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Abstract: Agricultural and urban runoff can threaten water resources. Land disturbances 

related to urbanization and agriculture can change hydrologic characteristics such as 

volume of runoff and peak flow. In addition, activities related to urbanization and 

agriculture can increase pollutants such as pesticides and nutrients present in runoff. The 

goal of this research was to evaluate and develop selected low impact development 

practices for management of runoff in two different settings, plant nurseries and urban 

areas. The specific objectives were: (1) Evaluate pesticide, nutrient, and sediment 

removal performance of two different types of constructed wetlands (one subsurface-flow 

and one free-surface) at two nurseries in Oklahoma; (2) Examine the effects of saturation 

conditions and irrigation patterns on pesticide removal using a lab-scale column study; 

and, (3) Develop a simple tool that enables practitioners with limited technical expertise 

to quickly and easily determine optimal combinations of LID practices that optimizes 

runoff reduction and cost. The pollutant removal performance evaluation of the two 

constructed wetlands demonstrated that both systems effectively reduced nutrients in 

runoff, but pesticide reduction was variable. The subsurface-flow constructed wetland 

significantly reduced most of the commonly seen pesticides however, pesticide removal 

was variable in the free-surface constructed wetland and no pesticide compound 

exhibited mass reduction that was statistically significant. While the lab-scale column 

study was exploratory in nature, results indicated higher pesticide removal under certain 

hydrologic patterns. There was a general trend indicating that holding water within the 

column system for a longer time increased removal efficiency. There was no indication 

that saturation conditions (fully saturated vs variably saturated) impacted pesticide 

removal. Finally, the optimization procedure addressed a need for developers and smaller 

municipalities that want to implement low impact development practices to reduce runoff 

while minimizing cost. The procedure used available software that did not require 

significant expertise in programming or hydrology, Microsoft Excel and the EPA 

Stormwater Calculator. Users could determine combinations that met different hydrologic 

or cost goals by modifying the objective function and/or constraints. Overall, meeting 

each research objective contributed to the overarching goal of reducing the impact of 

agricultural and urban runoff on water resources.  
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FOREWORD 

 

The work presented in this dissertation evaluates and develops tools to address runoff 

issues in the settings of nursery and greenhouse production and urban areas. The 

objectives of the dissertation were: 

1. Evaluate pesticide, nutrient, and sediment removal performance of a two different 

types of constructed wetlands at two nurseries in Oklahoma. 

2. Use lab-scale column studies to examine the effects of saturation conditions and 

irrigation patterns on pesticide removal.  

3. Develop a simple tool that enables practitioners with limited technical expertise to 

quickly and easily determine optimal combinations of LID type and amount that 

concurrently minimize cost and maximize volume reduction. 
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The dissertation was organized in the modified three-paper format. Chapter one is a 

review of available literature related to pesticide and nutrient transport and fate and 

constructed wetlands. Both pesticide transport and fate and constructed wetlands are 

broad topics, so general detail is given for each overall topic and increased detail is given 

for aspects related specifically to this project. Chapter two details the purpose, methods, 

and results and conclusions of the field studies used to meet the overall objectives. Two 

types of constructed wetlands were built at two different nurseries in Oklahoma and were 

monitored to evaluate pesticide and nutrient removal. Chapter three explains the purpose, 

methods, and results and conclusions of the lab-scale column experiments used to meet 

the overall project objectives. Results from the column study investigated the effects of 

saturation conditions and irrigation management on pesticide removal in a porous media. 

Chapters two and three will be submitted to Journal of Environmental Quality for 

publication. Chapter four deals with the development of a tool to determine combinations 

of types of low impact development that optimize runoff reduction and cost. Chapter four 

will be submitted for publication in Journal of Water Resources Planning and 

Management. Chapter five outlines conclusions drawn from the field and lab studies and 

makes recommendations for future work. A comparison is drawn between runoff in 

nursery settings and urban areas and the challenges faced in each along with 

recommendations for practitioners. 
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CHAPTER I 

 

 

REVIEW OF LITERATURE 

 

Runoff from urban and agricultural sources is a threat to water resources through 

increased pollutant loading and altered hydrologic cycle. This review of literature 

provides background and context for how this dissertation addressed issues related to 

urban and agricultural runoff. The first two subsections (1.1 through 1.2.3.4) addresses 

topics related to the first two papers. Topics include pesticide and nutrient fate and 

transport as well as risks these pollutants pose to water resources in the first subsection. 

The second subsection includes background on constructed wetlands, also addressed in 

the first two papers. Background and context for the third paper is addressed in the third 

subsection (1.3) and includes information about modeling of low impact development for 

volume reduction and cost optimization.  

1.1 Pesticide Risk to Aquatic Resources 

The characteristics of pesticide transport and fate have been studied for many years (Jury 

et al., 1983, Elabd et al., 1986, van Genuchten and Wagenet, 1989). Although 

understanding can lead to better management practices, knowledge of how a contaminant 

moves does not in and of itself reduce its environmental impact. In both urban and 
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agricultural watersheds, stormwater runoff can be a vector for pesticide transport to rivers 

and lakes. Residential lawns have been identified as a significant source of pesticides; for 

example, fipronil was present in California waterways at levels that are toxic to aquatic 

macroinvertebrates (Gan et al., 2012). Sediment in urban streams in Denton, Texas, has 

been shown to contain many current-use pesticides (Hintzen et al., 2009). In that study, 

bifenthrin was detected in 94% of the sediment samples and bifenthrin concentrations 

exceeded the published LC50 value for H. azteca in almost 50% of the collected samples.  

A study of pesticide concentrations in urban streams across eight US states found 

insecticides and herbicides present in all streams with insecticide concentrations often 

exceeding the standard for aquatic life (Hoffman et al., 2000). In addition, a German 

study found pesticides at toxic levels in streams collecting agricultural runoff even at 

sites that had buffer areas along the stream (Bereswill et al., 2013). Pesticides vary in 

toxicity to aquatic communities, so the mere presence of a pesticide in a water body does 

not necessarily indicate a high threat. Aquatic organisms that have similar receptors as a 

pesticide’s target organism are typically most at risk, however, it is difficult to understand 

the full effect a pesticide has on an ecosystem (Van Wijngaarden et al., 2005). Even if 

pesticide exposure does not have an immediate lethal effect, it can result in behavioral 

changes that affect long-term population viability. While certain pesticides may only 

affect one or two species of aquatic organisms, these effects may be felt throughout the 

food chain, decreasing species richness (Relyea, 2005).  

1.1.1 Pesticide Transport and Fate  

The physiochemical characteristics of each pesticide play a part in determining its 

transport and fate. In agricultural runoff or within a constructed wetland, pesticides will 
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either be in solution or bound to sediment. The pesticide soil/ solution distribution 

coefficient (Kd) is commonly used to predict sorption of a pesticide to soil (Weber et al., 

2004). Kd is a ratio of pesticide sorbed to pesticide in solution. Values are determined 

using batch equilibrium experiments where the concentration in solution is measured 

over time and Kd is determined when the concentration reaches an equilibrium (USEPA, 

2008). Most pesticides preferentially sorb to organic content or clay particles, so soil 

characteristics in addition to pesticide chemical characteristics also affect pesticide 

transport (Weber et al., 2004). Since organic content affects sorption, Koc value is used to 

account for organic content present in the soil (Equation 1.1).  

 𝐾𝑜𝑐 =
𝐾𝑑

𝑓𝑜𝑐
         Equation 1.1 

In this equation, 𝐾𝑜𝑐 is the soil organic carbon/water partitioning coefficient, 𝑓𝑜𝑐 is the 

fraction of organic carbon in the soil and 𝐾𝑑 is the soil/solution distribution coefficient. 

While organic matter has generally been presumed to be the dominant sorption source for 

pesticides, Sheng et al. (2001) found expandable soil clays to retain certain pesticides as 

effectively as organic matter. Organic matter contains both polar and non-polar functional 

groups able to complex a range of compounds. Water solubility, the degree to which a 

compound dissolves in water, is another chemical characteristic that affects pesticide 

transport and fate in the environment. Since water is a polar molecule, polar compounds 

are generally more likely to dissolve in water while non-polar compounds are generally 

less likely to dissolve in water. Correspondingly, compounds that have a low water 

solubility are generally more likely to sorb to particles. For example, bifenthrin is a non-

polar compound and has a water solubility of 0.1 mg/L and a 𝐾𝑜𝑐 that ranges from 
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1.31 × 105 to 3.02 × 105, or a relatively low water solubility and relatively high 𝐾𝑜𝑐 

(Fecko, 1999). Carbaryl is made up of two benzene rings and an attached methyl group 

so exhibits properties of polar chemical structure. It has a relatively high water solubility 

of 110 mg/L and a relatively low 𝐾𝑜𝑐, around 160 to 450 (USDA ARS, 2016). These 

properties affect the transport and fate of chemical compounds.  

1.1.2 Pesticide Degradation  

In the soil environment, pesticide degradation primarily occurs by chemical or biological 

transformation. Microbial degradation is a primary pathway for degradation of most 

pesticides, however, in some situations abiotic transformation is equally important. Often, 

it is a combination of both chemical and biological factors that influence the degradation 

of pesticides in water and soil environments. Temperature and moisture affect both 

microbial activity and abiotic transformation, which affects rate of pesticide degradation. 

During abiotic transformation of pesticides in the soil environment, processes such as 

hydrolysis and reduction oxidation reactions can occur simultaneously. Each process can 

be affected differently by temperature and soil moisture thus making it difficult to predict 

the effects of these factors (Wolfe and Macalady, 1992). Temperature effects are 

important to consider since soil temperature will vary spatially (over depth and area) and 

temporally (diurnal and seasonal). The effect of soil moisture has implications on 

persistence in ground water and controlled drainage situations as well as the effectiveness 

of pesticide transformation in treatment structures such as constructed wetlands and 

bioretention.  
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1.1.3 Effects of Soil Moisture and Temperature on Pesticide Transformation 

In general, soil moisture can affect degradation directly (chemical processes) and 

indirectly through effects to microbial activity. Nair and Schnoor (1994) postulated that 

microbial activity was hindered at very low and very high soil water contents. Their 

reasoning was that some soil moisture is necessary for microbial activity, but saturation 

may result in a lack of oxygen necessary for some microbial communities. DeLaune et al. 

(1997) validated this conclusion showing that complete atrazine degradation in aerobic 

conditions was accomplished after 14 days while atrazine persisted in anaerobic 

conditions after 99 days. However, some studies found atrazine degradation is equal or 

even enhanced in saturated, anaerobic conditions as compared to unsaturated, aerobic 

conditions (Seybold et al., 2001, Chung et al., 1995, Ro and Chung, 1995). Veeh et al. 

(1996) found that 2,4-D degradation rates decreased when soil temperature decreased 

from 24°C to 10°C. Although this study did not measure soil moisture, the authors 

indicated that there would likely be interaction between soil moisture, temperature, and 

microbial degradation. Alletto et al. (2006) examined effects of two different water 

contents and two different temperatures and found that microbial mineralization of 

isoproturon was minimal when water content was reduced to 50% of the soil’s water 

holding capacity (WHC). In all cases, half-life increased when temperature went from 

22°C to 10°C and when water content was reduced from 90% WHC to 50% WHC. It was 

concluded that soil water content had the greater effect due to its influence on microbial 

activity, however was more of a limiting factor than an expediting factor. This limiting 

factor is seen again in situations where half-life is highest at very low or very high 

temperatures or soil moisture conditions (Shymko et al., 2011). Pesticide persistence 
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predictions on a large scale, such as in a management model, can be off by orders of 

magnitude if temperature is unaccounted for (Wu and Nofziger, 1999). Due to this error, 

equations have been developed to adjust pesticide degradation estimations based on 

temperature and soil moisture.  

1.1.3.1 Degradation Rate Adjustments for Temperature and Soil Moisture 

It is well established that soil moisture and temperature affect degradation of pesticides in 

soils and to accurately predict degradation, models must account for these effects. 

Pesticide degradation is commonly predicted using first order kinetics (Equation 1),  

𝐶(𝑡) = 𝐶0𝑒
−𝑘𝑡,         Equation 1 

where C(t) is concentration over time, 𝐶0 is the initial concentration, k is a rate constant, 

and t is time (Jebellie et al., 1999). To account for the effects of temperature, typically the 

rate constant is adjusted. Three methods are used to account for the effect of temperature 

on pesticide degradation: the Arrhenius equation, equations based on the Q10 coefficient, 

and the O’Neill equation (Beulke et al., 2005, Soulas and Lagacherie, 2001). The 

Arrhenius equation is most widely used (Alletto et al., 2006, Cupples et al., 2000, Gan et 

al., 1999, Wu and Nofziger, 1999) and includes the “pesticide activation energy” 

(Equation 2),   

𝑙𝑛𝐾 = −(𝐸𝑎 𝑅𝑇⁄ ) + 𝑙𝑛𝐴       Equation 2 

where K is the degradation rate constant, 𝐸𝑎 is the pesticide activation energy, R is the 

universal gas constant, T is temperature, and A is an empirical constant. 

The pesticide activation energy is determined experimentally for specific pesticides and 

system characteristics by regression of known terms taken in a controlled setting and has 
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been determined for around 150 different herbicides (Soulas and Lagacherie, 2001). 

Activation energy can be affected by catalysts within the soil matrix which can introduce 

error into pesticide degradation and transport prediction. Wu and Nofziger (1999) found 

that only a 5% difference in activation energy would lead to a 38% error in pesticide 

transport prediction. As with other parameters, activation energy must be considered in 

context.  

The Q10 coefficient is based on the principle that microbial activity increases every 10°C 

but is most accurate at temperatures from 5°C to 30°C (Beulke et al., 2005, Soulas and 

Lagacherie, 2001). Equations based on the Q10 coefficient again serve to calibrate the rate 

constant used in Equation 1. Q10 is determined by using data collected in a controlled 

setting. Results of Q10 based equations are similar in shape to the Arrhenius equation. The 

O’Neill equation was used the least in the reviewed papers, but the rationale behind the 

O’Neill equation was alluded to in several results and discussion sections. The principle 

behind the O’Neill equation is since degradation is microbial, it will follow a bell curve 

with optimal degradation at middle temperatures and diminishing degradation at higher 

and lower temperatures (Beulke et al., 2005, Soulas and Lagacherie, 2001).  

The effect of soil moisture is most often estimated by an empirical equation that directly 

relates half-life and soil moisture content (Gan et al., 1999, Walker and Zimdahl, 1981) 

(Equation 3), 

𝐻 = 𝐴𝑀−𝐵         Equation 3 
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where H is the pesticide half-life, M is moisture content, and A and B are constants. 

Beulke et al. (2005) includes both soil moisture content and temperature into an equation 

that adjusts the degradation rate constant.  

Equations have been developed to account for the effects of temperature and soil 

moisture on pesticide degradation, however, they are pesticide specific and must be used 

in context. Adjustment equations greatly increase prediction accuracy, however, they 

must be used within the prescribed range of conditions. Degradation is complex and 

depends on soil conditions and chemical characteristics. 

1.1.3.2 Nutrient Risk to Aquatic Resources  

Nitrogen and phosphorus have long been identified as a risk to aquatic resources (Turner 

and Rabalais, 1991, Sims et al., 1998, Carpenter et al., 1998). Since nitrogen and 

phosphorus are limiting nutrients for algae, aquatic ecosystems experience rapid algal 

growth when these nutrients are introduced (Schindler, 1977). In general, freshwater 

environments are phosphorus limited and marine environments are nitrogen limited. 

Increased algal growth can be detrimental to and permanently alter aquatic ecosystems 

(Anderson et al., 2002, Smith 2003).  

1.1.4 Transport and Fate of Nutrients in Aquatic Ecosystems 

Nitrogen and phosphorus have different mechanisms that determine their transport and 

fate in the environment. The transformation of nitrogen in soil and aquatic environments 

is dependent on microbial activity, pH, and the amount of oxygen present. Nitrate is the 

most common form of nitrogen and is highly mobile. Denitrification is performed under 

low oxygen conditions by bacteria that transform nitrite and nitrate into gaseous species 

of nitrogen. Nitrogen is able to be transformed multiple times as it is transported through 
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soil and aquatic environments and exists as solid, soluble, and gaseous phases. In 

addition, different phases and conditions make it more or less likely to be transformed 

leading to short transformation cycles up to transformation cycles that react on a scale of 

hundreds of years (Follett and Delgado 2002). 

Environmental phosphorus exists primarily in the particulate phase (bound to a solid 

particle) instead of the soluble phase. Ortho-phosphate (𝑃𝑂4
3−) is an anion and readily 

binds with cations. Ortho-phosphate is also the most likely species to be bioavailable to 

planktonic algae and bacteria (Boström et al., 1988). While ortho-phosphate is of 

particular concern in runoff because of its bioavailability, the phosphorus cycle in an 

aquatic environment is dynamic and particulate phosphorus can be converted to 

bioavailable phosphorus over time (Correll, 1998). Similarly, in soils the transformation 

of phosphorus is dynamic and particulate phosphorus should not be considered removed 

from the system (Smeck, 1985). 

1.2 The Use of Constructed Wetlands to Remove Pesticides and Nutrients from 

Agricultural Runoff 

There are two general design distinctions of constructed wetlands: free surface (also 

called free water surface or surface flow) and subsurface flow. Subsurface flow 

constructed wetlands (SFCWs) were originally used to provide secondary treatment to 

municipal wastewater and are still commonly used for that purpose. Since their 

introduction to water treatment, the SFCW concept has been applied in other settings 

including agriculture and container nurseries. SFCWs are designed to be predominantly 

saturated (to 0.1 m to 0.2 m below the surface) but not have ponded water for extended 

periods of time. Many studies exist on the performance and design of submerged flow 
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constructed wetlands (Rousseau et al., 2004, Chazarenc et al., 2003), however, these 

primarily treat municipal wastewater and few attempt to characterize pesticide reduction. 

Free surface constructed wetlands differ in design from subsurface-flow constructed 

wetlands but share a similar history. Free surface constructed wetlands (FSCW) are 

designed to have ponded water. Some designs recommend having different water depths 

throughout the wetland to provide multiple habitats and thus promote biodiversity. 

FSCWs that are designed purely for treatment purposes may still have different water 

depths throughout to provide different treatment mechanisms.  

The first research performed on engineered wetlands with plants to treat wastewater 

occurred in the 1950s (Vymazal 2011). Research of constructed wetland design and 

performance continued in the 1960s and 1970s by Spangler et al. (1976), Fetter et al. 

(1976), and others. As Vymazal (2011) indicates, research and adoption continued to 

grow globally but were still used mostly for municipal wastewater treatment through the 

late 1980s. However, during the 1980s, constructed wetlands expanded in scope to treat 

wastewater from different sources including agricultural runoff (Hammer 1992, Rodgers 

and Dunn 1992).  

Research has been performed regarding pesticide removal by constructed wetlands from 

different sources of wastewater or runoff including agricultural runoff (Kohler et al., 

2004, Blankenburg et al., 2006, Budd et al., 2009, Maillard et al., 2011, Agudelo et al., 

2012). Only a few studies have been performed that look at pesticide removal by 

constructed wetlands specifically in nursery runoff. While contaminants of concern may 

be similar between nursery and other agriculture runoff, hydrology and hydraulic loading 
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differs significantly due to frequent irrigation events. Irrigation creates daily runoff and 

above-ground pots lead to prolonged pollutant loading. In a review of pesticide removal 

by constructed wetland from agricultural runoff, Vymazal and Březinová (2015) 

identified only three studies that specifically used container nurseries (George et al., 

2003, Runes et al., 2003, Stearman et al., 2003). Of the 47 studies identified by Vymazal 

and Březinová (2015), nine were mesocosm studies, six were microcosm or lab studies 

and only six used agricultural runoff. Removal rates between these studies varied.  

George et al. (2003) and Stearman et al. (2003) both monitored the same 14 subsurface-

flow constructed wetland cells that received runoff from a 465 m
2
 container nursery plot. 

Simazine and metolachlor were applied prior to the pots being placed on the plot. The 

studies looked at effects of plant presence (bulrush), hydraulic loading, media depth and 

aspect ratio. Overall, hydraulic loading rate (and thus mass loading rate) and plant 

presence showed a statistically significant relationship to pesticide removal but media 

depth and aspect ratio did not. Mass removal rates for simazine ranged from 51% (high 

hydraulic loading and no plants) to 96% (low hydraulic loading and plants). For 

metolachlor, mass removal rates ranged from 34% (high hydraulic loading and no plants) 

to 96% (low hydraulic loading and plants present). Herbicide was applied once, before 

irrigation began, but then the pots were irrigated every 24 hours unless a rain event 

occurred. Samples were taken every 24 hours for the first 10 days and then every 48 to 72 

hours until pesticide concentrations reached pre-application levels.  

Runes et al. (2003) monitored atrazine removal of a surface flow constructed wetland 

receiving irrigation runoff from a 2.4 hectare container nursery plot. This study used five 
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surface flow (free surface) constructed wetland cells arranged in series. While each cell 

was planted with a variety of wetland species, the predominant species was typha 

latipholia (cattail). Experiments were conducted over a 7-day period. Atrazine was added 

to inflow entering the first cell from irrigation runoff of the first irrigation event. During 

atrazine addition, samples were collected every hour and then every two hours after day 

five and every three hours for the remainder of the seven days. Irrigation intensity and 

frequency changed between events and experiments, so load reduction was analyzed 

against hydraulic loading rates. The study concluded that removal rates were only 

affected by intensity, duration, and frequency of runoff when these factors were high. 

Through the first five experiments, runoff characteristics varied, but treatment was not 

significantly affected. However, in the sixth experiment, “treatment was compromised” 

and runoff characteristics were higher than in the previous five experiments. Runes et al. 

(2003) identified sorption as the primary removal mechanism for atrazine.  

By looking at published performance studies, some pesticide reduction trends emerge. It 

is understood that pesticide reduction occurs through sorption, sedimentation, and 

microbial breakdown. Studies indicate that soil organic matter and retention time affect 

pesticide removal, however many fundamental and applied questions still remain. 

Rodgers and Dunn (1992) undertook an extensive research effort to answer several 

foundational questions about pesticide removal by constructed wetlands. The research 

context of that project was areas where floodplain wetlands had been replaced by row 

crops. One study used a simulated runoff event on five of these wetland cells determined 

necessary wetland length for atrazine mitigation (Moore et al, 2000). These 

recommendations were made based on observed concentration reductions over time and 
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distance. This study was performed in the context of introducing constructed wetlands as 

buffers between row cropping fields and receiving waters. Locke et al. (2011) found 

some reduction in concentration of atrazine and fluometuron in a free water surface 

constructed wetland. A simulated runoff event was used in this study and no runoff was 

received after the event. Concentrations were measured over time and maximum 

concentrations decreased between 58% and 89% for atrazine and fluometuron in two 

different cells. Sherrard et al. (2004) found rapid and high rates of removal for 

chlorpyrifos and chlorothalonil in constructed wetland mesocosms, but used one pulse of 

simulated stormwater runoff. These three studies used one simulated storm event with no 

additional inputs and measured concentrations over time. While the knowledge gained 

from these studies indicates the potential for pesticide removal by constructed wetlands, 

they were not dynamic with multiple event inflows and outflows. To better understand 

field performance, typical field hydrologic and hydraulic conditions must be considered. 

1.2.1 Treatment Mechanisms of Constructed Wetlands 

In both subsurface flow constructed wetlands and free surface constructed wetlands, 

contaminant removal mechanisms are physical, chemical, and biological in nature. 

Although removal mechanisms are known, since multiple processes occur simultaneously 

and interact with each other, CWs continue to be regarded as somewhat of a black box 

with regard to effectiveness of contaminant removal (Garcia et al, 2010). Removal 

mechanisms also differ depending on what contaminant is being considered. Since this 

project focuses primarily on pesticides and secondarily on nutrients in nursery runoff, the 

removal mechanisms for these contaminants will be considered. Pollutant removal can be 

separated into two end-points, capture and transformation. Imfeld et al. (2009) 
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characterizes these endpoints as “non-destructive” and “destructive”. Capture refers to 

the removal of the pollutant from the runoff that has entered the system and is governed 

by physical or chemical processes: settling, physical capture, and sorption. Note that 

some pollutants can be temporarily removed from the water column via sorption and 

settling for example, but can be reentrained and present in the system effluent. Under 

uniform ideal flow conditions, settling and physical capture are straight forward to 

predict, however under field conditions a combination of preferential flow and dead 

zones often exists making prediction more difficult. Transformation refers to the 

breakdown or change of the particular contaminant via a chemical or biological process. 

Transformation is typically more difficult to predict since it is affected by many factors 

including pH, temperature, microbial community, presence of oxygen, and redox 

potential. 

1.2.2 Pesticide Removal 

Pesticides cover a large range of physiochemical characteristics. The chemical makeup of 

the pesticide itself has a significant effect on how effectively it can be removed. The 

primary removal mechanism for hydrophobic pesticides is adsorption to soil particles, 

often clay particles or organic matter (Cheng 1990). When a pesticide is sorbed to a soil 

particle, its removal is often governed by physical mechanisms: settling and physical 

trapping. It should be noted that if a pesticide is sorbed to a clay particle it is still subject 

to movement even in a porous media (McDowell-Boyer et al 1986). Physical removal of 

particles is determined by particle size, flow velocity, porosity, and tortuosity. Even in 

seemingly straight-forward situations such as steady, constant surface flow, 

inconsistencies exist in velocities and consequently hydraulic retention time within a 
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wetland (Chazarenc et al 2003). Since a SFCW forces flow through a porous media, fluid 

contact with soil particles is enhanced. Sorption to all particles is not equal. Many 

pyrethroids (including bifenthrin) have a high affinity to sorb to particles, and 

preferentially sorb to clay particles and to partially decayed plant material (Budd et al., 

2011). Thus, systems that effectively reduce total suspended solids don’t necessarily 

reduce pesticide loading since clay particles are difficult to remove solely through 

settling.  

It is generally agreed that wetland plants, or macrophytes, play a role in increasing 

effectiveness of pesticide removal in constructed wetlands. Vegetation plays multiple 

roles in constructed wetland function. Physically, vegetation modifies hydraulic 

characteristics, causes trapping, mixing, reduces resuspension and can aid in hyporheic 

exchange. Plants also aid in the formation of microbial communities through the transfer 

of oxygen to root zones. Plants can take up and accumulate pesticides. There is still 

disagreement as to how significant each pathway is in overall removal and degradation 

mechanisms, but it is generally agreed that wetland vegetation plays a part in effective 

pesticide removal by constructed wetlands.  

1.2.3 Constructed Wetland Design 

Since little was known about effects of different design components on effect of pollutant 

removal, early design of constructed wetlands was not consistent (Reed and Brown 

1992). Some key design considerations are retention time, length to width ratio, planting 

type, and media type. Much of the design guidance has been made for municipal 

wastewater and considers pollutants such as biochemical oxygen demand (BOD), total 

suspended solids (TSS), pathogens, nitrogen, and phosphorus. This design guidance is 
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pertinent to constructed wetlands in agricultural settings and similar considerations are 

made. Also, much of the design guidance is derived from established practice while 

rigorous comparison of design characteristics is ongoing. 

1.2.3.1 Retention time 

Retention time (also called residence time or hydraulic residence time) has a significant 

effect on pollutant removal. Retention time affects the capacity of the constructed 

wetland to settle out sediment as well as affect the contact time that pollutants have with 

mineral and organic matter. Retention time is one of the controlling factors for treatment 

efficiency (Garcia et al., 2005). Theoretical retention time is affected by flow rate and 

wetland dimensions in that flow rate divided by cross sectional area equals velocity and 

velocity multiplied by hydraulic length equals retention time. Actual retention time is 

reduced by preferential flow paths from erosion and channeling (Budd et al., 2009). 

Published retention times vary from 1 hour to almost 3 weeks (O’Geen et al., 2010). 

Budd et al., (2009) found that pyrethroids were significantly reduced (64%-94%) with a 

retention time of 18 hours. While retention time affects pollutant removal, O’Geen et al., 

(2010) recommends maximizing retention time as much as possible but indicates that 

statistical comparison between studies is difficult due to inconsistencies in reporting. In 

practice, retention time may be limited by land available and flow rate. 

1.2.3.2 Length to width ratio 

Length to width ratio (also called aspect ratio) affects hydraulic retention time because it 

can influence mixing and flow distribution. Theoretically, an equal hydraulic retention 

time could be achieved with many different length to width ratios since both length and 

width are accounted for in theoretical hydraulic retention time. In practice, as width 
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increases, it is more difficult to evenly distribute inflow leading to increased short 

circuiting (Reed and Brown 1992, Vymazal 2011). While length to width ratio is less 

significant that other design considerations (Garcia et al., 2005), increased length to 

width ratio does increase retention time (Garcia et al., 2004). If length to width ratio is 

low, care must be taken to ensure even distribution of inflow. 

1.2.3.3 Media 

Media composition and dimension are important design considerations. Media type can 

include sand, gravel, organic matter, soil, and different amendments to target specific 

pollutants. Media affects a range of physical, chemical and biological performance 

characteristics of the constructed wetland including infiltration rate, long-term 

performance related to clogging, trapping efficiency, and sorption capacity. In addition, 

since most chemical reactions occur on the surface of particles, particle surface area to 

volume ratio is important. In a comparison with different sizes of gravel, smaller sized 

gravel showed higher pollutant removals (Garcia et al., 2005). Media type plays a 

significant role particularly with pollutants that are removed primarily through sorption 

processes such as phosphorus (Brix et al., 2001).  

1.2.3.4 Constructed Wetland Vegetation 

Plants are agreed to aid in pollutant removal in constructed wetlands although the extent 

of their role is uncertain (Stottmeister et al., 2003, Brisson and Chazarenc, 2008). Plants 

or macrophytes affect physical and biochemical conditions above and below the media 

surface. Physically, plants help stabilize the surface preventing erosion and the 

development of preferential flow paths (Budd et al., 2009) and helps prevent clogging on 

the media surface (Brix, 1994). Biochemically, plants aid in microbial community 
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establishment and growth by providing surface area and oxygen transfer from the surface 

to the subsurface (Brix, 1994, Stottmeister et al., 2004, Brisson and Chazarenc, 2009). 

Plants can also play a role in pollutant removal through uptake (Brix, 1994, Tanner, 1996, 

Stottmeister et al., 2004, Liu et al., 2007, Gottschall et al., 2007) however effects of plant 

diversity and type are still being investigated. 

1.3 Modeling Tools for Optimizing Low Impact Development 

Optimization of type, size, and placement of LID has been researched and applied in 

various settings. The majority of these projects use models that require a certain level of 

expertise to operate. The United States Environmental Protection Agency (USEPA) has 

developed multiple modeling applications to aid in stormwater management design and 

LID BMP implementation including the Storm Water Management Model (SWMM), 

System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN), and Opti-

Tool for Stormwater and Nutrient Management. SWMM is one of the most popular 

models used for urban stormwater runoff (Tobio et al., 2015, Jayasooriya and Ng, 2014, 

Joksimovic and Alam, 2014, Krebs et al., 2012, Jia et al., 2012). A common modeling 

application is to compare pollutant reduction or volume reduction for different scenarios. 

Joksimovic and Alam (2014) used SWMM to model 18 different combinations of LID 

for runoff-volume reduction and then determined cost per m
3
 of volume reduction. Zhang 

et al. (2013) also combined SWMM and a genetic algorithm to determine optimal amount 

and location of pervious pavement, green roof, and bioretention. The model optimized for 

cost and volume reduction and included a requirement that designs must also be beneath 

a certain peak flow threshold. The model optimization resulted in 37 designs that formed 

a pareto curve of near optimal solutions. While these are very useful comparison of 
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different LID combinations for cost and volume reduction, the application of these 

methods may not be attainable by some practitioners since the methods used require an 

advanced level of expertise.  

Another modeling platform used to design and optimize stormwater runoff management 

is SUSTAIN. SUSTAIN optimizes cost, volume reduction, and pollutant reduction by 

varying LID type, size, and location. SUSTAIN uses SWMM, ArcGIS (Geographical 

Information System), and sediment transport processes in the Hydrologic Simulation 

Program – Fortran (HSPF). ArcGIS (Esri, Redlands, California) incorporates layers such 

as soil type, slope, and land use into the design process. HSPF (US Geological Survey, 

Reston, VA) is used to model sediment transport and sediment loading for the design. 

Lee et al. (2012) used SUSTAIN to determine two groups of cost-effective solutions for 

annual flow volume reduction and annual TSS load reduction. Two LID types, porous 

pavement and bioretention, were modeled. Certain design parameters for bioretention and 

porous pavement were held constant: width, ponding depth, soil media depth, and gravel 

layer depth for bioretention and width, pavement depth, and gravel layer depth for porous 

pavement. Porous pavement was applied to sidewalks and bioretention to right of way 

areas. Finally, length of sidewalk or right of way was varied to determine optimal design. 

Chen et al. (2014) used SUSTAIN to determine pollutant reduction in a large watershed 

in Taiwan by incorporating four combinations of bioretention ponds, pervious pavement, 

and grass swales. Since cost data was not available for Taiwan, this design was not 

optimized for cost. 
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The Stormwater Management Optimization Tool (Opti-Tool) is a simpler spreadsheet- 

based tool that enables users to determine combinations of LID that meet pollutant and 

volume reduction goals while minimizing cost (USEPA, 2014). The tool uses external 

algorithms from SUSTAIN and is calibrated for EPA Region 1, the north eastern United 

States. While the tool can be used in areas outside of EPA Region 1, it is recommended 

for other areas to use SWMM to determine runoff from each hydrologic response unit. 

The tool produces a pareto curve between pollutant removal and cost that shows all 

possible results.  

While stormwater management design and optimization techniques and tools exist, these 

tools require an advanced level of expertise and computing resources. SWMM and 

SUSTAIN are free for download, but SUSTAIN works on an ArcGIS platform which is 

not free. Opti-Tool is available to anyone with Microsoft Excel and was built with auser-

friendly spreadsheet based interface. While Opti-Tool can be used throughout the US, if 

the watershed is outside EPA Region 1, users must determine local runoff values using 

SWMM. Advances have been made for urban planners to design and implement LID in a 

cost-effective manner, but smaller organizations or municipalities lack the expertise or 

financial resources to utilize available tools.  
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CHAPTER II 

 

 

EVALUATING PESTICIDE AND NUTRIENT REMOVAL FROM 

NURSERY AND GREENHOUSE RUNOFF USING CONSTRUCTED 

WETLANDS 

 

Abstract: Pesticides and nutrients in nursery runoff pose a potential threat to aquatic 

ecosystems. Constructed wetlands possess mechanisms for contaminant removal, 

however limited research has been performed regarding the effectiveness of pesticide 

removal by constructed wetlands from nursery runoff. This study monitored a subsurface-

flow constructed wetland (SFCW) and a free-surface constructed wetland (FSCW) at two 

different nurseries. Samples were analyzed for nutrients and 16 current-use pesticides. 

The SFCW demonstrated statistically significant reduction for the majority of commonly 

seen pesticides and nutrients. The FSCW exhibited statistically significant reduction for 

non-pesticide analytes. However, perhaps partially due to a limited sample size, the 

FSCW did not demonstrate significant reduction for any of the pesticide analytes. 

Overall, the study documented that the constructed wetlands analyzed were an effective 

management tool for nursery and greenhouse runoff, however pesticide removal 

performance was variable.  
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2.1 Introduction 

Pesticides and nutrients present in nursery runoff pose a potential threat to water 

resources. The combination of frequent irrigation, absence of vegetation, and application 

of a variety of pesticides and fertilizers creates a scenario conducive to pesticide and 

nutrient loading in receiving water bodies (Briggs et al., 1998). Pesticide concentrations 

in pot leachate can be toxic to aquatic organisms (Graves et al., 2014). Wilson et al., 2010 

found that 29% of chlorothalonil application in a nursery setting was deposited on the 

ground surface instead of in pots which led to concentrations up to 500 µg/L in runoff, a 

level that is toxic to aquatic microorganisms (for example 96-hour LC50 for adult grass 

shrimp was 150 µgL
-1

 according to Key et al., 2003). Nutrients contribute to algal blooms 

and are an on-going challenge in both agricultural and urban runoff (Anderson et al., 

2002, Smith, 2003). Constructed wetlands are a potential tool to remove pesticides and 

nutrients from runoff, reducing the threat to aquatic ecosystems.   This study was 

undertaken to provide evidence for constructed wetland performance for pesticide and 

nutrient removal from nursery runoff. During this study, two constructed wetlands, one 

free-surface constructed wetland (FSCW) and one subsurface-flow constructed wetland 

(SFCW) were built and subsequently monitored. 

The greenhouse and nursery industry has a significant economic impact in Oklahoma and 

throughout the United States. In the early 2010s, the green industry employed over 2 

million individuals in the US (Hodges et al., 2015). In addition, the industry had $136 

billion of direct economic output in the US (Hodges et al., 2015). Nurseries can have a 

negative environmental impact as well. To reduce economic losses due to weed 

contamination as well as insect and disease pressure, the use of pesticide is commonplace 
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at nurseries throughout the US. Weed management in a container nursery often involves 

removing as much vegetation from the landscape as possible since foreign vegetation can 

introduce unwanted weeds into containers, hindering plant growth and making pots less 

marketable (Case et al., 2005). Although nurseries use mechanical methods such as hand-

weeding, herbicides are still used and are present in runoff. Nurseries are using integrated 

pest management (IPM) methods to control insects with reduced pesticide application. In 

these cases, pesticide use is decreased but often not completely eliminated (Hodges et al., 

2008). Container nurseries are also required to take actions to prevent the movement of 

invasive insect species and noxious weeds (Newman, 2014). For example, to limit the 

spread of red invasive fire ants (RIFA), nurseries within the RIFA quarantine zone (much 

of the Southern US, including parts of Oklahoma) are required to incorporate insecticide 

into any container media being transported outside the quarantine zone. Insecticide is 

then potentially present in runoff at the destination nursery even if that nursery only 

minimally applies pesticide.  

The reduction of pesticide loading from nursery runoff can be accomplished through a 

number of methods and sometimes a combination of these methods is needed (Newman, 

2014):  

1. Reduction of amount applied (hand-weeding, precision application, integrated 

pest management)  

2. Reduction of concentration in runoff (improved timing of application and 

irrigation, reduced irrigation intensity and volume) 
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3. Reduced volume of runoff leaving site (more efficient irrigation methods such as 

drip irrigation, water reuse, disconnected impervious surfaces) 

4. Treatment of runoff (constructed wetlands, vegetated filter strips, riparian buffer 

areas) 

Even sustainably minded nurseries may have pesticide present in their runoff and so 

treatment of runoff is an important tool for sustainable nursery operation. Constructed 

wetlands are engineered systems with characteristics that are likely to provide effective 

treatment of nursery runoff.  

There are two general design distinctions of constructed wetlands: free-surface (also 

called free water surface or surface flow) and subsurface-flow. Both subsurface-flow 

constructed wetlands (SFCWs) and free surface constructed wetlands (FSCWs) have 

been shown to improve water quality of runoff from different sources. Subsurface-flow 

constructed wetlands (SFCWs) are designed to be predominantly saturated (to 0.1 m to 

0.2 m below the surface) but not have ponded water for extended periods of time. Free-

surface constructed wetlands (FSCWs) differ in design from SFCWs but share a similar 

history. Free surface constructed wetlands (FSCW) are designed to have ponded water. 

The first research performed on constructed wetlands with plants to treat wastewater 

occurred in the early 1950s by Kathë Seidel in Germany (Vymazal, 2011). Research of 

constructed wetland design and performance continued in the 1960s and 1970s by 

Spangler et al. (1976), Fetter et al. (1976), and others. As Vymazal (2011) indicates, 

research and adoption continued to grow globally but constructed wetlands were still 

used mostly for municipal wastewater treatment through the late 1980s. However, during 
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the 1980s, constructed wetlands expanded in scope to treat wastewater from different 

sources including agriculture (Hammer, 1992, Rodgers and Dunn, 1992). Research has 

been performed on pesticide and nutrient removal by constructed wetlands from different 

sources of wastewater or runoff including agricultural runoff (Kohler et al., 2004, 

Blankenburg et al., 2006, Budd et al., 2009, Maillard et al., 2011, Agudelo et al., 2012). 

While contaminants of concern may be similar between nursery and other agriculture 

runoff, hydrology and hydraulic loading differs significantly due to frequent irrigation 

events. Also, pot leachate presents potential for continued loading of pesticides and 

nutrients every irrigation and storm event (Graves et al., 2014). In a review of pesticide 

removal by constructed wetlands from agricultural runoff, Vymazal and Březinová 

(2015) identified only three that specifically used container nurseries (George et al., 

2003, Runes et al., 2003, Stearman et al., 2003). Of the 47 constructed wetland studies 

identified by Vymazal and Březinová (2015), nine were mesocosm studies, six were 

microcosm or lab studies and only six used agricultural runoff. Removal rates between 

these studies varied. Another review (Li et al., 2014) indicated that similar mechanisms 

of sorption and microbial degradation were involved in removal of other organic 

compounds such as pharmaceuticals in wastewater. Ávila et al., 2015 indicated that 

multiple processes, photodegradation, sorption, aerobic and anaerobic biodegradation, 

contributed to the removal of organic compounds in wastewater. While these studies are 

not specific to removal of pesticides in nursery runoff, it is apparent that similar 

mechanisms contribute to removal of organic compounds in multiple settings and likely 

that constructed wetlands can be effective in multiple settings. These experiments 
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indicated that constructed wetlands have the capacity to reduce pollutants in agricultural 

runoff but there is a great need for further field demonstrations on nurseries.   

Constructed wetlands have characteristics enabling them to effectively capture and 

transform pesticides. Pesticide removal is influenced by multiple factors: physical, 

chemical, and biological. Removal processes within constructed wetlands include 

physical trapping within the soil matrix, sorption to soil particles, uptake by vegetation, 

chemical transformation, microbial degradation, and photolysis (breakdown by exposure 

to light). The effectiveness of removal depends on chemical characteristics of individual 

pesticides as well as the hydrologic and soil properties of the wetland system.  

Constructed wetlands are a potential tool for nurseries to reduce pesticide concentrations 

present in runoff. This study demonstrated performance for pesticides, nutrients, and total 

suspended solids removal by a subsurface-flow and a free surface constructed wetland 

installed at two different nurseries in Oklahoma. While it was not a direct comparison of 

the two different design types, this study provides guidance for nurseries that are faced 

with both regulatory and economic pressure to incorporate pesticides into their operations 

and regulations to eliminate pesticide in runoff. 

2.2 Objectives 

Performance of constructed wetlands in other settings has shown them to be a potential 

tool for nurseries to reduce pesticide loading in runoff however, more documentation of 

in-field performance is needed. The overall objectives for this project are: 
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1. Determine hydrologic performance and removal efficiency for selected pesticides, 

nutrients, and total suspended solids (TSS) of a SFCW receiving greenhouse 

irrigation and stormwater runoff.  

2. Determine hydrologic performance and removal efficiency for selected pesticides, 

nutrients, and total suspended solids (TSS) of a FSCW receiving nursery 

irrigation and stormwater runoff. 

 

2.3 Methods 

Two constructed wetlands were built and monitored to determine their effectiveness in 

reducing pesticides from nursery and greenhouse runoff. Each system was completed in 

the fall of 2015 and monitored May through November of 2016. Each constructed 

wetland was at a different type of nursery (wholesale vs retail) and was a different design 

(FSCW vs SFCW) (Table 2.1).  
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Table 2.1 - Characteristics of the two field sites used in the study. 

Type of 

Nursery 

Type of 

Constructed 

Wetland 

Drainage Area 

Forebay 

Volume 

(m
2
/ft

2
) 

Treatment 

Area 

(m
2
/ft

2
) 

Total Area 

of System 

(m
2
/ft

2
) 

System Area/ 

Drainage 

Area 

Media Type 
Ponding 

Depth 
Underdrain 

Retail 
Subsurface-

flow 

Total - 0.7 ha, 

greenhouse - 0.5 ha, 

open-air planting - 

0.2 ha 

4.5/160 89/960 92/990 1.3% 

Bottom 0.46 m river 

rock, Top 1.2 m 

construction sand 

0.15 m 

Dual pipes, 

0.076 m 

diameter 

Wholesale Free-surface 
Total - 6 ha, all 

open-air planting 
45/1,600 280/3,000 480/5,150 0.80% 

0.76 m of sand and 

compost mixture 

0.15 m to 

0.20 m 
None 
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2.3.1 Site Descriptions 

2.3.1.1 Subsurface-flow Constructed Wetland Treating Runoff at a Retail Nursery  

A SFCW was constructed at a retail nursery in Oklahoma City, OK in September 2015. 

The area draining to the SFCW contained perennial ornamentals such as crepe myrtle 

(Lagerstromeemia spp.) and switchgrass (Panicum  virgatum), evergreen shrubs and trees 

such as cypress (Cupressus spp.) and spruce (Picea spp.), and deciduous trees such as 

maple (Acer spp.) and redwood (Metasequoia spp.). The drainage area consisted of 

greenhouses (0.5 hectares) and open-air planting areas (0.2 hectares) for a total 

contributing area of 0.7 hectares. The SFCW was 0.3% as large as the contributing 

drainage area. As built, the subsurface-flow constructed wetland consisted of a sediment 

forebay that approximately 1.5 m (5.0 ft) wide, 1.5 m (5.0 ft) long and 1.8 m (6.0 ft) deep 

(Figure 2.1). The forebay was separated from the treatment cell by a poured concrete wall 

containing 9 poly vinyl chloride pipes (5.1 cm/2.0 in diameter) connecting the forebay to 

the treatment cell. The cell was 8.8 m (29 ft) long and 1.5 m (5.0 ft) wide. The bottom 

0.46 m (1.5 ft) of the cell was made up of river rock and the top 1.2 m (4.0 ft) is concrete 

sand. The river rock and sand layers were separated by 4 oz needle-punched geotextile 

fabric. Runoff entered the system via overland flow from the open-air planting area and a 

culvert from the greenhouse area. Two underdrain pipes ran through the middle of the 

gravel layer. The underdrains were connected to a standpipe and a 180° bend at an 

elevation 15 cm (6.0 inches) lower than the media surface. This prevented water from 

leaving the treatment cell media through the underdrains unless the water level was 

higher than the elbow elevation. After leaving the cell, the underdrains emptied into a 

stormsewer catchment. 
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The approximate theoretical storage volume of the SFCW was calculated. Storage 

components included forebay, ponding, and media. The porosity of the sand was not 

measured directly, but unconsolidated sand with normal packing has a porosity between 

0.39 and 0.41 (Corey, 1994). The total theoretical storage volume was approximately 

15,000 L which included 4,200 L (forebay), 2,000 L (ponding), and 8,800 L media. 

 

Figure 2.1 - Conceptual drawing of subsurface-flow constructed wetland showing sediment 

forebay and treatment cell separated by a poured concrete wall. 

2.3.1.2 Free-Surface Constructed Wetland Treating Runoff at a Wholesale Nursery 

A FSCW was constructed at a wholesale nursery located in northeastern Oklahoma near 

Hulbert, OK and the Fort Gibson Reservoir. The nursery landscape was made up of 

compacted cobble. The nursery used overhead irrigation to water all containers. Plants in 
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the area draining to the FSCW consisted of fruits such as peach (Prunus persica), 

blueberry (Cyanococcus spp.), and grape (Vitis vinifera), and groundcovers such as lily 

turf (Liriope spp.) and winter creeper (Euonymus spp.). Overhead irrigation in container 

production settings can result in low capture efficiencies (amount of water that is retained 

in the container/total amount applied) (Beeson and Knox, 1991). This leads to high 

volumes of runoff even during dry weather. To minimize the volume of water leaving the 

site, the nursery captures and stores some runoff in retention ponds. The constructed 

wetland was designed with these hydrologic characteristics in mind: frequent irrigation, 

large runoff volumes, and high erosion potential. While typical FSCWs cover large areas, 

treatment area was reduced and only a portion of runoff was treated to minimize land 

taken out of production. During the study, the nursery declared bankruptcy and ended 

operations at this location limiting the number of events that were sampled.  

The drainage area to the system was 6 hectares. The constructed wetland system had 

three components: a diversion channel, sediment forebay, and treatment cells. Runoff was 

routed into the diversion channel by a low wooden dam across the existing channel. The 

dam was low enough to provide permanent flow diversion for irrigation flow but did not 

force the entirety of storm flows into the diversion channel overwhelming the wetland 

system. The inflow to the FSCW system was regulated by a sluice gate that could be 

raised and lowered to control flow rate. Runoff flowed through the diversion channel and 

then entered a sediment forebay. Runoff flowed in parallel into the treatment cells after 

passing through the sediment forebay. The wetland was designed with six separate cells 

in parallel with different amounts of compost and either with plants or without plants 

(Figure 2.2). The cell contents starting from the upstream end of the wetland are listed in 
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Table 2.2. The cell order was determined at random. 

 

Figure 2.2 - Cells with different media mixes and that either contained plants or did not contain 

plants. 

Table 2.2 - Each of the six cells of the free-surface constructed wetland had a different 

combination of sand:compost ratio and either had plants or did not have plants.  

Cell Compost Content Sand Content Plants Present 

1 0% 100% No Plants 

2 12.5% 87.5% No Plants 

3 0% 100% Plants 

4 12.5% 87.5% Plants 

5 25% 75% No Plants 

6 25% 75% Plants 

 

2.3.2. Hydrologic Monitoring 

2.3.2.1. Subsurface-flow Constructed Wetland 

Inflow, outflow, water level (forebay and treatment cell), and rainfall were continually 

monitored to determine hydrologic performance. To ensure that all runoff was quantified, 

runoff was prevented from entering the treatment cell or the forebay via overland flow. A 

wooden barrier was installed along the sides of the cell and sealed with silicon sealant. 

Inflow entered the forebay through a 0.15 m (0.5 ft) H-flume (Figure 3.3). To quantify 

overflow, a 0.12 m (0.4 ft) HS-flume was installed as the outlet of the treatment cell. This 

type of flume was chosen to measure low flows that occur during irrigation events, the 

predominant type of event treated by the SFCW. During large storm events, water 
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ponded in the entire area around the SFCW, so these large events were not able to be 

accurately quantified. To quantify outflow through the underdrain system, a Palmer-

Bowlus flume was installed on one of the underdrain pipes. The second underdrain pipe 

was plugged for the duration of the experiment. A stilling well was attached to each 

flume and water level was measured using an ISCO 720 Submerged Flow Probe.  

 

Figure 2.3 - Flumes used for flow measurement for the subsurface-flow constructed wetland. a - 

H-flume measuring inflow. b - HS-flume measuring overflow. c – Palmer-Bowlus flume 

measuring underdrain. 

2.3.2.2 Free Surface Constructed Wetland 

For the FSCW, inflow and outflow were measured for all events using ISCO 720 Flow 

Modules or ISCO Bubbler Modules and H-flumes. The outlet of each cell had three 15 

cm (0.5 ft) H-flumes fabricated in the Oklahoma State University Biosystems and 

Agricultural Engineering machine shop from sheet metal (Figure 2.4). All other outlet 

openings were sealed using plywood and silicon. A custom calibration was performed for 

each H-flume to determine a stage-discharge relationship for each flume (Appendix A). 

The calibration was needed to account for variation in fabrication and installation. To 

calibrate each flume, mass flow rate was measured by filling a bucket for a set amount of 

time and then taking the weight of the bucket. Flow in the main drainage channel that 

was not diverted into the FSCW system was measured using a 46 cm (1.5 ft) H-flume. 

Hydrologic data collection began in May 2016 and continued through November 2016.  

a b c



 

41 

 

A rhodamine WT tracer study was performed in September, 2015. This was performed 

prior to the installation of the sluice gate in the inlet channel and flumes. Flow rate was 

measured using a 45° v-notch weir and an ISCO 720 Flow Module. A slug of rhodamine 

dye was injected immediately downstream of the sharp-crested weir. Samples were taken 

immediately downstream of each cell inlet and immediately downstream of each cell 

outlet for a total of 12 sampling locations. Water samples were taken at all sampling 

points prior to dye injection to establish background fluorescence. Water samples were 

taken every five minutes until the rising and falling limb of the concentration curve were 

accounted for and then the sampling frequency was increased to ten minutes. Sampling 

continued until concentrations were within 15% of background levels and change in 

concentration was 15% or less. Fluorescence was measured in the field using a Trilogy 

Fluorometer (Turner Designs, Sunnyvale, California) immediately after samples were 

taken. Retention time was calculated as time to peak. Theoretical retention time was 

calculated as flow rate divided by volume. Hydraulic efficiency was calculated as actual 

retention time divided by theoretical retention time.  

 

Figure 2.4 - Flumes used for flow measurement for the free-surface constructed wetland. a - H-

flume measuring inflow. b - H-flume measuring flow in the main channel. c – Configuration of 3 

H-flumes measuring outflow. 

a b c
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2.3.3 Water Quality Sampling Collection Methods 

2.3.3.1. Subsurface-flow Constructed Wetland 

For the SFCW, water samples were collected using ISCO refrigerated autosamplers with 

Teflon-lined tubing. Samples were composited into glass carboys to minimize sorption of 

pesticides onto the sampling container. Both irrigation and storm samples were flow 

weighted over the duration of each event. Inflow and overflow samples were collected 

through an intake tube located within the flume (Figure 2.3). Underdrain samples were 

taken from a sampling trough directly downstream of the Palmer-Bowlus flume. A 

covering was placed over the underdrain outlet pipes so inflow from the street grate 

would not affect the water level or water quality samples. Sampling began in May 2016 

and continued through December 2016.  

2.3.3.2. Free Surface Constructed Wetland 

For the FSCW, ISCO refrigerated autosamplers were used to collect samples. Glass 

sample containers and Teflon-lined tubing were used to minimize sorption of pesticides 

onto sampling equipment. Samples were taken on a flow-weighted basis over the full 

event and composited into a single container. The sampling point for both inflow and 

outflow samples were in the flume throat. Outflow samples were taken from the middle 

flume of each cell.  

2.3.4. Water Quality Sample Analysis  

For both sites, samples were retrieved within 24 hours of the runoff event and transported 

to Stillwater, Oklahoma in coolers with cold packs or ice. Field blanks were taken at a 

rate of 5% of all samples for quality assurance and quality control. Field blanks were 

performed by taking reverse osmosis (RO) water to the field site during a sampling event, 

pouring the (RO) sample into a glass carboy and then retrieving and returning the blank 
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sample with the water samples. Field blank samples were then analyzed according to the 

same procedure as the water samples. Field blank samples had concentrations less than 

10% of sample concentrations, a common standard consistent with Ohio EPA, 2013. 

Samples were separated upon return into subsamples consisting of 30 ml for ortho 

phosphate and nitrate analysis, 30 ml for total nutrient analysis, 1 L for pesticide analysis, 

1 L for TSS analysis, and additional sample was saved as backup. Orthophosphate-P and 

nitrate-N samples were filtered using a 0.45 µm polytetrafluoroethylene (PTFE) filter 

from Scientific Strategies (Oklahoma City, Oklahoma) and refrigerated until analysis. 

Nutrient samples were analyzed at the Soil, Water and Forage Analytical Laboratory 

(SWFAL) at Oklahoma State University according to Lachat Method 10-115-01-1-A for 

orthophosphate-P and Lachat Method 12-107-04-1-B for nitrate-N. These samples were 

also analyzed for pH and electrical conductivity (EC). Total nitrogen and total 

phosphorus samples were digested before being analyzed at SWFAL. The digestion was 

based on the methods described in Ebina et al. (1983) and Gross and Boyd (1998). Each 

sample was combined at a 1:1 ratio with an oxidizing agent (combine 20.0g of potassium 

persulfate (K2(SO4)2) and 3.0g of sodium hydroxide (NaOH) and brought to a total 

volume of 1L with deionized water and then autoclaved at 120°C for 30 minutes.  

Pesticide analysis was performed at Oklahoma State University. Samples analyzed for 

pesticides were extracted within 72 hours of collection onto Agilent Technologies 50 mg 

C8 solid-phase extraction cartridges. One liter of sample was passed through the 

extraction cartridge if enough sample was available. To reduce rapid clogging by excess 

sediment in the samples, a filter made from glass wool and kimwipe in a clean SPE 

cartridge with no resin was implemented in series prior to the C8 cartridge. Cartridges 
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and filters were then frozen until analyzed. The C8 cartridges were then eluted with 9 ml 

of ethyl acetate. The filters were removed from the cartridge housing and placed in a 

clean glass vial. Ethyl acetate was added to the vial and agitated on a shaker table for one 

hour before the elution solution was transferred using quantitative transfer (rinsed three 

times with ethyl acetate) to a test tube. To dry the solvent, 3-4 g of anhydrous sodium 

sulfate was added. Finally, the sample was analyzed using an Agilent 6850 Gas 

Chromatograph coupled with a 5975C Mass Spectrometer.  

The samples were analyzed for pesticides listed in Table 2.3. These pesticides were 

selected because they are often applied on large-scale container nurseries. The pesticides 

were also selected to represent a range of mobile and immobile compounds. 
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Table 2.3 - Pesticides analyzed for in water samples at all sampling points during study, ordered from largest to smallest Koc (Koc is the soil organic carbon-water partitioning 

coefficient) 

       

OPP Aquatic Life Benchmarks (µg/L)5 

Compound Type 

Water 

Solubility 

(mg/L) 

Koc 
Field Dissipation 

Half-Life (days) 

Anaerobic 

Half-Life 

(days) 

Aerobic 

Half-Life 

(days) 

Fish 

Acute  

Fish 

Chronic 

Invertebrates 

Acute 

Invertebrates 

Chronic 

Acephate1 Insecticide 818,000 2 2 to 10 - 3 416,000 5760 550 150 

Bifenthrin1 Insecticide 0.1 237,000 7 to 62 - 65 to 125 0.075 0.04 0.8 0.0013 

Carbaryl1 Insecticide 110 288 4 to 22 46 17 110 6 0.85 0.5 

Chlorothalonil1 Fungicide 0.6 4,000 to 4,800 2 to 90 - - 5.25 3 1.8 0.6 

Chlorpyrifos1 Insecticide 1.18 13,400 4 to 139 - 12 to 120 0.9 0.57 0.05 0.04 

Dimethenamid4 Herbicide 1,200 105-396 - - - - - - - 

Fipronil2 Insecticide 1.9 825 - - - 41.5 6.6 0.11 0.011 

Indaziflam3 Herbicide 2.8 426 - - - - - - - 

Isoxaben1 Herbicide 1.42 1,400 90 to 120 - - >500 400 >650 690 

Myclobutanil1 Fungicide 142 500 61 to 71 - - 1200 980 5500 - 

Oryzalin1 Herbicide 2.5 600 20 to 128 - - 1440 220 750 358 

Oxadiazon1 Herbicide 0.7 3,345 30 to 180 180 180 600 33 1090 33 

Oxyfluorfen1 Herbicide 0.1 100,000 30 to 40 554 to 603 291 to 296 100 1.3 750 13 

Pendimethalin1 Herbicide 0.275 17,200 8 to 480 60 1,300 69 6.3 140 15.5 

Propiconazole1 Fungicide 100 648 109 to 123 >84 43 to 70 425 95 650 260 

Trifluralin1 Herbicide 0.32 7,200 15 to 139 - 116 to 189 20.5 1.14 280 2.4 

  1 - USDA ARS, 2017 
   

      2 - Gunasekara and Troung, 2007 
   

      3 - Bayer, 2016 
   

      4 - Gillespie et al., 2011 

  5 – US EPA, 2017    
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2.3.5 Mass Reduction Calculation and Statistical Methods 

Mass and concentration reduction were calculated for all events that had samples from all 

sampling points. Concentration reduction was calculated using samples from the inlet and 

underdrain. Mass reduction was determined using concentration and volume from the 

inlet, overflow, and underdrain. Flow-weighted mean concentration for each event at 

each sampling point was multiplied by event volume at each sampling point to determine 

pesticide event mass for each event at each sampling point. Average mass reduction was 

determined for all events that had samples from all sample points that had flow.  

Mass reduction of each constituent was determined using Equation 2.1. 

𝑀𝑎𝑠𝑠 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
∑(𝐶𝑖×𝑉𝑖)𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡−(∑(𝐶𝑖×𝑉𝑖)𝑢𝑛𝑑𝑒𝑟𝑑𝑟𝑎𝑖𝑛+∑(𝐶𝑖×𝑉𝑖)𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤)

∑(𝐶𝑖×𝑉𝑖)𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡
  Equation 2.1 

Where, 𝐶𝑖 is event concentration of the composite event sample and 𝑉𝑖 is the event 

volume. The subscript of influent refer to inflow samples, underdrain refers to underdrain 

samples, and overflow refers to overflow samples. This analysis was performed for all 

constituents (if enough sample volume was available) for each event. For samples that 

were below reporting limits (pesticides below 10 ng/L, nitrate-N, ortho-phosphate-P, total 

nitrogen, and total phosphorus below 0.01 mg/L) concentrations were set at one-half of 

the reporting limit for that sample to determine overall system mass removal.  

Concentration descriptive statistics for all pesticide compounds were calculated using 

methods described in Helsel (2005) and Helsel (2012). If samples below reporting limits 

comprised 75% or greater of the analyzed samples, then only the number of samples 

above reporting limits was reported. If 50%-75% of samples had concentrations below 

reporting limits, then robust regression on order statistics (ROS) was performed. If fewer 
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than 50% of samples had concentrations below reporting limits, then the Kaplan-Meier 

method was used. Outflow concentration for the FSCW was calculated as a flow-

weighted concentration (Equation 2.2).  

𝐶𝑓𝑤𝑖 =
𝐶𝑖×𝑉𝑖

𝑉𝑇
         Equation 2.2 

Where Cfwi is the flow-weighted concentration for an individual cell, Ci is the event 

concentration of an individual cell, Vi is the event volume for an individual cell, and VT 

is the total outflow volume for that event.  

All statistical tests were performed using Minitab 17® (State College, PA). To determine 

statistical significance of concentration and mass reduction, either a paired t-test for 

normally distributed differences or Wilcoxon signed rank test for non-normally 

distributed differences was used. Normality of differences was tested using the Anderson 

Darling test.  

It was expected that percent mass reduction would vary among pesticides depending on 

Koc. Linear regression analysis was performed between Koc and percent mass reduction. 

Additional linear regression analyses were performed to determine if percent volume 

reduction was correlated to inflow volume, antecedent dry period (ADP), or Julian day. If 

the distribution of residuals was not normal, then variables were transformed using a log 

normal or natural log transformation to achieve normality. If distributions of residuals 

were still non-normal, then no further transformations were performed. 
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2.4 Results 

2.4.1 Subsurface-flow Constructed Wetland  

2.4.1.1. Volume Reduction 

Inflow and outflow were measured from May, 2016 through November, 2016 to 

determine overall hydrologic performance of the SFCW. A total of 159 events were used 

to estimate volume reduction through the system. These included irrigation, storm, and 

combined events and ranged in inflow size from 276 L (small irrigation event of 3.3 mm 

in 8 minutes) to 29,700 L (storm event of 17.8 mm in 139 minutes) with an average of 

4,400 L (Table 2.4). Five storm events were likely larger than the largest recorded event, 

however these had inlet depths that were greater than 15 cm (6 inches), the height of the 

inlet h-flume (flow rate of 590 L/min), and were not used in calculations. Results from an 

Anderson Darling test indicated that the flow data did not follow a normal distribution, 

therefore statistical significance was tested using the Wilcoxon signed rank test. For the 

159 events used to calculate volume reduction, the average reduction was 79% and was 

statistically significant with a p-value of < 0.001.  

To determine which statistical test to use to determine significance between inflow and 

outflow, the Anderson-Darling test was used to test normality.  

Table 2.4 - Volume characteristics of 159 runoff events for the subsurface-flow constructed 

wetland treating runoff from a retail nursery. 

 

 

Measurement 

Location 

Mean 

Volume 

(L) 

Standard 

Deviation 

(L) 

Range (L) 

Inflow 4,400 3,900 280 - 30,000 

Overflow 410 750 0 - 5,700 

Underdrain 510 550 0 - 3,800 
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Linear regression analysis indicated that event size (inflow volume), time of year 

(represented by Julian day), and ADP (hours since cessation of inflow from previous 

event) were not correlated to volume reduction (R
2
 = 0.051, 0.001, and 0.001 for event 

size, day of year, and ADP, respectively).  

2.4.1.2. Water Quality  

 A total of 21 total events were sampled at the subsurface-flow constructed wetland, 11 

paired pesticide samples were used for statistical analysis irrigation events at the 

subsurface-flow constructed wetland.  Descriptive statistics for non-pesticide analytes are 

detailed in Table 2.5.
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Table 2.5 - Concentration  characteristics of the inlet, overflow, and underdrain of the subsurface-flow constructed wetland treating runoff from a 

retail nursery of non-pesticide analytes. 

 

Inflow Overflow Underdrain 

Constituent Mean Median Stnd. Dev. Mean Median Stnd. Dev. Mean Median Stnd. Dev. 

Volume (L) 3,930 3,670 2,680 520 540 370 440 340 370 

pH 8.1 8.2 0.3 8.3 8.3 0.2 8.2 8.2 0.2 

EC (μS/cm) 1,168 1,153 66 1,137 1,155 104 1,100 1,162 143 

Total Suspended Solids (mg/L) 11 11 8 3.6 3.3 3 2.7 2.1 2 

NO3-N (mg/L) 0.67 0.59 0.31 0.34 0.37 0.15 0.51 0.51 0.3 

PO4-P (mg/L) 0.090 0.090 0.03 0.083 0.078 0.042 0.091 0.10 0.03 

Total Nitrogen (mg/L) 0.80 0.61 0.6 0.57 0.57 0.43 0.46 0.21 0.5 

Total Phosphorus (mg/L) 0.091 0.060 0.09 0.080 0.067 0.06 0.065 0.058 0.03 
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Mass reduction was significant for all non-pesticide water-quality constituents measured 

(Table 2.6). Mass reduction was calculated as the reduction of mass from the inflow to 

both the underdrain and overflow. The average volume reduction was 78% for the events 

used for concentration and mass reduction calculations.  

Table 2.6 - Mass reduction of non-pesticide analytes for the subsurface-flow constructed wetland 

treating runoff from a retail nursery. 

Constituent 
P-value (Mass 

Reduction>0) 

Number of 

Paired 

Samples 

Mass 

Reduction 

P-value (Mass 

Reduction>0 

Volume Reduction) 

Volume <0.001 16 78% - 

NO3-N  < 0.001* 16 86% 0.032* 

PO4-P  < 0.001* 16 79% >0.99 

Total Nitrogen 0.002* 14 85% 0.328 

Total Phosphorus < 0.001* 14 78% 0.851 

Total Suspended 

Solids 
0.002* 12 89% 0.050* 

    * – Statistically significant with 95% confidence  

 

Paired samples were taken for events to directly compare inflow concentrations with 

underdrain concentrations. There was a statistically significant reduction in concentration 

at a 95% confidence for eight of the analyzed compounds (Table 2.7).  
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Table 2.7 - Descriptive statistics for pesticide concentrations in the subsurface-flow constructed wetland treating runoff at retail nursery. All 

concentrations include both dissolved and particulate components. Only number of samples above the reporting limit is given for compounds with 

four or fewer samples with concentrations above reporting limits. If there were five samples with concentrations above reporting limits then mean 

was calculated using regression on order statistics. If six or greater samples had concentrations higher than the reporting limit, then the Kaplan-

Meier test was used to determine descriptive statistics for compounds. 

 

Inflow Concentration (ng/L) Overflow Concentration (ng/L) Underdrain Concentration (ng/L) 

Compound 

Samples 

Above 

Reporting 

Limit 

Mean Median 
Stnd. 

Dev. 

Samples 

Above 

Reporting 

Limit 

Mean Median 
Stnd. 

Dev. 

 Samples 

Above 

Reporting 

Limit 

Mean Median 
Stnd. 

Dev. 

Acephate 2 - - - 1 - - - 3 - - - 

Bifenthrin 11 49 37 40 7 23 16 34 7 13 16 13 

Carbaryl 8 32 19 51 6 28 11 74 5 68 - - 

Chlorothalonil 1 - - - 2 - - - 1 - - - 

Chlorpyrifos 3 - - - 0 - - - 0 - - - 

Dimethanamid 5 11 - - 2 - - - 1 - - - 

Fipronil 3 - - - 4 - - - 4 - - - 

Indaziflam 1 - - - 1 - - - 0    

Isoxaben 8 34 14 49 1 - - - 4    

Myclobutanil 11 123 137 69 6 24 20 33 11 61 54 30 

Oryzalin 0 - - - 0 - - - 1 - - - 

Oxadiazon 11 11 12 12 6 - - - 11 10 7 9 

Oxyfluorfen 2 - - - 1 - - - 2 - - - 

Pendimethalin 8 29 16 34 3 - - - 4 - - - 

Propiconazole 11 79 75 40 6 22 18 27 11 43 40 19 

Trifluralin 0 - - - 0 - - - 0 - - - 
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Pesticide mass was calculated for each sample point (inflow, overflow, and underdrain) 

for each event. Multiple sampled irrigation events did not result in flow at the overflow 

sampling point. These events were included for calculations of average mass reductions if 

they contained samples from the inflow and underdrain sampling points. Since inflow 

volume for irrigation events was typically lower than inflow volume for storm events, 

reductions for irrigation events were calculated separately from storm events. Mass 

reduction was significant at a 95% confidence interval for 10 of the 15 detected 

compounds (Table 2.8). For four of the five non-significant compounds, there were six or 

fewer detections. Mass reduction was significantly different from volume reduction for 

six compounds (Table 2.8). Values in Tables 2.7 and 2.8 were calculated using irrigation 

events only. There was no correlation between percent mass reduction and log(Koc) 

(Figure 2.5).  
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Table 2.8 - Pesticide mass reduction for11 irrigation events in the subsurface-flow constructed 

wetland treating runoff from a retail nursery . Pesticide analysis included both dissolved and 

particulate components for each compound. 

 

Compound 
P-value (Mass 

Reduction>0) 

Number of 

Paired Samples 
Mass Reduction 

P-value (Mass 

Reduction>Volume 

Reduction) 

Volume  <0.001* 11 78% - 

Acephate 0.423 3 81% >0.99 

Bifenthrin 0.004* 11 92% 0.011* 

Carbaryl 0.838 10 91% 0.529 

Chlorothalonil 0.009* 9 92% 0.097 

Chlorpyrifos 0.036* 6 99% 0.036* 

Dimethanamid 0.009* 9 97% 0.009* 

Fipronil 0.787 5 -14% 0.584 

Indaziflam 0.035* 7 86% 0.142 

Isoxaben 0.021* 8 88% 0.022* 

Myclobutanil 0.004* 11 92% 0.056 

Oryzalin >0.99 3 79% >0.99 

Oxadiazon 0.004* 11 89% 0.005* 

Oxyfluorfen 0.295 6 74% 0.100 

Pendimethalin 0.006* 10 79% 0.083 

Propiconazole 0.004* 11 88% 0.004* 

Trifluralin No detections in any sample  

    * – Statistically significant with 95% confidence   
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Figure 2.5 - Mass reduction vs log(Koc) for 10 pesticide compounds that had statistically 

significant concentration reduction in the subsurface-flow constructed wetland treating runoff 

from a retail nursery. Koc is the soil organic carbon/water partitioning coefficient.  

Stormwater events were also sampled and analyzed for nutrients and pesticides (Tables 

2.9 and 2.10). A total of five events were sampled however only 3 were analyzed due to 

either equipment malfunction or inundation of the system by high flow volume.  
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Table 2.9 - Descriptive statistics for non-pesticide analytes measured in paired stormwater samples for the subsurface-flow constructed wetland. 

 

Inflow Overflow Underdrain 

Analyte Mean Median Stnd. Dev. Mean Median Stnd. Dev. Mean Median Stnd. Dev. 

pH 7.8 7.9 0.19 8.0 8.0 0.29 8.1 8.2 0.14 

EC (μS/cm) 417 332 211 446 399 97 711 714 69 

Total Suspended Solids (mg/L) 143 143 15 138 138 15.4 5.3 5.3 3.0 

NO3-N (mg/L) 0.77 0.73 0.28 0.69 0.70 0.082 0.87 0.71 0.27 

PO4-P (mg/L) 0.057 0.030 0.038 0.054 0.053 0.012 0.090 0.090 0.016 

Total Nitrogen (mg/L) 1.1 1.4 0.44 0.75 0.75 0.35 1.1 1.1 1.1 

Total Phosphorus (mg/L) 0.093 0.060 0.069 0.055 0.055 0.005 0.055 0.055 0.005 
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Table 2.10 - Descriptive statistics for pesticide analytes measured in three paired stormwater samples (not irrigation samples) for the subsurface-

flow constructed wetland. If there was only one sample with a concentration above the reporting limit, then this is reported. If two samples had 

concentrations above the reporting limit, then mean was calculated using regression on order statistics. Pesticide analysis included both dissolved 

and particulate components for each compound. 

 

Inflow Concentration (ng/L) Overflow Concentration (ng/L) Underdrain Concentration (ng/L) 

Compound 

Samples 

Above 

Reporting 

Limit 

Mean Median 
Stnd. 

Dev. 

Samples 

Above 

Reporting 

Limit 

Mean Median 
Stnd. 

Dev. 

 Samples 

Above 

Reporting 

Limit 

Mean Median 
Stnd. 

Dev. 

Acephate 0 - - - 0 - - - 0 - - - 

Bifenthrin 3 34 32 15 2 48 - - 21 - - - 

Carbaryl 2 8 - - 1 - - - 1 - - - 

Chlorothalonil 1 - - - 0 - - - 0 - - - 

Chlorpyrifos 1 - - - 1 - - - 0 - - - 

Dimethanamid 1 - - - 0 - - - 0 - - - 

Fipronil 0 - - - 0 - - - 1 - - - 

Indaziflam 0 - - - 0 - - - 0 - - - 

Isoxaben 2 15 - - 1 - - - 22 - - - 

Myclobutanil 3 19 17 7 2 32   3 46 45 37 

Oryzalin 0 - - - 0 - - - 0 - - - 

Oxadiazon 0 - - - 1 - - - 2 15 - - 

Oxyfluorfen 1 - - - 1 - - - 0 - - - 

Pendimethalin 0 - - - 2 40 - - 2 28 - - 

Propiconazole 3 36 29 5 2 46 - - 2 52 - - 

Trifluralin 0 - - - 0 - - - 0 - - - 
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2.4.2 Free Surface Constructed Wetland  

2.4.2.1 Water Quantity Results 

A tracer study was performed for the FSCW prior to the installation of flow control 

structures (sluice gate and flumes). The tracer study was performed at a typical flow rate 

that was higher than the typical flow rate during the monitoring period (750 L min
-1

 and 

250 L min
-1

 respectively). Results from the tracer study are given in Table 2.11. 

Table 2.11 - Results from tracer study for free surface constructed wetland. 

 

Time to Peak (minutes) Hydraulic Efficiency 

Cell  
To Cell Inlet 

Cell Inlet to 

Outlet 
To Cell Inlet 

Cell Inlet to 

Outlet 

1 30 20 53% 20% 

2 30 15 47% 19% 

3 30 25 42% 50% 

4 35 30 45% 41% 

5 35 30 41% 36% 

6 40 60 43% 47% 

 

The FSCW was continuously monitored for inflow rate and outflow rate from June 2017 

through November 2017. The FSCW system treated approximately half of the total 

runoff at this nursery outfall for the measured events (Table 2.12). Inflow was slightly 

higher than outflow of the system, indicating that there some infiltration or leakage 

between events. On average, outflow continued for 6.3 hours after inflow had stopped or 

decreased to a negligible amount. In many cases, a small amount of inflow continued for 

an extended period of time.  
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Table 2.12 - Summary of descriptive statistics of volume for inflow, outflow, and bypass of the 

free-surface constructed wetland treating runoff from a wholesale nursery. 

Measurement 

Location 

Mean 

Volume 

(L) 

Percent of 

Total 

Runoff 

Standard 

Deviation 

(L) 

Range (L) 

Inflow 76,000 52% 23,000 27,000-110,000 

Bypass 73,000 48% 41,300 19,200-145,400 

Outflow 70,000 - 27,000 22,000-122,000 

 

2.4.2.2 Water Quality Results  

Concentration descriptive statistics and mass reduction were calculated for inflow and 

outflow of the FSCW for five events (Table 2.13). A total of seven events were sampled 

at the free-surface constructed wetland however five paired samples were used for 

calculations in the free-surface constructed wetland.  
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For non-pesticide analytes, since the differences were normally distributed according to 

the Anderson Darling test, samples were analyzed using a paired t-test. The null 

hypothesis was that inflow-outflow was greater than zero. Values were significant if the 

p-value was less than 0.05. Even with a small sample size, four of the five non-pesticide 

contaminants had statistically significant concentration mass reduction (Table 2.14). The 

exception to this was total nitrogen which did not have statistically significant reduction.  
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Table 2.13 – Descriptive characteristics of concentration of non-pesticide analytes at a free-surface constructed wetland treating runoff at a 

wholesale nursery. 

 

Inflow Concentration Outflow Concentration 

Analyte Mean Median Stnd. Dev. Mean Median Stnd. Dev. 

pH 7.6 7.5 0.32 5.1 7.5 3.4 

EC (μS/cm) 300 290 14 200 290 130 

Total Suspended Solids (mg/L) 60 54 33 49 55 12 

NO3-N (mg/L) 0.80 0.65 0.48 0.64 0.65 0.13 

PO4-P (mg/L) 0.27 0.25 0.066 0.20 0.25 0.09 

Total Nitrogen (mg/L) 1.8 1.5 0.97 1.4 1.5 0.33 

Total Phosphorus (mg/L) 0.32 0.24 0.13 0.23 0.24 0.08 
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Table 2.14 – Mass reduction of non-pesticide analytes by a free-surface constructed wetland 

treating runoff at a wholesale nursery. 

Analyte 

P-value 

(N) 

Number of 

Paired 

Samples Mass Reduction  

NO3-N  0.005* 5 47% 

PO4-P  0.002* 5 47% 

Total Nitrogen 0.13 5 17% 

Total Phosphorus 0.013* 5 46% 

Total Suspended Solids 0.023* 5 78% 

    * – Statistically significant with 95% confidence 

 

Concentration descriptive statistics were calculated for pesticides for all analyzed 

samples (Table 2.15). All pesticide compounds except trifluralin were detected in at least 

two of the five sampled events. Mass reduction was calculated for inflow and outflow of 

the FSCW for five events (Table 2.16).  
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Table 2.15  – Concentration characteristics of pesticides in the free-surface constructed wetland treating runoff from a wholesale nursery. Only 

number of detections above the reporting limit is given for compounds with 2 or fewer detections. Mean for compounds with three detections was 

calculated using robust regression on order statistics (ROS).  Median and standard deviation could not be calculated if there were greater than 

two non-detects. The Kaplan-Meier test was used for compounds with one non-detect. Reporting limits were 10 ng L
-1

. 

 
Inflow Concentration (ng/L) Outflow Concentration (ng/L) 

Compound 

Number of Samples 

with Concentrations 

above Reporting 

Limits 

Mean Median Stnd. Dev. 

Number of Samples 

with Concentrations 

above Reporting 

Limits 

Mean Median Stnd. Dev. 

Acephate 2 - - - 2 - - - 

Bifenthrin 5 14 14 7 5 10 10 4 

Carbaryl 5 64 16 97 2 - - - 

Chlorothalonil 2 - - - 4 450 960 3 

Chlorpyrifos 5 350 160 330 5 210 240 140 

Dimethanamid 5 220 250 180 5 160 200 95 

Fipronil 1 - - - 2 - - - 

Indaziflam 5 230 280 140 5 160 190 110 

Isoxaben 3 41 - - 4 27 32 11 

Myclobutanil 5 950 410 880 5 560 650 380 

Oryzalin 2 - - - 2 - - - 

Oxadiazon 5 3,400 180 6,100 5 2,400 1,800 2,500 

Oxyfluorfen 1 - - - 2 - - - 

Pendimethalin 4 370 65 630 4 310 560 43 

Propiconazole 5 650 430 560 5 410 490 250 

Trifluralin 0 - - - 0 - - - 
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Table 2.16 - Mass reduction for compounds in the free-surface constructed wetland treating 

runoff from a wholesale nursery. 

Compound 
Number of Paired 

Samples 
Mass Reduction 

 Acephate  2 68% 

 Bifenthrin  5 -48% 

 Carbaryl  5 68% 

Chlorothalonil  3 96% 

 Chlorpyrifos  5 58% 

 Dimethanamid  5 25% 

 Fipronil  2 80% 

 Indaziflam  5 -2.0% 

 Isoxaben  4 39% 

 Myclobutanil  5 -1.5% 

 Oryzalin  2 1.1% 

 Oxadiazon  5 21% 

 Oxyfluorfen  3 5.2% 

 Pendimethalin  4 12% 

 Propiconazole  5 -1.0% 

Trifluralin No detections 

 

2.5 Discussion  

The subsurface-flow constructed wetland effectively reduced multiple contaminants in 

greenhouse runoff. Due to a high capacity to capture and infiltrate runoff, only 21% of all 

inflow for each event left the SFCW through the overflow or through the underdrain. 

This led to significant reduction in mass for all non-pesticide contaminants measured 

except for orthophosphate. With a saturated lower layer, conditions were present for 

denitrification, so it was expected to see removal of both nitrate and total nitrogen. There 

was not a significant mass reduction in orthophosphate but there was a significant mass 

reduction of total phosphorus which indicates that there is minimal sorption of 

orthophosphate within the system. For pesticide, 10 of the most frequently detected 
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pesticides had significant mass reduction and only one compound that was detected in 10 

or more events did not have significant mass reduction. One of the compounds that did 

not exhibit significant mass reduction was carbaryl which is considered a mobile 

compound with a Koc of between 205 and 457. This is expected since it is more difficult 

to sequester mobile compounds out of solution. However, a number of more mobile 

compounds exhibited mass reduction: dimethenamid, myclobutanil, and propiconazole. 

Mass reduction indicated no correlation with log(Koc) (Figure 2.3). A study by Graves et 

al. (2014) indicated significant concentration reductions for both bifenthrin (immobile 

compound) and fipronil (mobile compound) when sufficient organic content was present 

(a media of at least 20% compost). While the SFCW did not have any organic carbon 

source incorporated into the media during construction, since the influent was pot 

leachate, it likely contained organic content. During the study, a schmutzdecke formed on 

the top layer of the SFCW treatment cell indicating organic content was present in the 

cell. Chemical transformation likely had less impact on mass reduction than volume 

reduction. If volume reduction had been lower, then Koc could have had a larger impact 

on mass reduction. In this study however, it was likely secondary. Mass reduction was 

significantly different from volume reduction for six compounds. This indicates that the 

system is reducing concentration in addition to mass for some compounds. Overall, the 

SFCW effectively reduced loading of most of the analyzed contaminants into nearby 

surface waters. Stearman et al. (2003) found removals that ranged from 63% to 90% for 

metolachlor and simazine by a gravel subsurface flow constructed wetland. These 

compounds are mobile compounds with a Koc of 200 and 130 respectively. This is 
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comparable to the performance of dimethanimid, an herbicide which has a Koc of 108 and 

exhibited a mass reduction of 97% by a SFCW in this field study. 

For all recorded events (not just sampled events) for the SFCW, volume reduction was 

79%. Since mass reduction was a function of both volume and concentration, if mass 

reduction is equal to volume reduction, then mass reduction was solely due to volume 

reduction. If mass reduction was higher than volume reduction, then mass reduction was 

a function of factors other than volume reduction. Mass reduction by the SFCW was 

higher than volume reduction for six of the 15 detected compounds. The compounds that 

had higher mass reduction than volume reduction were both mobile and immobile 

compounds including bifenthrin (92% mass reduction, Koc = 237,000) and indaziflam 

(86% mass reduction, Koc = 426). Conversely, compounds in the SFCW that had a mass 

reduction equal to or less than volume reduction had a range of transport properties such 

as oxyfluorfen (74% mass reduction, Koc = 100,000) and oryzalin (79% mass reduction, 

Koc=600). 

The FSCW did not have significant mass reductions for any pesticide compound. This 

was likely due to multiple factors. The wholesale nursery went out of business during the 

study and fewer events were sampled than planned. This reduced sample size reduced 

power of all statistical analyses. To minimize the area of land taken out of production, the 

FSCW occupied a footprint that was smaller than typical designs. While the average 

event volume was less than the theoretical system volume, actual system volume was less 

than average event volume. The total theoretical storage volume was 155,000 L, however 

with a hydraulic efficiency of 40%, the actual volume was 62,000 L. This is 
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approximately 20% less than the average event inflow volume. While pesticide mass 

reductions were not significantly different, there was a significant mass reduction for 

almost all non-pesticide analytes.  

In both systems, many compounds had concentrations near the reporting limits (Tables 

2.7 and 2.15). Mass reduction could be affected by consistently low inflow samples and 

one effluent sample with a disproportionately high concentration. This led to the 

appearance of pesticide sourcing for some compounds. One example of this was 

bifenthrin in the FSCW. However, since the mean influent concentration was 14 ng/L, 

near the reporting limit of 10 ng/L, one effluent sample with a high bifenthrin 

concentration could lead to a higher effluent mass.  

While most of the pesticides were detected above reporting limits multiple times, 

bifenthrin was the only compound in the retail nursery (treated by the SFCW) runoff with 

a mean concentration that exceeded an Aquatic Life Benchmark (Tables 2.3 and 2.7). The 

mean underdrain and overflow concentrations for bifenthrin were below the same 

Aquatic Life Benchmark. At the wholesale nursery (treated by the FSCW), chlorpyrifos 

was the only compound with a mean concentration that exceeded the Aquatic Life 

Benchmark. The effluent mean concentration was lower, but also exceeded the same 

benchmank. 

2.6 Conclusions  

The overall goal of this study was to determine if constructed wetlands could be used as a 

tool for pesticide and nutrient removal and runoff management at nurseries . Two 

different types of constructed wetlands were implemented at two different types of 

nursery and monitored for water quality and water quantity parameters. In general, the 
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two systems exhibited significant mass reduction for the non-pesticide contaminants but 

pesticide mass reduction was variable.  

While it is difficult to assign direct monetary value to reducing environmental impact, 

there are other indirect monetary and other benefits to managing runoff. While nurseries 

are not regulated as point source discharges, in many cases their runoff is monitored. 

Runoff with pesticides and nutrients can lead to regulatory action and create an image 

that the nursery is environmentally negligent. While implementing tools to manage runoff 

may not eliminate pollutants, it will reduce the pollutant loading from the nursery into 

receiving bodies of water. Constructed wetlands have advantages and disadvantages as 

runoff management tools for nursery operations. One advantage is that they are passive 

systems, systems that do not require energy input. One disadvantage is that for a FSCW 

to effectively treat a large drainage area, the FSCW needs to occupy a large area. In many 

cases, this is economically infeasible since it removes land from production. The area of 

the FSCW in this study was 0.8% as large as its contributing drainage area, and did not 

exhibit significant mass reduction for any pesticide compound. One of the factors that 

likely limited performance of the FSCW was the reduced size which led to reduced 

retention time. The tracer study indicated that the actual storage volume was about 

62,000 L, 20% lower than the average inflow volume (76,000 L). In comparison, the 

SFCW in this study was 1.3% as large as its contributing drainage area and demonstrated 

significant mass reduction for most of the commonly detected pesticides. However, the 

theoretical storage volume was 15,000 L and the average inflow volume was 4,400 L. If 

the SFCW had a hydraulic efficiency of 40%, similar to the FSCW, then the actual 

storage volume would have been 5,200 which is 27% higher than the average inflow 
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volume. It is likely that the relationship between hydraulic loading rate and system size 

impacted pollutant removal performance.  

One advantage of constructed wetlands is that they can be implemented using equipment 

that is already owned by nursery operations, skid-steer loader and small backhoe. Also, 

the materials used in the constructed wetlands in this study were readily available, 

washed sand, river rock, and compost. The SFCW required approximately $1,500 to 

$2,000 of materials (sand, river rock, materials delivery, ready-mix concrete, and 

polyvinyl chloride piping) and approximately 200 man hours. The underdrains were 

routed to the stormsewer catchment over buried utilities, so excavation was performed by 

hand instead of using a small backhoe. This extra excavation likely required an additional 

10 to 20 man hours. Total cost was between $5,000 and $6,000. It was not possible to 

determine an accurate cost estimate for the FSCW due to variability in hours worked by 

the nursery personnel building the constructed wetland. 

As nursery operators balance environmental and economic sustainability, constructed 

wetlands are a viable best management practice for runoff management. While the 

constructed wetlands in this study did not eliminate all pollutants in the runoff, if sized 

adequately, they effectively reduced pollutant loading to downstream water bodies for 

most of the commonly detected analytes. Constructed wetlands can be implemented using 

equipment, materials, and skills that are already present at or are readily available to 

nursery operations. Nurseries that implement constructed wetlands demonstrate 

environmental awareness and a willingness to take steps to reduce their environmental 

footprint.  
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Additional research needs to be performed to better understand removal mechanisms 

within constructed wetland systems. Understanding removal mechanisms can lead to 

better design guidance and targeting of pollutants through media amendments. Further 

research is also needed to determine how varying transport properties of different 

pesticide compounds affect removal performance. These future discoveries can be 

incorporated into current design recommendations to improve pollutant removal 

performance. In addition, an in-depth cost-benefit analysis needs to be performed to 

demonstrate the feasibility of implementation to stakeholders.  
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CHAPTER III 
 

 

A LABORATORY INVESTIGATION ON THE IMPACTS OF 

SELECTED HYDROLOGIC VARIABLES ON PESTICIDE REMOVAL 

BY CONSTRUCTED WETLANDS 

 

Abstract: Runoff produced from urban areas such as lawns, landscaping, and nurseries 

during storm and irrigation events can contain pollutants such as pesticides that pose a 

threat to receiving water bodies. Constructed wetlands have been used to treat runoff in 

different settings; however, research is limited regarding the effect of different hydrologic 

variables on pesticide removal. This study used column experiments with five different 

pesticide compounds (carbaryl, chlorothalonil, pendimethalin, fipronil, and bifenthrin) to 

examine how pesticide removal is impacted by saturation (completely saturated or 

partially saturated), storage between runs, and time between runs (1, 3, or 10 days).Water 

that was stored in the system between runs had higher removal than water was not stored 

between runs. Overall, the longest time between runs, 10 days, had the highest removal. 

There was no difference between saturation treatments. While results from this study may 

not translate directly to design recommendations, the study demonstrates that different 

hydrologic variables affect pesticide removal and should be investigated further. 
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3.1 Introduction 

Runoff containing pesticides poses a potential threat to agricultural and urban water 

bodies. On plant nurseries, pesticide application coupled with frequent irrigation events 

leads to pesticide loading into nearby water bodies (Briggs et al., 1998). Some pesticides, 

such as chlorothalonil are aquatically toxic and affect growth and survival of aquatic 

amphibians (Yu et al., 2013). Pesticide removal by constructed wetlands has been 

investigated as a possible solution for various sources of runoff. Constructed wetlands 

were originally developed for wastewater treatment and have been studied extensively for 

pollutant removal from municipal wastewater (Gersberg et al., 1986, Kemp and George 

1997, Vymazal, 2002, Hench et al., 2003, Brix and Arias, 2005, Ghermandi et al., 2007). 

Later, the use of constructed wetlands was explored for pollutant removal from 

agricultural runoff (Hammer, 1992, Rodgers and Dunn, 1992, Moore et al., 2000, Poe et 

al., 2003, Tanner et al., 2005, Blankenburg et al., 2006, Beutel et al., 2009, Gregoire et 

al., 2009). More recently, the effectiveness of pesticide removal by constructed wetlands 

has been explored (Rodgers and Dunn 1992, Moore et al., 2000, Moore et al., 2001, 

Moore et al., 2002, Runes et al., 2004, Stearman et al., 2003, Sherrard et al., 2004, Budd 

et al., 2009, Budd et al., 2011, Agudelo et al., 2012, Gaullier et al., 2017, Tournebize et 

al., 2017). The majority of these studies have only looked at pollutant removal under 

three hydrologic patterns: continuous inflow (wastewater treatment), naturally 

intermittent flow (runoff from rainfall events), or a one-time flow (simulated runoff 

event). Irrigation on nurseries produces frequent events during growing seasons (often 

daily) and less frequent events (multiple days to weeks between runoff events) during 

dormant seasons. This hydrologic pattern likely affects the performance of constructed 
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wetlands treating this runoff. Untreated effluent is introduced during each event and 

intermittent cycling causes water levels and saturation conditions to fluctuate.  

  There are two common designs of constructed wetland, free-surface and subsurface 

flow. The primary difference in design is the level of saturation.  Free-surface constructed 

wetlands maintain ponded water and subsurface-flow constructed wetlands maintain a 

layer of saturated media, but the top layer of media is allowed to drain. There has been 

little direct comparison on any scale of free-surface wetlands and subsurface-flow 

vegetated wetlands (Vymazal, 2011).  

Retention time is often used as a design parameter for constructed wetlands, but does not 

account for the volume of water retained between events. This volume has an effective 

retention time that includes both the hydraulic retention time and the time between 

events. This effective retention time also could have an effect on overall removal and 

degradation of pesticides by the system.    

3.2 Objectives 

The following objectives for this study are: 

1. Determine the effect of saturation conditions on removal of polar and non-polar 

current-use pesticides. 

2. Determine the effect of antecedent period (time between irrigation) on removal of 

polar and non-polar current-use pesticides. 

3. Determine if removal is affected by increased contact time as a result of storage 

within the system between runs. 
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The two different treatment designs in this study examine the effects of two contrasting 

treatment scenarios: completely saturated throughout and a layer of unsaturated soil and a 

layer of saturated soil. The two different hydraulic conditions each create a different 

environment by which pesticides can be removed or transformed. The free water surface 

wetland is completely saturated, so mostly anaerobic. The submerged flow wetland is a 

compromise between completely saturated and completely drained. The upper layer of 

the subsurface-flow constructed wetland is able to drain while the lower layer remains 

saturated. Multiple layers present a possible treatment train within the same system. A 

comparison of the two treatment practices with different pesticides under different 

conditions is needed to guide recommendations for treatment of pesticide runoff in 

nursery settings.  

3.3 Methods 

Column experiments were performed to test how pesticide removal was affected by 

different variables seen in applications of constructed wetlands treating nursery runoff. 

Pesticide-spiked water was introduced to each column in four separate runs. The outlet 

elevation was set to either maintain saturation above or below the media surface. Two 

effluent samples were taken for each run. The first sample was water stored in the column 

from the previous run and the second sample was water from the current run.  

3.3.1 Column Setup 

The columns were made of stainless steel tubing  and measured 76 mm in diameter and 

510 mm in height. The media mixture was packed into the bottom 230 mm allowing for 

280 mm of ponding. A mixture of 90% concrete sand and 10% compost by volume 

comprised the column media. The water level of the saturated columns was set at 76 mm 
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above the media allowing for 200 mm of increased water level during run inflow. The 

water level of the partially saturated column was set at 150 mm above the bottom of the 

column forcing the lower 150 mm of media to remain saturated and allowing 76 mm of 

media to drain between runs (Figure 3.1). 

 

Figure 3.1 - Experimental setup. Saturated column is on left, partially saturated column is on 

right. Shading approximates media surface. 

The column was capped at the bottom by a stainless steel plate welded to the stainless 

steel tubing. A hole was drilled into the steel plate and a threaded 9.5 mm coupling was 

welded to the bottom of the plate to allow attachment of tubing to the bottom of the 

column and to allow access to the bottom of the column if needed. The welds were sealed 

with silicone to prevent leaking. Tubing was flexible aluminum tubing attached by a 

flared fitting, nut, and sleeve. Height of tubing outlet was set and remained set for the 

duration of each experiment.  

3.4.2. Experimental Treatments.  
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The column experiments were designed to test the effects of both irrigation pattern as 

well as constructed wetland design (Figure 3.2). Treatment variables were saturation 

level and antecedent dry period (Table 3.1). Free water surface constructed wetlands 

(FSCW) remain saturated. Typically, this is achieved through setting the outlet elevation 

higher than the media surface so water remains ponded above the media. Subsurface flow 

constructed wetlands (SFCW) are designed to remain saturated, but to have the top layer 

of media be unsaturated. Depending on the design, ponding may be present for some 

period of time in a subsurface flow constructed wetland, but since the outlet elevation is 

set lower than the media surface the upper layer of media will drain between runs and 

does not remain saturated. During the growing season, plants are typically irrigated once 

per day. However, during late fall, early spring plants are only irrigated once every 2-3 

days and are irrigated weekly during the winter months. This essentially lengthens the 

retention time for water stored in the constructed wetland system between runoff runs. 

The three antecedent dry period treatments are designed to examine the effects caused by 

these three different irrigation patterns.  

  



 

81 

 

 

Figure 3.2 - Column study experimental setup.
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Table 3.1 - Variables and treatments for lab-scale column study. 

Variable Treatments Number of Treatments 

Saturation level 76 mm above media surface, 

76 mm below media surface 

2 

Antecedent period 1 day, 3 days, 10 days 3 

Replications Triplicate 3 

Number of runs per column  4 

Outflow samples per run First (water stored in column 

from prior event), second 

(water from current event) 

2 

Inflow samples per run One inflow sample was taken 

for two columns run 

concurrently 

1 (36 total inflow 

samples are taken) 

 

3.3.3 Packing Procedure and Flow Rate 

Flow was set to achieve a rate of three pore volumes in three hours. Higher inflow rates 

(and thus shorter retention times) are limited by flow rate through the media and low 

head due to the high outlet elevation. Pore volume is estimated by multiplying media 

volume by porosity. Column media volume was approximately 1.67 × 106mm
3
 (760 mm 

diameter and 410 mm height) and porosity was measured to be 36% for a 90% sand and 

10% compost mixture. From multiple comparisons of weight and volume at a moisture 

content of 0.1% for sand and 3% for compost, it was determined that this volume ratio is 

equal to a weight ratio of approximately 94.5% sand and 5.5% compost. To expedite 

media mixing, the mass ratio of sand and compost were used. The total volume for each 

run was 1,130 mL (three pore volumes). To achieve a retention time of three hours, a 

flow rate of 12.5 ml/min was set using a peristaltic pump. This was set using employer 

supplied relationship between peristaltic pump, tubing size, and flow rate. Flow rate was 

confirmed by measuring time to fill a set volume. Flow rate was kept consistent 
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throughout all experiments, however there was minor variation (10%) due to wearing of 

tubing. Tubing was replaced periodically to maintain a consistent flow rate. 

Sand and compost were sieved through a 3.35mm opening screen to remove any large 

particles that would affect packing and flow uniformity. To prevent fine particles from 

migrating into and clogging the aluminum tubing, two layers of clean geotextile were 

placed at the bottom of the column prior to adding media. Geotextile is commonly placed 

between layers of media in bioretention cells for the same purpose, to prevent clogging of 

pore space due to the migration of fine particles (Davis, 2008). Sand  and compost  were 

weighed separately and then thoroughly mixed by hand. The media mixture was added to 

the column in lifts of 10 cm and then uniformly packed using a metal rod.  

3.3.4 Simulated Runoff 

A significant source of contaminants in nursery runoff is pot leachate (Colangelo and 

Brand, 2001, Wilson et al., 2010, Graves et al., 2014). To represent field conditions, 

simulated pot leachate was created from a combination of deionized water, pesticides, 

and growing media using the following steps. 

1. Unused growing media composed of aged cedar bark and a small addition of 

fertilizer and lime was obtained from a wholesale nursery..  

2. The potting mix was sieved using a 4.75 mm screen to reduce fine particles 

present in the pot leachate. Particles that passed through the sieve were removed 

to prevent clogging of the pump tubing. To further prevent entry of fine particles 

into the pump tubing, geotextile fabric was fastened over the pump tube inlet 

using a rubber band. 
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3. A mass of ~100 g of growing media was combined with three L of deionized 

water.  

4. A pesticide stock solution was made by mixing pesticide formulation with 

deionized water. A portion of this stock solution was added to the influent water 

and mixed using a magnetic stir rod throughout the experimental run (Table 3.2).  

While consistent mixing and preparation procedures were used for each influent batch, 

the variability present in the potting mix led to variability in sorption to the potting mix 

and thus to influent concentrations. To account for this variability in concentration and 

mass reduction calculations, influent concentration was sampled and analyzed for each 

run. Pesticides used in the simulated runoff were chosen to represent a range of transport 

properties. Chosen pesticides were: bifenthrin, carbaryl, chlorothalonil, fipronil, and 

pendimethalin. These five pesticides have a different likelihood of being found in runoff 

due to different values for water solubility and Koc. 

Table 3.2 - Mass of each pesticides used to make simulated runoff for the column studies. 

Active Ingredient Product % Active Ingredient 

Pendimethalin
1
 Scott's Halts 1.71% 

Chlorothalonil
2
 Daconil 29.6% 

Fipronil
3
 Taurus 9.10% 

Carbaryl
2
 Sevin 22.5% 

Bifenthrin
4
 Sniper 25.0% 

 

  1 – Scott’s Miracle-Gro Company, Marysville, Ohio 

  2 – Crop Production Services, Chicago, Illinois 

  3 – GardenTech, Walpole, Massachuesetts 

  4 – Control Solutions Incorporated, Pasadena Texas 
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3.3.5 Sample Collection and Analysis 

A total of three pore volumes of influent were added to each column during each 

experimental run. Two samples were taken per column per experimental run. The first 

sample taken was water that had been stored from the prior run and the second sample 

was water from the current run. Because a different amount of water was stored between 

the fully saturated and partially saturated columns, the first and second samples were 

different for each treatment. Outflow was captured in 1 L glass amber bottles. To 

estimate average flow rate, time was recorded when each sample was taken and samples 

were weighed. Influent samples were collected at the outlet of the peristaltic pump since 

some sorption may have occurred within the pump tubing. Quality assurance and quality 

control (QA/QC) was performed using laboratory spikes, method blanks, and sample 

duplicates. Also, the experiment was run in triplicate to account for variation within 

treatments. QA/QC was randomly performed for approximately 5% of the samples.  

To analyze for pesticides, samples were first extracted using a vacuum manifold and 

Teflon tubing onto Agilent Technologies 50 mg C18 solid-phase extraction cartridges. 

Samples were extracted within 48 hours of sampling. Cartridges were frozen until 

analyzed. The C18 cartridge was then eluted with 1 ml of reagent grade acetone and 10 

ml of reagent grade ethyl acetate. To dry the solvent, 3-4g of anhydrous sodium sulfate 

was added. The samples were evaporated to a final volume of 1 mL using low heat and a 

gentle nitrogen stream and then transferred to a gas chromatography vial. Finally, the 

sample was analyzed using an Agilent 6850 Gas Chromatograph (Agilent Technologies, 

Pala Alto, California). This was equipped with a 15 m x 0.25 mm HP-5 column (Agilent 

Technologies, Pala Alto, California) and splitless inlet. The oven start temperature was 
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80°C which was held for one minute and then ramped at 11.0 °C/min to 170°C, then 

ramped at 8.0 °C/min to 190° C, then ramped at 11.0 °C/min to 255°C, and finally 

ramped at 20.0 °C/min to 295° C. The column had a flow rate of 1.2 ml/min with an 

average velocity of 57 cm/sec. 

The gas chromatograph was coupled with an Agilent 5975c mass spectrometer inert 

source instrument (Agilent Technologies, Palo Alto, California) which was used to detect 

and quantify analytes. Temperature of the sources was 230°C and quadropoles were at 

150°C. The ionization source was electron ionization (EI) at 70 eV. Detection and 

quantitation were based on 3-ion selected ion monitoring (SIM) and two deuterated 

polyaromatic hydrocarbon compounds, chrysene (target ion = 240.0) and anthracene 

(target ion = 188.0), were used as internal standards. Samples were analyzed for the five 

pesticides used in the study with the following target and qualifier ions: chlorothalonil 

(266.0: 264.0, 229.0), carbaryl (144.0: 115.0, 201.0), pendimethalin (252.0: 281.0, 

162.0), fipronil (367.0: 351.0, 420.0), and bifenthrin (181.0: 165.0, 166.0). Analyte 

concentrations were determined by creating a calibration curve with known 

concentrations for each compound and matching retention time and ratios of the target 

and qualifier ions to those found in the samples.  

3.3.6 Data and Statistical Analysis 

Percent removal was calculated for each effluent sample using the influent concentration 

from the current run (Equation 3.1).  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 =
(𝐶𝑖𝑛−𝐶𝑜𝑢𝑡)

𝐶𝑖𝑛
      Equation 3.1 
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Where Cin is the influent concentration for the current run and Cout is the effluent 

concentration of the sample. Percent removal was calculated on a run basis to account for 

variation of influent concentration. A regression was performed between influent 

concentration and percent removal.  

Each compound was tested for statistical significance individually and then results from 

all compounds were tested for statistical significance together. A one-way ANOVA was 

performed to determine if differences existed between replications for each compound. 

Values for percent removal were then grouped by compound and a general linear model 

was developed for each compound to determine which variables, two-way interaction, 

and three-way interactions of variables were significant. Variables tested were: first 

sample or second sample, fully saturated or partially saturated, antecedent period between 

runs, run. A general linear model was constructed for each compound to determine 

significant variables. Each variable was tested for significance (p-value < 0.05 was 

considered significant). If there were variables that were not significant, then the variable 

or two-way interaction variable with the highest p-value was removed and the general 

linear model was reconstructed. This was performed until all variables or interaction 

variables were significant. These variables were then tested using Tukey’s multiple 

comparisons to determine differences in means. Because each column was used for 

multiple runs, column identity was included as a repeated measure. As a repeated 

measure it is not part of the general linear model or the Tukey’s comparisons, but is 

included to account for multiple runs using the same column. All statistical analysis was 

performed in Minitab® 17 (Minitab Inc., State College, PA).  
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3.4 Results  

Quality control was performed using lab spikes, method blanks, and sample duplicates. 

Mean recoveries were 96% for chlorothalonil (SD=14), 100% for carbaryl (SD=6), 98% 

for pendimethalin (SD=11%), 96% for fipronil (SD=6%), and 96% for bifenthrin 

(SD=29%). These are within the standards published for similar compounds in EPA 

Method 1699 (2007) (recovery range is 50%-120%, maximum SD is 30%). Blank sample 

concentrations were less than 0.05% of average sample concentration for each 

compound. Duplicate samples were within ±15%. Experimental replications found no 

significant difference at a 95% confidence in concentration reduction among the three 

replications for all compounds except pendimethalin (p-value=0.007, mean/standard 

deviation = 98%/1.8%, 97%/6.2%, 99%/1.8%). Influent concentrations were analyzed for 

each run (Table 3.3). Flow rate was set at 6 ml/min by the peristaltic pump. The average 

effluent flow rate was 5.8 ml/min (median=5.9 ml/min, SD=1.5 ml/min) as measured by 

recording the time that a sample was taken and weighing the sample.  

Table 3.3 - Descriptive statistics for influent concentrations for all samples taken during the 

column study. 

 

Influent Concentration (µg/L) 

 

Carbaryl Chlorothalonil Pendimethalin Fipronil Bifenthrin 

Mean 650 680 62 270 210 

Median 660 550 45 270 150 

Standard Deviation 130 270 94 60 160 

 

Results from the Tukey’s analysis of the general linear model are shown in Table 3.4. 

This analysis was performed with all pesticide compounds, Tukey’s tests were also 

performed for individual compounds and are presented separately. Pendimethalin and 

chlorothalonil had the highest reduction of any of the five pesticide compounds and were 
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not significantly different from each other. Overall, saturation did not significantly affect 

removal. For three of the compounds, there also was not an effect from antecedent period 

but there was an effect for two of the compounds. The interaction between antecedent 

period and run was significant when all pesticide compounds were analyzed together. 

The 3-day and 10-day antecedent periods did not demonstrate a significant reduction in 

removal after the first run but the 1-day demonstrated significant reduction in removal 

from the first run to the third and fourth runs (Figure 3.3). There was a difference 

between sample for three of the compounds with the first sample have higher removal 

than the second sample (Figure 3.4). The first sample was the volume of water stored in 

the column between runs and the second sample was water that flowed through during 

the same run. While there was a significant difference between antecedent period among 

the first sample, there was also a significant difference between antecedent period among 

the second sample (Figure 3.5). The interaction between sample and antecedent period 

was not significant in the general linear model.  
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Figure 3.3 – Concentration reduction comparison between the variables of run and antecedent 

period. 

 

Figure 3.4 – Concentration reduction comparison between compound and sample. 
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Figure 3.5 – Concentration reduction comparison between antecedent period and sample.

Sample

Ant. Per.

21

1 0day3day1 day1 0day3day1 day

100

80

60

40

20

0C
o

n
ce

n
tr

a
ti

o
n

 R
e

d
u

ct
io

n
 (

%
)

Individual standard deviations are used to calculate the intervals.

Concentration Reduction
First sample of first event was not included

A
A,B

C,D
B,C

D,E
E



 

92 

 

Table 3.4 - Concentration reduction percentages. Values within each variable that do not share a letter are significantly different. 

  

Concentration Reduction 

Variable Treatment Pendimethalin Chlorothalonil Fipronil Carbaryl Bifenthrin 

All Samples All 98% 
A
 92% 

A
 67% 

B
 47% 

C
 45% 

D
 

Saturation  
Partial 98% 

E
 91% 

E
 67% 

F
 54% 

G
 51% 

G,H
 

Full 98% 
E
 92% 

E
 68% 

F
 61% 

F,G
 40% 

H
 

Antecedent Period 

10 days 99% 
I
 94% 

I
 71% 

J
 71% 

J
 67% 

J,K
 

3 days 99% 
I
 89% 

I
 67% 

J,K
 55% 

K,L
 55% 

K,L
 

1 days 99% 
I
 93% 

I
 65% 

J,K
 46% 

L
 11% 

M
 

Sample 
First >99% 

N
 97% 

N,O
 74% 

O
 66% 

P,Q
 69% 

P,Q
 

Second 97% 
N,O

 87% 
O
 61% 

Q
 49% 

R
 20% 

S
 

Experiment Run 

1 >99% 
T
 97% 

T
 92% 

T,U
 79% 

U,V,W
 71% 

V,W,X
 

2 98% 
T
 92% 

T,U
 70% 

W,X
 44% 

Y,Z
 34% 

Z,AA
 

3 98% 
T
 90% 

T,U
 60% 

X,Y
 53% 

Y
 22% 

AA
 

4 98% 
T
 89% 

T,U,V
 48% 

Y,Z
 53% 

X,Y
 51% 

Y,Z
 



  

93 

 

3.5.1 Pendimethalin 

Pendimethalin exhibited very high removals overall, likely due to lower influent 

concentrations. Due to consistently high removals, fewer differences existed among 

treatments (Table 3.5). Antecedent period and sample were the only variables that had 

statistically significant differences and no interactions were significant. The removal of 

the 1 day and 10 day antecedent periods were significantly higher than the removal for 

the 3 day antecedent period but were not different from each other. The removal for the 

first sample was higher than the removal for the second sample.  
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Table 3.5 - Results from Tukey's test for pesticide concentration reduction for pendimethalin. 

Variable Treatment 

Pendimethalin Mean 

Concentration Reduction 

 

Saturation  
Partial  99% 

A 

Full 98% 
A 

Antecedent Period 

10 days 99% 
B 

3 days 99% 
C 

1 days 97% 
B 

Sample 
First 99% 

D 

Second 97% 
E 

Run 

1 >99% 
F 

2 98% 
F 

3 98% 
F 

4 98% 
F 

Antecedent Period*Run 

10*4 97% 
G 

10*3 98% 
G 

10*2 97% 
G 

10*1 98% 
G 

3*4 99% 
G 

3*3 >99% 
G 

3*2 >99% 
G 

3*1 >99% 
G 

1*4 97% 
G 

1*3 96% 
G 

1*2 97% 
G 

1*1 98% 
G 

 

 

3.5.2 Chlorothalonil 

Chlorothalonil removal was affected by antecedent period, sample, and run but not by 

saturation without interaction (Table 3.6). The first sample exhibited higher removal than 

second sample. Antecedent period exhibited a difference between 3 day and the other two 
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treatments, but 10 day and 1 day were not significantly different. Run played a role with 

the first run exhibiting the highest removal, second and third exhibiting removals that 

were not significantly different, and third and fourth exhibiting removals that were not 

significantly different.  

Some interactions between variables were significant. While saturation alone was not 

significant, its interaction with sample was significant. The first sample exhibited no 

difference between the saturation treatments, but the second sample exhibited a higher 

removal for saturated than for unsaturated. The interaction between antecedent period and 

run was again significant with the first run for the 3 day and 1 day antecedent periods 

exhibiting higher removal than the other runs of the respective treatments. The 10 day 

antecedent period did not exhibit significant differences among runs. The interaction 

between sample and run was significant. The second sample of the first run was not 

significantly different than the first sample of the second, third, or fourth runs. The 

second samples of the second, third, and fourth runs were significantly lower than all 

other samples. Again, no discernable relationships existed for three-way interactions. 
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Table 3.6 Results from Tukey's test for pesticide concentration reduction for chlorothalonil. 

Variable 

Treatment 

Chlorothalonil Mean 

Concentration Reduction 

 

Saturation  
Partial 91% 

A 

Full 92% 
A 

Antecedent Period 

10 days 93% 
B 

3 days 89% 
C 

1 days 93% 
B 

Sample 
First 96% 

E 

Second 87% 
F 

Run 

1 97% 
G 

2 92% 
H 

3 90% 
HI 

4 88% 
I 

Antecedent Period*Run 

10 day*1 95% 
JK 

10 day*2 92% 
J,K,L 

10 day*3 94% 
J,K 

10 day*4 90% 
K,L,M 

3 day*1 98% 
J 

3 day*2 88% 
L,M 

3 day*3 85% 
M 

3 day*4 84% 
M 

1 day*1 98% 
J 

1 day*2 95% 
J,K 

1 day*3 90% 
K,L,M 

1 day*4 89% 
K,L,M 

 

 

 

 

 

 



  

97 

 

3.5.3 Fipronil 

Fipronil exhibited significantly different removals for antecedent period, sample, and run 

but not for saturation (Table 3.7). The 10 day antecedent period was not different from 

the 3 day antecedent period and the 3 day antecedent period was not different from the 1 

day antecedent period, but the 1 day and 10 day were different. The first sample (stored 

water) was different from the second sample (current run water). All runs were 

significantly different from each other with removal following in order of the first run 

having highest removal and the fourth run having lowest removal. 

Interactions between antecedent period and sample and also antecedent period and run 

were significant as well. The first sample of the 10 day antecedent period and the 3 day 

antecedent period were not different but were higher than all other samples. The first 

sample of the 1 day antecedent period was not significantly different from the second 

samples for the 1 day and 10 day antecedent periods. Second samples from all antecedent 

periods were not different.  
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Table 3.7 - Results from Tukey's test for pesticide concentration reduction for fipronil. 

Variable Treatment 

Fipronil Mean 

Concentration Reduction 

 

Saturation  
Partial 68% 

A 

Full 69% 
A 

Antecedent Period  

10 days 71% 
B 

3 days 63% 
B 

1 days 71% 
B 

Sample 
First 75% 

C 

Second 62% 
D 

Run 

1 92% 
E 

2 70% 
F 

3 60% 
G 

4 50% 
H 

Antecedent Period*Run 

10*1 90% 
I,K,L,M,S 

10*2 70% 
J,N,O,P,Q,R,T,U 

10*3 65% 
N,O,P,Q,R,T,U 

10*4 58% 
N,O,P,Q,R,T,U 

3*1 89% 
I,J,K,L,N,P 

3*2 62% 
M,O,R,S,T 

3*3 52% 
O,Q,R,T,U 

3*4 47% 
Q,U 

1*1 97% 
Q,R 

1*2 78% 
K,M,N,O 

1*3 65% 
L,P,Q,S,T 

1*4 45% 
R,U 
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3.5.4 Carbaryl 

Carbaryl removal exhibited differences on the greatest number of treatments of any 

compound (Table 3.8). Carbaryl was the only compound to exhibit a statistically 

significant difference between saturated and partially saturated with saturated samples 

having a higher removal. Each treatment among the antecedent period variable was 

statistically different with 10 day having the highest removal, 3 day having medium 

removal, and 1 day having the lowest removal. The two samples of the run (stored water 

vs water from the current run) also exhibited statistically significantly different removals 

with the sample of the stored water having higher removal than the sample of the water 

from the current run. Run was significant, but only the first run was significantly different 

from the other three and the other three were not different from each other.  

Some interactions between the variables were also significant. The interaction of the 

variables of saturation and antecedent period was significant with the saturated 3 day 

significantly different from the partially saturated 3 day. For both other antecedent 

periods, saturation was not significantly different. The interaction between antecedent 

period and run was significant. The first run for the 3 day antecedent period and the 1 day 

antecedent period were significantly different than the other runs within the respective 

antecedent periods. Within the 10 day antecedent period however, there was no 

significant differences among runs. Due to the large number of variations within the 

interactions no discernable relationships were seen in the three-way interactions. 
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Table 3.8 - Results from Tukey's test for pesticide concentration reduction for carbaryl. 

Variable 

Treatment 

Carbaryl Mean 

Concentration Reduction 

 

Saturation  
Partial 61% 

A 

Full 53% 
B 

Antecedent Period 

10 days 70% 
C 

3 days 55% 
D 

1 days 46% 
E 

Sample 
First 66% 

F 

Second 48% 
G 

Run 

1 78% 
H 

2 53% 
I 

3 52% 
I 

4 46% 
I 

Antecedent Period*Run 

10 day*1 73% 
J,K 

10 day*2 63% 
K,L,M 

10 day*3 74% 
J,K 

10 day*4 70% 
J,K,L 

3 day*1 85% 
J 

3 day*2 31% 
O 

3 day*3 47% 
L,M,N,O 

3 day*4 56% 
K,L,M,N 

1 day*1 76% 
J,K 

1 day*2 43% 
M,N,O 

1 day*3 36% 
N,O 

1 day*4 29% 
O 
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3.5.5 Bifenthrin 

Bifenthrin had the lowest removal of any pesticide compound. Although bifenthrin has a 

high affinity for soil particles, its transport in the soluble form is increased by dissolved 

organic carbon (DOC) (Delgado-Moreno et al., 2010). The combination of high influent 

concentrations and the presence of dissolved organic carbon may have led to reduced 

removal efficiency. Variables that significantly affected bifenthrin removal were 

antecedent period, sample, and run but not saturation (Table 3.9). The removals for the 10 

day and 3 day antecedent periods were not different from each other but were higher than 

removal for the 1 day antecedent period. Removal for the first sample (stored water) was 

higher than removal for the second sample (current run water). The first, second, and 

fourth runs were not significantly different from each other but the second and fourth 

runs were significantly different from the third run. 

The only significant interaction was between antecedent period and run. All runs for the 3 

day antecedent period were not different from one another. The second, third, and fourth 

runs for the 10 day antecedent period were not significantly different from one another, 

however the second and third runs were higher than the first run.  
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Table 3.9 - Results from Tukey's test for pesticide concentration reduction for bifenthrin. 

Variable Treatment 

Bifenthrin Mean 

Concentration Reduction 

 

Saturation  
Partial 50% 

A 

Full 41% 
A 

Antecedent Period 

10 days 37% 
B,C 

3 days 99% 
B 

1 days 0% 
C 

Sample 
1 68% 

D 

2 23% 
E 

Run 

1 70% 
F 

2 34% 
G 

3 24% 
G 

4 54% 
F,G 

Antecedent Period*Run 

10*1 48% 
H,I,J,K,L 

10*2 -9% 
G,J 

10*3 50% 
H,I,J,K,L 

10*4 61% 
H,G,I,J 

3*1 108% 
H,G 

3*2 103% 
H,G 

3*3 85% 
H,G,I,J 

3*4 100% 
H,G 

1*1 56% 
H,G 

1*2 7% 
H,G 

1*3 -63% 
I,J 

1*4 2% 
H,G,I,J 
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3.5 Discussion 

Pesticide transport and fate varies by compound and environmental condition (Schroll et 

al., 2006). Variation was apparent in this study as different compounds exhibited higher 

removals under different conditions. There were also common trends for all or the 

majority of compounds. Each variable will be discussed individually. 

3.6.1 Saturation 

The outlet elevation was set at either 15.2 cm (6 inches) or 30.5 cm (12 inches). The 

media depth was set at 22.9 cm (9 inches), so half of the columns remained saturated with 

ponded water and half of the columns had only a portion of the media saturated between 

runs. It was hypothesized that the saturation conditions would lead to differences in 

pesticide removal. Only one compound, carbaryl, exhibited a statistically significant 

difference between saturated and partially saturated columns. It is likely that the duration 

of the experiment influenced the lack of variation between saturation treatments for other 

compounds because a microbial community was not able to establish in the relatively 

short duration of the experiment. For example, Zhu et al. (2004) found degradation of 

fipronil occurred three times more rapidly in a non-sterile soil than in a sterile soil. While 

the fully saturated columns experienced anaerobic conditions, it is possible that the lower 

portion of media in the partially saturated columns experienced anaerobic conditions as 

well. A study by Deul et al. (1985) showed that carbaryl underwent both chemical and 

biotic transformation in a flooded rice field. Since carbaryl undergoes chemical 

transformation in addition to biotic transformation, it is possible that saturation affected 

carbaryl removal due to its ability to be chemically transformed.  
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3.6.2 Antecedent Period 

Antecedent period affected removal for all compounds. In all cases, the 10 day 

antecedent period had the highest removal, although in most cases it was not significantly 

different from one of the other treatments. The interaction between antecedent period and 

sample was not significant meaning that the differences exhibited between antecedent 

period were consistent for both the first and second samples. Only one compound, 

carbaryl, exhibited differences among all three antecedent periods. For two compounds, 

pendimethalin and chlorothalonil, the 1 day antecedent period had higher removal than 

the 3 day antecedent period. Removal for bifenthrin was higher under the 3 day 

antecedent period than the 1 day antecedent period. The mixed results indicate that the 

difference between 1 day between runs and 3 days between runs did not make a 

significant difference for all compounds. However, 10 days between runs did improve 

removal for all compounds. The commercial application of this result is that when 

nursery irrigation runs are less frequent, removal is likely higher. One scenario for a 

lower run frequency could occur in late fall through early spring when plants still need 

moisture to prevent desiccation but are not actively growing. Another scenario is a runoff 

management plan that cycles runoff routing through a different treatment unit for each 

daily run.  

The interaction between antecedent period and run was also significant for multiple 

compounds. For the majority of the interactions, removals for the 10 day antecedent 

period did not vary among run, but removal decreased after the first run for the 1 day and 

3 day antecedent periods. While this study was different from a typical field installation 

in that it had high concentrations and was installed for a short period of time, this has 
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possible implications for performance over time. If a constructed wetland receives less 

frequent runs, then it could potentially maintain performance for a longer period of time.  

3.6.3 Sample  

Sample (stored sampled or sample of water from current run) exhibited significant 

differences for every compound. One exception to this was fipronil at a 1 day antecedent 

period which had no significant difference between the first sample and second sample. 

This indicates that for fipronil at 1 day, there is no additional removal for water that 

remained from the previous run vs water from the current run. For all other compounds, 

the first sample had a higher removal than the second sample. The first sample is the 

volume of water that remained in the column between runs. The second sample is the 

volume of water that was not remaining from the previous run but rather flowed through 

during the run in which it was sampled. The first sample has a higher effective residence 

time; a residence time that includes travel time from inlet to outlet and also contact time 

during the antecedent period between runs. There was a significant difference between 

the first samples for the 10 day and 1 day antecedent periods. There is evidence that the 

effect for higher removal for the stored water sample is stronger for the longer antecedent 

period. Studies at both the field- and lab-scale have been performed that attempt to 

characterize the mechanisms of pesticide removal and transport within saturated or 

variably saturated systems. Multiple studies found hysteretic effects for pesticide 

desorption (Mamy and Barriuso, 2007, Agyin-Birikorang et al., 2010, Passeport, et al., 

2014). Mamy and Barriuso (2007) also found evidence that time affected retention of 

pesticides by soils. This supports the results from this study which indicates that the 
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volume of water that is stored within the system between runs experiences higher 

removal than the volume of water that is not stored between runs.  

3.6.4 Run 

Previous research indicates that performance will decrease as pesticide is added. Graves 

et al. (2015) demonstrated a decrease in removal with pore volumes which is similar to 

run in this study. Chlorothalonil, carbaryl, and fipronil exhibited a similar a trend with 

run. Pendimethalin demonstrated no difference among runs and the worst run for 

bifenthrin was the third run. The difference from Graves et al. (2015) is likely due to 

much higher influent concentrations used in this study for bifenthrin.  

3.6 Conclusions 

Overall, the removal results from this study indicated positive removal for all five 

compounds tested. This study was initiated to better understand how pesticide removal is 

affected by saturation, time between runs and by effective retention time. While  

completely saturated conditions increased removal for one compound (carbaryl), it did 

not affect removal for the majority of the compounds tested. Time between runs affected 

removal with a general result of higher antecedent period resulting in higher removal. 

The most common trend was higher removal for the volume of water stored between runs 

than for volume of water that was not stored between runs. While this study was 

exploratory in nature and may not directly translate to design recommendations for 

constructed wetlands, variables that show promise in improving pesticide removal should 

be further investigated.   

Wetlands typically go through wetting and drying cycles (van der Valk, 2005). This lab 

study is representative of the transition period as wetlands go from unsaturated conditions 
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to saturated conditions. During the initial period after a wetland transitions from one 

hydrologic condition, there would be establishment of microbial communities and 

chemical conditions associated with that hydrologic condition. While saturation condition 

was not a significant variable in this scenario, it is possible that it would play a part after 

the chemical conditions and microbial communities had stabilized after the transition. It 

is recommended that further research be performed that simulates these stabilized 

conditions.  

As demonstrated in other studies, pesticide removal is sometimes time-dependent and 

affected by hysteresis (Mamy and Barriuso, 2007, Passeport et al., 2011). This study also 

demonstrated that pesticide removal was time dependent and possibly experienced 

hysteretic effects. This has implications for runoff treatment practices that store some 

volume of water between storm or irrigation events such as constructed wetlands. The 

volume of water that is stored in the system has a longer contact time, which potentially 

results in higher pesticide removal. This factor could potentially be utilized to enhance 

removal efficiency by designing runoff treatment practices to store higher volumes of 

water for longer periods of time after events.  .  
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CHAPTER IV 

 

A SIMPLE PROCEDURE FOR OPTIMIZED SELECTION OF LOW 

IMPACT DEVELOPMENT PRACTICES AND AREA TREATED AT 

THE WATERSHED SCALE BASED ON USER-DEFINED CRITERIA  

 

Journal: Journal of Water Resources Planning and Management 

Abstract: Low impact development (LID) is a stormwater runoff management technology 

that emphasizes smaller site-scale practices distributed throughout a watershed. Tools for 

watershed planning with LID are available, but typically require advanced technical 

expertise to implement. The developed optimization procedure uses simple, readily 

available software, the EPA Stormwater Calculator and Microsoft Excel, to determine a 

combination of LID practices that maximizes runoff reduction and minimizes cost. A 

base model is built in the EPA Stormwater Calculator to determine runoff under existing 

conditions. Regression equations are built for each LID practice that relate amount of 

impervious area treated with runoff reduction. These equations are used along with cost 

per area for each LID practice to determine a combination of LID practices that optimizes 

runoff reduction and cost. Application of the procedure is illustrated using two case 

studies in Oklahoma.  The spreadsheet model is published online in conjunction with the 

publication.
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4.1 Introduction 

Increased impervious area in urban areas leads to high volumes of runoff and peak flows that are 

detrimental to downstream water bodies (Lee and Heaney, 2003). Peak flows were traditionally 

managed using stormwater management practices such as detention basins that store runoff and 

release at a controlled rate (Emerson et al., 2005). Even when these practices successfully reduce 

peak flow, they do not reduce overall runoff volume and thus change sediment and flow 

dynamics to receiving streams (Burns et al., 2012). Low impact development (LID) is an 

alternative philosophy of stormwater management that uses distributed site-scale structures or 

techniques to reduce peak flows, flow volumes, and pollutants found in stormwater (Vogel et al., 

2015). LID emphasizes capture, storage, and infiltration using a suite of tools including: 

bioretention, downspout disconnection, permeable pavement, rainwater harvesting, and green 

roofs (Agouridis and McMaine, 2013). Instead of rapid conveyance in concentrated surface-flow 

channels or a storm sewer, LID slows runoff down, forces it to spread out and infiltrate (Vogel et 

al., 2015). Multiple low impact development practices can be implemented in a variety of 

combinations throughout a watershed to reduce runoff volumes.  

When planning implementation of LID on a neighborhood scale, LID type and amount is 

typically designed to achieve a specified runoff reduction such as capturing the first inch of 

runoff, reducing current runoff volumes by 50%, or capturing a 2-year, 24 hour storm (EPA, 

2011). Planning LID should also involve minimizing present and long-term costs. There are 

many possible combinations of LID type and amount that could result in maximum runoff 

reduction and minimal cost. An optimal design is difficult to achieve unless an optimization 

method is employed. Thus, planners need tools to help them decide what the type and number of 

LID structures to implement in a watershed.  
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4.2 Background 

Optimization of type, size, and placement of LID has been researched and applied in various 

settings. The majority of these projects use models that require a certain level of expertise to 

operate. The United States Environmental Protection Agency (USEPA) has developed multiple 

modeling applications to aid in stormwater management design and LID BMP implementation 

including the Storm Water Management Model (SWMM) and System for Urban Stormwater 

Treatment and Analysis Integration (SUSTAIN) (Jayasooriya and Ng, 2014). SWMM is one of 

the most popular models used for urban stormwater runoff (Jia et al., 2012, Krebs et al., 2012, 

Joksimovic and Alam, 2014, Tobio et al., 2015,).  A common modeling decision application is to 

compare pollutant reduction or volume reduction for different scenarios. Joksimovic and Alam 

(2014) used SWMM to model 18 different combinations of LID for runoff-volume reduction and 

then determined the cost per cubic meter of runoff volume reduction. Zhang et al. (2014) 

combined SWMM and a genetic algorithm to determine optimal amount and location of pervious 

pavement, green roof, and bioretention. The model optimized for cost and volume reduction and 

included a requirement that designs must also be beneath a given peak flow threshold. The model 

optimization resulted in 37 designs of near optimal solutions. While useful comparisons of 

different LID combinations for cost and volume reduction, the application of these methods may 

not be attainable by some practitioners since the methods used require an advanced level of 

programming and hydrologic expertise. As the implementation of LID increases, there will be 

greater need for guidance to smaller municipalities and developers.  

4.3 Objective  

. The objective of this work was to develop a simple tool that uses outputs from the EPA 

Stormwater Calculator and a spreadsheet built in Microsoft Excel to determine the optimal types 
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and numbers of LID that can be implemented to reduce annual runoff volume and minimize cost 

(both initial cost of implementation and long-term maintenance costs). 

4.4 Methods 

4.4.1. EPA Stormwater Calculator 

The EPA Stormwater Calculator is a simple tool that incorporates site characteristics and 

historical rainfall and weather data into Stormwater Management Model (SWMM) to calculate 

runoff, infiltration, and evapotranspiration for a small watershed. The user can set soil, soil 

drainage rate, topography, and land cover. Precipitation and evaporation are estimated using 

historical records from rain gauges and weather stations respectively. It is recommended that the 

user choose a rain gauge and weather station based on two parameters: proximity to the study 

watershed and period of record (Rossman, 2014). The calculator analyzes the most recent years 

on record and the number of years to analyze can be set by the user (Rossman, 2014). The 

calculator allows up to seven different types of LID practices. downspout disconnection, rain 

gardens, street planters, permeable pavements, green roofs, and infiltration basins. The design 

parameters that can be changed differ for each type and include: storage (ponding depth, media 

depth, cistern size), soil conductivity, and capture ratio (size of LID practice compared to 

contributing drainage area). It should be noted that the EPA Stormwater Calculator models the 

watershed by aggregating each LID type and routing a specified percentage of impervious area 

into each LID type added by the user to the model. Because areas are aggregated, it is not 

possible to model LID placement or LID position relative to each other. 

4.4.2. Optimization Method 

There are many combinations of LID type that can reduce stormwater volume in a given 

watershed. The optimal combination achieves maximum volume reduction at minimum cost. 
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This optimization method combines relationships between volume reduction and impervious area 

treated with cost per treated area of each LID type.  

4.4.3 Base Model 

A base model is built for the watershed of interest in the EPA Stormwater Calculator using 

existing hydrologic characteristics: soil type, infiltration rate, topography, and slope. Soil type 

and infiltration rate are intrinsically related but infiltration rate can be input separately from soil 

type. The selection of soil type is used for estimations of suction head and initial moisture deficit 

in the Green-Ampt infiltration model used within the calculator. The base model is used to 

determine runoff depth under existing conditions (no stormwater mitigation) and for 

predevelopment conditions..  Historical rainfall and weather data is used to simulate annual 

runoff under the existing conditions. The annual runoff from the base model is the maximum 

amount of runoff and all implementation of LID will result in a decrease of runoff from this base 

model depth. The predevelopment runoff depth . is estimated through modifying the impervious 

area land use to either forest or meadow. 

4.4.4 Creating Regression Relationships 

The EPA Stormwater Calculator allows a user to set how much impervious area is treated by 

each LID practice. Each scenario can be rerun to determine how much runoff is produced when 

different amounts of impervious area are treated by different LID types. A linear relationship 

exists between the percent impervious area treated and the depth of runoff produced for each 

LID practice. This relationship is used to combine the amounts and types of LID into different 

scenarios to determine runoff produced for each scenario. To determine the runoff reduction, 

precipitation is modeled for scenarios where each singular LID type treats from 0% of the 

impervious area to 100% of the impervious area. Each scenario produces a runoff depth that 
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corresponds to a different amount of impervious area treated by a singular LID type. These 

results are then plotted and a linear regression applied to estimate runoff depth versus percent 

impervious area treated by each LID practice. This enables runoff to be estimated outside of the 

EPA Stormwater Calculator and allows runoff reduction to be combined with cost estimation to 

optimize LID practice. 

4.4.5 Optimization Spreadsheet 

4.4.5.1 Runoff Estimation 

The maximum depth of runoff produced in the watershed is estimated from the base model. Any 

addition of LID will decrease the runoff depth. Each regression equation is structured with the y-

intercept as the runoff depth of the base model. Total runoff is not the summation of all the 

regression equations. The regression equations each yield runoff produced for a scenario in 

which impervious area is treated by a singular LID type. At 0% impervious area treated, each 

equation yields the depth of the baseline model. Runoff depth for each LID type as calculated by 

the corresponding regression equation is subtracted from the depth of the baseline model to 

estimate runoff reduced. The summation of runoff depth reduced is subtracted from the baseline 

scenario runoff depth to get total runoff under the LID scenario. This depth is then multiplied by 

the watershed area to determine total runoff volume. 

4.4.5.2 Cost Estimation 

Cost is an important part of the LID decision making process. Each LID type has an initial 

capital cost and an ongoing maintenance cost. Costs can be found using online databases such as 

the Green Values Stormwater database (http://greenvalues.cnt.org/national/cost_detail.php) or 

the Urban Design Tools Low Impact Development website (http://www.lid-

stormwater.net/index.html). There are also publications from organizations like the Water 

Environment Research Foundation (WERF, 2009). A cost estimation function will be included in 

http://greenvalues.cnt.org/national/cost_detail.php
http://www.lid-stormwater.net/index.html
http://www.lid-stormwater.net/index.html
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an updated version of the EPA Stormwater Calculator to be fully released in Fall, 2017 

(Rossman and Berner, 2017). The cost estimation function adjusts cost depending on whether the 

project is new or re-development, site suitability, and geographical location. The geographical 

adjustment uses US Bureau of Labor Statistics cost based on the three closest major cities or a 

user defined adjustment factor. Cost estimates per unit area can be multiplied by the total area of 

each LID type to determine total cost. Maintenance is a recurring cost subject to inflation and 

must be converted to present value to compare capital costs and maintenance cost. Present value 

of the maintenance cost is calculated using a geometric gradient.  

𝑃 =  𝐴1 (
𝑁

1+𝑖
)           6.1 

where P is present value, A1 is the first annual maintenance cost, N is the number of years, and i 

is the annual inflation rate (currently assumed to be 3%). Number of years was assumed to be 20 

based on the depreciation rate for land improvements specified by the US Department of 

Treasury (2016). Number of years can be modified by users within the spreadsheet to reflect 

local accounting practices or expected design life. Since initial capital cost is already in present 

value, it can be added to the present value of the maintenance to determine present value total 

cost. 

4.4.5.3 Optimization Results 

The regression equations for runoff depth and for cost are added into the optimization 

spreadsheet. The optimization spreadsheet is flexible and enables the user to achieve different 

goals through changing the objective function or adding or modifying constraints. One example 

objective function uses linear scalarization to combine two parameters, runoff ratio and cost per 

gallon (Figure 4.1). The runoff ratio is the ratio of runoff depth with LID to runoff depth of the 
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predevelopment model. Cost per gallon is the total cost of implementation and maintenance 

divided by the total volume of runoff reduced.  

Other goals can be met through user modification of constraints and the objective function. For 

example, a city manager may have a set budget for stormwater improvements and wants to 

achieve the highest volume reduction possible while staying within budget limitations. This can 

be achieved by adding a constraint that the total initial cost must be less than the budget. 

Sometimes, a certain type of LID will be included in a project for educational or aesthetic 

purposes in addition to hydrologic benefit. This can be set by including a constraint that the LID 

type must occupy at least some minimum area. Many variations of volume reduction and cost 

objectives can be achieved through addition of constraints. 
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Figure 4.1 - Flow chart of optimization method. 

Stop: solution 

found 

Start: Excel Solver 

routine 

Define constraints: 
% of LID controls and watershed 

land use  

Guess control variables: 
% of impervious area treated by each LID 

control 

 20𝑦𝑟 $ =   20𝑦𝑟 $𝐿𝐼𝐷 

Calculate total 20-yr present cost: 
sum of cost for each LID control 

𝑅𝑢𝑛𝑜𝑓𝑓 𝑟𝑎𝑡𝑖𝑜 =
𝑅𝑢𝑛𝑜𝑓𝑓𝐿𝐼𝐷
𝑅𝑢𝑛𝑜𝑓𝑓𝑃𝑟𝑒

 

Calculate runoff reduction minimization 

function: 
LID runoff depth to predevelopment runoff depth 

 $ 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛 =
(20𝑦𝑟 $)

𝑉𝑜𝑙𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 

Calculate cost minimization function: 
20-yr cost per gallon  

𝑓𝑚𝑖𝑛 = (𝑅𝑢𝑛𝑜𝑓𝑓 𝑟𝑎𝑡𝑖𝑜)
× ($ 𝑝𝑒𝑟 𝑔𝑎𝑙𝑙𝑜𝑛) 

Calculate multi-objective minimization 

function: 
Runoff reduction and cost per gallon 

Check: 
constraints met 

and 𝑓𝑚𝑖𝑛 at a 

minimum?  

yes 

no 

 𝑉𝑜𝑙𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =   𝑉𝑜𝑙_𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝐿𝐼𝐷 

Calculate runoff reduction: sum of each 

LID control, based on the stormwater 

calculator regression equations 



  

121 

 

The optimization spreadsheet also includes constraints based on physical limitations. The area 

that each LID type can occupy and the total area that all LID can occupy in the watershed are 

constrained by the factors listed in Table 4.1. Different types of LID cannot treat the same area. 

For example, green roofs and rainwater harvesting are constrained by the available roof area, ie –

together they can treat at a maximum, the roof area in the watershed. Similarly, since 

bioretention and downspout disconnection both occupy green space, these two LID types cannot 

occupy an area greater than the amount of green space available, but it is assumed that these two 

LID types can treat any type of impervious area. Finally, all of the LID together cannot treat 

greater than 100% of the current impervious area. Additional constraints can be added by the 

user to reflect operational or design goals such as, runoff with LID must be below 

predevelopment runoff depth or annual maintenance must be within the available budget.  

Table 4.1 – Physical and typical operational constraints on LID practices. 

Variable Constraint 

Permeable asphalt+Pervious Concrete+Permeable 

Pavers 
Occupy and Treat Less than Pavement Area 

Rain Garden+Downspout Disconnection Occupy Less than Green Space Area 

Green Roof+Rainwater Harvesting Treat Less than Roof Area 

All Practices Treat Less than Impervious Area 

Annual Maintenance  Cost Less than Maintenance Budget 

LID Runoff Depth 50% Less than Base Model Runoff Depth 

 

4.4.6.1 Microsoft Excel Solver 

The Solver function in Microsoft Excel is used to determine an optimal solution using regression 

equations for runoff reduction and cost. Microsoft Excel Solver uses one of three solving 

methods: GRG Nonlinear, Simplex LP, or Evolutionary. While the optimization spreadsheet is 

made up of linear equations and linear constraints, the high number of variables and relatively 
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complex constraints, the Excel Simplex LP and Evolutionary methods will usually not converge 

to a solution. The iterative, GRG (Generalized Reduced Gradient) Nonlinear (Lasdon et al. 1973) 

was found effective in this application. It should be noted that while in general non-linear 

algorithms do not guarantee a global optimum solution, in this application the linear model and 

constraints ensure convergence to the optimum.  The optimization search begins at a point 

chosen by the user. The program then changes the variable cell values and calculates the 

difference for the objective cell. Solver uses the difference information to determine which 

direction to change the variable cells.  This is repeated until the change in the objective cell is 

minimized between iterations. The convergence tolerance was 0.0001. 

4.4.7Case Studies 

Two case studies are presented to illustrate how the optimization method was used to choose a 

combination of LID types that maximized runoff reduction while minimizing cost. The first case 

study is at the State Fair Park, Oklahoma City, Oklahoma and the second is the downtown 

district of Stillwater, Oklahoma. 

4.4.7.1 Case Study I: State Fair Park 

Watershed Background. The watershed for Case Study I was urban with high public visibility 

and high public interaction (Figure 4.2). The annual Oklahoma State Fair was hosted on the site 

as well as other shows throughout the year. City stormwater managers wanted to implement LID 

practices for both water quality and water quantity purposes. Impervious area made up 69% of 

the watershed with parking lots and streets making up 39% of the total impervious area (Table 

4.2).  
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Figure 4.2 - Watershed delineation of State Fair Park in Oklahoma City, OK with land use highlighted. 

Building the Base Model. The first step in building the base model was to determine watershed 

characteristics of soil type, soil drainage rate, topography, and land cover. (Table 4.2). Site 

characteristics were determined both from the online database accessible in the SWC and prior 

knowledge of the site (Table 4.3). A precipitation gauge and weather station were chosen based 

on their proximity to the site and period of record. Both were at the same location (Will Rogers 

Airport, Oklahoma City, OK) which is approximately 5.3 miles from the site and had 36 years of 

historical data (1970-2006). After all watershed characteristics were input to the SWC, the 

baseline model was run and produced 25.1 inches of annual runoff from the average 34 inches of 

precipitation. The predevelopment runoff depth was determined by changing the land use to 90% 

meadow and 10% forest. This scenario produced 11.7 inches of annual runoff. Total runoff 
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volume is calculated by multiplying runoff depth by watershed area, 121 acres, which yields 83 

million gallons annually for the base model-current conditions base model and 39 million gallons 

annually for the base model-predevelopment. 

Table 4.2 – Land use for Case Study I watershed at the State Fair Park in Oklahoma City, OK. 

Component Area (Acre) 
% of Total 

Area 

% of Impervious 

Area 

Classification in 

Stormwater Calculator 

Streets/Parking 

Lots 47 39% 56% 

Impervious 

Roofs 31 26% 38% Impervious 

Sidewalks/Other 5 5% 7% Impervious 

Total Impervious 83 69% 100% Impervious 

Pervious Area 38 31% -- Lawn 

Total Area 121      

 

Table 4.3 - Runoff properties that were input to the EPA Stormwater Calculator for the Case Study I  

watershed at the State Fair Park in Oklahoma City, OK. 

Watershed Input Parameters 

Runoff 

Potential 

D - High Runoff 

Potential 

Soil Drainage 0.025 in/hr 

Topography Flat - 2% Slope 

 

Creating Regression Relationships. Regression equations for the various LID practices were 

developed and input to the optimization spreadsheet. Two designs of rain gardens were included, 

one that was 5% as large as its contributing drainage area and one that was 10% as large as its 

contributing drainage area. Regression equations were developed with seven points, when each 

LID type treated 0%, 10%, 20%, 40%, 60%, 80%, and 100% of the impervious area of the 

watershed (Figure 4.3). These regression equations were then input to the optimization 

spreadsheet along with constraints and costs for implementation and maintenance.  
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Figure 4.3 - Regression equations for LID practices used in the optimization method for the Case Study I  

watershed at the State Fair Park in Oklahoma City, OK. 

 

Optimization Solution. The optimal solution for the case study was determined by the 

optimization spreadsheet to be 35.5% of the impervious area treated by rain gardens (with a 10% 

treatment area to drainage area ratio) and 64.5% by permeable asphalt. This design reduces the 

runoff volume by 68% which is 69% of the predevelopment runoff depth. Cost per gallon of 

runoff reduced is $0.15 and total cost was about $8.5 million for around 56 million gallons of 

runoff reduced (Table 4.4). Other scenarios were also run that included different objectives. The 

first alternative scenario had an objective to minimize the installation cost per gallon, but still 

achieve a runoff volume that was 150% the pre-development runoff volume. This scenario led to 
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the selection of downspout disconnection but still required permeable asphalt to achieve 

sufficient volume reduction (Table 4.4).  
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Table 4.4 - Different scenarios and the accompanying LID combinations and results. If installation cost is the minimization target, then downspout 

disconnection is the selected LID type. If there is a volume reduction requirement, then permeable asphalt will also be used to achieve the volume 

reduction. 

Scenario 

Primary LID Types 

Used and Percent 

of Impervious Area 

Treated 

Percent 

Volume 

Reduced 

Total Cost/ 

Volume 

Reduction 

($/1,000gal) 

Installation 

Cost/ Volume 

Reduction 

($/1,000gal) 

Total 

Cost ($) 

Total Volume 

Reduction 

(gallons) 

Original case study - minimize total cost 

and maximize volume reduction, Runoff 

volume must be less than 150% of pre-

development runoff volume 

Permeable Asphalt - 

64.5%, Rain Garden 

- 35.5% 

68% 150 37 8,550,000 56,160,000 

Minimize Installation Cost/Volume 

Reduced, Runoff volume must be less than 

150% of pre-development runoff volume 

Permeable Asphalt - 

64.5%, Downspout 

Disconnection - 

35.5% 

30% 160 32 402,000 24,940,000 

Minimize Installation Cost/Volume 

Reduced, Runoff volume must be less than 

200% of pre-development runoff volume 

Permeable Asphalt - 

5.3%, Downspout 

Disconnection - 

94.7% 

7% 160 22 91,300 5,560,000 
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4.4.7.2 Case Study II: Commercial District of Downtown Stillwater, OK 

Watershed Background. The second case study was performed for the downtown commercial 

area of Stillwater, Oklahoma (Figure 4.4). The area was also heavily urbanized (97% impervious 

area) and was one of the main commercial areas of the town. The area was designed and built 

without subsurface stormwater infrastructure and experienced street flooding during rain events. 

The primary impetus for LID implementation was runoff volume reduction in order to reduce 

flooding. 

Building the Base Model. Again, the first step was creation of the base model in the SWC in 

order to determine the runoff depth for the existing condition. The online database did not have 

coverage for this watershed, so watershed characteristics were based on external knowledge of 

the site and use of the Web Soil Survey (USDA NRCS). The soil of the site was identified as a 

Norge-Urban land complex with 1% to 5% slopes. This soil is classified as hydrologic soil group 

C and a moderately high infiltration rate (0.20 to 0.57 in/hr). These qualities were used to input 

watershed characteristics to the SWC (Table 4.5). While the soil drainage had higher infiltration 

rates and only moderately high runoff potential as compared to Case Study I, the watershed had a 

much higher impervious area (Table 4.6). The location of the precipitation gauge and weather 

station was 2 miles from the site (Oklahoma State University Research Farm, S. August Drive, 

Stillwater, OK) and had 36 years of historic data (1970-2006). The base model produces 30.3 

inches of annual runoff on 35.5 inches of annual precipitation. The predevelopment scenario 

assumed 10% forest and 90% meadow and produced only 6.6 inches of average annual runoff. 

Since the soils have a higher infiltration capacity than Case Study I, the primary driver of runoff 

is a high amount of impervious area.  
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Table 4.5 - Runoff properties that were input to the EPA Stormwater Calculator for the Case Study II  

watershed comprising of the commercial area of downtown Stillwater, OK. 

Watershed Input Parameters 

Runoff 

Potential C – Moderately High Runoff Potential 

Soil Drainage 0.055 in/hr 

Topography Moderate Flat - 5% Slope 

 

 

Figure 4.4 – Watershed area for Case Study II, the commercial area of downtown Stillwater, OK. 

 

 

N 
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Table 4.6 - Land use for the watershed in Case Study II, commercial area of downtown Stillwater, OK. 

Component 
Area 

(Acre) 

% of Total 

Area 

% of Impervious 

Area 

Classification in 

Stormwater Calculator 

Streets/Parking Lots 29 58% 61% Impervious 

Roofs 17 34% 35% Impervious 

Sidewalks/Other 2 4% 4% Impervious 

Total Impervious 48 96% 100% Impervious 

Pervious Area 2 4% -- Lawn 

Total Area 50      

 

Creating Regression Relationships. Regression equations were developed for the LID types used 

in the optimization spreadsheet. Two designs of rain gardens were included, one that was 5% as 

large as its contributing drainage area and one that was 10% as large as its contributing drainage 

area. Regression equations were developed with seven points, when each LID type treated 0%, 

10%, 50%, and 100% of the impervious area of the watershed (Figure 4.5). These regression 

equations were then input to the optimization spreadsheet along with constraints and costs for 

implementation and maintenance. Downspout disconnection was not included as a possible 

practice because of the lack of potential connection between roofs and green space.  
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Figure 4.5 – Regression equations for Case Study II. 

Optimization Spreadsheet. Two scenarios were run, the first was simply to find a combination 

that maximized runoff reduction while minimizing cost and the second was to minimize 

installation cost while achieving a 50% runoff reduction over the base model. As with Case 

Study I, permeable asphalt and rain gardens achieved high volume reduction at low cost 

compared to other LID types. The second scenario only treated 89% of the impervious area, 

however this was sufficient to achieve a 50% runoff reduction (Table 4.7). 
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Table 4.7 - Different scenarios and the accompanying LID combinations and results for Case Study II, the commercial area of downtown 

Stillwater, OK. Permeable asphalt and rain gardens are the primary practices selected. 

Scenario 

Primary LID Types Used 

and Percent of Impervious 

Area Treated 

Percent 

Volume 

Reduced 

Total Cost/ 

Volume 

Reduction ($/gal) 

Installation 

Cost/ Volume 

Reduction 

($/gal) 

Total 

Cost ($) 

Total Volume 

Reduction 

(gallons) 

Original case study - minimize total 

cost and maximize volume reduction 

Permeable Asphalt – 63.2%, 

Rain Harvesting – 33.8% 

Rain Garden – 0.4%, 

Pervious Concrete – 2.6% 

83% 0.14 0.52 4,900,000 34,730,000 

Minimize Installation Cost/Volume 

Reduced, Runoff volume must be 

reduced by at least 50% from the 

base model-current condition 

Permeable Asphalt – 26.6%, 

Rain Garden – 62.5% 
50% 0.11 0.36 1,200,000 20,800,000 
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4.6 Discussion 

The optimization method presented here is a simple tool that does not require significant 

software investment or technical expertise. This method can quickly and easily 

investigate multiple scenarios with different objectives and constraints. The base model 

determines runoff depth with no implementation of LID and the pre-development model 

replaces impervious area with a different land use type based on user judgement. The 

watershed characteristics and design of each LID type determine the runoff reduction 

performance for each type. Relationships for performance and cost are then input to the 

optimization spreadsheet to determine a combination of LID practice that optimizes the 

objective function of the user’s choosingwhile satisfying constraints. The different 

scenarios of the two case studies illustrate that different combinations of LID type are 

sometimes necessary to achieve different goals.  

4.61 Case Studies 

The primary differences between the two case studies were the runoff potential of each 

watershed’s soil and the amount of impervious area. Both factors affected the runoff 

depth of the base model. In the base model for Case Study I, about 73% of rainfall 

became runoff and in the base model for Case Study II, 84% of rainfall became runoff. 

Even though the soil for Case Study II had a higher capacity to infiltrate runoff, the high 

amount of impervious area led to higher amounts of runoff. This also led to an 

unachievably low pre-development runoff depth of about 82% of annual precipitation 

(6.6 inches from 35 inches of precipitation). 

In both case studies, the regression equation for permeable asphalt had the highest slope 

of any of the LID types. Even though permeable asphalt had only the third lowest cost, 



  

134 

 

the combination of high runoff reduction and relatively low cost made it the best option.  

Rain gardens also had a relatively high slope and were fourth least expensive so were the 

next best tool to optimize for both runoff reduction and cost. The second scenario of Case 

Study I required reducing installation cost be reduced while maintaining a certain runoff 

reduction. Permeable asphalt was still the tool that treated the most impervious area. 

However downspout disconnection came into play to treat about 36% of the impervious 

area. Downspout disconnection has very little capacity to reduce runoff, but is the 

cheapest tool to implement. The third scenario reduced the runoff reduction constraint 

further and again set the objective to reduce installation cost. This resulted in about 95% 

of impervious area being treated by downspout disconnection. While this scenario 

resulted in a combination that cost only $91,000, it had a runoff reduction of only 7% 

from the base model-current condition.  

4.6.2 Optimization Method  

The simplicity and flexibility of the optimization method allows planners to get a rough 

estimate of feasibility of meeting certain objectives at certain price points. There is some 

setup required outside of the SWC and the optimization spreadsheet to determine land 

use. Within the SWC, there is also some setup required to input watershed characteristics 

and then to execute the calculator multiple times to develop the regression equations. 

While cost estimates are included in the spreadsheet, they are based on data available 

online and may not reflect local pricing. Users are able to modify cost estimates based on 

knowledge of local costs for both installation and maintenance. 
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The EPA Stormwater Calculator uses SWMM, a robust model that incorporates long-

term weather data and physical characteristics to estimate runoff depth. While the EPA 

Stormwater Calculator is based on robust methods, its relative simplicity leads to a few 

limitations that users must consider. Specifically, it is not able to incorporate routing. 

Case Study I contained a stormsewer within the watershed that was not accounted for. 

While this likely had some effect on runoff depth, it is unlikely that the effect was large 

because LID is designed to treat runoff near its source. Runoff that is treated by LID was 

likely intercepted prior to entering the stormsewer. The inability to incorporate routing 

also means that the same impervious area cannot be treated by more than one type of 

LID. For example, overflow from a rainwater harvesting system could not be designed to 

be captured by a rain garden, it would instead become runoff. Treating the same 

impervious area with multiple LID practices could have improved runoff reduction in 

both case studies. Another limitation of the EPA Stormwater Calculator is related to 

watershed size and variability. If a watershed is large and consists of different slopes or 

soil types, then the watershed must be broken into subwatersheds with homogenous slope 

and soil type. The watersheds in both case studies were relatively homogenous so this 

limitation did not affect results from either case study. 

4.7 Summary  

A simple, accessible tool to help urban planners choose LID practices based on user-

defined optimization criteria was developed. The user inputs watershed characteristics 

into the EPA Stormwater Calculator, a simple yet robust tool freely available online. 

Regression equations are then developed for each LID type and then input to the 

optimization spreadsheet. Area constraints are added that limit the available area for each 
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treatment type. Finally, an objective is specified and the solver routine executed. To 

ensure that the resulting LID types and amounts are the optimal solution, the user should 

rerun the solver routine with high, medium, and low starting points for all LID types. The 

resulting combination is an optimization of both cost and volume reduction. The case 

studies demonstrate that different objectives result in different practices being chosen.  

The optimization tool is intended to be a screening tool for urban planners to determine 

LID solutions for small watersheds. While the tool lacks some capability such as routing, 

it is robust and does not require significant technical expertise. The target audience is 

smaller municipalities and developers that can use this tool to perform preliminary 

analysis and determine what types of LID they should pursue in new or existing 

developments. 
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CHAPTER V 

 

 

CONCLUSIONS 

 

Runoff from both agricultural and urban sources is a potential threat to aquatic resources. 

Landscape modification and anthropogenic influences increase the diversity and quantity 

of pollutants. Pesticides, while not in the public consciousness, are known to be 

ubiquitous in many urban and agricultural water bodies, often at concentrations toxic to 

aquatic organisms. Nutrients, specifically nitrogen and phosphorus, are one of the 

primary causes of algal blooms leading to the long-term detriment of water quality. Land 

use modification also dramatically alters the hydrologic response of a watershed. 

Low impact development is a technology that utilizes natural physical, chemical, and 

biological processes to mitigate the impact of urban and agricultural runoff. The overall 

goal of the research presented in this dissertation was to evaluate and develop low impact 

development for runoff management. A field study investigated the use of constructed 

wetland systems for pesticide and nutrient removal in nursery runoff. 
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 A lab study examined the effects of different hydrologic conditions on pesticide removal. 

Finally, a simple tool was developed that enables stormwater professionals to choose 

combination of LID types that optimize runoff reduction and cost.  

1. The field study was performed to meet the first research objective, Evaluate pesticide, 

nutrient, and sediment removal performance of a two different types of constructed wetlands 

at two nurseries in Oklahoma. Conclusions and future work for the field study are: 

 Most of the pesticide compounds analyzed for were detected above reporting limits 

multiple times at both nursery sites, however only one pesticide at each site had a 

concentration that was higher than an aquatic health benchmark (either acute or chronic). 

While most measured influent pesticide concentrations were below published aquatic 

health benchmarks, frequent irrigation in conjunction with pesticide and fertilizer 

application could lead to chronic pollutant loading into receiving bodies of water and 

should be managed using constructed wetlands or similar treatment practices.  

 Both constructed wetland systems were effective at reducing non-pesticide analytes. The 

SFCW was effective at reducing the most commonly detected pesticides however the 

FSCW did not demonstrate significant mass reduction for any pesticide compound 

analyzed for. This could be due in part to a limited sample size and to relatively low 

influent concentrations.  

 Constructed wetlands can be implemented using equipment and materials typically 

available to nurseries. The SFCW in this study cost between $5,000 and $6,000 to 

construct.  

 The FSCW in this study was undersized which likely negatively impacted performance. 

To achieve satisfactory treatment performance, FSCWs require a relatively large area. If 
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limited land area is available, implementing a large-scale FSCW can take land out of 

production. 

 Constructed wetlands are able to treat pollutants with a wide range of transport properties 

and can be implemented with relatively little input. It is recommended that constructed 

wetlands be used to treat nursery runoff.  

 Future research should investigate how these systems perform over time. Future work 

should also include a more in-depth economic analysis and feasibility of implementation 

for nursery operators. While performance was demonstrated for both an SFCW and a 

FSCW, the two systems were in different settings. There is limited research directly 

comparing pollutant removal performance for the two different systems.  

2. The lab-scale column study was performed to meet the second research objective to examine 

the effects of saturation conditions and irrigation patterns on pesticide removal. Conclusions 

and recommendations for future work for the lab study are:  

 Due to a relatively short time period, this study does not necessarily reflect conditions 

found in established constructed wetland systems. However, the hydrology of wetland 

systems is cyclical, going between wet and dry, and this study is similar to conditions 

found in wetland systems during the transition period.  

 On the time-scale of the study, saturation did not affect pesticide removal. 

 Overall, longer antecedent period led to higher pesticide removal.  

 The volume of water that was stored within the system between runs had higher removal 

than water that was not stored between runs.  

 Other studies have demonstrated that sorption processes are time-dependent. This study 

demonstrated that water remaining in the system between runs had higher removal than 
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water that only flowed through the column and did not remain in the column for the 

period of time between runs. While this study is exploratory in nature and will not result 

directly in design guidance, this result should be explored further. Runoff best 

management practices that store water between storm or irrigation events could 

potentially improve removal efficiency by increasing storage volume or extending 

storage time. 

3. The third research objective was to develop a simple optimization procedure that enables 

stormwater professionals to choose combinations of low impact development that optimize 

runoff volume reduction and cost. The summary and recommendations for future work are:   

 The procedure is relatively simple, requires little time to set up, and uses available 

software. 

 The user can achieve different runoff reduction or cost goals by modifying the 

objective function of the optimization routine and/or by adding or changing 

constraints. 

 Because the optimization procedure does not require significant technical expertise in 

programming or hydrology, it is accessible to developers or municipalities that may 

lack the technical resources required to use more complex runoff modeling 

procedures. 

 The procedure is limited to smaller watersheds that have homogenous slope and soil 

characteristics. Due to the simplicity of the EPA Stormwater Calculator, routing and 

location of practices cannot be accounted for.  

 Future work could be done to make the optimization procedure more automated.  
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In conclusion, runoff in both agricultural and urban settings can have negative impacts on water 

resources. Pollutants such as pesticides and nutrients can be transported to receiving bodies of 

water. Constructed wetlands are a runoff management practice that can treat runoff. In urban 

areas, runoff can be can be managed with a suite of low impact development practices. The 

developed optimization procedure is a useful tool to enable developers and stormwater 

professionals to choose combinations of practices that maximize runoff reduction and minimize 

cost.  
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Appendix A 

The rating curves were determined by measuring the time to fill a bucket and then the final 

weight of the bucket. Each cell of the free-surface constructed wetland had three openings 

indicated in each figure title as a,b, or c. For example, the second opening in the third cell is 

indicated as 3b. Since only one equation could be programmed into each auto sampler, the three 

openings were combined into one graph for programming purposes, however each individual 

curve was used to determine flow during analysis. 
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