at

full brightness until voltage of the battery reaches 8.1 V. Then the LED dims as the

battery is further charged, until it finally turns off when the battery is fully charged

at approximately 8.45 V. Using the charger, it takes about 3 hours to fully recharge

two moderately depleted batteries simultaneously.

A series of test is performed in order to know the level of performance of the
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EBL batteries and demonstrate that they are suitable for powering the robot during

experimentation. With the EBL batteries fully charged and connected in parallel to

the robot system as in the circuit diagram of Fig. 3.9, fifty trial rolls are performed

with the robot consecutively without recharging the batteries. (The trial rolls are

conducted in a manner that is identical to the procedure for trial rolls performed in the

primary experiment described in Section 4.6.) Energy consumed by the servomotor

for each of the fifty rolls is measured by an onboard energy sensor (Section 3.4.3)

and transmitted to a laboratory computer where the data is saved. After the test is

completed, the batteries are fully recharged and the motor is allowed to cool to room

temperature. The test is then repeated in this manner two more times for a total of

three tests. Using saved information from the three tests, energy consumed is plotted

versus trial roll number for each test. In Fig. 3.1, the three plots are placed on a

singular graph, in which axis grid lines are separated by one joule and the plots are

arbitrarily shifted vertically with respect to one another so that each plot can be seen

clearly.

Referring to Fig. 3.1, plots for the three tests show that energy consumption rises

relatively quickly during the initial ten, or so, rolls. This rise is likely due to sudden

temperature change of the motor [26]. After the initial ten rolls, however, energy

consumption levels out to a constant value, on average, for a span of about 30 rolls.

For the last 10 rolls, energy consumption slightly decreases on average in all three

tests. Overall, it is clear from the plots that the EBL batteries provide a strong and

steady source of energy with no sudden spikes recorded during the tests. In fact,

energy consumed by the servo motor changes by no more than one fourth of a joule

from roll to roll in any given test, and this change is less than one percent of the total

energy consumed by the servo motor during a typical trial roll in the test.

As part of the process of choosing batteries for powering the OSU rolling robot,

the testing procedure outlined above for the EBL batteries is performed using other
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Figure 3.1: Three, fifty-roll tests of the robot powered by EBL 9 V batteries shows that en-
ergy consumed by the servo motor levels out after the initial ten trials. Plots are arbitrarily
shifted, and axis grid lines in the graph are separated by one-half joule.

types of batteries: a pair of rechargeable nickel-metal hydride (NiMH) batteries, a

pair of non-rechargeable lithium-ion batteries, and a pair of non-rechargeable alkaline

batteries. Results from these additional battery tests are summarized as follows. The

NiMH batteries are heavy and do not have sufficient energy capacity, so they are

rejected. Non-rechargeable lithium-ion batteries are lightweight and have relatively

high energy capacity, but they discharge capriciously and cannot be recharged/reused,

so they are rejected. Regular alkaline batteries possess sufficient energy capacity and a

very flat discharge characteristic, but they are heavy and cannot be recharged/reused,

so they are rejected.

The EBL batteries are chosen for use on the rolling robot, because they possess

a set of superior characteristics that no other singular battery, at least among the

batteries that were tested, possesses. Namely, the EBL batteries have good charging

cycle life [27], so their performance is repeatable over several thousand trial rolls of

the robot [25]. The EBL batteries are also lightweight with a mass of only 26 grams

each. In comparison to a pair of nickel-metal hydride batteries, for example, a pair of

EBL batteries is 20 grams less in mass, and this difference makes a noticeable impact
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Figure 3.2: The EBL batteries provide a steady and long-lasting source of energy in com-
parison to the NiMH batteries tested.

on performance of the robot; even though performance design is not the aim of the

research herein, having a rolling robot that is lightweight facilitates experimentation

in general. Furthermore, as previously discussed in reference to Fig. 3.1, the EBL

batteries have excellent energy capacity. To give an idea of the superiority of the

EBL batteries in this respect, Fig. 3.2 shows a graph with plots of energy consumed

versus trial number for the NiMH batteries and for the EBL batteries. Not only

are the EBL batteries more energetic in general, but they provide an extraordinarily

steady and long-lasting source of energy in comparison to the NiMH batteries. Lastly,

the EBL batteries provide steady discharge [27] as shown by the nearly linear plot

in Fig. 3.2. For the research performed herein, these latter two characteristics are

imperative, because locomotion of various control strategies is compared according

to energy consumed by the servo motor in the primary experiment (Section 4.6),

so if energy were characterized by unpredictable spikes, or if frequent pauses were

necessary for recharging the batteries, adverse uncertainties would be introduced,

and the comparisons would be inconsequential.
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Figure 3.3: Shape change of the robot is achieved by means of a linear actuator that alters
distance between end-joints that are epoxied to the inside of the outer surface.

3.3 Linear Actuator

Outer surface shape change is achieved via a linear actuator whose form is illustrated

in Fig. 3.3. The actuator possesses two sets of telescoping columns comprised of

interlocking male and female aluminum tubes. The tubes are secured by end-joints

(Fig. 3.4) that are epoxied to the inside of the outer surface, creating an equal division

of the outer surface perimeter. A servo motor, Hitec’s HS-645MG [28], is fixed to

a plastic support frame, which in turn is fixed to the female tube of one telescoping

column. The motor is equipped with a pinion gear, whose angular position is governed

by the microprocessor. Fastened to the female tube of the other column is a rack gear

that meshes with the pinion gear. As the motor turns, the pinion gear displaces

the rack, causing the end-joints to move away from (or towards) each other, thereby

changing the outer surface shape. When the actuator is not being commanded to

move, its static holding force maintains a constant cylindrical diameter of the outer

surface. A third telescoping column, orientated in a perpendicular fashion relative to

the linear actuator columns, is comprised of male and female tubes whose ends are

secured to the inside of the outer surface. This third column, seen in Fig. 1.1 and in

Fig. 3.5, is not a powered actuator. Rather, it serves as an air displacement damper

to limit vibration and bending of the outer surface (Section 3.5.1).

The IMU board is mounted to the plastic support frame of the servo motor, and

the 9 V batteries are attached to the servo motor housing with Velcro, so they can

be easily removed for recharging and then reattached. The microprocessor and the
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Figure 3.4: One side of an end-joint firmly holds the telescoping columns of the linear
actuator, and the other side is epoxied to the inside of the outer surface.
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Figure 3.5: Various hardware items located inside the outer surface are fixed to the tele-
scoping columns of the linear actuator.

plastic breadboard are fixed to the rack column. Hardware items mentioned here

are pictured close-up in Fig. 3.5, and the IMU is discussed further in Section 3.4

and pictured in Fig. 3.7 and Fig. 3.8. Collective mass of the components that move

with the rack column (breadboard, microprocessor) is approximately equal to the

collective mass of the components that move with the pinion column (servo motor

with support frame, batteries); and these component sets are fastened in such a way so

their centers of mass are radially opposed in reference to the axis of the outer surface

cylinder, regardless of elongation of the actuator. Consequently, the robot center of

mass remains approximately at the same location, at the axis of the cylinder, even

as the robot changes shape, as illustrated in Fig. 3.6. While a constant center of

mass location is not necessary for locomotion of the robot, it allows motion to be

rotationally consistent and simpler to model and predict.
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+ 

(a) As the pinion gear turns counterclock-
wise, the telescoping columns push-out
against the outer surface.

+ 

(b) As the pinion gear turns clockwise, the
telescoping columns squeeze the outer sur-
face together.

Figure 3.6: Simplified representation of the robot illustrating that center of mass, symbol-
ized by a cross, remains at the axis of the outer surface cylinder regardless of linear actuator
length.

3.4 Onboard Sensors

The rolling robot measures its angular velocity and angular position, and these values

are used for feedback control. Angular position is measured with mechanical switches,

and angular velocity is measured with a gyroscope. The robot also measures current

and voltage at the servo motor by means of a specially designed circuit, and uses

these values to compute energy consumed per unit roll distance, which is the central

measurement made in the primary experiment described in Section 4. Measurement

of current and voltage, along with computation of energy, are performed by electrical

components that are collectively called the energy sensor. These three sensors –

mechanical switches, gyroscope and energy sensor – are described in this section.

3.4.1 Gyroscope

The gyroscope used onboard the OSU rolling robot is ST Microelectronics’ L3GD20

angular rate sensor [29], a 3−axis micro-electrical-mechanical gyroscope in a coin-
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Figure 3.7: The IMU board employed on the rolling robot is coin-sized with a mass of 4
grams. Axes of the gyroscope are defined on the board.

sized IMU breakout board [30]. The L3GD20 gyroscope is extremely lightweight,

low-power and inexpensive [14]. As employed on the robot, the L3GD20 is not altered

from its factory calibrated state with a 16 bit-rate data output with a full-scale

limit of 500 degrees per second [29]. According to ST Microelectronics, the L3GD20

is insensitive to linear acceleration and vibration as it measures angular rate [31].

This characteristic heavily influenced the choice of using the L3GD20 onboard the

rolling robot, because the gyroscope employed therein will undergo a combination

of rotational and translational motion, yet it must continually feedback accurate

measurements in order for the control system to be effective.

The IMU board that houses the L3GD20 gyroscope is powered by 3.3 V and

communicates with the CPU via a two-pin I2C bus [32]. Orientation of the gyroscope’s

three axes are defined on the IMU board, as pictured in Fig 3.7. The board is fixed

to the rolling robot servomotor housing (Fig 3.8), so that the gyroscope’s x-axis is

parallel to the cylindrical axis of the outer surface, which is also the roll axis of the

robot. Electronic connections between the IMU board and microprocessor are shown

in the circuit diagram in Fig. 3.9.
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Figure 3.8: IMU board, marked here with a circle, is fixed to the servomotor housing.
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Figure 3.9: Circuit diagram showing connections of the rolling robot electronic components.
Light gray-colored integrated circuits are main components of the robot energy sensor.
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(a) Switch is unactivated. (b) Switch is newly activated as A en-
ters the vertical position.

(c) Switch snaps back and is again un-
activated.

Figure 3.10: Position of the robot is established by mechanical switches fixed to the inside
of the outer surface. As the robot rolls to the left (progression is a-b-c) a mechanical switch
is activated, momentarily establishing angular position of the robot to the microprocessor,
and then released.

3.4.2 Position Switches

Angular position of the rolling robot is measured using two mechanical snap-action

switches, fastened to the inside of the outer surface, that are activated by rotating a

spring-loaded lever arm. When not activated, the lever arm switch extends beyond

the outer surface, so that as the floor and outer surface meet near the position of a

switch, the lever arm gently presses against the floor until the switch is activated. As

the robot continues to roll, the switch moves up and away from the floor, and spring

action of the lever arm eventually causes it to snap back to its default, inactivated

position.

The two mechanical switches are part of an electrical circuit with a digital voltage
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line that’s read by the onboard microprocessor (Fig 3.9). The circuit is designed so

that when both switches are in the default position, voltage in the digital line is high.

However, when one of the switches meets the roll surface and is activated, voltage in

the digital line momentarily goes low. The mechanical switches are positioned along

the outer surface in a manner such that activation occurs whenever A is in the vertical

position. Therefore, by keeping track of when and how many times voltage goes low

in the switch circuit during a roll, and as long as initial angular position is known,

the microprocessor establishes angular position, θ (defined in Section 3.5), every half

rotation of the robot. By way of example, if the robot commences from the −25◦

position, θ is established at −180◦, −360◦,−540◦, −720◦, etc. If the robot commences

from −270◦, θ is established at −360◦ and at every half turn thereafter.

3.4.3 Electrical Energy Sensor

An electrical energy sensor that computes energy used by the servo motor is designed

and employed onboard the rolling robot. At the heart of the sensor is a highly accurate

current sensing chip, Maxim Integrated’s MAX4071 [33], that works in cooperation

with a 0.10 Ω, 1% tolerance sense resistor placed in series between the motor power

supply, a regulated 5 V output from the microprocessor, and the motor load [34, 35].

Components and connections of the energy sensor are shown in Fig. 3.9, mostly in

the top left corner of the circuit diagram. The MAX4071 accepts voltage across

the sense resistor, amplifies it, adds a constant, and outputs the resultant voltage.

This output voltage, which is representative of current that flows through the sense

resistor and into the motor, is passed through a voltage divider and finally received

at an analog-to-digital converter on a microprocessor [36] that is dedicated to energy

computation and is separate from the main microprocessor. In a similar manner,

voltage at the positive lead of the servo motor is scaled using a voltage divider and

then passed to a second analog-to-digital converter on the dedicated microprocessor.
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For discussion purposes, these voltages that are received by the microprocessor are

dubbed V1 and V2.

The linear actuator on the rolling robot (Section 3.3) moves by means of a servo

motor that is documented as having a pulse refresh width of 20 ms [37]. In order to

verify this characteristic, a test is performed in which the robot is secured in the θ = 0

orientation to a sturdy horizontal surface, and the linear actuator is programmed to

perform a back-and-forth motion profile, similar to profiles that would be carried out

by the actuator during controlled, rolling motion of the robot. While the test profile

is executed, V1 and V2 are observed using a digital storage oscilloscope with a sample

rate of at least 100, 000 Hz, and it is confirmed that waveforms of V1 and V2 have

periods of 20 ms. Example portions of V1 and V2 saved by the digital oscilloscope at

different times during the motion profile are plotted in Figures 3.11 and 3.12.

Referring to Fig. 3.11, the waveform of V1 is a rectangular pulse with a lower

baseline of approximately 0.80 V, which corresponds to a state of zero current of the

servo motor. Above this baseline, servo motor current is positive, meaning current

flows from the batteries into the servo motor. However, due to back electromotive

force of the servo motor [38], sometimes current becomes negative, meaning it flows

from the motor into the batteries. When current is negative, V1 dips below 0.80

V. A few occurrences of negative current are seen in the plot of V1 in Fig. 3.11 as

downward voltage spikes at the leading and trailing edges of the rectangular pulses

in the left side of the graph. These occurrences are so short-lived and infrequent that

they are ignored by the sensing program, i.e. when V1 < 0.80 V, servo motor current

is assumed to be zero.

Width of the rectangular pulse in the V1 waveform is observed to vary from roughly

3 to 20 ms over the full motion profile, and this variation depends on whether the

motor is holding or spinning. When spinning, the waveform looks like the far left

pulses in Fig. 3.11 that are relatively tall and wide; and when the motor is holding,
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the pulse gets shorter and thinner, like the pulse at the far right side of the plot. If

pressure in contraction or extension is put on the linear actuator while it is holding,

the waveform stays the same, except the width of the waveform increases. Similarly

for V2, the waveform varies depending on whether the motor is holding or spinning.

When spinning, the V2 waveform looks like the plot on the left side of the graph in

Fig. 3.12, in which voltage periodically dips below the baseline level of approximately

3.40 V. When the motor is holding, the V2 waveform remains higher on average, like

the form of the voltage plot on the right side of the graph in Fig. 3.12. If pressure in

contraction or extension is put on the linear actuator while it is holding, the waveform

stays the same, except the width of the waveform increases.

During operation of the rolling robot, a computer program (Listing 1 in the Ap-

pendix) running on the dedicated microprocessor samples V1 and V2 five times every

millisecond, amounting to 100 samples per pulse refresh width of the servo motor.

The program converts the digital values of V1 and V2 into floating point values, and

then in order to undo voltage division performed in the circuit, the program scales V1

and V2 to obtain output of the MAX4071 chip and servo motor voltage in units of

volts. As explained in Section 4.6.4, servo motor current, expressed by Equation 4.29,

is a function of MAX4071 output voltage. Using that equation, the program solves

for servo motor current and subsequently multiplies current and servo motor voltage,

resulting in electrical power input to the servo motor [38] in watts. This sample and

power computation process is repeated every cycle of the sensor program.

Battery power supply voltage varies from about 8.45 V at full charge to about

8 V when the actuator noticeably slows and the batteries must be removed to be

recharged. Due to this significant variation in power supply, Pololu’s S8V 3A voltage

regulator [39], is employed on the energy sensor circuit. The S8V 3A regulator accepts

battery voltage as input, steps-it-up to 9 V, and delivers it to the MAX4071, ensur-

ing that even when the batteries have significantly discharged, the MAX4071 still
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Figure 3.11: Voltage that is representative of servo motor current has a rectangular pulse
waveform with a period of 20 ms. This voltage is sampled by the energy sensor 100 times
per period.

2.6

2.8

3

3.2

3.4

3.6

M 50.0 ms

V
2 [v

ol
ts

]

Figure 3.12: Voltage that is representative of servo motor voltage has a waveform with a
period of 20 ms. This voltage is sampled by the energy sensor 100 times per period.
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receives a constant, proper supply of 9 V. In fact, in extreme cases when the batteries

have discharged well below 7 V, which is the lowest recommended input voltage of

the main and dedicated microprocessors [24, 36], both microprocessors would auto-

matically shut off before supply voltage to the MAX4071 would drop below 9 V.

In as much as clipping of MAX4071 output voltage becomes an issue as its supply

voltage dips below 8 V [33], this voltage regulation strategy guarantees that current

measurement remains accurate within the error limits reported by the manufacturer

for the MAX4071 chip [33].

At every cycle of the sensor program, average power of the servo motor is computed

for the present and previous cycle of the program. The average is then multiplied by

the program’s sample period to give energy consumed by the motor in the span of

one sample period of the sensor program [40]. A running sum of consumed energy

is computed, resulting in total electrical energy used by the servo motor. At every

tenth of a second after the sensor program has begun, total energy is saved as an

element in an array, thereby logging total energy as a function of program runtime.

When commanded by the main microprocessor program, the sensor program passes

elements of the total energy array from memory on the dedicated microprocessor to

the main microprocessor via an I2C serial bus [32] along the serial clock and serial

data (SCL and SDA) lines [32] as shown in Fig. 3.9.

3.5 Robot Kinetic Model

A two-dimensional model of the robot is developed, in which the outer surface is

a modified ellipse that rolls in one direction along a straight line in the horizontal-

vertical plane. A laboratory-fixed Cartesian coordinate frame, XY , is established as

the roll plane with X as the floor line. A dual-view illustration of the robot model

situated in the XY coordinate frame is shown in Fig. 3.13. A moving coordinate

frame, AB, is attached concentrically to the outer surface ellipse and rolls with it.
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Figure 3.13: Rolling robot model is composed of an elliptical outer surface and point masses
representing hardware components.

Axis A is placed along the line of motion of the actuator. Lengths a and b of the

elliptical semi-major axes are measured along A and B, respectively.

Two pairs of radially opposed point masses located inside the ellipse on A represent

the two hardware sets that are fixed to the columns of the linear actuator, as described

in Section 3.1. The inner points on A each have a mass of mip = 0.125 kg and are

fixed at distance, dip = 0.022 m, from the ellipse as shown in Fig. 3.13. The two outer

points on A represent the end-joints described in Section 3.1, and each have a mass

of mop = 0.015 kg and are fixed on the ellipse. In addition, there are two points on

B, each with mass mad = 0.020 kg, that represent the telescoping air displacement

column. Points mad are placed a distance of b/2 from the neighboring section of

the outer surface. Finally, there are four radially opposed hardware point masses

placed on the outer surface ellipse. (These points are described in more detail in

Section 3.5.3.) Center of mass of the robot is located at the intersection of A and B.

A free body diagram for the robot with the normal force, N , and traction, T , is

shown in Fig. 3.14. Both forces act on the robot at the point where the outer surface

ellipse makes contact with X, designated as the touchpoint. The value, xe, is the

horizontal position of the touchpoint with respect to the center of mass, and yc is

the vertical distance from X to the center of mass. The angle defined by the positive
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Figure 3.14: The outer surface can be modeled as a rolling ellipse with no bending.

branch of A and the vertical line passing through xe is the roll angle of the robot,

θ. (In keeping with the right-hand rule mnemonic [40], θ is negative with clockwise

rotation.) By observing that X is equivalent to the tangent line of the ellipse at the

touchpoint, the following expressions are derived for xe and yc [11]:

xe =
(a2 − b2)cosθsinθ√
a2cos2θ + b2sin2θ

(3.1)

yc =
√
a2cos2θ + b2sin2θ (3.2)

3.5.1 Static Bending of the Outer Surface

When the actual robot is held by its actuator, so the outer surface is not in contact

with the floor, its shape is almost perfectly elliptical. However, as soon as the robot

is placed on the floor, the outer surface bends from its elliptical shape under weight

of the robot. The bending is static, meaning that it occurs when the robot is not

moving. Static bending of the robot is especially noticeable when the actuator is in an

off-vertical angular position, in which case it is observed that in the general area where

32



the robot contacts the floor, there is no easily distinguishable touchpoint, in contrast

to the elliptical model of Fig. 3.14, where the touchpoint is easily distinguishable.

Instead, the robot exhibits a touch segment, along which there is a distributed normal

load, as illustrated with exaggeration in the diagram in Fig. 3.18. Also, it is observed

that when the robot is placed onto the floor, the robot center of mass droops to a

lower position than where it would be if the outer surface were completely rigid.

Establishing accurate placement of the normal and traction forces relative to the

robot center of mass is critical to the model, and these distances are affected by

bending of the outer surface. With this in mind, modifications are made relative to

xe and yc in order to take into account the observed effects of static bending of the

outer surface. Instead of being located at yc, the center of mass is shifted to yc − d

from X; and instead of xe, the normal load – assumed to be concentrated at one

central point – is shifted to xe + ∆x from the center of mass. The ∆x and d terms

can be thought of as changes to xe and yc brought about by static bending of the

outer surface. The modified locations of the center of mass and the normal force are

expressed as new variables:

xd = xe + ∆x (3.3)

yd = yc − d (3.4)

In order to quantify ∆x and d, a test is performed. The robot is fixed in the circular

configuration, and the center of the outer surface cylinder is indicated with a fiducial

marker. The robot is then set on a sturdy horizontal surface and allowed to rest in the

θ = 0 orientation, which is measured with a highly accurate digital level. A digital

camera is situated with its optical axis parallel to the cylindrical axis of the outer

surface, and a picture is taken with the camera. The image is subsequently uploaded

to image analysis software [41], in which a Cartesian coordinate system is assigned,

and distances on the images are calibrated using a pixel-to-actual-distance ratio.

33



Figure 3.15: Image analysis software, through a pixel-to-actual-distance ratio, facilitates
measurement of real parameters related to static bending of the robot.

Distance from the fiducial marker to the center of the touch segment is measured

along the horizontal and vertical directions, giving xd and yd, respectively. This

process is repeated for robot orientations of −22.5◦, −45◦, −67.5◦, etc., up to and

including −360◦. (Figure 3.15 shows a screen shot from the image analysis software

for one of these orientations.)

If the robot were to have a perfectly round outer surface in which no bending

occurred, measured values of xd and yd would be equal to xe and yc given by Equa-

tions 3.1 and 3.2 for a = b, which are 0 and 0.3335 m, respectively. The differences,

then, between these values and measured values of xd and yd are simply ∆x and d for

the case in which the outer surface is circular. Delta x and d are calculated in this

manner for each orientation in the test. Results of the test are shown in Figs. 3.16 and

3.17, in which points for ∆x and d are plotted versus the angular position parameter,

ψ = −rem(θ, 360◦).

Referring to the plotted points of d in Fig. 3.16, the vertical drooping pattern of

the center of mass is shown to be approximately symmetric about ψ = 180◦ and has

a frequency of two cycles per revolution of the robot. This observed symmetry is a

reasonable result, given the symmetric build of the outer surface about A. The idea of

symmetric bending is further supported by the fact that average values of d between
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Figure 3.16: Measured values of d compared to model prediction.
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Figure 3.17: Measured values of ∆x compared to model prediction.
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0◦ and 180◦ and between 180◦ and 360◦, measured to the nearest whole millimeter,

are both 7 mm. In light of these results, d is modeled by the function, Λ|sinψ|, where

Λ is constant. This function is chosen because it is symmetric about 180◦, and it has

a plotted shape that’s similar to the collection of points measured for d. In order

to best-fit the function to the d data points, Λ is iteratively varied until the largest

difference in magnitude between the function and measured values of d is minimized,

resulting in Λ = 0.0093 and

d = 0.0093|sinψ| (3.5)

Equation 3.5 is plotted versus ψ on the same graph with measured values of d in

Fig. 3.16. The largest magnitude of difference between ψ and measured values of d

is 2.0 mm.

Referring to the plotted points in Fig. 3.17, ∆x is mostly negative for ψ < 180◦

and positive for ψ > 180◦. At 90◦, 180◦, and 270◦, ∆x is always measured to be zero,

and this result is due to construction of the robot that prohibits horizontal bending

at these orientations of the robot. In general, the horizontal bending pattern causes

the robot to be slightly clockwise torque-biased when rolling on one half of the outer

surface, and slightly counterclockwise torque-biased on the other half. Perhaps this

bias is due to the center of mass being located slightly to one side of A in the circular

configuration, rather than precisely on A, or perhaps other construction imperfec-

tions cause the outer surface to bend unevenly over all. In any case, characterizing

the ∆x bending pattern is problematic due to difficulty in measuring the location of

the touch segment midpoint along the horizontal; even when using magnified images

from the digital camera to measure the midpoint location, is believed that individ-

ual measurements potentially have several millimeters of error. What is reassuring,

however, is that overall bending is measured to be antisymmetric about ψ = 180◦, at

least on average, so that torque gains made on one half of the outer surface are lost

on the other half. Specifically, the average value of ∆x corresponding to ψ < 180◦ is
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−4 millimeters, and the average value of ∆x corresponding to ψ > 180◦ is 4 millime-

ters. For this reason, the function chosen to represent ∆x, expressed in Equation 3.6

below, is antisymmetric; and it also has ∆x = 0 at ψ = 0◦, 90◦, 180◦ and 270◦, since

∆x is measured as zero at these four orientations of the robot.

∆x =

 0.005|sin2ψ| if 0 ≤ ψ < 180◦

−0.005|sin2ψ| if 180 ≤ ψ < 360◦
(3.6)

The amplitude, 0.005, is chosen so as to minimize the sum of differences between the

function and measured values of ∆x over one full rotation of the robot. In Fig. 3.17,

the function is plotted versus ψ, and measured values of ∆x are included on the same

graph.

3.5.2 Free Body Diagram

A full free body diagram for the rolling robot, with bending of the outer surface, is

developed and shown in Fig. 3.18. The definition for roll angle of the robot remains

the same as defined previously in this chapter. Now, however, the touchpoint position,

S, is located at a horizontal distance, xd, from the center of mass. As before, T and

N act at the same location, S, on X. Vertical distance from X to the center of mass

is now yd. Touch angle, σ, is defined as the angle made by the A axis and the line

from the center of mass to the touchpoint. Assuming elliptical shape of the outer

surface, touch angle is related to roll angle by the following equation:

σ = arctan(
xd
yd

)− θ (3.7)

Rolling resistance torque, τr, opposes roll motion of the robot and is further explained

in Section 3.5.5.
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Figure 3.18: The dynamic model includes affects of bending and has three forces acting on
the robot: weight, normal force and traction. The model also includes torque caused by
rolling resistance.

3.5.3 Time-Derivative of Angular Momentum, Ḣ

Angular momentum, H, is derived by modeling the robot as a collection of point

masses that represent the entirety of its hardware components and the outer surface.

In the Section 3.5, robot hardware components are modeled as ten point masses, with

geometry shown in Fig. 3.13. Figure 3.19 shows the geometry of n point masses on

AB representing the outer surface of the robot, indexed as 1 ≤ i ≤ n. The points are

assigned even angular spacing regardless of the shape of the surface – that is, polar

angle of point mass i is expressed as

αi = 2π(i− 1)/n (3.8)

This approximation is valid as long as the outer surface is thin, retains a cylindrical

shape (i.e., bending is minimal) and its eccentricity remains close to one, all of which

38



C 

𝛼𝛼𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 2 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 

𝑟𝑟𝑖𝑖 
𝐴𝐴 

𝐵𝐵 

Figure 3.19: The outer surface is treated as a collection of n points in order to calculate
angular momentum about the robot center of gravity at C.

are true for the rolling robot in question. Radius of point i is

ri =
ab√

a2 sin2 αi + b2 cos2 αi
(3.9)

and ṙi is found by taking the time derivative. According to the previously mentioned

assumption of constant radial spacing for a given point mass, terms that contain α̇

in the expression for ṙi are set to zero, resulting in

ṙi =
(aḃ+ bȧ)(ab/ri)

2 − ab(aȧ sin2 αi + bḃ cos2 αi)

(a2 sin2 αi + b2 cos2 αi)3/2
(3.10)

Time derivative of angular momentum for point mass i about the robot center of

gravity is [42]:

Ḣi = mpr
2
i θ̈ + 2mpriṙiθ̇ (3.11)

where mp is the mass of one point on the outer surface and is equal to 0.610/n kg.

The time derivative of angular momentum for the entire outer surface, designated as

Ḣ1, is calculated by summing contributions from n point masses:

Ḣ1 =
n∑
i=1

mpr
2
i θ̈ +

n∑
i=1

2mpriṙiθ̇ (3.12)

Time derivative of angular momentum for the six hardware point masses on A and
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B in Fig. 3.13, designated as Ḣ2, is calculated in a similar manner, and is given by

Ḣ2 = (2mip(dip−a)2+2mopa
2+2madb

2)θ̈+(ȧ(4mip(a−dip)+4mopa)+4ḃmadb)θ̇ (3.13)

Contribution of the two point masses representing the mechanical switches, designated

as Ḣ3, is

Ḣ3 =
2∑
i=1

mt[r(α = βi)]
2θ̈ +

2∑
i=1

2mt[r(α = βi)][ṙ(α = βi)]θ̇ (3.14)

where mt = 0.010 kg is mass of one of the mechanical switches, and β1−2 are angular

positions of the switches on AB and are equal to 75◦ and 355◦. Ḣ1, Ḣ2 and Ḣ3 are

added to give an expression for the time derivative of angular momentum for the

whole robot:

Ḣ = Ḣ1 + Ḣ2 + Ḣ3 (3.15)

3.5.4 Equations of Motion

Referring to the free body diagram in Fig. 3.18, Newton’s Second Law is applied in

the horizontal and vertical directions and also about the center of gravity, resulting

in three coupled differential equations of motion:

T = Mẍc (3.16)

N −Mg = Mÿd (3.17)

Tyd +Nxd + τR = Ḣ (3.18)

where M is mass of the robot, and H is angular momentum of the robot about its

center of gravity. Assuming no slipping occurs between the outer surface and the roll
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surface, the relationship between the robot center of mass position and arc length is

xc = S − xd (3.19)

and ẍc is found by twice differentiating, giving

ẍc = S̈ − ẍd (3.20)

Touchpoint location, S, is equivalent to the elliptical arc length integrated over roll

angle, plus a constant value [43]:

S =

∫ √
R2 + (R′)2 dσ + C (3.21)

with

R =
ab√

a2 sin2 σ + b2 cos2 σ
(3.22)

R′ =
ab(b2 − a2) sinσ cosσ√
(a2 sin2 σ + b2 cos2 σ)3

(3.23)

The first time derivative of S is found by differentiating Equation 3.21 using the

“differentiation under the integral rule” [44], giving:

Ṡ = σ̇
√
R2 + (R′)2 (3.24)

and σ̇ is found by taking the time-derivative of Equation 3.7, giving:

σ̇ =
1

1 + (xd/yd)2
ydẋd − xdẏd

y2d
− θ̇ (3.25)

The second time-derivative of S in Equation 3.20 is found by numerically differenti-

ating Ṡ. Finally, Equations 3.16, 3.17, 3.18 and 3.20 are combined into one equation
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of motion:

θ̈ =
1

ρ1
(−ρ2θ̇ +MydS̈ −Mydẍd +Mxdÿd +Mxdg + τR) (3.26)

where ρ1 and ρ2 are coefficients of θ̈ and θ̇, respectively, for the Ḣ term in Equa-

tion 3.15.

3.5.5 Rolling Resistance Torque

As part of an investigation into rolling resistance associated with automobiles [45],

wheels with pneumatic road tires were pressed against a flat surface and spun with an

applied torque. As the wheel rolled, the resultant normal force acting on the tire was

measured and found to act a small distance “in front” of the wheel center, instead

of directly underneath it. Given this velocity-induced shift of the normal force, the

author of the investigation derived a mathematical model for a driven wheel with

a pneumatic road tire when rolling on a flat, level surface. The model, illustrated

in Fig. 3.20, shows the tire flattening where it makes contact with the roll surface,

whereby the resultant normal force is displaced a small distance in front of the wheel

center, causing a resistive moment that slows the spinning wheel.

It is observed that during trial rolls of the OSU rolling robot, it behaves like a

pressurized tire in the sense that it flattens in the region of contact with the floor.

For this reason, it is believed the front-shifting tendency of the normal load observed

on spinning pneumatic tires also happens with the rolling robot outer surface, and

this shared quality is deemed essential enough to permit a likening of the outer sur-

face dynamics to the pneumatic tire model given in [45] and illustrated in Fig. 3.20.

However, an important difference is that unlike a loaded pneumatic tire, the outer

surface of the robot is not perpetually flattened as it rolls. For instance, consider

the scenario in which the rolling robot is moving with a constant velocity, and its
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Figure 3.20: In the traditional rolling resistance model for road tires, the resultant normal
force is located slightly in front of the wheel center, causing a moment that resists driven
motion.

linear actuator is instantaneously oriented in the vertical orientation. At this mo-

ment, although the normal force might be very large in magnitude, rolling resistance

is relatively small, because bending of the outer surface is restricted by the linear

actuator, and the resultant normal force vector can therefore not be displaced. For

this reason, a rolling resistance model is sought for the outer surface that maintains

the notion of velocity dependence, but also bases rolling resistance on whether or not

there is bending of the outer surface. When there is no bending of the outer surface

(when d = 0), rolling resistance should be zero. In summary, it is neither bending

nor angular velocity alone that brings about a resistive moment in the rolling robot;

rather, it is the simultaneous presence of both.

With this idea in mind, rolling resistance torque of the outer surface is modeled

as

τR = kRdω
2 (3.27)

where kR is a positive value that changes with ω. This model rightly predicts that

τR = 0 when d = 0 and when ω = 0. Also, because d and ω2 are never negative

during trial rolls, the model rightly predicts that τR always acts in the clockwise
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direction, resisting rotation of the robot whenever it moves and bends. The power

of two on angular velocity causes the model to capture sharp decelerations that are

observed only when the robot moves with relatively high angular velocity. In order

to determine appropriate values of kR, three trial rolls of the robot are performed at

three different steady state angular velocities. In the first of these rolls, the robot

is controlled to reach −2.0 rad/s and continue, on average, at this velocity for eight

seconds. While the roll is in progress, angular velocity of the rolling robot is sampled

using onboard sensing and recorded as a function of time. Afterward, the simulation

program described in Section 3.8 is run, using the same initial conditions as the trial

roll. Values of kR are iteratively used in the program until the simulated response

best matches that of the actual robot. Matching is done by comparing total distance

rolled and plots of angular velocity at steady state. The value of kR used in the best

match simulation is taken as the appropriate model value: 1.6 N/s2. This process is

repeated for −2.2 rad/s, and the appropriate value of kR is found to be 2.1 N/s2. For

−2.4 rad/s, the appropriate value of kR is found to be 1.9 N/s2.

3.6 Rolling Robot Control System

The automatic control system for the rolling robot utilizes roll angle and angular

velocity (θ and ω, respectively) as feedback variables. The goal of the control system

is to cause the robot, starting from rest, to reach and maintain a prescribed step

angular velocity. This goal is achieved through one controlled action: changing length

of the linear actuator as the robot rolls, which in turn changes shape of the outer

surface. When this shape change is strategically timed and executed, robot motion

is repeatedly affected in a way that is similar to how an egg rolls when it’s placed on

end.

Shape change actuation is triggered when a branch of A or B leans into the roll

and passes a certain inclination. When this happens, the robot control system causes
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the linear actuator to either extend or contract, and the shape of the robot is changed.

Upon completion of the shape change actuation, the linear actuator remains at the

newly changed length until actuation is newly triggered. For discussion purposes,

three concepts associated with this control process are designated: the axis whose

position triggers actuation is the trigger axis; the axis positioned perpendicularly

from the trigger axis is the sheer axis; and moments when actuation is newly triggered

are called trigger moments. Every quarter turn of the robot, axes A and B switch

positions (sheer/trigger) at the trigger moment. The sheer axis is thus named due to

its consistently upright position; when actuation comes to completion, the sheer axis

is about to pass or has just passed through the sheer (vertical) orientation.

To help understand how shape change affects speed of the robot, consider the

illustration in Fig. 3.21, in which the rolling robot is shown rolling to the right when

shape change actuation is triggered. The control system responds by changing linear

actuator length along A (the sheer axis in this case), and consequently, the outer

surface eccentricity changes as the robot continues to roll to the right. Roughly a

quarter-turn after actuation commences, two scenarios are considered in the figure. If

a has been made long as A leans into the roll, the robot undergoes an induced torque

imbalance about its center of mass that pushes the robot forward, as illustrated by

the lower ellipse in Fig. 3.21. On the other hand, if a is changed so that ellipse

eccentricity is equal to one, there is no resulting torque imbalance due to offset, and

average speed is not increased.

Shape change actuation is triggered using the concept of tilt. Tilt angle of the

robot is

γ = −rem(θ, 90◦) (3.28)

and can be thought of as the robot forward inclination measured by A or B relative

to the vertical, as illustrated in Fig. 3.22. Tilt angle is used by the control system to

perform two actions. First, a special measurement of angular velocity of the robot,
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Figure 3.21: The moment, Nxd, causes a torque imbalance about the robot center of mass,
affecting roll dynamics of the robot.
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Figure 3.22: As the robot rolls to the right in this illustration, γ is always greater than or
equal to 0◦ and less than 90◦.
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ωm, is initiated when γ newly becomes greater than or equal to the set measurement

angle, θm, which is usually 35◦ for the trial rolls conducted for the primary experiment

documented in Section 4.6. The second action is actuation triggering, which can occur

at the same time as measurement triggering but never before it. Triggering occurs

when γ newly becomes greater than or equal to the set trigger angle, θt.

Upon actuation triggering, the microprocessor prepares for shape change by per-

forming several computations to determine a target length of the linear actuator. The

first of these computations is that of error:

Error = ksωd(t)− ωm(t) (3.29)

where ωd(t) is a desired velocity profile, and ks is a positive constant, slightly larger

than unity, that magnifies the desired velocity in order to compensate for the con-

stant slowing of the robot due to rolling resistance torque (Section 3.5.5). The most

noticeable control effect of ks is to change the average value of angular velocity at

steady-state. With error computed, it is in turn used to compute an intermediary

value of the target length for the sheer semi-major axis, given by

lt = Rc − kf (Error) (3.30)

where Rc is equal to 0.3335 m, the radius of the outer surface while in the circular

configuration, and kf is a positive control constant. If Error is negative (the robot

is rolling too slowly to the right), the control system prepares to elongate the sheer

semi-major axis relative to the circular configuration. If Error is positive (the robot

is rolling too quickly to the right), kf is temporarily set to zero until the next trigger

moment. In the latter case, the robot assumes the circular configuration and is

slowed by rolling resistance alone. Final target length of the sheer semi-major axis

is computed according to a saturation operation that ensures the ellipse stays within
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the physical bounds of the system:

Lt =


smin if lt ≤ smin

lt if smin < lt < smax

smax if lt ≥ smax

(3.31)

where smin and smax are the smallest and largest allowable values of the outer surface

semi-major axis, and they are equal to 0.319 m and 0.349 m.

Since the linear actuator lies along A, if A is the sheer axis, the control system

causes the linear actuator to elongate or shorten so that a is equal to Lt. This

actuation is modeled as an isosceles trapezoidal velocity profile with upper edge length

of ta/2, where ta is the time duration of the profile. Integrating the profile gives a as

a function of roll time, t:

a(t) =


ai + 2Vm

ta
(t− ti)2 if ti < t ≤ ti + ta

4

ai + (t− ti)Vm − taVm
8

if ta
4

+ ti < t ≤ ti + 3ta
4

ai −
2Vm(t−ti− 3ta

4
)2

ta
− taVm

8
+ Vm(t− ti) if 3ta

4
+ ti < t ≤ ta

(3.32)

where ti is roll time when actuation commences, ai is the value of a when actuation

commences, and Vm = 4(Lt−ai)/(3ta). Actuation occurs only if Lt−ai is greater than

0.003 m in magnitude. Otherwise, the linear actuator remains as is, thereby avoiding

moves in which a considerable percentage of the motor’s motion is ineffectual due to

hysteresis. If B is the sheer axis, the control system causes the linear actuator to

elongate or shorten so that b is equal to Lt. In this case,

b(t) =


bi + 2Vm

ta
(t− ti)2 if ti < t ≤ ti + ta

4

bi + (t− ti)Vm − taVm
8

if ta
4

+ ti < t ≤ ti + 3ta
4

bi −
2Vm(t−ti− 3ta

4
)2

ta
− taVm

8
+ Vm(t− ti) if 3ta

4
+ ti < t ≤ ta

(3.33)
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where bi is the value of b when actuation commences, and Vm = 4(Lt − bi)/(3ta).

Again, actuation occurs only if Lt − bi is greater than 0.003 m in magnitude. Other-

wise, the actuator remains as is. In order to move b to the target length, the control

system must move a so that b becomes equal to Lt. Since no simple, exact formula

exists that relates a, b, and ellipse circumference, the Ramanujan approximation [43]

is applied to compute a as a function of time for actuation of A:

a(t) = −8b− 6P/π

12
+

1

12

√
(8b− 6P/π)2 − 24(P 2/π2 − 6Pb/π + 6b2) (3.34)

where P is ellipse circumference. The approximation is highly accurate for the range

of eccentricity retained by the outer surface, so error associated with Equation 3.34

is negligible [46].

3.7 Characterization of the Linear Actuator

As described in Section 3.1, the linear actuator is a positioning device driven by

Hitec’s HS-645MG [28] servo motor, which generates sufficient torque to extend

or shorten the actuator quickly and accurately to its commanded length by means

of a rack/pinion transmission system. The servo motor has a positional range of

motion of approximately 175◦ that translates to an approximate differential range

on the actuator of 5 cm. In the present section, two aspects of the linear actuator

are characterized: the relationship between commanded angular position of the servo

motor and length of semi-major axis, a, after actuation is complete; and the time

required for actuation.

3.7.1 Relationship Between Motor Position and a

A control program (Section 4.2) that’s uploaded and run on the microprocessor gen-

erates a pulse width modulated signal that is sent to the servo motor top control
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its position. Upon receiving the signal, the servo motor’s internal circuitry measures

pulse width, which corresponds to a desired angular position of the servo motor [47],

and equipped with a potentiometer that provides feedback of motor shaft position, a

circuit inside the servo motor independently controls current flowing into the motor,

thereby rotating the motor shaft until it arrives at the desired position. As long as

pulse width of the signal does not change, the motor’s position is held very close to

the commanded position. In the control program, commanded position is written in

units of microseconds.

A series of measurements tests are performed in order to establish a relationship

between pulse width of the commanded position signal, denoted as the variable µ,

and the value of a after commanded actuation is complete. The relationship is needed

in order to know where to move the servo motor shaft once target position has been

computed by the control system (Section 3.6). Before the tests are performed, the

linear actuator is calibrated so that a = 0.3335 m when the servo motor is permanently

set at the commanded position of µ = 1470 microseconds. These values correspond

to the circular configuration of the outer surface and the central position of the servo,

respectively. After calibration, the outer surface of the robot – with its actuator

in the vertical orientation – is clamped to a sturdy lab table and left unhandled.

A program is run on the robot microprocessor in which the servo motor shaft is

commanded to rotate to its positional limit in the counterclockwise direction (µ = 570

microseconds) and hold. At this point, the elliptical diameter along A, which is

equal to 2a, is measured using a ruler, and the motor is commanded to go back to

its central position. In this manner, measurements are obtained for several other

angular positions, including the positional limit in the clockwise direction (µ = 2400

microseconds) and six other, in-between values of µ.

After the eight data points have been recorded, the robot is unclamped from the

lab table, and with the actuator in the horizontal orientation, the robot is reclamped.
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Figure 3.23: For shape change actuation, length of semi-major axis, a, is measured and
plotted for nine values of servo motor angular position, µ. Shown in the graph is the
piecewise linear function developed to model the relationship between a and µ .

The test is then repeated for the same eight values of µ. The process is repeated yet

again with the robot clamped in the θ = 45◦ orientation. Thus, for each value of µ,

three measurement sets of outer surface diameter, 2a, are obtained. An average of

these measurements is calculated, and then divided by two, resulting in one set of

eight data points of the form, (µ, a). The calibrated central point, (1470, 0.3335), is

added to the set for a total of nine data points. These nine points are plotted as open

circles in Fig. 3.23.

Using the method of least squares [48], a best fit line function is determined for

the nine data points. The function is piecewise linear [49] with two segments: the

first segment fits points where µ is less than or equal to 1470 microseconds, and the

second segment fits points where µ is greater than or equal to 1470 microseconds.

By design, both segments contain the point, (0.3335, 1470), which is the calibrated

central point, and this design causes the segmented function to be highly accurate

when the outer surface is circular or nearly circular, such as when the robot is moving

with controlled, steady state velocity. The best fit line function is plotted on the same

graph as the nine data points in Fig. 3.23. The first segment of the function is plotted
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as a dashed line, and the second segment is plotted as a solid line. From the graph,

it is evident that the relationship between µ and a is highly linear. In fact, the best

fit line function predicts the nine values of a with error no greater than one-third of

a millimeter. The function is expressed as:

a =


µ−1470
63900

+ 0.3335 if 570 ≥ µ ≤ 1470

µ−1470
59000

+ 0.3335 if 1470 > µ ≤ 2400
(3.35)

3.7.2 Actuation Time Duration, ta

During initial roll trials of the robot, it is observed that ta is dependent on the

change in a (∆a = af − ai) for the actuation, and on orientation of the actuator

axis, A, with respect to gravity when actuation occurs. In order to confirm these

observations and quantify the effects of actuation length and orientation on ta, a test

is performed in which the outer surface is clamped to a sturdy horizontal surface with

A in the horizontal orientation, as shown in Fig. 3.24. A program running on the

microprocessor directs the servo motor to move to the central position (µ = 1470 m),

hold, and then sweep back and forth in the style of a windshield wiper. Specifically,

the program commands the motor to move to the following angular positions, starting

from the central position, and briefly hold after each move: 1680 ms, 1260 ms, 1943

ms, 998 ms, 2378 ms and 591 ms. As soon as the sweeping profile begins, a light

emitting diode (LED) turns on. Fiducial markers are attached to the outer surface

to identify the extent of the outer surface diameter along A during motion.

A high speed digital video camera is situated with its optical axis parallel to and

roughly centered on the cylindrical axis of the outer surface, and a few seconds before

the servo motor begins the sweeping profile, the video camera starts recording the

motion at 300 frames per second and stops recording after the servo motor shaft

has settled-in to the 591 ms shaft position. The recorded movie is subsequently
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Figure 3.24: In a test to characterize motion of the actuator, the robot is clamped to a
horizontal surface, and a video camera records motion. Image analysis software facilitates
measurements of a by means of two fiducial markers.

uploaded to image analysis software [41] and clipped, so the frame that first shows

the illuminated LED is the initial frame at which profile run time = 0 s. In the image

analysis software, a consistent Cartesian coordinate system is assigned to the movie

frames, and distance on the frames is calibrated using a pixel-to-actual-distance ratio.

For each frame in the movie, the image analysis software automatically locks-in

on the fiducial markers and computes the distance between them, which is 2a. The

software then divides the distance by two and builds a table with a as a function of

run time in 1/300 s intervals. This tabulation process is repeated two more times in

the exact same manner, resulting in three values of a for every 1/300 s interval of

run time. For the purpose of smoothing, the average value of a is taken as the actual

value and is plotted versus run time, as shown in Fig. 3.25. Time duration required

for each move of the servo motor shaft (from hold to hold) is graphically derived from

the plot. For instance, referring to the plot in Fig. 3.25, time duration for the second

move in which a changes from 0.330 m to 0.337 m, takes approximately 0.26 s. This

time duration is indicated on the plot. Graphical measurement of time duration is

repeated in this manner for the remaining moves in the sweeping profile, of which

there are a total of six.
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Figure 3.25: Measured values of a plotted versus actuation time while A is in the horizontal
orientation. Time durations of various linear actuator moves are established using the plot,
as signified for a 0.26 s move.

Table 3.1: Actuation Time Duration

Vertical Diagonal Horizontal

∆a = 0 0 s 0 s 0 s

∆a = −0.0033 m 0.22 s 0.25 s 0.28 s

∆a = 0.0068 m 0.26 s 0.27 s 0.30 s

∆a = −0.0109 m 0.37 s 0.40 s 0.59 s

∆a = 0.0154 m 0.60 s 0.53 s 0.52 s

∆a = −0.0219 m 0.62 s 0.65 s 1.15 s

∆a = 0.0290 m 1.12 s 0.92 s 0.86 s

The process previously described of acquiring three measurement sets of a, averag-

ing them, and plotting to obtain ta for each ∆a in the sweeping profile is repeated for

the robot clamped with the actuator in the vertical orientation and then again with

the actuator in the diagonal orientation corresponding to θ = 45◦. For the diagonal

orientation, the outer surface is held rather than clamped in order to avoid vibration-

induced stress on the end-joints. As a summary of the data collected for these three

tests, Tab. 3.1 provides ta for the various changes in a for three orientations of the

linear actuator. Added to the table in each column is the obvious value of ta = 0 for

∆a = 0. Positive values of ∆a in the table signify extension of the linear actuator,

and negative values signify contraction.
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It is observed from Tab. 3.1 that contractions of the actuator while in the vertical

orientation take the least amount of time relative to other actuations. This result is

expected, since contraction of the actuator while in the vertical orientation amounts

to moving half the robot mass downward in the direction of gravity. Contraction

of the actuator while the in the horizontal orientation is consistently the most time

consuming of all moves, even compared to large extensions while in the vertical ori-

entation. This seemingly odd result can be explained, in part, by the existence of

bending of the telescoping columns of the linear actuator, which creates significant

friction between the male and female tubes during actuation, and which is greatest

when orientation of the actuator is horizontal. In addition, when the actuator is in

the horizontal orientation, outer surface bending puts considerable outward force on

the linear actuator, and this force makes contraction surprisingly difficult. For these

reasons, contraction of the linear actuator, starting from full extension and while in

the horizontal orientation, is the most burdensome and time consuming of all moves

in Tab. 3.1.

Recall from Section 3.6 that actuation of the robot is triggered when axis A or

B leans into the roll past a certain inclination corresponding to θt. For the primary

experiment documented in Chapter 4, the value of θt is changed for each trial roll,

but it is bounded by: 25◦ ≤ θt ≤ 65◦. During controlled locomotion of the robot,

therefore, actuation begins while the actuator is in-between the vertical and horizontal

orientations, and so it is concluded that data points for the “Diagonal” column in

Tab. 3.1 are a reasonable representation of the actuator’s motion in general. The

seven data points from this column are plotted as open circles in Fig. 3.26, and using

the method of least squares [48], a best fit function is determined for them. The

best fit function is piecewise and is comprised of two second order polynomials: the

first polynomial fits points where ∆a is less than or equal to 0 m, and the second

polynomial fits points where ∆a is greater than or equal to 0 m. The expression for

55



−0.03 −0.02 −0.01 0 0.01 0.02 0.03

0

0.2

0.4

0.6

0.8

1

Δ a [m]

t a [s
]

 

 

First Polynomial
Second Polynomial

Figure 3.26: A best fit polynomial function with two segments is fitted to measured data
(circles) and used to model the relationship between actuation time and change in length
of the semi-major axis.

the best fit function is:

ta =

 −792.34(∆a)2 − 44.82(∆a) + 0.0412 if − 0.0219 ≤ ∆a ≤ 0

−113.37(∆a)2 + 36.05(∆a) + 0.0106 if 0 < ∆a ≤ 0.0290
(3.36)

Using Equation 3.36, ta is plotted versus ∆a in Fig. 3.26, along with the seven data

points from the “Diagonal” column in Tab. 3.1.

Equation 3.32, which gives a as a function of roll time, t, is based on the as-

sumption of a trapezoidal velocity profile for ȧ. According to this equation and also

Equation 3.34, a is dependent on ta, so now that an expression for ta has been derived

and given by Equation 3.36, ta can be used in Equation 3.32 and in Equation 3.34 to

predict a as a function of time, given ∆a. With this in mind, the program that directs

sweeping motion of the motor is amended to compute ∆a = af − ai for each move

of the sweep. In turn, ∆a is used in the program to compute the value of ta using

Equation 3.36 and ultimately a at each cycle of the program. The amended program

is then run, and computed values of a are written to a text file every 10 ms. Using

this data, three comparison graphs are constructed. Each graph has computed values
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Figure 3.27: Predicted values of a, along with actual values of a measured during the vertical
orientation test, are plotted versus profile run time.

of a, along with actual values of a measured previously during one of the orientation

tests, plotted versus profile run time. The plots are shown in Figs. 3.27, 3.28 and 3.29,

corresponding to the vertical, diagonal and horizontal orientations of the actuator,

respectively.

In comparing predicted values of a to actual values of a in Figs. 3.27, 3.28 and

3.29, it is evident that predicted values of a more closely match actual values of a

when motion of the actuator is along the vertical and diagonal orientations. For the

several hundred values of a output by the program during the entire sweeping profile,

standard deviation of the magnitude of difference between predicted and actual values

of a are: 0.6 mm, 0.3 mm and 1.5 mm for the vertical, diagonal and horizontal orien-

tations, respectively. The model, therefore, is very accurate on average, especially for

actuations in the vertical and diagonal orientations. Because computed values of a

are derived from data collected while the actuator is in the diagonal orientation, these

result are not surprising. In addition, because friction in the telescoping columns is

highest when the actuator moves along the horizontal orientation, one would expect

motion therein to be relatively capricious and thus more divergent from the predicted

curve than actuation along the vertical.
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Figure 3.28: Predicted values of a, along with actual values of a measured during the
diagonal orientation test, are plotted versus profile run time.
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Figure 3.29: Predicted values of a, along with actual values of a measured during the
horizontal orientation test, are plotted versus profile run time.
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Referring again to the plots in Figs. 3.27 and 3.28, and considering only smaller

moves with ∆a ≤ 2.19 cm, predicted values for a are significantly accurate for the

vertical and diagonal orientations. In fact, for small and medium moves in the profile,

difference between measured and predicted values of a for the vertical and diagonal

orientations is always less than 2.6 mm in magnitude. When including larger moves in

the profile, the difference between measured and predicted values of a for the vertical

and diagonal orientations is always less than 3.6 mm in magnitude.

3.8 Simulation of Robot Locomotion

A Matlab/Simulink computer program is developed to solve Equation 3.26 numer-

ically for θ as a function of roll time. The equation is repeated here for referencing

convenience:

θ̈ =
1

ρ1
(−ρ2θ̇ +MycS̈ −Mycẍd +Mxdÿc +Mxdg + τR) (3.37)

The program code, given in Listing 2 of the Appendix, is a looping structure that

uses initial conditions, such as θ(0) and a(0), to solve Equation 3.37 for θ̈ at the

first pass of the loop. After this first pass, the program “loops back” values that are

needed in order to compute θ̈. As part of the this process, the program checks γ at

each pass to determine if actuation has been triggered, and if it has, a, b, ȧ and ḃ are

changed according to the motion profiles given in Section 3.6; otherwise, a and b do

not change. In either case, updated values of a, b, ȧ, ḃ, ρ1, and ρ2 are looped back,

along with values for θ and θ̇ obtained through numerical integration, and θ̈ is newly

computed. Due to difficulty in finding exact expressions for some of the derivatives on

the right side of Equation 3.37, a numerical derivative algorithm is employed to find

the following values: ẏc, ÿc, ẋd, ẍd, and S̈. Once θ̈ is newly computed, it is integrated

yet again, and the process is repeated until the simulated roll is completed. At each
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Figure 3.30: Graphical representation of the program looping structure illustrates how
values on the right side of Equation 3.26 are “looped back” in order to compute θ̈, which is
then twice numerically integrated.

pass of the loop, motion parameters of the robot, including θ̇, are logged and can be

plotted as a function of roll time after the program has terminated.

A graphical representation of the program’s looping structure is shown in Fig. 3.30.

The representation is limited to show only variables explicitly expressed in Equa-

tion 3.37. At the bottom of the figure, two boxes marked with “
∫
dt” represent nu-

merical integration of θ̈, which the program performs using Simulink’s Runge-Kutta

solver. Boxes with “d/dt” represent numerical derivatives. The main step in the

program, in which the right side of Equation 3.37 is refreshed with updated values to

compute θ̈, is represented by the large central block in Fig. 3.30. A fixed step size of

0.01 s is used in the program to increment roll time, and n = 40 for the number of

points representing the outer surface.
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CHAPTER 4

Experimental Methodology

This chapter describes the preparation and procedure for the primary experiment, in

which laboratory measurements are used to compute energy consumed per unit roll

distance of the robot for various combinations of control parameters. The chapter

is divided into six sections. The first section describes the specially designed track

on which the robot rolls when the experiment is conducted. The second section

describes the computer program run onboard the microprocessor that contains the

control parameters that are varied during the course of the experiment. In the third

section, a test is described in which the strategy for computing angular position of

the robot is evaluated for accuracy. In the fourth section, it is shown that stable

velocity control is achieved by the robot for a range of control parameters. Effects

of outer surface vibration on measurement of velocity are investigated in the fifth

section. Finally, the sixth section describes the primary experiment.

4.1 Roll Track

Trial rolls of the experiment are conducted in Oklahoma State University’s Micro

Aviary Laboratory, a basement room with a concrete floor that measures approxi-

mately 40 by 35 feet. The Micro Aviary room is an adequate place for experimentation

with the rolling robot, because it is large enough and has sufficient open space to per-

form trial rolls of the rolling robot that are at least ten seconds in duration. Two

drains on the floor of the Aviary cause it to be noticeably unlevel at a few spots, but

everywhere else the floor is seemingly level, especially next to the walls away from the
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drains. Levelness, as used here, refers to how closely the floor matches the horizontal

plane [50]; a marble placed at rest on a sufficiently level, glass pane floor would not

freely roll to one side.

The Aviary was not designed for office space or a classroom, so the floor has not

been highly finished and thus contains surface imperfections that make it somewhat

rough and bumpy. Therefore, a rectangular section of laminate flooring is installed on

the concrete floor as a smooth roll track for the robot. Most of the imperfections on

the Aviary floor are rendered unobtrusive by a thin foam underlayment laid between

the track and the laminate flooring flooring. Individual planks measuring 1.8 cm by

121.2 cm by 20.5 cm compose the flooring of the track, which is pictured under the

robot in Fig. 4.1. As seen in the picture, the track is laid against a wall in the Aviary

room where the concrete subfloor is apparently most level. The track is four planks

wide by eight planks long, measuring 0.82 m by 9.70 m overall. Due to manufacturing

imperfections of the flooring, the planks settle at slightly different elevations at the

joints, resulting in several plateau-like bumps on the flooring that run across the

width of the track. These bumps are tiny, and do not have a noticeable effect on the

rolling robot. Wood simulation decals are factory appliquéd as the top layer on each

plank of the track flooring, and the decals are not raised or embossed with faux grain

texture, so the individual planks are very flat. Flatness here refers to smoothness; if

one were to run his hand over a large swath of a very flat floor, he would feel neither

small bumps nor a wave-like pattern of crests and troughs [50].

A test that characterizes flatness and levelness of the roll track is necessary to

ensure that it is not, for example, moderately sloped, a quality that would affect

results of the primary experiment and would also be difficult to confirm using only

naked eye estimation. The measurement test used herein for this purpose is the F-

Number system that’s practiced by concrete flooring contractors who test for levelness

and flatness of industrial floor slabs [50]. The system is a statistical method, typically
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Figure 4.1: Roll track for the robot is a rectangular strip of laminate flooring, measuring
0.82 m by 9.70 m, that’s installed on concrete.

carried-out using a special computerized machine that’s rolled about the floor in

a specific pattern while collecting measurements that are relevant to levelness and

flatness. For the research herein, measurements are taken by hand with a ruler in

a manner that emulates the measurement process performed by the machine. Since

the ruler method diverges from the typical method, and also because the laminate

flooring is not concrete, the method provides only an approximation of the flooring’s

character.

The F-Number system is based on two evaluation parameters. The first parameter

communicates levelness, and it is calculated using the following formula [50]:

FL =
12.5

3Sz + |z|
(4.1)

where z is the mean of several measurements of difference in elevation between points

on the flooring in question, and Sz is the standard deviation of the measurements.

To calculate FL for the roll track, a digital level with a laser pointer is used to

establish a horizontal laser datum, located not more than six inches above the surface

of the track. Elevation at any point on the track is measured with a ruler by placing

the ruler vertically, with its edge on the track, and noticing where the laser light
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strikes the ruler. In this manner, elevation of the track is initially measured at two

points: at the edge/center of the track, and ten feet down the center line of the track.

Difference in elevation is recorded. The two measurements are taken again, this time

after moving the ruler exactly one foot down the track relative to the two previous

positions, and difference in elevation is again recorded. The process is repeated for a

total of 21 measurements of difference in elevation. Absolute value of the mean of the

21 measurements, |z|, is calculated as 0.00150 m, and standard deviation of the 21

measurements, Sz, is 0.0026 m. Plugging these values into Equation 4.1, FL for the

track along its center line is calculated as 13.3. To give an idea of what this number

means, levelness of this kind is what one might measure in the concrete subfloor of a

college dorm, but it is generally not level enough for a warehouse floor [51].

The second F-Number communicates flatness, and it is calculated using the fol-

lowing formula [50]:

FF =
4.57

3Sq + |q|
(4.2)

where q is the mean of several measurements related to slope of the flooring in ques-

tion, and Sq is the standard deviation of the measurements. To calculate FF for the

track, a one-foot digital level with a tilt angle display is used. It is modified to have

rests on each end of the level that are spaced exactly 12 inches from one another.

The modified level is calibrated by iteratively sanding the rests so that when placed

consistently in the same test spot, the level displays the exact same tilt angle with the

rests as without them. The modified level is then placed on the track and oriented

so the level’s length is parallel to the center line of the track with one rest at the

edge of the track. Displayed tilt angle of the digital level is recorded. The level is

then moved one foot down the center line, and the measurement is recorded again.

This process is repeated for a total of 30 measurements of tilt angle, corresponding

to 30 locations on the track spaced 12 inches apart. For each location, tilt angle is

converted to tilt “rise” by multiplying tangent of the tilt angle by 12 inches. Absolute
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value of the mean of the 30 rise values, |q|, is calculated as 0.00150 m, and standard

deviation of the 30 values is 0.0026 m. Plugging these values into Equation 4.2, FF

for the track along its center line is calculated as 35.4. To give an idea of what this

number means, flatness of this kind is what one might measure in a warehouse floor,

but it is generally not flat enough for a roller rink or gymnasium floor [51].

4.2 Control Program

The primary experiment is composed of a series of trial rolls, in which parameters that

affect locomotion energy economy of the robot are varied while energy consumed by

the servo motor is measured. During these trial rolls, the robot moves under control

of a program (Listing 3 in the Appendix) that is run onboard the microprocessor.

The control program is written in C++ programming language and is developed in

the Arduino software environment, where the code is compiled and uploaded to the

microprocessor as a set of readable instructions. By turning on power and then push-

ing a reset button on the microprocessor board, the control program is executed.

Four primary tasks are performed by the microprocessor when the control program

is executed: interface sensors, compute various parameters related to the robot mo-

tion, implement the shape changing strategy described in Section 3.6, and output

parameters of interest. Each of these tasks is detailed in the present section.

As with any C++ program, the robot control program is essentially an invocation

of one primary function [52]. In the case of the control program, that function is

named loop, and it repeats every 10 ms. Prior to loop, the control program has two

precursor sections of code that each run only once when the program is executed.

The first is a variable definition section, where several variables are set and, if need

be, changed by the user to form a combination of control values and initial conditions

that define the trial roll. The variables that can be set are: θm, θt, kf , ks, ωd and

a(0). After the variable definition section, a second precursor section of the program
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performs various housekeeping tasks, including initiation of microprocessor ports,

sensors, communication lines, and moving the actuator to the set value of a(0). After

the precursor sections have run, the loop function is finally invoked, but before loop

is executed for the first time, the control program sends the power sensor a digital

high voltage signal, causing the sensor to begin the process of measuring current

and voltage into the servo motor to compute energy consumed. Roll time of a trial

roll, t, begins when this signal is sent, and an LED on the microprocessor board is

illuminated to indicate that t > 0.

Recall from Section 3.4.2 that position switches are placed on the outer surface in

a manner such that voltage in the switch circuit goes low when one of the position

switches is activated, and activation occurs whenever A is in the vertical position,

i.e., −180◦, −360◦, −540◦, etc. In the loop function, the control program checks the

digital line connected to the switch circuit to see if voltage has gone low since the last

pass of loop. If it has, a flag is momentarily turned on in the program, and a tally,

nt, is kept of how many times the flag has been turned on since the trial roll began.

If loop sees the flag presently on, then roll angle of the robot is computed from the

flag tally:

θ = −180nt (4.3)

and this equation assumes robot initial orientation is between 0 and −180◦, which is

always the case for all trial rolls performed in the primary experiment. By way of

example, if the robot were to commence from θ = −15◦ and roll until the flag variable

turns on in loop with nt = 3, then θ would be computed as −540◦ at that pass of

loop.

If loop sees the flag presently off, θ is computed in the sensor program by numer-

ically integrating the sampled angular velocity, according to the trapezoidal method

[53], starting from the last angle measured by the switch circuit. For instance, if the

robot were rolling with nt = 3, and the flag turned on at the last pass of loop, then θ
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would be computed as: 0.010(ω+ωlast)/2−540◦, where ω is robot angular velocity as

measured by the gyroscope at the current pass of loop, ωlast is robot angular velocity

as measured by the gyroscope at the last pass of loop, and 0.010 is the amount of

time (s) in-between measurements, equal to the sample period of the loop function.

With θ computed at every pass of loop, the control program uses θ to compute

γ with Equation 3.28 and checks for triggering of measurement and actuation (Sec-

tion 3.6). If measurement has been triggered, the current reading of the gyroscope is

saved as ωm. If actuation has been triggered, the control program computes Error

and target length, Lt, and initiates shape change actuation of the robot as described

in Section 3.6. Regardless of triggering, at every pass of loop the program computes

the predicted value of a using Equation 3.32 or Equation 3.34. Also, starting at the

first pass of loop at which ω ≥ ωd, the control program computes a running average

of measured angular velocity values:

ωr =
ω1 + ω2 + · · ·+ ωn

n
(4.4)

where ω1 +ω2 + · · ·+ωn is the sequence of n values of angular velocity measured con-

secutively in loop from the initial measurement, ω1, up to the current measurement,

ωn. This parameter is used to determine stability, as described in Section 4.4.

Roll distance, S, is also computed at every pass of loop using the approximation

S ≈ Rc(π + θ0 − θ − ntπ) +
P

2
(nt − 1) (4.5)

where Rc is equal to 0.3335 m, radius of the outer surface in the circular configuration;

θ0 = θ(0); and P is perimeter of the outer surface, 2.095 m. Equation 4.5 is based

on the idea that touch position can be approximated by treating the outer surface

of the robot as a rolling, circular disc that doesn’t slip against the roll track. The

equation incurs error, because the outer surface of the robot often slips, bends, and
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usually retains a non-circular shape. Nevertheless, the magnitude of error incurred

by Equation 4.5 is negligible, largely for two reasons. The first reason is slippage

of the outer surface, quantified by an experimental test in Section 4.6.4, is found

to be minimal. The second reason is that Equation 4.5 is based on nt, an integer

that updates twice per revolution, that momentarily forces Equation 4.5 to be highly

accurate regardless of bending or eccentricity of the outer surface; and in-between

updates, there is simply not enough time for error to accumulate to a significant

magnitude.

The rolling robot possesses a radio transmitter, by which the microprocessor com-

municates with a receiver-equipped laptop computer located nearby. Every 100 ms (or

every tenth pass of loop), the control program transmits several locomotion-related

parameters to the laptop, where the parameters are printed as a line of comma sepa-

rated values to a serial monitor window. The transmitted/printed parameters are: θ,

ω, S, a, and ωr. When run time goes beyond 15 seconds, the control program stops

sending the parameters, electronically detaches the servo motor, and commands the

power sensor to send elements of its total energy array in a consecutive manner, start-

ing at the first element for t = 0 s and continuing to the 151st element for t = 15

s. After all elements have been received, the control program sends them via radio

transmission to the laptop serial monitor window, at which point the microprocessor

enters an idle state until it is manually turned off when the robot is retrieved.

4.3 Accuracy of Onboard Angular Position Computation

A test is performed in order to learn the accuracy of the computation strategy (de-

scribed in Section 4.2), by which angular position of the robot is computed through a

combination of switch activation updates and integration of angular rate as measured

by the onboard gyroscope. For the test, the control program is modified, so that in

addition to updating θ using Equation 4.3 when a switch activation occurs, another
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value is computed: θ
′
, which is what θ would be if it were updated at the previous

switch activation but not at the present one. For example, say a trial roll of the robot

is performed using the modified control program, and at a certain pass of loop, volt-

age is low on the switch circuit, meaning one of the position switches has activated,

causing nt to augment from 0 to 1. As such, the modified program uses Equation 4.3

to update θ and θ
′

to −180◦, and at subsequent passes of loop, the modified control

program calculates θ
′

according to the strategy described in Section 4.2 – that is, by

integrating angular velocity over time and adding the result to −180◦ until switch

activation newly occurs. When it does, θ is updated to −360◦ according to Equa-

tion 4.3, but θ
′

is not, and at this moment, the modified control program transmits

values of t, θ, and θ
′

to the laptop. Afterward, θ
′

is updated to −360◦ and the entire

process repeats. In this way, values of t, θ, and θ
′

are transmitted to the laptop at

every pass of loop when a switch activation occurs. The value of θ at these passes is

540◦, 720◦, 900◦, etc.

With the modified control program uploaded to the microprocessor, a trial roll is

performed with ωd = −2.0 rad/s, and output values from the roll are imported to a

spreadsheet in three columns, one for t and the other two for θ and θ
′
. After the trial

roll is completed, θ minus θ
′

is computed at every output interval. This difference

is the error that accumulates over a half-turn of the robot between switch activa-

tions when employing the angular computation strategy described in Section 4.2, the

strategy used to compute angular position of the robot in the primary experiment.

The test is repeated for ωd = −2.2 rad/s and ωd = −2.4 rad/s. Results from the

three tests are included in Table 4.1, in which angle error is listed for the trial rolls,

corresponding to the three desired velocities, within the first 6.3 meters of travel.

Errors listed in Table 4.1 are all positive except for one value, which means the

angular position computation strategy employed by the control program is biased

towards overvaluing the magnitude of robot angular position. As a result of the bias,
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Table 4.1: Angular Position Measurement Error

ωd = −2.0us(t) rad/s ωd = −2.2us(t) rad/s ωd = −2.4us(t) rad/s

θ = 180◦ 0.21◦ 0.30◦ 0.77◦

θ = 360◦ 1.23◦ 0.91◦ 0.73◦

θ = 540◦ 1.40◦ 1.23◦ 1.81◦

θ = 720◦ 0.84◦ 1.20◦ 0.82◦

θ = 900◦ 0.27◦ 1.27◦ 2.37◦

θ = 1080◦ 2.04◦ 0.96◦ 1.40◦

reported values of θ
′

are almost always a few degrees less than θ, such as −181.54◦,

−362.51◦, and −543.62◦, for example. One seemingly possible explanation for these

discrepancies is that θ
′

is accurate, and the position switches are activating later

than they should. This possibility is improbable, however, because the switches are

calibrated by slightly bending the lever arms (Section 3.4.2) in order to bring about

switch activation when A is observed to line-up with a digital level that’s fixed in the

vertical orientation. This calibration is performed regularly, so that measurement of

angular position by the switches is certainly highly accurate.

A more likely explanation for the negative errors in Tab. 4.1 is that the gyroscope

used onboard the rolling robot is slightly negatively biased, resulting in noticeable

overvaluation of angular position magnitude after numerical integration of angular

velocity has been performed over time. If the largest magnitude of these errors in

Tab. 4.1, 4.74◦ over 180◦ of travel, is assumed to be the largest possible magnitude

of error associated the angular computation strategy, and if 4.74◦ is assumed to be

divided equally over 180◦ of travel between switch activations, then at θt = 65◦

beyond switch activation, there is uncertainty of ±(65/180)4.74 = ±1.71◦ associated

with the computation strategy. Furthermore, if constant angular velocity of the robot

is assumed between switch activations, then for an error of 4.74◦ between switch

activations, maximum error magnitude in gyroscope measurement can be backed-

out, giving 3.31 degrees per second, or 0.0578 radians per second, during the trial
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rolls.

4.4 Demonstration of Stable, Controlled Locomotion

This section describes a test to find the approximate range of kf that results in stable,

controlled locomotion of the robot for a trial roll defined by θt = 45◦, θm = 35◦,

ωd = −2.2us(t) rad/s, ω(0) = 0, θ(0) ≈ −15◦ and a(0) = 0.349 m. In the test, kf is

varied in steps, while ks is varied only to maintain stability in response to changes

in kf . There is a two-fold purpose in performing this test. The first purpose is to

demonstrate that stable locomotion of the robot is achieved by the robot running

under influence of the control system described in Section 3.6. The second purpose

is related to design of the primary experiment, outlined in Section 4.6, in which four

control constants, including kf , are varied in order to affect the robot steady state

velocity. Once the stable range of kf is found in the test described here, it is then

used to design an experiment with appropriate limits on kf , thus streamlining the

experiment.

Stability, as used herein, refers to two conditions being met relative to robot

controlled angular velocity. The first condition is the robot must speed-up quickly

from rest, so that rise time – that is, how long it takes for velocity of the robot to

reach the desired velocity starting from rest – is no more than 6 s. If rise time is longer

than 6 s, there is not enough length on the roll track to facilitate a sufficient span of

steady state motion for analysis. Because the primary experiment is an investigation

of locomotion energy economy at steady state, this condition is essential. The second

condition is that after robot velocity has risen to ωd, the running average of its

angular velocity, ωr, must thereafter remain close to the desired constant velocity.

Some reasonable variation within several degrees per second is permissible, but large

and fluctuating dips in angular velocity or a steady increase of ωr over time are

considered unstable response characteristics. This latter stability condition ensures
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that trial rolls with different desired velocity profiles will have different average steady

state velocities. Without being assured of this difference, it would be impossible to

draw conclusions about the combined effects that ωd and other control parameters

have on locomotion economy of the robot as a function of its velocity.

The test begins by preparing the simulation program described in Section 3.8 to

simulate the aforementioned trial roll. The simulation is run repeatedly, and kf and

ks are changed before each run. Plots of ω versus trial roll time are generated by the

simulation program and observed. Through trial and error, a combination of kf and ks

is obtained that provides stable locomotion, at least in simulation. That combination

is then coded into the control program, along with other control constants and initial

conditions, and uploaded to the microprocessor. Then on the roll track described in

Section 4.1, a trial roll of the robot is performed, and ω and ωr are plotted versus

run time. If ωr is observed to be shifted high relative to ωd, then ks is iteratively

raised until the response is stable by inspection, as in the plot in Fig. 4.2. Then kf is

stepped down by 0.005, and the process is repeated. Trial rolls are continued in this

manner until a value of kf is reached where robot velocity response cannot seemingly

be made stable by changing ks. At this value of kf (which is found to be 0.005), lower

values of ks cause robot velocity to remain well below ωd until late in the run, as in

the plot in Fig. 4.3. Upon raising ks, the robot generally moves a bit faster, but rise

time remains too long. Trial rolls for lower values of kf give similar results relative to

changes in ks. Thus, it is likely impossible to find a combination of control constants

that result in stable velocity response for ωd = 2.0 rad/s when kf ≤ 0.005.

After the lower limit of kf is established, trial rolls are resumed on the roll track

starting with the initial combination of kf and ks provided before by simulation. Now,

however, kf is consecutively increased rather than decreased in steps of 0.005, and ks

is again iteratively changed to maintain stability. A limit on kf is eventually reached

at which robot velocity response cannot seemingly be made stable by changing ks. At
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Figure 4.2: An example of stable locomotion of the robot for ωd = −2.2 rad/s. Angular
velocity rises quickly to the desired level, −2.2 rad/s, and ωr remains close to −2.2 rad/s
thereafter.

this value of ks (which is found to be 0.050), lower values of ks cause robot velocity to

remain well below ωd for the entire trial roll. Upon raising ks, suddenly robot velocity

fluctuates in large magnitude and becomes unstable, as in the plot in Fig. 4.4. Trial

rolls for higher values of kf give similar results relative to changes in ks. Thus, it is

difficult, if not impossible, to find a combination of control constants that result in

stable velocity response when kf ≥ 0.050.

With a stable range of kf established, several additional trial rolls are performed

for ωd = −2.0 rad/s and ωd = −2.4. For each of these desired velocities, trial rolls

are performed with kf chosen randomly within the stability range for kf previously

established: 0.005 ≤ kf ≤ 0.050. Results of these additional trials demonstrate that,

in addition to stability for ωd = −2.2 rad/s, the rolling robot also achieves stable

velocity control with ωd = −2.0 rad/s and ωd = −2.4 rad/s. Figs. 4.5 and 4.6 show

plots of velocity versus run time for stable trial rolls for ωd = −2.0 rad/s and −2.4

rad/s.

73



0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

Roll Time [s]

[r
ad

/s
]

 

 

−ω
−ω

d

Figure 4.3: An example of unstable locomotion for the robot for ωd = −2.2 rad/s. Angular
velocity reaches the desired level too late in the trial roll.
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Figure 4.4: An example of unstable locomotion for the robot for ωd = −2.2 rad/s. Average
angular velocity dips far below the desired level during the latter half of the trial roll.
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Figure 4.5: An example of stable locomotion of the robot for ωd = −2.0 rad/s. Angular
velocity rises quickly to −2.0 rad/s, and ωr remains close to −2.0 rad/s thereafter.
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Figure 4.6: An example of stable locomotion of the robot for ωd = −2.4 rad/s. Angular
velocity rises quickly to −2.4 rad/s, and ωr remains close to −2.4 rad/s thereafter.
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4.5 Effect of Vibration on Onboard Angular Velocity Measurement

Angular velocity of the rolling robot is measured by a gyroscope, which is attached

to one column of the linear actuator, as described in Section 3.4.1. This location

is deemed satisfactory for gyroscope measurement, because columns of the linear

actuator are relatively stiff and do not easily bend. However, the actuator is connected

to the robot at its outer surface, which obviously bends and vibrates as the robot rolls

in controlled locomotion, and this vibration of the outer surface affects motion of the

linear actuator, which in turn affects gyroscope measurement. In fact, during trial

rolls of the robot, it is observed that the linear actuator exhibits a rotational shudder,

presumably brought on by vibration of the outer surface, that can be described as a

quick, back-and-forth rotation of the actuator, lasting approximately three-quarters

of a second. It is also observed that when shudder occurs, the linear actuator (A-axis)

is at or near the horizontal orientation, and then only when actuation is near or has

just reached completion. Frequency of shudder occurrence is observed to be about

the same for trial rolls in which desired velocity of the robot varies from −2.0 to −2.4

rad/s at steady state.

While such vibration of the robot is to be expected, the shudder phenomenon

is disconcerting because it visibly affects angular velocity at the location where the

gyroscope is attached; and since angular velocity measurements of the gyroscope are

used as feedback in the control system, shudder of the robot is potentially a control

problem. The specific concern is that if measurement of angular velocity occurs at

the same time as a shudder, the measurement could be raised or lowered relative to

what the measured velocity would be if there were no shudder, thereby causing the

control system to overreact or underreact in a manner that renders it inaccurate.

In light of these observations and considerations, a test is performed to better

understand the impact of shudder on angular velocity measurements of the gyroscope.

For the test, the control program described in Section 4.2 is modified to transmit θ
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Figure 4.7: Shutter occurrences for the θt = 55◦ trial roll are manifested as angular velocity
fluctuations with a frequency of approximately 12 Hz.

and ω to the laptop serial monitor at every pass of loop, or every 10 ms. Then five

trial rolls of the robot are conducted for the following values of θt: 35◦, 45◦, 55◦, 65◦,

and 75◦; and the rolls are further defined by θm = 35◦, ωd = −2.2 rad/s, ω(0) = 0,

θ(0) ≈ −15◦ and a(0) = 0.349 m. Robot locomotion for each trial roll is video

recorded using a high speed video camera, wherein shudder occurrences are identified

and their approximate roll times are logged. Subsequently, values of θ and ω for each

trial roll are copied from the laptop serial monitor and pasted into a spreadsheet,

and ω is plotted versus roll time. At the sample rate of 100 Hz, high frequency

shudder vibrations are manifested in the plots; then by comparing video footage with

corresponding plots, shutter occurrences are confirmed to be pockets of relatively large

and persistent angular velocity fluctuations, having a duration of approximately 0.75

s with a frequency of 12 Hz on average. Fig. 4.7 shows the plot of ω versus roll time

for the θt = 55◦ trial roll, during which four shudders, identified in the plot with

circles, occur during 11.5 seconds of roll time.

Plots of angular velocity versus roll time for the five trial rolls in the test are

scrutinized, and shudder occurrences are identified and tallied. Using data that is

collected for each trial roll with corresponding plots, orientation of A relative to the
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horizontal is computed (to the nearest degree) at run times during which shudder

occurs. Using this record, several shudder-related statistics are calculated, and are

reported as follows. Over the five trial rolls, shudder occurs 18 times for an average

of approximately one shudder every 3.6 s. In addition, when shudder does occur, the

probability of it occurring when A is oriented at or within two degrees of 35◦ clockwise

or 55◦ counterclockwise relative to the horizontal (these orientations correspond to

θm = 35◦) are 2/18 and 0/18, respectively. In conclusion, for trial rolls of the robot in

which θm = 35◦, shudder has a negligible effect on gyroscope measurement of angular

velocity, mostly because shudder occurs infrequently at this measurement orientation;

and when it does occur, the effect is small, raising or lowering the measurement by 3

deg/s, at most, relative to what robot velocity would be if no shudder were present.

For a stable trial roll with ωd = −2.2 rad/s, this effect amounts to roughly 3% of

robot actual velocity at steady state.

4.6 The Primary Experiment

The primary experiment involves a series of trial rolls of the robot in which select

control parameters are varied. While the rolls are in progress, parameters relevant

to robot locomotion are collected onboard the robot and transmitted via radio signal

to a nearby laptop after each roll is completed, where the information is saved for

subsequent analysis. By applying the work-energy theorem to each roll, the amount

of non-conservative work that retards forward motion of the robot is calculated per

unit roll distance and is denoted as % with units of joules per meter. This value,

which is explained in detail in Section 4.6.3, is used to identify which trial rolls are

most economical in terms of energy expenditure per unit roll distance. Ultimately,

a range of θt is identified in which the robot operates most economically for each of

the following average steady state velocities of the robot: −2.0 rad/s, −2.2 rad/s and

−2.4 rad/s. The experiment is divided into two phases, and experimental procedures
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for these phases are detailed in the two subsections that immediately follow herein. A

third subsection is devoted to explaining how non-conservative work is calculated and

how % is used, through a statistical approach, to identify which trial rolls have the

most economical locomotion. Finally, uncertainty in the calculation of % is discussed

in the fourth and concluding subsection.

4.6.1 Procedure, Phase 1

In Phase 1 of the experiment, trial rolls are conducted that provide information used

to solve the following 15 optimization problems:

For each of θt = 25◦, 35◦, 45◦, 55◦, 65◦, find (kf , ks) that minimizes % for

1.1-1.5. ωd(t) = −2.0us(t) rad/s

1.6-1.10. ωd(t) = −2.2us(t) rad/s

1.11-1.15. ωd(t) = −2.4us(t) rad/s

Based on the stable range of kf found in Section 4.4, these problems have the following

constraint: kf ∈ {0.01, 0.02, 0.03, 0.04}.

Phase 1 of the experiment starts with setting various parameters in the control

program. For Problem 1, ωd is set to −2.0 rad/s, and θt is set to 25◦. Measurement

trigger angle, θm, is set to 25◦. The loop function in the control program is modified

so that when S ≥ Sm = 8.5 m, the outer surface automatically actuates to the

circular configuration, according to the actuation profiles given in Section 3.6, and

the robot stays in that configuration until the end of the roll at t = 15 s. Prior to these

preparations, columns of the linear actuator are dissembled and cleaned/oiled with

WD-40. Also, the batteries are fully charged, and the motor is allowed to remain idle

for at least three hours in order to reach the ambient temperature of the laboratory,

which remains close to 70◦ F, regardless of time of day.
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All trial rolls in Phase 1 of the experiment are conducted on the roll track described

in Section 4.1. The robot is initially positioned and held by the user, so that it

commences from the same location – at the beginning of one side of the roll track

along the track’s centerline – and with a consistent set of initial conditions: θ(0) ≈

−10◦, ω(0) = 0, and a(0) = 0.349 m. As described in Section 4.2, an LED on the

main microprocessor illuminates when the onboard sensors commence measurement,

notifying the user that the trial roll has begun and he should immediately let go of

the robot and allow it to act on its own. With the given initial conditions, the robot

is poised to roll forward, helping the robot accelerate to steady state velocity once

it’s let go.

Next, several combinations of kf and ks are roll tested in order to find values of

ks that result in stable velocity control for each of the four allowable values of kf for

Problem 1.1. Typically, at least ten rolls are required to do so, and in the process,

the motor is sufficiently warmed-up prior to the trial rolls that are to be conducted

for Problem 1.1. The procedure to find ks is identical to the procedure outlined in

Section 4.4, in which kf is set to one of the four allowable values, and ks is iteratively

changed as the robot is repeatedly rolled and the response is inspected for stability.

If stability is not deemed possible for a certain value of kf , it is disregarded as a

candidate of optimality for the problem. If stability is not deemed possible for all

four allowable values of kf , the current value of θt is unviable, and the entire problem

is disregarded.

Assuming all allowable values of kf result in stable velocity control for the problem

at hand, four combinations of kf and ks are found and are denoted herein as C1, C2,

C3 and C4. A random number generator is employed to shuffle the four combina-

tions ten times, with a result that is similar to the following 40-member sequence of

combinations:

{C2, C1, C3, C4; C1, C2, C3, C4; C4, C3, C3, C1; C1, C2, C4, C3; C2, C3, C4, C1;
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C1, C3, C4, C2; C3, C1, C2, C4; C3, C1, C2, C4; C2, C4, C1, C3; C3, C4, C1, C2}

Then using combinations from the random sequence, 40 trial rolls are conducted in

order to collect information to address the problem. The first of these trial rolls

is conducted with kf and ks set according to the first entry in the sequence, and

transmitted parameters from the roll are saved. Afterward, kf and ks are set according

to the second entry in the sequence, and a second trial roll is conducted, timed to

commence 45 s after the first roll ends, and parameters from the roll are saved.

Several more trial rolls are conducted in this manner, corresponding to the first half

of the combinations in the sequence. The batteries are then fully recharged, and the

motor is allowed to cool for at least three hours. Afterward, the motor is sufficiently

warmed, and the remaining trial rolls in the sequence are conducted in the same

ordered manner using the second half of the combinations in the sequence. By the

time the last combination in the sequence is used, ten trial rolls are conducted for

each combination of control constants.

Trial rolls for all problems in Phase 1 of the primary experiment are shuffled in this

manner relative to control constant combinations in order to avoid motor efficiency

biasing that could affect energy measurements. For example, if 40 trial rolls were

conducted according to the following non-randomized sequence:

{C1, C1, C1, C1, C1, C1, C1, C1, C1, C1; C2, C2 C2, C2, C2, C2 C2, C2, C2, C2;
C3, C3, C3, C3, C3, C3, C3, C3, C3, C3; C4, C4, C4, C4, C4, C4, C4, C4, C4, C4}

then the first ten rolls with C1 would be actuated by a relatively cool motor, whereas

the last ten rolls with C4 would be actuated by a relatively warm motor. Efficiency

of the motor changes as its temperature rises [26], so in this hypothetical situation

with no shuffling of the combinations, values of % corresponding to C1 and C4 would

be incomparable, at least for the matter of energy consumed per unit roll distance.

However, because roll sequences in the actual experiment are randomly shuffled, any

would-be biasing is nullified, and energy measurements for a given control constant

combination can verily be compared to the other three.
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After trial rolls for Problem 1 are finished, columns of the linear actuator are

newly cleaned/lubricated, the batteries are fully recharged, and the motor is allowed

to cool for at least three hours. The experimental procedure for Problem 1.1 is then

repeated five times with the following changes in order to address Problems 1.2 - 1.5:

θm = 35◦; θt = 35◦, 45◦, 55◦, 65◦; and the roll sequence is randomly reshuffled for each

problem. For Problems 1.6 - 1.10, the process remains the same as for Problems 1.1

- 1.5, except ωd = −2.2 rad/s and Sm = 8.8 m. For Problems 1.11-1.15, ωd = −2.4

rad/s and Sm remains at 8.8 m.

Upon concluding trial rolls for each problem, saved roll parameters are used to

calculate % for each trial roll, according to the strategy described in Section 4.6.3.

Resulting values of % corresponding to C1, C2, C3 and C4 for a given problem form

populations denoted as P1, P2, P3 and P4, respectively; and the average value of

% (denoted as %) for each of these populations is recorded. In addition, uncertainty

associated with % (denoted as δ%) is calculated for each trial roll using Equation 4.39

in Section 4.6.4, and the largest value of δ% within each population is recorded. At this

point in the investigation, average values of % could be listed from lowest to highest

as a way to rank corresponding combinations in terms of energy economy. Questions

arise, however, if this ranking approach is taken. Specifically, how different would two

averages have to be before their corresponding combinations should be considered

different? For example, if % corresponding to P1 is 2.10 N/m and % corresponding to

P2 is 2.13 N/m, should one conclude that C1 is superior to C2 in terms of economy, or

is the magnitude of difference between them too small to know for sure? In addition,

it is not clear how uncertainty would come into play if this ranking approach were

taken.

Given these reservations, a preferable way to rank the combinations is to compare

energy economy associated with the combinations using the testing of hypothesis ap-

proach [48]. Rather than simply comparing averages, testing of hypothesis allows for
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the entirety of the %-populations to be compared to one another using the median

test [54], a numerical procedure that indicates when there is a statistically significant

difference between two population groups with regard to their measures of central

tendency. The median test is chosen for the comparison above other population com-

parison tests, because it is valid even when the two populations being compared have

small sample sizes, are not normally distributed, and have dissimilar variances [54] –

a trio of conditions that is sometimes true for the Phase 1 population comparisons. In

addition, the testing of hypothesis method allows for δ% to be taken into consideration

as part of the comparison. Testing of hypothesis is so named because it is based on

a default position, or null hypothesis, that is assumed to be true before any experi-

mentation is conducted [48]. If, after experimentation, the null hypothesis is shown

to be false, then an alternative hypothesis is accepted. For the experiment herein,

the null hypothesis states that for any two control constant combinations, neither

combination is superior with regard to energy economy. The alternative hypothesis is

that one control combination results in locomotion that is more economical – namely,

the combination whose %-population has less positive central tendency.

Testing of hypothesis is carried out by a computer program (Listing 4 in the

Appendix) developed especially for performing comparisons of %-populations. The

test program accepts as input two %-populations and begins by randomly perturbing

them to account for uncertainty. It performs this perturbation by first choosing a

number from a normal distribution with a mean of zero and a standard deviation equal

to one-third of the largest uncertainty recorded for the first of the two populations. If

the randomly chosen number is larger in magnitude than the largest uncertainty, the

number is rechosen until its magnitude is less than or equal to the largest uncertainty.

The test program then adds the randomly chosen number to a value of % in the

first population. Afterward, a new number is chosen at random in the same way

and added to the second value of % in the population, and so forth, until all values
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in the population have been perturbed. Perturbation is repeated in this manner

on the second population, but now with a standard deviation equal to one-third of

the largest uncertainty recorded for the second population. The test program then

performs the median test on the two perturbed populations and passes if they are

significantly different with regard to central tendency with 90% or greater confidence;

otherwise the test fails. When the median test passes and the first population has

less positive central tendency, a variable is augmented. When the test passes and

the second population has less positive tendency, a different variable is augmented.

Perturbation/testing/augmentation is repeatedly carried out by the test program in

this manner by means of a looping structure until a total of N = 100, 000 median tests

have been performed. The test program concludes by outputting a value, referred to

as the pass percentage, which is equal to one hundred times the largest augmented

variable divided by N .

In order to determine that N = 100, 000 is an appropriate number of comparison

tests to perform in the test program, a batch process is developed that executes

the test program repeatedly for a given comparison. At the first execution of the

program, N is set to 5, 000 and is augmented by 1, 000 at each execution of the test

program thereafter, until N = 50, 000 when the batch process terminates. Values of

N , along with corresponding pass percentage, are saved by the batch process for each

execution, so that after termination, values of pass percentage are plotted versus N ,

from N = 5, 000 to 50, 000, along with a 10 moving average [55] of pass percentage,

as shown in the example graph in Fig. 4.8. After the graph is made, the running

average plot is inspected for a value of N where it begins to display a steady state

pattern characterized by horizontal flatness on average. In addition, the plot of pass

percentage is inspected for a value of N where change of pass percentage is, and

remains thereafter, less than 1% over each 1000-gradation of N . The greater of these

two values of N is determined to be a sufficiently high number of tests, meaning that
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Figure 4.8: For two populations, the batch process executes the test program for various
values of N , which is the number of median tests performed at each execution. Pass
percentage steadies out beyond a sufficiently high value of N .

for values of N greater than the sufficiently high number, pass percentage steadies out

and does not change significantly. For the example graph in Fig. 4.8, the sufficiently

high value of N is about 32, 000. If the sufficiently high value of N is found to be

under 50, 000 for a comparison test, the appropriate value of N is conservatively taken

as 100, 000. For Phase 1 comparisons, the batch process is run for each comparison,

and the appropriate value of N is determined to be 100, 000 every time.

The decision rule for comparison of two populations is as follows. If the pass

percentage is greater than or equal to 90, then the null hypothesis for the two corre-

sponding control combinations is rejected and the alternative hypothesis is accepted.

In this case, the combination corresponding to the %-population with less positive

central tendency (higher pass rate) is determined to be superior in terms of energy

economy. If, on the other hand, the pass percentage is less than 90, then the null

hypothesis is kept, and neither combination is determined to be superior.

Grids are built to catalogue results of the pairwise comparisons and to help de-

termine which control combination out of the four is superior in terms of locomotion

energy economy. Two comparison grids are built for each problem. Rows and columns
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in the grids are titled with the combination names, as shown in Fig. 4.9. The top

comparison grid in the figure shows the pass percentage of the largest augmented

variable, rounded to the nearest whole number, along with the corresponding control

constant combination for each pairwise comparison in the problem. If no combination

is listed in a grid cell, then there are no passes of the median test for that compari-

son. The bottom grid shows results of the decision rule for each pairwise comparison.

If the null hypothesis is kept relative to two combinations, a dash is placed in the

entry where corresponding row and column intersect; or if the alternative hypothesis

is accepted, name of the superior combination is placed in the entry.

After all entries in the grids are filled, attention is directed to the bottom grid’s

columns. If a column contains anything other than a dash or the title of that column,

the combination is rejected, signified by a cross-out. If only one column remains

after rejections have been made, the corresponding combination is determined to

be superior in terms of energy economy of the robot. If more than one column

remains after rejections have been made, corresponding combinations are determined

to be equal in terms of locomotion energy economy. In this case, the combination

corresponding to the lowest value of % among the remaining combinations is selected

as superior, signified by parenthesis. If no columns remain after rejections have been

made, then all combinations are determined to be equal in terms of energy economy.

Again, in this case, the combination corresponding to the lowest value of % among

the remaining combinations is selected as superior. Selection according to % is largely

arbitrary, and it is made in order to have a control combination from the problem

represented in Phase 2 of the experiment.

4.6.2 Procedure, Phase 2

In Phase 2, trial rolls are conducted that provide information used to solve the fol-

lowing three optimization problems:
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C1 C2 C3 C4
C1 C2, 3% C3, 0% C4, 100%
C2 C2, 3% C2, 24% C4, 76%
C3 C3, 0% C2, 24% C4, 100%
C4 C4, 100% C4, 76% C4, 100%

C1 C2 C3 (C4)
C1 - - C4
C2 - - -
C3 - - C4
C4 C4 - C4

Figure 4.9: Examples of pairwise comparison grids for a problem in Phase 1 of the pri-
mary experiment. The grids communicate which control constant combinations are deemed
superior in terms of locomotion energy economy.

Find θt that minimizes % for

2.1. ωd(t) = −2.0us(t) rad/s with θt ∈ {35◦, 45◦, 55◦, 65◦}

2.2. ωd(t) = −2.2us(t) rad/s with θt ∈ {25◦, 35◦, 45◦, 55◦}

2.3. ωd(t) = −2.4us(t) rad/s with θt ∈ {25◦, 35◦, 45◦}

Optimal combinations of kf and ks for given values of θt determined in Phase 1

are used in Phase 2. By the time Phase 2 of the experiment is conducted, combina-

tions of θt and ωd that are not viable for stability have been identified in Phase 1,

and so these exclusions are reflected in the constraints for the above problems.

The second phase of the experiment starts with setting various parameters in the

control program. The desired velocity, ωd, is set to −2.0; θt is set to 35◦, which is the

lowest value of θt found to result in stable locomotion in Phase 1; and θm is set to 35◦.

The loop function in the control program is modified so that when S ≥ Sm = 8.5

m, the outer surface automatically actuates to the circular configuration and stays in

that configuration until t = 15 s. Prior to these preparations, columns of the linear

actuator are dissembled and cleaned/lubricated with WD-40. Also, the batteries are

fully charged, and the motor is allowed to remain idle for at least three hours in order
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to reach the ambient temperature of the laboratory. Next, ten preliminary trial rolls

of the robot are conducted in order to warm-up the motor prior to the actual trial

rolls that are to be conducted as part of the experiment for Problem 2.1. All trial

rolls in Phase 2 of the experiment, including these preliminary rolls, are conducted

on the roll track described in Section 4.1 and are given the same initial conditions as

in Phase 1.

A random number generator is employed to shuffle the order of the trial rolls

relative to viable values of θt. As in Phase 1 of the experiment, shuffling is done

to avoid any would-be biasing caused by rising temperature of the servo motor. For

example, if viable values of θt are 35◦, 45◦, 55◦, and 65◦, the random number generator

would shuffle these four values ten times, resulting in a 40-member sequence of θt

values, with units of degrees, similar to the following:

{35, 55, 45, 65; 65, 45, 55, 35; 35, 65, 45, 55; 55, 35, 45, 65; 65, 45, 35, 55;
45, 35, 65, 55; 55, 65, 45, 35; 45, 55, 35, 65; 35, 55, 45, 65; 55, 45, 65, 35}

Then using the order of θt from the shuffled sequence, along with optimally efficient

values of kf and ks that are determined in Phase 1 of the experiment, 40 trial rolls are

conducted in order to collect information to address Problem 2.1. The first of these

trial rolls is conducted with θt set to the first entry in the sequence, and information

from the trial roll is saved. Afterward, θt is set to the second entry in the sequence,

and a second trial roll is conducted, timed to commence 45 s after the first roll ends,

and information from the trial roll is saved. Several more trial rolls are conducted in

this manner, corresponding to the first half of the combinations in the sequence. The

batteries are then fully recharged, and the motor is allowed to cool for at least three

hours. Afterward, the motor is sufficiently warmed, and the remaining trial rolls in

the sequence are conducted in the same ordered manner, using the second half of the

combinations in the sequence. By the time the last value in the sequence is used, ten

trial rolls are conducted for each value of θt.

After trial rolls for Problem 2.1 are finished, columns of the linear actuator are
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newly cleaned/lubricated, the batteries are fully recharged, and the motor is allowed

to cool for at least three hours. The experimental procedure for Problem 2.1 is then

repeated with the following changes in order to address Problem 2.2: ωd = −2.2

rad/s, Sm = 8.8 m, and the roll sequence is reshuffled. For Problem 2.3, ωd = −2.4

rad/s, Sm remains at 8.8 m, and the roll sequence is again reshuffled. For these last

two problems, the value of θm is set to 25◦ when θt = 25, otherwise it is set to 35◦.

Upon concluding trial rolls for problems in Phase 2, saved roll parameters are used

to calculate % for each trial roll, according to the strategy described in Section 4.6.3.

The resulting ten values of % corresponding to each value of θt for a given problem

form populations denoted as P1, P2, etc., and the average value of % for each of

these populations is recorded. In addition, δ% is calculated for each roll according to

Equation 4.39 in Section 4.6.4, and the largest value of δ% within each population is

recorded. Rho populations associated with values of θt for each problem are compared

one-by-one as in Phase 1, whereby a computer program perturbs the populations

and applies the median test. The value of N , which is the number of median tests

performed in the computer program, is set to 100, 000 as in Phase 1 (Section 4.6.1),

and the decision rule for comparison of two populations is also the same as in Phase

1, and is as follows. If the pass percentage of the largest augmented variable is

greater than 90, then the null hypothesis is rejected and the alternative hypothesis

is accepted. In this case, the value of θt corresponding to the %-population with less

positive central tendency is determined to be superior in terms of energy economy. If,

on the other hand, the pass percentage of the largest augmented variable is less than

or equal to 90, then the null hypothesis is kept, and neither value of θt is determined

to be superior.

Two comparison grids are built to catalogue results of the population comparisons

and to help determine the best value of θt for each problem, if possible. Rows and

columns in the grids are titled with a value of θt, as shown in Fig. 4.9. The top grid
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35° 45° 55° 65°
35° 45°, 100% 55°, 49% 35°, 100%
45° 45°, 100% 45°, 21.3% 45°, 100%
55° 55°, 49% 45°, 21% 55°, 100%
65° 35°, 100% 45°, 100% 55°, 100%

35° 45° 55° 65°
35° 45° - 35°
45° 45° - 45°
55° - - 55°
65° 35° 45° 55°

Figure 4.10: Examples of pairwise comparison grids for a problem in Phase 2 of the primary
experiment. The grids communicate which trigger angles are deemed superior in terms of
locomotion energy economy.

in the figure shows the pass percentage of the largest augmented variable, rounded to

the nearest whole number, for each comparison, along with the corresponding value

of θt. The bottom grid shows results of the decision rule for each comparison. If the

null hypothesis is kept relative to two combinations, a dash is placed in the entry

where corresponding row and column intersect; or if the alternative hypothesis is

accepted, the superior value of θt is placed in the entry. After all entries in the grids

are filled, attention is directed to the bottom grid’s columns. If a column contains

anything other than a dash or the title of that column, the corresponding value of

θt is rejected, signified by a cross-out. If only one column remains after rejections

have been made, the corresponding value of θt is determined to be superior in terms

of energy economy of robot locomotion. If more than one column remains after

rejections have been made, corresponding values of θt are determined to be superior

to other values of θt in terms of energy economy.

4.6.3 Energy Per Unit Roll Distance, %

As the robot rolls in a controlled manner, various resistive agents perform non-

conservative work that retards robot motion, causing it to move slower than it would

if these agents were not present. The primary resistive agents that slow the robot
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are: servo motor inefficiency, friction in the columns of the linear actuator, and

rolling resistance torque. For a given roll distance, ∆S, of the robot, the sum of

non-conservative work performed by these agents is a negative value denoted herein

as WNC , and non-conservative work performed per unit distance rolled is defined as

% ≡ −WNC

∆S
(4.6)

The negative sign used in the definition is meant to ensure that % is always positive,

a convention adopted merely for convenience in reporting results. In the primary

experiment, energy economy of robot locomotion is evaluated using this parameter.

In order to help understand the significance of % in relation to robot locomotion,

imagine two trial rolls of the robot, each with different combinations of control con-

stants (kf , ks, θt) yet with identical values of ωd and θm and with identical initial

conditions. In these hypothetical rolls, say the robot exhibits stable, steady state

average velocity equal to ωd. An obvious approach to compare energy economy of

these rolls would be to measure the work done by the servo motor for both rolls after

the robot has achieved steady state velocity. This measurement could be done by

coupling a torque sensor and encoder to the servo motor, and integrating the motor’s

measured torque over the motor’s angular displacement. This approach would be

mechanically inconvenient, however, because attaching two mechanical sensors to the

servo motor would add significant weight and complication to the robot.

Instead, an equally valid method to evaluate energy economy of the robot – and

the approach used for the primary experiment documented herein – is to calculate the

non-conservative work, WNC , performed on the robot through a process of electrical

measurement at the servo motor. This approach, which is explained in the following

paragraphs, is based on the simple idea that non-conservative work causes the linear

actuator to work more than it would if resistive agents were not present in the system;
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therefore, when comparing locomotion economy of two trial rolls, the roll that registers

a smaller magnitude of non-conservative work to achieve comparable results actually

works less, and is therefore the more economical roll. In other words, the control

combination corresponding to a smaller value of % is superior in terms of energy

economy.

In addition to being an indicator of how freely the robot moves, % can also be

thought of as an indicator of the electrical energy required to move the robot over

a certain roll distance. Continuing with the hypothetical rolls mentioned previously,

imagine that for each roll, angle of the robot and height of robot center of mass

are the same at the start as the end of the roll, so there is no change in kinetic

energy and potential energy. In this case, application of the work-energy theorem

[40] requires that energy put into the robot during a roll is equal to the magnitude

of non-conservative work performed on the robot from beginning to end. Therefore,

the magnitude of WNC is exactly equal to the amount of electrical energy required

to move the robot down the track. Of course, if there were changes in kinetic and/or

potential energy from beginning to end of the roll, then a slightly more complicated

approach would be taken to calculate non-conservative work, but the general idea

remains the same: WNC indicates the amount of electrical energy required for the

roll. It follows that when comparing locomotion of the two hypothetical trial rolls,

the roll that registers a smaller magnitude of non-conservative work per unit roll

distance also pulls less energy per roll distance from the batteries. Clearly, then, that

roll is more economical. According to Equation 4.6, this statement is equivalent to

saying the control combination corresponding to a smaller value of % is superior in

terms of energy economy.

Recall from Section 4.2 that after a trial roll is finished, the robot is programmed

to report locomotion-related parameters for every 100 ms (every tenth of a second)

of the 15 second trial roll to a laptop computer. Reported parameters from each trial
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roll in the primary experiment are saved in a digital spreadsheet as 151 successive

rows containing values of θ, ω, S, a, ωr and total energy consumed by the servo motor.

To facilitate calculation of % each trial roll, two roll time points are chosen from the

spreadsheet. Point 1 is chosen from the beginning of the trial roll after the robot

has achieved steady state velocity and when the robot is in, or is very close to, the

circular configuration (with a = 0.3335 m). Typically, Point 1 is about 4.5 seconds

into the roll, depending on the desired velocity of the trial roll. Point 2 is chosen

from points at the end of the roll after the robot has reached Sm and settled-in to the

circular configuration, as directed by the control program. Typically, Point 2 is about

14 seconds into the trial roll. Even though selection of Points 1 and 2 vary from roll

to roll, they almost always envelop about nine seconds of steady state velocity of the

robot.

After Points 1 and 2 have been chosen, the work energy theorem [40] is applied

to the trial roll using these two reference points, by which the following energy con-

servation equation is derived:

Em +WNC = ∆K + ∆U (4.7)

where ∆K and ∆U are changes in kinetic and potential energy, respectively, of the

robot from Point 1 to Point 2, and Em is total energy supplied to the servo motor

between Points 1 and 2. Here, WNC is non-conservative work performed on the linear

actuator, servo motor, and outer surface of the robot. It does not include energy

consumed by the microprocessor and sensors, because energy into these components

is not part of Em, and energy out of these components does not affect mechanics of

the robot. Em is calculated by subtracting total energy used by the servo motor at

Point 1 from total energy used at Point 2:

Em = E2 − E1 (4.8)
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Change in kinetic energy, ∆K, in Equation 4.7 is calculated according to the

assumption that the robot is a rigid body. As such, kinetic energy is calculated

according to angular velocity of robot axis, A, as well as linear velocity, v, of robot

center of mass. Change in kinetic energy from Point 1 to Point 2 is therefore expressed

as

∆K =
1

2
Mv22 +

1

2
Iω2

2 −
1

2
Mv21 −

1

2
Iω2

1 (4.9)

where I is mass moment of inertia of the robot in the circular configuration, and v

and ω are subscripted to signify velocities at Points 1 and 2. Because the robot is in,

or nearly in, the circular configuration at Points 1 and 2, height of robot center of

mass is equal to h− d, where h is radius of the unloaded outer surface cylinder in the

circular configuration, and d is a small change in height of robot center of mass due

to bending of the outer surface (see Section 3.5.1). Treating h−d as the radius of the

rolling robot, the arc length formula is applied in order to calculate velocity of robot

center of mass at Points 1 and 2, resulting in: v1 = (h− d1)ω1 and v2 = (h− d2)ω2,

where d1 and d2 are changes in height of robot center of mass due to bending at

Points 1 and 2, respectively. Substituting for v1 and v2, Equation 4.9 becomes

∆K =
M

2
[(h− d2)2ω2

2 − (h− d1)2ω2
1] +

I

2
(ω2

2 − ω2
1) (4.10)

As an aside, it is possible that at Point 1 the robot is in the midst of changing

shape as it rolls. In this case, the robot is not a solid body, and the actual linear

velocity of robot center of mass is slightly different from v1 in Equation 4.9 due to the

potentially additional velocity component of robot center of mass during actuation.

However, the kinetic energy potentially brought on by this unaccounted for velocity

component is tiny compared to the entire kinetic energy of the rolling robot, and so

it is not included in Equation 4.9.

Potential energy of the robot at any point is equal to gravity potential of robot
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center of mass, plus potential stored in deflection of the flexible outer surface. For

the purpose of calculating these values, an imaginary reference datum is placed at

the surface of the roll track, and the outer surface is treated as a linear spring with

stiffness, ks. Accordingly, potential energy of the robot at Point 1 is

U1 = mg(h− d1) +
1

2
ksd

2
1 (4.11)

where the quantity on the left of the addition sign is gravity potential of robot center

of mass, and the quantity on the right of the addition sign is outer surface spring

potential. Recall from Section 3.5.1 that d is a function of robot orientation, a condi-

tion resulting from the linear actuator running along the diameter of the outer surface

that acts as a stiff beam that firmly holds the outer surface and restricts its bending.

Consequently, when the robot is oriented such that the linear actuator is nearly hor-

izontal, the outer surface bends considerably. In this case, the outer surface behaves

as a spring with a relatively small spring constant. In contrast, when the actuator is

nearly vertical, the outer surface bends only a tiny amount. In this case, the outer

surface behaves as a very stiff spring. To quantify this variable energy storage capac-

ity of the outer surface, stiffness ks is modeled as being equal to robot weight divided

by deflection of robot center of mass:

ks =
Mg

d
(4.12)

Substituting Equation 4.12 into Equation 4.11 and simplifying gives the following

expression for potential energy of the robot at Point 1:

U1 = Mg(h− d1/2) (4.13)
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Likewise, potential energy at Point 2 is

U2 = Mg(h− d2/2) (4.14)

and the change in potential energy between Points 1 and 2 is

∆U = U2 − U1 =
Mg

2
(d1 − d2) (4.15)

As defined previously, % is equal to the negative of non-conservative work, WNC ,

performed between Points 1 and 2 divided by the distance, ∆S = S2 − S1, traveled

between Points 1 and 2. Combining this definition with Equation 4.7, 4.10 and 4.15

gives

% = − Mg

2∆S
(d1 − d2)−

M

2∆S
[(h− d2)2ω2

2 − (h− d1)2ω2
1]

− I

2∆S
(ω2

2 − ω2
1) +

Em
∆S

(4.16)

4.6.4 Uncertainty in %

It is possible that the value of % calculated by Equation 4.16 for a given trial roll is

slightly different from the actual value of work per unit distance between Points 1

and 2. The magnitude of the possible difference is the uncertainty associated with

%, and it is brought about by imperfect measurement and imperfect modeling of the

parameters that go into calculating %, which according to Equation 4.16 are: M ,

I, h, ω1, ω2, d1, d2, ∆S and Em. Concerning measurements of the first two, M is

obtained with a scale, and I is found using the swinging pendulum method [56]; and

no significant difference is found in I when semi-major axis of the outer surface is

changed from a = 0.3335 m to a = 0.3490 m, so that I can safely be considered

a constant, regardless of outer surface eccentricity. Because M and I are carefully
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measured, they are deemed highly accurate and therefore essentially noncontributing

to uncertainty in %. In addition, it will be shown in this section that uncertainty

in measurement of ∆S is small enough to be considered noncontributing. Each of

the six remaining parameters, however, has significant measurement uncertainty and

therefore contributes to uncertainty in %. With these parameters denoted as p1−6,

the square-root sum method [57] for propagation of uncertainty gives the following

expression for uncertainty in %:

δ% =

√
(
∂%

∂p1
δp1)2 + (

∂%

∂p2
δp2)2 + ...+ (

∂%

∂p6
δp6)2 (4.17)

where δp1 − δp6 are uncertainties associated with p1 − p6, respectively, and they are

given or derived in the following paragraphs of this section. The six partial derivatives

in Equation 4.17 are derived and given as follows:

δ%

δh
=

M

∆S
(h− d1)ω2

1 −
M

∆S
(h− d2)ω2

2 (4.18)

δ%

δω1

=
M

∆S
(h1 − d1)2ω1 +

I

∆S
ω1 (4.19)

δ%

δω2

= − M

∆S
(h2 − d2)2ω2 −

I

∆S
ω2 (4.20)

δ%

δd1
= − Mg

2∆S
− M

∆S
(h1 − d1)ω2

1 (4.21)

δ%

δd2
=

Mg

2∆S
+

M

∆S
(h2 − d2)ω2

2 (4.22)

δ%

δEm
=

1

∆S
(4.23)

Uncertainties in h1, h2, d1 and d2

In Section 3.1, center of mass of the robot is said to be approximately located at

the axis of the outer surface cylinder of the robot when it is unloaded. This approx-

imation, by which the height, h, of robot center of mass above the roll surface is
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equated to 0.3335 m for computing energy of the robot in the circular configuration

(Equation 4.10, Equation 4.11, Equation 4.13, and Equation 4.16), is estimated to

have a margin of error of ±0.005 m due to difficulty in placing and confirming the

exact center of gravity of the robot. In other words, the center of mass of the robot

could be located up to a distance of 0.005 m in any direction from its presumed po-

sition, possibly making h smaller or larger by the same magnitude. In addition, due

to imperfect modeling of a as described in Section 3.7.2, it’s possible that at Points

1 and 2, the robot might not be in the circular configuration, even though it could

be reported as such. This latter discrepancy leads to the actual center of mass being

located up to a distance of 0.0026 m relative to its presumed position. In total then,

the center of mass of the robot could be off by as much as 0.005 m + 0.0026 m =

0.0076 m in either direction along A from its presumed position. The expression for

uncertainty in h is therefore given by: δh1 = δh2 = 0.0076 m.

Uncertainty in d is due to error in the vertical bending model, given by Equa-

tion 3.5, applied to predict it. In Section 3.5.1, predicted values of d obtained using

Equation 3.5 are compared to actual static bending measurements for orientations

of the robot spanning 0◦ − 360◦. Difference between predicted values and actual

measurements is shown to be no greater than 2.0 millimeters in magnitude. This

maximum value is used as uncertainty in d, so that δd1 = δd2 = 0.0020 m.

Uncertainties in ω1, ω2 and ∆S

Uncertainty in angular velocity is derived by performing a test, as described in Sec-

tion 4.2, in which the largest possible discrepancy is found between the computed

roll angle using gyroscope measurements and roll angle as measured by the mechan-

ical switches at every half turn of the robot. Differences in these two values of roll

angle provide a reference by which uncertainty for ω is derived. This uncertainty is

explained in Section 4.2, and it is restated here as: δω1 = δω1 = 0.0578 rad/s.
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In order to determine uncertainty in roll distance, S, a test is conducted in which

measured values of S are compared to actual values. For this test, several rolls of

the robot are performed, in which robot initial position is accurately established by

starting each roll from a marked position on the track. At a distance down the track,

a bumper is placed on the roll surface, so that when the robot makes contact with

the bumper, it has rolled a distance of 8.50 m. At or just after contact, the reported

angular velocity of the robot sharply drops, and at this report time, roll distance of

the robot as computed by the control program using Equation 4.5 is saved to a laptop

computer. Five such rolls are performed in this manner for ωd = 2.4 rad/s, and for

each roll the computed value of S is compared to the actual roll distance, 8.50 m.

Results of the test reveal that reported roll distance of the robot is always greater

than the actual roll distance, yet it is never greater by more than 2.5 cm. In terms of

error per unit roll distance, this discrepancy is equivalent to 0.025 m/8.5 m = 0.0029

meters of error per meter rolled.

Because the computed value of roll distance in the test is always greater than the

actual value, it is deduced that the discrepancy is due to slippage of the outer surface

against the surface of the roll track. Assuming the slippage occurs evenly about

the distance of the track, it follows that the amount of error in the measurement

of ∆S reported by the control program for two points on the roll track separated

by six meters – at 9.70 m and 3.70 m, for instance – would never be more than:

[9.70(0.0029 + 1)− 3.70(0.0029 + 1)− 6.00] m = 0.017 m. This uncertainty for ∆S, if

it were included in Equation 4.17, would add only a tiny amount to δ% in comparison

to uncertainty from other parameters, and it is therefore treated as noncontributing.

Uncertainty in Em

As described in Section 3.4.3, the energy sensor samples current and voltage at the

servo motor, multiplies them to obtain power consumed by the servo motor, and
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then integrates power over time to give total energy used by the servo motor. Hence,

δEm is a consequence of uncertainties in current and voltage measurements as well as

propagation of these uncertainties when using the measurements to compute power

and energy consumed by the servo motor from Point 1 to Point 2. Uncertainty in

energy consumed could be computed onboard the energy sensor during each experi-

mental trial roll, but this is not the preferred approach, and the reason has to do with

the computation load of the sensing program; in order to achieve the most accurate

computation of energy possible, sample period of the energy sensor program is made

to be as small as possible, and consequently, the number of computations the sensor

program is allowed to perform is strictly limited. For this reason, instead of per-

forming uncertainty-related computations in the sensing program, δEm is calculated

after trial rolls are conducted, using information that is reported by the robot to the

laboratory laptop computer and saved.

This post-roll calculation of δP is a simplification strategy in which the concept

of average power is invoked to approximate uncertainty in the reported value of Em.

The strategy relies on the assumption that there is no significant error introduced by

the integration process used to compute energy in the sensor program (Section 3.4.3).

Thus, if t1−2 is given as roll duration between Points 1 and 2, energy used by the

servo motor is approximated by applying the definition of average power [40]:

Em = Pt1−2 (4.24)

and applying the square-root sum method [57] to this equation for propagation of

uncertainty gives

δEm = (δP )t1−2 (4.25)

According to the power transfer equation [40], power of any device is equal to the

current going into the device multiplied by potential across the device’s terminals.
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For the servo motor, then, average power is

P = (im)(Vm) (4.26)

where im and Vm are average current and voltage, respectively, for the servo motor. By

monitoring servo motor voltage with an oscilloscope during actuation of the robot, Vm

is found to be 4.96 volts on average with little overall change, allowing Equation 4.26

to be rewritten as

P = 4.96(im) (4.27)

and

δP = 4.96(δim) (4.28)

Servo motor current, im is a function of MAX4071 output voltage, Vout [33]:

im =
Vout − 1.5

50R
(4.29)

where R is ohmage of the sense resistor placed in series between the motor power

supply and the motor load (Fig. 3.9). Applying the square-root sum method [57] to

Equation 4.29 for propagation of uncertainty gives

δim =

√
(
∂im
∂Vout

δVout)2 + (
∂im
∂R

δR)2 (4.30)

where δVout is uncertainty in output voltage of the MAX4071 chip, and δR is uncer-

tainty of the sense resistor ohmage. Although δR is non-zero, it is tiny compared to

δVout, and it can therefore be ignored, whereby Equation 4.30 simplifies to

δim =
1

50R
δVout (4.31)
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For the configuration of the MAX4071 chip as applied on the energy sensor, un-

certainty in output voltage is due to imperfect chip performance and is no greater

than 1% [33]. Additional uncertainty of 0.00781 volts is introduced to by possibility

of imperfect analog-to-digital conversion [58]. Total uncertainty in output voltage of

the MAX4071 is therefore

δVout =
Vout
100

+ 0.00781 (4.32)

and this equation is combined with Equation 4.31 to give

δim =
1

50R
(
Vout
100

+ 0.00781) (4.33)

From Section 3.4.3, R = 0.10 Ω, so that uncertainty in motor current is

δim =
Vout
500

+ 0.00156 (4.34)

It is assumed that Equation 4.34 provides a good approximation of the uncertainty

in average current when Vout is replaced therein by Vout, which is the average value of

Vout over t1−2. As such,

δim =
Vout
500

+ 0.00156 (4.35)

In the same vein, it is assumed that Equation 4.29 provides good approximation of

average current when Vout is replaced by Vout, so that

im =
Vout − 1.5

5
(4.36)

Combining these two equations results in

δim =
5im + 1.5

500
+ 0.00156 (4.37)
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and combining this equation with Equation 4.27 and 4.28 gives

δP = 0.0100P + 0.00774 (4.38)

Finally, Equations 4.24 and 4.25 are combined with Equation 4.38 to give

δEm = 0.0100Em + 0.0226t1−2 (4.39)
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CHAPTER 5

Results

This chapter presents results of the primary experiment described in Section 4.6. The

chapter is divided into three sections. The first and second sections present results

of Phase 1 and Phase 2 of the primary experiment, and the third section presents

results from running the simulation program described in Section 3.5. In the third sec-

tion, simulated parameters are compared to parameters that are measured/computed

during trial rolls of the robot.

5.1 Phase 1

This section presents results of Phase 1 problems that are not disregarded for being

unviable. Results for each problem are fully contained on a singular page, and each

page begins with a problem summary that includes desired angular velocity, trigger

angle, and values of kf and ks that define the problem. Following each problem

summary is a table (Tables 5.1 through 5.10) that lists % and δ% for the trial rolls

conducted in the problem. The last row of this table gives % and the maximum value

of δ% for each %-population. Finally, comparison grids as described in Section 4.6.1

are presented in Fig. 5.1 through Fig. 5.10. Results from Problem 1.13, although it

is a viable problem, are not included in this section, because only one value of kf

for Problem 1.13 results in stability. Instead, results of Problem 1.13 are included in

Section 5.2 as part of Problem 2.3 results.
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Problem 1.2
ωd = −2.0 rad/s
θt = 35◦

C1: kf = 0.010, ks = 1.27
C2: kf = 0.020, ks = 1.18
C3: kf = 0.030, ks = 1.12
C4: kf = 0.040, ks = 1.08

Table 5.1: %, δ% for trial rolls of Problem 1.2.

P1 P2 P3 P4

2.777, 0.065 2.494, 0.061 2.476, 0.060 2.466, 0.062
2.731, 0.065 2.593, 0.061 2.860, 0.064 2.702, 0.063
3.044, 0.068 3.092, 0.066 3.076, 0.066 2.671, 0.064
2.896, 0, 066 3.057, 0.066 3.125, 0.066 3.150, 0.068
3.057, 0.068 2.831, 0.063 3.211, 0.068 2.919, 0.065
2.527, 0.062 2.781, 0.063 2.697, 0.062 3.002, 0.066
2.779, 0.066 2.478, 0.060 2.917, 0.065 2.497, 0.060
2.884, 0.066 2.836, 0.063 2.779, 0.063 2.646, 0.063
2.901, 0.067 2.732, 0.063 2.846, 0.064 2.687, 0.064
2.786, 0.065 2.755, 0.063 2.802, 0.064 2.565, 0.062

% : 2.838 2.765 2.879 2.730
max. δ%: 0.068 0.066 0.068 0.068

C1 C2 C3 C4
C1 C2, 3% C3, 0% C4, 100%
C2 C2, 3% C2, 24% C4, 76%
C3 C3, 0% C2, 24% C4, 100%
C4 C4, 100% C4, 76% C4, 100%

C1 C2 C3 (C4)
C1 - - C4
C2 - - -
C3 - - C4
C4 C4 - C4

Figure 5.1: Pairwise comparison grids for Problem 1.2.
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Problem 1.3
ωd = −2.0 rad/s
θt = 45◦

C1: kf = 0.010, ks = 1.22
C2: kf = 0.020, ks = 1.14
C3: kf = 0.030, ks = 1.09
C4: kf = 0.040, ks = 1.07

Table 5.2: %, δ% for trial rolls of Problem 1.3.

P1 P2 P3 P4

2.431, 0.061 2.348, 0.059 2.443, 0.061 2.327, 0.060
2.501, 0.062 2.298, 0.058 2.616, 0.062 2.592, 0.062
2.597, 0.063 2.579, 0.061 2.670, 0.062 2.693, 0.063
2.778, 0.065 2.861, 0.065 2.526, 0.061 2.718, 0.063
3.065, 0.068 2.783, 0.063 2.868, 0.064 2.710, 0.063
2.907, 0.067 2.867, 0.065 2.759, 0.064 2.854, 0.065
2.926, 0.067 2.634, 0.063 2.526, 0.062 2.567, 0.062
2.975, 0.067 2.836, 0.064 2.754, 0.064 2.605, 0.063
3.076, 0.068 3.005, 0.067 2.941, 0.065 2.770, 0.064
2.364, 0.062 2.999, 0.066 3.059, 0.067 2.974, 0.066

% : 2.762 2.721 2.716 2.681
max δ%: 0.068 0.067 0.067 0.066

C1 C2 C3 C4
C1 0% 0% 0%
C2 0% 0% C4, 0%
C3 0% 0% 0%
C4 0% C4, 0% 0%

C1 C2 C3 (C4)
C1 - - -
C2 - - -
C3 - - -
C4 - - -

Figure 5.2: Pairwise comparison grids for Problem 1.3.
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Problem 1.4
ωd = −2.0 rad/s
θt = 55◦

C1: kf = 0.010, ks = 1.21
C2: kf = 0.020, ks = 1.13
C3: kf = 0.030, ks = 1.09
C4: kf = 0.040, ks = 1.07

Table 5.3: %, δ% for trial rolls of Problem 1.4.

P1 P2 P3 P4

2.843, 0.066 3.146, 0.068 3.263, 0.068 3.243, 0.073
3.105, 0.068 2.617, 0.057 3.300, 0.068 3.331, 0.069
2.939, 0.067 3.020, 0.066 3.239, 0.068 3.321, 0.069
3.129, 0.069 2.805, 0.064 3.143, 0.067 3.213, 0.068
2.873, 0.066 2.738, 0.063 3.054, 0.066 3.190, 0.067
2.287, 0.061 2.355, 0.060 2.613, 0.063 2.599, 0.063
2.348, 0.061 2.512, 0.062 2.841, 0.066 2.710, 0.064
2.464, 0.064 2.537, 0.063 2.797, 0.065 2.697, 0.064
2.230, 0.061 2.357, 0.061 2.718, 0.070 2.648, 0.064
2.324, 0.062 2.410, 0.061 2.779, 0.065 2.711, 0.066

% : 2.654 2.650 2.975 2.966
max δ%: 0.069 0.068 0.070 0.073

C1 C2 C3 C4
C1 0% C3, 0% 0%
C2 0% C2, 99% C2, 13%
C3 C3, 0% C2, 99% 0%
C4 0% C2, 13% 0%

C1 (C2) C3 C4
C1 - - -
C2 - C2 -
C3 - C2 -
C4 - - -

Figure 5.3: Pairwise comparison grids for Problem 1.4.
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Problem 1.5
ωd = −2.0 rad/s
θt = 65◦

C1: kf = 0.010, ks = 1.21
C2: kf = 0.020, ks = 1.12
C3: kf = 0.030, ks = 1.11

Table 5.4: %, δ% for trial rolls of Problem 1.5.

P1 P2 P3

3.145, 0.069 3.483, 0.071 3.743, 0.074
3.212, 0.070 3.494, 0.072 4.109, 0.078
3.218, 0.069 3.157, 0.068 4.711, 0.085
3.429, 0.073 3.623, 0.073 4.339, 0.080
3.259, 0.070 3.698, 0.074 5.240, 0.092
3.222, 0.070 3.531, 0.070 3.711, 0.077
3.278, 0.070 3.290, 0.067 3.869, 0.076
3.244, 0.069 3.157, 0.068 4.107, 0.081
3.311, 0.071 3.567, 0.070 4.304, 0.082
3.490, 0.068 3.598, 0.070 4.799, 0.091

% : 3.281 3.460 4.293
max δ%: 0.073 0.074 0.092

C1 C2 C3
C1 C1, 100% C1, 100%
C2 C1, 100% C2, 100%
C3 C1, 100% C2, 100%

(C1) C2 C3
C1 C1 C1
C2 C1 C2
C3 C1 C2

Figure 5.4: Pairwise comparison grids for Problem 1.5.

108



Problem 1.6
ωd = −2.2 rad/s
θt = 25◦

C1: kf = 0.020, ks = 1.16
C2: kf = 0.030, ks = 1.10
C3: kf = 0.040, ks = 1.09

Table 5.5: %, δ% for trial rolls of Problem 1.6.

P1 P2 P3

2.428, 0.057 2.399, 0.057 2.234, 0.057
2.429, 0.057 2.461, 0.058 2.429, 0.057
2.418, 0.057 2.421, 0.058 2.323, 0.056
2.383, 0.057 2.433, 0.058 2.396, 0.056
2.286, 0.056 2.052, 0.054 2.243, 0.056
2.467, 0.057 2.365, 0.057 2.229, 0.056
2.655, 0.060 2.276, 0.056 2.385, 0.058
2.364, 0.057 2.230, 0.056 2.186, 0.051
2.285, 0.056 2.257, 0.057 2.441, 0.058
2.404, 0.057 2.280, 0.056 2.226, 0.056

% : 2.412 2.317 2.309
max δ%: 0.060 0.058 0.058

C1 C2 C3
C1 C2, 24% C3, 56%
C2 C2, 24% 0%
C3 C3, 56% 0%

C1 (C2) C3
C1 - -
C2 - -
C3 - -

Figure 5.5: Pairwise comparison grids for Problem 1.6.
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Problem 1.7
ωd = −2.2 rad/s
θt = 35◦

C1: kf = 0.010, ks = 1.27
C2: kf = 0.020, ks = 1.15
C3: kf = 0.030, ks = 1.10
C4: kf = 0.040, ks = 1.09

Table 5.6: %, δ% for trial rolls of Problem 1.7.

P1 P2 P3 P4

2.111, 0.054 2.258, 0.055 2.183, 0.055 2.167, 0.055
2.115, 0.054 2.148, 0.055 2.205, 0.055 2.334, 0.056
2.143, 0.055 2.340, 0.056 2.224, 0.055 2.460, 0.058
2.230, 0.055 2.301, 0.056 2.192, 0.055 2.340, 0.056
2.236, 0.055 2.305, 0.056 2.321, 0.057 2.402, 0.057
2.267, 0.056 2.275, 0.056 2.358, 0.061 2.497, 0.058
2.356, 0.057 2.440, 0.058 2.455, 0.062 2.456, 0.058
2.506, 0.059 2.437, 0.058 2.577, 0.059 2.512, 0.058
2.372, 0.058 2.453, 0.058 2.495, 0.058 2.308, 0.056
2.257, 0.051 2.392, 0.057 2.316, 0.056 2.450, 0.058

% : 2.259 2.335 2.333 2.393
max δ%: 0.059 0.058 0.061 0.058

C1 C2 C3 C4
C1 C1, 84% C1, 2% C1, 100%
C2 C1, 84% C3, 0% C2, 4%
C3 C1, 2% C3, 0% C3, 32%
C4 C1, 100% C2, 4% C3, 32%

C1 (C2) C3 C4
C1 - - C1
C2 - - -
C3 - - -
C4 C1 - -

Figure 5.6: Pairwise comparison grids for Problem 1.7.
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Problem 1.8
ωd = −2.2 rad/s
θt = 45◦

C1: kf = 0.010, ks = 1.28
C2: kf = 0.020, ks = 1.16
C3: kf = 0.030, ks = 1.13
C4: kf = 0.040, ks = 1.11

Table 5.7: %, δ% for trial rolls of Problem 1.8.

P1 P2 P3 P4

2.348, 0.053 2.502, 0.057 2.693, 0.059 2.512, 0.059
2.483, 0.058 2.536, 0.059 2.851, 0.062 2.813, 0.062
2.492, 0.058 2.640, 0.060 2.859, 0.062 2.717, 0.061
2.690, 0.061 2.683, 0.060 2.578, 0.059 2.678, 0.061
2.444, 0.058 2.497, 0.059 2.644, 0.060 2.491, 0.059
2.421, 0.058 2.414, 0.058 2.672, 0.059 2.491, 0.058
2.381, 0.057 2.288, 0.056 2.653, 0.060 2.543, 0.059
2.461, 0.058 2.618, 0.060 2.832, 0.059 2.626, 0.060
2.542, 0.059 2.482, 0.058 2.794, 0.062 2.627, 0.060
2.604, 0.060 2.667, 0.060 2.316, 0.061 2.616, 0.060

% : 2.487 2.533 2.722 2.611
max δ%: 0.061 0.060 0.062 0.062

C1 C2 C3 C4
C1 C1, 39% C1, 100% C1, 98%
C2 C1, 39% C2, 99% C2, 0%
C3 C1, 100% C2, 99% C4, 85%
C4 C1, 98% C2, 0% C4, 85%

(C1) C2 C3 C4
C1 - C1 C1
C2 - C2 -
C3 C1 C2 -
C4 C1 - -

Figure 5.7: Pairwise comparison grids for Problem 1.8.
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Problem 1.9
ωd = −2.2 rad/s
θt = 55◦

C1: kf = 0.020, ks = 1.18
C2: kf = 0.030, ks = 1.16

Table 5.8: %, δ% for trial rolls of Problem 1.9.

P1 P2

2.881, 0.062 3.008, 0.063
3.099, 0.065 3.216, 0.066
3.142, 0.065 3.450, 0.068
3.305, 0.067 3.563, 0.070
3.135, 0.065 3.398, 0.067
2.884, 0.062 3.114, 0.065
3.260, 0.066 3.357, 0.067
3.256, 0.066 3.106, 0.064
3.094, 0.065 3.030, 0.064
3.039, 0.064 2.959, 0.064

% : 3.110 3.220
max δ%: 0.067 0.070

C1 C2
C1 C1, 1%
C2 C1, 1%

(C1) C2
C1 -
C2 -

Figure 5.8: Pairwise comparison grids for Problem 1.9.
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Problem 1.11
ωd = −2.4 rad/s
θt = 25◦

C1: kf = 0.010, ks = 1.29
C2: kf = 0.020, ks = 1.18
C3: kf = 0.030, ks = 1.14
C4: kf = 0.040, ks = 1.11

Table 5.9: %, δ% for trial rolls of Problem 1.11.

P1 P2 P3 P4

2.881, 0.060 2.971, 0.060 2.828, 0.059 2.709, 0.058
2.884, 0.060 2.779, 0.058 2.848, 0.059 2.692, 0.058
2.750, 0.058 2.821, 0.059 2.844, 0.059 3.029, 0.061
2.762, 0.059 3.175, 0.063 2.908, 0.060 2.964, 0.060
2.877, 0.060 3.146, 0.061 2.974, 0.061 2.679, 0.057
2.982, 0.061 3.048, 0.061 2.880, 0.060 3.153, 0.062
2.922, 0.061 2.913, 0.060 2.995, 0.061 3.058, 0.061
3.067, 0.062 3.197, 0.063 3.083, 0.062 2.987, 0.060
3.110, 0.062 3.041, 0.061 3.064, 0.062 3.190, 0.063
3.160, 0.063 3.239, 0.063 3.064, 0.062 2.865, 0.060

% : 2.939 3.033 2.949 2.933
max δ%: 0.063 0.063 0.062 0.063

C1 C2 C3 C4
C1 C1, 36% C3, 0% C1, 0%
C2 C1, 36% C3, 15% C4, 2%
C3 C3, 0% C3, 15% 0%
C4 C1, 0% C4, 2% 0%

C1 C2 C3 (C4)
C1 - - -
C2 - - -
C3 - - -
C4 - - -

Figure 5.9: Pairwise comparison grids for Problem 1.11.
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Problem 1.12
ωd = −2.4 rad/s
θt = 35◦

C1: kf = 0.030, ks = 1.10
C2: kf = 0.040, ks = 1.09

Table 5.10: %, δ% for trial rolls of Problem 1.12.

P1 P2

2.641, 0.058 2.540, 0.056
2.822, 0.059 2.618, 0.057
2.849, 0.060 2.512, 0.056
2.622, 0.057 2.757, 0.058
2.745, 0.058 2.728, 0.058
3.271, 0.064 3.147, 0.063
3.044, 0.062 3.214, 0.064
3.174, 0.063 3.192, 0.063
3.045, 0.063 3.409, 0.066
3.083, 0.062 3.492, 0.066

% : 2.930 2.961
max δ%: 0.064 0.066

C1 C2
C1 0%
C2 0%

(C1) C2
C1 -
C2 -

Figure 5.10: Pairwise comparison grids for Problem 1.12.
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5.2 Phase 2

This section presents results of trial rolls for Problem 2.1 through Problem 2.3. Re-

sults of each problem are fully contained on a singular page, and each page begins

with a problem summary that includes the desired angular velocity and combina-

tions of θt, kf and ks tested in the problem. Following each problem summary is a

table (Tables 5.11 through 5.13) that lists % and δ% for trial rolls conducted in the

problem. The last row of this table lists % and the maximum value of δ% for each

%-population. Finally, pairwise comparison grids as described in Section 4.6.2 are

presented in Fig. 5.11 through Fig. 5.13 for each trial roll conducted in the problem.

At the end of the section, a summary of Phase 2 results is given in Fig. 5.14, in which

superior values of θt are identified for the various values of ωd.
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Problem 2.1
ωd = −2.0 rad/s
θt = 35◦, kf = 0.020, ks = 1.17
θt = 45◦, kf = 0.020, ks = 1.14
θt = 55◦, kf = 0.020, ks = 1.13
θt = 65◦, kf = 0.020, ks = 1.12

Table 5.11: %, δ% for trial rolls of Problem 2.1

P1 (θt = 35◦) P2 (θt = 45◦) P3 (θt = 55◦) P4 (θt = 65◦)

2.404, 0.060 2.331, 0.060 2.320, 0.059 2.992, 0.066
2.548, 0.062 2.348, 0.060 2.431, 0.060 2.733, 0.064
2.610, 0.062 2.334, 0.059 2.490, 0.061 2.761, 0.064
2.465, 0.061 2.450, 0.061 2.309, 0.059 2.564, 0.062
2.662, 0.062 2.447, 0.061 2.394, 0.060 2.636, 0.063
2.610, 0.062 2.499, 0.061 2.377, 0.060 2.855, 0.065
2.825, 0.064 2.338, 0.059 2.631, 0.063 2.726, 0.065
2.738, 0.063 2.485, 0.061 2.363, 0.060 2.861, 0.065
2.675, 0.062 2.452, 0.061 2.588, 0.062 2.968, 0.067
2.635, 0.062 2.420, 0.061 2.658, 0.063 2.900, 0.066

% : 2.617 2.410 2.456 2.788
max δ%: 0.064 0.061 0.063 0.067

35° 45° 55° 65°
35° 45°, 100% 55°, 49% 35°, 100%
45° 45°, 100% 45°, 21.3% 45°, 100%
55° 55°, 49% 45°, 21% 55°, 100%
65° 35°, 100% 45°, 100% 55°, 100%

35° 45° 55° 65°
35° 45° - 35°
45° 45° - 45°
55° - - 55°
65° 35° 45° 55°

Figure 5.11: Pairwise comparison grids for Problem 2.1.
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Problem 2.2
ωd = −2.2 rad/s
θt = 25◦: kf = 0.020, ks = 1.18
θt = 35◦: kf = 0.020, ks = 1.15
θt = 45◦: kf = 0.020, ks = 1.16
θt = 55◦: kf = 0.020, ks = 1.18

Table 5.12: %, δ% for trial rolls of Problem 2.2

P1 (θt = 25◦) P2 (θt = 35◦) P3 (θt = 45◦) P4 (θt = 55◦)

2.781, 0.060 2.425, 0.058 2.621, 0.059 3.214, 0.065
2.806, 0.060 2.323, 0.056 2.479, 0.058 3.079, 0.064
2.856, 0.061 2.465, 0.058 2.966, 0.063 3.561, 0.069
2.740, 0.058 2.511, 0.058 2.979, 0.063 3.303, 0.066
2.728, 0.060 2.863, 0.060 2.891, 0.061 3.423, 0.068
2.899, 0.061 2.788, 0.061 2.655, 0.059 3.859, 0.073
2.849, 0.061 2.743, 0.061 2.838, 0.062 3.937, 0.069
3.019, 0.061 2.993, 0.064 3.189, 0.065 3.839, 0.072
2.877, 0.061 2.937, 0.063 2.953, 0.062 3.819, 0.072
2.984, 0.063 2.853, 0.061 3.072, 0.063 3.880, 0.073

% : 2.854 2.690 2.864 3.591
max δ%: 0.063 0.064 0.065 0.073

25° 35° 45° 55°
25° 35°, 6% 25°, 5% 25°, 100%
35° 35°, 6% 35°, 38% 35°, 100%
45° 25°, 5% 35°, 38% 45°, 100%
55° 25°, 100% 35°, 100% 45°, 100%

25° 35° 45° 55°
25° - - 25°
35° - - 35°
45° - - 45°
55° 25° 35° 45°

Figure 5.12: Pairwise comparison grids for Problem 2.2.
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Problem 2.3
ωd = −2.4 rad/s
θt = 25◦: kf = 0.040, ks = 1.11
θt = 35◦: kf = 0.040, ks = 1.09
θt = 45◦: kf = 0.040, ks = 1.14

Table 5.13: %, δ% for trial rolls of Problem 2.3

P1 (θt = 25◦) P2 (θt = 35◦) P3 (θt = 45◦)

3.134, 0.064 3.017, 0.062 3.388, 0.066
3.193, 0.064 3.113, 0.063 3.595, 0.068
3.101, 0.063 3.067, 0.063 3.466, 0.067
3.286, 0.065 3.221, 0.061 3.626, 0.068
3.328, 0.065 3.370, 0.066 3.430, 0.066
3.368, 0.065 3.235, 0.064 3.701, 0.069
3.476, 0.067 3.309, 0.065 4.125, 0.074
3.488, 0.067 3.462, 0.067 3.914, 0.072
3.534, 0.067 3.319, 0.065 3.845, 0.070
3.603, 0.069 3.453, 0.067 3.952, 0.072

% : 3.351 3.257 3.704
max δ%: 0.069 0.067 0.074

25° 35° 45°
25° 35°, 6% 25°, 100%
35° 35°, 6% 35°, 100%
45° 25°, 100% 35°, 100%

25° 35° 45
25° - 25°
35° - 35°
45° 25° 35°

Figure 5.13: Pairwise comparison grids for Problem 2.3.
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25° 35° 45° 55° 65°
-2.0 rad/s ● ●
-2.2 rad/s ● ● ●
-2.4 rad/s ● ●

Figure 5.14: Summary of Phase 2 results. Cells with a dot represent superior values of θt
at the given value of ωd. Gray cells represent values of θt that are unstable, and cells with
a cross-out represent values of θt that are inferior.

5.3 Comparison of Simulation Predictions to Trial Rolls

In this section, the simulation program as described in Section 3.8 is configured to

perform three rolls of the robot. Each of the simulated rolls has a set of initial

conditions and control constants that are identical to a trial roll conducted in Phase

2 of the primary experiment. Roll 1 is from Problem 2.1 with θt = 35◦, θ(0) = 14◦,

and ωd = −2.0 rad/s. Roll 2 is from Problem 2.2 with θt = 45◦, θ(0) = −14◦, and

ωd = −2.2 rad/s. Roll 3 is from Problem 2.3 with θt = 35◦, θ(0) = −7◦, and ωd = −2.4

rad/s. By design, the rolls have desired angular velocities and trigger angles whose

collective values span the ranges of these parameters tested in the primary experiment.

The program is configured to output ω, S, and a at 10 millisecond intervals of

simulated roll time for the simulated trial rolls. Output values of angular velocity, ω,

from the simulated rolls are gathered and plotted along with ω from actual trial rolls,

and the resulting comparison plots for Rolls 1-3 are included in Figures 5.15, 5.18,

and 5.21. Similarly, values of roll distance, S, from the simulated rolls are plotted

along with S from actual trial rolls, and the resulting comparison plots for Rolls 1-3

are included in Figures 5.16, 5.19, and 5.22. Finally, values of semi-major axis length,

a, from the simulated rolls are plotted along with a from actual trial rolls, and the

resulting comparison plots for Rolls 1-3 are included in Figures 5.17, 5.20, and 5.23.
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Figure 5.15: Robot angular velocity from simulation and from trial roll are plotted versus
roll time for Roll 1, in which ωd = −2.0 rad/s.
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Figure 5.16: Touchpoint position from simulation and from trial roll are plotted versus roll
time for Roll 1.

120



0 2 4 6 8 10 12
0.315

0.32

0.325

0.33

0.335

0.34

0.345

0.35

Roll Time [s]

a 
[m

]

 

 

Simulation
Trial Roll

Figure 5.17: Semi-major axis length from simulation and from trial roll are plotted versus
roll time for Roll 1.
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Figure 5.18: Robot angular velocity from simulation and from trial roll are plotted versus
roll time for Roll 2, in which ωd = −2.2 rad/s.
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Figure 5.19: Touchpoint position from simulation and from trial roll are plotted versus roll
time for Roll 2.
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Figure 5.20: Semi-major axis length from simulation and from trial roll are plotted versus
roll time for Roll 2.
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Figure 5.21: Robot angular velocity from simulation and from trial roll are plotted versus
roll time for Roll 3, in which ωd = −2.4 rad/s.
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Figure 5.22: Touchpoint position from simulation and from trial roll are plotted versus roll
time for Roll 3.
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Figure 5.23: Semi-major axis length from simulation and from trial roll are plotted versus
roll time for Roll 3.
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CHAPTER 6

Discussion and Conclusion

This final chapter is divided into five sections. The first section is dedicated to ex-

plaining why a range of superior values of θt exists for each desired velocity, as seen

in the results of the primary experiment in Section 5, and why this range shifts as

velocity of the robot changes. In the second section in this chapter, two brief investi-

gations are presented that take advantage of the prediction ability of the simulation

program detailed in Section 3.8. In the third section, shortcomings of the simulation

model are discussed. The fourth section provides suggestions for future work with

the OSU rolling robot, or one like it, and the final section provides a conclusion for

the research as a whole.

6.1 Explanation for the Changing Optimal Range of θt

One of the most interesting takeaways from the research documented herein is that

for each ωd tested in Phase 2 of the primary experiment, there exists a range of two

or three values of θt among five tested that are determined to be superior in terms

of energy economy of robot locomotion. When θt is decreased relative to this range,

so that actuation is triggered with less tilt of the trigger axis with respect to the

vertical, energy economy of robot locomotion is observed to decrease; and when θt

is increased relative to this range, so that actuation is triggered with more tilt of

the trigger axis, energy economy of robot locomotion is again observed to decrease.

There is therefore an optimal range of θt with regard to energy economy for each ωd

tested in the primary experiment.
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Figure 6.1: The region of optimality on the θt-ωd plane has a slanted orientation, indicating
that as the magnitude of ωd is increased, the median range of optimal θt values decreases.

Furthermore, results of the primary experiment reveal that as desired angular

velocity of the robot is changed, the optimal range of θt changes as well. In general,

the optimal range of θt shifts downward as angular velocity magnitude of the robot is

increased from 2.0 rad/s to 2.4 rad/s. To emphasize this downward shift, the seven

superior values of θt represented by dots in Tab. 5.14 are plotted versus magnitude of

ωd in Fig. 6.1. In the plot, the seven values manifest as three sets of vertically aligned

points that span the optimal range of θt for each ωd tested in the primary experiment.

Connecting the extremities of these ranges with line segments, as in Fig. 6.1, creates a

polygonal region in which the optimal ranges of θt are determined or inferred to exist.

The region has a slanted orientation, indicating that as ωd is increased in magnitude,

the median range of optimal values of θt decreases.

Recall from Section 3.6 that the control system repeatedly changes shape of the

outer surface, and thereby changes location of the normal force relative to the robot

center of mass. During stable locomotion of the robot, the control system ensures

that the normal force is most often located to the left of the center of mass, causing

input torque to be applied in a clockwise sense in order to drive the robot along X

in the positive direction. By driving the robot in this manner, the control system
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causes the robot to follow, on average, a desired angular velocity. However, upon

careful scrutiny of controlled motion of the robot, it is apparent that the control

system has mixed consequences – that is, the control system speeds up the robot,

but it sometimes slows it down, too. In fact, within ninety degrees of rotation of the

robot, the control system often brings about both angular acceleration and angular

deceleration of the robot.

To explicitly demonstrate this aspect of robot motion, imagine the roll scenario

illustrated in Fig.6.2 where roll instances are arranged chronologically from left to

right. In this scenario, θt is set above the optimal range identified in Section 5.2 for

ωd = −2.0 rad/s, meaning that actuation occurs “late” in the γ cycle, like at 65◦. At

the first instance in the scenario, A has just swept past the trigger angle, and shape

change actuation has begun. Accordingly, arrows signify the linear actuator is making

A smaller and B longer. The moment arm, xd, is negative in the first instance, because

oblongness of the outer surface combined with the tilt of late actuation place the

touchpoint to the left of robot center of mass. With a negative moment arm, Nxd is

also negative (clockwise), because N is always directed upwards (and is approximated

as being constant in this mental exercise), and the robot speeds up as a result. Because

actuation is late in this scenario, one expects the outer surface will not become circular

until after continued rolling when B has already rotated beyond the vertical – a

reasonable expectation, given the limited speed of the linear actuator. Therefore, by

the time A has rotated into the horizontal orientation in the second instance, the outer

surface is still oblong about A. Consequently, as A rotates beyond the horizontal as

illustrated in the third instance in Fig. 6.2, xd becomes positive and Nxd becomes

counterclockwise, and the robot slows down as a result. This slowing is referred to

as inadvertent braking. By the fourth instance in Fig. 6.2, the outer surface has

been reduced to the circular configuration, and the normal force location has rapidly

shifted to the location right under the robot center of mass, causing xd and Nxd to
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Figure 6.2: When the robot exhibits the late actuation pattern, inadvertent braking occurs
after the robot has reached the γ = 0 orientation.

be zero again. By the fifth instance, the outer surface has become oblong about B,

causing xd and Nxd to once again become positive. Actuation is triggered newly by

B at the fifth instance, and the scenario subsequently repeats with A and B now in

switched positions.

A symbolic representation is introduced to characterize the input torque pattern

on the robot in this late actuation scenario. A plus sign is used to represent counter-

clockwise torque on the robot center of mass, and a negative sign is used to represent

clockwise torque. The “0” digit is used to represent zero torque on the robot due to

the normal force. The expression, γ = 0, is used to represent that A or B is oriented

horizontally. When A or B is horizontal, not only is gamma equal to zero, but Nxd

is equal to zero, too. Starting at the first instance and using this symbolic represen-

tation, the pattern displayed by the late actuation scenario is: −, γ = 0, +, 0, −,

γ = 0, +, 0, −, etc. A marked feature of this actuation pattern is the sequence: −,

γ = 0, +; that is to say, when γ = 0, torque on the robot is changing from negative

to positive (clockwise to counterclockwise).

Now imagine the roll scenario illustrated in Fig.6.3, where roll instances in the

scenario are again arranged chronologically from left to right. In this scenario, θt is

set below the optimal range identified in Section 5.2 for ωd = −2.0 rad/s, meaning

that actuation occurs “early” in the γ cycle, like at 35◦. At the first instance in the
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scenario, A has just swept past the trigger angle, and shape change actuation has

begun. The moment arm, xd, is negative, because oblongness of the outer surface,

combined with the slight tilt of the robot, place the touchpoint to the left of the robot

center of mass. With a negative moment arm, Nxd is clockwise in the first instance,

and the robot speeds up as a result. As shape change actuation occurs early in this

scenario, the outer surface of the robot actuates to the circular configuration, as in

the second instance in Fig.6.3, before A crosses the horizontal orientation. In the

circular configuration, Nxd is zero. At instance three, the robot has become oblong

about B, and A still has not crossed the horizontal, so that xd is positive and Nxd

is counterclockwise (the robot undergoes inadvertent braking). At instance four, A

has rotated into the horizontal, at which point xd and Nxd inevitably become zero

again, and the scenario subsequently repeats with A and B in switched positions by

the fifth instance.

In order to characterize the input torque pattern on the robot in the early ac-

tuation scenario, the same symbolic representation is used as before, wherein a plus

sign is used to represent counterclockwise torque on the robot, and a negative sign

is used to represent clockwise torque. The “0” digit is used to represent zero torque

on the robot, and the expression, γ = 0, is used to represent the instance when A or

B is oriented horizontally, when gamma and Nxd are both zero. Starting at the first

instance and using this symbolic representation, the pattern displayed by the early

actuation scenario is: −, 0, +, γ = 0, −, 0, +, γ = 0, −, etc. A marked feature

of this actuation pattern is the sequence: +, γ = 0, −; that is to say, when γ = 0,

torque on the robot is changing from counterclockwise to clockwise.

To learn if the robot exhibits early or late actuation patterning during actual

locomotion, four individual trial rolls from Problem 2.1, one for each value of θt,

are chosen and investigated. The values of % for the chosen rolls are consistent with

the differences between average values of % for the corresponding populations listed

129



𝜃𝜃𝑡𝑡 

𝑁𝑁 𝑁𝑁 𝑁𝑁 

A 
A 

A 

𝑁𝑁 

A 

𝜃𝜃𝑡𝑡 

𝑁𝑁 

B 

B 

B B B 

A 

𝛾𝛾 = 0 − + − 0 

Figure 6.3: When the robot exhibits the early actuation pattern, inadvertent braking occurs
before the robot has reached the γ = 0 orientation.

in Table 5.11. Problem 2.1 is chosen for this investigation, because its range of θt

includes values below and above the region of optimality determined for the problem

in Section 5.1. The four trial rolls that are investigated are referred to in this section

as Roll A, Roll B, Roll C and Roll D, respectively corresponding to θt = 35◦, 45◦, 55◦,

and 65◦. Equation 3.6 is used with reported roll data to compute xd at every tenth

of a second for Roll A, and computed values of xd for this roll are plotted versus roll

time in Fig. 6.4. Dashed, vertical lines in the graph represent approximate moments

during the rolls when γ = 0. A plot of angular velocity versus roll time for Roll A is

included in Fig. 6.5.

The plot of xd in Fig. 6.4 reveals that xd is frequently positive, which means the

rolling robot experiences repeated inadvertent braking during steady state angular

velocity. These times are relatively short-lived, and the magnitude of xd during inad-

vertent braking is generally smaller than when xd is negative, and this result means

that driving torque supplies more energy to the robot than does inadvertent braking,

which is expected, since the purpose and demonstrated outcome of the control sys-

tem is to maintain forward motion of the robot. Also, xd is always roughly zero when

γ = 0, a result which reflects actual motion of the robot and bolsters legitimacy of

the xd model of Equation 3.6. The fact that plotted values of xd in Fig. 6.4 are not

exactly zero at roll times when γ = 0 is not a cause of concern, as small discrepancies
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Figure 6.4: For Roll A, the robot exhibits the early actuation pattern, in which inadvertent
braking (when xd is positive) causes the roll to be relatively inefficient.
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Figure 6.5: Angular velocity of the robot for Roll A, a relatively inefficient roll. At times,
the robot slows itself down when it is already going too slow relative to the desired velocity
of −2.0 rad/s.
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arise from interpolation between reported data points.

The actuation pattern for Roll A is clearly that of early actuation. The graph in

Fig. 6.4 shows 13 times at which γ = 0, and at ten or more of these times, the xd

pattern is: +, γ = 0, −. For this roll, θt is set to 35◦, which is below the optimal range

identified in Section 5.2 for ω = −2.0 rad/s, so it is not surprising the early actuation

pattern would manifest here. The only visual peculiarity in the xd pattern in Fig. 6.4

occurs at roughly 10 seconds, when the plot goes nearly flat for about one second.

This peculiarity is due to the computed value of Lt − ai at two consecutive trigger

moments being less than 0.003 m in magnitude. At each of these trigger moments,

the control system keeps the linear actuator at its current length, so as not to expend

energy for a relatively inconsequential actuation, as described in Section 3.6. During

this second, or so, as the outer surface maintains its configuration, it is very close to

being circular, and hence the computed value of xd (from Equation 3.3) is zero or

nearly zero.

Behavior of the robot in the early actuation pattern during Roll A sheds light on

why there is a lower limit on optimality of θt in Problem 2.1. When θt is set too low

(actuation triggering is too early), the robot is prone to inadvertent braking, poten-

tially at every γ cycle. Notice from Fig. 6.4 that when braking occurs, it is not always

beneficial. In other words, the robot often works against itself with considerable en-

ergy during the roll, slowing itself down when it is already going too slow. A good

example occurs at roughly 5.5 seconds. At this time, the robot is already rotating

too slowly (see Fig. 6.5) relative to the desired velocity magnitude when inadvertent

braking comes on at 5.8 seconds and slows down the robot even more. Consequently,

the linear actuator is subsequently forced by the control system to move in large

magnitude to create driving torque in order to speed up the robot and maintain the

desired velocity. A similar thing happens between 11 and 12 seconds. With so much

ill-timed braking, it is understandable why Roll A is not optimal in terms of energy
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Figure 6.6: Rate of energy consumption by the servo motor during Roll D is generally higher
during actuations when A is the trigger axis.

economy.

Similar investigations into Rolls B, C and D reveal these three rolls exhibit a

combination of the early and late actuation patterns. In fact, there is nothing about

the plots of xd for these three rolls that would point to why robot motion during Rolls

B and C is more economical than Roll D. This absence of contrast leads one to believe

there is a factor separate from actuation patterning that affects energy economy of

rolls in Problem 2.1. In an effort to identify this factor, energy consumed by the servo

motor during Roll D is plotted in Fig. 6.6 versus roll time for several seconds during

the roll. Also plotted for Roll D is length of semi-major axis, a, plotted versus roll

time in Fig. 6.7. Next to the plot in Fig. 6.7 where actuation occurs, trigger axis

(A or B) is noted on the graph. One immediately notices in Fig. 6.6 that slope of

the energy curve varies over roll time, and by comparing Fig. 6.6 and Fig. 6.7, it

is evident that periods of highest energy consumption rate correspond, roughly, to

actuation periods of the robot when A is the trigger axis.

Using output data from Roll D saved from Phase 2 of the primary experiment,

the average rate of energy consumption by the servo motor is calculated for actuation

when A is the trigger axis, and it is found to be 2.60 J/s. When B is the trigger
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Figure 6.7: Length of a versus roll time for Roll D. Next to the plot where actuation occurs,
trigger axis (A or B) is noted.

axis, rate of energy consumption during actuation is 1.90 J/s on average, and during

periods when the actuator is holding a steady, rate of energy consumption is 0.98 J/s

on average. These measurements are also performed for Rolls A, B and C, and it is

found that energy consumption rate when B is the trigger axis is about the same, on

average, for all rolls: approximately 1.90 J/s, and for holding, too: 0.98 J/s. When A

is trigger axis, however, rate of energy consumption changes as a function of trigger

angle. For θt = 35◦ (Roll A), the average rate is 1.79 J/s; for θt = 45◦ (Roll B),

the average rate is 1.95 J/s; and for θt = 55◦ (Roll C), the average rate is 2.22 J/s.

Average energy consumption rate of the servo motor is plotted versus θt in Fig. 6.8

for these four rolls. The difference in energy consumption rate between actuations

with θt = 35◦ and θt = 65◦, for instance, is about 37%.

The reason higher trigger angle values are associated with greater actuation bur-

dening is that bending-induced friction in the telescoping columns increases as median

orientation of A during actuation moves closer to the horizontal (Section 3.7.2). Also,

when median orientation of A is nearly horizontal, deformation of the outer surface is

greater during actuation, which results in outwardly directed end effects that pull on

the actuator and resist contraction (and recall from Section 3.6 that when actuation
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Figure 6.8: For rolls of the robot with ωd = −2.0 rad/s and when A is the trigger axis, av-
erage rate of energy consumption by the linear actuator’s servo motor changes as a function
of trigger angle.

A 

B 

Easy  
contraction along A 

B 

Difficult  
contraction along A 

A 

weight 
end  

effect 

end  
effect 

Figure 6.9: When A is oriented vertically, gravity makes contraction easy. When horizontal,
bending-induced friction and outwardly directed end effects on the linear actuator make
contraction difficult.

is triggered by A, the actuator always contracts). In contrast, when median orienta-

tion of A during actuation is oriented closer to the vertical, there is less bending of

the telescoping columns and hence less friction; furthermore, gravity actually helps

the actuator contract when it is orientated in an upright orientation. The effect of

orientation of A on actuation burdening is illustrated in Fig. 6.9.

With measured rates of average energy consumption for Rolls A through D, the

simulation program described in Section 3.8 is modified to recognize trigger angle and

numerically integrate the appropriate consumption rate over time to compute total

energy consumed, Em, from 4 to 14 seconds for Roll A. Then using Equation 4.7, the
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simulation program is amended to compute WNC and use this value with Equation 4.6

to compute % for the roll. In the same manner, the simulation program is used to

compute % for the other rolls in Problem 2.1, and the results are: for θt = 35◦ (Roll

A), % = 2.17; for θt = 45◦ (Roll B), % = 2.11; for θt = 55◦ (Roll C), % = 2.07; and

for θt = 65◦ (Roll D), % = 2.19. These results predict that Roll B and Roll C are the

most economic rolls, which is in perfect agreement with the ultimate determination

regarding the optimal range of θt for Problem 2.1 based on experimental results.

Results for energy economy from Problem 2.1 can now be understood as stemming

from a combination of inadvertent braking and actuation burdening. To summarize,

at one extreme, when θt is set low at 35◦, angular velocity of the robot, which is −2.0

rad/s on average, is small enough in magnitude so the actuating outer surface often

attains the circular configuration before γ = 0. In other words, the robot exhibits the

early actuation pattern, as illustrated in Fig. 6.3, in which it frequently undergoes

inadvertent braking and works against itself. For this reason, robot locomotion is not

the most economical for θt = 35◦. At the other extreme when θt is set high at 65◦,

actuation becomes increasingly burdensome due to the effects of gravity and bending

of the outer surface, thereby nullifying gains in energy economy that might otherwise

be had. In between 35◦ and 65◦, there is an optimal range where θt is high enough

for the robot to largely avoid the averse early actuation pattern, yet low enough so

that actuation burdening does not greatly hinder the system.

Based on these ideas, a graph is provided in Fig. 6.10 that illustrates how inadver-

tent braking and actuation burdening act together to affect robot energy economy at

different values of θt for trial rolls in Problem 2.1 with ωd = −2.0 rad/s. In the graph,

energy economy in the form of % is plotted twice as a function of θt. The dashed plot

represents what % would be if actuation burdening did not play a significant role in

robot energy economy. Inadvertent braking has a primary role forming this dashed

line plot, causing the robot to have relatively poor energy economy at lower trigger
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Figure 6.10: The dashed plot represents what % might be if only actuation patterning
played a significant role in affecting robot energy economy in Problem 2.1. When effects of
actuation burdening are considered (upward arrows), % is highest when θt = 65◦.

angles. However, when effects of actuation burdening are considered, represented in

the graph as upward arrows, roll economy of the robot is lowered (% is increased)

across-the-board, resulting in lowest energy economy when θt = 65◦.

Turning attention to the results of Problem 2.2, one notices the determined op-

timal range of θt presented in Tab. 5.14 includes all low end values of θt tested. On

the high end of θt, however, 55◦ is determined to be above the optimal range of θt.

In order to help make sense of these results for Problem 2.2, two individual trial rolls

from the problem, one on the low end of θt and one on the high end of θt, are chosen

and investigated. These rolls have θt = 35◦ and θt = 55◦, and they are referred to

as Roll E and Roll F, respectively. Values of % for Rolls E and F are consistent with

average values of % for the corresponding populations listed in Table 5.11. Plots of

xd and ω versus roll time for Roll E are shown in Figures 6.11 and 6.12, and a plot

of xd for Roll F is shown in Fig. 6.13. Dashed, vertical lines in Figures 6.11 and 6.13

represent approximate moments during the rolls when γ = 0.

Looking side-by-side at plots of xd and ωd for Roll E in Figures 6.11 and 6.12,

it is observed that something happens during Roll E that does not happen in most

other measured rolls of the robot: peaks of xd coincide almost perfectly with peaks of

angular velocity, and troughs of xd coincide almost perfectly with troughs of angular

velocity. This alignment is consistent throughout the duration of the roll, and even
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Figure 6.11: The plot of xd for Roll E exhibits the early actuation pattern.

though Roll E clearly exhibits the early actuation pattern with considerable inadver-

tent braking, it is usually non-adverse. That is to say, inadvertent braking in Roll E is

strongest only when robot velocity crescendos in magnitude and is too high relative to

the desired velocity. In addition, driving torque is strongest when the robot is rolling

too slowly. Because control of the robot is apparently synchronized in this manner,

the actuator is not commanded to move in large magnitude in order to reduce large

errors, and this characteristic makes the roll relatively economical in terms of energy

consumed per unit roll distance.

The plot of xd for Roll F in Fig. 6.13 differs from Roll E in that it does not show

as much inadvertent braking. Also, the plot of xd for Roll F exhibits more driving

torque than Roll E. Alone, these facts might cause one to believe that Roll F is

more economical than Roll E, yet because of actuation burdening, it is not. Effects

of actuation burdening shift downward on θt as the robot rolls faster, because the

A-axis is more quickly swept into the horizontal position from its initial tilt when

actuation commences. Thus, Roll F with θt = 55◦ and ωd = −2.2 rad/s undergoes

actuation burdening that is comparable to Roll D with θt = 65◦ and ωd = −2.0 rad/s.

According to the plot in Fig. 6.9, this burden is high. Meanwhile, Roll E with a lower
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Figure 6.12: For Roll E, peaks of ω coincide with peaks of xd, and troughs of ω coincide
with troughs of xd.

trigger angle undergoes actuation burdening that is comparable to Roll A, which is

much less in magnitude than Roll D/F. The large burden undergone by Roll F causes

the roll to consume more energy per unit roll distance than Roll E.

With insights provided through comparing these two rolls, results from Problem

2.2 can be understood as stemming from a combination of inadvertent braking and

actuation burdening. At one extreme when θt is set low, inadvertent braking due

to early actuation patterning causes the robot to be less economical. At the other

extreme when θt is set high, actuation burdening significantly lowers robot energy

economy. In between 35◦ and 55◦, there is an optimal range where θt is high enough

for the robot to largely avoid the averse early actuation pattern, yet low enough so

that actuation burdening does not greatly hinder the system. Because the robot rolls

faster in Problem 2.2 than in Problem 2.1, early actuation patterning is not significant

enough to produce an inferior value of θt at the low end for Problem 2.2. Therefore,

the optimal range of θt for Problem 2.2 includes all values below 55◦.

The same explanation given here for energy economy of Problem 2.2 applies to

Problem 2.3, except with the difference that actuation burdening is shifted downward

in Problem 2.3 relative to Problem 2.2, so that θt = 45◦ is rendered least economical in
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Figure 6.13: The plot of xd for Roll F shows little inadvertent braking and more driving
torque than Roll E.

Problem 2.3, while the lower trigger angles tested are most economical. Interestingly,

for all Problems in Phase 2, late actuation burdening does not play a large role in

affecting energy economy of the robot. For values of θt tested in Phase 2, the robot

simply does not roll fast enough for inadvertent braking (due to late actuation) to be

a major factor; although inadvertent braking is believed to be a cause of instability

of the robot for θt > 45◦ in Problem 2.3.

Based on these ideas for locomotion of the robot at −2.20 rad/s and −2.4 rad/s,

two graphs are composed, one for Problem 2.2 in Fig. 6.14 and one for Problem 2.3

in Fig. 6.15, that illustrate how inadvertent braking and actuation burdening act

together to affect robot locomotion at different values of θt. In each of these plots,

energy economy in the form of % is plotted twice as a function of θt. The dashed plots

represent what % would be if actuation burdening did not play a significant role in

robot energy economy. Inadvertent braking has a primary role forming these dashed

line plots, causing the robot to have relatively poor energy economy at lower trigger

angles. However, when effects of actuation burdening are considered, represented in

the graph as upward arrows, roll economy of the robot is lowered (% is increased)

across-the-board, resulting in lowest energy economy at higher values of θt.
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Figure 6.14: The dashed plot represents what % might be if only actuation patterning
played a significant role in robot energy economy in Problem 2.2. When effects of actuation
burdening are considered (upward arrows), % is highest when θt = 55◦.
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Figure 6.15: The dashed plot represents what % might be if only actuation patterning
played a significant role in robot energy economy in Problem 2.3. When effects of actuation
burdening are considered (upward arrows), % is highest when θt = 45◦.
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6.2 Two Investigations Utilizing the Simulation Program

Trial rolls with duration of about 15 seconds or more are not possible using the roll

track described in Section 4.1, because the track is not long enough to accommodate

rolls in which the robot travels more than 9 m. As an alternative, the simulation

program detailed in Section 3.8 provides accurate prediction of robot performance

for longer rolls. Also, the simulation program can predict how a design change that

would be difficult to implement, such as increasing size of the robot for instance,

would affect performance of the robot. Two brief simulation investigations that take

advantage of the simulation program in this manner are presented in this section.

The first investigation is simulation of a 30 second, controlled roll of the robot,

in which desired angular velocity varies in a step-like manner, as shown in Fig. 6.16.

During the simulated roll, values of θt, kf , and ks are automatically set according to

the optimal control values identified for the various desired velocities in Section 6.1.

Specifically, when desired velocity during the simulated roll is equal to −2.0 rad/s, θt

is set to 45◦, kf is set to 0.02, and ks is set to 1.14; when desired velocity is equal to

−2.4 rad/s, θt is set to 35◦, kf is set to 0.04, and ks is set to 1.09; and when desired

velocity is equal to −2.2 rad/s, θt remains at 35◦, kf is set to 0.02, and ks is set to 1.15.

Velocity of the robot, output by the simulation program and plotted versus roll time

in Fig. 6.16, indicates the robot can automatically operate at various velocities while

maintaining locomotion that’s characterized by optimal energy economy. The result

also indicates the robot can accelerate/decelerate from a nonzero average velocity to

a higher/lower average velocity and remain stable while doing so.

For the second investigation, two simulations are performed. In the first of these

simulations, perimeter of the outer surface of the robot is doubled relative to outer

surface perimeter of the robot used in the primary experiment (Section 4.6), and

velocity-controlled rolls of this larger, notional robot with a perimeter of 4.19 m are

performed. The larger robot is assumed to have the same general construction as the
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Figure 6.16: The simulation program predicts the rolling robot can be controlled to acceler-
ate/decelerate from nonzero average velocity to a higher/lower average velocity in a stable
manner. Desired velocity of the robot is represented in the plot by straight, solid lines.

robot used in the primary experiment, with an additional 72 grams of mass in order

to account for the larger outer surface. Also, in order to account for increased bending

of the larger outer surface, amplitudes of d and ∆x are each doubled relative to their

values used in simulation of the robot in the primary experiment. Desired angular

velocity in simulated rolls of the larger robot is set to −1.10 rad/s, causing the robot

to move with the same linear velocity in the simulation, approximately 0.734 m/s, as

the actual robot in Problem 2.2 (Section 5.2).

Initial conditions for simulation of the larger robot are identical to those used for

trial rolls in the primary experiment, except that in the simulation, a(0) = 0.667 m.

Control constants for the simulation are initially set as in Problem 2.2: θt is 35◦, kf

is 0.02, and ks is 1.10. However, this combination of control constants does not result

in stable, velocity-controlled locomotion, so further simulations are run using various

combinations of constants in an effort to attain stability. In doing so, it is found that

locomotion of the larger robot becomes stable with θt set to 65◦, kf set to 0.02, and

ks set to 1.20. Angular velocity, ω, and semi-major axis, a, for this stable roll are

plotted versus simulated roll time in Fig. 6.17 and Fig. 6.18. Referring to the figures,
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Figure 6.17: Simulated velocity of the rolling robot with a perimeter of 4.19 m, which is
double the perimeter of the robot used in the primary experiment. Desired velocity for the
simulated trial roll is represented by the line at ωd = −1.10 rad/s.

it is seen that semi-major axis length does not change more than one centimeter in

length once the robot has reached steady state velocity. The reason relatively little

actuation is needed to move the larger robot at 0.734 m/s is that increased mass of the

robot brings about an increased normal force, N , which in turn increases magnitude

of input torque on the robot. Although actuations are shorter during rolls of the

larger robot, motion of the actuator would presumably be highly burdened due to the

task of displacing increased mass during shape change actuation.

For the second simulation, perimeter of the outer surface of the robot is reduced

to one-half the perimeter of the robot used in the primary experiment, and velocity-

controlled rolls of this smaller, notional robot with a perimeter of 1.05 m are per-

formed. The smaller robot is assumed to have the same general construction as the

robot used in the primary experiment, but with 36 grams less mass in order to ac-

count for the smaller outer surface. Also, in order to account for reduced bending of

the outer surface of the smaller robot, amplitudes of d and ∆x in the simulation are

each reduced by one half relative to their values in simulation of the robot used in the

primary experiment. Desired angular velocity in the simulated rolls is set to −4.39
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Figure 6.18: Once robot velocity reaches steady state, the semi-major axis does not change
more than one centimeter in length during controlled actuation.

rad/s, corresponding to 0.734 m/s, which is roughly the average linear velocity of the

actual robot in Problem 2.2 (Section 5.2).

Initial conditions for simulation of the smaller robot are identical to those used for

trial rolls in the primary experiment, except that in the simulation, a(0) = 0.182 m.

Control constants for the simulation are initially set as in Problem 2.2: θt is 35◦, kf is

0.02, and ks is 1.10. However, this combination of control constants does not result in

stable locomotion, so several further simulations are run using various combinations of

constants in an effort to attain stability; but no matter what combination is applied,

it appears the smaller robot cannot reach the desired angular velocity. Angular

velocity, ω, and semi-major axis, a, are plotted versus roll time in Fig. 6.19 and in

Fig. 6.20 for a simulated roll of the smaller robot. From the plot of a in Fig. 6.20, it

appears there is not enough time for the actuator to extend to the full target length

in between trigger moments. Because the robot spins so quickly, and because speed

of the actuator is limited, length of the semi-major axis gets only so large before it is

commanded to contract again at the next trigger moment. This phenomenon acts to

limit the obtainable length of the semi-major axis, thereby capping input torque and

terminal velocity of the robot.
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Figure 6.19: Simulated velocity of the rolling robot with a perimeter of 1.05 m, which is
half the perimeter of the robot used in the primary experiment. The simulation indicates
the smaller robot is unable to reach a desired angular velocity of −4.39 rad/s.
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Figure 6.20: Initially, the smaller robot spins slow enough for the actuator to extend about
3 cm, but as the robot spins faster, length of the semi-major axis becomes limited to a small
range, because there is not enough time in between target moments for full contraction.
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6.3 Model Shortcomings

Differences between model predictions and data from actual trial runs, as presented

in Section 5.3, are believed to originate in large part from imperfect characterization

of actuation time duration by Equation 3.36. In Section 6.1, it was shown that ta

varies depending largely on median orientation of the A during actuation. Moves in

which median orientation of the A-axis is close to the horizontal generally take longer

to complete than identical actuations with less tilt. Nevertheless, Equation 3.36 is

based on the assumption that all actuations occur with A at 45◦, and therefore the

model does not capture variation in actuation time duration that is present during

trial rolls of the robot. This discrepancy causes predicted motion of the robot to move

differently from what is measured during trial rolls.

Another reason for the differences between model predictions and trial roll param-

eters is imperfect characterization of rolling resistance torque, τr, by Equation 3.5.5.

Accurately characterizing rolling resistance torque is extremely challenging, because

the combined role that outer surface bending and angular velocity of the robot have is

largely a mystery. At best, Equation 3.5.5 appears to be a good generalization of how

rolling resistance affects average velocity of the robot at steady state. It is believed

that imperfect characterization of rolling resistance torque is responsible for marked

discrepancies between predicted and actual motion of the robot, such as the early

mismatch of velocity between simulation and trial roll in Fig. 5.21 and the apparent

tendency of the model to underestimate peaks in velocity magnitude in Fig. 5.15.

The equation of motion for the robot (Equation 3.26) is based on the assumption

of a perfectly elliptical outer surface with a center of mass at the intersection of the

elliptical axes. This assumption is yet another reason for the discrepancy between

model predictions and reported trial roll parameters. In fact, due to imperfections in

construction of the robot, the center of mass of the robot is likely not located exactly

where the model assumes it is located as described in Section 4.6.4. Furthermore,

147



due to unsymmetrical construction of the robot, the outer surface of the robot is

not perfectly elliptical. Collectively, discrepancies such as these have a small but

nonnegligible effect on actual locomotion of the robot, yet their effects are not included

in the model.

6.4 Future Work

The lessons learned herein concerning the locomotion style of the OSU rolling robot

call attention to new design possibilities and future areas of work. One of these

possibilities is control system design. Having identified optimal trigger angles for

various angular velocities of the robot in the present study, perhaps a control system

could be implemented in which trigger angle changes at every trigger moment, so as

to avoid inadvertent braking. Another possibility is a study focusing on the number of

actuation changes per revolution of the robot. The OSU rolling robot changes shape

at most four times per revolution, but perhaps six changes per revolution might be

more economical, or maybe even two. In addition to control system design, it would be

worthwhile to investigate whether or not there is an optimal outer surface perimeter

size for a given linear velocity of the robot. A related consideration is what material(s)

would best serve to compose the outer surface for a given size of the robot; bending

and vibration of the outer surface would certainly be causes of major concern, and

they would therefore need to be considered as part of the investigation. Perhaps the

most interesting area of potential future work is exploration of alternative forms of

actuation that would be faster and/or lighter than the servo motor-based actuator

used on the OSU rolling robot. Along these lines, maybe an adaptive material, such

as Nitinol or a thermally tunable foam, could be used in the actuation system. Lastly,

the challenge of designing a three-dimensional, spherical version of the OSU rolling

robot, one with turning capability, is an exciting idea that could be explored in the

future.
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6.5 Conclusion

A rolling robot has been developed that generates torque by changing shape of its

elliptical outer surface, which is flexible and can be morphed to retain oblongness

about one of two notional, elliptical axes that are fixed to the robot and roll with it.

The robot has been equipped with a sensing/control system by which it measures its

angular position and angular velocity, computes error with respect to a desired step

velocity profile, and changes shape of its outer surface accordingly. Shape change

actuation occurs four times per revolution, whenever an elliptical axis rotates past a

predetermined trigger angle. The robot has demonstrated stability during roll tests,

in the sense that it was able to reach a constant desired angular velocity quickly and

remain close to it thereafter.

A series of trial rolls of the robot were performed using various trigger angles,

while energy consumed by the servo motor was measured and used to calculate energy

economy for each roll. Results of this experiment showed that, depending on velocity

of the robot, there exists a range of trigger angle values that are determined to

be superior in terms of energy economy. This range of optimality on trigger angle

generally shifts towards the vertical as desired angular velocity is increased. In search

for an explanation, it was found that economical trial rolls featured a synchronicity of

actuation timing and angular velocity, wherein the robot avoided agents of inefficiency

that slowed the robot or burdened the servo motor; at higher magnitude angular

velocities of the robot, only actuations triggered at sufficiently low trigger angles

could “keep up” in order to preserve the synchronicity.

A mathematical model was developed for the robot that resulted in a second

order, nonlinear differential equation with roll time as the independent variable and

angular position of the robot as a dependent variable. A computer program was

written that numerically solved the differential equation of motion and was used to

plot various motion parameters such as angular velocity and roll distance versus roll
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time. The program was configured to perform three different runs, each with a set of

initial conditions that corresponded to an actual trial roll of the robot, and predicted

angular velocity was compared to measured angular velocity from actual trial rolls.

The model was significantly accurate in predicting angular velocity and roll distance

of the robot, although there were shortcomings to the model, such as how rolling

resistance torque and servo motor actuation time were characterized, that caused

the model to have inaccuracies, especially for trial rolls with relatively high desired

angular velocity. Two brief simulation investigations were performed that utilized

the computer simulation in order to predict robot performance for roll scenarios that

could not easily be performed in the laboratory.
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APPENDIX

This appendix contains listings of four computer programs: the energy sensor pro-

gram (Listing 1), the simulation program (Listing 2), the control program (Listing 3),

and the median test program (Listing 4). For the simulation program, the Simulink

block diagram user interface that corresponds to the program is included in Fig. 21.

Listing 1: Energy Sensor Program

#include <Wire . h>

#include <I2C Anything . h>

#define cb i ( s f r , b i t ) ( SFR BYTE( s f r ) &= ˜ BV( b i t ) ) // s e t ADC c l o c k to 1 MHz

#define s b i ( s f r , b i t ) ( SFR BYTE( s f r ) |= BV( b i t ) ) // s e t ADC c l o c k to 1 MHz

#define MY ADDRESS 0x58

#define SIZE ( s izeof energy )

volat i le int analog1 ; // v a r i a b l e f o r ADC va lue

volat i le int analog2 ; // v a r i a b l e f o r ADC va lue

int f l a g = 0 ;

int j = 0 ;

int i = 1 ;

int n = 0 ;

int now1 ;

int now2 ;

f loat cur rent ; // amps

f loat energy ; // Jou l e s

f loat energy ar ray [ 1 5 1 ] ;

f loat e n e r g y l a s t = 0 ;

f loat power ; // W

f loat power l a s t = 0 ;
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f loat Rsense = 0 . 1 0 0 ; // Ohms

f loat T = 200 ; // main loop per iod in microseconds

f loat vo l tage ; // V

void setup ( )

{ s b i (ADCSRA, ADPS2) ; // s e t ADC c l o c k to 1 MHz

cb i (ADCSRA, ADPS1) ; // s e t ADC c l o c k to 1 MHz

cb i (ADCSRA, ADPS0) ; // s e t ADC c l o c k to 1 MHz

S e r i a l . begin (5 760 0 ) ;

Wire . begin (MY ADDRESS) ;

ana logReference (EXTERNAL) ;

pinMode (A2 , INPUT) ; // ADC

pinMode (A3 , INPUT) ; // ADC

pinMode (7 , INPUT) ; // s i g n a l from main microprocessor

}

void loop ( )

{ while ( d i g i t a lRead (7) == HIGH)

{ i f ( j == 0) now1 = micros ( ) ;

analog1 = analogRead (A2 ) ; // read MAX4071 v o l t a g e out

cur rent = (2 . 00∗ analog1 ∗ ( 3 . 96/1023 . 0 ) − 1 . 5 ) / ( 5 0 . 0∗ Rsense ) ;

i f ( cur r ent < 0) cur rent = 0 ;

analog2 = analogRead (A3 ) ; // read v o l t a g e across servo motor

vo l tage = 1.501∗ analog2 ∗ ( 3 . 9 6 / 1 0 2 3 . 0 ) ; // d i g i t a l to analog

power = cur rent ∗ vo l tage ;

energy = e n e r g y l a s t + 0 .50∗0 .0002∗ ( power l a s t + power ) ; // i n t e g r a t e power

e n e r g y l a s t = energy ;

power l a s t = power ;

i f ( j == 0) // f i l l energy array

{ energy ar ray [ 0 ] = energy ;
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}

i f ( ( j == 500) && ( i < 151))

{ j = 0 ;

energy ar ray [ i ] = energy ;

i ++;

}

j ++;

f l a g = 1 ;

// ensure per iod i s equa l to 200 ms

now2 = micros ( ) ;

i f ( ( now2 − now1) > 200) energy ar ray [ 1 5 0 ] = 1 . 0 1 ;

int delayTime = T − (now2 − now1 ) ;

de layMicroseconds ( delayTime ) ;

now1 = micros ( ) ;

}

i f ( ( n == 0) && ( f l a g == 1)) Wire . onRequest ( onRequestEvent ) ;

}

// send energy to Uno

void onRequestEvent (void )

{ i f (n < 151)

{ energy = energy ar ray [ n ] ;

I2C writeAnything ( energy ) ;

n++;

}

}
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Figure 21: The incremental looping structure of the simulation program is developed using
a block diagram user interface in Simulink, in which numerical derivatives and integrals are
applied as blocks. Code from Listing 2 in this appendix composes the block labeled, “fcn.”
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Listing 2: Simulation Program

function [ Sdot , xd , y , param4 , param5 , param6 , param7 , param8 , param9 , alpham ] = . . .

f cn ( Sdoubledot , xddot , xddoubledot , ydot , ydoubledot , t , theta , omega )

%CONSTANTS AND INITIALIZATION

axismax = 0 . 3 4 9 ; %max va lue o f major and minor axes in m

Circumference = 2 . 0 9 5 ;

M = 0 . 9 5 ; %t o t a l robo t mass in kg

g = 9 . 8 1 ; %acc e l e r a t i o n o f g r a v i t y in m/s ˆ2

mring = 0 . 5 3 5 ; %mass o f outer su r f a c e in m

kr = 1 . 4 ;

%CONTROL CONSTANTS

omegad = −2.4;

thetam = 35 ; %in deg

the ta t = 35 ; %in deg

ks = 1.09 ;

k f = 0 . 0 4 0 ;

%MIN VALUE OF MAJOR AND MINOR AXES

axismin = 0 . 3 1 9 ;

%DECLARE PERSISTENT VARIABLES

p e r s i s t e n t n

i f isempty (n)

n = 0 ;

end

p e r s i s t e n t m

i f isempty (m)

m = 0 ;
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end

p e r s i s t e n t a l a s t

i f isempty ( a l a s t )

a l a s t = axismax ;

end

p e r s i s t e n t gammalast

i f isempty ( gammalast )

gammalast = 0 ;

end

p e r s i s t e n t a

i f isempty ( a )

a = axismax ;

end

p e r s i s t e n t morphnumber

i f isempty ( morphnumber )

morphnumber = 0 ;

end

p e r s i s t e n t z

i f isempty ( z )

z = 0 ;

end

p e r s i s t e n t tac tuate

i f isempty ( tac tuate )

tac tua te = 0 ;

end
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p e r s i s t e n t f lag

i f isempty ( f lag )

f lag = 0 ;

end

p e r s i s t e n t t s

i f isempty ( t s )

t s = 0 ;

end

p e r s i s t e n t adot

i f isempty ( adot )

adot = 0 ;

end

p e r s i s t e n t bdot

i f isempty ( bdot )

bdot = 0 ;

end

p e r s i s t e n t adoubledot

i f isempty ( adoubledot )

adoubledot = 0 ;

end

p e r s i s t e n t bdoubledot

i f isempty ( bdoubledot )

bdoubledot = 0 ;

end

p e r s i s t e n t Vm

i f isempty (Vm)
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Vm = 0 ;

end

p e r s i s t e n t amax

i f isempty (amax)

amax = axismax ;

end

p e r s i s t e n t omegam

i f isempty (omegam)

omegam = 35 ;

end

%SEMIMAJOR AXIS

A = 6 ;

B = 8∗a − 6∗Circumference /pi ;

D = Circumference ∗Circumference /(pi∗pi ) − . . .

6∗Circumference ∗a/pi + 6∗a∗a ;

b = −B/(2∗A) + (1/(2∗A))∗ sqrt (B∗B − 4∗A∗D) ;

%xd , y

gamma = −rem( theta ∗5 7 . 2 9 6 , 9 0 ) ;

p s i = −rem( theta ∗57 . 29 6 , 3 60 ) ;

dy = 0.0093∗abs ( sin ( p s i / 5 7 . 3 ) ) ;

c s = 0 . 0 0 5 ;

i f (0 <= p s i ) && ( p s i < 180)

dxd = − cs ∗abs ( sin (2∗ p s i / 5 7 . 3 ) ) ;

else

dxd = cs ∗abs ( sin (2∗ p s i / 5 7 . 3 ) ) ;

end
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xd = dxd + ( aˆ2 − bˆ2)∗ cos ( theta )∗ sin ( theta )/ . . .

sqrt ( aˆ2∗cos ( theta )∗ cos ( theta ) + bˆ2∗ sin ( theta )∗ sin ( theta ) ) ;

y = dy + sqrt ( aˆ2∗cos ( theta )∗ cos ( theta ) + bˆ2∗ sin ( theta )∗ sin ( theta ) ) ;

%DERIVATIVE OF ARC LENGTH

phi = atan ( xd/y ) ;

sigma = −theta + phi ;

R = a∗b/sqrt ( aˆ2∗ sin ( sigma )ˆ2 + bˆ2∗cos ( sigma ) ˆ 2 ) ;

Rprime = a∗b∗( aˆ2 − bˆ2)∗ sin ( sigma )∗ cos ( sigma )/ sqrt ( ( aˆ2∗ sin ( sigma )ˆ2 + . . .

bˆ2∗cos ( sigma ) ˆ 2 ) ˆ 3 ) ;

sigmadot = ( y∗xddot − xd∗ydot )/ ( yˆ2∗(1 + ( xd/y ) ˆ 2 ) ) − omega ;

Sdot = sigmadot∗sqrt (Rˆ2 + Rprime ˆ 2 ) ;

%TIME−DERIVATIVE OF ROBOT ANGULAR MOMENTUM

%outer su r f a c e f i r s t

q = 40 ;

p1 = 0 ;

p2 = 0 ;

for i = 0 : 1 : q

beta = (2∗pi/q )∗ i ;

r = a∗b/sqrt ( aˆ2∗ sin (beta )ˆ2 + bˆ2∗cos (beta ) ˆ 2 ) ;

rdot = ( ( a∗bdot + b∗adot )∗ ( a∗b/ r )ˆ2 − a∗b∗( a∗adot∗ sin (beta )ˆ2 + . . .

b∗bdot∗cos (beta ) ˆ 2 ) ) / ( aˆ2∗ sin (beta )ˆ2 + bˆ2∗cos (beta ) ˆ 2 ) ˆ 1 . 5 ;

p1 = p1 + r ˆ2∗( mring/q ) ;

p2 = p2 + 2∗( mring/q )∗ r ∗ rdot ;

end

%now add po in t mass c on t r i b u t i on s

dm = 0 . 3 6 ;

mm = 0 . 1 1 0 ;

mj = 0 . 0 1 8 ;

p1 = p1 + 2∗mm∗(dm − a )ˆ2 + 2∗mj∗a ˆ2 ;
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p2 = p2 + 2∗2∗mm∗(dm − a)∗(−adot ) + 2∗2∗mj∗adot∗a ;

%now add con t r i b u t i on from swi t ch sensors

mt = 0 . 0 1 2 ;

p1 = p1 + 2∗mt∗( a∗b/sqrt ( aˆ2∗ sin (75/57 .3 )ˆ2 + bˆ2∗cos ( 75/57 . 3 )ˆ2 ) )ˆ2 . . .

+ 2∗mt∗( a∗b/sqrt ( aˆ2∗ sin (165/57 .3 )ˆ2 + bˆ2∗cos ( 1 6 5 / 5 7 . 3 ) ˆ 2 ) ) ˆ 2 ;

p2 = p2 + 4∗mt∗( a∗b/sqrt ( aˆ2∗ sin (75/57 .3 )ˆ2 + bˆ2∗cos ( 7 5 / 5 7 . 3 ) ˆ 2 ) ) . . .

∗ ( ( ( a∗bdot + b∗adot )∗ ( a∗b/ r )ˆ2 − a∗b∗( a∗adot∗ sin (75/57 .3 )ˆ2 + . . .

b∗bdot∗cos ( 7 5 / 5 7 . 3 ) ˆ 2 ) ) / ( aˆ2∗ sin (75/57 .3 )ˆ2 + . . .

bˆ2∗cos ( 7 5 / 5 7 . 3 ) ˆ 2 ) ˆ 1 . 5 ) + 4∗mt∗( a∗b/sqrt ( aˆ2∗ sin (165/57 .3 )ˆ2 . . .

+ bˆ2∗cos ( 1 6 5 / 5 7 . 3 ) ˆ 2 ) )∗ ( ( ( a∗bdot + b∗adot )∗ ( a∗b/ r )ˆ2 − . . .

a∗b∗( a∗adot∗ sin (165/57 .3 )ˆ2 + b∗bdot∗cos ( 165/57 . 3 ) ˆ2 ) ) . . .

/( aˆ2∗ sin (165/57 .3 )ˆ2 + bˆ2∗cos ( 1 6 5 / 5 7 . 3 ) ˆ 2 ) ˆ 1 . 5 ) ;

%ROLLING RESISTANCE TORQUE

N = M∗( ydoubledot + g ) ;

Tr = kr∗dy∗omega ˆ2 ;

%UPDATE ANGULAR ACCELERATION WITH EOM

alpham = (1/ p1 )∗ ( Tr + M∗xd∗ydoubledot + M∗xd∗g + y∗M∗Sdoubledot . . .

− y∗M∗xddoubledot − p2∗omega ) ;

%xcdot = Sdot − xddot ;

%xcddot = Sdoub ledot − xddoub l edo t ;

%T = M∗ xcddot ;

%CHECK FOR TRIGGER MOMENT

actuate = 0 ;

i f ( gammalast < thetam && gamma > thetam )

omegam = omega ;

end
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i f ( gammalast < the ta t && gamma > the ta t )

m = m + 1 ;

actuate = 1 ;

a l a s t = a ;

n = 1 ;

end

gammalast = gamma;

%INITIATE ACTUATION, COMPUTE TARGET ACTUATION LENGTH

i f actuate == 1 % gamma crossed t h r e s h o l d

t s = t ;

error = ( ks∗omegad − omegam ) ;

morphnumber = morphnumber + 1 ;

z = mod(morphnumber , 2 ) ; %even

i f z == 1 % a i s t r i g g e r , b i s sheer a x i s

b = 0.3335 − kf ∗error ; %not going f a s t enough

i f error > 0 %going too f a s t

b = 0 . 3 3 3 5 ;

end

i f omega > 0

b = 0.3335 ;

end

i f b > axismax

b = axismax ;

end

A = 6 ;

B = 8∗b − 6∗Circumference /pi ;

D = Circumference ∗Circumference /(pi∗pi ) − . . .

6∗Circumference ∗b/pi + 6∗b∗b ;
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a ta rge t = −B/(2∗A) + (1/(2∗A))∗ sqrt (B∗B − 4∗A∗D) ;

else % b i s t r i g g e r , a i s sheer a x i s

a ta rge t = 0.3335 − kf ∗error ; %not going f a s t enough

i f error > 0 %going too f a s t

a ta rge t = 0 . 3 3 3 5 ;

end

i f omega > 0

a ta rge t = 0 . 3 3 3 5 ;

end

end

i f a ta rge t > axismax

ata rge t = axismax ;

end

i f a ta rge t < axismin

a ta rge t = axismin ;

end

da = ata rge t − a ;

i f ( da > 0)

tac tuate = −113.37∗da∗da + 36.05∗da + 0 . 0 1 0 6 ;

end

i f ( da <= 0)

tac tuate = −792.34∗da∗da − 44 .82∗da + 0 . 0 4 1 2 ;

end

i f (abs ( da ) > 0 . 003 )

f lag = 1 ;

Vm = (4/3)∗da/ tac tuate ;
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end

end

%ACTUATION

i f ( f lag == 1)

ta = t − t s ;

i f ( ta <= tac tuate /4)

a = a l a s t + 2∗Vm∗ ta ∗ ta / tac tuate ;

adot = (4∗Vm/ tac tuate )∗ ta ;

adoubledot = 4∗Vm/ tac tuate ;

e l s e i f ( ta > tac tuate /4 && ta <= 3∗ tac tuate /4)

a = a l a s t − tac tuate ∗Vm/8 + ta ∗Vm;

adot = Vm;

adoubledot = 0 ;

e l s e i f ( ta > 3∗ tac tuate /4 && ta < tac tua te )

a = −(2∗Vm/ tac tuate )∗ ( ta −3∗ tac tuate /4)ˆ2 + Vm∗( ta − tac tuate ) . . .

+ a l a s t +(7/8)∗Vm∗ tac tuate ;

adot = −2∗(2∗Vm/ tac tuate )∗ ( ta −3∗ tac tuate /4) + Vm;

adoubledot = −2∗(2∗Vm/ tac tuate ) ;

else

a l a s t = a ;

adot = 0 ;

f lag = 0 ;

end

angle1 = atan ( adot ) ;

bdot = tan(−angle1 ) ;

end

%PLOTTING

param4 = −omega ;

param5 = Tr ;

param6 = a ;
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param7 = gamma;

param8 = N;

param9 = xd ;
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Listing 3: Control Program

#include <Wire . h>

#include <I2C Anything . h>

#include <Adaf ru i t Sensor . h>

#include <Adafruit LSM303 U . h>

#include <Adafruit Simple AHRS . h>

#include <Adafruit L3GD20 U . h>

#include <VarSpeedServo . h>

Adafru i t LSM303 Acce l Uni f i ed a c c e l ( 3 0301 ) ;

Adafruit LSM303 Mag Unified mag(303 02 ) ;

Adafruit L3GD20 Unif ied gyro = Adafruit L3GD20 Unif ied ( 2 0 ) ;

Adafruit Simple AHRS ahrs(&acce l , &mag ) ;

VarSpeedServo theServo ;

#define SLAVE ADDRESS 0x58

#define SIZE ( s izeof energy )

// con t r o l cons tan t s t h a t are changed by the user

int the ta t = 45 ; //<−−

int thetam = 35 ; //<−−

f loat kf = 0 . 0 2 ;

f loat ks = 1 . 1 5 ; //<−−

f loat kbr = 0 ;

f loat omegad = −2.2;

f loat t r i g g e r S = 8 . 8 ;

// o ther cons tan t s and v a r i a b l e s

int actuate = 0 ;

int a l lowActuat ion = 1 ;

unsigned int delayTime ;
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int j = 0 ;

int m;

int morphnumber = 0 ;

unsigned long now1 ;

unsigned long now2 = 0 ;

unsigned long now3 ;

unsigned long now4 ;

int omegaflag = 0 ;

int p = 0 ;

int posA ;

int p r i n t f l a g = 1 ;

int q = 0 ;

int r o l l S w i t c h ;

int r o l l S w i t c h l a s t = 0 ;

int switchHitNumber = 0 ;

int T = 10 ; // sample pe r i o s in ms

f loat A = 6 . 0 ;

f loat ang l eS ta r t ;

f loat a ta rge t ;

f loat average [ 3 0 ] ;

f loat axismax = 0 . 3 4 9 ;

f loat axismin = 0 . 3 1 9 ;

f loat a = axismax ;

f loat a l a s t = axismax ;

f loat b ;

f loat B;

f loat yCGstart ;

f loat Circumference = 2 . 1 0 ;

f loat D;

f loat da ;

f loat energy ;

f loat e r r o r ;
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f loat gamma;

f loat gamma last ;

f loat k ;

f loat M = 0 . 9 4 0 ; // kg

f loat omega ;

f loat omegaAvg = 0 ;

f loat omegam = 0 . 0 0 ;

f loat omega last = 0 ;

f loat Rave = ( axismin + axismax ) / 2 . 0 ;

f loat runningAverage ;

f loat runtime = 0 . 0 0 ;

f loat S ;

f loat sum = 0 ;

f loat sumlast = 0 ;

f loat t ;

f loat tac tuate ;

f loat theta ;

f loat t h e t a l a s t ;

f loat t l a s t = 0 ;

f loat t o t a l ;

f loat Vm;

void setup ( )

{ pinMode (11 , INPUT) ; // v o l t a g e out o f touch sensor in t o Uno

pinMode (2 , OUTPUT) ; // s i g n a l from Uno to energy sensor

pinMode (10 , OUTPUT) ; // v o l t a g e from Uno in to touch sensor

pinMode (13 , OUTPUT) ; // l e d

d i g i t a l W r i t e (2 , LOW) ;

d i g i t a l W r i t e (10 , HIGH) ; // v o l t a g e in t o touch sensor

theServo . attach ( 9 ) ;

theServo . slowmove (570 , 4 0 ) ; // i n i t i a l cond i t i on o f a
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delay ( 4 0 0 0 ) ;

a c c e l . begin ( ) ;

mag . begin ( ) ;

gyro . begin ( ) ;

s e n s o r s v e c t o r i e n t a t i o n ;

ahrs . g e tOr i en ta t i on (& o r i e n t a t i o n ) ;

t h e t a l a s t = −o r i e n t a t i o n . r o l l ;

ang l eS ta r t = t h e t a l a s t ;

S e r i a l . begin (5 760 0 ) ;

Wire . begin ( ) ;

for ( int i = 0 ; i < 30 ; i++) average [ i ] = 0 . 0 0 ;

S e r i a l . p r i n t l n ( ” ” ) ;

S e r i a l . p r i n t ( ”omegad = ” ) ;

S e r i a l . p r i n t ( omegad ) ;

S e r i a l . p r i n t ( ” the ta t = ” ) ;

S e r i a l . p r i n t ( the ta t ) ;

S e r i a l . p r i n t ( ” thetam = ” ) ;

S e r i a l . p r i n t ( thetam ) ;

S e r i a l . p r i n t ( ” k f = ” ) ;

S e r i a l . p r i n t ( kf , 3 ) ;

S e r i a l . p r i n t ( ” ks = ” ) ;

S e r i a l . p r i n t l n ( ks ) ;

S e r i a l . p r i n t l n ( ” ” ) ;

}

void loop ( )

{ i f ( j == 0)

{ d i g i t a l W r i t e (13 , HIGH) ; // l e d

174



d i g i t a l W r i t e (2 , HIGH) ; // send s i g n a l to energy sensor to beg in

now1 = micros ( ) ;

}

while ( runtime <= 15)

{ s e n s o r s e v e n t t event ;

gyro . getEvent(&event ) ;

omega = −event . gyro . x ; // gyro data in rad/ sec

i f ( omega > 0) omega = 0 . 0 0 ; // omega i s a lways nega t i v e or zero

i f ( omega <= omegad ) omegaf lag = 1 ;

// monitor i f angu lar v e l o c i t y i s l e s s than de s i r ed

// compute running average o f angu lar v e l o c i t y

i f ( omegaf lag == 1)

{ p = p + 1 ;

sum = sumlast + omega ;

omegaAvg = sum/p ;

sumlast = sum ;

}

// read po s i t i o n sw i t ch s i g n a l

i f ( d i g i t a lRead (11) == LOW)

{ r o l l S w i t c h = 1 ;

}

else

{ r o l l S w i t c h = 0 ;

}

// compute angu lar p o s i t i o n by i n t e g r a t i n g angu lar v e l o c i t y

// and updat ing wi th p o s i t i o n sw i t ch data

i f ( ( r o l l S w i t c h == 1) && ( r o l l S w i t c h l a s t == 0)) //1 = swi t ch a c t i v a t i o n

{ switchHitNumber = switchHitNumber + 1 ;
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theta = −180.00∗ switchHitNumber ;

}

else

{ theta = t h e t a l a s t + 0 . 5∗ ( 0 . 0 1 0 )∗ ( omega last + omega )∗5 7 . 2 9 5 8 ;

}

omega last = omega ;

r o l l S w i t c h l a s t = r o l l S w i t c h ;

t h e t a l a s t = theta ;

gamma = round ( theta )%90;

i f (gamma <= −thetam && gamma last > −thetam ) omegam = omega ;

// compute touchpo in t l o c a t i o n

i f ( switchHitNumber == 0)

{ S = ( ang l eS ta r t − theta )∗ ( Rave / 5 7 . 2 9 5 8 ) ;

}

else

{ S = ( PI + ang l eS ta r t /57 .2958)∗Rave + ( switchHitNumber − 1)∗Circumference /2

− ( theta /57 .2958)∗Rave − switchHitNumber∗PI∗Rave ;

}

// i n i t i a t e ac tua t i on ?

i f (gamma <= −the ta t && gamma last > −the ta t && al lowActuat ion == 1)

{ e r r o r = ks∗omegad − omegam ;

i f ( e r r o r >= 0) k = kbr ;

i f ( e r r o r < 0) k = kf ;

morphnumber = morphnumber + 1 ;

m = morphnumber%2;

i f (m == 1) // b i s ac tua t i on ax i s

{ b = Rave − k∗ e r r o r ;
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B = 8.0∗b − 6 .0∗ Circumference /PI ;

D = Circumference ∗Circumference /( PI∗PI ) − 6 .0∗ Circumference ∗b/PI + 6.0∗b∗b ;

a ta rge t = −B/12.0 + ( 1 . 0 / 1 2 . 0 )∗ s q r t (B∗B − 24 .0∗D) ;

}

else // a i s ac tua t i on ax i s

//compute t a r g e t p o s i t i o n

{ a ta rge t = ( axismax + axismin )/2 − k∗ e r r o r ;

}

i f ( a ta rge t > axismax ) a ta rge t = axismax ;

i f ( a ta rge t < axismin ) a ta rge t = axismin ;

i f (S >= t r i g g e r S )

{ a ta rge t = 0 . 3 3 3 5 ;

a l lowActuat ion = 0 ;

}

i f (2∗ a ta rge t > 0 . 667 )

{ posA = round (−29500∗(2∗ a ta rge t − 0 . 667 ) + 1470) ;

}

else

{ posA = round (−31950∗(2∗ a ta rge t − 0 . 667 ) + 1470) ;

}

a l a s t = a ;

da = ata rge t − a l a s t ;

t l a s t = 0 ;

// move only i f e r ror i s b i g enough

i f ( abs ( da ) > 0 .003 | | a l lowActuat ion == 0)

{ theServo . slowmove ( posA , 7 5 ) ;

actuate = 1 ;

// compute ac tua t i on time durat ion
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i f ( da <= 0) // f o r A d iagona l

{ tac tua te = −792.34∗da∗da − 44 .82∗da + 0 . 0 4 1 2 ;

}

else

{ tac tuate = −113.37∗da∗da + 36.05∗da + 0 . 0 1 0 6 ;

}

// i f ( t a c t u a t e < 0 .20) t a c t u a t e = 0 . 20 ;

Vm = 4.00∗ da /(3 .00∗ tac tuate ) ;

}

}

// compute p r ed i c t e d va lue o f a

i f ( actuate == 1)

{ t = t l a s t + T/1000 . 00 ;

t l a s t = t ;

i f ( t <= tac tuate /4 . 00 )

{ a = a l a s t + 2 .0∗Vm∗ t ∗ t / tac tuate ;

}

i f ( t > tac tuate /4 .00 && t <= 0.75∗ tac tuate )

{ a = Vm∗ t + a l a s t − Vm∗ tac tuate / 8 . 0 0 ;

}

i f ( t > ( 3 . 0 0 / 4 . 0 0 )∗ tac tua te && t < tac tuate )

{ a = −2.0∗Vm∗( t − 0 .75∗ tac tuate )∗ ( t − 0 .75∗ tac tuate )/ tac tuate

+ Vm∗( t − tac tua te ) + a l a s t + ( 7 . 0 / 8 . 0 ) ∗ tac tua te ∗Vm;

}

i f ( t >= tac tuate )

{ actuate = 0 ;

a l a s t = a ;

t l a s t = 0 . 0 0 ;

}
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}

gamma last = gamma;

runtime = j ∗T/1000 . 00 ; // in seconds

int n = j %10;

i f ( j == 0 | | n == 0)

{ for ( int i = 0 ; i < 29 ; i++)

{ average [ i ] = average [ i +1] ;

t o t a l += average [ i ] ;

}

runningAverage = ( t o t a l + omega ) / 3 0 . 0 0 ;

average [ 2 9 ] = omega ;

t o t a l = 0 . 0 0 ;

// send data to remote l ap t op

S e r i a l . p r i n t ( runtime ) ;

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t (gamma ) ;

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t (−omega ) ;

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t (S , 3 ) ;

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t ( a , 4 ) ;

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t (omegaAvg ) ;

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t l n ( runningAverage ) ;

}
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j = j + 1 ;

// make sure per iod i s equa l to 10 ms

now2 = micros ( ) ;

delayTime = T∗1000 − (now2 − now1 ) ;

i f ( delayTime >= T∗1000) S e r i a l . p r i n t l n ( ” sample per iod e r r o r ” ) ;

de layMicroseconds (T∗1000 − (now2 − now1 ) ) ;

now1 = micros ( ) ;

}

// 15 s run i s over

theServo . detach ( ) ;

d i g i t a l W r i t e (13 , LOW) ;

d i g i t a l W r i t e (2 , LOW) ;

de lay ( 1 5 ) ;

// send energy va l u e s to remote l ap t op

i f ( Wire . requestFrom (SLAVE ADDRESS, SIZE ) == 0)

{ S e r i a l . p r i n t l n ( ” energy senso r e r r o r ” ) ;

}

else i f ( q < 151)

{ i f ( q == 0) S e r i a l . p r i n t l n ( ” ” ) ;

I2C readAnything ( energy ) ;

S e r i a l . p r i n t ( q ∗ 0 . 1 ) ;

S e r i a l . p r i n t ( ” , ” ) ;

S e r i a l . p r i n t l n ( energy , 4 ) ;

q++;

}

}
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Listing 4: Median Testing Program

u1 = 0 . 0 6 7 ; %l a r g e s t uncer ta in ty , f i r s t popu la t i on

u2 = 0 . 0 6 7 ; %l a r g e s t uncer ta in ty , second popu la t i on

nc1 = 0 ;

nc2 = 0 ;

p = 100000; %number o f median t e s t s performed

for i = 1 : p %perform pe r t u r ba t i on o f popu l a t i on s

matrix1 = [ 2 . 7 8 2 .73 3 .04 2 .90 3 .06 2 .53 2 .78 2 .88 2 .90 2 . 7 9 ] ;

matrix2 = [ 2 . 4 8 2 .86 3 .08 3 .13 3 .21 2 .70 2 .92 2 .78 2 .85 2 . 8 0 ] ;

for j = 1 :10

random1 = normrnd (0 , u1 / 3 ) ;

while (abs ( random1 ) > u1 )

random1 = normrnd (0 , u1 / 3 ) ;

end

random2 = normrnd (0 , u2 / 3 ) ;

while (abs ( random2 ) > u2 )

random2 = normrnd (0 , u2 / 3 ) ;

end

matrix1 ( j ) = (round (100∗ ( matrix1 ( j ) + random1 ) ) ) / 1 0 0 ;

matrix2 ( j ) = (round (100∗ ( matrix2 ( j ) + random2 ) ) ) / 1 0 0 ;

end

%f ind grand median and perform median t e s t

matrix3 = horzcat ( matrix1 , matrix2 ) ;

M = median( matrix3 ) ;

count1 = 0 ;

count2 = 0 ;

for k = 1:10

i f ( matrix1 ( k ) <= M)

count1 = count1 + 1 ;
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end

end

for m = 1:10

i f ( matrix2 (m) <= M)

count2 = count2 + 1 ;

end

end

ChiSquareStat = ( ( count1 − 5)ˆ2)/5 + ( ( count2 − 5)ˆ2)/5 . . .

+ ((10 − count1 − 5)ˆ2)/5 + ((10 − count2 − 5 ) ˆ2 )/ 5 ;

i f ( count1 > 5 && ChiSquareStat > 2 . 706 )

nc1 = nc1 + 1 ; %augmented v a r i a b l e f o r f i r s t popu la t i on

end

i f ( count2 > 5 && ChiSquareStat > 2 . 706 )

nc2 = nc2 + 1 ; %augmented v a r i a b l e f o r second popu la t i on

end

end

%d i s p l a y the l a r g e s t augmented v a r i a b l e w corresponding pass percentage

i f ( count1> count2 )

disp ( ’ martix1 ’ ) ;

else

disp ( ’ matrix2 ’ )

end

nc = max( nc1 , nc2 ) ;

disp (100∗ nc/p ) ;
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