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Abstract: High dimensionality in Big Data can be modeled using network approach. The 

traditional networks (e.g. online social network) are explicit and easily observed. However, there 

are certain networks that are implicit and exist by virtue of some underlying collective behavior. 

Our focus is on these implicit networks, which can be inferred from the secondary data using 

statistical modeling. An example of such a network is a comorbidity network. In a comorbidity 

network, diseases form connections based on their co-occurrences in patients. We use data on the 

health history of 24.7 million patients recorded in US hospitals (2000-2016) to infer comorbidity 

networks. Since most statistical models depend upon sample size, it is important to study how 

sample size affects the structure of an implicit network. We study the impact of sample size on 

comorbidity networks developed using Pearson’s Correlation Coefficient (PCC) and Salton 

Cosine Index (SCI). We present a comparative analysis and show that a network developed using 

SCI is robust to sample size as compared to the PCC.   

 

Our first study of comorbidity networks employs descriptive analytics. We investigate how 

comorbidity networks are different across population groups. We compare networks based on 

gender, race and insurance types. Our analysis at the comorbidity level presents health disparities 

across population groups. 

 

These disparities across population groups are considered to study the impact of comorbidity 

network on patients’ hospital length of stay in second study. We develop an explanatory and 

predictive model to estimate length of stay using features extracted from comorbidity networks 

and compare with the extant models. We show that our model outperforms the existing models.  

 

Finally, we study how an implicit network can help theorize certain phenomenon related to it. 

With respect to the comorbidity network, we theorize clique property of a network as trap state. 

The trap state is hypothesized to be related to mortality risk of a patient. We identify eighteen 

such cliques in a comorbidity network.  

 

This dissertation contributes to network science, analytics and healthcare literature but the theory, 

models, algorithms, and processes developed are generalizable to other inferred networks.  
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CHAPTER I 
 

 

INTRODUCTION 

Across the disciplines, there are several phenomena that occur at a level that is not visible 

explicitly. It is a challenging problem to detect such hidden phenomena or structures, which are 

characterized by some implicit underlying behavior. The data analytics approach analogous to the 

grounded theory methodology can be applied to discern such hidden structures “from the data”. 

In grounded theory methodology, the broader idea is to discover features from the data (Glaser & 

Strauss, 2009) where hypotheses are not pre-formulated but emerge from the data. 

With the advancements in Information Systems, the collection, storage and analysis of large 

datasets are possible, which provide opportunities to discover hidden structures related to a 

particular phenomenon. Research using large datasets equivalent to the population has several 

advantages. First, the availability of large datasets mitigates issues related to the small sample 

size in research. And second, the conclusions from data can be validated across multiple samples 

and thus, their generalizability can be verified.  

Extremely large datasets are characterized as Big Data. These are known to include high volume, 

high velocity of data collection and often have high dimensionality with a large variety. Due to 

high dimensionality in Big Data, model building is challenging and requires much computational 

power. Big Data analytics is thus focused on taming this beast requiring much data storage and 

analytics capacity to handle the large variety.
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One of the models that can present a high dimensional space in a summarized manner is the 

network model. A network comprises of nodes connected to each other based on a well-defined 

relationship. In traditional networks such as an online social network, nodes (in case of an online 

social network, nodes are users), form a network based on their decision to connect to each other. 

The connections between friends or users on online social networks such as Twitter or Facebook 

are explicit and visible through features such as “followers”, “friends”, “likes”, etc. However, 

there are several networks in which the interactions are implicit and it is not easy to draw links 

between nodes. We call these networks implicit because the relationships between nodes exist by 

virtue of some underlying exchanges (Roth et al. 2010). One common example of an implicit 

network is the network formed by collaborative filtering in recommender systems (Konstas, 

Stathopoulos, & Jose, 2009). Recommender systems create virtual connections between users or 

products based on their common characteristics. Another example of an implicit network is the 

ingredient network in which ingredients are connected based on their co-occurrences in different 

recipes (Teng, Lin, & Adamic, 2012). One more interesting implicit network is the language 

network emerged from the co-occurrences of words in a sentence, semantics, and syntactic (Solé 

et al. 2010; Liu, 2009). Implicit networks are also common in medical science. The biological 

networks such as a protein network (Weston et al., 2004), brain network (Van Den Heuvel & Pol, 

2010), comorbidity network (Hidalgo et al. 2009), phenome-genome network (Butte & Kohane, 

2006) and many others are all created through some underlying relationships and thus, are 

implicit networks. 

The focus of this dissertation is the implicit networks which are inferred from historical patterns. 

These networks are data-driven and are inferred theoretically using mathematical formulas. To 

create relationships between nodes in a network, joint probabilities, co-occurrences, or 

similarities between the nodes are used (Hidalgo et al., 2009; Roth et al., 2010; Teng et al., 2012). 



3 
 

Therefore, it entirely depends on how a researcher defines a relationship between nodes. Most 

often, a similarity index is used to define a relationship between two nodes mathematically. 

Since relationships emerge from data, the size of sample is an issue in the inferred networks. If 

the definition of a relationship between two nodes depends on sample size, it can result into an 

invalid and unreliable network. Therefore, to define a valid relationship between two nodes in a 

network, it is important to study the impact of sample size on inferred networks developed using 

different similarity indexes. This gives rise to the first research question of this dissertation:  

Research Question 1: What is the impact of sample size on the structure of an inferred 

network created using a similarity index? 

The traditional networks (e.g. social network) have been shown in the past to be related to 

performance outcomes of the network source (Coleman, 1988; Provan and Sebastian 1998). For 

example, Sparrowe et al. (2001) found individual job performance was positively related to 

position of an employee in the advice network. Similarly, in this study, we study how a structure 

or network emerged implicitly from the unintended actions of source impact the performance 

outcomes of source? This broader question is studied in the context of US health explained in 

next section 

1.1. PROBLEM DOMAIN 

The broader problem domain of this dissertation is the health of US population recorded in 

hospitals electronically. The health history recorded in an Electronic Medical Record (EMR) 

includes different types of clinical information such as lab procedures, medications, diseases 

diagnosed and other hospital related variables. In this dissertation, we are specifically interested 

in the collective behavior of diseases in patients. We use network approach to study this 

underlying behavior. The network studied here is a network of diseases where diagnoses are 



4 
 

related to each other based on their co-occurrences in millions of patients admitted in US 

hospitals. To define a connection between two diseases in the network, we use an important 

medical concept known as comorbidity. Comorbidity is a medical condition in a patient when he 

or she develops multiple diseases simultaneously. For instance, the presence of diabetes and 

depression simultaneously in a patient is a comorbidity. 

The comorbidity network contains diseases linked to each other whereby representing a 

summarized underlying joint behavior of the diseases. This joint behavior can be different across 

different groups of patients, thus leading to different health consequences. The health disparities 

across population groups can be caused by genetic, hormonal, physiological, behavioral, and 

sociocultural factors. Therefore, it is important to understand how diseases form relationships 

across different population groups. This provokes the second research question of this 

dissertation: 

Research Question 2: How do diseases co-occur differently and form different network 

structures across population groups? 

The second research question discussed above is entirely exploratory and set the stage to find 

how the underlying interactions of diseases can affect some health outcomes of patients. Because 

the foundation of our network is co-occurrence of diseases, it can help predict other likely 

diseases in a patient in future based on his current condition. Thus, we use this idea to understand 

how network can be used to ex-ante predict the health outcomes, specifically the hospital length 

of stay. This gives rise to the third research question of this dissertation: 

Research Question 3: How does the implicit relationships among diseases help ex-ante 

predict the health outcomes, specifically the hospital length of stay? 

The comorbidity network embeds risk in its structure, analogous to the social capital in social 

network (Coleman, 1988). This structural risk is not identified and analyzed yet in medical 
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literature, particularly with respect to comorbidity. Moreover, this structural risk can be used to 

theorize medical concepts. We use the structural risk embedded in comorbidity network to 

understand mortality, which is an important health outcome. We use an important structural 

property of a network known as a clique (a sub-network where all nodes are adjacent to each 

other) to explain mortality. Because a clique has maximum possible interactions among nodes, its 

presence in a patient can be critical due to high risk. It indicates a trap state in a patient from 

where the exit is difficult. Identifying such clique can help physicians take preemptive actions 

related to the health of a patient. Therefore, the final research question is related to the impact of 

cliques on mortality. 

Research Question 4: Can we identify clique as trap state where its presence in a patient 

increases mortality risk?  

1.2. SCOPE OF THE DISSERTATION 

This interdisciplinary dissertation draws upon healthcare, network science and 

analytics/Information Systems literature. The healthcare problems are studied by applying 

network theories and using Information Systems tools and techniques. Figure 1.1 presents a Venn 

diagram describing the scope of this dissertation at the intersection of three areas: healthcare, 

network science and analytics/IS. 

In the healthcare area, we enhance the understanding of comorbidity and its impact on the health 

outcomes such as patients’ hospital length of stay and mortality. Our study applies network 

science concepts to study the comorbidities. Studying disease associations or comorbidities 

generates more insights than studying diseases independently.  
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Figure 1.1 Venn diagram explaining scope of the dissertation 

We apply analytical tools and techniques of the IS field to develop models, measures and 

algorithms, which are the explicit IT artifacts (March & Smith, 1995; Von Alan et al. 2004). The 

measures and models are expected to augment the performance of current Information Systems 

used to predict length of stay and mortality rate. The analytics has a transformational impact on 

the healthcare discipline (Agarwal & Lucas Jr, 2005; Markus & Mao, 2004). 

1.3. DATA SOURCE 

We obtained data from the Center for Health Systems Innovation (CHSI), a center at Oklahoma 

State University which houses data provided by Cerner Corporation, a major Electronic Medical 

Record (EMR) provider. The data warehouse contains records of visits of 58 million unique 

patients across 662 US hospitals (2000-2016). It includes more than 84 million admissions, 

emergency and ambulatory visits. It is the largest and industry's only relational database that 

includes comprehensive records with pharmacy, laboratory, clinical events, admission and billing 

data. Diagnoses are classified according to the International Classification of Diseases, 9th 

Healthcare 

Analytics using 

Network Science 

Healthcare 

 

Information 

Systems/Analytics 
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Revision, Clinical Modification (ICD-9-CM). This data warehouse has recently been made 

available to OSU’s Center for Health Systems Innovation through a gift from Cerner Corporation, 

a major EMR provider. The database also includes more than 2.4 billion laboratory results and 

more than 295 million orders for nearly 4,500 drugs categorized by name and brand. It is one of 

the largest compilation of de-identified, real-world, HIPAA-compliant data of its type that can 

permit such a large scale network analysis. The use of this massive dataset is one of the strengths 

of our study. 

1.4. OUTLINE OF THE CHAPTERS 

The rest of the dissertation is organized as follows. In Chapter 2, we answer the first research 

question using dataset described in the previous section. It describes the method to create network 

using Pearson’s correlation coefficient and Salton Cosine Index in addition to a process to find 

statistical significance of the relationship using Salton Cosine Index. This chapter provides an 

appropriate index to define a relationship between two diseases, which is used in all other 

chapters later. 

Following the method described in Chapter 2, in Chapter 3, we create two different comorbidity 

networks for men and women to find health disparity by gender. This comparison shows which 

comorbidities are more prevalent in one population group and not in others. This study is under 

review at a journal.  

Following the same approach as Chapter 3, comorbidity network differences are discovered in 

races and different insurance holders in Chapter 4. The comparison between different population 

groups results into several research questions for medical, economics, social, public health, policy 

and analytics researchers. The third and fourth chapters are the responses to our second research 

question. 
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In Chapter 5, we answer the third research question. We extend the applicability of the network to 

create explanatory and predictive models to estimate the patient’s length of stay. To ex-ante 

predict the length of stay, we only use information available at the point of admission. In 

addition, we also compare our models with the extant models and show our models perform 

better. 

The fourth research question is addressed in Chapter 6. We use the clique concept to understand 

mortality risk embedded in the structure of a comorbidity network. A clique forms a trap state and 

thus, its presence in a patient is likely to increase mortality risk. 

Finally, in Chapter 7, we conclude by discussing the contributions, generalizability and future 

work of the models, processes and algorithms developed in this dissertation.
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CHAPTER II 
 

 

IMPACT OF SAMPLE SIZE ON AN IMPLICIT NETWORK 

ABSTRACT 

Networks can be observed in different problem domains. Some networks are explicit where 

members make direct connections (e.g. Facebook network), whereas other networks are formed 

through some underlying implicit relationships, which are not directly visible (e.g. collaborative 

filtering network). Since implicit networks are present in almost every field of science and 

developed from a sample of some population, it is necessary to understand how sample size 

influences their structures given that the conclusions from network analysis can be biased if a 

network does not represent true relationships. The purpose of this paper is to understand how 

sample size impacts the structure of an implicit network. We compare the networks created using 

two indexes: Pearson’s Correlation Coefficient (PCC) and Salton Cosine Index (SCI). For 

demonstration, we present an implicit network called a comorbidity network. The networks 

created using PCC and SCI from a large dataset containing health records of 22.1 million patients 

are compared based on their overall topologies and node centralities. The results show that the 

network formed using SCI is less affected by the sample size as compared to the network created 

using PCC. With respect to the overall structure of a network, the comorbidity network using SCI 

follows a small-world topology irrespective of the sample size; however, the structure of network 

using PCC is inconsistent in its structure. Regarding node centralities, the betweenness centrality  
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of the network is most affected by sample size. Our analysis is valuable as it establishes a need for 

choosing a right measure to create an implicit network for making valid conclusions. 

2.1.INTRODUCTION 

A network emerges from the interactions between elements or nodes (Euler, 1953). For example, 

online social networks (OSN) are one of the main research topics in Information Systems field. In 

an online social network, friends or users form a network based on their direct connections. The 

connections between friends or users on online social networks such as Twitter or Facebook are 

explicit and visible through features such as “followers”, “friends”, “likes”, etc. These networks 

are easy to construct because one can easily define a relationship between two elements. 

However, there are several networks in which the interactions are implicit and it is not easy to 

draw links between nodes. We call these networks implicit networks because the relationships 

between nodes exist by virtue of some underlying exchanges (Roth et al. 2010). One common 

example of an implicit network is the network formed by collaborative filtering in recommender 

systems (Konstas, Stathopoulos, & Jose, 2009). Recommender systems try to create virtual 

connections between users or products based on their common characteristics. Another example 

of an implicit network is an ingredient network in which ingredients are connected based on their 

co-occurrences in different recipes (Teng, Lin, & Adamic, 2012). Another interesting implicit 

network is the language network developed based on co-occurrences of words in a sentence, 

semantics, and syntactic (Solé et al. 2010; Liu, 2009). Implicit networks are also widely studied 

in medical science. The biological networks such as a protein network (Weston et al., 2004), 

brain network (Van Den Heuvel & Pol, 2010), comorbidity network (Hidalgo et al. 2009), 

phenome-genome network (Butte & Kohane, 2006) and many others are all created through some 

underlying relationships and thus, are implicit networks.  



11 
 

Implicit networks are created using joint probabilities, co-occurrences, or similarities of nodes 

(Hidalgo et al., 2009; Roth et al., 2010; Teng et al., 2012). Therefore, it entirely depends on how a 

researcher defines a relationship between nodes. Mostly, researchers use a similarity index to 

define a relationship mathematically. One of the most common indexes is Pearson’s correlation 

coefficient. It has often been used in author co-citation network analysis to find an intellectual 

structure in a given field (McCain, 1990). It has also been used in medical sciences for creating a 

network of diseases from electronic health records (Hidalgo et al., 2009; Divo et al., 2015). In 

contrast, some researchers have supported the use of other indexes such as cosine indexes over 

Pearson’s correlation coefficient. Van Eck & Waltman (2008) argued that Pearson’s correlation 

coefficient captures the linear relationship between two variables, which is not same as the 

commonality between two variables; therefore, it is not an appropriate measure to create a 

network. Instead, the authors suggested to use a cosine index to develop a network from the data. 

Similarly, Ahlgren, Jarneving, & Rousseau, (2003) also criticized the use of Pearson’s correlation 

coefficient because it is sensitive to sparseness in the network. The authors argued that it results 

in low overlap between nodes. In addition, Pearson’s correlation coefficient depends on the 

sample size and therefore it can influence the structure of a network (Ahlgren, Jarneving, & 

Rousseau, 2003).  

Since implicit networks are present in almost every field of science and inferred from a sample of 

some population, it is necessary to see how sample size influences their structures. The 

conclusions from network analysis can be biased if the network is invalid. Therefore, it becomes 

important to study the behaviour of networks created using different indexes and different sample 

sizes. In this paper, the primary objective is to understand how sample size impacts the structure 

of an implicit network developed using different indexes. We want to study the impact of sample 

size on networks created using Pearson’s correlation Index and a cosine index known as Salton 
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Cosine Index (Salton & McGill, 1986). Salton Cosine Index is unaffected by the sample size and 

only considers the co-occurrences and prevalence of nodes.  

As mentioned earlier, we want to study how sample size impacts the structure of networks. The 

structure of a network can be measured using multiple network properties such as node centrality, 

clustering coefficient, density and others. In addition, the overall topology of a network (random, 

scale-free or small-world) can be assessed to understand the overall structure. Moreover, using a 

large real-world dataset, we offer useful and well-supported recommendations on desirable 

sample sizes for creating a valid implicit network. 

To demonstrate our method and analysis, we demonstrate an implicit network known as 

comorbidity network. Comorbidity is a medical condition when two or more diseases are present 

simultaneously in a patient (Feinstein, 1970). Comorbidity networks have been mostly developed 

using inductive reasoning and are data driven. The relationships between diseases are inferred 

from the sample. We illustrate how sample size impacts the structure of a comorbidity network 

developed using Pearson’s correlation coefficient and Salton Cosine Index.  

The rest of the paper is organized as follows. In the next section, we elaborate on the 

mathematical formulations of a network, overall topologies, and network properties. Then, we 

explain comorbidity and a process to create comorbidity networks using Pearson’s correlations 

coefficient and Salton’s Cosine Index. We then explore and compare the disease associations in 

different sample sizes. Next, the results are discussed. Finally, we conclude by discussing 

implications. 

2.2. METHODOLOGY 

2.2.1. NETWORK 
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A network comprises nodes connected through defined edges. To create an undirected implicit 

network i.e. a network with no directions in the relationships, one has to define a transaction 

containing the related nodes. These transactions will be used to explain whether the connection 

between two nodes exists or not. A network C developed from N transactions is denoted by C (D, 

E) in which D is a set of n nodes and E is a set of edges.  

An edge Eij is created between two nodes di and dj (i, j = 1 to n) where i<j in the undirected 

network. Since we want to compare networks created using two indexes, we define an edge 

mathematically based on these two indexes i.e. Pearson’s correlation coefficient (PCC) and 

Salton Cosine Index (SCI). We want to select the appropriate index to create a network.  

In the network using PCC, the coefficient Sij of an edge Eij between nodes di and dj is calculated as 

 𝑆𝑖𝑗 =
(𝑐𝑖𝑗∗𝑁)(𝑐𝑖∗𝑐𝑗)

√(𝑐𝑖∗𝑐𝑗)(𝑁−𝑐𝑖)(𝑁−𝑐𝑗)

  -(2.1) 

where cij is the count of transactions containing both i and j nodes, ci is the count of transactions 

containing i and cj is the count of transactions containing j. The maximum number of edges 

possible among n nodes is (n(n-1)/2). However, we considered edges based on statistical 

significance of the PCC. We calculated T-statistic using Sij of the edges as in equation 2.2. 

Following the most conservative approach, we used the cij (minimum of cij, ci, and cj) as the 

degrees of the freedom. Using the T-statistic, we developed networks at α=0.01, T>2.58 and 

cij>∑cij /p, where p is maximum number of pairs. 

 T=
𝑆𝑖𝑗√𝑐𝑖𝑗−2

√1−𝑆𝑖𝑗
2

     -(2.2) 

In the network using Salton Cosine Index, SCIij, of an edge between diseases di and dj is 

calculated as in equation 2.3. It considers the individual prevalence of the two nodes (ci and cj) 

and their joint prevalence (cij).  
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 𝑆𝐶𝐼𝑖𝑗 =
(𝑐𝑖𝑗)

√(𝑐𝑖∗𝑐𝑗)

   -(2.3) 

Unlike the correlation coefficient, this measure is unaffected by the sample size, N; however, it is 

difficult to find its statistical significance. Usually, a cut-off for SCI is defined. We use the 

relationship between PCC and SCI to find a cut-off for SCI as suggested by Egghe & Leydesdorff 

(2009). We present an approach that results into edges that are correlated significantly. The steps 

followed to find a cut-off are as follows: 

Step 1.  For each pair of nodes, calculate number of co-occurrences, Pearson’s 

Correlation Coefficient and Salton Cosine Index in the population dataset (largest 

sample size) 

Step 2. Find number of pairs (q) significantly correlated at α=0.01 and cij>∑ 𝑐𝑖𝑗/p, where 

p is maximum number of pairs 

Step 3. Find Salton Cosine Index as the cutoff (Sc) where the number of pairs is equal to 

q and cij>∑ 𝑐𝑖𝑗/p 

Step 4. Use Sc as the cutoff to find edges in different sample sizes 

 

We use the above process to create networks from samples of different sizes using PCC and SCI 

and then compare them. The effect of sample size is measured in terms of overall network 

topologies and node properties as explained in the next section.  

2.2.2. NETWORK TOPOLOGIES 

To understand the structure of a network as a whole, one can find the topology of a network. A 

topology is a global property of a network. Knowing the overall structure will specify the 

behavior of a network in a particular context. For example, epidemic spread depends on the 

network topology (Ganesh, Massoulié, & Towsley, 2005). In this research, we look at the overall 

structure of a network and understand its dependency on the sample size. 
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Figure 2.1. Network 1 

The most common topologies are random, scale-free and small-world. A network is called a 

random network if connections between a set of nodes are randomly connected using a defined 

probability (Erdos & Rényi, 1960; Erdős & Rényi, 1959). The degree of a random network 

follows binomial distribution. A network is called a scale-free network when a network contains 

hubs in it (Barabási & Albert, 1999). The degree distribution of the nodes in a scale-free network 

follow a power-law distribution. Finally, a network is called a small-world network when there 

are several clusters in a network, making the distance between nodes smaller (Watts & Strogatz, 

1998). The degree of a small-world network can follow any distribution but the average 

clustering property is higher than the random network.  

2.2.3. NETWORK METRICS 

The structure of a network can be measured using several network metrics. A network has several 

inherent properties that can be observed at the node level. We describe multiple network 

properties briefly in the sub-sections below. The definitions are also listed in Table 1.1, which we 

will use to analyze the impact of sample size on a network in later sections.  

2.2.3.1.NODES AND EDGES 

Nodes are the elements among which relationships are studied. In 

Figure 2.1, the circles A, B, C and D are four different nodes that 

are related to each other.  

It can be observed in Figure 2.1 that A is connected to C, C is connected 

 to A and B, B is connected to C and D and finally D is connected to B.  

These connections are represented by the lines or edges. These lines represent some relationships. 

So, before creating a network, there is a need to define the relationship between the nodes.  

B 

A 

C 

D 
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The edges in Figure 2.1 do not have directions and hence, it is an undirected network. In addition, 

the edges can also have weights. The weight represents the strength of a relationship. The edges 

in Figure 2.1 have weights and are represented by their thickness. The weight of the edge between 

B and C is the largest, followed by the edge between A and C, and then the edge between B and 

D have the smallest weight.  

2.2.3.2.DEGREE AND WEIGHTED DEGREE CENTRALITY 

An important property of a node in a network is its centrality. Centrality can be broadly defined 

as the importance of a node in the network. There are multiple ways to define a centrality. We 

report on four types of node centralities: degree, betweenness, closeness and eigenvector 

centrality. 

Degree centrality is a simplest property of the nodes in a network. Degree of a node explains its 

number of direct connections (Freeman, 1979). Let us reconsider the Figure 2.1. Here degree of 

node A is 1, B is 2, C is 2 and D is 1. As discussed earlier, the edges are undirected in our 

networks. However, if an edge has direction, two types of degrees are there: in-degree (number of 

edges coming in) and out-degree (number of edges going out).  

Moreover, if weights of the edges are considered to calculate 

degree, it is called the weighted degree of a node. Let us consider 

the network shown in Figure 2.2 where the weight of an edge 

between A and C is Wac, B and C is Wbc and B and D is Wbd. Then 

the weighted degree of a node is given by the sum of the weights of 

the direct connections. 

Weighted Degree of A = Wac, 

Weighted Degree of B = Wbc + Wbd, 

Figure 2.2. Network 2 

B 

A 

C 

D 

Wac 

Wbc 

Wbd 



17 
 

Figure 2.3. Network 3 

Figure 2.4. Network 4 

Weighted Degree of C = Wbc + Wac and 

Weighted Degree of D = Wbd 

2.2.3.3. BETWEENNESS CENTRALITY 

Another important network property of a node is its betweenness. The number of times a node is 

on a shortest path among all shortest paths (Freeman, 1979). In an undirected network, 

betweenness of a node i is 

              bi = ∑
𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡
𝑠≠𝑖≠𝑡  ,          

                                                                                                                         

where 𝜎𝑠𝑡 is total number of shortest paths from node s to node t 

and 𝜎𝑠𝑡(𝑖)  is the number of those paths that pass through i. In 

Figure 2.3, betweenness of A is 15 because it is on every path 

from all other pair of nodes and there are total 15 paths. All other 

nodes have betweenness of 0. 

2.2.3.4. CLOSENESS CENTRALITY 

Closeness of a node i gives the average shortest distance of that node to all other nodes in the 

network. Closeness is a node i in the network of n nodes is given by  

                                        Cc(i) = 
∑ 𝑑(𝑖,𝑗)𝑛−1

𝑛−1
 ,                                                                               

where d(i, j) is the shortest distance between i and j. 

 

 

 

In Figure 2.4, the closeness centrality of G is given by (1+2+3+4+5+6/6) = 3.5. Similarly, the 

closeness centrality of D is (1+2+3+1+2+3) = 2. It means that the average shortest distance of 

A 

B 

C 

G 

D 
F 

E 

A B C G D F E 
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Figure 2.5. Network 5 

node D is smaller than the node G. An inverse of the number is usually calculated to present that 

the higher the number, the higher the closeness.  

2.2.3.5. EIGENVECTOR CENTRALITY 

An eigenvector centrality of a node explains how well the direct connections of a node are also 

connected (Bonacich, 1987). It considers all the relationships in the network and assigns a relative 

score to every node. It can be understood as a degree centrality that spans the entire network. 

2.2.3.6. CLUSTERING COEFFICENT 

The clustering coefficient explains the small clusters formed by the nodes. The clustering 

coefficient of a node explains how well the neighbors of a node are connected (Watts & Strogatz, 

1998).  The clustering coefficient of a node, i, explains how well the direct connections of the 

node, i, are connected to each other. The clustering coefficient, Ci, of a node can be 

mathematically written as 

𝐶𝑖 =
2𝑙𝑖

𝑘𝑖(𝑘𝑖−1)
, 

where li is the number of links among the neighbors of the node i and ki is the degree of a node i. 

In Figure 2.5, node i has three connections (A, B and C). Among 

three nodes, maximum three links are possible (A-B, B-C and A-C). 

However, only one link i.e. A-B is present. Hence, the clustering co-

efficient of the node i is 1/3. Similarly, the clustering co-efficient of 

the other nodes can be calculated. 

 

 

i 

A 

B 

C 
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2.2.3.7.NETWORK DENSITY 

Density of a network is the proportion of edges present in the network. Density of a network with 

n nodes and E edges (undirected) is given by the ratio of number of edges present to the 

maximum number of edges possible. 

Network Density = 
𝐸

𝑛(𝑛−1)/2
 

Table 2.1. Definitions of network measures 

Network Measure Definition 

Nodes Nodes or vertexes are the elements among which relationships are studied. 

Edges An edge represents the relationship between nodes. 

Degree centrality Degree of a node explains its number of direct connections (Freeman, 

1979) 

Weighted Degree Degree calculated considering the strength of an edge. 

Betweenness 

Centrality 

Number of times a node is on a shortest path among all shortest paths 

(Freeman, 1979) 

Closeness 

Centrality 

Closeness of a node gives the average shortest distance of that node to all 

other nodes in the network (Freeman, 1979). 

Eigenvector 

Centrality 

Eigenvector centrality of a node explains how well the direct connections 

of a node are also connected (Bonacich, 1987). 

Clustering 

Coefficient 

The clustering coefficient of a node explains how well its neighbors are 

connected (Watts & Strogatz, 1998).   

Network Density Density of a network is the proportion of edges present in the network. 

2.3. ILLUSTRATION 

We illustrate the impact of sample size on the comorbidity network, an implicit network. We will 

first define comorbidity in our context and then explain the process to create a comorbidity 

network. 

2.3.1. COMORBIDITY 

Comorbidity is a medical condition when a patient is diagnosed with two or more diseases. 

Feinstein (1970) defined comorbidity as the presence of any other disease or complication in 

addition to the primary disease. The diseases present simultaneously can exist independently, or 

one disease causes another making them interdependent (Jakovljevic & Ostojic, 2013). These 
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conceptualizations do not consider the lifetime history of a patient but looks into the presence of 

diseases during a hospital visit. In other words, previous definitions focus on a much smaller 

timespan of a patient. Focusing on current patient information can help physicians to control 

comorbidities, but how the history of a patient is related to the current situation is not understood. 

If we look into the lifetime history of patients and find relationships between diseases, this can 

provide us additional understanding about comorbidities. In this paper, we delineate comorbidity 

considering the lifetime history of a patient rather than a single hospital visit. We define 

comorbidity as the presence of multiple diseases in the lifetime history of a patient. This 

definition has two advantages over previous definitions. First, the medical recording of a disease 

over multiple hospitals visits is only considered once. Considering the same disease as different 

across hospital visits can overestimate its presence and bias the analysis and conclusions. Second, 

our definition incorporates the impact of a disease on other diseases across multiple hospital 

visits, thereby incorporating the wider span of disease development. We use multiple similarity 

indexes to define a comorbidity that helps us to define it validly.  

2.3.2. COMORBIDITY NETWORK 

To create comorbidity networks, we used a real-world massive dataset from Electronic Medical 

Record (EMR). We obtained data from the Center for Health Systems Innovation (CHSI), a 

center at Oklahoma State University that houses data provided by Cerner Corporation, a major 

EMR provider. The data warehouse contains an EMR on the visits of more than 58 million 

unique patients across US hospitals (2000-2016). Among 58 million patients, nearly 24.7 million 

patients were diagnosed with at least one disease or a symptom. Moreover, there were 2.6 million 

patients who were coded only with symptoms. We did not use those patients in our analysis and 

extracted the remaining 22.1 million patient records for creating comorbidity networks. 
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We create a comorbidity network in which connections between diseases (nodes) are developed if 

diagnosed in the patients simultaneously. As noted in other implicit networks, a common way to 

define an association between two diseases is through their correlation in the database (Hidalgo et 

al., 2009). It can be useful to find the most correlated diagnoses but with a small sample, rare 

associations might not be captured because a correlation depends on the sample size (Egghe & 

Leydesdorff, 2009). Therefore, if the purpose is to find highly correlated diseases, Pearson’s 

Correlation Coefficient can be used to find them if the sample size is sufficient. However, if the 

purpose is to find rare or less correlated disease associations, PCC should only be used with large 

sample sizes. In contrast, Salton Cosine Index (Salton & McGill, 1986) does not account for the 

sample size but only considers the co-occurrences and prevalences of the diseases forming an 

edge. The cosine index has been used in the past to find phenotype overlaps (Chen et al. 2015; 

Lage et al. 2007); however, we propose it for finding the strength of a comorbidity. 

For this research, we require a transactional dataset to create a comorbidity network. In the past, a 

hospital visit in the EMR was considered as a transaction (Hidalgo et al., 2009), but as noted 

earlier, considering a hospital visit as a transaction to define a comorbidity has several 

shortcomings. Based on our definition of comorbidity, we consider the lifetime history of a 

patient as a transaction. A transaction contains multiple diseases diagnosed over time. The 

presence of multiple diseases in a patient throughout his lifetime are used to create associations 

between diseases. 

In our comorbidity network, nodes represent diagnoses. In an EMR, diagnoses are classified 

using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-

CM). An ICD-9 code has three, four, or five digits (xxx.xx). The first three digits represent the 

broader category of a disease. The fourth and fifth digits represent the sub-divisions of a disease. 

For example, the ICD-9 code for viral hepatitis is 070. At the four-digit level (070.x), there are 

eight types of viral hepatitis and at the five-digit level (070.xx), two other viral hepatitis are 
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coded. We aggregated ICD-9-CM codes to the three-digit level. Thus, variations of the same 

disease were considered as one node in the network. For example, there were multiple types of 

viral hepatitis but there was only one node for this disorder in our network. There are both 

advantages and disadvantages of aggregation. An advantage is the reduction in measurement bias. 

In contrast, the disadvantage is the compromise of granularity as different classes of the same 

disease can have a dissimilar impact. 

An edge was created between two diseases if they were comorbid. As there is no strong evidence 

regarding which disease leads to which other disease, we created an undirected network with no 

direction in the relationships. Using the process explained in the method section, we created 

twenty different comorbidity networks, ten each using Pearson’s correlation coefficient and 

Salton Cosine Index from different samples described in the following sections.  

2.4. ANALYSIS AND RESULTS 

2.4.1. SAMPLING AND COMORBIDITY NETWORKS 

The steps to find the influence of sample size on network structures are presented in a flowchart 

in Figure 2.6. First, information about patients, hospitals, types of visits, and diseases developed 

by the patients were joined for further analyses. The diseases were recorded according to the 

International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). 

There were several hospital visits in which patients were not diagnosed with any type of disease 

at all. These patients and hospitals were not considered for further analyses. 

In the second step, entries with invalid admission and discharge date/time and those with invalid 

entries for the disease were removed. We then aggregated the ICD-9 disease codes into three-

digit codes. At this stage, we had approximately 22.1 million unique patients with sufficient 

information to perform analysis. After data cleaning and preparation, we created ten random 

samples of patients starting from 100% of the patients to as small as 1000 patients. The values of 
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the network measures can be evaluated by taking multiple random samples from the same pseudo 

population and analyzing the variation in the values, as suggested by Wolda (1981).  We followed 

the same process suggested by the Wolda (1981) and drew ten samples. The ten random samples 

included: 1) 22.1 million patients (100%), 2) 11.1 million patients (50%), 3) 5.5 million patients 

(25%), 4) 2.75 million patients (12.5%), 5) 1.38 million patients (6.25%), 6) 500,000 patients, 7) 

250,000 patients, 8) 100,000 patients, 9) 50,000 patients and 10) 1000 patients.  

 
Figure 2.6. Flowchart of data preparation and analysis 

Step 2: Data cleaning and Preparation 

 Used three-digit ICD-9-CM disease 

codes 

 Removed error entries in the disease 

coding 

 Removed invalid entries in 

admission and discharge date time 

 Removed NULLs in the diseases 

Disease data 

Patient Data 

Step 1: Joined Hospital visit dataset with 

patient and disease datasets  
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From the ten random samples, comorbidity networks were created using PCC and SCI. PCCs of 

the edges and their statistical significance were calculated. From the comorbidity network of 22.1 

million patients, we found 14,463 significant edges with Pearson’s correlation coefficient 

significant at α=0.01. In the network developed from 22.1 million patients with SCI, at 14,463 

edges, the cutoff for SCI was 0.04. We compared the edges incorporated by the two indexes and 

found more than 95% of the edges to be common. The relationship between the two indexes is 

depicted in Figure 2.7. The majority of edges (more than 95%) at the SCI cutoff of 0.04 were also 

highly correlated (p<0.01). Therefore, from here onwards, we consistently use SCI cutoff of 0.04 

for creating an edge in all comorbidity networks. 

 

 

 

We created twenty different networks, ten each using Pearson’s correlation coefficient at p<0.01 

and Salton Cosine Index with minimum value of 0.04. We present a visualization of one 

comorbidity network in Figure 2.8. In the visualization, the diseases are colored based on the 17 

categories described by the ICD-9-CM. Size of a node represents its number of direct 

connections. It can be observed that some diseases are highly connected to other diseases whereas 

some are not connected at all. Some groups of diseases can also be observed indicating that the 

cluster of diseases are often diagnosed together in the patients.  
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Figure 2.7. Pearson’s Correlation Coefficient vs. Salton Cosine Index 
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Figure 2.8. Comorbidity Network. A circle is a disease; an edge represents a comorbidity. Size of a node explains how well it is connected 

to other nodes. 

ICD-9 Code: Description 
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The number of nodes and edges in all twenty networks are listed in Table 2.2. At the three-digit 

ICD-9 code level, there were 908 unique diseases or nodes in the network. The number of nodes 

remained the same until we decreased the random sample below 500,000 patients. The random 

sample of 250,000 patients contained almost 99% of nodes, the sample of 100,000 patients 

contained more than 97%, and the sample of 50,000 patients contained almost 95% of the nodes; 

however, the sample of 1000 contained substantially less diseases at only 63% of the total 

diseases. 

 

 

While the number of nodes did not decrease substantially until the patient sample was below 

50,000, the number of significantly correlated edges (p<0.01) in the network using PCC reduced 

with the decrease in sample size. The network created using 22.1 million patients comprised of 

14,463 edges but the network using half of the patients contained 11,088 edges. Further, the 

network developed using 1000 random patients only had five significantly correlated edges 

(comorbidities or pairs of diseases).  

On the other hand, the number of edges in the networks created using SCI did not change 

significantly with the number of edges remaining almost the same until the sample size decreased 

to 250,000 patients. In fact, looking at the density of the network, the density of networks using 

SCI remained the same throughout all the samples. On the other hand, the density drastically 

changed in the networks created using PCC. The change in density of the two types of networks 

with the indicated sample sizes are plotted in Figure 2.9. 

Table 2.2. Comorbidity networks nodes and edges 

No. of 

Patients 

22.1 M 11 M 5.5M 2.75M 1.38 M 500,000 250,000 100,000 50,000 1000 

Nodes 908 908 908 908 908 908 898 885 859 573 

Edges 

PCC 14,463 11,088 8,354 6,120 4,284 2,506 1,632 866 508 5 

SCI 14,463 14,311 14,283 14,238 14,195 14,178 14,073 13,769 13,502 5,935 
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2.4.2. EFFECT OF SAMPLE SIZE ON THE OVERALL STRUCTURE OF COMORBIDITY 

NETWORK 

Next, we demonstrate that the comorbidity network exhibits the small-world phenomenon (Watts 

& Strogatz, 1998). A network possesses a small-world property when multiple dense clusters are 

present in the network but the average path length (average distance between all pairs of nodes) is 

small, like a random network.  The clustering coefficient, C, is a measure of a small-world 

network and explains the small clusters formed by the diseases. The clustering coefficient of a 

node explains how well the neighbors of a node are connected (Watts & Strogatz, 1998).  With 

respect to the comorbidity network, the clustering coefficient of a disease, d, explains how well 

the direct connections of the disease, d, are connected to each other. The average clustering 

coefficient of the comorbidity network developed using 22.1 million patients was 0.487 

(including all nodes). This means that on average 48% of the links were present among the 

neighbors of every node. The clustering coefficient of a node d can be mathematically written as 

 𝐶𝑑 =
2𝑙𝑑

𝑘𝑑(𝑘𝑑−1)
, -(2.4) 
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Figure 2.9. Density of networks from different sample sizes using Correlation and Salton Cosine 

Index 
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where ld is the number of links among the neighbors of the node d and kd is the degree of a node 

d. For a network to possess small-world property, we require n>>k>>ln(n)>>1 (where n is the 

total number of nodes in the network) to make sure that the network is not disconnected into 

multiple sub-networks. In addition, two other conditions must be present: 1) the average path 

length of the network (Pcom) needs to be approximately the same as the random network (Prand) 

with the same parameters such as the number of nodes (n) and the average degree (k), and 2) the 

average clustering coefficient, Ccom, of the network requires it to be greater than the average 

clustering coefficient of an equivalent random network (Crand).  

To calculate the small-world property of all our networks, we focused on the giant connected 

component of each network. A giant component contains the maximum number of connected 

nodes either directly or indirectly connected. For example, the largest connected component of 

the network with 22.1 million patients using Pearson’s correlation coefficient contained 624 

nodes or diseases (n) with the average degree of this largest connected component being 46.3 (k).  

The average path length and clustering coefficient of a random network with n=624 and k=46.3 

can be calculated as Prand ~ ln(n)/ln (k) and Crand ~ k/n respectively. 

 Prand ~ ln (n)/ln (k) ~ 1.68 -(2.5) 

 Crand ~ k/n ~ 0.074 -(2.6) 

The actual average path length of our network is 2.452 (>~Prand) and the actual average clustering 

coefficient is 0.69 (>>Crand). These numbers meet the requirements for the small-world property 

and hence, we prove that our comorbidity network followed the small-world topology. The 

largest connected component’s number of nodes (n), average degree (k), average path length 

(Pcom), average clustering coefficient (Ccom), as well as the random network average path length 

(Prand) and average clustering coefficient (Crand) are listed in Table 2.3. 
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We compared the change in network structures of all the networks developed using PCC and SCI. 

Figures 2.10a to 2.10e compare the different features of the network topologies. As sample size 

decreases, the number of nodes in the largest connected component of network using Pearson’s 

correlation coefficient (PCC) decreases drastically. In contrast, the number of connected nodes in 

the network using Salton Cosine Index did not change until we decreased the sample size to 1.38 

million patients. Further reducing the sample size, the number of connected nodes started 

Table 2.3. Features of networks related to their topologies 

Sample Size n k Prand ~ ln (n)/ln (k) Crand ~ k/n Pcom Ccom 

22.1 Million Patients 

PCC 624 46.3 1.68 0.074 2.452 0.69 

SCI 631 45.8 1.69 0.072 2.460 0.69 

11 Million Patients 

PCC 591 37.5 1.76 0.060 2.620 0.67 

SCI 624 45.8 1.68 0.073 2.450 0.70 

5.5 Million Patients 

PCC 540 30.9 1.83 0.057 2.760 0.66 

SCI 619 46.0 1.68 0.074 2.440 0.70 

2.75 Million Patients 

PCC 483 25.2 1.91 0.052 2.900 0.61 

SCI 617 46.0 1.68 0.075 2.440 0.70 

1.38 Million Patients 

PCC 411 20.7 1.99 0.050 3.080 0.60 

SCI 612 46.0 1.68 0.075 2.430 0.70 

500,000 Patients 

PCC 310 15.8 2.08 0.050 3.158 0.59 

SCI 592 47.8 1.65 0.080 2.380 0.72 

250,000 Patients 

PCC 240 13.2 2.12 0.055 3.145 0.60 

SCI 584 48.0 1.65 0.080 2.362 0.73 

100,000 Patients 

PCC 171 9.80 2.25 0.057 3.930 0.55 

SCI 565 48.66 1.63 0.086 2.328 0.73 

50,000 Patients 

PCC 104 8.60 2.16 0.082 2.827 0.59 

SCI 550 49.0 1.62 0.089 2.273 0.73 

1000 Patients 

PCC - - - - - - 

SCI 399 29.7 1.77 0.074 2.204 0.72 

n-number of node  

k-average degree  

Prand-average path length of random network 

Pcom- average path length of our comorbidity network  

Crand-average clustering coefficient of random network  

Ccom-average clustering coefficient of comorbidity network 
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decreasing. With respect to the change in the path length of the networks, we can observe in 

Figures 2.10b and 2.10c that the difference between Prand and Pcom remained almost constant in 

the two types of networks. In the network using PCC, Prand and Pcom slightly increased with the 

decrease in sample size but the difference between the two remained constant until the sample 

size decreased to 250,000 patients. In contrast, in the network using SCI, Prand and Pcom remain 

almost the same with the decrease in sample size. The difference between the two remained 

constant until the sample size of 50,000 patients. 

A similar trend in the clustering coefficients of the two types of networks can be seen in Figures 

2.10d and 2.10e. In the network using PCC, there is a slight random variation in the Ccom with the 

change in sample size, but the difference between Crand and Ccom remained relatively large to keep 

the overall structure intact. We found the same dynamics in the network using SCI. The 

clustering coefficient Ccom remained the same in all samples and the difference between Crand and 

Ccom remained constant keeping the overall structure as same.  

For calculating the small-world property of each network, we require n>>k>>ln(n)>>1. As 

sample size decreased in the networks using PCC, the difference between k and ln(n) became 

small. This means the comorbidity network became disconnected and formed multiple 

disconnected sub-networks as the sample size decreased. This violates the requirement for 

calculating the small-world property of the network. Therefore, the decrease in sample size 

affects the small-world property in the network using PCC. However, in the networks using SCI, 

the small-world property persists throughout. Overall, SCI preserved the overall structure of the 

network with small sample size but PCC could not. 

 



31 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.3. EFFECT OF SAMPLE SIZE ON NETWORK METRICS 

When comparing the network metrics, we found interesting results (Table 2.4 lists the definitions 

of each metric along with the interpretation within the disease network context of our study). 

First, the influence of sample size on the measures is presented in Table 2.5 and Figures 2.11a to 

2.11h. In the networks created using PCC, all measures decreased with the sample size as 

observed in the figures; however, in the networks using SCI, we found that the average degree, 

average weighted degree, average closeness, average clustering coefficient and average  

Figure 2.10a. Number of nodes in largest connected component 

Figure 2.10b. Average path length in PCC network Figure 2.10c. Average path length in SCI network 

Figure 2.10d. Average clustering coefficient in 

PCC network 

Figure 2.10e. Average clustering coefficient in 

SCI network 
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Table 2.4. Network measures and their interpretation in our context 

Network Measure Definition Interpretation in our context 

Degree centrality Degree of a node explains its number of 

direct connections (Freeman, 1979) 

Degree of a disease is the 

number of diseases directly 

connected. 

Weighted Degree Degree calculated considering the 

strength of an edge. 

Degree considering 

comorbidity strength. 

Betweenness 

Centrality 

Number of times a node is on a shortest 

path among all shortest paths (Freeman, 

1979) 

Number of times a disease is a 

bridge between pairs of 

diseases. 

Closeness 

Centrality 

Closeness of a node gives the average 

shortest distance of that node to all 

other nodes in the network (Freeman, 

1979). 

Closeness centrality of a 

disease would represent how 

close a disease is to all other 

diseases in the network. 

Eigenvector 

Centrality 

Eigenvector centrality of a node 

explains how well the direct 

connections of a node are also 

connected (Bonacich, 1987). 

How well the neighbors of a 

diseases are related to other 

diseases. 

Clustering 

Coefficient 

The clustering coefficient of a node 

explains how well its neighbors are 

connected (Watts & Strogatz, 1998).   

Clustering coefficient of a 

disease explains how well the 

direct connections of the 

disease are connected to each 

other. 

Network Density Density of a network is the proportion 

of edges present in the network. 

It explains how dense is the 

disease network. 
 

 

eigenvector centrality of the networks remained constant until we decreased the sample size to 

1000, where we see fluctuation in all the measures. Hence, the network using as small as 50,000 

patients remains consistent with respect to the network measures. On the other hand, we observed 

that the average betweenness of the networks is the most inconsistent network measure among all. 

The average betweenness of the network did not change until we decreased our sample size to 1.38 

million patients; however, it suddenly decreased with the smaller sample sizes. Hence, with the 

smaller sample size, average betweenness is not a valid measure to make conclusions. 
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Table 2.5. Comorbidity networks properties 

No. of 

Patients 

22.1 M 11 M 5.5M 2.75M 1.38 M 500,000 250,000 100,000 50,000 1000 

Average Degree Centrality 

PCC 31.857 24.42 18.4 13.48 9.436 5.52 3.635 1.957 1.183 0.017 

SCI 31.859 31.52 31.46 31.36 31.267 31.229 31.343 31.116 31.437 20.72 

Average Weighted Degree Centrality 

PCC 1.983 1.74 1.5 1.263 1.023 0.731 0.554 0.358 0.245 0.009 

SCI 2.516 2.498 2.494 2.49 2.48 2.478 2.493 2.505 2.557 2.989 

Average Betweenness Centrality 

PCC 310.78 311.1 282.94 243.69 193.49 114.1 68.72 48.29 11.74 -- 

SCI 319.9 311.2 303.96 301.88 293.41 265.39 258.23 239.1 223.82 166.9 

Average Closeness Centrality 

PCC 0.297 0.267 0.246 0.218 0.188 0.15 0.135 0.084 0.089 -- 

SCI 0.298 0.296 0.295 0.294 0.294 0.289 0.289 0.29 0.297 0.323 

Graph Density 

PCC 0.035 0.027 0.02 0.015 0.01 0.006 0.004 0.002 0.001 -- 

SCI 0.035 0.035 0.035 0.035 0.034 0.034 0.035 0.035 0.037 0.036 

Average Clustering Coefficient 

PCC 0.487 0.445 0.4 0.333 0.282 0.218 0.172 0.116 0.092 -- 

SCI 0.487 0.486 0.484 0.484 0.484 0.476 0.478 0.471 0.473 0.5 

Network Diameter 

PCC 6 6 7 8 9 9 8 11 8 1 

SCI 6 6 6 6 6 6 6 5 5 5 

Average Eigenvector Centrality 

PCC 0.146 0.126 0.11 0.092 0.076 0.058 0.046 0.033 0.027 -- 

SCI 0.143 0.142 0.142 0.141 0.141 0.141 0.144 0.145 0.148 0.139 

Figure 2.11b. Average Degree 

Figure 2.11c. Average Weighted Degree Figure 2.11d. Average Betweenness 

Figure 2.11a. Number of edges 
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2.5. DISCUSSION AND CONCLUSION 

In this paper, we set out to study the impact of sample size on an implicit network created using 

Pearson’s correlation coefficient (PCC) and Salton Cosine Index (SCI). We found that PCC is not 

an appropriate index to draw relationships between nodes in an implicit network. The network 

properties and overall topology of the network using PCC get affected by sample size. On the 

other hand, we showed SCI to be an applicable measure for creating an implicit network because 

it does not depend on the sample size.  

We observed that the decrease in sample size reduced the number of statistically significant 

correlated relationships between nodes. In other words, the number of edges in the network using 

PCC decreased with the decrease in sample size. The highly correlated nodes still existed in the 

small sample size but the rare connections did not. Therefore, if the purpose is to find highly 

correlated nodes, PCC can be used. However, if the objective is to make conclusions on rare 

Figure 2.11e. Average Closeness Figure 2.11f. Network Density 

Figure 2.11g. Average Clustering Coefficient Figure 2.11h. Average Eigenvector 
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connections, PCC will not be able to catch those. In contrast, if SCI is used to make an implicit 

network, the same relationships can be observed in the network using small sample size that were 

seen in the network with large sample size. Therefore, it is recommended to use SCI if the sample 

size is small. 

With respect to the overall structure of the network, the network using PCC became disconnected 

with the decrease in sample size. However, the network using SCI possessed the small-world 

topology in the networks from all sample sizes. Because our demonstration was on a small-world 

network, we note here that our conclusions are generalizable to other implicit networks that 

follow the small-world property. Small-world property is observed in the brain network (Bassett 

& Bullmore, 2006), language networks (Solé et al. 2010), social networks, actor-actor network, 

power-grid network, and many others (Watts & Strogatz, 1998).  

Overall, we recommend researchers to consider SCI over PCC to create implicit networks. Our 

analysis is valuable to researchers studying networks as it establishes the need for choosing a 

right measure to create an implicit network for making valid conclusions. 

The large dataset allowed us to study a much wider array of nodes. At the same time, the sample 

does not have to include all the millions of records to provide useful insights. In our analysis, we 

found that one can use a sample of 100,000 patients or 50,000 patients sample to study 

comorbidities or network properties (except betweenness) respectively. However, these numbers 

can vary with the type of network studied. Therefore, we encourage other researchers to perform 

the same analysis in other types of networks. Moreover, our network followed small-world 

topology but other networks may follow a different topology. One must find the specific topology 

of their specific network. 

We add to the network theory by comparing the structure of networks developed using different 

sample sizes. Our recommendation to use SCI over PCC can help study the true relationships in 
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an implicit network. The use of SCI for creating a network preserves its structural properties even 

with smaller sample size. 
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CHAPTER III 
 

 

EXAMINING HEALTH DISPARITIES BY GENDER: A MULTIMORBIDITY NETWORK 

ANALYSIS OF ELECTRONIC MEDICAL RECORD1 

ABSTRACT 

Multimorbidity health disparities have not been well examined by gender. Co-occurring diseases 

may be mutually deleterious, co-occurring independently, or co-occurring from a common 

antecedent. Diseases linked by a common antecedent may be caused by biological, behavioral, 

social, or environmental factors. This paper aims to address the co-occurrences of diseases using 

network analysis. We identify these multi-morbidities from a large Electronic Medical Record 

(EMR) containing diagnoses, symptoms and treatment data on more than 22.1 million patients. 

We create multimorbidity networks from males and females medical records and compare their 

structural properties. Our macro analysis at the organ-level indicates that females have a stronger 

multimorbidity network than males. For example, the female multimorbidity network includes six 

linkages to mental health, wherein the male multimorbidity network includes only two linkages to 

mental health.  The strength of some disease associations between lipid metabolism and chronic 

heart disorders is stronger in males than females. Our multimorbidity network analysis by gender 

identifies specific differences in disease diagnosis by gender, and presents questions for 

biological, behavioral, clinical, and policy research. 

                                                           
1 This paper is under review at a journal. 
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3.1 INTRODUCTION 

Multiple ecological levels interact to influence disparities in health and health outcomes by 

gender. Health disparities observed between genders are caused by genetic, hormonal, 

physiological, behavioral, and sociocultural factors. Life expectancy at birth is notably longer for 

females at 81.4 years compared to males at 76.4 years (National Center for Health Statistics, 

2016). During this longer lifetime, females are more likely to visit the hospital or health care 

provider, but less likely to die (Oksuzyan et al. 2008). Notably this male-female health-survival 

paradox is explained by chronic diseases which are most prevalent by gender: females are more 

likely to experience pain, reproductive cancers, and depression, while males are more likely to 

experience cardiovascular disease and diabetes (Case & Paxson, 2004). Additionally, when males 

and females are compared on the same chronic diseases, males may experience severe cases of 

chronic disease. Previous epidemiological studies of health disparities address individual diseases 

experienced by gender; however, most patients are diagnosed with multiple diseases. The goal of 

this paper is to explore disparities among males and females diagnosed with more than one 

disease, and present research and policy implications. 

Two terms are often used to discuss the presence of more than one disease in a patient: 

comorbidity and multimorbidity. Comorbidity is a condition when an additional disease is 

diagnosed in presence of an index disease (Feinstein, 1970).  Multimorbidity is defined as the 

coexistence of multiple chronic diseases and conditions in a patient (van den Akker, Buntinx, & 

Knottnerus, 1996; van den Akker et al., 1998). Throughout this manuscript we will use these 

terms interchangeably to denote co-occurrence of diseases, unless we need to specifically 

highlight the differences between comorbidity and multimorbidity. Previous studies on 

comorbidities have controlled for gender but rarely focused and reported differences in genders 

explicitly as pointed out by Short, Yang & Jenkins (2013). Further examination of comorbidities 



39 
 

by gender may be critically important for treatment of disease, and in identifying 

contraindications of common pharmaceuticals. The availability of large medical records affords 

the opportunity to study all possible disease relationships as observed in practice. 

We adapt a network approach to model the multimorbidities (Euler, 1953). Networks are formed 

from the interactions between the elements or nodes. Network analysis has been used in health 

and medical literature to understand the interaction of genes (Goh et al, 2007; Ferrazzi et al. 

2007), molecular involvement in disease (Barabási, Gulbahce, & Loscalzo, 2011), drug trials 

(Haslam and Perez-Breva, 2016), and historical epidemiological data on disease phenotypes 

(Hidalgo et al.,2009; Chen and Xu, 2014). Tai and Chiu (2009) applied association rule mining to 

create comorbidity network in ADHD patients using clinical database. Similarly, Chmiel, 

Klimek, and Thurner (2014) applied network approach to study the prevalence of different cluster 

of diseases over lifetime of genders. However, to the best of our knowledge, no one has applied 

this approach to study multimorbidity by gender in order to better understand health disparities.  

In this paper, we develop and compare multimorbidity networks for males and females based on 

ICD-9 (International Classification of Diseases, Clinical Modification) codes of diagnoses. Our 

network comprises diseases connected based on the co-occurrences of diseases in 22.1 million 

patient records. The use of large dataset is another strength of our study. Knowing the 

relationships between diseases at the network level will enhance our understanding about disease 

associations at the patient population level.  

3.2 METHOD AND ANALYSIS 

In this section, we begin by describing the data and explaining how we measure the 

multimorbidity in our context. Next, we present a method to develop a multimorbidity network. 

Then, we briefly describe the properties of the network that can explain the position of a disease 

in a web of other diseases, and help us understand differences between males and females. 
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3.2.1 DATA DESCRIPTION 

We obtained data from the Oklahoma State University Center for Health Systems Innovation 

(CHSI), which houses HIPAA compliant patient data provided by Cerner Corporation, a major 

Electronic Medical Record (EMR) provider. The data warehouse contains an EMR on the visits 

of 58 million unique patients across 662 US hospitals (2000-2016). We used information about 

the demographics of the patients, hospitals and disease diagnoses coded by ICD-9 system2. We 

removed several hospital visits in which patients were either not diagnosed with a disease or were 

marked only for symptoms. After data preprocessing, we had approximately 22.1 million unique 

patients with the sufficient information to perform analysis.   

We extracted medical records for males and females in two different datasets from this pseudo-

population dataset for comparing comorbidities by gender. The datasets were further cleaned 

based on the detected anomalies in particular category. For example, there were a few patients 

who were coded as a male during one visit and a female or null in another. Although males can 

also have breast diseases biologically, we removed the male patients diagnosed with such 

diseases with a suspicion that these are erroneously coded (ICD9: 610-612)3. We also removed 

males who were diagnosed with diseases such as inflammatory diseases of female pelvic organs 

(ICD9: 614-616)4, and complications of pregnancy, childbirth, and the puerperium (ICD9: 630-

679)5. Similarly, we removed female patients diagnosed with diseases of male genital organs 

(ICD9: 600-608)6. After cleaning the data, we had records of 12 million female patients and 9.9 

million male patients. From the two samples, networks were created, one each for males and 

females. 

                                                           
2 From the last quarter of 2016, the diagnoses in Cerner EMR are required to be coded in ICD-10 system. However, we 

did not consider the last quarter to maintain the consistency in our data analysis and considered only ICD-9 codes. 

3 There were 38,980 male patients with ICD-9 codes 610-612, which is 0.34% of the male database. 
4 1,594 patients 
5 20,009 patients 
6 8,627 patients 



41 
 

3.2.2 MEASURING MULTIMORBIDITY 

In the past, comorbidity and multimorbidity were largely defined at the cross-sectional level 

(Feinstein, 1970; Jakovljevic and Ostojic 2013). The chronic diseases, which we would not 

expect to go away in one hospital visit, could be overestimated from the medical records because 

they are recorded multiple times in an EMR. However, we delineate multimorbidity considering 

the lifetime history of a patient rather than a single hospital visit. We measure multimorbidity as 

the presence of multiple diseases in the lifetime history of a patient. This measurement has two 

advantages over previous definitions. First, the EMR recording of a disease over multiple 

hospitals visits is only considered once. Considering the same disease as different across hospital 

visits can overestimate its presence and bias the analysis and conclusions. Second, our definition 

considers the impact of a disease in one visit on subsequent visits. Therefore, it incorporates a 

wider span of disease developments. However, there is a concern of taking into account the 

association between diseases diagnosed across hospital visits occurring after long period of time. 

Given the relatively short time span of the database (17 years), short average length between first 

and last hospital visit in the database (527 days), average number of hospital visits of a patient 

being 5.1 (all types of visits including inpatient, outpatient, etc.) and statistical analysis on 

millions of patients, we mitigate the concern of false positives. 

3.2.3 MULTIMORBIDITY NETWORK  

A multimorbidity network developed from patients contains a set of nodes connected through 

edges. In our network, nodes represent diseases. In an EMR, an ICD-9 code of a disease has 

three, four or five digits (xxx.xx). The first three digits represent the broader category of a 

disease. The fourth and fifth digits represent the sub-divisions of the disease. For example, the 

ICD-9 code for personality disorder is 301. At four-digit level (301.x), there are ten types of 

personality disorders and at five-digit level (301.xx), two other specific personality disorders are 

coded. We aggregated ICD-9-CM codes to three-digit level. Thus, variations of the same disease 
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were considered as one node in the network. For example, multiple types of personality disorders 

mentioned above were aggregated into one node in our network.  

An edge or connection between two diseases is created if these are comorbid. Since our focus is 

not to establish causality of a multimorbidity, we created a network with no direction in the 

relationships. For example, the comorbidity comprising congestive heart failure and rheumatic 

heart disease will be represented as an undirected edge between the two nodes representing the 

two diseases regardless of their causal relationship. 

In the past, associations between diseases or comorbidities were modeled using a simple 

Pearson’s correlation coefficient (Divo et al., 2015; Hidalgo et al., 2009). However, number of 

significant correlations is directly proportional to the number of observations used. Power to 

detect rare comorbidities is low because of the rareness of events. Therefore, to establish the right 

measure to model a comorbidity, we use a cosine index known as Salton Cosine index (Salton & 

McGill, 1986). SCI is immune to the total number of observations used (Ahlgren, Jarneving, & 

Rousseau, 2003) and measures the prevalence of a relationship between two diseases considering 

their individual prevalence. Salton Cosine Index, SCI, is calculated as in equation (1), where cij is 

the number of co-occurrences of diseases i and j, ci is the prevalence of disease i and cj is the 

prevalence of disease j. The cosine similarity has been used in the past to find phenotype overlaps 

(Chen et al. 2015; Lage et al. 2007). We propose this as an appropriate measure for finding the 

strength of a comorbidity. 

𝑆𝐶𝐼𝑖𝑗 =
(𝑐𝑖𝑗)

√(𝑐𝑖∗𝑐𝑗)

  –  (1) 

Statistical significance of SCI was determined by assessing the relationship between correlation 

and SCI, because this approach has been suggested in the past to find the cut-off for SCI (Egghe 

& Leydesdorff, 2009). First, we determined the number of comorbidities significantly correlated 
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in a network created using Pearson’s correlation coefficient. Then, we related the number of 

comorbidities in the network created using Salton Cosine Index and found a cut-off where 

number of significantly correlated comorbidities are equal in both networks. In the network from 

entire database using Pearson’s Correlation Coefficient, at p<0.01, there were 14,463 

significantly correlated comorbidities. Meanwhile, at the SCI cut-off of 0.04, the number of 

comorbidities were 14,463. Therefore, we used the cut-off of 0.04 for creating different networks 

for males and females. Then, the comparison between the networks was made using the network 

measures briefly described in the next section. 

3.2.4 NETWORK METRICS 

The structural properties of a network can be measured using several network metrics. These 

include degree, weighted degree, closeness and betweenness centrality (Freeman, 1979). In a 

multimorbidity network, the degree centrality of a disease (node) denotes the number of direct 

connections with other diseases. The weighted degree centrality of a disease considers the 

strength of the relationships with others and is calculated as a weighted sum of the strengths of 

the relationships. The closeness centrality of a disease determines an average number of steps it is 

away from other diseases in the network. A disease with higher closeness has a higher risk of 

being diagnosed with other diseases in less number of steps. Finally, the betweenness centrality of 

a disease describes its bridgeness. In other words, a disease with higher betweenness tends to be 

forming more bridges between other diseases.  

3.3 RESULTS AND DISCUSSION 

3.3.1 COMPARISON OF MALE AND FEMALE MULTIMORBIDITY NETWORKS 

The visualizations of female and male multimorbidity networks are presented in Figures 3.1a and 

3.1b respectively. In the visualization, the diseases are color coded based on the 17 

categories/classes/organ systems described in the ICD-9 classification. These classes are also 
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listed in Figure 3.1. Size of a disease node represents an association with other disease(s), or its 

number of direct connections to other disease(s). The female multimorbidity network contains 

300 diseases not connected to any other disease as compared to 265 diseases in the male 

multimorbidity network. In the female network, the diseases that are connected to at least one 

other disease in the network form three different sub-networks labelled as connected components. 

There is a primary cluster of diseases in the female network labelled as connected component-1 

suggesting all diseases are associated to each other directly or indirectly. The two secondary 

clusters in the females were for burns (ICD9:941-945, 948, 949) and a pair of appendicitis codes 

(ICD9: 540-541).  

3.3.2 NETWORK PROPERTIES 

The properties of each network are listed in Table 3.1. The number of nodes or diseases in two 

networks are different as some diseases are unique to each gender. There were 839 diseases 

reported in males and 899 unique diseases in females at three-digit ICD-9 codes, that is, 7% more 

unique disease diagnoses in females. In the male network, there were 12,498 comorbidities as 

compared to 14,810 in females. Recall the edge strength denotes the magnitude of comorbidity. 

Out of all the edges detected above, 10,607 were common between both sexes. A pair-wise 

comparison of these 10,607 edge strengths indicates stronger comorbidities among females (t 

value=12.67, p<0.0001).  

Although females have stronger and more comorbidities overall, we found some disease 

associations to be stronger in males than females.7 These include disorders of lipid metabolism - 

chronic ischemic heart disease; disorders of fluid electrolyte and acid base balance - acute kidney 

                                                           
7 It has to be noted that we focus on the top comorbidities based on their strength and not the frequency. In 

addition, comorbidities are discussed if they belong to distinct classes or organ systems listed in Figure 1 and 

Table. 
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failure; benign neoplasm of parts of digestive system and hemorrhoids - diverticula of intestine; 

diabetes - chronic ischemic heart disease; anemias - hypertensive chronic kidney disease; and  

     

     

 

 

Connected  

Component 3: 

ICD-540,541  

(Appendicitis) 
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001-139: Infectious and parasitic 
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140–239: Neoplasms 

240–279: Endocrine, nutritional and 

metabolic diseases, and immunity 

disorders 

280–289: Diseases of the blood and 

blood-forming organs 

290–319: Mental disorders 

320–359: Diseases of the nervous 

system 

360–389: Diseases of the sense 

organs 

390–459: Diseases of the circulatory 

system 

460–519: Diseases of the 

respiratory system 

520–579: Diseases of the digestive 

system 

 580–629: Diseases of the 

genitourinary system 

630–679: Complications of 

pregnancy, childbirth, and the 

puerperium 

680–709: Diseases of the skin and 

subcutaneous tissue 

ICD-9      Description 

Figure 3.1a. Female Multimorbidity Network 

Figure 3.1b. Male Multimorbidity Network 
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disorders of lipid metabolism – cardiac dysrhythmias. The average degree and weighted degree of 

the two networks were statistically different. Although the aggregated closeness and betweenness 

centralities of the two networks were not statistically different, we found several differences with 

respect to specific diseases in the two genders. For instance, acute upper respiratory infections 

and disorders of urethra & urinary tract form relatively more bridges between other diseases in 

females than males. On the other hand, the disorders of skin and subcutaneous tissue form a 

bridge between multiple other diseases more often in males than females. 

3.3.3 ORGAN LEVEL NETWORK COMPARISON 

We aggregated the relationships depicted in the networks in Figures 3.1a and 3.1b at the organ 

system level or class system categorized in the ICD-9 classification (See Table 3.2). We present 

two macro level networks at the class/organ system level in Figures 3.2a and 3.2b for females and 

males, respectively. The diseases of different classes were aggregated at the class level by adding 

up their weights (Salton Cosine Index). We highlight the connections between diagnoses of 

different classes if their aggregated weight is more than ten. This cut-off of ten is to study the 

Table 3.1. Gender multimorbidity networks properties 

 Female Male Pair-wise sample t 

test (Female-Male) 

No. of patients 12 M 9.9 M N/A 

Nodes (Diseases) 899 839 N/A 

Edges (Comorbidities) 14,810 12,498 N/A 

Avg. Degree (Degree of a disease is the number of 

diseases directly connected to it) 

32.948 29.793 6.15, p<0.0001 

Avg. Wt. Degree (Degree calculated as a weighted sum 

of the strength of the comorbidities) 

2.592 2.365 4.50, p<0.0001 

Avg. Betweenness ( Number of times a disease is a 

bridge between pairs of diseases) 

266.9 291.5 -1.78, p=0.07 

Avg. Closeness (Closeness centrality of a disease would 

represent how close a disease is to all the other diseases 

in the network) 

0.293 0.285 0.80, p=0.42 

Graph Density 0.037 0.036 N/A 
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most prevalent relationships. However, one could select a lower cut-off to analyze the rare 

connections.  

We present a unique way to visualize the relationships between disorders of different organ 

systems by creating an outline of a human body and mapping the categories of the diseases on it 

(See Figures 3.2a and 3.2b). In the ICD-9 classification, some categories can be directly related to 

the organ system present on a specific position in human body such as circulatory system (class-

8), mental disorders (class-5), digestive system (class-10), respiratory system (class-9), and 

genitourinary system (class-11). However, other classes such as 1-4, 6-7, and 12-18 cannot be 

related to a specific organ system as listed in Table 3.2.  The classes directly related to an organ 

system are mapped at the positions of the particular organ system in the human body. The classes 

that are not related to a specific organ system are presented outside the human sketch. The size of 

a node denotes the number of connections to other nodes. The width of an edge between two 

classes represents the aggregated weight (aggregated Salton Cosine Index) or the strength 

between them. The same connections can be observed in the Table 3.3 where a comparison is 

made between the two networks. 

Table 3.2. ICD-9 code classification 

Class 

No. 

Description ICD-9 codes 

range 

Mapped on organ 

system 

1 Infectious and parasitic diseases 001–139 No 

2 Neoplasms 140–239 No 

3 Endocrine, nutritional and metabolic diseases, and immunity disorders 240–279 No 

4 Diseases of the blood and blood-forming organs 280–289 No 

5 Mental disorders 290–319 Yes 

6 Diseases of the nervous system 320–359 No 

7 Diseases of the sense organs 360–389 No 

8 Diseases of the circulatory system 390–459 Yes 

9 Diseases of the respiratory system 460–519 Yes 

10 Diseases of the digestive system 520–579 Yes 

11 Diseases of the genitourinary system 580–629 Yes 

12 Complications of pregnancy, childbirth, and the puerperium 630–679 No 

13 Diseases of the skin and subcutaneous tissue 680–709 No 

14 Diseases of the musculoskeletal system and connective tissue 710–739 No 

15 Congenital anomalies 740–759 No 

16 Certain conditions originating in the perinatal period 760–779 No 

178 Symptoms, signs, and ill-defined conditions 780–799 N/A 

18 Injury and poisoning 800–999 No 

                                                           
8 Not considered in the analysis 
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* Class 17 is symptoms and thus not included in the analysis 

 

Table 3.3. Class associations in Female and Male Networks 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 

Infectious and parasitic [1]                  

Neoplasms [2]                  

Endocrine, nutritional, 

metabolic, and immunity 

disorders [3]                  

Blood and blood-forming 

organs [4]   M               

Mental disorders [5]   F               

Nervous system [6]   F               

Sense organs [7]                  

Circulatory system [8]   FM FM FM FM            

Respiratory system [9]   FM  F   FM          

Digestive system [10]   FM FM FM   FM FM         

Genitourinary system [11]   FM     FM F FM        

Pregnancy, childbirth, and 

the puerperium [12]                  

Skin and subcutaneous 

tissue [13]                  

Musculoskeletal system and 

connective tissue [14]   FM  F FM  FM F FM F       

Congenital anomalies [15]                  

Perinatal period [16]                  

Injury and poisoning [18]   F  F   FM F F    FM    

Figure 3.2a. Female Organ Comorbidity Network     Figure 3.2b. Male Organ Comorbidity 

Network 
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The Figures 3.2a-3.2b and Table 3.3 show which organ systems diseases are diagnosed 

simultaneously more often in different genders. The female network is clearly denser than the 

male network with more connections. Notably, there are several multimorbidities present in the 

female network not present in male network at the selected cut-off. These are highlighted in Table 

3.3 and notated by an F in each area of comorbidity. There is only one males-specific comorbidity 

as compared to eleven comorbidities noted as significant only among females. For example, 

mental disorders in males are associated with the disorders of circulatory and respiratory systems. 

However, female patients with mental disorders are at risk of diagnoses belonging to multiple 

other organ systems such as circulatory respiratory, digestive and musculoskeletal systems in 

addition to the injury, poisoning, endocrine, nutritional, metabolic, and immunity related 

disorders. Similarly, the disorders of genitourinary system are strongly associated with the 

disorders of respiratory system, musculoskeletal system and connective tissue in females than 

males. The disorders of musculoskeletal systems are also more strongly connected to other 

disorders in women than men. The musculoskeletal disorders such as osteoarthritis are known to 

be more prevalent in females (Woolf & Pfleger, 2003) but other observed multimorbidity 

differences by gender need further research. 

The above discussed relationships between diagnoses of different organ systems are more 

strongly connected in females than males. However, the comorbidity of endocrine, nutritional, 

metabolic diseases, and immunity disorders (3) with disorders of the blood and blood-forming 

organs (4) was only observed in males. Each connection needs further investigation so as to find 

the reasons for differences in genders. Recognition of these observed multimorbidities also may 

suggest greater precautions to be taken by patients themselves or the physicians to watch for 

related symptoms. 

Our observed networks of comorbidities from the EMR data confirm the prevalence of higher 

comorbidities in females than males as supported by the previous research (Blazer, et al. 2002; 
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Moller-Leimkuhler, 2007). Notably, this study conforms previous work which identified a greater 

proportion of diagnosis of reproductive cancers and mental health diagnoses among females. 

However, contrary to previous research, we also note that the strength of some comorbidities are 

stronger in males than females.  

Multimorbidity networks were different may be due to gender differences in care seeking 

behaviors among females because a greater frequency of care seeking behavior in females 

increases the risk of multiple disease diagnoses (Corrigan, 2004). Moreover, the disparity 

between mental health multimorbidities in males and females is striking: perhaps physician 

implicit bias (Chapman, Kaatz & Carnes, 2013) and patient care seeking behaviors play a role in 

the diagnosis of mental health disorders by gender.  Previous research suggests that social factors 

discourage men from seeking mental health care (Corrigan, 2004). Therefore, the absence of 

strong multimorbidities with mental health among men was expected.  

Notably, there was only one male dominated comorbidity in the network, disorders of blood and 

blood-forming collectively and disorders related to the endocrine, nutritional, metabolic, and 

immunity collectively, which were found more strongly connected in males than females. There 

could be a few potential explanations for this relationship: HIV infection or obesity. HIV 

infection is still the highest among men, and would be comorbid with an immunity diagnosis. 

Factors associated with obesity were strongly represented in the initial male multimorbidity 

network, many of these linked lipids, heart disease, diabetes, and digestive neoplasms; therefore, 

it is most likely that these diagnoses are linked to obesity, which has multiple antecedents 

addressed by public health.   

Analysis of the network centralities (particularly weighted degree) suggested acute kidney failure, 

chronic kidney disease and chronic ischemic heart disease to be more strongly connected to other 

diseases in males than females. Moreover, diabetes mellitus emerged to be one of top diseases in 
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males in terms of closeness (but the closeness number of diabetes in males was still smaller than 

females). Diabetes diagnosis is typically associated with overweight and obesity, and is often 

multimorbid with cardiovascular and other diagnoses related to overweight and obesity.  

3.4 CONCLUSIONS 

Better understanding of multimorbidity networks may allow for better screening and 

identification of diseases among patient populations, accounting for uniqueness for males and 

females in research measuring multimorbidity. These networks may improve health outcomes and 

reduce healthcare costs associated with hospital length of stay and readmission. The impact of 

comorbidity on the health outcomes has been studied in the past, but different network related 

properties have not been discussed in the public health literature. We shall establish the 

relationships between these concepts as a part of our future research.  

Our study contributes both to the method and practice. With respect to the method contributions, 

we presented a novel approach to study multimorbidities at a population level. The network 

approach allowed us to study all the multimorbidities at once. Our paper is one of the first to 

apply a network approach to understand public health, particularly in the context of 

comorbidity/multimorbidity. The knowledge extracted from the large historical data can improve 

clinical decisions and outcomes as discussed by Tierney (2001). 

The analysis presented in this study has several practical implications. We mainly developed 

insights for health researchers. However, our study has implications for policy makers. In 1993, 

National Institute of Health (NIH) Revitalization Act was passed to encourage researchers to 

include women and minorities in clinical trials. Our analysis validates the disparities in diagnoses 

by genders, and thus we reinforce the need for considering the gender multimorbidities in clinical 

trials. In addition, education at every level should reinforce teaching of multimorbidity 

differences across population groups. We provide evidence to the gender disparities in public 
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health through multimorbidity lens and support the global calls by Ovseiko, et al. (2016), 

Johnson, et al. (2014) and other thought leaders to recognize gender differences in health 

research.  

This study has few limitations. First, our multimorbidities were based on the electronic health 

records and therefore, only the diagnoses recorded in specific hospitals was included. It is perhaps 

impossible to record lifetime history of a human in medical records. Hence, this limitation 

remains in all studies based on medical records. Second, we focused on the gender. However, we 

also recognize that the health disparities exist based on race and ethnicity (Fine, Ibrahim & 

Thomas, 2005). Studying such disparities is part of our current research. Third, we only discussed 

simple network metrics such as degree, closeness and betweenness centrality. However, other 

complex measures such as clustering coefficient, cliques, clubs, eigenvector centrality, etc. can 

provide more information about the multimorbidities. Next, the differences were reported if the 

diseases were of different organ systems. However, the comorbidities related to the same organ 

system can also help enhance our understanding about the multimorbidities. We will explore 

these in future research. We also note that there were thousands of comorbidity differences in 

different population groups and we could not report them in this paper. Instead, we have attached 

supplementary materials containing information on relationship of every disease with others. One 

can focus on one particular disease and find multimorbidities in our provided material. 

Notwithstanding these limitations, our study shows that Big Data and advanced analytics of large 

information can help gain new insights previously hard to discern (Tierney, 2001). We showed 

that advanced analytics methods such as network analysis can provide additional dimensions to 

understand the public health. Our study analyzed a dataset of millions of patients where diseases 

form a network and suggest that the structure of a network can have several implications. 

Moreover, there are several differences in different population groups in terms of multimorbidity 

network that should be considered while dealing with the comorbidities. Our study opens up an 
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exciting and important area of research for policy makers, economists, social scientists and 

medical experts to treat different groups of population differently. 
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CHAPTER IV 
 

 

HEALTH ANALYTICS LEAD TO MORE QUESTIONS: A COMORBIDITY LENS 

APPROACH 

ABSTRACT 

As we amass more data, we have an opportunity to analyze a pseudo population to better 

understand differences in health across population groups. The way patients belonging to 

different population groups develop comorbidities can have a major impact on their health 

outcomes. The differences in the diagnoses associations across populations groups can be 

examined by studying comorbidities found in the historical Electronic Medical Record (EMR). In 

this chapter, we apply the data analytics approach to extract knowledge about the comorbidities 

rooted in EMR. To model comorbidities, we draw on the network theory and develop multiple 

comorbidity networks based on co-occurrences of diseases in different population groups. We 

create and compare comorbidity networks for different races, Medicaid/non-Medicaid patients 

and Medicare/non-Medicare patients. This leads to developing multiple research questions that 

need to be explored in the future research. The interesting findings and theory implications are 

discussed. 
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4.1 INTRODUCTION 

The sample size in many past studies looking at the impact of diagnoses on health has been an 

issue. New questions may emerge by knowing more about the diagnoses and their interactions 

among each other from a much larger sample that is more reflective of nearly the size of the 

population. Due to the lack of availability of sufficient data and advanced technologies, past 

clinical research has largely focused on studying the impact of diseases on fewer patients. The 

conclusions derived from studying fewer patients might not be rigorous, complete and 

generalizable.  

Due to the acceptance of Electronic Medical Record by the hospitals, availability of health data 

for pseudo population is now possible. This gives the opportunity to apply Big Data technologies 

and techniques for analyzing such large datasets and ask new questions. Due to availability of 

massive datasets, it is now possible to study all possible diagnoses and their interactions at the 

same time. The interaction of a disease with other diseases may have different consequences. 

Studying diseases at the relational or interactional level can provide additional insights about their 

joint impact on the health or health related metrics such as the expected hospital length of stay, 

readmission rate, etc. 

The objective of this chapter is to extend the analysis performed in Chapter 3 to other groups of 

population based on race and insurance type. For race, six different comorbidity networks are 

compared: Pacific Islander, Asian, Caucasian, African American, Hispanic and Native American. 

For insurance type, first a comparison between Medicaid and non-Medicaid patients is made. 

Then, networks for Medicare and non-Medicare patients are created and compared. These 

comparisons will help generate new research questions because such comparisons at the 

comorbidity level have not been possible in the past due to the lack of data. 
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4.2 COMORBIDITY NETWORK ANALYSES OF RACES 

Is race a socially constructed term or can it be characterized genetically? There has been a long 

argument going on for years among public health researchers. There are two groups in public 

health; one of which supports the argument of social construction and another argue for genetic 

differences. Although two groups are ideologically apart, both agree that there are health 

disparities among different races. The research on race health disparity can be divided into three 

components as postulated by Fine, Ibrahim, and Thomas (2005): 1) identifying health disparities, 

2) understanding the reasons for disparities, and 3) developing interventions to eliminate 

disparities. In this study, we contribute to the first line of research and identify differences in 

races using the administrative data of more than 22 million patients in US hospitals. 

Previously, researchers have identified differences in diagnoses among races using administrative 

data. For example, Bresnahan et al. (2007) found babies born from African Americans mothers 

were more likely than whites to be diagnosed with schizophrenia. However, to the best of our 

knowledge, no one has comprehensively studied the differences in races through comorbidity 

lens.  

For creating the race specific networks, we removed patients with ambiguous entries such as 

patients those were reported belonging to one race at one time and another at other time. In 

addition, the sample size difference in race was of higher moment of magnitude with 14 million 

Caucasians, 3.5 million Afro-Americans, 590,000 Hispanics, 400,000 Asians, 158,000 Native 

Americans and 25,500 Pacific Islanders. Since the lowest sample size was quite small among all 

the races (25,500 for Pacific Islanders), we randomly extracted almost equal number of patients 

as the second smaller sample i.e. 158,000, for all races. This led us compare the multimorbidity 

networks at the same level with balanced samples. Using each sample, a comorbidity network is 

created. Therefore, a total of six networks are created and compared. 



57 
 

Table 4.1 lists the properties of comorbidity networks of all races. All the networks have almost 

equal number of diagnoses except Hispanics. The number of unique diagnoses in Pacific 

Islanders is perhaps driven by the sample size but it forms the densest network of all with 15,064 

pairs of diagnoses. Considering others, the number of diagnoses pairs in African-Americans were 

found highest followed by the Caucasian, Native Americans, Asians and Hispanics being the 

least. Now the question arises that can these results be attributed to differences in genetics in the 

races? Or are these difference due to the differences in the facilities available to diagnose or 

record such data to some races? Although researchers have both types of arguments to answer 

these questions, these need further explanation with respect to multimorbidity. 

 

In the literature, the impact of comorbidities on the health outcomes of different races has been 

studied. For instance, Olson and authors studied the impact of race and comorbidity on survival 

rate in endometrial cancer patients (Olson et al., 2012). However, how and why comorbidities 

differ across different races and reasons for the differences are not much explored. Is it because 

the clinical trials are dominated by white males? (Oh et al., 2015). This is a very strong argument 

and needs to be addressed in future research. 

Like in Chapter 3, we present comorbidity network of different organ systems for each race in 

Figures 4.1a to 4.1f. To compare all differences at one place, we listed all connected in Table 4.2. 

We clearly see the differences in the networks. For example, the link between the disorders of 

      Table 4.1. Race comorbidity networks properties 

African American Caucasian Hispanics Asian Native American Pacific Islander 
 

No. of patients 
 

176,093 173,282 167,086 159,975 157,880 25,414 
 

Number of unique diagnoses 
 

892 884 872 889 887 829 
 

Number of Connections 
 

15,871 13,389 6,390 8,623 11,560 15,064 
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      Figure 4.1a. Caucasian Network             Figure 4.1b. African- American 

Network 

        Figure 4.1c. Asian Network  Figure 4.1d. Hispanic Network 

         Figure 4.1e. Native Network       Figure 4.1f. Pacific Network 
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Table 4.2. Comorbidities across races 

F – African Americans          A - Asians            C – Caucasians        H- Hispanics      N – Native Americans                 P-Pacific Islanders 

 4 5 6 7 8 9 10 11 12 14 15 18 

Infectious and parasitic [1] 
                        F     F                                         

                                                                        

Neoplasms [2]                                                             

Endocrine, nutritional & 

immunity disorders [3] 

F     F   C F           F A C F   C F A C F A C       F A C             

  N             P     P H N P   N P   N P   N P         N P     P   N   

Blood and blood-forming 

organs [4] 

                        F   C       F   C                               

                          N           N P                               

Mental disorders [5] 
                        F   C     C     C                             C 

                P         N           N P                           N   

Nervous system [6] 
                        F   C                         F   C             

                      P   N             P                       P       

Sense organs [7] 
                                                                        

                                  P     P                       P       

Circulatory system [8] 
                              F A C F A C F A C       F A C       F   C 

                              H N P   N   H N P         N           N   

Respiratory system [9] 
                                    F   C F   C       F   C       F     

                                      N P                       P       

Digestive system [10] 
                                          F   C       F   C             

                                            N                   P       

Genitourinary system [11] 
                                                F     F   C             

                                                                        

Pregnancy, childbirth, and 

the puerperium [12]                                                                         

Skin and subcutaneous tissue 

[13]                                                                         

Musculoskeletal system and 

connective tissue [14] 

                                                                  F   C 

                                                                    N   

Congenital anomalies [15]                                                                         

Perinatal period [16]                                                                         

Injury and poisoning [18]                                                                         

 

F African-Americans C Caucasians A Asians H Hispanics P Pacific Islanders N Native Americans 
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the digestive system (10) and genitourinary system (11) is only present in African-American 

network and not in others. Moreover, the comorbidities involving disorders of sense organs are 

more prevalent in pacific islanders. Among all, the Hispanic is least dense than others. Does that 

mean Hispanics are healthier than others on an average or are there other reasons? These findings 

are supported by the Hispanic paradox, which argues that Hispanics enjoy mortality advantage 

(Markides & Eschbach, 2005). Can comorbidity lens explain more about the health of Hispanics? 

Sociologists and medical experts have to further research on these differences from the 

comorbidity length. 

4.3 COMORBIDITY NETWORK ANALYSES OF MEDICAID AND NON-

MEDICAID PATIENTS 

 
We performed an interesting analysis to find comorbidity differences in poor and non-poor 

population. To do so, we extracted two samples; one with Medicaid patients and other without 

Medicaid. By Medicaid patients, we mean the patients who were enrolled in Medicaid programs 

throughout their lifetime and non-Medicaid patients mean that they were never enrolled in the 

Medicaid programs. There were about 15% patients in the dataset who were enrolled at least once 

in Medicare program. However, there were about 1.2 million patients (5.7%) patients who were 

always in Medicaid patients. We used only those patients assuming them as poor. To compare the 

poor with non-poor, we extracted an equivalent sized random sample of patients who were never 

enrolled in Medicaid programs at any point of time in their life.  

The networks’ statistics are listed in Table 4.3. The networks drawn from the samples show that 

the poor patients get diagnosed with 23% less number of comorbidities than the non-poor 

patients. For many years, it has been continuously reported that Medicaid patients get lower 

quality of care (Thompson et al. 2003; Yazdany et al., 2014). Due to the lower quality of care, do 
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poor patients not get diagnosed with all comorbidities? This clearly need further explanation from 

comorbidity perspective. 

 

 

 

 

 

To see the differences at the class/organ system level in two groups of patients, Figures 4.2a and 

4.2b are presented. There are only two comorbidities in Medicaid network above our cutoff. This 

is a very critical issue and require immediate attention. 

 

 

 

 

 

 

4.4 COMORBIDITY NETWORK ANALYSES OF MEDICARE AND NON-

MEDICARE PATIENTS 

Another comparison we performed was between Medicare and non-Medicare patients. This 

comparison mostly presented the comorbidity networks differences based on age. The Medicare 

      Table 4.3. Medicaid and non-Medicaid comorbidity networks properties 

Medicaid Non-Medicaid 
 

No. of patients 
 

1,253,513 1,277,998 
 

Number of unique diagnoses 
 

906 907 
 

Number of Connections 
 

7,792 10,147 

       Figure 4.2a. Medicaid Network         Figure 4.2b. Non-Medicaid Network 
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patients are at least 65 years of age. We had 3.4 million unique patients who were enrolled in any 

Medicare program. To compare the comorbidities in relatively older patients, we extracted an 

equal number of patients enrolled in other payer programs. It is well known that the number of 

diagnoses and comorbidities increases with age and we found similar results in comorbidity 

networks. Table 4.4 presents the network properties of the two networks. The number of 

comorbidities in Medicare patients were 72% more than the non-Medicare patients at our Salton 

Cosine Index cutoff of 0.04. 

 

 

 

 

 

Similar to other comparisons, we compare the Medicare and non-Medicare comorbidities at the 

organ system/class level as shown in Figures 4.3a and 4.3b. As expected, there are huge 

differences between the two networks. A lot more edges are present at the organ level in 

Medicare patients as compared to the non-Medicare patients. 

 

 

 

 

 

      Table 4.4. Medicare and non-Medicare comorbidity networks properties 

Medicare Non-Medicare 
 

No. of patients 
 

3,441,719 3,211,775 
 

Number of unique diagnoses 
 

908 908 
 

Number of Connections 
 

18,248 10,549 

Figure 4.3a. Medicare Network         Figure 4.3b. Non-Medicare Network 
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4.5 DISCUSSION 

We performed comprehensive descriptive analyses of the comorbidity networks across the US 

populations using the data analytics approach of extracting knowledge from the data. We have 

presented many comorbidity differences in the population groups. These differences are required 

to be analyzed by the researchers in the future. These differences raise many questions for the 

medical experts, social scientists, economists and policy makers to answer. The new interesting 

insights and answers to the questions can help medical experts improve their decisions. 

We add to the data analytics literature by illustrating the power of descriptive analysis. Through 

data analytics, we dig into the data and based on the results, new questions emerged. This 

approach is similar to the overarching idea of Grounded Theory Methodology (GTM) (Glaser & 

Strauss, 2009; Glaser, Strauss, & Strutzel, 1968; Strauss & Corbin, 1967). In the past, GTM is 

discussed to be similar to the data analytics methodology. For instance, Müller et al. (2016) 

suggested to use the lens of GTM in data analytics studies. The authors summed up their 

argument as follows:  

“IS researchers choosing to apply a BDA [Big Data Analytics] approach might want to consider 

some of the principles of grounded theory. Like grounded theorists, BDA researchers will spend 

an extraordinary amount of time on understanding the nature of the data, particularly if they have 

not collected them themselves.” (Müller et al., 2016, p. 3) 

Both data analytics and GTM involve discovering relationships between concepts from the data. 

There are methods available to perform data analytics such as CRISP-DM (Shearer, 2000) and 

SEMMA (Azevedo & Santos, 2008). However, these lack guidelines to connect the outcomes to 

the theoretical contribution. A methodology to perform rigorous and relevant data analytics study 

is required that can provide clear guidelines to add to the knowledge base. We believe GTM can 

provide rigorous guidelines to perform data analytics. 
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The analysis presented in this chapter has several practical implications. The effect of one disease 

on the other is explored in the past, however, we comprehensively studied all relationship 

between diagnoses in one picture. These types of analyses are only possible if such a large dataset 

equivalent to the population is available.  

The descriptive analyses provided evidence that the relationships between diagnoses are different 

across patients. Based on the differences in relationships, we provided insights on the 

comorbidities in particular. Moreover, these relationships can have different impacts on the health 

outcomes of the patients such as mortality rate, length of stay and readmission arte. Following 

this, we establish the relationship of network properties with length of stay and mortality risk in 

Chapters 5 and 6 respectively. 
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CHAPTER V 
 

 

WHEN WILL I GET OUT OF THE HOSPITAL? MODELING LENGTH OF STAY USING 

COMORBIDITY NETWORK 

ABSTRACT 

A reliable and accurate estimate of the expected hospital length of stay (LOS) of a patient is 

important to patients, hospitals, and insurance companies. But predicting LOS is a complex, ill-

structured, and dynamic decision-making problem. While recognizing that multiple factors 

interact with each other when predicting LOS, we specifically focus on the impact of co-

occurrences of diseases in a patient (known in medical terms as comorbidities). Comorbidity has 

been used most often in the previous research to explain the length of stay. However, it has rarely 

been used to predict LOS, because the information about the entire hospital visit is required to 

know the actual comorbidities.  To model and predict comorbidities from a large database 

containing medical history of patients, we create a comorbidity network in which co-occurring 

diseases form relationships. The network helps predict likely comorbidities at the point of 

admission based on the primary diagnosis of the patient. Because there is a gender disparity in 

comorbidity, we develop different networks for men and women using information on one 

million patient records in 662 US hospitals (2000-2016), The structural properties of the network 

are used to measure the comorbidities in a patient and create a model to explain and predict 

patients’ LOS using another set of 2.2 million patient visits.  The performance of our model is  
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compared with the extant models, which it outperforms. The theoretical and practical implications 

of our study are discussed.   

5.1 INTRODUCTION 

When will I get out of the hospital? This is the first question every patient asks when he or she is 

admitted to the hospital, because a longer stay increases costs in terms of health, time, and 

money. In addition to its importance to the patient, a reliable and accurate estimate of the 

expected length of stay (LOS) at the point of admission also helps healthcare providers and 

insurance companies. From a hospital’s perspective, LOS is an important metric to measure the 

quality of care as discussed by Thomas, Guire and Horvat (1997). Prolonged stays also increase 

utilization of beds, care, staff, and equipment, and negatively affect the efficiency of patient flow 

systems. Given that hospital inpatient care constitutes nearly one-third (29%) of all healthcare 

expenses in the United States, it is important to correctly estimate LOS to manage workloads 

across departments and accurately plan for discharges to minimize readmissions.  An early 

estimation of LOS is also crucial to insurance companies as it is directly related to the total 

payments made to providers. It can help with precertification (determining whether the selected 

medical services meet criteria for medical necessity under the member's benefits contract) and 

estimation of actuarial cost during admission. Given the importance of predicting LOS at the 

point of admission to different stakeholders, this paper attempts to create an explanatory and 

predictive model for estimating it. Because past attempts at predicting LOS resulted in low 

accuracy and limited applicability across multiple diseases, the problem remains open for further 

study. 

Prediction of LOS, like many other healthcare problems, is a wicked, complex, ill-structured, and 

dynamic decision-making problem, as argued by Meyer et al. (2014). A problem may be defined 

as complex and ill-structured when its underlying state is unknown, it has multiple competing 
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outcomes, and it is affected by the interaction of multiple factors (Funke, 1991; Simon, 1973). 

Moreover, the environment under which it is tackled is dynamic and unpredictable, with time-

delayed consequences for actions taken. Predicting LOS is also complex because the underlying 

reasons for a hospital stay may not be clearly identified. Moreover, several patient-level, disease-

level, hospital-level, and unknown factors (e.g. medical injuries during hospitalization) interact 

with each other in this environment. It is important to study these multiple factors to predict LOS.  

In this study, in addition to focusing on patient and hospital-level factors, we also examine the 

interactions of diseases with one another. To model complex interactions among diseases and 

symptoms in patients, we apply a network approach. This approach provides a theoretical 

understanding of the embeddedness of a disease or symptom within the web of diseases, and can 

present the complex structure of a system in a smooth and stable form. These terms were used by 

Dhar et al., (2014) when they applied the approach to convert a complex structure of products 

purchased together on Amazon.com into a network, relating structural properties with product 

demand.  

A network is a representation of interconnected parts, or nodes, of a system linked through well-

defined connections or edges. This approach cuts across all traditional disciplines of science 

including management, engineering and social sciences. We use it to create a network of diseases 

to understand the collective behavior of diseases and their effects on the health outcomes, 

particularly LOS. Our contribution is to employ network properties inferred from such analyses 

and then use those for predictive analytics through second level model building. In other words, 

properties derived from the network models are used further for predictive analysis of an outcome 

(i.e. LOS), which is exogenous to the network.  

To know how diseases form relationships and interact with each other, we use information on 

comorbidities (a medical condition in which two or more diseases are diagnosed simultaneously 



68 
 

(Feinstein, 1970)). For example, the simultaneous presence of diabetes and pneumonia in a 

patient is a comorbid condition. Comorbidity is considered an important factor in health outcomes 

such as mortality, LOS, and readmission because two diseases jointly can have a different impact 

than the same two diseases individually. This joint impact is known as syndemicity, a term coined 

by Singer (1996).  

In this paper, we develop a comorbidity network based on co-occurrences of diseases in a large 

number of patients. In our network, diseases form connections based on comorbidities. A 

connection in a comorbidity network has a different meaning than one in a traditional network, 

such as an online social network. In a social network, members make the decision to connect with 

others. In a comorbidity network, a connection represents an aggregation of comorbidities in 

patients, who are external to the network. An aggregation of a large number of patients provides a 

simple model of disease relationships. Developing such a model explicitly based on each 

disease’s attributes would be incredibly complex and probably futile.  

Comorbidity has been used most often in the previous research to explain the length of stay. 

However, it has been rarely used to predict LOS, because the information about the entire 

hospital visit is required to know the actual comorbidities for that specific patient.  In contrast, 

our comorbidity network is used to predict the possibility of other diseases in the presence of an 

index disease, and therefore can be used to make predictions for LOS at the point of admission. 

To the best of our knowledge, this is the first such use of a comorbidity network for predicting 

LOS. 

To develop our comorbidity network and make predictions, we use an Electronic Medical Record 

(EMR) containing information about more than 24.7 million patients across 662 US hospitals 

over 17 years (2000-2016). The use of this massive dataset is one of the strengths of our study. 

Due to the lack of availability of sufficient data and advanced technologies, past research largely 



69 
 

studied the impact of fewer diseases or fewer patients which may have resulted in conclusions 

that were not rigorous or complete.  

In addition, we develop separate comorbidity networks for men and women. Previous studies 

controlled for gender but rarely focused on and reported differences in males and females 

explicitly, as noted by Short, Yang and Jenkins (2013). It is important to study gender differences 

because men and women might respond differently to a disease in the presence of another. Some 

thought leaders such as Ovseiko, et al. (2016) and Johnson, et al. (2014), have strongly argued for 

the recognition of gender differences in health research, and we respond to their call. 

Our study contributes to the Information Systems literature by developing an information-based 

model for the healthcare industry that predicts LOS. This model improves decision-making 

outcomes and can be integrated to enhance existing Information Systems. Our models and 

algorithms generate business value from the data, which is one of the contributions of analytics 

research as deliberated by Agarwal and Dhar (2014). In addition, our approach is robust and 

easily implementable. 

The network approach used in our study helped us create a new measure for quantifying and 

predicting the comorbidities in patients. As Shmueli and Koppius (2011) explained in their 

commentary, measure development is one of the roles of analytics in scientific research. Our 

measure enhances the understanding of the joint impact of diseases on LOS. In addition, we add 

to the existing knowledge by comparing our approach with competing models. 

This study also contributes to the network science and analytics literature by presenting an 

application of how a network and its properties can be used for modeling. The network provides 

researchers with a new dimension that improves the contextual intelligence about comorbidities. 

The network illustrates the direct as well as indirect relationships among diseases, and the 

position of a disease in the network defines the risk associated with it, known as structural risk 
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(Coleman, 1988). The risk possessed by a disease can have several direct or indirect 

consequences on patients, hospitals, and providers. We measure structural risk through the 

network metrics such as node centralities. Our paper is one of the first to analyze this risk in the 

context of comorbidities and syndemics.  

Our network is one of a class that emerges without the intentions of its source, often referred to as 

unintentional or implicit (Roth et al., 2010). Patients are the source, but the network is formed 

without their intentions. This class differs from traditional or explicit networks, which are 

developed from the intentional actions of its members. A list of networks is presented in Table 

5.1, half of which are formed without the intentions of their source. 

Table 5.1. Different categories of network based on the purpose of formation 

Network Name Source of Network 

Intentionally Formed 

Online Social Network Users 

World Wide Web Web pages and links 

Road Network Interconnected roads 

Power Grid Network Cables connecting power units 

Airport Networks Airlines connecting airports 

Unintentionally Formed 

Co-citation Network References in documents 

Actor-Actor Network Movies 

Product-Product Network Users purchases 

Drug-Drug Network Patients or hospital visits 

Comorbidity Network Patients or hospital visits 

 

We take the application of implicit networks to next level, exploring how they impact the 

uncontrollable performance of the external source. In other words, can a collective behavior of 

the network formed unintentionally affect outcomes of the source? In our comorbidity network, 

positions of the diseases are used to predict LOS, which is an uncontrolled performance. This 

approach can be applied to solve problems in other domains. For instance, product co-purchase 

network can be used to predict future spending based on the current shopping cart. 
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In section 2, we review related works on LOS, comorbidities, and the research gaps this study 

attempts to fill. In section 3, we describe our baseline models and comorbidity network models, 

and include a demonstration of comorbidity network building.  In section 4, we discuss our data 

processing and analysis, and address issues relating to Electronic Medical Record (EMR). We 

also present the explanatory and predictive power of the models proposed in this study. In Section 

5 we discuss the implications of our results. 

 

5.2 LITERATURE REVIEW 

5.2.1 LENGTH OF STAY 

The problem of predicting length of stay (LOS) has been studied for a long time. We present a list 

of competing studies and identify the current state of art in Table 5.2. The table indicates whether 

the predictive performance of the models developed by the studies is reported, and whether the 

models are applicable at the point of admission. The majority of these studies focused on the 

entire hospital visit, and therefore did not have predictive ability.  

Previous models built to estimate LOS used common factors at the patient level and hospital level 

and some also considered external factors. Patient level factors included age, gender, race, and 

diseases diagnosed in the patients. Some studies also considered lab tests and procedures to 

explain LOS, such as Yang et al. (2010), Clague, et al. (2002), Liu et al. (2010) and Chertow, et 

al. (2005). There is some evidence that insurance type affects LOS, with Medicaid insurance 

holders having longer stays than others (Mainous, et al. 2011; Lopez-Gonzalez, et al. 2014). At 

the hospital level, the size of a medical unit, consultant, and clinical events occurring during the 

visit were found to be significant in some studies, e.g. Elixhauser et al. (1998). Huntley, et al. 

(1998) showed that LOS was affected by the number of previous admissions because it indicates 

that the patient’s situation is critical. External variables affecting LOS included the day of the 

week when a patient was admitted. For instance, Carter and Potts (2014) found a longer stay for 
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Table 5.2. A review of selected papers on Length of Stay and Comorbidity 

Paper Setting Sample Size Comorbidity Point of 

admission 

Predictive 

Performance 

Network 

Properties 

Performance 

Chertow, et al. (2005) Acute kidney injury 19,982 N N N N R-Square -33% 

Lowell & Davis (1994) Schizophrenia and Affective disorder 829 N N Y N Accuracy – 35% 

Lopez-Gonzalez et al. 

(2014) 

Medicaid, Uninsured and Private 

insurance 

20.8 million N N N N Not reported 

Thombs, et al. (2007) Acute burn injury in 70 burn centers 31,338 Y Y N N Not reported 

Librero, et al. (1999) Public healthcare system in 12 hospitals 106,673 Y N N N Not reported 

Lyketsos, et al. (2002) Psychiatric inpatients in a hospital 950 Y N N N Not reported 

Furlanetto & da Silva 

(2003) 

Inpatients in a general ward of a hospital 317 Y N N N Not reported 

Mainous et al. 2011 Ambulatory care–sensitive (13 categories 

of diseases) 

849,866 Y N N N Not reported 

Carter & Potts (2014) Knee operation 2,130 Y Y Y N Classification – 

24.5%-76.9% 

Hachesu et al. (2013) Coronary artery disease 2,064 Y N Y N Classification - 96.4% 

Liu et al. (2010) All – one healthcare system (multiple 

hospitals) 

155,474 Y Y N N R-square-14.6% 

Clague, et al. (2002) Hip fracture in a hospital 662 Y N N N R-square- 20.7% 

Huntley, et al. (1998) One Psychiatric center 769 Y Y Y N R-Square-17.6% 

Rochon et al. (1996) Spinal-cord injured 330 Y N N N R-square – 6.2% 

Elixhauser et al. (1998) Inpatients from 438 acute care hospitals 1.7 million Y N N N R-square - 12%-39% 

Yang et al. (2010) Sepsis patients in one hospital 6,929 Y N N N R-square - 21%-34% 

This Study All types of patients in 662 hospitals 

across US 

3 million Y Y Y Y R-Square-38% (Max 

72%) Accuracy: 65% 
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knee operation patients if admitted on Sunday, Tuesday, or Wednesday. Another factor 

considered by several studies was the discharge destination, which can affect hospital discharge 

decisions. Carter and Potts (2014) found shorter LOS for patients discharged to home as 

compared to those discharged to other facilities. The above brief review helped us determine the 

variables we used to create the baseline models in our study that are available at the point of 

admission, such as demographic, insurance type, admission type, and hospital size. 

As discussed earlier, prediction of LOS is a wicked and ill-structured problem, as evidenced by 

the performance of models in previous studies. The explanatory power of these models is as low 

as 6% r-square for spinal-cord injury patients as found by Rochon et al. (1996) and as high as r-

square of 39% for patients with low back pain by Elixhauser et al. (1998). With respect to the 

predictive power in terms of mean absolute error, again the accuracy is less than 35% on average. 

Some studies have also attempted to predict a range of LOS such as Carter & Potts (2014) and 

Hachesu et al. (2013). However, this approach is less practical because suggesting a range of LOS 

may not help physicians and insurance companies with decision-making. 

5.2.2 LENGTH OF STAY AND COMORBIDITY 

Comorbidity has been shown to be related to the LOS in the past, as the presence of two or more 

conditions impacts patients’ stays because more care and resources are required to cure those 

conditions jointly. Many studies focused on one disease at a time, identifying the comorbidities 

related to a hospital stay. For instance, Hachesu et al. (2013) studied comorbidities of coronary 

artery disease, Yang et al. (2010) considered sepsis, Lowell and Davis (1994) included 

schizophrenia and affective disorder, Thombs, et al. (2007) examined burn injury, Lyketsos, et al. 

(2002), Furlanetto and da Silva (2003), and Huntley, et al. (1998) analyzed psychiatric-related 

comorbidities.  
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In the literature, there is no consensus on the definition of comorbidity. The concept of 

comorbidity is theorized using four distinctions by Valderas, et al. (2009).  The first is based on 

the nature of the health conditions occurring concurrently. The second is based on the relative 

importance of the co-occurring conditions. In this case, one disease is given more importance 

than the others., and the presence of other conditions in addition to it is considered comorbidity. 

The third distinction is based on the chronology of development of the conditions. It is possible 

that multiple diseases develop concurrently or one disease leads to another, but it is not easy to 

draw causal relationships between them.  Finally, the fourth distinction considers illness burden 

and patients’ socioeconomic conditions that can play a role in the presence of multiple diseases. 

In these four distinctions, Valderas and colleagues considered patients’ clinical and 

socioeconomic factors to conceptualize comorbidity. On the other hand, Jakovljevic and Ostojic 

(2013) defined comorbidity as a medical condition in three different ways based on only diseases 

diagnosed in patients. First, it is when two diseases are present simultaneously but independently. 

Second, it is when one disease causes another, making them interdependent. Third, it is the 

presence of multiple diagnoses regardless of their causal relationships. 

These previous definitions of comorbidity do not consider the lifetime history of a patient, but 

rather look at the presence of diseases only during a hospital visit. Focusing on current patients’ 

information can better help physicians to control comorbidities; however, how the history of a 

patient is related to the current situation is not understood. If we instead look into the lifetime 

history of patients and find relationships between diseases, this will provide additional 

understanding about comorbidities. This is the approach we adopt in this paper. We define 

comorbidity as the presence of multiple diseases in the lifetime history of a patient. This 

definition has two advantages over previous definitions. First, the medical recording of a disease 

over multiple hospitals visits is only considered once. Considering the same disease as different 

across hospital visits can overestimate its presence and bias the analysis and conclusions. Second, 
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our definition incorporates the impact of a disease on other diseases across multiple hospital 

visits, thereby considering a wider span of disease developments. Our definition is also useful for 

prediction purposes because a comorbidity developed in one patient during one hospital visit may 

be observed across two hospital visits in another patient. Therefore, considering a longer time 

span allows us to draw true relationships between diseases. There is some concern about 

considering the association between diseases diagnosed during hospital visits that occur with long 

intervals in between. Given the relatively short time span of our database (17 years), the short 

average length between first and last hospital visit in the database (527 days), the average number 

of hospital visits of a patient (5.1, including all types of visits), and the statistical analysis on 

millions of patients, we mitigate the concern of false positives. 

To measure comorbidity, many comorbidity scales have been proposed. de Groot et al. (2003) 

identified twelve different indexes, concluding that the Charlson Index, the Cumulative Illness 

Rating Scale (CISR), the Index of co-existent Disease (ICED), and the Kaplan Index are reliable 

measures and can be used in clinical research. Since CISR, ICED, and Kaplan require clinical 

judgment and information, we consider only the Charlson Index when comparing the 

performance of our model because it is based on medical records.  

The Charlson Index assigns weights to 19 different medical conditions. It was originally created 

for predicting mortality. Later, it was found to be related to LOS by several studies. For instance, 

Librero, Peiró, and Ordiñana (1999) conducted a simple bivariate analysis to see the increase in 

LOS with respect to the different levels of Charlson Index comorbidity scores, finding that LOS 

increases with the Charlson Index score. Rochon et al. (1996) also found a significant relationship 

between LOS and comorbidity indexes, however with low effect (R2 = 0.06). 

Past studies have rarely used comorbidity scales for prediction purposes because information 

about an entire visit is necessary to know all diseases in a patient. Some of those studies are listed 
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in Table 5.2. If information about comorbidities at the point of admission is not available, it is 

difficult to use it to make predictive models for LOS. Therefore, a mechanism is required to first 

predict the comorbidities and then use it for LOS predictions. Another limitation of the past 

research on comorbidity is that the existing scales are unable to consider all the diseases at the 

same time. Through our network approach, we can study all interactions at once.  

From the literature review, we identify three research gaps. First, most past studies restricted their 

analyses to a few categories of diseases and patients, and their models are only applicable to the 

specific types of patients they studied. Our study aims to create a unified model for patients and 

to analyze the model performance for different categories of patients. Second, the Charlson Index 

considers only a subset of diseases. In this paper, we apply a network approach to measure all 

disease relationships from a database encompassing millions of patients in the United States. We 

also compare the model developed using our approach with the model using Charlson Index. 

Third, to the best of our knowledge no one has applied a network approach and used structural 

properties to predict LOS. Our study attempts to fill all of these research gaps. 

5.3 MODEL DEVELOPMENT 

 
In this section, we describe baseline models using the variables considered in past studies, and 

then describe how we develop a comorbidity network and use its properties to build models at 

hospital-visit level to explain and predict LOS 

5.3.1 BASELINE MODELS 

We created different baseline models to explain and predict LOS using the variables considered 

in the previous studies. From the preceding literature review, we identify the following 

information to build our baseline models: demographics (age, gender, race), visit (primary 
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diagnosis, patient type, admission type, number of previous admissions), hospital (size measured 

by number of beds), and insurance type. In addition, we also create a few new variables that can 

affect LOS. One measures the number of times a patient had already been admitted due to the 

same primary diagnosis, because it is possible that LOS decisions made by providers can be 

influenced by multiple admissions with the same diagnosis. Another variable is the number of 

different organ systems involved in the primary diagnoses and other diseases present during 

admission. This is important because LOS can be influenced by efforts and resources required to 

simultaneously cure diseases belonging to different organ systems. For instance, Braunstein et al. 

(2003) studied elderly patients with chronic heart failure and found non-cardiac comorbidities to 

be associated with health outcomes. We also calculate the Charlson Index from the known 

diseases at the time of admission to compare the performance of this extant index with our 

proposed measure. It was calculated as the weighted sum of scores of known diagnoses as 

suggested by D'hoore, Sicotte, and Tilquin (1993).  

We build four hierarchical baseline models to study the impact of different factors. In the first 

linear baseline model, only patient demographics, visit characteristics (excluding primary 

diagnosis) and hospital information are used (See equation 5.1). The patient-level information 

includes age, gender and race; visit characteristics include patient type, admission type, insurance 

(payer), number of previous admissions (visitNumber) and number of previous admissions due to 

the same disease (revisit); and hospital data include size of the hospital in terms of number of 

beds. For each multi-level variable (such as race, hospital size, admission type and payer) a set of 

parameters is estimated. Each of the parameters 𝛽3, 𝛽5, 𝛽6 and 𝛽7 represents a set. For the 

variables having one level, (i.e. 𝛽1, 𝛽2, 𝛽4, 𝛽8 and 𝛽9 ) a single value parameter is estimated. 

Baseline 1: LOS = 𝛽0 + 𝛽1𝑎𝑔𝑒 +  𝛽2𝑔𝑒𝑛𝑑𝑒𝑟 + 𝛽3𝑟𝑎𝑐𝑒 + 𝛽4𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑇𝑦𝑝𝑒 +  𝛽5𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑦𝑝𝑒 +

 𝛽6𝑝𝑎𝑦𝑒𝑟 + 𝛽7ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑆𝑖𝑧𝑒 +  𝛽8𝑟𝑒𝑣𝑖𝑠𝑖𝑡 +  𝛽9𝑉𝑖𝑠𝑖𝑡𝑁𝑢𝑚𝑏𝑒𝑟 + 𝑒         -(5.1) 
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The second baseline model is built by including the information about the primary disease of the 

patient and number of different organ systems or categories involved in the known diagnoses to 

the first baseline model (see equation 5.2). This model considers the impact of the primary reason 

for the visit on LOS. To compare the performance of our model with the existing model of 

comorbidity, a third baseline model is created to estimate LOS using a competing measure, 

Charlson Index (see equation 5.3). The final hierarchical baseline model is created using the all 

the variables defined in first three baseline models to see their joint relationship with LOS as 

presented in equation 5.4. 

Baseline 2: LOS  =Baseline 1 +𝛾.  [

𝑑1

𝑑2

⋮
𝑑𝑛

]+ e       -(5.2) 

Baseline 3: LOS = 𝛽0 +  𝛼. 𝑐ℎ𝑖 + 𝑒        -(5.3) 

Baseline 4: LOS = Baseline 1+ Baseline 2+ Baseline 3     -(5.4) 

5.3.2 MODELING USING COMORBIDITY NETWORK 

The traditional baseline models described above do not consider comorbidity; however, they 

represent important factors for explaining and predicting LOS. Since all comorbidities might not 

be known at the time of admission, we use the relationships between diseases through historical 

patterns to predict comorbidities related to the primary diagnosis. These relationships from the 

patterns can also help estimate LOS. In this sub-section, we explain the development of our 

comorbidity network and describe how network metrics such as centralities of a disease can 

impact LOS. Then, the models using network properties are described.  

 

5.3.2.1 COMORBIDITY NETWORK 

In a comorbidity network, diseases are connected to each other if they are likely to co-occur in a 

patient. As discussed earlier, comorbidity networks are implicit and a link between two diseases is 
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defined from the co-occurrences in a specified time interval. For our definition of a comorbidity, 

the lifetime history of a patient is considered as a transaction. This is analogous to creating a lifetime 

market basket for a buyer based upon multiple individual transactions. Of course, we recognize that 

the history may be incomplete. A patient may have gone to a hospital or hospitals that do not use 

same data collection system, and thus records may be missing. But this is still the best available 

compilation. A transaction may contain multiple diseases diagnosed over time, and in that case they 

will be used to discern associations among diseases. Let T(d1, d2, d3,…dt) denotes a transaction, 

where d1, d2, d3,…dt is a subset of all diseases D(d1, d2, d3,…dn) with n≥t. 

A comorbidity network developed from N patients is denoted by C (D, E) where D is a set of n 

nodes and E is a set of edges. In our comorbidity network, nodes represent diagnoses. We use an 

Electronic Medical Record (EMR) in which conditions, including both diagnoses and symptoms, 

are classified as International Classification of Diseases, Ninth Revision, Clinical Modification 

(ICD-9-CM). An ICD-9 code has three, four or five digits (xxx.xx). The first three digits 

represent the broader category of a disease, and the fourth and fifth digits represent sub-divisions 

of a disease. For example, the ICD-9 code for personality disorder is 301. At the four-digit level 

(301.x), there are ten types of personality orders and at the five-digit level (301.xx), two other 

specific personality disorders are coded. We aggregated ICD-9-CM codes to the three-digit level. 

Thus, variations of the same disease are considered as one node in the network. There are 

advantages and disadvantages of aggregation. The advantage is reduction in the measurement 

bias. A disadvantage is the compromise to granularity as different classes of the same disease can 

have dissimilar impacts.  

An edge Eij is created between two diseases di and dj ({di, dj} ∈ D and i, j = 1 to n) where i<j as 

the network is undirected. Since the focus is on relationships based on co-occurrences and not the 

causality, we created edges between diseases with no direction. For example, an edge between 
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congestive heart failure and rheumatic heart disease represents an undirected connection between 

two nodes representing two diseases.  

In the past, associations between diseases or comorbidities were modeled using a simple 

Pearson’s correlation coefficient (Divo et al., 2015; Hidalgo et al., 2009). In the network using 

Pearson’s correlation coefficient, the coefficient PCCij of an edge Eij between diseases di and dj is 

calculated as 

  𝑃𝐶𝐶𝑖𝑗 =
(𝑐𝑖𝑗∗𝑁)(𝑖𝑐∗𝑗𝑐)

√(𝑐𝑖∗𝑐𝑗)(𝑁−𝑐𝑖)(𝑁−𝑐𝑗)

              -(5.5) 

where cij is the count of patients containing both di and dj diseases, ci is the count of patients 

diagnosed with di and cj is the count of patients diagnosed with dj. However, the number of 

significant correlations is directly proportional to the number of observations used (N). The 

ability to detect rare comorbidities is lessened because of the rareness of events. Therefore, to 

establish the right measure to model a comorbidity, we use the Salton Cosine Index (SCI) (Salton 

& McGill, 1986). SCI is unaffected by the total number of observations used (Ahlgren, Jarneving, 

& Rousseau, 2003) and measures the prevalence of a relationship between two diseases 

considering their individual prevalence. Salton Cosine Index, wij, of two diseases di and dj is 

calculated as an equation 5.6. The cosine similarity has been used in the past to find phenotype 

overlaps (Chen et al. 2015; Lage et al. 2007). We propose this as an appropriate measure for 

calculating the strength of a comorbidity. 

   𝑤𝑖𝑗 =
(𝑐𝑖𝑗)

√(𝑐𝑖∗𝑐𝑗)

        -(5.6) 

Unlike correlation coefficient, SCI measure is free from N. However, it is difficult to find 

statistical significance of SCI. To find a rigorous SCI cutoff, we present an approach that results 

in statistically significant edges between diseases. We use the relationship between correlation 
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and cosine index to find a cutoff for SCI as suggested by Egghe and Leydesdorff (2009), 

following the steps listed below (referred to as Process 1 for reference during analysis). 

Step 1. Calculate number of co-occurrences, correlations, and Salton Cosine Index for all pairs of 

diseases (p) in the pseudo-population dataset containing 24.7 million patients. 

Step 2. Calculate T-statistic using PCCij of the edges as in equation 5.7. Following the most 

conservative approach, use the cij (minimum of cij, ci, and cj) as the degrees of the freedom. Using 

the T-statistic, develop a network at α=0.01, T>2.58 and cij>∑ 𝑐𝑖𝑗/p to select correlations (pairs) 

occurring more than by chance. Find number of pairs (q) at α=0.01, T>2.58 and cij> ∑ 𝑐𝑖𝑗/p. 

                                                              T=
𝑃𝐶𝐶𝑖𝑗√𝑐𝑖𝑗−2

√1−𝑃𝐶𝐶𝑖𝑗
2

            -(5.7) 

Step 3.  Find Salton Cosine Index as the cutoff (wc) where number of pairs is equal to q and 

cij>∑ 𝑐𝑖𝑗/p. 

Step 4. Use wc as the cutoff to find statistically significant comorbidities and create networks. 

These steps are used to create networks. The network is represented by a matrix, DnXn containing 

strength of connections between diseases, where the Salton Cosine Index for a pair (wij) of 

diseases indicates the strength between them. 

DnXn = [

0 𝑤12 … 𝑤1𝑛

𝑤21 0 … ⋮
⋮

𝑤𝑛1

⋮
…

⋱
⋮
0

] 

 

5.3.2.2 NETWORK METRICS 

The structural properties of a network can be measured using several metrics, including node 

centralities which define the importance of a node in the network. The most common centralities 

are degree, eigenvector, closeness, and betweenness as described in Table 5.3. In a comorbidity 

network, the degree centrality of a disease (node) denotes the number of direct connections with 
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other diseases (Freeman, 1979). If weights of the direct connections are considered, it is called 

weighted degree centrality, and calculated as a weighted sum of the strengths of direct 

relationships of a disease with others. The degree is a local property of a node, as only direct 

connections are considered. The direct connections of a disease, di, considered by the degree 

centrality, explain the other diseases likely to be diagnosed in the presence of di. Therefore, a 

higher degree of a disease increases the likelihood of it getting diagnosed with other diseases. A 

higher number of diagnoses predicts a longer stay because more resources are required for care.  

The eigenvector centrality is an extension of degree centrality that incorporates the indirect 

connections of a node. It is a metric for the influence and power of a node in the network and 

measures how well its connected nodes are further linked (Bonacich, 1987). In a social network, a 

person with high eigenvector centrality is connected to the important people in that network. An 

eigenvector centrality of a disease, di, in a comorbidity network measures how well its neighbors 

(directly connected diseases) are connected further. A disease with higher eigenvector centrality 

connects to other diseases that are central in the network. Although conceptually different, the 

eigenvector and degree centrality are highly correlated measures (Valente et al. 2008). Therefore, 

we expect eigenvector to be related to LOS in the positive direction as degree centrality. It must 

be noted that we will use only eigenvector centrality for creating models because degree and 

eigenvector centrality are highly correlated measures.  

The closeness centrality of a disease determines the average number of steps it is away from other 

diseases in the network (Freeman, 1979). Unlike degree centrality, closeness centrality is a global 

property of a disease and explains its centralization in the network. It is expressed in terms of 

distances (one connection is one distance) among the different nodes. The closeness centrality (ci) 

of a disease, di, is calculated as the average shortest distance of di, to all other diseases in the 

network, if a path exists at all. A disease with higher closeness (indicated by a small closeness 

number) is relatively fewer steps away from other diseases in the network. Therefore, a patient is 
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likely to be diagnosed with closer diseases. This measure has been shown to be related to 

mortality by Hidalgo et al. (2009). However, we expect that the closer a disease is to other 

diseases, the longer the average LOS for patients with that disease. 

Finally, the relationship betweenness centrality and LOS is studied. It is a global property of a 

disease, which describes its bridgeness in the network (Freeman, 1979). In other words, a disease 

with higher betweenness tends to form more bridges between other diseases. It is measured as the 

Table 5.3. Network measures and their interpretation in our context 

Network Measure Definition Interpretation in our context 

Nodes Nodes or vertexes are the elements 

among which relationships are studied. 

Diseases are the nodes. Each disease 

or a node is a three-digit ICD-9 

code.  

Edges An edge represents the relationship 

between nodes. 

Relationships are comorbidities. 

Degree centrality Degree of a node explains its number of 

direct connections (Freeman, 1979) 

Degree of a disease is the number of 

diseases directly connected to it. 

Weighted Degree Degree calculated as a weighted sum of 

the strength of the connections. 

Degree calculated as a weighted sum 

of the strength of the comorbidities. 

Closeness Closeness of a node gives the average 

shortest distance of that node to all other 

nodes in the network (Freeman, 1979). 

Closeness of a node di is  

               ci = 
∑ 𝑑(𝑖,𝑗)𝑛−1

𝑛−1
 ,                                                                               

where d(i, j) is the shortest distance 

between di and dj. 

Closeness centrality of a disease 

would represent how close a disease 

is to all the other diseases in the 

network. 

Betweenness Number of times a node is on a shortest 

path among all shortest paths (Freeman, 

1979). 

Betweenness of a node di is 

              bi = ∑
𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡
𝑠≠𝑖≠𝑡  ,                                                                                                                                  

where 𝜎𝑠𝑡 is total number of shortest 

paths from node s to node t and 𝜎𝑠𝑡(𝑖)  

is the number of those paths that pass 

through di. 

Number of times a disease is a 

bridge between pairs of diseases. 

Eigenvector 

Centrality 

A metric for influence of a node in the 

network measuring how well the direct 

connections of a node are further 

connected (Bonacich, 1987).  

Measures how well a disease’s 

connections are connected further. 
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number of times a disease is on the shortest path between other pairs of diseases. In a social 

network, the person with high betweenness is a point of connection between multiple 

communities and therefore has power to divide the network (Newman 2005). Similarly, a 

diagnosis with the higher betweenness in the comorbidity network acts as a bridge between other 

diagnoses. There are several symptoms that are connected to different categories of diseases; 

therefore, they are likely to act as bridges between other diseases and are consequently expected 

to have high betweenness. The patients with general symptoms are expected to have shorter stay 

as compared to the patients with actual diagnoses. Therefore, we expect betweenness of a disease 

to be negatively related to LOS.  

 

5.3.2.3 EXPLANATORY AND PREDICTIVE MODELING USING COMORBIDITY 

NETWORK 

Our aim is to add comorbidities to the baseline models using the network structure as defined in 

the previous section. As discussed in the Introduction, comorbidities vary by gender, therefore, we 

create different networks for males and females. A network of all diseases in males is created from 

a set of m number of diseases Dm={𝑑1, 𝑑2, … 𝑑𝑚}, and a network from females is created containing 

f diseases Df={𝑑1, 𝑑2, … 𝑑𝑓} where m≠f because both genders have unique diseases due to their 

biological differences. The network measures of each disease, such as betweenness (bi), closeness 

(ci), and eigenvector centrality9 (vi), are calculated separately for different genders. 

We use the network measures of the diseases diagnosed in patients at the point of admission to 

know how the relationship between diseases and position of a disease in the web of diseases can 

explain and predict LOS. First, we create a model to see the relationship of network centralities 

and LOS, and then we use actual connections with other diseases for predictions. Let 

                                                           
9 Degree and eigenvector centrality are highly correlated. In our dataset, correlation coefficient is 0.96. 
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KD1XKD={𝑑1, 𝑑2, 𝑑3, … 𝑑𝐾𝐷} be the diagnoses known during the point of admission. For a 

manageable analysis, we restricted KD<=4, which includes more than 90% of visits in the data.  

A model for explaining and predicting LOS at the hospital visit level was created using the 

aggregated sum of their network metrics as presented in equation 5.8. Although the model is 

linear, the inputs are non-linear. This model describes how the structural positions of diagnoses 

known at the time of admission are related to LOS. 

Comorbidity Model 1:  LOS=𝛽0 + 𝛽1 ∑ 𝑏𝑖
𝐾𝐷
𝑖=1 + 𝛽2 ∑ 𝑐𝑖

𝐾𝐷
𝑖=1 + 𝛽3 ∑ 𝑣𝑖

𝐾𝐷
𝑖=1 + 𝑒   -(5.8) 

 

The above model provides information about the network properties of diseases based on their 

structural positions but does not explain the actual association of the observed diagnoses with 

other likely diagnoses (which we call predicted comorbidities). For example, if a patient visits a 

hospital with d1 and d2 as known diagnoses, our aim is to search the comorbidity network and 

extract direct connections of d1 and d2 to use for modeling. The direct connections of a diagnosis 

can help predict other likely diagnoses and LOS. To add relationships to the model, we use the 

comorbidity matrix described earlier, DnXn, which represents the strength of relationships between 

diseases. Since we create separate networks for each gender, we use two separate comorbidity 

matrices. The use of connections is an alternative to adding all observed diseases in the model. 

The addition of predicted comorbidities is more theoretically robust, and expected to have more 

explanatory and predictive power.  

An algorithm created to extract the connections of the diseases in the model is presented in Table 

5.4. Since a diagnosis has multiple associations, we restrict the number of comorbidities being 

considered. In our study, the top five weighted relationships of a disease are added in the model 

as explained in Code 5.1. As discussed, we restrict our analysis to patients with a maximum of 

four observed diseases, meaning five to twenty new values in terms of relationship strengths are 

added in the model as presented in Code 5.3 in Table 5.4. If two diseases have an association with  
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Table 5.4. An algorithm to add predicted comorbidities of the known diseases at 

the point of admission 
 

Input: Array DnXn denotes the matrix generated from the comorbidity network 

containing strength between diseases 

Input: Array K1Xn denotes an array containing all the possible diseases 

Input: Array KD1Xm contains the list of diseases known during admission 

Output: Array COM1Xn contains the final diseases and strengths added to the model 

Let: 

Scalar MaxN – denotes how many connections or comorbidities of a known disease 

are used in the model 

Array RD1Xn – An array used to create a ranking order of comorbidities for each 

disease 

 

Initialize: 

Dij = 0,          Ki = 0,      COMi = 0,          KDi = 0,           ∀ i, j ∈ (1 to n)      

Code 5.1: To rank the strength of comorbidities of each disease and consider only top 

MaxN. In our paper, MaxN=5. 

For i=1 to n 

     RD1Xn = Rank (Di, Descending) 

         For j=MaxN+1 to n 

  Dij = 0  

         Loop 

 Loop 

Code 5.2: Code for creating an array to label the known diseases as present 

 For i= 1 to m 

     For j=1 to n 

        If KDi = Dj 

  Kj = 1 

         End 

     Loop 

 Loop 

 

Code 5.3: Code for creating a result arraying containing the strengths of 

comorbidities of known diseases 

For i=1 to n 

    For j=1 to n 

         COMi = COMi + Dij * Kj 

     Loop 

            Loop  

 

the same disease, the strengths are added. The measure COM calculated in Code 5.3 for each 

hospital visit is added as a metric containing the predicted comorbidities in the models. 
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The model with the predicted comorbidities is presented in equation 5.9 where five likely 

comorbidities of the primary disease and five each for other known diseases are added from the 

matrix. A set of parameters are estimated where Ω (a set of n parameters) are the coefficients and 

COM1Xn is an array of variables. This model contains the variables coming from the network built 

using secondary data. Finally, to see how COM adds value to the estimation and prediction of 

LOS, we control for the baseline model 4 in which all other factors are considered. The model 

was created by adding our variables with the baseline model as presented in equation 5.10. 

Comorbidity Model 2: LOS = 𝛽0 +  Ω. 𝐶𝑂𝑀1𝑋𝑛+ e      -(5.9) 

Comorbidity Model 3: LOS = 𝛽0 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑔𝑒𝑛𝑑𝑒𝑟 + 𝛽3𝑟𝑎𝑐𝑒 + 𝛽4𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑇𝑦𝑝𝑒 +

𝛽5𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑇𝑦𝑝𝑒 + 𝛽6𝑝𝑎𝑦𝑒𝑟 +  𝛽7ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑆𝑖𝑧𝑒 + 𝛽8𝑟𝑒𝑣𝑖𝑠𝑖𝑡 +  𝛽9𝑉𝑖𝑠𝑖𝑡𝑁𝑢𝑚𝑏𝑒𝑟 + 𝛽10𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 𝛾. 

[

𝑑1

𝑑2

⋮
𝑑𝑛

]+ 𝛼. 𝑐ℎ𝑖 +Ω. 𝐶𝑂𝑀1𝑋𝑛 + e        -(5.10)  

 

5.4 ANALYSIS AND RESULTS 

We obtained data from the Center for Health Systems Innovation (CHSI), a center at Oklahoma 

State University which houses data provided by Cerner Corporation, a major Electronic Medical 

Record (EMR) provider. The data warehouse contains records of visits of 58 million unique 

patients across 662 US hospitals (2000-2016). We used information about the demographics of 

the patients, hospitals, types of visits, and diagnoses. The diagnoses are recorded according to the 

International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). We 

removed hospital visits in which patients were not diagnosed with any disease or symptom, 

leaving approximately 24.7 million unique patients with sufficient information to perform our 

analysis.    

The raw health records must be organized in a transactional form to create our comorbidity 

network and models. We follow the Transparent Reporting of a multivariable prediction model 
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for Individual Prognosis or Diagnosis (TRIPOD) guidelines created by Collins et al. (2015). The 

steps followed in processing the massive data containing medical records of 24.7 million unique 

patients are presented in a flowchart in Figure 5.1. The flowchart also presents the number of 

patients and hospital visits at each step in the process. First, information about the patients, 

admissions, diseases diagnosed, and hospital was merged. The patient level information included 

gender, age, and race. The information about the hospital visit included type of insurance held by 

the patient, type of visit (inpatient, outpatient, emergency, etc.), type of admission (elective, 

newborn, urgent, etc.), and hospital size. 

At the disease level, the information available includes all diagnoses made during the visit, but 

not the exact date and time of disease development. Because it is difficult to know when a disease 

begins to develop in a patient and therefore, this is a fair limitation of the data. Nevertheless, 

priorities of diagnoses during a visit are still known, with the top priority diagnosis being the 

primary disease and the main reason for visiting the hospital. Secondary diagnoses are less 

important and annotated with lower priorities. The EMR also notes whether a disease is present at 

the point of admission. In our study, we used the information about all diagnoses to create the 

networks but used only primary diagnoses and diseases present during admission for creating 

explanatory and predictive models. 

An integration of different datasets gave us medical records of 24.7 million patients diagnosed 

with at least one disease or symptom which were used to find a cut-off for Salton Cosine Index 

using Process 1. At SCI cutoff of 0.04, we found the number of edges in the comorbidity network 

developed using SCI is equal to the number of edges in the network using Pearson’s Correlations 

Coefficient significant at α=0.01 and cij>Average (cij). From this point, we consistently use the 

SCI cutoff of 0.04 for creating an edge in different comorbidity networks. 
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Synchronize Network and Visit data 

 

4 million patients (2 million 

each for males and females) 

Build Comorbidity Networks 

 Nodes and edges at patient level 

 One network each for males and females 

 Calculate network metrics  

Data synchronization (24.7 

million patient records) 

Preprocessing step I 

 Remove as invalid records where  

 admission date-time > discharge date-time 

 next admission date<previous discharge 

date 

 males are diagnosed with female diseases 

and vice-versa 

 Calculate length of stay  

Preprocessing step II 

 Select hospital visits where  

 insurance type, race, and age are known 

 discharge type - discharge to home 

 patient type - inpatient or emergency 

 length of stay - between 1 and 30 days 

Preprocessing step I & step II 

 Create new variables (revisits and visit number) 

 Information about only the primary disease or diseases present 

during admission 

 Drop visits with ≥5 known diseases 

6.1 million females (66 M encounters), 

5 million males (42 M encounters) 

Baseline Model 1: LOS= f (Demographics, visit, admission, 

hospital variables) 
 

Baseline Model 2: LOS= f (Demographics, visit, admission, 

hospital variables, Primary diagnosis) 
 

Baseline Model 3: LOS= f (Charlson Index) 
 

Baseline Models 4: LOS= f (Demographics, visit, admission, 

hospital variables, Primary diagnosis, Charlson Index) 
 

Comorbidity Model 1: LOS= f (Diagnoses Centralities) 
 

Comorbidity Model 2: LOS= f (Comorbidity Matrix) 
 

Comorbidity Model 3: LOS= f (Demographics, visit, admission, 

hospital variables, Primary diagnosis, Charlson Index, 

Comorbidity Matrix) 

Predictive Models: Training and validation (50% each) 

Figure 5.1. Data Processing and Modeling 

Flowchart 

475,899 female patients 

483,259 male patients 

777,945 females (1.2 M encounters), 

667,392 males (986,334 encounters) 

Find Salton 

Cosine Index 

Cut-off using 

Process 1 

24.7 million patients 

Network Measures and predicted 

Comorbidities as in Table 4

Hospital Data 

 Patient Data 

 

Visit/admission Data 

 Diagnoses Data 
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Multiple random samples were extracted for creating networks and models. First, medical records 

of four million patients (sample 1) were extracted to build comorbidity networks and compute 

network properties. For modeling, an independent random sample of approximately 11 million 

patients (sample 2) was extracted. Because there were several data quality and integrity issues in 

the EMR, data cleaning was done on both samples, removing records with erroneous and 

suspicious coding. For instance, there were hospital visits that recorded the admission date and 

time later than the discharge date and time, and visits where the admission date and time were 

earlier than the previous discharge date and time. We found a few patients who were coded as 

male during one visit and female in another, and some males who were diagnosed with female 

diseases such as inflammatory disorders of female pelvic organs (ICD9–614-616), complications 

of pregnancy, childbirth, and the puerperium (ICD9–630-679) and diseases of breast (ICD9–610-

612)10. Similarly, we noticed female patients diagnosed with diseases of male genital organs 

(ICD9–600-608). Considering these as suspicious entries, we removed them from further 

analysis. The challenges of using secondary data for research are well documented (Bellazzi and 

Zupan, 2008; Shmueli and Koppius, 2011), and we experienced the same. However, the size of 

our dataset helps mitigate these issues.  

We restricted our analysis to inpatient and emergency visits that were discharged to home. 

Moreover, we considered hospital visits with LOS of at least one day and up to 30 days in order 

to remove outliers. Long-term hospital stays represent a small percentage of patients (Marazzi, et 

al. 1998) and predictive models for such patients may include other signatures. For instance, 

Spratt, et al. (2003) found the level of disability after stroke could predict the prolonged stays. 

                                                           
10 Although males can also have breast disease biologically, we considering these records suspicious and 

removed them 
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After data cleaning, the sample (sample 1) was used to create networks. Recognizing the 

difference in diagnoses and comorbidities as argued by many health researchers such as Johnson, 

et al. (2014) and Ovseiko, et al. (2016), we created separate networks for females and males. The 

network visualizations of these networks are presented in Figures 5.2a and 5.2b respectively. The 

diseases are color coded according to the 19 categories/classes/organ systems as per the ICD-9  

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

ICD-9      Description 

Figure 5.2b. Male Comorbidity Network 

Figure 5.1b. Female Comorbidity Network 

001-139: Infectious and parasitic diseases  

140–239: Neoplasms 

240–279:  Endocrine, nutritional and 

metabolic diseases, and 

immunity disorders 

280–289:  Diseases of the blood and 

blood-forming organs 

290–319: Mental disorders 

320–359: Diseases of the nervous system 

360–389: Diseases of the sense organs 

390–459:  Diseases of the circulatory 

system 

460–519:  Diseases of the respiratory 

system 

520–579: Diseases of the digestive system 

 580–629: Diseases of the genitourinary 

system 

630–679:  Complications of pregnancy, 

childbirth, and the puerperium 

680–709:  Diseases of the skin and 

subcutaneous tissue 

710–739:  Diseases of the musculoskeletal 

system and connective tissue 

740–759: Congenital anomalies 

760–779:  Certain conditions originating 

in the perinatal period 

780-799:    symptoms, signs, and ill-

defined conditions 

800–999:  Injury and poisoning 

E and V:   external causes of injury 



92 
 

classification systems. Size of a disease node represents the number of direct connections to other 

diseases (degree centrality). The summary statistics of the network properties are listed in Table 

5.5. The female comorbidity network was comprised of 1,013 diagnoses/nodes with 12,046 edges 

(comorbidities). The average degree of 23.8 indicates a disease is connected to approximately 24 

other diseases in the network. The average closeness, betweenness, and eigenvector centralities 

are 0.25, 294 and 0.116 respectively. The male network had a slightly lower number of diseases 

and comorbidities (i.e. 956 and 11,065 respectively). However, the other metrics were not 

significantly different. 

Table 5.5. Network properties 

Name Female Male 

Nodes 1,013 956 

Edges 12,046 11,065 

Average Degree 23.8 23.15 

Average Weighted Degree 1.93 1.89 

Average Betweenness 294.26 280.07 

Average Closeness 0.25 0.25 

Average Eigenvector 0.116 0.118 

 

5.4.1 EXPLANATORY MODELING RESULTS AT HOSPITAL VISIT-LEVEL 

At the visit level, we created multiple models to study the value added by the comorbidities to 

explain and predict LOS. Four baseline models from the traditional variables were created. The 

variable descriptions and descriptive results are listed in Table 5.6. The final dataset contained 2.2 

million hospital visits of 1.45 million patients (55% female). The mean LOS was 1.68 days with 

71% emergency visits and the remainder inpatients. Among all the visits, 22% were covered by 

Medicaid and 14.5% were self-paid. 6.1% of patients returned for one or more visits for the same 

primary reason. 

The performance of all baseline models and comorbidity network models in terms of variance 

explained is listed in Table 5.7. The baseline model consisting of demographics, hospital, and 

admission type information explained 25% variance in LOS. The addition of primary disease of  
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Table 5.6. Variable description 

Variable Name Description Descriptive Statistics 

Length of Stay(LOS) Length of a hospital visit Average=1.68 days 

Age Age of a patient recorded during hospital visit Average: 30.4 years 

Gender Patient’s gender Visits- 55% Females 

Patients-53.8% Females 

Charlson Charlson index calculated as weighted sum of 

score of known diseases 

Average: 0.09 

Visit Number A patient’s number of visits as (inpatient or 

emergency) 

Average of maximum: 

1.62 

Classes Total number of categories of diseases diagnosed 

during admission 

Average: 1.41 

Race Race of the patient. Six different binary variables 

were created: African-American, Caucasian, 

Hispanics, Asians, Native Americans and Pacific 

Islanders. 

Afro-American: 24% 

Caucasian: 60% 

Hispanics: 5% 

Asians: 1.8% 

Native Americans: 1.6% 

Pacific Islanders: 0.19% 

Hospital Size Size of the hospital. Five different binary 

variables were created for hospital sizes: <5, 100-

199, 200-299, 300-499 and 500+. 

<5: 4.4%  

6-99: 9.9% 

100-199: 15.1% 

200-299:27.9% 

300-499: 25% 

500+: 17.7% 

Patient Type Type of patient. A single binary variable is created 

for inpatient and emergency. 

Inpatient: 28.2% 

Emergency: 71.8% 

Admission Type Type of admission. Five binary variables were 

created: emergency, urgent, elective, newborn and 

trauma center. 

Emergency: 64.7% 

Urgent: 6.6% 

Elective: 7.9% 

New Born: 5.4% 

Trauma center: 0.24% 

Payer Insurance type during the visit. Two binary 

variables were created: Medicaid and self-pay 

visits. 

Medicaid: 22% 

Self-pay: 14.5% 

Revisit Number of visits due to same primary diagnosis. Second visit: 6.1% (88,615 

patients came back at least 

once)  

 

each visit increases the variance explained to 34%. This is the highest baseline model; as other 

models did not show any significant results. The third baseline model describing the relationship 

of the Charlson Index and LOS showed poor performance with R2 of 1.8%. Because the Charlson 

Index considers only 19 categories of diagnoses, it does not explain the visits of all types of 

patients, and just 10% of the visits had a Charlson score of more than zero. A similar low effect 
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has been observed in the past by Rochon et al. (1996), in which the authors found that the 

Charlson Index could explain only 1.9% variance in LOS. As expected, the addition of the 

Charlson Index in the first two baseline models did not improve the performance significantly. 

However, the model built using network properties such as centralities (Comorbidity Model 1) 

did a better job (R2=0.07), indicating that the network position of the observed diagnoses at the 

time of admission can explain the length of stay better than the Charlson Index. Moreover, the 

model using only the comorbidity matrix (R2=0.25), Comorbidity Model 2, performed better than 

the Charlson Index and network metrics models. The best performing model used the comorbidity 

matrix to control for demographics, hospital information, and primary disease (R2=0.38), with a 

statistically significant improvement of about 4%, calculated using partial F-Test (F-value=163.3, 

p<0.0001). For a complex and ill-structured problem like LOS, this improvement is highly 

desirable. 

 

 

 

 

 

 

 

Due to the availability of medical records from millions of patients, we were able to study all 

diseases together and created a common model for all types of patients. However, there are 

several diseases for which it is difficult to predict LOS. To identify them, we sliced the best 

model results (Comorbidity Model 3) into specific diagnoses to determine where comorbidities 

did a good job. Due to the size of our database, we were able to run different models for patients 

visiting hospitals due to different sets of diagnoses (d1, d2, … dn). There were 319 types of 

patients based on the primary diagnoses. The hospital visits for which model performance was 

Table 5.7. Linear models for length of stay at hospital visit level 

Model Model R-square 

Baseline 1: Demographics + Hospital variables + Visit variables .25 

Baseline 2: Demographics + diagnoses variables .34 

Baseline 3: Only Charlson Index (CHI) .02 

Baseline 4: Demographics + disease variables + CHI .34 

Comorbidity Model 1: Only Network Centralities .07 

Comorbidity Model 2:  Only Comorbidity Matrix  .25 

Comorbidity Model 3:  Baseline 4 + Comorbidity Matrix .38 
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low include those with a single live birth (ICD9-V30, R2 = 0.07, n=103,027, mean 2.57 days), 

trauma to perineum and vulva during delivery (ICD9-664, R2 = 0.07, n=10,292, mean 2.18), acute 

myocardial infarction (ICD9-410, R2 = .09, n=7,737, mean 3.43), chronic ischemic heart disease 

(ICD9-414, R2 = .096, n=6,974, mean 2.96) and others presented in Appendix A. The 

improvement due to the comorbidity matrix in each cluster of patients based on the primary 

diagnosis is also presented in Appendix A (Comorbidity Model 3 - Baseline 4).  

 

To observe the contribution of comorbidity in different categories of patients, we aggregated the 

results of diagnoses models to nineteen clusters based on organ system or classes (see Figure 5.2), 

where (d1, … dn) 𝜖 (O1, … O19). This aggregated analysis shows which organ system diagnoses 

are affected most by the comorbidity. The average improvement in the diseases of different organ 

systems is presented in Figure 5.3 (Comorbidity Model 3 - Baseline 4). The clusters of diseases 

for which comorbidities contribute significantly in explaining LOS are endocrine, nutritional, and 

metabolic diseases, and immunity disorders (approximately 25%). For example, the endocrine 

disorder diabetes has comorbidities such as cardiovascular disease, hypertension, and obesity that 

can affect health performance, primarily in older adults (Struijs et al. 2006; Kalyani et al. 2010). 

The other clusters affected by comorbidities include disorders of the blood and blood-forming 

organs (23%) and the nervous system (21%). Nervous system diseases such as Parkinson’s 

disease, multiple sclerosis, epilepsy, and migraine are highly comorbid with other 

neuropsychiatric disorders, pain, and asthma (Ottman et al. 2011) and therefore can affect LOS. 
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Figure 5.3. Average improvement in variance explained in LOS in clusters of patients based on 

type of their primary diagnosis 

 

5.4.2 PREDICTIVE MODELING RESULTS AT HOSPITAL VISIT-LEVEL 

The above models set the stage for predictive models. The dataset was randomly partitioned into 

training and validation sets, with half used to create a predictive model and half used for 

validation. This approach is common and has been followed in other studies such as Bardhan, et 

al. (2014).  We ran general linear models, regression trees, and artificial neural network models. 

All of the models improved similarly when the comorbidity matrix was added to the baseline 

model. Regarding the general linear model, we observed an improvement in its predictive power 

due to the comorbidities in the overall model calculated in terms of average squared error and 

mean absolute percent error in the validation dataset. Overall, the average squared error improved 

from 2.34 to 2.26 and mean absolute percent error decreased from 37.5 to 36.6. 

 

Although the overall improvement in the model seems low, we further analyze the results to see 

where comorbidity added predictive power. The absolute residuals and percent errors are 

separated for different primary diagnoses (d1, d2, … dn). The absolute residuals and percent errors 

of Baseline 4 model are subtracted from Comorbidity Model 3. Then, to understand the specific 
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cluster of diseases based on organ systems (O1, O2, … O19), the improvement in residual and 

MAPE are presented in Figure 5.4 (Comorbidity Model 3 - Baseline 4). The predictive power due 

to the comorbidity improves greatly for patients with conditions originating in a perinatal period 

followed by patients with mental disorders. With the exception of patients admitted due to 

neoplasm, congenital anomalies, and diseases of skin and subcutaneous tissue, predictions for all 

other clusters of patients improved in terms of mean absolute percent error and residuals in 

predictions. 

 

 
 

Figure 5.4. Improvement in predictive power in different clusters of patients based on primary 

disease category due to comorbidity matrix 

 

 

5.5 DISCUSSION AND CONCLUDING REMARKS 

Taken as a whole, our paper suggests that use of a massive dataset and analytics techniques such 

as network analysis, which help reduce bias (Shmueli, 2010), provide an opportunity to learn 

more deeply about the complex relationships between diseases. Our focus on both explanation 

and prediction results in a strong and applicable theoretical model as explained by Hong et al., 
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(2013). In addition, building and assessing the proposed approach on mutually exclusive samples 

confirm its robustness.  

Network properties were used to explain other diseases that can occur with a primary diagnosis, 

and help predict LOS. One of the strengths of our network method, and in particular the model 

using our comorbidity measure, is that it includes all possible diseases and can therefore capture 

all possible associations. It performed better than the existing Charlson Index, which is available 

for only 10% of hospital visits because it considers just 19 categories of diseases. The Charlson 

Index can only be calculated from observed comorbidities; however, our network method was 

able to forecast diseases that may occur in presence of another disease. Because we used 

information available at the point of admission, our approach has both explanatory and predictive 

ability. 

Comparing our unified model to past studies, our model performed better overall, explaining 

about 38% variance in the data using the information present at the time of admission. Past 

studies using other comorbidity scales to explain LOS were able to account for less variance. For 

example, a model created by Rochon et al. (1996) for spinal-cord injury patients explained 6% 

variance, Chertow et al.’s (2005) model for acute kidney injury patients explained 33% variance, 

Liu et al.’s (2010) model from one healthcare unit explained 14% variance, and Huntley et al.’s 

(2014) model for patients in one psychiatric center explained only 17% variance.  

With respect to predictive power, our overall model did better than the previous studies. The 

mean absolute percent error of our model was about 36%, meaning an overall accuracy of 64%. 

Consideration of comorbidities improved the accuracy of LOS prediction by about 1%. Although 

this improvement may appear small, its practical impact is significant. In the validation dataset, 

the comorbidity based prediction accuracy increased by about 14,500 days. The practical 

significance of Big Data Analytics can be derived in terms of dollars involved as suggested by 

Lin, Lucas Jr. and Shmueli (2013). Pfuntner, Wier, and Steiner (2013) estimated that the 
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aggregate cost for all hospital stays was $387.3 billion in 2011 with a mean of $10,000 per stay. 

Considering an average stay of 1.68 days in our data, 14,500 days are equivalent to about 8,630 

visits, resulting in a better LOS forecast of $86 million. Therefore, the practical improvement due 

to the comorbidities is significant. Because the problem of LOS prediction is particularly 

notorious and ill-structured, any reasonable improvement in the accuracy is highly desirable.  

The use of our model to predict LOS can help hospitals better plan and allocate resources. In 

addition, the study of comorbidities can certainly help in clinical care and management (Valderas 

et al., 2009). Knowledge of the relationships among diseases can help predict and diagnose likely 

co-existing diseases, and disease network properties can help physicians prioritize diagnoses 

based on the position of a disease in the network. The relationship among diseases can help 

pharmaceutical companies consider multiple related diseases when developing new produce 

drugs.  

This study has a few limitations. First, comorbidities were measured based on an EMR and 

therefore, only the diagnoses recorded in hospitals were included. It is perhaps impossible to 

capture someone’s lifetime medical history in one record. Hence, this limitation exists in all 

studies that are based on medical records. Second, we considered gender differences while 

developing comorbidity networks; however, we also recognize that health disparities also exist 

based on race and ethnicity (Fine, Ibrahim & Thomas, 2005). Including such disparities is the 

next step of our research. Third, when inputting predicted comorbidities in the model, we 

restricted our analysis to the top five comorbidities of each known disease. Adding more diseases 

could further explain their relationships, and we want to explore this. Fourth, our model showed 

improvement with respect to the competing models, but there is still much room for 

improvement. We did not use patients’ laboratory reports or consider other external factors such 

as hospital conditions and quality of physicians, which could make a significant difference. We 
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employed our proposed approach to predict LOS; in the future, we intend to use it to predict other 

medical outcomes such as readmission and mortality. 

Notwithstanding these limitations, our study adds to the growing literature of analytics, 

comorbidity, and network science. The nascent measure and model we propose has tremendous 

potential to enhance existing information systems and improve decision making in healthcare and 

other related domains. Our approach is generalizable to similar problems in which unintended 

actions of individuals form a network pattern and impact their outcome.  
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CHAPTER VI 
 

 

DIAGNOSES FORM TRAPS: IDENTIFYING MORTALITY RELATED CLIQUES IN 

COMORBIDITY NETWORK 

ABSTRACT  

Mortality rate is one of the important metrics of quality of care. Different biological, sociological 

and political factors might impact mortality risk in individuals. However, for the patients in 

hospitals, the primary reasons for a mortality are the diseases. Mostly, patient develop multiple 

diseases simultaneously but often only one diagnosis is considered as the primary reason for the 

death e.g. cancer, heart failure, etc. Because, multiple diseases jointly have a different impact than 

each of them independently, we focus on identifying the clusters of diseases related to mortality. 

We apply a network approach to create relationship between diagnoses based on their co-

occurrences in the patients and then use the clique property to identify high risk cluster of 

diagnoses. To create a network of diseases, more than 8 million patient records stored in an 

Electronic Medical Record (EMR) are used. We identified eighteen mortality related cliques in 

the network and found that the mortality rate in the patients diagnosed with all the diseases in the 

cliques is significantly higher than the patients without all clique diagnoses. The results are 

validated on an independent set of 8 million patient records. The presence of the clique diagnoses 

in the patients can help physicians take preemptive decisions. The generalizability of our 

approach is discussed.
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6.1 INTRODUCTION 

For the hospitals, one of the most important metrics to measure quality of care is the mortality 

rate. Therefore, the prediction and explanation of mortality have been a topic of interest for the 

medical, bioinformatics and analytics researchers. The primary reasons for mortality of the 

patients are the specific diseases. However, in majority of the cases, patients get diagnosed with 

multiple diseases simultaneously. Therefore, it is important to understand how multiple diseases 

interact with each other that are eventually responsible for the casualty. The knowledge about the 

joint impact of multiple diseases on mortality will help physicians take preemptive decisions 

regarding the health outcomes of patients. In this paper, we identify clusters of diagnoses in the 

patients related to mortality using an information based approach. 

When an additional diagnosis is present in a patient in addition to the primary disease, the 

medical condition is called comorbidity (Feinstein, 1970). For example, the simultaneous 

presence of diabetes and hypertension in a patient is a comorbid condition. Comorbidity has been 

considered as an important factor for mortality in the past because two diseases jointly can have a 

different impact than each of them independently. This joint impact of diseases on health is 

known as syndemicity, a term coined by Singer (1996). Most studies have considered one disease 

and its comorbidities at a time. However, how direct and indirect interactions of diseases are 

related to mortality is often not focused. 

To model interactions of all diagnoses at one place, we have adapted network approach. This 

method can help explain the collective behavior of diseases and their impact on health. We create 

a comorbidity network where diagnoses form connections if these co-occur in patients. The 

network is inferred from the co-occurrences of diagnoses in large number of patients.  

How to identify which combinations of diseases are critical so as to provide guidance to 

physicians? To address this, we have used an important property of network called clique to 
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identify such combinations. In terms of a social network, a clique is a part of the network where 

all individuals know each other and form a complete structure. All members of the clique in a 

social network may share common characteristics and information. The clique property of a 

network has several implications on the performance of the members such as trust, norms and 

obligations as discussed by Coleman (1988). In addition, Adler and Kwon (2002) argued that the 

tightly connected structure favors sharing of knowledge during uncertainty. Moreover, at the 

organizational level, Provan and Sebastian (1998) found that cliques are positively related to the 

network effectiveness.  

In the comorbidity network, the clique is a complete sub-network which explains that the patients 

often get diagnosed with a collection of diseases together. A clique is a subset of the network in 

which each pair of diagnoses is adjacent. It represents a tightly connected hidden structure within 

a large network of diseases. Identification of a clique related to an outcome (mortality in our case) 

is a multi-step problem in such a network since the structure formation is not visible externally. 

Pemantle and Skyrms (2004) explained a clique as a trap state. With respect to a game, a 

reinforced state is called a trap when a player is restricted to play a specific set of actions. 

Moreover, the traps decrease performance level of the player as explained by Roca, et al. (2010). 

Different researchers have identified traps in specific problem domains. For instance, Bonacich 

and Liggett (2003) identified traps in the network of gift exchanges where the members exchange 

gift within their own clusters. Similarly, in a comorbidity network, we hypothesize certain cliques 

of diagnoses represent trapping states, which are related to mortality. These cliques are expected 

to form stable equilibria for mortality. If the fully connected diseases are diagnosed in a patient, it 

is expected to indicate a critical condition. These groups of diagnoses are the topological traps 

analogous to the traps in games from where an exit is difficult. To the best of our knowledge, we 

are the first to use clique property to enhance our understanding about the relationship between 

comorbidity and mortality. 
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We first identify the diagnoses with high mortality risk from the data and then considering these 

as base diagnoses, we identify cliques around them, if any. To explain our hypothesis, we present 

one exemplar clique containing three diagnoses (d1, d2, d3) in Figure 6.1 where d1 is the base 

disease with high mortality rate. The degree or number of direct connections of d1 is two. Here, 

we assume that d1 has degree as two, but d2 and d3 may or may not have degree as two. Let N1, N2 

and N3 represent the number of patients having a particular disease d1, d1, d3 respectively 

irrespective of the joint presence. The number of patients with all three diseases is N123 = N1 ∩ N2 

∩ N3, where N123 ≤ N1, N2, N3). Because the underlying interactions of diseases in the patients 

with all three diseases are more than others, we hypothesize that mortality risk in N123 patients to 

be significantly greater than the mortality risk in N1- N123 patients i.e. MortalityRisk (N123) ≥ 

MortalityRisk(N1- N123). In other words, a patients diagnosed with all three diseases in a clique 

has high mortality risk than a patient not having all three diseases (i.e. <3 diseases). Since, our 

focus is on the base diagnosis and a clique around it, we hypothesize only about d1. We recognize 

that the combinations other than a clique can also be related to mortality, however, we focus only 

on cliques of the base diagnoses in this study. 

 

 

 

 

 

 

 

 

Figure 6.1. A clique/triangle of three diseases with their joint impact on mortality 

d1, N1 

Number of patients with all three 

diagnoses = N123 

MortalityRisk (N123) ≥ MortalityRisk (N1- N123) 

Base Disease – d1  

Number of patients diagnosed with d1 = N1 
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We use an Electronic Medical Record (EMR) containing information of more than 24.7 million 

patients across 662 US hospitals in 17 years (2000-2016). The use of a massive dataset is one of 

the strengths of our study and overcomes the shortcomings of other studies where the sample size 

has been an issue for examining the interaction among diagnoses. Due to the lack of availability 

of sufficient data and advanced technologies, past research has largely focused on studying the 

impact of fewer diagnoses or fewer patients, which might make the conclusions derived to be less 

rigorous. Studying all diagnoses at one place can improve our understanding about the 

comorbidities. 

6.2 BACKGROUND 

Age is of course a primary reason for mortality with life expectancy of 78.8 years at birth 

(2015)11. According to the National Center for Health Statistics report, more than 75% deaths in 

United States take place after 75 years of age12. The leading causes of mortality in US are heart 

disease and cancer13. Although the primary cause of a death is a particular disease, patients 

suffering from such diseases also get diagnosed with multiple other comorbidities. For example, 

Ahluwalia et al. (2012) identified myocardial infarction, diabetes, chronic obstructive pulmonary 

disease (COPD), chronic kidney disease, dementia, depression, hip fracture, stroke, colorectal 

cancer and lung cancer to be significantly associated with increased hazard of dying in patients 

with heart failure. Similarly, Braunstein, et al. (2003) studied elderly patients with chronic heart 

failure and found non-cardiac comorbidities to be associated with mortality. The authors 

concluded that recognizing non-cardiac conditions in heart patients can improve health outcomes. 

Some authors have also studied how presence of unrelated diseases impact critical health 

outcomes. For example, Redelmeier, Tan and Booth (1998) argued that the presence of a critical 

                                                           
11 https://www.cdc.gov/nchs/data/databriefs/db267.pdf 
12 https://www.cdc.gov/nchs/data/dvs/mortfinal2007_worktable23r.pdf 

13 https://www.cdc.gov/nchs/data/databriefs/db267.pdf 

https://www.cdc.gov/nchs/data/databriefs/db267.pdf
https://www.cdc.gov/nchs/data/dvs/mortfinal2007_worktable23r.pdf
https://www.cdc.gov/nchs/data/databriefs/db267.pdf
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disease in a patient consumes most of the attention, as a result of which, the other unrelated 

existing diseases might get neglected. Obviously, neglecting a particular disease can worsen the 

condition of a patient and therefore, it is important to consider comorbidities while managing the 

primary disease. 

The extant research focus on the impact of comorbidity on mortality in specific type of patients at 

a time. For example, Holguin et al. (2005) identified comorbidities related to mortality in COPD 

patients. The authors identified pneumonia, congestive heart failure, ischemic heart disease, 

thoracic malignancies, and respiratory failure to be associated with mortality. Similarly, Marrie, 

et al. (2015) found a significant effect of comorbidity on mortality in population with multiple 

sclerosis. Leontiadis et al. (2013) reviewed studies on the patients with peptic ulcer bleeding and 

found similar results. Zolbanin, Delen and Zadeh (2015) also showed that comorbidities improve 

the prediction performance of the models developed to forecast the survivability rate of the cancer 

patients.  

In general, the interplay of diseases is studied by the medical researchers through gene 

interactions. Goh et al. (2008) and Bauer-Mehren et al. (2011) used common gene expressions to 

create connection between disorder. Lee et al. (2008) also followed the same approach to create a 

network of diseases and concluded that the connectedness of a disease with other diseases is 

related to higher risk of mortality.   

Some studies have also used historical database of patients to create a network of diseases. For 

instance, Zhou et al. (2014) created a network of diseases based on the similar symptoms. Divo et 

al. (2015) created a comorbidity network from co-occurrence of diseases in COPD patients. 

Hidalgo et al. (2009) also applied a similar approach to create a comorbidity network and 

concluded that the patient developing diseases close to each other in the comorbidity network are 
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at high risk of dying sooner than others. However, to the best of our knowledge, no one in the 

past has identified cliques related to mortality in the comorbidity network. 

6.3 METHOD 

A network of diagnoses is inferred from the patient records. A connection between two diagnoses 

represents an aggregation of co-occurrences in the patients. An aggregation of a large number of 

patients reduces the complex interactions among diseases in a summarized network. 

In our comorbidity network, a connection between two diagnoses is defined if these co-occur in a 

patient within a specified time interval. Analogous to the transactional database where a 

transaction contains a set of items, the records in an EMR are converted into transactions based 

on the defined time interval. For this, we define comorbidity as the presence of multiple diseases 

in the lifetime history of a patient. The measurements of comorbidity in the past do not explain 

how the history of a patient is related to the current situation. Therefore, we consider the lifetime 

history of a patient as a transaction containing unique diagnoses as the set of items. Of course, we 

recognize that the transaction may not contain all the diagnoses of the patient because he may 

have gone to a different hospital which does not use same data collection system. But this is the 

best available compilation. A transaction may contain multiple diagnoses. The presence of 

multiple distinct diagnoses in a patient are used to discern associations among diseases. Let T(d1, 

d2, d3,…dt) denotes a transaction, where d1, d2, d3,…dt is a subset of all diagnoses D(d1, d2, d3,…dn) 

with n≥t. 

A comorbidity network developed from N patients is denoted by C (D, E) where D is a set of n 

nodes and E is a set of edges. In our comorbidity network, nodes represent diagnoses/symptoms. 

In the EMR, the diagnoses and symptoms are classified as International Classification of 

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). An ICD-9 code has three, four or 

five digits (xxx.xx). The first three digits represent the broader category of a disease, whereas the 
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fourth and fifth digits represent the sub-divisions of a disease. We aggregate these codes to their 

3-digit level. For example, there are ten types of viral hepatitis (e.g. ICD-9: 070.0, 070.1, etc.) 

according to ICD9 classification, but these are aggregated to one 3-digit code i.e. one node. An 

advantage of aggregation is reduction in the measurement bias. In contrast, a disadvantage is the 

compromise to granularity. 

An edge Eij is created between two diseases di and dj ({di, dj} ∈ D and i, j = 1 to n) where i<j as 

the network is undirected. Since the focus is on relationships based on co-occurrences and not the 

causality, we create edges between diagnoses with no direction. To model the comorbidities 

statistically, we adapt a cosine index called Salton Cosine Index (SCI) (Salton & McGill, 1986). 

Salton Cosine Index, wij, of two diagnoses di and dj is calculated as in equation 6.1, where cij is 

the number of co-occurrences of diagnoses di and dj; ci is the prevalence of diagnosis di; and cj is 

the prevalence of disease dj. The cosine similarity has been used in the past to find phenotype 

overlaps (Chen et al. 2015; Lage et al. 2007). We propose this as an appropriate measure for 

calculating the strength of a comorbidity. 

   𝑤𝑖𝑗 =
(𝑐𝑖𝑗)

√(𝑐𝑖∗𝑐𝑗)

       -(6.1) 

Since there is no test to compute the statistical significance of the Salton Cosine Index (SCI), we 

use the relationship between Pearson’s correlation coefficient and SCI to find a cut-off as 

suggested by Egghe and Leydesdorff (2009). We follow the following steps (we name these steps 

as Process 1 for reference during analysis). First, we calculate the number of co-occurrences, 

correlations and Salton Cosine Index for each pair of diagnoses in the pseudo-population dataset 

containing 24.7 million patients. The correlation coefficient of every pair of diagnoses di and dj, 

PCCij, is calculated as in equation 6.2. 
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 𝑃𝐶𝐶𝑖𝑗 =
(𝑐𝑖𝑗∗𝑁)(𝑐𝑖∗𝑐𝑗)

√(𝑐𝑖∗𝑐𝑗)(𝑁−𝑐𝑖)(𝑁−𝑐𝑗)

             - (6.2), 

Next, the T-statistic using PCCij of every pair of diagnoses is calculated as in equation 6.3. 

Following the most conservative approach, we use the cij (minimum of cij, ci, and cj) as the 

degrees of the freedom. Using the T-statistic, a network at α=0.01, T>2.58 and cij>∑ 𝑐𝑖𝑗/p (to 

select pairs occurring more than by chance) is created, where p is maximum number of pairs. In 

this network, the number of significantly correlated pairs (q) is recorded. Then, the Salton Cosine 

Index cutoff number is found where number of pairs is equal to q and cij>∑ 𝑐𝑖𝑗/p. This cut-off is 

used to create networks for identifying cliques. 

                                                    T=
𝑃𝐶𝐶𝑖𝑗√𝑐𝑖𝑗−2

√1−𝑃𝐶𝐶𝑖𝑗
2

                   - (6.3) 

The network results from the above process is represented by a matrix, DnXn containing strength of 

connections between diagnoses, where the Salton Cosine Index for a pair (wij) of diseases 

indicates the strength between them.  

DnXn = [

0     𝑤12 … 𝑤1𝑛

𝑤21 0 … ⋮
⋮

𝑤𝑛1

⋮
…

⋱
⋮
0

]  

 

6.3.1 DETECTING CLIQUES 

A clique is a subset of the network where nodes form a fully connected sub-network. Given the 

network C (D, E) where D represents the nodes, the clique Q (⊆ C) is a sub-network in which all 

nodes are adjacent to each other. Moreover, a clique is maximal when it is not fully contained in 

another clique. The problem of clique graph recognition is NP-complete as argued by Alcón, et 

al. (2009). There are different algorithms created by the researchers to identify cliques and 

maximal cliques in the graph. However, our aim in this paper is not to identify all the cliques in 
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the network but to find mortality related maximal cliques in the comorbidity network, given a 

base diagnosis.  

From the matrix resulted in the previous section (DnXn), first, the diagnoses with high mortality 

risk and then their cliques are identified, if any. From the health records in EMR, mortality risk 

associated with each diagnosis (di) is calculated as proportion of patients deceased having the 

diagnosis di. The diagnoses with mortality risk more than 0.1 are considered as high risk 

diagnoses. Because the death rate in US is 733.1 per 100,00014 (in 2015), mortality risk of 0.1 due 

to a diagnosis is significantly higher than a random death. These diagnoses are considered as the 

base diagnoses for which cliques are identified. 

The concept of a clustering coefficient is adopted to find the maximal clique of a base diagnosis. 

The clustering coefficient explains the small clusters formed by the nodes in the network. The 

clustering coefficient of a node explains how well the neighbors of a node are connected (Watts 

& Strogatz, 1998).  With respect to the comorbidity network, clustering coefficient of a disease, 

di, explains how well the direct connections of the disease, di, are connected to each other. The 

clustering coefficient of a node di can be mathematically written as 

𝑡𝑖 =
2𝑙𝑖

𝑘𝑖(𝑘𝑖−1)
,        -(6.4) 

where li is the number of links among the neighbors of the node i and ki is the degree of a node i. 

The number ti ranges from 0 to 1. At ti=0, none of the direct connections of di are connected to 

each other. On the other hand, at ti=1, all nodes are adjacent to each other making the sub-

network a clique comprising di and its adjacent diagnoses. The size of the clique is ki+1 as it 

includes di and its directly connected diagnoses.  

                                                           
14 https://www.cdc.gov/nchs/data/hus/hus16.pdf#019 
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The entire step by step process for finding mortality related cliques is presented in Table 6.1. A 

matrix named A4Xn is used to store mortality risk, high risk indicator and clustering coefficient of 

each diagnosis. In A4Xn, A1 contains the name of diagnosis (di, where i=1 to n), A2 represents the 

mortality risk, A3 indicates whether the diagnosis is high-risk or not (i.e. mortality risk>.1), and A4 

contains the clustering coefficient of each diagnosis.  

First of all, we converted the weighted matrix DnXn into unweighted network by changing the wij 

= 1 where wij>0 as in Code 6.1 in Table 6.1. In the next step, the diagnoses with high risk of 

mortality are identified. In addition, clustering coefficient of each diagnosis is calculated as in  

Table 6.1. An algorithm to find diagnoses forming cliques with high mortality rate 

 

Input: DnXn matrix of edges with weights wij ∀ i, j ∈ (1 to n)      

In our network, n=1043, the number of distinct diagnoses 

Input: A4Xn contains diagnoses with its attributes: 

1-Diagnosis, 2-Mortality Risk, 3-High risk indicator, 4-Clustering Coefficient  

Let  

Numeric MortalityRate – It denotes a cutoff to consider mortality risk as higher or lower. In 

our study, we use 0.1 as the cutoff. 

Code 6.1: Convert weighted matrix into unweighted 

For i=1 to n 

 For j=1 to n 

  If wij > 0 then wij=1 

 Loop 

Loop 

Code 6.2: Identify high mortality risk diagnoses forming cliques 

For i=1 to n 

 If Ai2 > MortalityRate then Ai3 = 1 

 Else Ai3 = 0 

            Ai4 = Cluster coefficient of Ai1 calculated as per equation 4. 

 If Ai3 = 1 and Ai4 = 1 then  

  Call Sub-routine CliqueNodes (i) 

Loop 

Code 6.3: A sub routine to direct connections of the diagnoses forming cliques 

Sub CliqueNodes (i)  

 For j=1 to n 

  If wij=1 and i ≠ j then 

  Write Di, Dj 

 Loop 

End 
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Code 6.2. The diagnoses that are high risk and have maximum clustering coefficient (i.e. 1) are 

selected. Finally, the direct connections of the identified diagnoses forming cliques are extracted 

from the matrix of connections as in Code 6.3. 

6.4 DATA DESCRIPTION AND PREPARATION 

We use an Electronic Medical Record (EMR) containing health records of more than 58 million 

patients across 662 hospitals in US (2000-2016). This EMR is provided by Cerner Corporation, a 

major EMR provider. The database includes information about all types of patients (emergency, 

inpatient, outpatient, etc.), admissions (elective, urgent, new born, etc.), hospitals and payers 

(Medicaid, Medicare, self-pay and other private payers). For our purpose, we extracted all types 

of patients and diseases diagnosed across different hospital visits. The diagnoses are recorded 

according to the International Classification of Diseases, Ninth Revision, Clinical Modification 

(ICD-9-CM). We removed hospital visits in which patients were not diagnosed with any type of 

disease or symptom. After removing such encounters, we had approximately 24.7 million unique 

patients with sufficient information to perform analysis.    

For data analysis, we follow the Transparent Reporting of a multivariable prediction model for 

Individual Prognosis or Diagnosis (TRIPOD) guidelines created by Collins et al. (2015). The 

steps followed in processing the massive data containing medical records of 24.7 million unique 

patients are presented in a flowchart in Figure 6.2. The flowchart also presents the number of 

patients and hospital visits at each step in the process. First of all, information about the patients, 

their hospital visits and diseases diagnosed were merged. An integration of different datasets 

resulted medical records of 24.7 million patients diagnosed with at least one disease or symptom. 

The entire dataset was used for find a cut-off for Salton Cosine Index using the Process 1. As 

discussed earlier, we used the relationship between Pearson’s correlation coefficient and SCI to 

find a cut-off for SCI. From the comorbidity network of 24.7 million patients developed using 

Pearson’s Correlations Coefficient significant at α=0.01 and cij>Average (cij), the number of 
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statistically significant edges were equal at the SCI cutoff of 0.04. Therefore, from here onwards, 

we consistently use SCI cutoff of 0.04 for creating an edge in the comorbidity network. 

The large dataset containing health records of 24.7 million patients was divided into two random 

samples of equal size. The first sample was used to create the comorbidity network, identify 

cliques related to the high risk diagnoses and calculate the impact of cliques in the patients. Then, 

the second random sample was used to validate the effect of cliques on mortality on an 

independent set of patients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12,335,592 patients 

63,392,819 encounters 

 

Find SCI cut-off 

using Process 1 

on 24.7 million 

Patients 

 

Validate 

Results 

 

Patient Data 
Diagnoses Data  

Visit Data 

Filtered encounters less than equal to 70 years of age 

12,334,729 patients 

63,437,833 encounters 

 

10,991,281 patients 

52,351,427 encounters 

 
Removed patients who died at 71 years of age 

10,989,564 patients 

52,331,979 encounters 

 
Removed patients where last known discharge is not known and 

no further information later 

8,288,171 patients 

38,460,723 encounters 

67,521 deceased 

Nodes and Edges – 

Comorbidity Network 

Figure 6.2. Data processing 

Identify cliques related to mortality 

Merged datasets 

24.7 million 

Patients 

 

Modeling 

Robustness 

Check 

10,991,263 patients 

52,310,045 encounters 

 

10,989,558 patients 

52,290,608 encounters 

 

8,289,997 patients 

38,416,460 encounters 

67,614 deceased 
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To reduce some bias related to the age, we restricted our analysis to the patients up to 70 years of 

age. Moreover, we followed the patient records for one more year and removed those who 

deceased at 71 years of age so that the number of false positives are minimized. In addition, we 

deleted the patients from the analysis where the last known discharge of the patients was either 

not valid or unknown. These filters left us with more than 8.2 million patients in each sample. In 

both samples, the death rate is around 800 out of 100,000. 

6.5 RESULTS 

In the dataset of 12 million patients, we identify eighteen base diagnoses where the mortality risk 

of having that specific diagnoses is more than 0.1. The list including the ICD-9 codes is given in 

Table 6.2. The table also includes the size of clique, which is the number of diagnoses in a clique 

including the base diagnosis. The list includes cancers of plasma cells, lymphatic tissue, pancreas, 

stomach, esophagus, head, face, neck, thorax, abdomen, pelvis, limbs, ovary and other uterine 

adnexa. Other diagnoses include nutritional marasmus, portal vein thrombosis, acute and subacute 

endocarditis, subarachnoid hemorrhage, mycoses, abscess of lung and mediastinum, alveolar and 

parietoalveolar pneumonopathy, pneumococcal pneumonia and dementias. The encounter for 

dialysis and dialysis catheter care also forms a clique with its neighbors.  

The comparison of the mortality rate among patients with and without a specific clique, given the 

base diagnosis, is performed. Since our focus is on the base disease, we perform the comparison 

of the mortality risk in the patients with a particular base disease. For instance, Figure 6.3 

presents the clique of Portal vein thrombosis (ICD9-452) as the base diagnosis. The size of this 

clique is three, which includes chronic liver disease and cirrhosis (ICD9-571) and liver abscess 

and sequelae of chronic liver disease (ICD9-572). There were 1,327 portal vein thrombosis 

patients without the clique having the mortality rate of 18.3%. However, there were 871 portal 

vein thrombosis patients  
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diagnosed with all three diseases with mortality rate of 28.2%. It clearly indicates that clique 

increases the mortality risk significantly (p<0.05). The same comparison is done for all the base 

diagnoses. The description of all cliques including diagnoses can be found in Figures 6.4a to 6.4r. 

The increase in risk of mortality due to the clique formation within the patient is listed in Table 

6.2 and presented in Figure 6.5. Except for the cancer of esophagus, the presence of all other 

cliques have significant effect on the mortality risk. There are some diagnoses in the table where 

the number of patients with a clique is small such as patients diagnosed with nutritional 

marasmus, malignant neoplasm of pancreas, acute and subacute endocarditis, mycoses, malignant 

neoplasm of head, face, neck, thorax, abdomen, pelvis and limbs, and multiple myeloma and 

immunoproliferative neoplasms. Although the effect of clique on mortality in these patients was 

large, the issue of small sample size still exists. However, in other categories such as patients with 

portal vein thrombosis, stomach cancer, ovary and other uterine adnexa cancer, plasma cell 

cancer, abscess of lung and mediastinum, pneumococcal pneumonia and dementias, the number 

of patients deceased is significantly large. The rise in mortality risk due to clique diagnoses is 

confirmed from these types of patients. Since the mortality risk increases when cliques are 

present, it should obviously alarm the physicians.

Number of Patients without all three diagnoses– 1,327 

Deceased – 18.3% 

Portal vein thrombosis 

(ICD9-452) 

Number of Patients with all three diagnoses – 871 

Deceased – 28.2% 

Figure 6.3. A clique/triangle of three diseases with their joint impact on mortality 

Base Diagnosis - 

Portal vein thrombosis 
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Table 6.2. Mortality rate with and without cliques 

ICD-9 Description Clique 

Size 

Patient count 

w/o Clique 

Mortality rate 

w/o a clique (%) 

Patient count 

with Clique 

Mortality rate 

with clique (%) 

261* Nutritional marasmus 13 3,725 32.0 30 60 

452* Portal vein thrombosis 3 1,327 18.3 871 28.2 

157* Malignant neoplasm of pancreas 7 5,808 21.5 73 43.8 

421* Acute and subacute endocarditis 15 3,760 21.2 67 41.8 

151* Malignant neoplasm of stomach 3 2,968 17.1 427 42.9 

150 Malignant neoplasm of esophagus 3 2,772 18.8 905 19.0 

430* Subarachnoid hemorrhage 4 5,520 16.0 192 24.0 

117* Mycoses 16 6,558 15.6 21 33.3 

513* Abscess of lung and mediastinum 3 1,513 9.8 659 22.2 

516* Alveolar and parietoalveolar pneumonopathy 6 4,013 12.0 201 30.8 

510* Empyema 9 3,985 12.1 151 30.5 

195* Malignant neoplasm of head, face, neck, thorax, abdomen, pelvis and limbs 12 6,096 12.6 14 71.4 

481* Pneumococcal pneumonia 8 4,098 11.6 160 26.3 

V56* Encounter for dialysis and dialysis catheter care 9 2,074 9.5 628 18.2 

200* Lymphosarcoma and reticulosarcoma 5 3,845 10.5 375 18.1 

203* Multiple myeloma and immunoproliferative neoplasms 12 5,843 10.8 19 47.4 

183* Malignant neoplasm of ovary and other uterine adnexa 7 6,929 10.2 142 40.1 

290* Dementias 8 4,305 9.5 152 28.3 

    * The proportions are statistically different (p<0.05) 

 

 

 

 

 

 

117- Mycoses 

287- Purpura and other hemorrhagic conditions 

584- Acute kidney failure 
995- Certain adverse effects not elsewhere classified 

518- Other diseases of lung 

275- Disorders of mineral metabolism 
486- Pneumonia, organism unspecified 

288- Diseases of white blood cells 

799- Ill-defined causes of morbidity and mortality 
276- Disorders of fluid electrolyte and acid-base balance 

996- Complications peculiar to certain procedures 

285- Other and unspecified anemias 
E87- Accident during medical care 

038- Septicemia 

112- Candidiasis 
041- Bacterial infection 

Base Diagnosis – Mycoses 

(117) 

183- Malignant neoplasm of ovary and other uterine adnexa 

560- Intestinal obstruction without mention of hernia 

198- Secondary malignant neoplasm of other specified sites 

V58- Encounter for other and unspecified procedures and 

aftercare 

V10- Personal history of malignant neoplasm 

285- Other and unspecified anemias 

197- Secondary malignant neoplasm of respiratory and 

digestive systems 

 Base Diagnosis – Malignant 

neoplasm of ovary and other 

uterine adnexa (183) 

Figure 6.4a. Clique 1 Figure 6.4b. Clique 2 
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Base Diagnosis - Malignant 

neoplasm of esophagus (150) 

150- Malignant neoplasm 
of esophagus 

V10- Personal history of 

malignant neoplasm 
530- Diseases of 

esophagus 

 

151- Malignant neoplasm 

of stomach 

197- Secondary malignant 
neoplasm of respiratory and 

digestive systems 

V10- Personal history of 
malignant neoplasm 

 
 

Base Diagnosis - Malignant 

neoplasm of stomach (151) 

513- Abscess of lung 

and mediastinum 

486- Pneumonia, 

organism unspecified 

518- Other diseases of 

lung 

 
Base Diagnosis - Abscess of 

lung and mediastinum (513) 

 

430- Subarachnoid 

hemorrhage 

437- Other and ill-defined 

cerebrovascular disease 

518- Other diseases of lung 

348- Other conditions of brain 

Base Diagnosis - Subarachnoid 

hemorrhage (430) 

 

200- Lymphosarcoma, reticulosarcoma 
and malignant tumors of lymphatic tissue 

288- Diseases of white blood cells 
V58- Encounter for other and 

unspecified procedures and aftercare 

V10- Personal history of malignant 
neoplasm 

202- Other malignant neoplasms of 

lymphoid and histiocytic tissue 

Base Diagnosis - Lymphosarcoma, reticulosarcoma 

and malignant tumors of lymphatic tissue (200) 

481- Pneumococcal pneumonia 

038- Septicemia 
799- Other ill-defined and unknown causes of 

morbidity and mortality 

995- Certain adverse effects not elsewhere 
classified 

486- Pneumonia, organism unspecified 

496- Chronic airway obstruction, not elsewhere 
classified 

276- Disorders of fluid electrolyte and acid-base 

balance 
518- Other diseases of lung 

 

 

Base Diagnosis -

Pneumococcal 

pneumonia (481) 

452- Portal vein thrombosis 

572- Liver abscess and 

sequelae of chronic liver 
disease 

571- Chronic liver disease 

and cirrhosis 

Base Diagnosis - Portal vein 

thrombosis (452) 

 

Base Diagnosis - 

Malignant neoplasm 

of other and ill-

defined sites (195) 

 

285- Other and unspecified anemias 

V10- Personal history of malignant neoplasm 
V58- Encounter for other and unspecified procedures and aftercare 

V15- Other personal history presenting hazards to health 

E87- Accident during medical care 
276- Disorders of fluid electrolyte and acid-base balance 

198- Secondary malignant neoplasm of other specified sites 

196- Secondary and unspecified malignant neoplasm of lymph nodes 
195- Malignant neoplasm of other and ill-defined sites 

199- Malignant neoplasm without specification of site 

197- Secondary malignant neoplasm of respiratory and digestive 
systems 

518- Other diseases of lung 

203- Multiple myeloma and immunoproliferative neoplasms 

585- Chronic kidney disease (ckd) 

273- Disorders of plasma protein metabolism 

276- Disorders of fluid electrolyte and acid-base balance 

288- Diseases of white blood cells 

285- Other and unspecified anemias 
275- Disorders of mineral metabolism 

284- Aplastic anemia and other bone marrow failure syndromes 

287- Purpura and other hemorrhagic conditions 
V58- Encounter for other and unspecified procedures and 

aftercare 

584- Acute kidney failure 

733- Other disorders of bone and cartilage 

Base Diagnosis -

Multiple myeloma & 

immunoproliferative 

neoplasms (203) 

 

Figure 6.4c. Clique 3 Figure 6.4d. Clique 4 Figure 6.4e. Clique 5 Figure 6.4f. Clique 6 

Figure 6.4g. Clique 7 Figure 6.4h. Clique 8 Figure 6.4i. Clique 9 

Figure 6.4j. Clique 10 Figure 6.4k. Clique 11 
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290- Dementias 
401-Essential hypertension 

437- Ill-defined cerebrovascular disease 

250- Diabetes mellitus 
294- Persistent mental disorders 

276- Disorders of fluid electrolyte and 

acid-base balance 
585- Chronic kidney disease (ckd) 

V12- Personal history of certain other 

diseases Base Diagnosis – 

Dementias (290) 

 

510- Empyema 

518- Other diseases of lung 
511- Pleurisy 

995- Certain adverse effects not 

elsewhere classified 
285- Other and unspecified anemias 

038- Septicemia 

276- Disorders of fluid electrolyte and 
acid-base balance 

486- Pneumonia, organism unspecified 

041- Bacterial infection 

Base Diagnosis – 

Empyema (510) 

 

486- Pneumonia, organism unspecified 
496- Chronic airway obstruction 

515- Postinflammatory pulmonary 

fibrosis 
516- Other alveolar and 

parietoalveolar pneumonopathy 

518- Other diseases of lung 
799- Ill-defined causes of morbidity 

and mortality 

Base Diagnosis -

Alveolar & 

parietoalveolar 

pneumonopathy (516) 

V56- Encounter for dialysis and dialysis catheter care 

588- Disorders resulting from impaired renal function 
585- Chronic kidney disease (ckd) 

V45- Other postprocedural states 

E87- Accident during medical care 
276- Disorders of fluid electrolyte and acid-base balance 

285- Other and unspecified anemias 

403- Hypertensive chronic kidney disease 

996- Complications peculiar to certain procedures Base Diagnosis – 

Encounter for 

dialysis and dialysis 

catheter care (V56) 

157- Malignant neoplasm of pancreas 

V10- Personal history of malignant neoplasm 

197- Secondary malignant neoplasm of respiratory and 

digestive systems 

276- Disorders of fluid electrolyte and acid-base balance 

285- Other and unspecified anemias 

576- Other disorders of biliary tract 

577- Diseases of pancreas Base Diagnosis – 

Malignant neoplasm 

of pancreas (157) 

Base Diagnosis – 

Nutritional marasmus (261) 

261- Nutritional marasmus 
V85- Body mass index (bmi) 

263- Other and unspecified protein-calorie malnutrition 

275- Disorders of mineral metabolism 
276- Disorders of fluid electrolyte and acid-base balance 

285- Other and unspecified anemias 

038- Septicemia 
486- Pneumonia, organism unspecified 

518- Other diseases of lung 

584- Acute kidney failure 
783- Symptoms concerning nutrition metabolism and 

development 

799- Ill-defined causes of morbidity and mortality 
995- Certain adverse effects not elsewhere classified 

421- Acute and subacute endocarditis 

518- Other diseases of lung 
785- Symptoms involving cardiovascular system 

427- Cardiac dysrhythmias 

790- Nonspecific findings on examination of blood 
428- Heart failure 

584- Pneumonia in infectious diseases  

038- Septicemia 
041- Bacterial infection 

996- Complications peculiar to certain specified procedures 

585- Chronic kidney disease (ckd) 
285- Other and unspecified anemias 

276- Disorders of fluid electrolyte and acid-base balance 
424- Other diseases of endocardium 

995- Certain adverse effects not elsewhere classified 

Base Diagnosis – Acute and 

subacute endocarditis (421) 

 

Figure 6.4l. Clique 12 Figure 6.4m. Clique 13 Figure 6.4n. Clique 14 

Figure 6.4o. Clique 15 Figure 6.4p. Clique 16 

Figure 6.4q. Clique 17 Figure 6.4r. Clique 18 
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Figure 6.5. Mortality rate with and without clique 

 

Moreover, we validated the effect of cliques on mortality by performing a similar comparison on 

an independent dataset. We found similar results with cliques having more risk of mortality. The 

results on the validation dataset are listed in Table 6.3. This validation on an independent dataset 

confirms the robustness of our analysis and results. 

Although the method and findings from this study are unique, we relate these back to the 

literature of comorbidity. For instance, we found several cancer-related cliques indicating 

comorbidities impacting the mortality rate. Our finding is supported by the previous researchers. 

For example, Sarfati, Koczwara and Jackson (2016) argued that comorbidities among cancer 

patients lead to poorer survival and quality of life. Similarly, empyema is known to be related to 

multiple other diseases like pneumonia, septicemia, lung diseases as discussed by Li and Gates 

(2008), which are related to mortality. Adding to the above literature of comorbidities, using a 

novel approach, we are able to show the risk of collection of diagnoses in terms of cliques. 
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Table 6.3. Robustness Check on Validation Dataset 

ICD-9 Description Patient 

count w/o 

Clique 

Mortality 

rate w/o 

clique (%) 

Patient 

count with 

Clique 

Mortality 

rate with 

clique (%) 

261 Nutritional marasmus 3,514 31.5 36 41.7 

452* Portal vein thrombosis 1,220 18.3 902 29.6 

157* Malignant neoplasm of pancreas 5,756 21.7 54 51.9 

421* Acute and subacute endocarditis 3,792 19.2 60 50.0 

151* Malignant neoplasm of stomach 3,042 16.9 436 37.8 

150 Malignant neoplasm of esophagus 2,679 17.6 928 19.4 

430* Subarachnoid hemorrhage 5,621 16.3 172 28.5 

117 Mycoses 6,645 15.7 26 23.1 

513* Abscess of lung and mediastinum 1,468 10.5 673 22.3 

516* 

Alveolar and parietoalveolar 

pneumonopathy 

4,015 12.9 

198 

33.3 

510* Empyema 4,145 12.2 121 33.9 

195* 

Malignant neoplasm of head, face, neck, 

thorax, abdomen, pelvis and limbs 

6,045 12.2 

12 

50.0 

481* Pneumococcal pneumonia 4,194 11.8 140 33.6 

V56* 

Encounter for dialysis and dialysis 

catheter care 

2,061 10.0 

604 

18.9 

200* Lymphosarcoma and reticulosarcoma 3,770 9.2 340 16.8 

203* 

Multiple myeloma and 

immunoproliferative neoplasms 

5,694 10.7 

15 

26.7 

183* 

Malignant neoplasm of ovary and other 

uterine adnexa 

6,902 10.0 

150 

38.7 

290* Dementias 4,342 10.1 148 29.7 

* The proportions are statistically different (p<0.05) 

 

6.6 CONCLUSIONS 

We showed structure properties such as cliques of a network inferred from the co-occurrences 

effect health outcomes of the patients. We discovered underlying interaction between different 

diagnoses related to the mortality. Our study has several practical implications. Clique being a 

complete subnetwork indicates a trap of diseases. Since the mortality rate increases if a clique is 

developed, physicians should take measures to avoid such trap of diagnoses. Moreover, the 

presence of a clique in a patient should alarm the physician to take preemptive action. Studying 

the impact of multimorbidity on mortality from the clique point of view definitely increases the 

understanding about the possible impact of multiple diagnoses on mortality.  
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We recognize few limitations of our approach. First, we identified maximal cliques related to the 

base diagnosis. However, it is possible that some diagnoses are redundant and may not be related 

to mortality. In the future, we will find the high risk sub-network of the clique by eliminating the 

redundant diagnoses. Second, we acknowledge that there are several diagnoses that are highly 

related to mortality but not forming the cliques. We did not include such diagnoses in our analysis 

because the main focus was on the clique property. 

Notwithstanding the limitations, the approach presented in this paper is generalizable to multiple 

other business and social problems where a network can be inferred from the actions of the users. 

For example, a clique of products in the product purchase network can help vendors to create 

bundles of products to sell. In this case, the cliques of products can be identified based on the 

profitability, analogous to mortality in our case. A similar idea can be applied to find cliques of 

mobile apps in the mobile-apps network, which can be inferred from the usage patterns of users. 

Such cliques of mobile apps can be bundled together on the online store. Another application of 

our approach is in finding cliques of locations in the network of locations inferred from the travel 

patterns of the tourists. Some tourist spots may emerge as profitable cliques and therefore, travel 

agents can create holiday packages comprising clique locations.
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CHAPTER VII 
 

 

CONCLUSIONS 

7.1. CONTRIBUTIONS AND GENERALIZABILITY 

Our network is one of a category that emerges without the intentions of its source, often referred 

to as unintentional, inferred or implicit. Patients are the source, but the network is formed 

implicitly unknowingly. This class differs from traditional or explicit networks, which are 

developed from the intentional actions of its members. The method and applications presented in 

this dissertation has practical, methodological and theoretical contributions.  

Inferring network itself is a challenge. Therefore, the contribution of Chapter 2 is significant 

where we proved that a cosine index is a better choice than a correlation coefficient. We showed 

that selecting an index independent of the sample size provides valid network comprising true 

relationships. This contribution can be generalizable to all implicit networks inferred from the 

sample. For example, affinity between products in a market basket of buyers in a grocery store 

should be computed using an index independent of the number of buyers.  

Moreover, in Chapter 2, we proved that the comorbidity network follows the small-world 

topology. This is a significant contribution to the comorbidity and medical literature. The small-

world property of the network has several practical implications for the providers. For example, 

the clusters in the network can be used to lay out departments. Moreover, clusters of diseases can 

guide pharmaceutical companies to understand the side-effects of a medicine. Generally, the  
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network properties can help the physicians prioritize the diagnoses based on the position of a 

disease in the network. 

A network emerged from the unintended actions can be different in groups because groups might 

behave differently in different situations. Like in Chapter 3 and 4, we discovered different 

behavior of diseases in different population groups based on gender, race, and insurance, this is 

true for other inferred networks as well. For instance, the co-purchasing pattern of males and 

females may form two different structures. Therefore, the approach of analyzing different 

network is different population groups is generalizable to other networks to gain more insights 

about the phenomenon. 

The network method can also help create models in high dimensional space by summarizing the 

relationships between different components of a system. A network can be a basis for the 

algorithms to predict future outcomes. In Chapters 5 and 6, we described two algorithms using 

the network properties. The algorithms were used to create models of different levels i.e. i.e. at 

the network level and the performance outcome level. Therefore, this dissertation has algorithmic 

contributions. These algorithms can be applied in other problems domains where inferred 

network can be used to build models at different levels. 

Because a network can handle high dimensional space, a scale incorporating high dimensionality 

to quantify any phenomenon can be created. In Chapter 5, we used network properties to devise a 

measure to compute comorbidity at a patient level. This is another contribution of this dissertation 

like Shmueli and Koppius (2011) explained in their commentary that a measure development is 

one of the roles of analytics in scientific research. 

The measure developed from the network was used to predict exogenous outcome i.e. length of 

stay. Here, we take the application of implicit networks to next level, exploring how these impact 

the uncontrollable performance of the external source. Similarly, in other inferred networks, 
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structural properties can be used to explain and predict outcomes external to the network. The use 

of network variables for modeling is itself a major contribution of this dissertation. This approach 

provides researchers a new dimension to understand the phenomenon. 

A network embeds several inherent structural properties resulting from the interactions between 

the nodes. Understanding these properties theoretically is important. In Chapter 6 of this 

dissertation, we theorized a very critical inherent property of the comorbidity network i.e. cliques. 

A clique was theorized as a trap state from where the exit is difficult. The cliques identified were 

related to high mortality risk. To the best of our knowledge, no one in the past has theorized a 

clique property of the comorbidity network in the form of a trap state. Moreover, the method of 

finding cliques related to an exogenous property (mortality in our case) can be applied in other 

networks. Finding Clique is a never ending problem and a simpler algorithm described in Chapter 

6 to find these based on prevalent outcomes is a methodological contribution of this dissertation.  

7.2. FUTURE WORK 

We identified comorbidity differences across population groups in Chapter 3 and 4. To increase 

the usefulness of our results for practical purposes, we are creating a website describing the 

comorbidity differences interactively. Physicians will be able to use our website to predict future 

diagnoses and understand the state of a patient.  

In addition, we primarily focused on the length of stay and mortality as the health outcomes. 

However, in future, we will study how network properties influence other health outcomes of 

patients such as readmission probability. In addition, we will study how a network can be used to 

design new interventions. 

The comorbidity networks created in this dissertation were undirected with no directions between 

the diagnoses. However, if we consider the time of a diagnosis, a directed network with direction 
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between the diagnoses can be created. It will explain how one disease leads to another disease. 

This will help explain the causal relationship between diagnoses. 

As a part of our future work, we will generalize our methodology and approach to other domains.  

We will extend our method to the retail industry problems. One future project is to create a network 

of products based on shopping cart of customers in a grocery store. The structural properties of 

product network will be utilized to study performance outcomes of the customers. For example, the 

structural properties of the products in current shopping cart might predict the future cart and future 

spending.  

Our approach can also be applied to understand technology related behavioral outcomes. For 

instance, an implicit network formed from technology use might explain performance outcomes 

such as technology addiction, satisfaction, etc. An example of such an implicit network is the 

smartphone app network formed from the use of multiple apps one after the other by users.  

Similarly, we will explore different hidden networks in various domains. 
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APPENDICES 

 

Appendix A. Performance of the hospital length of stay models for patients with a specific primary diagnosis 
 

ICD Name N Mean 
Baseline 4 
R-square 

COM 3  
R-square  

ICD Name N Mean 
Baseline 4 
R-square 

COM 3  
R-square 

002  Typhoid and paratyphoid fevers 4389 1.2422 0.318 0.496 
 

649 
 Other conditions or status of the mother 
complicating pregnancy, childbirth 

2043 2.4258 0.095 0.215 

003  Other salmonella infections 6617 2.3350 0.231 0.254  650  Normal delivery 10455 2.2477 0.045 0.115 

005  Other food poisoning (bacterial) 1794 1.3016 0.370 0.381  651  Multiple gestation 578 3.3789 0.112 0.225 

008  Intestinal infections due to other organisms 3671 2.1370 0.287 0.382  652  Malposition and malpresentation of fetus 2164 3.0231 0.047 0.117 

009  Ill-defined intestinal infections 572 2.3794 0.391 0.661  654  Abnormality of organs and soft tissues of pelvis 9271 2.7025 0.059 0.118 

034  Streptococcal sore throat and scarlet fever 6871 1.0971 0.189 0.234 
 

655 
 Known or suspected fetal abnormality affecting 
management of mother 

917 2.4089 0.265 0.325 

038  Septicemia 4669 5.1527 0.101 0.207 
 

656 
Other fetal and placental problems affecting 
management of mother 

2796 2.6692 0.042 0.136 

041 
 Bacterial infection in conditions classified 
elsewhere 

2153 2.5235 0.319 0.602 
 

658 
 Other problems associated with amniotic cavity 
and membranes 

3823 3.4057 0.030 0.078 

053  Herpes zoster 1224 1.4232 0.418 0.532 
 

659 
Other indications for care or intervention related 
to labor 

6071 2.6655 0.045 0.108 

054  Herpes simplex 804 1.7674 0.343 0.469  660  Obstructed labor 959 2.9124 0.061 0.142 

057  Other viral exanthemata 1334 1.0997 0.244 0.309  661  Abnormality of forces of labor 2432 2.9416 0.122 0.216 

074  Specific diseases due to coxsackie virus 1542 1.0759 0.282 0.405 
 

663 
 Umbilical cord complications during labor and 
delivery 

3649 2.2710 0.049 0.138 

079 
 Viral and chlamydial infection in conditions 
classified elsewhere 

18690 1.1546 0.296 0.395 
 

664  Trauma to perineum and vulva during delivery 10292 2.1785 0.038 0.071 

110  Dermatophytosis 2586 1.1257 0.283 0.575 
 

669 
 Other complications of labor and delivery not 
elsewhere classified 

2016 2.9122 0.098 0.210 

112  Candidiasis 3199 1.2813 0.624 0.780  681  Cellulitis and abscess of finger and toe 2955 1.4115 0.428 0.547 

133  Acariasis 1764 1.0884 0.251 0.320  682  Other cellulitis and abscess 39685 1.6068 0.419 0.451 

153  Malignant neoplasm of colon 530 5.2792 0.109 0.205  684  Impetigo 1335 1.1363 0.313 0.382 
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162 
 Malignant neoplasm of trachea bronchus 
and lung 

547 5.0494 0.136 0.262 
 

686 
Other local infections of skin and subcutaneous 
tissue 

1230 1.3846 0.371 0.693 

174  Malignant neoplasm of female breast 960 2.0479 0.150 0.327  691  Atopic dermatitis and related conditions 2141 1.2644 0.294 0.565 

185  Malignant neoplasm of prostate 1698 1.8893 0.122 0.362  692  Contact dermatitis and other eczema 7949 1.1250 0.266 0.492 

218  Uterine leiomyoma 2988 2.0576 0.159 0.235  698  Pruritus and related conditions 1448 1.1250 0.378 0.663 

244  Acquired hypothyroidism 870 2.5667 0.149 0.558  704  Diseases of hair and hair follicles 1188 1.1052 0.338 0.462 

250  Diabetes mellitus 13397 2.3259 0.227 0.342  708  Urticaria 5151 1.0641 0.181 0.248 

251 
Other disorders of pancreatic internal 
secretion 

1165 2.0077 0.282 0.504 
 

709  Other disorders of skin and subcutaneous tissue 2914 1.2172 0.237 0.379 

272  Disorders of lipoid metabolism 2214 2.6500 0.061 0.373  715  Osteoarthrosis and allied disorders 6552 2.3288 0.175 0.307 

274  Gout 1214 1.4185 0.454 0.759  716  Other and unspecified arthropathies 2080 1.3620 0.365 0.653 

276 
 Disorders of fluid electrolyte and acid-base 
balance 

14732 2.1792 0.257 0.338 
 

719  Other and unspecified disorders of joint 36318 1.1642 0.244 0.355 

278 
 Overweight, obesity and other 
hyperalimentation 

3499 2.3172 0.150 0.442 
 

721  Spondylosis and allied disorders 1739 1.8735 0.142 0.277 

280  Iron deficiency anemias 840 2.5405 0.170 0.478  722  Intervertebral disc disorders 5082 1.8851 0.127 0.201 

282  Hereditary hemolytic anemias 2911 2.5737 0.306 0.412  723  Other disorders of cervical region 11664 1.1526 0.210 0.293 

285  Other and unspecified anemias 4126 2.8323 0.178 0.350  724  Other and unspecified disorders of back 42330 1.1911 0.269 0.340 

287  Purpura and other hemorrhagic conditions 1078 2.6503 0.241 0.589  726  Peripheral enthesopathies and allied syndromes 2118 1.2899 0.426 0.505 

288  Diseases of white blood cells 1533 3.2857 0.212 0.442  727  Other disorders of synovium tendon and bursa 1712 1.3271 0.408 0.597 

289 
Other diseases of blood and blood-forming 
organs 

1422 1.8432 0.402 0.620 
 

728  Disorders of muscle ligament and fascia 2460 1.9459 0.313 0.569 

291  Alcohol-induced mental disorders 2552 3.2692 0.271 0.370  729  Other disorders of soft tissues 42639 1.2080 0.337 0.397 

292  Drug-induced mental disorders 2091 2.2975 0.391 0.509  733  Other disorders of bone and cartilage 3514 1.5677 0.316 0.505 

294 
 Persistent mental disorders due to 
conditions classified elsewhere 

510 3.5137 0.436 0.560 
 

737 Curvature of spine 591 4.4196 0.278 0.409 

295  Schizophrenic disorders 4978 6.5749 0.302 0.346 
 

745 
Bulbus cordis anomalies and anomalies of cardiac 
septal closure 

1048 5.7424 0.194 0.330 

296  Episodic mood disorders 13858 4.8611 0.256 0.287 
 

765 
Disorders relating to short gestation and low 
birthweight 

2635 6.4159 0.174 0.294 

298  Other nonorganic psychoses 3691 3.9225 0.376 0.452 
 

766 
Disorders relating to long gestation and high 
birthweight 

1173 2.4859 0.062 0.132 

300 
 Anxiety, dissociative and somatoform 
disorders 

13556 1.6713 0.409 0.474 
 

770 
 Other respiratory conditions of fetus and 
newborn 

1637 5.4319 0.197 0.360 

303  Alcohol dependence syndrome 5750 1.6957 0.445 0.503  774  Other perinatal jaundice 2953 2.5645 0.158 0.291 

304  Drug dependence 775 4.7871 0.383 0.430 
 

778 
Integument and temperature regulation of fetus 
and newborn 

595 2.7193 0.144 0.506 

305  Nondependent abuse of drugs 17013 1.9214 0.321 0.419 
 

779 
 Other and ill-defined conditions originating in the 
perinatal period 

2718 3.2826 0.239 0.377 

307 
 Special symptoms or syndromes not 
elsewhere classified 

2477 2.8292 0.674 0.708 
 

780  General symptoms 124364 1.4193 0.317 0.364 

309  Adjustment reaction 2536 2.7165 0.338 0.443 
 

781 
Symptoms involving nervous and musculoskeletal 
systems 

2793 1.7333 0.245 0.575 
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311 
 Depressive disorder, not elsewhere 
classified 

8074 2.7524 0.363 0.419 
 

782 
 Symptoms involving skin and other 
integumentary tissue 

30349 1.2404 0.292 0.399 

312 
 Disturbance of conduct not elsewhere 
classified 

1483 2.1908 0.458 0.547 
 

783 
 Symptoms concerning nutrition metabolism and 
development 

1724 3.6990 0.230 0.407 

314  Hyperkinetic syndrome of childhood 532 4.2519 0.418 0.513  784  Symptoms involving head and neck 56072 1.1691 0.316 0.384 

338  Pain, not elsewhere classified 3415 1.5356 0.310 0.573  785  Symptoms involving cardiovascular system 9361 1.4525 0.319 0.490 

345  Epilepsy and recurrent seizures 6650 2.0329 0.242 0.332 
 

786 
Symptoms involving respiratory system and other 
chest symptoms 

137777 1.4710 0.317 0.359 

346  Migraine 9547 1.2151 0.315 0.467  787  Symptoms involving digestive system 54882 1.3368 0.346 0.393 

348  Other conditions of brain 1183 3.4725 0.176 0.486  788  Symptoms involving urinary system 13048 1.1914 0.296 0.516 

351  Facial nerve disorders 1036 1.1931 0.458 0.701  789  Other symptoms involving abdomen and pelvis 122241 1.3435 0.387 0.422 

362  Other retinal disorders 1300 1.2500 0.435 0.829  790  Nonspecific findings on examination of blood 4868 2.1781 0.328 0.463 

366  Cataract 527 1.1006 0.543 0.724  794  Nonspecific abnormal results of function studies 559 2.8068 0.182 0.446 

368  Visual disturbances 1649 1.3869 0.301 0.555  796  Other nonspecific abnormal findings 1296 1.4915 0.239 0.528 

372  Disorders of conjunctiva 9741 1.0813 0.135 0.234 
 

799 
 Other ill-defined and unknown causes of 
morbidity and mortality 

3047 2.6754 0.201 0.428 

373  Inflammation of eyelids 2340 1.1440 0.371 0.457  802  Fracture of face bones 2943 1.5912 0.245 0.355 

379  Other disorders of eye 8543 1.0912 0.266 0.367 
 

805 
 Fracture of vertebral column without mention of 
spinal cord injury 

1867 2.6133 0.239 0.389 

380  Disorders of external ear 4340 1.1187 0.295 0.483  807  Fracture of rib(s) sternum larynx and trachea 1871 2.0208 0.257 0.509 

381 
 Nonsuppurative otitis media and eustachian 
tube disorders 

555 1.1135 0.356 0.404 
 

810  Fracture of clavicle 1858 1.2374 0.391 0.572 

382  Suppurative and unspecified otitis media 25208 1.0948 0.171 0.210  812  Fracture of humerus 3943 1.3779 0.225 0.380 

386 
 Vertiginous syndromes and other disorders 
of vestibular system 

753 1.3997 0.347 0.420 
 

813  Fracture of radius and ulna 8166 1.2103 0.201 0.299 

388  Other disorders of ear 11850 1.1097 0.164 0.198  814  Fracture of carpal bone(s) 528 1.1553 0.226 0.310 

401 Essential hypertension 16603 1.8777 0.260 0.394  815  Fracture of metacarpal bone(s) 1851 1.0929 0.195 0.256 

403  Hypertensive chronic kidney disease 512 3.4785 0.230 0.401  816  Fracture of one or more phalanges of hand 3526 1.1075 0.116 0.239 

410  Acute myocardial infarction 7737 3.4349 0.036 0.092  821  Fracture of other and unspecified parts of femur 691 3.0564 0.241 0.399 

411 
 Other acute and subacute forms of ischemic 
heart disease 

1413 2.5718 0.075 0.174 
 

823  Fracture of tibia and fibula 2644 2.1048 0.277 0.365 

414 
 Other forms of chronic ischemic heart 
disease 

6974 2.9604 0.030 0.096 
 

824  Fracture of ankle 4045 1.5773 0.241 0.359 

415  Acute pulmonary heart disease 1911 4.2575 0.121 0.303 
 

825 
 Fracture of one or more tarsal and metatarsal 
bones 

2123 1.3118 0.366 0.562 

424  Other diseases of endocardium 521 5.3647 0.129 0.303  826  Fracture of one or more phalanges of foot 1345 1.0900 0.202 0.594 

427  Cardiac dysrhythmias 11823 2.7515 0.149 0.234  829  Fracture of unspecified bones 758 1.4024 0.323 0.466 

428  Heart failure 6959 3.8817 0.133 0.197  831  Dislocation of shoulder 1255 1.0988 0.260 0.347 

433 
 Occlusion and stenosis of precerebral 
arteries 

1909 1.9460 0.266 0.391 
 

832  Dislocation of elbow 1994 1.0507 0.112 0.226 

434  Occlusion of cerebral arteries 3384 3.3502 0.085 0.252  840  Sprains and strains of shoulder and upper arm 3944 1.0649 0.097 0.198 

435  Transient cerebral ischemia 2381 2.1277 0.115 0.285  841  Sprains and strains of elbow and forearm 515 1.1262 0.462 0.850 
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440  Atherosclerosis 523 3.1243 0.202 0.339  842  Sprains and strains of wrist and hand 6249 1.0570 0.110 0.128 

441  Aortic aneurysm and dissection 678 3.2478 0.301 0.409  843  Sprains and strains of hip and thigh 1347 1.0995 0.228 0.308 

453  Other venous embolism and thrombosis 2341 3.0880 0.286 0.430  844  Sprains and strains of knee and leg 5855 1.0828 0.149 0.199 

455  Hemorrhoids 2020 1.3619 0.352 0.598  845  Sprains and strains of ankle and foot 14357 1.0499 0.058 0.198 

458  Hypotension 1927 2.5817 0.231 0.484  846  Sprains and strains of sacroiliac region 518 1.1293 0.168 0.238 

461  Acute sinusitis 2857 1.1491 0.345 0.429 
 

847 
 Sprains and strains of other and unspecified parts 
of back 

22641 1.0509 0.079 0.157 

462  Acute pharyngitis 22449 1.0923 0.137 0.286  848  Other and ill-defined sprains and strains 2903 1.0568 0.242 0.419 

463  Acute tonsillitis 2499 1.1493 0.256 0.343  850  Concussion 6848 1.1513 0.193 0.245 

464  Acute laryngitis and tracheitis 5039 1.1861 0.192 0.354 
 

852 
 Subarachnoid subdural and extradural 
hemorrhage following injury 

594 3.3754 0.107 0.331 

465 
 Acute upper respiratory infections of 
multiple or unspecified sites 

43320 1.0932 0.233 0.331 
 

870  Open wound of ocular adnexa 560 1.0911 0.312 0.542 

466  Acute bronchitis and bronchiolitis 22947 1.5328 0.326 0.365  872  Open wound of ear 593 1.0742 0.237 0.282 

473  Chronic sinusitis 4275 1.1539 0.313 0.550  873  Other open wound of head 31786 1.0788 0.174 0.250 

477  Allergic rhinitis 1996 1.1728 0.284 0.488 
 

879 
 Open wound of other and unspecified sites 
except limbs 

2870 1.4160 0.357 0.522 

478  Other diseases of upper respiratory tract 4415 1.3905 0.260 0.483  881  Open wound of elbow forearm and wrist 4093 1.1481 0.266 0.486 

482  Other bacterial pneumonia 1392 3.8111 0.239 0.371  882  Open wound of hand except finger(s) alone 6850 1.0778 0.190 0.265 

486  Pneumonia, organism unspecified 17078 2.5750 0.319 0.371  883  Open wound of finger(s) 14455 1.0706 0.153 0.187 

487  Influenza 6241 1.3259 0.380 0.535 
 

884 
 Multiple and unspecified open wound of upper 
limb 

984 1.1047 0.242 0.310 

490  Bronchitis, not specified as acute or chronic 7927 1.1629 0.349 0.412  890  Open wound of hip and thigh 641 1.2559 0.346 0.575 

491  Chronic bronchitis 6218 3.0317 0.276 0.322  891  Open wound of knee leg (except thigh) and ankle 5015 1.1741 0.279 0.357 

493  Asthma 28397 1.5484 0.324 0.390  892  Open wound of foot except toe(s) alone 3579 1.1260 0.264 0.583 

496 
 Chronic airway obstruction, not elsewhere 
classified 

2295 2.6078 0.273 0.382 
 

893  Open wound of toe(s) 1258 1.0588 0.148 0.259 

511  Pleurisy 1825 3.0104 0.386 0.508 
 

910 
 Superficial injury of face neck and scalp except 
eye 

4553 1.0995 0.279 0.525 

512  Pneumothorax and air leak 588 4.6497 0.119 0.267  911  Superficial injury of trunk 1488 1.1559 0.240 0.721 

518  Other diseases of lung 3533 4.7220 0.137 0.269  913  Superficial injury of elbow forearm and wrist 1624 1.1305 0.232 0.805 

519  Other diseases of respiratory system 1636 1.5348 0.258 0.558  916  Superficial injury of hip thigh leg and ankle 2574 1.1076 0.269 0.362 

521  Diseases of hard tissues of teeth 3880 1.0907 0.333 0.855  917  Superficial injury of foot and toe(s) 575 1.0974 0.217 0.306 

522  Diseases of pulp and periapical tissues 5741 1.1312 0.419 0.471  918  Superficial injury of eye and adnexa 3266 1.0582 0.134 0.515 

525 
 Other diseases and conditions of the teeth 
and supporting structures 

13928 1.0556 0.097 0.177 
 

919 
 Superficial injury of other multiple and 
unspecified sites 

6477 1.0871 0.300 0.464 

528 
Oral soft tissues excluding lesions specific for 
gingiva and tongue 

3220 1.2891 0.346 0.501 
 

920  Contusion of face, scalp, and neck except eye(s) 11273 1.0931 0.151 0.296 

530  Diseases of esophagus 6458 1.8741 0.239 0.405  921  Contusion of eye and adnexa 625 1.1488 0.505 0.566 

535  Gastritis and duodenitis 6808 1.3819 0.397 0.544  922  Contusion of trunk 7317 1.1152 0.148 0.266 

536  Disorders of function of stomach 1549 2.0575 0.348 0.469  923  Contusion of upper limb 10982 1.0533 0.112 0.195 
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540  Acute appendicitis 5994 2.8223 0.035 0.107 
 

924 
 Contusion of lower limb and of other and 
unspecified sites 

15534 1.0811 0.233 0.565 

541  Appendicitis, unqualified 606 2.7508 0.079 0.187  930  Foreign body on external eye 1287 1.0645 0.063 0.092 

550  Inguinal hernia 1243 1.5414 0.226 0.339  931  Foreign body in ear 1983 1.0756 0.153 0.173 

553 
 Other hernia of abdominal cavity without 
mention of obstruction or gangrene 

2398 2.4854 0.245 0.368 
 

932  Foreign body in nose 1439 1.0737 0.110 0.198 

555  Regional enteritis 1047 3.5244 0.232 0.376  935  Foreign body in mouth esophagus and stomach 1371 1.1758 0.159 0.420 

558 
 Other and unspecified noninfectious 
gastroenteritis and colitis 

20523 1.2614 0.365 0.443 
 

938  Foreign body in digestive system, unspecified 1641 1.1395 0.254 0.469 

560 
 Intestinal obstruction without mention of 
hernia 

4558 4.1057 0.136 0.196 
 

941  Burn of face head and neck 523 1.8260 0.248 0.484 

562  Diverticula of intestine 5127 3.0971 0.256 0.309  943  Burn of upper limb except wrist and hand 501 1.6946 0.387 0.453 

564 
 Functional digestive disorders not 
elsewhere classified 

13421 1.2843 0.362 0.514 
 

944  Burn of wrist(s) and hand(s) 2099 1.3149 0.385 0.501 

566  Abscess of anal and rectal regions 593 1.9224 0.316 0.423  945  Burn of lower limb(s) 1128 1.9025 0.419 0.598 

569  Other disorders of intestine 5600 1.9546 0.368 0.434  949  Burn unspecified site 1233 1.5750 0.322 0.377 

571  Chronic liver disease and cirrhosis 763 4.3172 0.190 0.302  959  Injury other and unspecified 57468 1.1375 0.225 0.306 

574  Cholelithiasis 6227 2.5405 0.267 0.325 
 

965 
 Poisoning by analgesics antipyretics and 
antirheumatics 

1680 1.8268 0.261 0.456 

575  Other disorders of gallbladder 1741 3.0689 0.136 0.265  969  Poisoning by psychotropic agents 1228 1.9992 0.234 0.408 

577  Diseases of pancreas 4637 3.9198 0.145 0.213 
 

977 
 Poisoning by other and unspecified drugs and 
medicinal substances 

1602 1.4313 0.324 0.434 

578  Gastrointestinal hemorrhage 5587 2.8341 0.260 0.346 
 

989 
 Toxic effect of other substances chiefly 
nonmedicinal as to source 

4021 1.1450 0.285 0.420 

584  Acute kidney failure 3318 4.5069 0.070 0.177  995  Certain adverse effects not elsewhere classified 12151 1.3123 0.333 0.547 

585  Chronic kidney disease (ckd) 1196 3.6455 0.214 0.410 
 

996 
 Complications peculiar to certain specified 
procedures 

4480 2.9498 0.209 0.302 

590  Infections of kidney 4924 1.9175 0.400 0.473 
 

997 
 Complications affecting specified body system 
not elsewhere classified 

1616 3.3923 0.198 0.357 

592  Calculus of kidney and ureter 8884 1.3540 0.256 0.415 
 

998 
 Other complications of procedures not elsewhere 
classified 

4459 2.3290 0.317 0.431 

593  Other disorders of kidney and ureter 2005 2.5416 0.222 0.419  E81  Motor vehicle traffic accident 3118 1.2017 0.381 0.532 

595  Cystitis 1471 1.1924 0.408 0.562  E84 Vehicle accidents not elsewhere classifiable 531 1.1921 0.553 0.880 

597 
Urethritis not sexually transmitted and 
urethral syndrome 

1328 1.0497 0.238 0.264 
 

E88  Accidental fall 3438 1.3048 0.274 0.414 

599  Other disorders of urethra and urinary tract 29431 1.4133 0.379 0.472  E90 Accident due to weather 1186 1.2057 0.397 0.747 

600  Hyperplasia of prostate 853 2.1290 0.176 0.370 
 

E91 
Accidents caused by submersion, suffocation, and 
foreign bodies 

570 1.2035 0.388 0.510 

604  Orchitis and epididymitis 1310 1.2382 0.533 0.627  E92 Late effects of accidental injury 580 1.3259 0.250 0.473 

605  Redundant prepuce and phimosis 1057 2.1116 0.246 0.548 
 

E96 
Homicide and injury purposely inflicted by other 
persons 

687 1.9563 0.285 0.544 

607  Disorders of penis 1662 1.2196 0.248 0.651 
 

V01 
 Contact with or exposure to communicable 
diseases 

1500 1.1520 0.458 0.583 
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608  Other disorders of male genital organs 3254 1.3190 0.334 0.406 
 

V15 
 Other personal history presenting hazards to 
health 

1755 1.6171 0.404 0.725 

611  Other disorders of breast 2009 1.4191 0.251 0.396  V20  Health supervision of infant or child 1355 1.7063 0.565 0.650 

614 
 Inflammatory disease of ovary fallopian 
tube pelvic cellular tissue and peritoneum 

1576 1.8433 0.383 0.588 
 

V22  Normal pregnancy 20230 2.4254 0.116 0.190 

616 
 Inflammatory disease of cervix vagina and 
vulva 

3966 1.1377 0.386 0.444 
 

V23  Supervision of high-risk pregnancy 1348 2.9206 0.075 0.243 

617 Endometriosis 561 2.0321 0.189 0.270  V24  Postpartum care and examination 2278 2.7428 0.055 0.162 

618 Genital prolapse 1274 1.5785 0.032 0.139  V27  Outcome of delivery 1322 2.3215 0.123 0.356 

620 
Noninflammatory disorders of ovary 
fallopian tube and broad ligament 

3658 1.3857 0.266 0.317 
 

V30  Single liveborn 103027 2.5700 0.022 0.069 

623 Noninflammatory disorders of vagina 9226 1.0942 0.135 0.247  V31  Twin birth mate liveborn 2630 5.9167 0.061 0.121 

625 
Pain and other symptoms associated with 
female genital organs 

7314 1.2177 0.269 0.485 
 

V39 
 Liveborn unspecified whether single twin or 
multiple 

1598 2.3949 0.098 0.340 

626 
Disorders of menstruation and other 
abnormal bleeding from female genital tract 

3548 1.4594 0.263 0.355 
 

V45  Other postprocedural states 1910 2.8215 0.110 0.312 

632  Missed abortion 550 1.3927 0.198 0.277  V55  Attention to artificial openings 1153 2.9809 0.407 0.565 

633  Ectopic pregnancy 769 1.5475 0.166 0.220  V57  Care involving use of rehabilitation procedures 1890 10.214 0.057 0.193 

634  Spontaneous abortion 1497 1.1643 0.162 0.269 
 

V58 
 Encounter for other and unspecified procedures 
and aftercare 

9968 1.5058 0.349 0.532 

637  Unspecified abortion 520 1.1327 0.332 0.699  V62  Other psychosocial circumstances 3227 2.5696 0.394 0.453 

640  Hemorrhage in early pregnancy 6315 1.0515 0.135 0.221 
 

V64 
 Persons encountering health services for specific 
procedures not carried out 

1798 1.1107 0.140 0.223 

641 
 Antepartum hemorrhage abruptio 
placentae and placenta previa 

1262 2.6006 0.163 0.190 
 

V65  Other persons seeking consultation 1581 1.2739 0.096 0.205 

642 
 Hypertension complicating pregnancy 
childbirth and the puerperium 

4815 3.4636 0.070 0.155 
 

V67  Follow-up examination 1144 1.3706 0.341 0.589 

643  Excessive vomiting in pregnancy 2595 1.3145 0.392 0.442  V68  Encounters for administrative purposes 5862 1.1682 0.164 0.227 

644  Early or threatened labor 5106 2.5805 0.112 0.176  V70  General medical examination 3294 1.8352 0.360 0.513 

645  Late pregnancy 5648 2.6084 0.070 0.149 
 

V71 
 Observation and evaluation for suspected 
conditions not found 

8451 1.1619 0.241 0.501 

646 
 Other complications of pregnancy not 
elsewhere classified 

6245 1.3894 0.313 0.366 
 

V72  Special investigations and examinations 770 2.0792 0.246 0.583 

647 
 Infective and parasitic conditions in the 
mother classifiable 

689 2.3237 0.210 0.567 
 

V82  Special screening for other conditions 1417 1.0607 0.120 0.202 

648 
Other current conditions in the mother 
classifiable elsewhere 

15413 1.9507 0.257 0.303 
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