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Abstract: Microglia are instrumental in neuroinflammation, which is a key factor in 
neuronal damage in many neurological disorders. Pro-inflammatory mediators activate 
these cells, including bacterial lipopolysaccharide (LPS) that signals through toll-like 
receptor 4 (TLR4). In the field of neuroinflammation, identifying the specific effects of 
pharmacological agents and other factors on microglia is often problematic given the 
difficulty and expense in obtaining and culturing primary microglia. Thus, immortalized 
microglial cell lines are very useful. Therefore, characterization of LPS-induced TLR4 
signaling in the CHME-5 microglial cell line was expected to be of value as an 
experimental model of inflammatory signaling in the central nervous system (CNS). 
Inflammatory signaling in response to Escherichia coli LPS induced IκBα and NF-κB 
p65 activation, NF-κB p65 binding activity, and TNFα gene expression. We confirmed 
the maintenance of microglial phenotype as seen with increased CD68 expression and the 
absence of GFAP-immunoreactivity. TLR4 expression was significantly increased after 
LPS treatment. Another family of receptors expressed in the CNS is the opioid receptors, 
which are guanine protein coupled receptors (GPCRs) and mediate their effects with the 
binding of opioids. Most notably, the mu opioid receptor (MOR) is expressed in many 
organ systems and binds opioid agonists, morphine and fentanyl, and antagonists, 
naloxone and naltrexone. Research shows that opioids modulate immune function, and 
therefore, our goal was to determine the effects of fentanyl and morphine on LPS-induced 
TLR4 signaling in CHME-5 cells. Co-treatment with LPS and fentanyl revealed a 
significant decrease in IκBα activation and NF-κB p65 binding activity, while morphine 
only decreased IκBα activation. Conversely, no differences in LPS-induced TLR4 or 
MyD88 expression were seen with co-treatment of fentanyl or morphine. Finally, 
treatment with naltrexone following LPS and fentanyl co-treatment did not reverse the 
opioid-mediated effect on NF-κB p65 binding activity. We have shown that CHME-5 
microglial cell attributes are conserved, which makes these cells a beneficial tool for 
studying microglial inflammatory signaling. Additionally, results demonstrate that 
fentanyl, and to a lesser extent morphine, display anti-inflammatory effects through 
down-regulation of IκBα activation and NF-κB p65 binding activity, which may be 
instrumental during treatment of CNS-localized insults or neurodegeneration.   
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ADDENDUM 

A few months before my final dissertation defense, a research group from Case Western 

University published an article (Garcia-Mesa et al., 2017), which claimed that CHME-5 

cells are no longer of human origin. In the study, they performed genotyping by 

macrosatellite analysis, and investigated the CYCT1 gene expression in CHME-5 cells 

using both human and rat primers, and showed rat CYCT1 gene expression, but not the 

human counterpart in these cells (Garcia-Mesa et al., 2017). To our knowledge, the non-

human origin of CHME-5 cells, currently in use among numerous labs, has yet to be 

validated by a second lab. Here we provide further evidence that CHME-5 cells are no 

longer of human origin. To validate this claim, human short tandem repeats genotyping 

was performed on CHME-5 cells, which confirmed that these cells are not of human 

origin (see data below). This recent turn of events in no way invalidates my research in 

this dissertation. I verified that all antibodies were cross-reactive with rat, and real-time 

PCR primers were re-designed using rat mRNA sequence. The data presented throughout 

this dissertation supports my conclusion that CHME-5 cells are still a useful tool to study 

microglia, particularly neuroinflammatory signaling. 
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Genotyping in CHME-5 cells revealed the absence of short tandem repeats. Genotyping 

was performed by Dr. Jun Fu, in the laboratory of Dr. Robert W. Allen; OSU-CHS 

Forensics Department. 

 

STR	Genotyping	for	CHME-5	Cells	
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INTRODUCTION 

Microglia are the “macrophages” of the central nervous system (CNS) and are 

responsible for homeostatic maintenance, neuronal support, and recognition and 

clearance of injury or infectious agents, which is achieved through production and up-

regulation of various proteins. When insults or injury occur in the CNS, microglia 

become activated and release several mediators thereby creating an inflammatory 

environment know as neuroinflammation.  

One receptor family expressed in microglia is toll-like receptors (TLRs), which 

are pattern recognition receptors (PRRs) that recognize a variety of patterns produced by 

bacteria, viruses, and fungi. TLR4 recognizes bacterial lipopolysaccharide (LPS), which 

initiates two distinct signaling cascades leading to production of various inflammatory 

cytokines including tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β), IL-6, 

IL-8, and several others.  

The LPS-induced signaling mechanisms are well defined in peripheral immune 

cells, but less so in cells within the CNS. Thus, it is important to elucidate the signaling 

mechanisms that occur through the TLR4-myeloid differentiation primary response gene 

88 (MyD88)-dependent pathway. These findings will allow us to determine the extent to 

which TLR4-mediated responses in microglia are similar to those observed in 

macrophages and dendritic cells. These insights will further our understanding of the 

mechanisms through which microglia respond to neurological conditions, injury, or 
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infection. Together these findings will be particularly informative in ongoing efforts to 

devise new therapeutic strategies for neurological disorders. 

Creating new therapies is at the forefront of biomedical research but it always 

begins with basic science. For this reason, we also wanted to investigate the effects of 

two opioid agonists, fentanyl and morphine, on LPS-induced TLR4 neuroinflammatory 

signaling in CHME-5 microglial cells. Opioids are known for their anti-nociceptive 

effects, but research shows they also have the potential to modulate immune function in 

both the peripheral and central nervous systems. This discovery can have broader 

implications on the way opioids are used to treat patients. It is important to investigate 

these opioid-mediated effects on inflammation because patients with inflammatory 

conditions or neurodegeneration are being treated with opioids to relieve pain symptoms.  

Therefore we need to better understand the impact of opioids on non-neuronal 

cells, including microglia. Interestingly, some research indicates that opioid agonists are 

pro-inflammatory and initiate TLR4 signaling. Conversely, our laboratory and others 

show that opioid agonists, along with antagonists, display anti-inflammatory potential on 

inflammatory signaling in astrocytes and other cells expressed in the CNS. Additionally, 

our research demonstrates that fentanyl exerts its effect via a non-classical opioid site. In 

this study we look to define the molecular mechanisms by which fentanyl and morphine 

affect key signaling molecules that are activated in response to LPS-induced TLR4 

signaling in a microglial cell line, CHME-5. 

 



	

CHAPTER ONE 

TLR4-NEUROINFLAMMATORY SIGNALING IN CHME-5 MICROGLIAL CELLS 
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LITERATURE REVIEW 

Toll-like Receptors 

Toll-like receptors (TLRs) are pattern recognition receptors of the innate immune system, 

and to date, ten human and twelve rodent TLRs have been described (Kawai & Akira, 

2007). TLRs are type I transmembrane glycoproteins with an extracellular domain 

responsible for ligand recognition, and, a cytoplasmic domain categorized by the toll-IL-

1 resistance (TIR) domain (Uematsu & Akira, 2008). TLRs recognize a variety of 

bacterial, viral, and fungal patterns, known as pathogen-associated molecular patterns 

(PAMPs), which include evolutionary conserved motifs such as lipids, lipopeptides, and 

proteins (Hanisch et al., 2008; Kawai et al., 2007). TLRs also have the ability to 

recognize endogenous molecules known as damage-associated molecular patterns 

(DAMPs), which include heat shock proteins (HSPs), deoxyribonucleic acid (DNA), 

adenosine triphosphate (ATP), high-mobility group box 1 (HMGB1), and low-density 

lipoproteins (LDL), released from apoptotic and necrotic cells (Hanisch et al., 2008).  

TLRs are differentially expressed throughout the plasma membrane and 

endosomes. TLRs 1,2,4,5,6, and 10 are surface TLRs and bind products produced by 

extracellular bacteria, while TLRs 3,7,8, and 9 recognize viral and intracellular bacterial 

proteins, and therefore, are located intracellularly in endosomal membranes (Barton & 

Kagan, 2009; Kawai et al., 2007). Despite their location, PAMP recognition is analogous 

and occurs in the receptor’s ectodomain in structures called leucine-rich-repeats
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(Uematsu et al., 2008). LRRs are comprised of 19-25 tandem motifs, each containing 24-

29 amino acids in length, which form horseshoe structures with ligand binding occurring 

on the concave surface (Uematsu et al., 2008). The TLR ECD also contains a N-terminus 

and C-terminus cap, denoted as LRR-NT and LRR-CT, which are thought to participate 

in stabilization of the protein structure and signaling, respectively (Bell et al., 2003).  

Besides ligand binding, LRRs also form protein-protein interactions making them 

capable of forming homodimers or heterodimers, depending on the ligand. For example, 

TLR2 forms a heterodimer with TLR1, to recognize bacterial triacylated lipopeptides, or 

with TLR6, to recognize bacterial diacylated lipopeptides, lipotechoic acid, and fungal 

zymosan (Jin et al., 2007; Kang et al., 2009). TLR10 heterodimerizes with TLR1 or 

TLR2 to recognize diacylated and triacylated lipopeptides, respectively (Govindaraj et 

al., 2010; Guan et al., 2010; Hasan et al., 2005). TLR4 and TLR6 also heterodimerize to 

recognize oxidized low-density lipoproteins and amyloid beta (Aβ) plaques (Godfroy et 

al., 2012; Kawai et al., 2007; Stewart et al., 2010). Also, TLR8 can dimerize with TLR7 

and TLR9 (J. Wang et al., 2006).  

All other TLRs homodimerize to recognize their corresponding ligands: TLR2- 

fungal phospholipomannan, and herpes simplex virus I (Kurt-Jones et al., 2004), TLR3-

viral double-stranded RNA (Alexopoulou et al., 2001), TLR4-Gram-negative LPS, F 

protein from respiratory syncytial virus (Kurt-Jones et al., 2004), and fungal mannan, 

TLR5-bacterial flagellin of Gram-negative bacteria (Hayashi et al., 2001), TLR7 and 

TLR8-single-stranded RNA (Diebold et al., 2004; Heil et al., 2004), TLR9-bacterial and 

viral unmethylated cytidine-phosphate-guanosine DNA motifs, and TLR10-diacylated 
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lipopeptide. The TLR11 gene contains several stop codons, which prevent expression of 

full-length protein (Lauw et al., 2005; D. Zhang et al., 2004). 

Gram-negative LPS 

LPS, the prototypical ligand for TLR4, is located on the outer membrane of the Gram-

negative bacterial cell wall, and because of its potent toxic potential, LPS is termed 

endotoxin (Westphal et al., 1981). The importance of LPS is denoted by the amount of 

molecules (3.5 × 106) per bacterial cell and their ability to maintain bacterial viability 

(Rietschel et al., 1994).   

The LPS structure consists of Lipid A, inner and outer core oligosaccharides, and 

the O-antigen. Lipid A, a phosphoglycolipid with six or seven fatty acid chains attached, 

(Volpi, 2003), is highly conserved across Gram-negative bacteria, is cytotoxic, and 

activates the complement system via the classical pathway (Peterson & McGroarty, 

1985). The inner core structure is composed of 2-keto-3-deoxyoctonate and heptose 

residues, while the outer core consist of a N-acetyl-glucosamine dimer (Rietschel et al., 

1994; Volpi, 2003). The O-antigen is covalently linked to the Lipid A core and consists 

of an oligosaccharide chain that varies in length up to 40 repeat units (Rietschel et al., 

1987). The O-specific chain is antigenic and activates the complement system via the 

alternate pathway (Peterson et al., 1985).   

TLR4 recognizes Gram-negative LPS  

The binding of LPS occurs with the aid of several proteins including the LPS binding 

protein (LBP), cluster of differentiation 14 (CD14), and lymphocyte antigen 96 (also 

known as MD2) which are all necessary for binding to and activation of TLR4 (Dziarski 

& Gupta, 2000; Schumann et al., 1990; Shimazu et al., 1999; Tobias et al., 1988; Wright 
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et al., 1990). LBP, an acute phase protein produced in the liver, binds LPS multimers and 

monomerizes them, which allows for recognition of LBP-LPS by CD14 and the other 

LPS acceptors, MD2 and TLR4 (Lynn & Golenbock, 1992; Weiss, 2003). CD14, a 

glycosylphosphatidyl inositol-anchored protein, binds LBP-LPS to the cell surface, 

allowing binding to the MD2 hydrophobic pocket (Lynn et al., 1992; Park et al., 2009). 

Following LPS binding to the TLR4-MD2 complex, dimerization with another TLR4-

MD2-LPS complex occurs, leading to a conformational change that brings TIR domains 

into contact, a step that is necessary for signaling to begin (Park et al., 2009).  

Additionally, adaptor and bridging molecules, myeloid differentiation primary 

response gene 88 (MyD88) and MyD88 adaptor-like (MAL) are recruited for initiation of 

MyD88-dependent signaling. TLR4 also signals through another set of adaptor and 

bridging molecules known as Toll-IL-1 receptor domain-containing adaptor inducing 

interferon beta (TRIF) and TRIF-related adaptor molecule (TRAM), which are recruited 

after endocytosis of the TLR4-MD2-LPS complex (Barton et al., 2009). 

MyD88-dependent Signaling 

MyD88-dependent signaling, which is used by all TLRs except TLR3, occurs after ligand 

binding and recruitment of MyD88 and MAL (only for TLR2 and TLR4 signaling) 

adaptors (O'Neill, 2006). After initiation of the signaling cascade, recruitment and 

activation of several downstream signaling proteins occurs, leading to transcription of 

pro-inflammatory genes including TNFα, IL-1β, and IL-6 (Takeuchi & Akira, 2001). 

First is the formation of the Myddosome consisting of 6 MyD88s, 4 interleukin 1-

receptor associated kinase 4s (IRAK4s), and 2 IRAK2s, which are all critical mediators 

for TLR signaling (Lin et al., 2010). After recruitment of MyD88 molecules to the 
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receptor complex, IRAK4 is recruited to MyD88 through death domains, followed by 

IRAK1 and IRAK2. After activation of IRAK molecules TNF receptor-associated factor 

6 (TRAF6) is recruited to the complex (Cao et al., 1996; Takeuchi & Akira, 2010). 

TRAF6, an E3 ubiquitin ligase, is phosphorylated and associates with TAB2 and TAB3, 

which are the regulatory components of transforming growth factor-β associated kinase 

(TAK1), and are also responsible for activation of TAK1 (Kawai et al., 2007; Palsson-

McDermott & O'Neill, 2004). TAK1, a mitogen-activated protein kinase kinase kinase, 

activates the IκB kinase (IKK) complex, specifically IKKβ, and simultaneously activates 

MAPKs, extracellular-signal regulated kinase (ERK)1/2, p38, and c-Jun N-terminal 

kinase (JNK), leading to activation of various transcription factors, such as activator 

protein-1 (AP-1) (Irie et al., 2000; Kawai & Akira, 2011; Sato et al., 2005). IKKβ in turn 

activates inhibitor of kappa B alpha (IκBα), the negative regulator of nuclear factor of 

kappa-light-chain-enhancer of activated B cells (NF-κB) (Karin, 1999). IκBα’s 

phosphorylation-induced degradation leads to the release of the transcription factor NF-

κB, which then translocates into the nucleus and binds DNA promoter regions for 

transcription of pro-inflammatory cytokines (Arenzana-Seisdedos et al., 1997). TLR7, 8, 

and 9 also use the MyD88 adaptor molecule along with IRAK4, IRAK1, TRAF6, and 

TRAF3, which leads to activation of several interferon regulatory factors (IRFs) (IRF1, 5, 

7, 8), and NF-κB, for the production of Type I interferons  (IFN-β, IFN-α) and pro-

inflammatory cytokines, respectively (Kawai et al., 2007; O'Neill & Bowie, 2007).  

TRIF-dependent Signaling 

TRIF-dependent signaling only occurs after endocytosis of the TLR4-MD2-LPS complex 

and is considered the late-phase activation of TLR4 signaling (Kagan et al., 2008; Lu et 
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al., 2008; Palsson-McDermott et al., 2004). Once MyD88-dependent signaling is 

activated, the TLR4-MD2-LPS complex is coupled to the adaptor molecule TRAM at the 

plasma membrane and becomes endocytosed, ultimately recruiting TRIF to the 

endosomal membrane (Kagan et al., 2008; Yamamoto et al., 2002). The TRAM bridging 

molecule is TLR4-specific and necessary for late-activation of NF-κB, as well as for 

IRF3 activation (O'Neill et al., 2007). TRIF has the potential to interact with three 

molecules, receptor-interacting protein 1 (RIP1), TRAF6, and TRAF3 (Lu et al., 2008; 

O'Neill, 2006). TRIF forms a multi-protein signaling complex with RIP1, TRAF6, and 

the adaptor molecule tumor necrosis factor receptor type I-associated death domain, 

leading to activation of TAK1, mitogen-activated protein kinase (MAPK), AP-1, and NF-

κB, ultimately leading to production of pro-inflammatory cytokines (Kawai et al., 2007; 

Lu et al., 2008). TRAF3 associates with TRAF family member-associated NF-κB 

activator, TANK binding kinase 1 (TBK1), and IKK iota for the activation and 

dimerization of interferon regulatory factor 3, and production of Type I interferons and 

co-stimulatory molecules including, CD40, CD80 and CD86 (Hoebe et al., 2003; Lu et 

al., 2008). Along with TLR4, TLR3 is the only other TLR that uses the TRIF-dependent 

signaling pathway. Once activated, TLR3 recruits the TRIF adapter molecule to 

endosomes and activates NF-κB (IKK complex), IRF3, and IRF7 (TRAF3, TRAF6, and 

TBK1)(Kawai & Akira, 2010; Suh et al., 2009).  

Toll-like Receptors expressed in the Central Nervous System 

Investigation of TLR expression in the CNS has established the presence of TLRs 1-9, 

most notably in microglia (TLRs 1-9) and to a lesser extent in neurons (TLRs 2-4,7,8), 

astrocytes (TLRs 2-4,7-9), and oligodendrocytes (TLRs 2 and 3) (Bsibsi et al., 2002; Jack 
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et al., 2005; Kettenmann et al., 2011). TLRs have also been implicated in several CNS 

diseases including Alzheimer’s (AD), Parkinson’s (PD), neurodegeneration, and trauma, 

leading to activation of microglia and production of pro-inflammatory cytokines and 

chemokines, such as TNFα and IL-6 (Kettenmann et al., 2011; Okun et al., 2011). The 

“pathogen-necrosis-autoantigen triad” is thought to explain the exaggerated inflammatory 

response that occurs during CNS disorders, namely, TLRs are thought to play a dual role 

in ligand recognition: 1) facilitation of initial response to pathogens and 2) recognition of 

newly released self-antigens due to necrotic/apoptotic death (Hanke & Kielian, 2011).   

Neuroinflammation in the Central Nervous System 

Inflammation in the CNS, known as neuroinflammation, can result from 1) production of 

various inflammatory molecules, including cytokines, chemokines and lipid mediators 

derived from arachidonic acid, such as prostaglandins and leukotrienes, 2) during tissue 

injury or infection, or 3) may result from neurodegenerative disorders that can impart an 

inflammatory component as in the case of multiple sclerosis (MS), AD, and PD (Pasare 

& Medzhitov, 2004; Pedras-Vasconcelos et al., 2009; Rivest, 2009).  

Classical hallmarks of CNS inflammation include microglial activation, pro-

inflammatory cytokine production, and up-regulation of adhesion molecules that allow 

entry of peripheral immune cells into the CNS (Matyszak, 1998). Microglial activation is 

characterized by expression of receptors responsible for sensing danger signals in 

response to pathogens, or cellular/tissue damage from infection or disease states, up-

regulation of molecules necessary for immune response such as chemokines and the 

major histocompatibility complex (MHC), and induction of NF-κB-dependent genes 

(Glass et al., 2010). This activation leads to production of pro-inflammatory cytokines 
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and neurotoxic factors including TNFα, IL-1β, nitric oxide (NO) and reactive oxygen 

species (ROS) that can activate astrocytes and also have detrimental effects on neurons 

(Glass et al., 2010). Exposure of cerebral endothelial cells to cytokines or activating 

stimuli during infection or disease results in expression of adhesion molecules including 

intracellular and vascular cell adhesion molecule, which bind selectins expressed on 

monocytes, neutrophils, eosinophils and T-lymphocytes (Libby, 2007; Rivest, 2009). 

These interactions, along with chemical signals (chemokines) released from microglia 

and astrocytes, allow immune cells to migrate through tight junctions for entry into the 

CNS (Libby, 2007; Rivest, 2009).  

Neuroinflammation can impose beneficial outcomes including neuroprotection, 

axonal regeneration, neurogenesis and remyelination; or detrimental outcomes, such as, 

injury to neural elements, death to neurons and oligodendrocytes, and inhibition of 

regenerative processes (Wee Yong, 2010). The “Strength of Signal” hypothesis is the 

concept that microglia can be neuroprotective or detrimental depending on the 

concentration of the insult (e.g. TLR ligands) present in the CNS (Kielian, 2009). 

Neurodegeneration 

Neuroinflammation resulting from neurodegeneration can be a direct effect of the 

inducers causing the offending condition or as a secondary consequence from neurotoxic 

factors released from surrounding immune cells, as seen in many CNS disorders, 

including MS, AD and PD (Glass et al., 2010; Pedras-Vasconcelos et al., 2009). For 

example, IL-1β can have indirect neurotoxic effects by binding CNS immune cells, 

microglia, astrocytes and oligodendrocytes, which leads to induction of inflammatory 

mediators, such as ROS, cytokines and chemokines (Zipp & Aktas, 2006). IL-1β can also 
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block glutamate uptake by astrocytes, promote the formation of NO and increases levels 

of matrix metalloproteinases (MMPs) to neurotoxic levels (Wee Yong, 2010). 

Multiple sclerosis is an autoimmune disease of the CNS displaying chronic 

neuroinflammatory pathology which causes widespread inflammation, demyelination and 

progressive axonal degeneration, leading to clinical manifestations characterized by 

neurological deficits in sensation and in the motor, autonomic, visual, and cognitive 

systems (Glass et al., 2010; Hanke et al., 2011; Lampron et al., 2013; Zipp et al., 2006). 

For investigational study of MS, the experimental autoimmune encephalomyelitis mouse 

model is used, which can be induced by immunization with myelin components or 

activated myelin-specific T lymphocytes (Lampron et al., 2013; Zipp et al., 2006). 

Myelin and oligodendrocytes are the main targets of myelin-reactive T 

lymphocytes, macrophages, and antibody-producing plasma cells, which infiltrate the 

CNS through the blood brain barrier (BBB) (Glass et al., 2010; Lampron et al., 2013; 

Zipp et al., 2006).  Breakdown of the BBB occurs from microglial activation and 

production of pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, which lead to up-

regulation of adhesion molecules and chemokines, CCL2, CCL3 and CCL5, for the 

recruitment and attachment of immune cells (Graeber & Streit, 2010; Lampron et al., 

2013). Metallomatrix proteases also play a role in leukocyte infiltration, in particular, 

MMP-9, which degrades extracellular matrix proteins and creates ducts in perivascular 

space for entry of leukocytes (Lampron et al., 2013). 

Alzheimer’s disease is an age-related neurodegenerative disease characterized by 

the loss of memory, progressive impairment of cognition and various behavioral and 

neuropsychiatric disturbances (Glass et al., 2010). Classical hallmarks of AD include 
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amyloid beta (Aβ) peptides, cleaved from the amyloid precursor protein, and 

neurofibrillary tangles generated from hyper-phosphorylated tau proteins (Akiyama et al., 

2000; Glass et al., 2010). Numerous studies have shown evidence for Aβ-mediated 

inflammatory response in AD, including microglial activation as defined by change in 

morphology, from ramified to amoeboid, production and release of inflammatory 

mediators, such as cytokines, chemokines, reactive oxygen intermediates, proteases and 

excitatory amino acids, and induction of chemokines with the ability to recruit astrocytes 

to sites surrounding Aβ plaques. Additionally, astrogliosis is manifested by an increase in 

the number, size, and motility of astrocytes, the ability to express complement receptors 

and components, and, produce IL-1β, IL-6, prostaglandins, cyclooxygenase (COX)-2 and 

inducible nitric oxide synthase (iNOS) in response to plaques (Akiyama et al., 2000; 

Glass et al., 2010). 

Uptake of Aβ plaques by microglia and astrocytes is possible through several 

routes including macro-pinocytosis, phagocytosis, and receptor-mediated endocytosis 

both in vivo and in vitro (Glass et al., 2010; Graeber et al., 2010). Several cell surface and 

cytoplasmic receptors are implicated in the ability of microglia and astrocytes to detect 

and engulf Aβ peptides including TLRs (TLR4-TLR6, in conjunction with CD36), 

receptor for advanced glycoxidation end-products, that belongs to the immunoglobulin 

superfamily, and Nod-like receptors (Glass et al., 2010; Mandrekar et al., 2009; Stewart 

et al., 2010). 

Parkinson’s disease is a neurodegenerative disease and the most common 

movement disorder. It is characterized by motor symptoms, such as, bradykinesia, 

tremor, rigidity, and postural instability, and non-motor related symptoms including 
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olfactory deficits, autonomic dysfunction, depression, cognitive deficits and sleep 

disorders (Glass et al., 2010). The onset of PD occurs from the loss of dopaminergic 

neurons in the substantia nigra and accumulation and aggregation of misfolded α-

synuclein and ubiquitinated proteins, known as Lewy bodies (Glass et al., 2010). Alpha-

synuclein aggregates are intraneuronal, which become neurotoxic, thereby causing 

neuronal loss and release of proteins into extracellular compartments, leading to 

microglial activation (Khandelwal et al., 2011; Roodveldt et al., 2008).   

Investigators have been trying to correlate PD with inflammatory mechanisms 

mediated by microglia, but that theory is controversial, so the question remains whether 

microglia play an active disease-promoting role in PD pathogenesis (Graeber et al., 2010; 

Khandelwal et al., 2011). In keeping with this theory, several studies suggest that α-

synuclein-mediated neurotoxicity is enhanced by microglial activation through a TLR-

dependent mechanism leading to the release of pro-inflammatory cytokines, such as, IL-

1β and TNFα. Also, a TLR-independent mechanism of α-synuclein phagocytosis and 

NADPH-mediated ROS/RNS production has been suggested (Glass et al., 2010; Hirsch 

& Hunot, 2009; Khandelwal et al., 2011; W. Zhang et al., 2005a). Neurodegeneration 

encompasses a wide field and under no circumstance is this field confined to these three 

diseases mentioned above, but can also include stroke, cerebral palsy, traumatic brain 

injury, and brain tumors. In looking forward, strategies and therapeutics need to be 

investigated for the treatment of neuropathologies. 

Identification of Microglia 

Microglia are considered the innate immune cells of the CNS that comprise about 10-

20% of the total CNS cell population (Vaughan & Peters, 1974). Microglia were first 



	 13	

recognized by Franz Nissl in 1899, who used the term “rod cells” to describe a type of 

glial cell that reacted to brain pathology (Kettenmann et al., 2011). Thereafter, metallic-

staining techniques allowed Santiago Ramon y Cajal, and Pio del Rio-Hortega to 

visualize and categorize three neuronal supporting cells as oligodendrocytes, astrocytes, 

and microglia (Kettenmann et al., 2011).   

Origin and Development 

During development, amoeboid microglia derived from migrating monocytes, play a 

macrophagic role in the CNS, which has been studied using both carbon labeling and 

rhodamine isothiocynate fluorescence studies (Leong & Ling, 1992; Ling, 1979; Ling & 

Wong, 1993). Microglia enter the CNS from the middle of the 1st trimester until the 2nd 

trimester (Monier et al., 2006). During early entry (4.5 weeks gestation), microglia 

penetrate the cerebral cortex and white matter through the ventricles, meninges, and the 

choroid plexus (Monier et al., 2007). These cells display amoeboid forms with large cell 

bodies and absence of processes (Monier et al., 2007). These microglia are representative 

of fetal macrophages originating from the yolk sac myeloid progenitors (Monier et al., 

2007; Orihuela et al., 2016). Amoeboid microglia express several prototypical 

macrophagic markers, including Iba-1, CD68, and CD45, nonspecific esterase activity, 

and are actively phagocytic; characteristics that are down-regulated with the evolution 

into the resting microglia (Lawson et al., 1992; Ling et al., 1993). 

There are numerous factors that influence morphological transformation of 

microglia from amoeboid to ramified morphology after entry into the CNS. This process 

occurs from the middle of the second trimester onward, in which microglia colonize the 

entire cerebral parenchyma and down-regulate surface antigens (Monier et al., 2006). 
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Several studies have shown that factors such as ATP, purines, cytokines released from 

astrocytes, transforming growth factor β (TGF-β), granulocyte macrophage-colony 

stimulating factor (GM-CSF), macrophage-colony stimulating factor (M-CSF), and 

chloride channels all influence transformation (Giulian & Ingeman, 1988; Schilling et al., 

2001; Suzumura et al., 1990; Wollmer et al., 2001).  

Furthermore, Suzumura et al. 1991, observed morphological transformation of 

microglia and biological activity displayed by amoeboid, ramified (resting), and rod-like 

microglia, in which it was concluded that morphological transformation is reversible 

between amoeboid and ramified morphologies. Amoeboid microglia could be induced by 

LPS, interferon gamma (IFN-γ), or 12-O-tetradecanoylphorbol-13-acetate, and displayed 

enzymatic activity and superoxide anion production indicating an activated form 

(Suzumura et al., 1991). GM-CSF induced microglia to become rod-like, which showed 

no activity, but had bromodeoxyuridine uptake, indicating proliferation. Also, 

conditioned from LPS-stimulated astrocytes transformed microglia into ramified 

morphology, with no enzymatic activity, indicating non-activated microglia (Suzumura et 

al., 1991).  

In the healthy mature CNS, microglia display ramified morphology, small somas, 

and small cellular processes (Kettenmann et al., 2011). The resident adult population is 

maintained through local cell division and through recruitment of circulating peripheral 

blood monocytes as described by several investigators (Bruttger et al., 2015; Korzhevskii 

& Kirik, 2015; Lawson et al., 1992; Varvel et al., 2012). Following damage to the BBB, 

for example during pathological conditions, monocytes differentiate and populate the 

CNS (Korzhevskii et al., 2015).  
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Microglial Function 

Under physiological conditions, microglia maintain a quiescent surveillance phenotype, 

which is accomplished with several neuronal and astrocytic signals that are recognized by 

corresponding microglial receptors (Orihuela et al., 2016). Under pathological conditions, 

signal blockade can also contribute to down-regulation of microglial responses. For 

instance, CD45 crosslinking resulted in negative regulation through decrease in TNFα 

and NO production in Aβ-treated microglia via inhibition of the p44/p42 MAPK pathway 

(Tan et al., 2000). Additionally, microglia express high levels of micro ribonucleic acid 

(RNA) (miRNA)-124, which reduces the expression of CD46, MHC II, and CD11b 

(Conrad & Dittel, 2011).  

Microglia should not only be considered the immune cell of the brain but also a 

regulator of the environment. Microglia communicate with neurons and other glia for 

homeostasis as well as maintenance of cell populations and cellular components, such as 

astrocyte differentiation and axon regeneration, respectively (Lawson et al 1992). 

Microglia are also involved in regulatory processes critical for tissue development, 

maintenance of neural environment, response to injury, and subsequent remodeling and 

repair (Orihuela et al., 2016).  

Microglia are the phagocytes of the brain, a function that is not only important 

during pathological insults and tissue injury (molecules and debris), but also during 

development (removal of apoptotic cells, synapse removal, and pruning during post-natal 

development) and normal brain function (Kettenmann et al., 2011; Napoli & Neumann, 

2010; Neumann et al., 2009). Several factors increase phagocytic activity in microglial 
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cells including M-CSF and glial-cell line derived neurotrophic factor (GDNF) 

(Mitrasinovic et al., 2003).  

Microglia are polarized to a M1 (pro-inflammatory) or M2 (anti-inflammatory) 

phenotype depending on the signals received in the environment. M1 phenotype can be 

induced in response to tissue injury or exposure to pathogenic-derived products, leading 

to production of cytokines, presentation of antigen, and expression of high levels of 

iNOS, allowing for clearance of pathogens and induction of adaptive immune responses 

(Gordon & Taylor, 2005). In the absence of the pathogenic stimuli, polarization to the 

M1 phenotype can also be induced by trauma or ischemic reperfusion (Orihuela et al., 

2016). Much of the work looking at extensive transcription profiles of M1 markers in 

response to LPS or IFN-γ has been done in rodent microglia, which include IL-1β, Il-6, 

IL-12, TNFα, chemokines, and co-stimulatory molecules (Hanisch & Kettenmann, 2007). 

Furthermore, a study using adult human microglia also showed the M1 phenotype upon 

stimulation with LPS and IFN-γ (Durafourt et al., 2012).  

Alternatively, there are three immunophenotypes that characterize M2 activation: 

M2, M2b, and M2c. Microglia adopt the M2 phenotype in response IL-4, and produce 

anti-inflammatory cytokines such as IL-10 and TGF-β (Orihuela et al., 2016; Perry & 

Teeling, 2013; M. Stein et al., 1992). Next, M2b is considered the regulatory phase, 

where microglia undertake wound healing, tissue repair, collagen formation, and 

recruitment of T helper 2 (Th2) cells (Perry et al., 2013). Finally, M2c is the deactivated 

state in response to IL-10, TGF-β, or ingestion of apoptotic cells, leading to down-

regulation of pro-inflammatory cytokines and up-regulation of scavenger receptors such 

as CD163 (Perry et al., 2013).  
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Neuroprotective vs. Neurotoxic 

There has been great debate as to the beneficial and cytotoxic roles of microglia in the 

CNS. The properties that label microglia either neurotoxic or neuroprotective refer to the 

influence that microglia have on neurons or vice versa (Luo & Chen, 2012). For example, 

crosstalk that occurs between neurons and microglia consists of “off” and “on” signals 

that influence microglial activation, including interactions between CD200 (neuron) and 

CD200R (microglia), and release of soluble factors such as anti-inflammatory molecules 

and neurotropins that attenuate microglial responses (Hoek et al., 2000; Kreutzberg, 

1996; Luo et al., 2012; Neumann, 2001; Wei & Jonakait, 1999).  

Neuroprotective and beneficial aspects of microglia include neuronal 

differentiation and apoptosis regulation in the developing brain, axonal regeneration, 

tissue repair, removal and down-regulation of cytokines, production of anti-inflammatory 

cytokines, and return to, and, maintenance of, homeostasis in the adult brain (Kreutzberg, 

1996). The underlying significance is that control of microglial activation is necessary to 

prevent microglial-mediated cytotoxicity.  

Surface Antigens/Receptors 

Microglia constitutively express cell surface markers and proteins during ramified and 

activated states, which allow for immuno-histological/cytochemical identification. 

During the surveillance stage, microglia express CD11b and CD45lo, and up-regulate 

MCH II, CD4, CD40 and CD86 in response to CNS insults and infection. Additionally, 

GLUT5, CD163, CCR2 and nestin, have also been identified as additional microglial 

markers (Graeber et al., 2010; Y. B. Lee et al., 2002; Ponomarev et al., 2006; Rock et al., 

2004; Sedgwick et al., 1991). Lee et al. 2002, demonstrated that normal, unstimulated 
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human microglia constitutively express mRNA transcripts for IL-1β, IL-6, -8, -10, -12, -

15, TNFα, monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory 

protein (MIP)-1α and β, while stimulation with LPS or Aβ peptides induced increased 

expression of IL-8, IL-10, IL-12, MIP-1α and β, MCP-1 and TNFα (Y. B. Lee et al., 

2002). Activated microglia also express and up-regulate scavenger, complement, and 

cytokine/chemokine receptors (Rock et al., 2004).   

Cytokines/Chemokines 

Chemokines are secreted proteins that were initially described as activators of leukocyte 

migration to areas of infection and inflammation (Cartier et al., 2005; Kettenmann et al., 

2011; Khandaker et al., 1998). It is now understood that chemokines are multifunctional 

proteins that act on a various cell types and take part in inflammatory (CXCL10, CXCL8) 

and homeostatic functions (CX3CL1, CXCL12), including cytokine secretion, 

modulation of cell adhesion, phagocytosis, cell proliferation, apoptosis, and angiogenesis 

(Cartier et al., 2005). Based on the number and spacing of their conserved cysteine 

residues, chemokines are classified into four subfamilies, CC, CXC, XC, or CX3C, and 

exert their biological activity via members of the G-protein coupled receptor (GPCR) 

family (Cartier et al., 2005).  

Chemokines including IP-10 (CXCL10), IL-8 (CXCL8), RANTES (CCL5), are 

not constitutively expressed in the CNS, but are up-regulated by microglia in response to 

pathological aberrations and mediate their effects through binding to inducible 

chemokine receptors, including CCR2, CXCR3, CXCR1, and CCR5, respectively 

(Cartier et al., 2005). 

Experimental tool for the study of microglia 
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Primary Cells 

There are several experimental tools available for studying microglia that include primary 

cells, as well as immortalized cell lines. Primary cells are certainly advantageous in that 

they can be obtained from in vivo model systems, but also devoid of genetic 

manipulations. Yet, there are some disadvantages including 1) difficulty in obtaining 

absolute pure cultures, 2) difficulty in obtaining a sufficient number of cells, and 3) 

derivation from neonatal brains; less representative of adult population (Henn et al., 

2009).  

Several reports on microglial inflammatory responses have been published with 

human, mouse, or rat primary cells. The use of human primary cells is often preferred, 

but the ability to obtain these cells is difficult due to both practical and ethical issues. 

Even so, there are studies that used human primary microglial cultures to assess 

inflammatory responses. One study showed increased IL-1β and IL-6 mRNA and protein 

expression in response to LPS (Sebire et al., 1993). Primary cultures of rodent microglia 

express TNFα, IL-6, and IL-1β in response to LPS, depending on the stage of embryonic 

development (Giulian, 1987).  

Cell lines 

Immortalized cell lines, especially CNS cultures, are useful tools for conducting 

biomedical research. The benefits include external propagation of culture leading to 

increased yields. Thus, a myriad of elements such as activation states, releasable factors, 

and other components, which are crucial to microglial inflammatory responses that can 

be studied in an efficient and timely manner (Stansley et al., 2012). However, cell lines 
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contain oncogenes, which increase cell proliferation, adherence, and variable 

morphology, as compared to primary cells (Stansley et al., 2012). 

BV-2 murine cells, immortalized using the v-raf/v-myc oncogene carrying the J2 

virus, are likely the most commonly used and best characterized microglial cell line 

(Blasi et al., 1990). BV-2 cells are well characterized in terms of 1) non-specific esterase 

and phagocytic activity, 2) release of IL-1β and lysozyme upon stimulation, 3) expression 

of macrophage-1 antigen (Mac-1) and Iba-1, and 4) absence of glial fibrillary astrocytic 

protein (GFAP) and galactocerebroside, astrocyte and oligodendrocyte markers, 

respectively (Blasi et al., 1990). One report examined similarities between primary 

microglia and BV-2 cells, in which 90% of the genes induced by LPS in primary 

microglia including MIP-1α, IL-1β, and IκBα were induced in BV-2 cells, but to a lesser 

degree (Dai et al., 2015; Henn et al., 2009). Additionally, Dai et al, 2015 showed 

increased expression of TLR4, MyD88, NF-κB, p-IκBα, and IL-1β, 24 hours after 

stimulation with LPS (10-30 µg/ml) (Dai et al., 2015).  

Another commonly used rat cell line, N9 microglial cells, were immortalized with 

the v-myc oncogenes of the avian retrovirus MH2, which displayed non-esterase and 

phagocytic activity and expressed several surface markers including FcR, F4/80, and 

Mac-1 (Righi et al., 1989; Stansley et al., 2012). N9 microglial cells produce TNFα, IL-6, 

and IL-1β in response to LPS (Righi et al., 1989). 

The Highly Aggressive Proliferating Immortalized (HAPI), rat microglial cell line 

is not genetically modified but is considered highly proliferative (Cheepsunthorn et al., 

2001). HAPI microglial cells are phagocytic and up-regulate TNFα mRNA and protein, 
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and NO in response to LPS stimulation (Cheepsunthorn et al 2001). HAPI cells express 

the microglial marker, OX-42 (Stansley 2012). 

A human microglial cell line, HMO6, was immortalized from human primary 

embryonic microglial cultures using the PASK 1.2 retroviral vector containing the v-myc 

oncogene. HMO6 microglial cells display phagocytic activity, a rapid doubling time, and 

express the microglial-specific antigens, Mac-1, CD68, and CD86. HMO6 also up-

regulated IL-1β, IL-6, IL-8, IL-12, and MCP-1 mRNA expression, as well as TNFα and 

IL-8 protein expression in response to LPS, similar to human primary microglia (Nagai et 

al., 2005; Nagai et al., 2001).  

CHME-5 cells were originally reported to be immortalized using human primary  

microglial cells obtained from human embryonic tissue using a plasmid containing the 

simian virus (SV) 40 large T-antigen (Janabi et al., 1995; Peudenier et al., 1991). CHME-

5 cells were reported to express MHC1, CD11b, and CD68, display non-esterase activity, 

and phagocytose zymosan particles. CHME-5 cells are widely used as an acceptable 

human microglial model to study Alzheimer’s disease, human immunodeficiency virus 

(HIV), and cellular heat stress. Very recently, it was reported that CHME-5 cells are not 

human, but of rat origin as determined through sequencing and genotyping (Garcia-Mesa 

et al., 2017). The modification of CHME-5 cells from human to rat may be the reason 

why a publication characterizing primary human microglia revealed inconsistencies in 

microglial and inflammatory genes between primary human microglia and microglial cell 

lines, including CHME-5 cells (Melief et al., 2016). Knowing what we do now about the 

non-human origin of CHME-5 cells from Garcia-Mesa et al. 2017, the inability to detect 

gene expression might have been due to the use of human primers.  
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Garcia-Mesa et al. (2017) recently obtained human microglial cells from ScienCell 

(catalog #1900) and immortalized them by infecting them with vesicular stomatitis virus 

G envelope SV40 large T-antigen by spinoculation (Garcia-Mesa et al., 2017). These 

immortalized human microglial cells (hµglia) express CD68 and CD14, and secrete IL-6, 

TNFα, and IL-8 following stimulation with TNFα (Garcia-Mesa et al., 2017).  

PURPOSE 

TLR4 signaling is well defined in peripheral immune cells, but less so in cells of the 

CNS. Additionally, the ability to study human microglial responses is difficult due to 

their location within the CNS, and accordingly, research is primarily pursued in rat and 

mouse models. To a lesser extent, human primary microglia are used but obtaining these 

cultures is complicated by ethical issues, culture techniques, high cost, and often, 

commercial unavailability. To this end, this aim was to characterize CHME-5 cells for 

microglial attributes with the expectation that this cell line remains a useful tool in the 

study of microglial responses, particularly as related to neuroinflammation.  

Aim I 

The first aim was to characterize LPS-induced TLR4 inflammatory signaling in a 

microglial cell line, CHME-5.    

Hypothesis (H1) 

Since microglia are considered “macrophages” of the CNS, it was hypothesized that 

CHME-5 microglial cells respond to LPS and induce expression of key signaling and 

inflammatory molecules in the TLR4 MyD88-dependent signaling pathway, as seen in 

peripheral immune cells. 

Null Hypothesis (Ho):   
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CHME-5 cells are not activated and do not induce key signaling and inflammatory 

molecules in the TLR4 MyD88-dependent signaling pathway in response to LPS 

stimulation. 
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METHODOLOGY 

Cell Culture 

CHME-5 growth media (GM) consisted of Dulbecco’s Modified Eagle Medium 

(DMEM) with 4.5 g/L glucose and sodium pyruvate without L-glutamine (Mediatech, 

Inc., Corning Subsidiary, Manassas, VA), fetal bovine serum (FBS) (Atlanta Biologicals, 

Flowery Branch, GA), 200 mM L-glutamine (Mediatech, Inc.), penicillin-streptomycin 

(100 U/ml potassium penicillin, 100 µg/ml streptomycin sulfate (Fischer Scientific, 

Pittsburgh, PA), and 250 µg/ml amphotericin B (Mediatech, Inc.). CHME-5 cells were 

maintained in GM at 37oC, with 5% CO2.  Growth media was replaced every 48 h and for 

experimental assays, GM was replaced with serum free media (SFM), for no less than 16 

h at 37oC.   

 

LPS Treatment 

Lipopolysaccharide from Escherichia coli O111:B4 (L4391) was purified by gel-

filtration chromatography and E. coli O55:B5 (L2880) was purified by phenol extraction 

(Sigma-Aldrich, Saint Louis, MO).  The lyophilized powders were reconstituted in 

HyPure cell culture grade water (#SH30529.03, Hyclone-Thermo Scientific, Rockford, 

IL) and sterile filtered to a stock concentration of 1.0 mg/ml and 1.2 mg/ml, respectively.   

 

MTT assay 
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MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays were 

performed to verify cell viability of CHME-5 cells after treatment. CHME-5 cells were 

seeded in 12-well plates at a density of 40,000 cells/well.  Cells were incubated overnight 

in SFM. After corresponding treatments, fresh SFM (1 ml) was added to each well 

followed by addition of 111 µl MTT. Cultures were then incubated at 37oC for 45 min. 

Media was aspirated from each well and 1.5 ml dimethyl sulfoxide (DMSO) added for 30 

min, rocking at 25oC. Absorbance was read at 492 nm with the Synergy 2 plate reader 

(Biotek Instruments).   

 

Protein extraction 

Whole cell lysates (WCLs) were extracted with cell lysis buffer (CBL) from Cell 

Signaling, (Danvers, MA) containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM 

EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM β-

glycerophosphate, 1 mM Na3VO4, and 1 µg/ml leupeptin. For cytoplasmic and nuclear 

protein extraction, Lysis Buffer 1 (LB1) and Lysis Buffer 2 (LB2) were used. LB1 was 

diluted to a concentration of 1× for a final concentration of 10 mM HEPES (pH 7.9), 10 

mM KCl, 0.10 mM EDTA, 0.10 mM EGTA, 1 mM DTT, 0.5 mM PMSF, 10 µg/ml 

leupeptin, and 10 µg/ml aprotinin.  Octylphenoxypolyethoxyethanol (Igepal) was added 

to cells after incubation. LB2 was diluted 1× for a final concentration of 20 mM HEPES, 

400 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 1 mM PMSF, 1 mM leupeptin, 

10 µg/ml aprotinin. For WCLs, cells were washed with ice-cold phosphate-buffered 

saline (PBS) and then 400 µl of CBL was added to each 100-mm dish. Following a 5 min 

incubation at 4oC, lysates were collected and centrifuged at 14,000 × g (4oC) for 10 min. 
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The supernatant was collected and stored at -20oC. For cytoplasmic and nuclear extracts, 

cells were washed with and collected in 1 ml ice-cold PBS. Cells were centrifuged at 129 

× g (4oC) for 5 min. The supernatant was aspirated and combined with 400 µl LB1 and 

vortexed vigorously for 10 sec, followed by incubation on ice for 15 min. Next, 100 µl 

5.4% Igepal was added, samples were vortexed for 10 sec, then centrifuged at 14,000 × g 

(4oC) for 5 min. The supernatant was collected and stored at -20oC; then 100 µl LB2 was 

added to the remaining pellet. The samples were vortexed for 15 min at 4oC and then 

centrifuged at 14,000 × g (4oC) for 22 min. The supernatant was collected and stored at -

20oC.   

 

Protein assay 

Pierce Bicinchoninic Assay (BCA) Reagent A and Reagent B (Thermo Scientific) were 

used to determine protein concentrations in cell extracts. Protein concentrations for 

WCLs and cytoplasmic/nuclear extracts were measured using BCA. First, a standard 

curve was prepared from lysis buffer, 1 mg/ml bovine serum albumin (BSA), and water 

to reflect the following concentrations: 0, 2, 4, 6, 8, 10, 12 µg/ml. Standards and samples 

(10 µl), in duplicate, were pipetted into a 96-well plate. The working solution (Reagent A 

+ Reagent B) (200 µl) was added to each well, incubated at 37oC for 1 h, and absorbance 

read at 570 nm.  

 

Immunoblot analysis 

Gel Casting: ACRYL/BIS solution-Ultra Pure, 30% (AMRESCO LLC-Solon, OH), 

TEMED (J.T. Baker-Center Valley, PA), 10% Ammonium Persulfate (APS) (#802811, 
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MP Biomedicals, Inc., Solon, OH), resolving buffer (1.5 M Tris, pH 8.8, 0.4% sodium 

dodecyl sulfate (SDS) (J.T. Baker), and stacking buffer (0.5 M Tris pH 6.8, 0.4% SDS) 

were used to cast gels. 

Electrophoresis: 5× loading dye (0.25 mM Tris pH 6.8, 10% SDS, 10 mM DTT, 30% 

glycerol, 0.05% bromophenol blue, β-mercaptoethanol), running buffer (0.25 mM Tris, 

250 mM Glycine, 0.1% SDS), and multicolor broad range protein ladder (#26634-

Spectra, ThermoFisher Scientific) were used for electrophoresis.   

Transfer: Immobilon-P Transfer Membrane, pore size: 0.45 µm (Merck Millipore Ltd.), 

(PVDF) membrane, 3MW Blotting Paper (MIDSCI, St. Louis, MO), and Transfer buffer 

(25 mM Tris pH 8.0, 195 mM Glycine, 20% methanol), were used to transfer gels. 

Blocking: BSA (AMRESCO, LLC), and Tris buffered saline (25 mM Tris pH 8.0, 150 

mM NaCl, 2 mM KCl) were used to block PVDF membranes.  

Wash: Tris buffered saline-tween (TBST) (TBS 0.1% Tween-20 (AMRESCO, LLC) was 

used to wash PVDF membranes. 

Antibodies: Several antibodies were obtained from Santa Cruz Biotechnology (Dallas, 

TX) including p-IκBα-Ser32/36 (sc-847), total IκBα (sc-101713), total NF-κB p65 (sc-

372), TLR4 (sc-293072), CD68 (H-255) (sc-9139), alpha-tubulin (sc-5546), and β-

tubulin (sc-9104). Antibodies purchased from Cell Signaling included phospho NF-κB 

p65-Ser536 (3033S), MyD88 (4283S), His3 (4499S), anti-rabbit (7054S), and anti-mouse 

(7056S). Anti-Glial Fibrillary Acidic Protein clone GA5 (MAB360) was purchased from 

Millipore.   

Imaging: Enhanced Chemifluorescence substrate (#RPN5785) and a Typhoon Scanner 

9410 (GE Healthcare Bio-Sciences, Pittsburgh, PA) were used to visualize proteins. 
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Protein lysates were subjected to SDS-page electrophoresis and immunoblot analysis. 

Acrylamide gels (10-well) were made ranging from 7-13% (depending on the protein 

being measured) and placed in 4oC, overnight. Protein extracts (50 µg) were prepared 

using loading dye (0.25 mM Tris, pH 6.8, 10 mM DTT, 30% glycerol, 10% SDS, 0.05% 

bromophenol blue, and 50 µl/ml β-mercaptoethanol). Samples were boiled for 10 min and 

brought to a standing temperature of 37oC. Samples were loaded into gels with running 

buffer and electrophoresed at 100 V for 15 min, and then increased to 125 V for 145 min 

for an overall running time of 2 h. Proteins were transferred onto PVDF membranes in 

transfer buffer and electrophoresed at 100 V for 90 min. After transfer, PVDF 

membranes were rinsed and blocked in BSA TBS-Tween (2% BSA for CD68 and 5% 

BSA for all other antibodies) for 2 h at 25oC with rocking. Primary antibodies (1:500-

1:2000) diluted in 2-5% BSA-TBST, were added to membranes and rocked overnight at 

4oC. The following day, membranes were washed three times with TBST for 5 min. AP-

linked secondary antibodies (1:1000-1:5000) diluted in 2-5% BSA-TBST (2% for CD68 

and 5% for all other antibodies) were added to membranes and rocked for 2 h at 25oC and 

then washed three times with TBST for 20 min. ECF fluorescent substrate (#45-000-947, 

GE Healthcare Amersham) was used to image blots using the Typhoon Scanner 9410. 

Image J software (NIH) was used to obtain the mean grey intensity for the bands of 

interest.  

 

RNA extraction 

Trizol reagent (#15596018, Ambion, Inc., Austin, TX) was used for RNA extraction.  

Reagents used for extraction included chloroform, 100% isopropanol, 75% molecular 
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grade ethanol, and nuclease-free or diethylpyrocarbonate-treated water. Following cell 

stimulation, cells were washed three times with ice-cold PBS, incubated in Trizol (1 

ml/100 mm dish) at 25oC for 5 min, and then lysates were collected in nuclease-free 

tubes. Chloroform (0.2 ml) was added to lysates followed by manual shaking of tubes for 

15 sec. Lysates were then incubated at 25oC for 3 min, centrifuged at 12,000 × g for 15 

min (4oC) and then the upper aqueous phase was collected. Isopropanol (0.5 ml) was 

added to the aqueous phase, followed by incubation at 25oC for 10 min, and centrifuged 

at 12,000 × g for 10 min (4oC). Next, the supernatant was removed and RNA pellets 

washed with ethanol, and centrifuged at 7,500 × g for 2 min (4oC). This ethanol wash 

step was repeated twice. RNA pellets were dried at 25oC for 15 min, followed by the 

addition of 35 µl nuclease-free water. RNA samples were incubated in a 65oC water bath 

for 10 min and then stored at -80oC. To obtain RNA concentrations, RNA was thawed on 

ice and ng/ml determined with a Nanodrop Spectrophotometer 1000 (ThermoScientific), 

and validated with the 260/280 and 260/230 ratios greater than 1.80.  

 

RNA Integrity 

NorthernMax-Gly Gel Prep/Running Buffer (#AM8678, Ambion), glyoxal sample load 

dye (#AM8551, Ambion), agarose (#BE-A500, MIDSci), 10,000× SYBR Safe DNA Gel 

Stain (#S33102, Invitrogen), RNase ZAP (#9780, Ambion), and nuclease-free or DEPC-

treated water were used to verify RNA integrity. RNA gels were prepared with 

NorthernMax-Gly Reagents to check RNA integrity. A 1% agarose gel was prepared with 

NorthernMax-Gly buffer. To prepare samples, 3 µl RNA, 3 µl nuclease-free water and 6 

µl glyoxal sample loading dye (equal parts) were incubated at 50oC for 30 min. Samples 
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were loaded and electrophoresed at 100 V for 45 min. RNA gels were stained with SYBR 

Safe (3 µl/50 ml in 1× NorthernMax-Gly buffer) and rocked on a Multimixer (Lab-Line 

Instruments, LLC-Melrose Park, IL) for 30 min. To visualize the 28S and 18S bands, 

RNA gels were imaged on Typhoon Scanner 9410 at 450 V.   

 

Reverse Transcription 

Reverse transcription was achieved using the SuperScriptTM IV VILOTM Master Mix with 

ezDNAseTM Enzyme (Invitrogen, #11766050). The kit included Superscript IV VILO 

master mix, Superscript IV VILO master mix “no RT” control, ezDNase enzyme, 

ezDNase buffer, and nuclease-free water. First 10× ezDNase buffer and ezDNase enzyme 

were added to 2 µg RNA, and nuclease-free water was added up to 10 µl total volume. 

Samples were mixed gently and incubated at 37oC for 2 min. Samples were placed on ice 

and Superscript master mix (4 µl) or “no RT” control (4 µl) was added to each sample 

and water added up to 20 µl total volume. Samples were gently mixed and incubated at 

25oC for 10 min, 50oC for 10 min, and 85oC for 5 min. Samples were diluted with 

nuclease-free water up to 100 µl volume, for a final concentration of 20 ng/ml.  

 

Reverse Transcription-Polymerase Chain Reaction  

cDNA (100 ng/ml) was used to perform reverse-transcription polymerase chain reaction 

(RT-PCR) for genes of interests. The primer for CD68 was designed using rat CD68 

messenger RNA (mRNA) from the National Institute of Health’s (NIH) National Center 

for Biotechnology Information website and ordered from IDT Technologies. The primers 

for TLR4 and TNFα were obtained from IDT Technologies. RT-PCR mix included 2× 
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PowerUp SYBR Green, 0.5 µM forward primer, 0.5 µM reverse primer, and nuclease-

free water up to 15 µl. Thermocycler settings were as follows: 50oC-2 min, 95oC-2 min, 

(95oC-15 sec, 60o-1 min for 40 cycles), 95oC-15 sec, 60oC-1 min, 95oC-15 sec. Primer 

sequences are as follows: TLR4-forward: 5’-GAA GCT ATA GCT TCA CCA ATT TCT 

CAC AA-3’, 60.2oC; reverse: 5’-GAT AGG GTT TCC TGT CAG TAC CAA GGT TG-

3’, 60.1oC, CD68-forward: 5’- CTC AGC AGC TCT ACC ATG AGG TTC -3’, 59oC; 

reverse: 5’- CTT CCG GTG GTT GTA GGT GTC TC -3’, 59.2oC, TNFα-forward: 5’-

CAG ATC ATC TTC TCA AAA CTC GAG TGA CA-3’, 60.3oC; reverse: 5’-GTT GGT 

TGT CTT TGA GAT CCA TGC CAT TG’3’, 60.1oC, and β-actin-Forward: 5’-GAA 

GGA TTC CTA TGT GGG CGA CGA-3’, 60.5oC ; Reverse: 5’-GAG CCA CAC GCA 

GCT CAT TGT AG-3’, 60.3oC. 

 

Immunocytochemistry 

CHME-5 cells were prepared for fluorescence imaging using epifluorescence and 

confocal microscopy. Paraformaldehyde (PFA) (#30525-89-4, ACROS-New Jersey), 

BSA (#0332-500G, AMRESCO-Solon, OH) with Triton-X (#A16046, Alfa Aesar), 

primary antibodies (1:1000), fluorescently-labeled secondary antibodies (1:1000, 647-

#A31573; 555-#A31570, Invitrogen), Prolong Gold anti-fade reagent (#P10144, Life 

Technologies; Eugene, OR), Gold Seal cover slips (#3306, Thermo Scientific), Premium 

microscope slides (#12-544-7, Fisher Scientific), and 4,6-diamidino-2-phenylindole 

(DAPI) nuclear staining were used to prepare samples. Cells were exposed to SFM with 

or without LPS (1 µg/ml) for 10 min at 37oC. After stimulation, cells were gently washed 

three times with ice-cold PBS and fixed with 4% PFA for 10 min at 25oC. Cells were 
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washed three times with ice-cold PBS and permeabilized with 0.01% Triton-X in PBS for 

10 min at 25oC. Next, cells were washed as described above and primary antibodies 

(TLR4-mouse, 1:1000) or CD68-rabbit, 1:1000) in PBS added to each appropriate well 

and rocked overnight at 4oC. The next day, cells were washed three times with TBST and 

incubated with fluorescently labeled secondary antibodies (anti-rabbit-AlexaFluor-647, 

1:1000 or anti-mouse-AlexaFluor-555, 1:1000), while rocking for 2 h at 25oC. Negative 

control cells were only treated with secondary antibodies. Cells were washed three times 

with TBST and labeled with DAPI-PBS for 10 min, rocking at 25oC. Finally, cells were 

washed three times with TBST, cover slips removed from wells, and mounted on slides 

using anti-fade gold mounting media. Slides were allowed to dry overnight and imaged 

the following day.  

 

Epifluorescence Microscopy 

TLR4 and CD68 immunofluorescence was imaged with an epifluorescence microscope 

(Olympus BX51) using Spot 5.1 software. Images were captured with the 40× objective 

using fluorescent channels for DAPI (350 nm), TLR4 (TRITC-555 nm), and CD68 (Cy5-

647 nm). Images were processed with CellProfiler cell image analysis software 

(Carpenter et al., 2006), and quantified in GraphPad Prism 7.0. For verification, cells 

were traced with the Wacom in Image J Software and then quantified in GraphPad Prism 

7.0. 

 

Confocal Microscopy 
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The Leica SPE Scanhead RYBV confocal microscope was used to capture images for 

bright field, and immunofluorescence and all images were processed in Leica Application 

Suite Advanced Fluorescence (LAS-AF). For bright field imaging, the 488 laser (55%) 

was used to capture images with the 100× oil objective in unstimulated and LPS-

stimulated cells, which were fixed with 4% PFA for 10 min at 25oC. For fluorescent 

imaging, cells were prepared as described in the immunocytochemistry section and 

images captured with the 100× oil objective using fluorescent channels for DAPI (350 

nm), TLR4 (Rhodamine-555 nm), and CD68 (Texas Red-647 nm). The TLR4 channel 

(red) gain and laser was set to 925 and 33%, the CD68 channel (green) gain and laser was 

set to 975 and 33%, and the DAPI channel (blue) gain and laser was set to 839 and 15%. 

These settings were applied to all confocal images. 

 

NF-κB p65 binding assay 

A NF-κB p65 Transcription Factor Kit (#89859, Thermo Scientific) was used to analyze 

CHME-5 nuclear extracts. This kit included a 96-well assay plate coated with NF-κB 

consensus sequence, (5× NF-κB Binding buffer, 20× Poly dI-IC, MilliQ H20), 10× wash 

buffer, antibody dilution buffer, NF-κB p65 primary antibody, HRP-conjugated 

secondary antibody, Luminol/Enhancer solution, Stable peroxide solution, and TNFα-

activated HeLa cell nuclear extract (positive control). Initially, binding buffer (50 µl) was 

added to each well, which contained the NF-κB consensus sequence. Then, 10 µl of 

nuclear extracts or positive control, TNFα-activated HeLa cells, were added to each well, 

in duplicate. Extracts were incubated for 1 h with mild agitation. Wells were then washed 

three times with 200 µl of wash buffer, 100 µl of primary antibody (1:1000) was then 
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added to each well, followed by incubation for 1 h at 25oC, without agitation. Wells were 

then washed three times with 200 µl of wash buffer, 100 µl of secondary antibody 

(1:10,000) was then added, followed by incubation for 1 h at 25oC, without agitation. 

Wells were then washed four times with 200 µl of wash buffer, and 100 µl of 

chemiluminescence substrate (equal parts Luminol/Enhancer and Stable peroxide 

solution) added to each well. Chemiluminescence was read immediately with a Synergy 2 

plate reader.  Binding activity was quantified with protein concentrations obtained with 

BCA protein assay.  

 

Statistical Analysis 

Image J Software was used to obtain the mean grey intensity of all immunoblots and the 

mean was taken for each time point. Protein expression was normalized to the β-tubulin 

housekeeping gene, or to total protein (phosphorylation blots). GraphPad Prism 7.0 was 

used for transformation, quantification, and graphing of all data. For statistical analysis, 

one-way analysis of variance (ANOVA) with Dunnett’s or Tukey’s multiple comparison 

tests were used, unless otherwise stated in the results section. Significance was 

determined at p<0.05. 
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RESULTS 

LPS-induced activation of NF-κB p65 in CHME-5 cells 

LPS is not toxic  

The MTT assay was used to determine the extent to which LPS stimulation affects cell 

viability. Statistical analysis revealed that LPS did not significantly affect viability of 

CHME-5 cells, (p=1.00, Figure 1A) or (p=0.90, Figure 1B).  

 

LPS-mediated activation of NF-κB p65 

Phosphorylation of NF-κB p65 activation (p-NF-κB p65) was used to measure of NF-κB 

activation (Figure 2A). Statistical analysis revealed that LPS O55:B5 (1 µg/ml) 

significantly increased nuclear levels of phospho-NF-κB p65 compared to unstimulated 

cells, p<0.05 (Figure 2B).  

 

Alpha-tubulin and Histone 3-immunoreactivity as internal control  

Alpha-tubulin and histone 3 expressions were measured as an internal control to confirm 

purity of cellular compartmentalization in cytoplasmic and nuclear fractions (Figure 3A). 

Statistical analysis revealed significant differences in alpha-tubulin immunoreactivity in 

cytoplasmic extracts compared to nuclear samples (p<0.01-p<0.0001) and significant 

differences in histone 3-immunoreactivity in nuclear extracts as compared to cytoplasmic 
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samples (p<0.0001) (Figure 3B, 3C). 

 

LPS-induced CD68 expression in CHME-5 microglial cells 

CD68 gene expression in CHME-5 cells 

Quantification of CD68 with β-actin revealed a significant up-regulation of CD68 gene 

expression at 3 (p<0.0001) and 6 (p<0.01) h compared to unstimulated cells, while 

expression returned to basal levels by 18 h (Figure 4A).  As an internal control, RNA 

integrity was verified by visualizing the 28S and 18S ribosomal RNA (rRNA) bands 

(Figure 4B).   

 

CD68 protein expression in CHME-5 cells 

CD68 protein expression was analyzed after LPS stimulation in whole cell lysates 

(Figure 5A). CD68 expression was significantly greater in LPS-stimulated cells at 10 

min compared to unstimulated cells, p<0.001 (Figure 5B). Multiple CD68 protein bands 

were detected in LPS-treated cells, most prominently at 68, 90, and 110 kilodaltons 

(kDa). 

 

CHME-5 cells are GFAP negative 

For further confirmation that CHME-5 cells are microglia and not astrocytes, GFAP was 

measured using NHA whole cell lysates as a positive control (Figure 6A). Tukey’s 

multiple comparison tests revealed a significant fold-change in GFAP expression in 

unstimulated (p<0.001) and LPS-stimulated (p<0.0001) NHA compared to CHME-5 

cells, indicating an absence of GFAP-immunoreactivity in CHME-5 cells (Figure 6B). 
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LPS-induced TLR4 expression in CHME-5 Cells 

TLR4 gene expression in CHME-5 cells 

LPS induces the innate immune response through binding TLR4 and initiating 

intracellular signal transduction. TLR4 mRNA expression was significantly elevated 3 

(p<0.0001) and 6 (p<0.01) h after LPS treatment; by 18 h expression was similar to 

unstimulated control (Figure 7A).  

 

LPS is not toxic at later time points 

The MTT assay revealed that LPS was not cytotoxic, rather it resulted in a minimal 

increase in cell viability at 6 h, p<0.05 (Figure 7B).  

 

TLR4 protein expression in CHME-5 cells 

We also determined the extent to which LPS modulates TLR4 protein expression in 

CHME-5 cells. Immunoblot analysis revealed significant increases in TLR4 protein 

expression at 90 (p<0.01) and 270 (p<0.01) min after LPS treatment (Figure 8A, 8B).           

 

Analysis of CD68 and TLR4 immunocytochemistry  

Quantitative analysis of CD68- and TLR4-immunofluorescence in CHME-5 cells 

Epifluorescence microscopy was employed to visualize and quantify CD68- and TLR4-

immunofluorescence in unstimulated and LPS-stimulated CHME-5 cells (Figure 9A, 

9C). Even though there was significant basal CD68-immunofluorescence in unstimulated 

cells, there was a greater increase in CD68-immunofluorescence in LPS-stimulated cells 

compared to unstimulated cells and negative controls, as assessed with Kruskal-Walis 
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and Dunn’s multiple comparison tests, p<0.0001 (Figure 9B). Multiple comparison tests 

also revealed a significant, increase in TLR4-immunofluorescence in LPS-stimulated 

cells compared to unstimulated cells and negative controls, p<0.0001 (Figure 9D). 

Handtracing also revealed significant increases in CD68- and TLR4-immunofluorescence 

in LPS-stimulated cells compared to unstimulated cells, p<0.001 (Figure 9E, 9F). 

 

Qualitative analysis of CD68 and TLR4 immunofluorescence  

Next, we captured images of unstimulated and LPS-stimulated cells with bright field and 

fluorescent imaging, using confocal microscopy, to observe protein expression and 

localization. Overall, untreated cells displayed elongated cell bodies with longer 

processes than those treated with LPS, which exhibited rounded or swollen cell bodies 

with shorter processes (Figure 10A). In addition, TLR4-immunofluorescence in 

unstimulated cells was localized predominantly to the cell membrane, as opposed to LPS-

treated cells, where TLR4 was present in both cytoplasmic and nuclear compartments 

(Figure 10B). CD68-immunofluorescence was widely distributed in the unstimulated 

cells, compared to LPS-stimulated cells, where CD68 was localized to the cytoplasm 

(Figure 10C). In unstimulated cells, CD68 and TLR4 were co-localized to the plasma 

membrane, while in LPS-stimulated cells co-localization was retained in the cytoplasmic 

compartment (Figure 10D).  

 

LPS-induced IκBα activation in CHME-5 cells 

Phosphorylation of IκBα was used as a measure of IκBα activation in cytoplasmic lysates 

(Figure 11A). Statistical analysis revealed that LPS significantly increased IκBα 
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activation at 10 min following stimulation, p<0.05 (Figure 11B). At 30-270 min, 

stimulation levels of p-IκBα were comparable to control cells. 

 

LPS-induced NF-κB p65 binding activity 

NF-κB p65 activation was also determined by assessing NF-κB p65 binding activity in 

nuclear extracts. NF-κB p65 binding activity was significantly increased at 10 (p<0.05) 

and 90 (p<0.01) min (Figure 12). Interestingly, binding activity at 30 and 180 minutes 

remained at basal levels.  

 

LPS-induced NF-κB p65 activation at 90 minutes in CHME-5 cells.  

Phosphorylation of NF-kB p65 was used as a measure of NF-kB p65 activation in nuclear 

extracts at 90 min (Figure 13 A). ANOVA and Dunnett’s multiple comparison tests 

revealed significant inceases in NF-κB p65 activation at 0.1 (p<0.05), 1 (p<0.001), and 

10 (p<0.01) µg/ml (Figure 13 B).  

 

LPS does not induce p38 activation in CHME-5 cells 

Phosphorylation of p38 was used as a measure of p38 activation in cytoplasmic lysates 

(Figure 14A). ANOVA revealed no significant differences in p38 activation as compared 

to unstimulated cells, p=0.80 (Figure 14B). 

 

LPS-induced TNFα gene expression 

Once NF-κB p65 is phosphorylated and translocated into the nucleus, it binds to pro-

inflammatory consensus sequences for initiation of gene transcription of mediators, such 
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as TNFα. Compared to unstimulated cells, stimulation with LPS significantly increased 

TNFα gene expression at 3 (p<0.01), 6 (p<0.05), and 18 (p<0.01) h (Figure 15). 
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FIGURES 

 
 

 
 

Figure 1. Escherichia coli LPS O55:B5 and O111:B4 are not cytotoxic to CHME-5 cells 

CHME-5 cells were stimulated with increasing doses of LPS (A) O55:B5 or (B) O111:B4 and 

incubated at 37oC for 30 min. MTT cell viability absorbance was measured at 492 nm. ANOVA 

and Dunnett’s multiple comparison tests revealed no significant differences between control and 

LPS-treated cells, (A) p=0.100 and (B) p=0.91. Three independent experiments were performed 

in duplicate (n=3) for each treatment group. Bars are presented as mean ± SEM.
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Figure 2. LPS-induced activation of NF-κB in CHME-5 cells 

CHME-5 cells were treated with LPS O55:B5 and O111:B4 and incubated at 37oC for 30 min. A. 

Nuclear lysates were subjected to SDS-page electrophoresis and immunoblotted with phospho-

NF-κB p65 (1:1000), NF-κB p65 (1:1000), and β-tubulin (1:1000) antibodies. B. phospho-NF-κB 

p65 was quantified with total NF-κB p65 and ANOVA and Dunnett’s multiple comparison tests 

revealed a significant increase in phospho-NF-κB p65 with LPS O55:B5 (1 µg/ml). Images are 

representative of three independent experiments (n=3) for each treatment group. Bars are 

presented as mean ± SEM.  

* p<0.05 vs. unstimulated cells 
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Figure 3. alpha-tubulin and histone 3-immunoreactivity in CHME-5 cellular fractions 

CHME-5 cells were sitmulated with LPS and incubated at 37oC for a time course (0-270 min). A. 

Cytoplasmic and nuclear extracts were subjected to SDS-PAGE and immunoblotted with α-

tubulin (1:1000) or histone 3 (1:2000) antibodies. B. ANOVA and Tukey’s multiple comparison 

tests revealed significant increases in α-tubulin-immunoreactivity in cytoplasmic fractions. C. 

Similarly, histone 3-immunoreactivity was significantly increased in nuclear fractions. Images are 

representative of four independent experiments (n=4) for each treatment group. Bars for all 

experiments are presented as mean ± SEM.  

**** p<0.0001, *** p<0.001, ** p<0.01 vs. nuclear or cytoplasmic fractions 
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Figure 4. LPS-induced CD68 gene expression in CHME-5 cells 

CHME-5 cells were stimulated with LPS and incubated at 37oC for 3, 6, and 18 h. A. CD68 

mRNA expression was analyzed using RT-PCR. ANOVA and Dunnett’s multiple comparison 

tests revealed significant increases at 3 and 6 h. Data were transformed using Y=Log (Y). Image 

is representative of three independent experiments (n=3) for each treatment group. Data points are 

given as mean + SEM. B. RNA gels were used to verify the integrity of the 28S and 18S 

ribosomal RNAs (rRNAs). Image is representative of three independent experiments (n=3).  

**** p<0.0001, ** p<0.01 vs. unstimulated  
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Figure 5. LPS-induced CD68 protein expression in CHME-5 cells 

CHME-5 cells were stimulated with LPS and incubated at 37oC for 10 min. A. Whole cell lysates 

were subjected to SDS-page electrophoresis and immunoblotted with CD68 (1:500) and β-tubulin 

(1:1000) antibodies. B. Student’s T-test revealed a significant increase in LPS-induced CD68 

protein expression compared to unstimulated cells. Images are representative of four were 

independent experiments (n=4) for each group. Bars for all groups are presented as mean ± SEM. 

*** p<0.001 vs. unstimulated 
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Figure 6. CHME-5 cells are CD68-positive and GFAP-negative 

CHME-5 cells and normal human astrocytes (NHA) were stimulated with LPS and incubated at 

37oC for 10 min. A. Whole cell lysates were subjected to SDS-page electrophoresis and 

immunoblotted with GFAP (1:2000) and β-tubulin (1:1000) antibodies. B. ANOVA and Tukey’s 

multiple comparison tests revealed a significant fold change in GFAP-immunoreactivity in 

unstimulated and LPS-treated NHA compared to CHME-5 cells. Images are representative of 

three independent experiments (n=3) for each treatment group. Bars for all groups are presented 

as mean ± SEM. 

**** p<0.0001, *** p<0.001 vs. unstimulated  
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Figure 7. LPS-induced TLR4 gene expression in CHME-5 cells 

CHME-5 cells were stimulated with LPS and incubated at 37oC for 3, 6, and 18 h. A. TLR4 

mRNA expression was analyzed using RT-PCR. ANOVA and Dunnett’s multiple comparison 

tests revealed significant increases at 3 and 6 h. Image is representative of three independent 

experiments (n=3) for each treatment group. B. Following stimulation, MTT cell viability assay 

was performed and absorbance was measured at 492 nm. ANOVA and Dunnett’s multiple 

comparison tests revealed a minimal increase at 6 h. Three experiments were performed in 

duplicate with (n=3) for each treatment group. Bars for all groups are presented as mean ± SEM. 

**** p<0.0001, *** p<0.01, * p<0.05 vs. unstimulated cells 
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Figure 8. LPS-induced TLR4 protein expression in CHME-5 cells 

CHME-5 cells were stimulated with LPS and incubated at 37oC for a time course (0-270 min). A. 

Whole cell lysates were subjected to SDS-page electrophoresis and immunoblotted with TLR4 

(1:1000) and β-tubulin (1:1000) antibodies. B. ANOVA and Dunnett’s multiple comparison tests 

revealed a significant increase in TLR4 protein expression at 90 and 270 min. Asterisks denote 

significant differences from unstimulated cells. Images are representative of five independent 

experiments (n=5) for each treatment group. Bars for all groups are presented as mean ± SEM.  

** p<0.01 vs. unstimulated cells 
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Figure 9. Quantitative analysis of LPS-induced CD68- and TLR4-immunofluorescence with 
epifluorescence microscopy 

CHME-5 cells were stimulated with LPS and incubated at 37oC for 10 min. Cells were fixed and 

stained with A. CD68 (1:1000) and anti-rabbit-Alexa Fluor 647 (1:1000) or B. TLR4 (1:1000) 

and anti-mouse-Alexa Fluor 555 (1:1000). Negative control cells were not stained with primary 

antibody but stained with secondary antibody. Epifluorescence images were captured with the 

40× objective using Texas Red-647 (CD68-green) and Cy5-555 (TLR4-red) fluoresecent 

channels. C. Kruskal-Wallis and Dunn’s multiple comparison tests revealed signficant increases 
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in CD68-immunofluorescence and D. TLR4-immunofluorescence in LPS treated cells. E and F.  

CD68 and TLR4 immunofluorescence was also quantified with handtracing in Image J. Kruskal-

Wallis and Dunn’s multiple comparison tests revelaed significant increases in CD68-

immunofluorescence and D. TLR4-immunofluorescence in LPS treated cells. Asterisks denote 

significant differences from negative control and # denotes a significant difference from 

unstimulated cells. The contrast for CD68 and TLR4 (unstimulated and stimulated) images were 

adjusted to min, max= 29, 225. Bars for all experiments are presented as mean ± SEM.  

**** p<0.0001 vs. negative control, # p<0.0001 vs. unstimulated cells 
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Figure 10. Visualization of LPS-induced CD68- and TLR4-immunofluorescence with 
confocal microscopy 

CHME-5 cells were stimulated with LPS and incubated at 37oC for 10 min. A. Bright field 

images were captured with 100× oil objective. Cells were fixed and stained with B. TLR4 

(1:1000) and anti-mouse-Alexa Fluor 555 (1:1000), C. CD68 (1:1000) and anti-rabbit-Alexa 

Fluor 647 (1:1000), and D. DAPI (blue). Confocal images for CD68 and TLR4-

immunofluorescence were captured with 100× oil objective using Cy5-555 (TLR4-red), Texas 

Red-647 (CD68-green), and DAPI-388 (nucleus-blue) fluoresecent channels. D. Images merged 

with DAPI
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Figure 11. LPS-induced IκBα activation increases at 10 minutes in CHME-5 cells 

CHME-5 cells were stimulated with LPS and incubated at 37oC for a time course (0-270 min). A. 

Cytoplasmic lysates were subjected to SDS-page electrophoresis and immunonlotted with 

phospho-IκBα (1:1000), IκBα (1:1000), and β-tubulin (1:1000) antibodies. B. phospho-IκBα was 

quantified with total IκBα and ANOVA and Dunnett’s multiple comparison tests revealed a 

significant increase in IκBα activation at 10 min. Images are representative of four independent 

experiments (n=4) for each treatment group. Bars for all experiments are presented as mean ± 

SEM.  

* p<0.05 vs. unstimulated cells 
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Figure 12. LPS-induced NF-κB p65 activation in CHME-5 cells 

CHME-5 cells were stimulated with LPS and incubated at 37oC for a timecourse (10-270 min). 

Nuclear extracts were analyzed for NF-κB p65 binding activity. ANOVA and uncorrected 

Fisher’s LSD revealed a significant increase in NF-κB p65 binding activity at 10 and 90 min. 

Image is representative of five independent experiments (n=5) for each treatment group. Bars for 

all experiments are presented as mean ± SEM. 

**p<0.01, * p<0.05 vs. unstimulated cells 
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Figure 13. LPS-induced NF-κB p65 activation at 90 minutes in CHME-5 cells 

CHME-5 cells were stimulated with LPS and incubated at 37oC for 90 min. A. Nuclear lysates 

were subjected to SDS-page electrophoresis and immunoblotted with phospho-NF-κB p65 

(1:1000) and NF-κB p65 (1:1000) antibodies. B. ANOVA and Dunnett’s multiple comparison 

tests revealed a significant incease in NF-κB p65 activation at 0.1, 1, and 10 µg/ml. Images are 

representative of three independent experiments (n=3) for each treatment group. Bars are 

presented as mean ± SEM.   

*** p<0.001, ** p<0.01, * p<0.05 vs. unstimulated cells 
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Figure 14. LPS does not induce p38 activation in CHME-5 cells 

CHME-5 cells were stimulated with LPS and for 10-270 min. A. Cytoplasmic lysates were 

subjected to SDS-page electrophoresis and immunoblotted with phospho-p38 (1:1000) and p38 

(1:1000) antibodies. B. ANOVA revealed no significant increase in p38 activation in LPS-treated 

cells as compared to unstimulated cells, p=0.80. Images are representative of three independent 

experiments (n=3) for each treatment group. Bar are presented as mean ± SEM.   
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Figure 15. LPS-induced TNFα gene expression in CHME-5 cells 

CHME-5 cells were treated with LPS for 3, 6, and 18 h. TNFα mRNA expression was analyzed 

with RT-PCR. Kruskal-Wallis and Dunn’s multiple comparison tests revealed significant increase 

in LPS-induced TNFα gene expression at 3, 6, and 18 h. Images are representative of three 

individual with n=3 experiments. Bars for all experiments are presented as mean ± SEM. 

** p<0.01, * p<0.05 vs. unstimulated cells 
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DISCUSSION 

Microglia are considered the macrophages of the CNS, and are central to inflammation in 

the brain (Kettenmann et al., 2011). Microglia are of monocytic lineage and take 

residence in the CNS during the first and second trimesters of embryonic development 

(Kettenmann et al., 2011; Monier et al., 2007). Much of what is known about microglia is 

derived from in vitro studies using primary or transformed cell lines of mouse or rat 

origin. The establishment of a human microglial cell line, CHME-5, was an important 

advancement for investigating microglia. CHME-5 cells were immortalized and validated 

to have similar morphological and functional properties of primary microglia (Janabi et 

al., 1995; Peudenier et al., 1991). Here, we characterize TLR4 neuroinflammatory 

signaling in CHME-5 cells and demonstrate that CHME-5 cells are a reliable tool to 

study microglial-like inflammatory responses.  

Presently, we illustrate morphological characteristics of “resting” vs. “activated” 

microglia using bright field imaging. Unstimulated and LPS-stimulated cells displayed 

morphological signatures of microglia, as seen in previous studies (Cheepsunthorn et al., 

2001; Kettenmann et al., 2011; S. Lee et al., 2007; Sheng et al., 2011), which included 

smaller somas and elongated processes, or amoeboid-shaped and rounder cell bodies, 

respectively. This demonstrates that CHME-5 cells retain key characteristics of 

microglial cells. 
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We also wanted to ensure microglial phenotype through the expression of a microglial 

cell marker. Microglia are known to up-regulate several activation markers, such as 

CD68, in response to damage, disease, or loss of homeostatic conditions. CD68 is 

expressed in endolysosomes and in the plasma membrane of activated microglia (Pulford 

et al., 1990; Ramprasad et al., 1996; Saito et al., 1991). CD68 gene and protein 

expression were increased after LPS treatment during early time points. This quick 

response indicates that microglia are the first responders in the CNS (Gehrmann et al., 

1995; Kreutzberg, 1996), which aligns with their role of surveying and returning their 

environment to homeostasis (Hughes, 2012; Nimmerjahn et al., 2005). The expression of 

CD68 is confirmation that these cells still retain phenotypic properties of microglia, along 

with morphological attributes as seen with our immunocytochemistry studies. 

It was important to ensure that cultures were not contaminated with astrocytes, 

considering astrocytes make up 40-50% cell type in the CNS (Bowman et al., 2003; 

Carpentier et al., 2005). GFAP-immunoreactivity was analyzed in both CHME-5 cells 

and normal human astrocytes (NHA). CHME-5 cells, unlike NHA, showed no GFAP-

immunoreactivity, which confirmed CHME-5 cells are not astrocytes. These CHME-5 

cells are indeed expressing CD68, and importantly are GFAP-negative, which eliminates 

our concern that CHME-5 may be astrocytes or that the culture is contaminated with 

astrocytes. 

We also demonstrated that LPS induced inflammatory signaling without inducing 

cytotoxicity. This finding is consistent with other studies (Lindberg et al., 2005), and 

indicates that any observed decreases in gene/protein expression throughout these 
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experiments are not due to LPS toxicity, but rather to specific LPS-induced inflammatory 

responses.  

To investigate LPS-induced TLR4 neuroinflammatory signaling, we used 

Escherichia coli LPS O55:B5 to model an inflammatory state in the CNS and studied 

several signaling proteins that are constitutively expressed and activated in the TLR4 

pathway. Analysis of two crucial intracellular TLR4 signaling proteins, IκBα and NF-κB, 

were chosen to investigate neuroinflammatory signaling in CHME-5 cells. LPS-induced 

NF-κB p65 activation was consistent with other microglial cell lines (Cheepsunthorn et 

al., 2001; Horvath et al., 2008; S. C. Lee et al., 1993; Wu et al., 2007). Given that many 

studies investigating microglial responses used a similar dose of LPS (1 µg/ml), we are 

confident that CHME-5 cells were adequately treated to observe inflammatory responses 

(Atanassov et al., 1995; Lindberg et al., 2005); unlike the use of a lower dose of LPS (1 

ng/ml), which failed to activate and induce nitric oxide production in CHME-5 cells (Lisi 

et al., 2015).  

The ability of p65 to be activated, translocate into the nucleus, and bind to NF-κB 

consensus sequences, is crucial in mediating effective inflammatory responses. Here, we 

demonstrate a second, more functional measure of NF-κB activation. LPS-induced NF-

κB binding activity was exhibited in two waves, at 10 and 90 min. At first, this activity 

seemed to display a biphasic pattern but statistical analysis revealed it was not truly 

biphasic.  

LPS-induced IκBα activation was observed with LPS within 10 minutes, which 

demonstrated that phosphorylation of IκBα is an early, transient event in CHME-5 cells. 

Since phosphorylation was assessed in cytoplasmic fractions, it is possible that after 10 
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minutes IκBα translocates into the nucleus via its nuclear localization sequence or that 

phosphorylation of IκBα leads to ubiquitinylation and proteasomal degradation through 

the ubiquitin-proteasome pathway (Arenzana-Seisdedos et al., 1997).  

Toll-like receptor 4 (TLR4), a transmembrane glycoprotein, is part of the innate 

immune response, and is expressed in the CNS, primarily in microglia (Bsibsi et al., 

2002; Laflamme & Rivest, 2001). Consequently, in addition to assessing LPS-induced 

signaling, we were interested in the effects of LPS on TLR4 expression. The increase 

observed in TLR4 gene expression in CHME-5 cells following LPS treatment has been 

reported to occur through binding of the master regulator PU.1 to TLR4 promoter regions, 

in response to endotoxin, which showed a significant increase in TLR4 mRNA expression 

2 h after LPS treatment (1 µg/ml) in RAW 264.7 macrophages (Pedchenko et al., 2005). 

Another study demonstrated increases in TLR4 expression in whole blood cells and 

monocytes as early as 2 and 3 h, respectively (Armstrong et al., 2004; Bosisio et al., 

2002). The expression of TLR4 as early as 3 h may be attributed to TLR4 being an early 

or middle phase gene that peaks at 1 h and 3 h (Tian et al., 2005). LPS-induced TLR4 

protein expression increased compared to unstimulated cells as seen in both immunoblot 

analysis and immunocytochemistry. This pattern displayed in LPS-induced TLR4 

expression may be due to regulatory control of the TLR4 gene by miRNAs.  

Several studies have shown the ability of miRNAs, mir-27a and mir-146b, to 

directly target TLR4 expression in primary rat microglial and HEK-293T cells, 

respectively, by binding to 3’-untranslated region of the TLR4 promoter (Curtale et al., 

2013; Lv YN, 2016). Activation at 270 min may also be due to late-phase NF-κB 

activation, which is attributed to TRIF-dependent signaling (Akira & Takeda, 2004). On 
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the other hand, the lack of TLR4 protein expression at 180 min may be due to negative 

regulation. There are several negative regulators that control TLR4 inflammatory 

signaling at different stages in the signaling pathway, such as SARM, RP105, and ST2L, 

which can be induced as early as 10 min, as seen in the case of IRAK-M (Brint et al., 

2004; Divanovic et al., 2005). Further investigation is needed to determine mechanisms 

for regulation of LPS-induced TLR4 signaling in CHME-5 cells. 

In this aim I provide novel images of CHME-5 cells, showing TLR4 and CD68-

immunofluorescence in the plasma membrane and cytoplasm. Epifluorescence imaging 

was employed to quantify CD68 and TLR4 expression in untreated and LPS-treated cells. 

CD68 and TLR4-immunofluorescence was observed at basal levels, but there was a 

significant increase in the expression of these proteins. Understandably, CD68 is 

expressed basally and increases with activation in response to LPS (Sasaki, 2016). 

Likewise, the increase in TLR4 expression after LPS treatment has been reported in 

previous studies, as TLR4 expression is under control of the PU.1 transcription factor, 

which binds to the TLR4 promoter in a time-dependent manner (Pedchenko et al., 2005). 

Confocal imaging was used to visualize the expression and localization of TLR4 

and CD68 in unstimulated and LPS-stimulated cells. In unstimulated cells, TLR4 

expression was distributed to the plasma membrane, but subsequently internalized in 

response to LPS, which has been reported in detail (Husebye et al., 2006; Zanoni et al., 

2011). CD68 was widely distributed in untreated cells, while activation of microglia cells 

triggered CD68 internalization, mainly to the cytoplasmic compartment, which is 

consistent with previous reports of CD68 trafficking to and from the plasma membrane at 

a high rate (Kurushima et al., 2000; Ramprasad et al., 1996). There was minimal 
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evidence of co-localization of CD68 and TLR4 at the plasma membrane and in the 

cytoplasm in unstimulated or LPS-stimulated cells.  

In summary, studying microglial inflammatory responses is important due to their 

nature as the immune cell of the CNS. The ability to obtain human primary microglia is 

challenging, and therefore, the use of cultured cells or cell lines is essential to progress 

the field of neuroinflammation, in particular, inflammation-exacerbating 

neurodegenerative diseases. Relative to other cell types, availability of microglial cell 

lines is limited, thus, it is important to maximize our understanding of those tools that are 

available. Here, we provide novel insights into CHME-5 cells by characterizing TLR4 

neuroinflammatory signaling as a rat microglial cell line, which aligned with responses 

seen in other microglial cell lines, such as BV-2 and HAPI, and in human primary cells. 

With this present research, it is our hope that CHME-5 will remain a useful tool and 

continue to be an asset for studying microglia



	

CHAPTER TWO  

 

FENTANYL, AND TO A LESSER EXTENT MORPHINE, DISPLAY ANTI-

INFLAMMATORY EFFECTS ON LPS-INDUCED TLR4 NEUROINFLAMMATORY 

SIGNALING  
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LITERATURE REVIEW 

Opioid Receptors 

Opioid receptors, located in the CNS and periphery, are GPCRs that consist of three 

extracellular N-terminus loops, responsible for selectivity of the receptor, a seven 

transmembrane domain, and an intracellular C-terminus with domains between the 5th 

and 6th segments, which interact with G proteins for signaling (Kieffer & Evans, 2009; 

Snyder & Pasternak, 2003). Opioid receptor activation can cause a myriad of 

pharmacological, physiological, and behavioral effects, which depend on the type of 

opioid receptor, receptor localization/distribution, and additional pharmacological 

receptor phenotypes. Opioid effects include analgesia, pupil constriction, constipation, 

euphoria, sedation, respiratory depression, bradycardia, hypothermia, insensitivity, 

tolerance, physical dependence, addiction, and even death (Jordan & Devi, 1998; Law & 

Loh, 2013).    

The discovery of opioid receptors occurred through selective binding to endogenous 

opioid peptides present in the CNS that include enkephalin (met- and leu-), beta-

endorphin, dynorphin (A and B) and nociceptin/orphanin FQ (N/OFQ), which are derived 

from precursor proteins pro-enkephalin, pro-opiomelanocortin, prodynorphin and pro-

nociceptin, and endomorphin (-1 and -2) (Law et al., 2013; McDonald & Lambert, 2011; 

Waldhoer et al., 2004). The first opioid receptor genes, mu, kappa and delta, were cloned, 

and thereafter, a fourth receptor was discovered, opioid receptor-like 1 (ORL1), which 

shares 60% homology with the other three classical opioid receptors (Evans et al., 1992; 
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Law et al., 2013; Stevens, 2009; Waldhoer et al., 2004). Since the discovery of ORL1, the 

nomenclature for this fourth opioid-like receptor was changed to nociceptin/orphanin FQ 

peptide receptor or NOP (McDonald et al., 2011).  

To determine opioid receptor localization, several studies were performed 

including auto-radiographic studies using selective radioactive ligands, in situ 

hybridization studies using cloned receptor mRNA, and histochemical and 

immunofluorescence studies using receptor-specific antibodies (Law et al., 2013). These 

studies revealed that opioid receptors are localized in several areas of the CNS including 

the caudate-putamen; periaqueductal gray; medial thalamus; limbic regions, such as 

amygdala and nucleus accumbens; locus coeruleus; subsantia gelatinosa of the spinal 

cord and brainstem; and the vagal nuclei (Snyder et al., 2003).  

Opioid Receptors in the Periphery 

In addition to distribution in the CNS, opioid receptors are also expressed in the 

periphery, such as the gastrointestinal tract, which is responsible for MOR and DOR-

mediated constipation. Opioid receptors expressed in cardiac myocytes explains KOR-

mediated bradycardia; and expression in immune cells, such as T cells, B cells, dendritic 

cells, macrophages, and neutrophils, may lead to crosstalk between other immune 

receptors such as TLRs (Law et al., 2013). Along with receptor type and tissue 

distribution, additional pharmacological phenotypes may trigger different opioid-induced 

effects, as a result of post-translational modifications, alternative mRNA splicing, homo-

/hetero-dimerization, or scaffolding with additional proteins (Feng et al., 2012; Waldhoer 

et al., 2004). These are all factors that can influence pharmacological, physiological, and 

behavioral effects imparted by opioid receptors.  
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Mu (µ) Opioid Receptor (MOR) 

MORs are located in areas involved in sensory and motor functions, which include the 

cerebral cortex and amygdala; the caudate putamen; pre-synaptically on primary afferent 

neurons within the dorsal horn of the spinal cord; and in the periaqueductal gray 

(McDonald & Lambert, 2005). MORs are also located in different cellular and 

subcellular compartments of neurons, including the soma, dendrites and terminals, which 

implicates different functions based on spatial location (Williams et al., 2013). MORs are 

also highly expressed in areas of pain perception and respiration (Reisine, 1996). 

Delta (δ) Opioid Receptor (DOR) 

The delta opioid receptor (DOR), the first opioid receptor to be cloned (1992), is most 

dense in the olfactory bulb; cerebral cortex; nucleus accumbens; caudate putamen; and 

pre-synaptically on afferent neurons; and to a lesser extent in the thalamus, hypothalamus 

and brainstem (McDonald et al., 2005; McDonald et al., 2011). Besides imparting 

analgesic/anti-nociceptive effects, recent evidence suggests that the DOR system may 

play a role in regulating mood and emotional states by promoting anti-anxiety and anti-

depressant-like effects, while also having the potential to be used to treat PD (Feng et al., 

2012; Hill et al., 2000; Jutkiewicz, 2006; McDonald et al., 2011). Conversely, DORs do 

not seem to have any regulation in acute pain but do reduce hyperalgesia in inflammatory 

and neuropathic pain (Kapitzke et al., 2005). 

Kappa (κ) Opioid Receptor (KOR) 

The kappa opioid receptor (KOR) is expressed in neocortical areas; the olfactory bulb; 

the amygdala and basal ganglia; the thalamus and hypothalamus; the ventral tegmental 

area; locus coeruleus; cerebral cortex; the pituitary gland; and in the cervical, dorsal and 
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lumbar levels of the spinal cord (Simonin et al., 1995). The KOR system exhibits a safer 

side-effect profile, namely the absence of respiratory depression, and has been implicated 

in a number of functions including nociception, neuroendocrine physiology, cognition, 

diuresis, and feeding (McDonald et al., 2011; Simonin et al., 1995). In addition, KOR 

activation may be beneficial for treatment of alcohol dependence and epilepsy, and, one 

study by Ikeda et al. 2009, showed amelioration of L-DOPA-induced dyskinesia 

symptoms in a rat model of Parkinson’s disease (Feng et al., 2012; Ikeda et al., 2009; 

McDonald et al., 2011).   

Nociceptin/Orphanin FQ Receptor Peptide (NOP) 

The nociceptin/orphanin FQ receptor peptide (NOP) is widely expressed in the CNS, in 

particular, in the thalamus; cortical areas; olfactory regions and limbic structures; 

throughout the brainstem in the central periaqueductal gray; substantia nigra; sensory and 

motor nuclei; and in both dorsal and ventral horns of the spinal cord (Mollereau & 

Mouledous, 2000). This receptor can also be found in the periphery in smooth muscle, 

peripheral ganglia and immune cells, such as human monocytes and peripheral blood 

lymphocytes (Mollereau et al., 2000; Peluso et al., 1998). Due to the wide distribution of 

NOP, this receptor is implicated in a range of central processes including learning and 

memory, attention and emotion, movement and motor processes, homeostasis, 

neuroendocrine secretion, sensory perceptions and immune-competence (Halford et al., 

1995; Mollereau et al., 2000). 

Opioid Peptides and Drugs 

Opioids can be classified as analgesics, which act primarily on the brain and spinal cord 

to inhibit the neurotransmission of pain, and non-analgesics, which act in peripheral 
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tissues to inhibit formation of pain-producing substances (Brenner & Stevens, 2010). 

Opioids can be divided into four groups, which include naturally occurring endogenous 

opioid peptides, opium alkaloids, semi-synthetic opioids, and synthetic derivatives with 

structures unrelated to morphine, and can be classified as agonists, partial agonists and 

antagonists (McDonald et al., 2011).   

Ligands that activate opioid receptors and produce maximal response are known 

as agonists, and include fentanyl and morphine (effects at MOR), DADLE and deltorphin 

I (effects at DOR) and β-funaltrexamine (effects at KOR). Some of these exogenous 

ligands also have the potential to be partial agonists, which impart submaximal responses, 

as in the case of morphine (partial effects at DOR) and buprenorphine (partial effects at 

MOR) (Law et al., 2013). On the other hand, ligands that inhibit receptor activation and 

signaling are known as antagonists, such as β-FNA (antagonist at MOR) and naloxone 

and naltrexone (non-selective, classical opioid receptor antagonists), which are often used 

to counteract adverse effects of overdose and treat drug dependence, respectively 

(Brenner et al., 2010; Law et al., 2013). 

Apart from pain treatment, opioids have also been used to treat other conditions 

such as the use of codeine and hydrocodone for cough, loperamide for diarrhea, 

oxymorphone for anxiety due to shortness of breath, and methadone and buprenorphine 

for heroin detoxification and maintenance programs during heroin replacement therapy 

(Felder et al., 1999). 

Opioid Agonists 

Morphine  
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Opioid agonists are among the most effective analgesics for the treatment of pain (Fine & 

Portenoy, 2004; Leavitt, 2009). Morphine, which is considered the prototypical ligand for 

MOR, is used clinically for both acute and chronic pain management (Fine et al., 2004). 

Morphine has two biological metabolites, morphine-6-glucuronide, which binds to MOR 

and contributes to the effects of morphine, and morphine-3-glucuronide, which is 

pharmacologically inactive (Brenner et al., 2010; Fine et al., 2004). Oral administration 

of morphine has a duration of action of 4 h and undergoes first-pass metabolism in the 

liver (Brenner et al., 2010). 

Investigations show that morphine modulates both the innate and adaptive 

immune systems, and the effects on innate immunity may have more severe 

consequences due to immune-depression of cellular functions (Ninkovic & Roy, 2013). 

During innate immune responses, morphine treatment has been shown to delay leukocyte 

migration, decrease proliferative capacity of macrophage progenitor cells, suppress 

macrophage phagocytosis, as well as inhibit oxidative burst activity and chemotaxis 

(Ninkovic et al., 2013; Perez-Castrillon et al., 1992; Roy et al., 2006). Morphine can 

modulate various B and T cell responses including in vivo suppression of primary 

antibody response in multiple strains of mice and reduction in cell viability, proliferation, 

and function in the CD4/CD8 population in vivo (Bussiere et al., 1992; Ninkovic et al., 

2013).    

Fentanyl 

Fentanyl, a synthetic opioid characterized by its high potency and lipid solubility, is 

considered to be about 100× more potent than morphine, clinically, with predominant 

activity at MOR and some affinity at DOR and KOR (Davis, 2011; Nelson & Schwaner, 
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2009; Stanley, 1992). Fentanyl is highly lipophilic, thus it rapidly crosses the BBB by 

diffusion, active transport and efflux by P-glycoprotein (Davis, 2011). Fentanyl is 

metabolized by the cytochrome P450 enzyme, CYP3A4, to norfentanyl, 

hydroxylpropionyl fentanyl and hydroxypropionyl norfentanyl, which are metabolically 

inactive (Davis, 2011). Fentanyl can be administered through several routes for treatment 

of acute pain including intravenous, transmucosal, buccal, epidural, intrathecal or 

inhalational routes (Nelson et al., 2009).  

Other Opioids 

Other opioid agents can be categorized into weak or strong opioid analgesics, and can be 

used to treat a variety of ailments besides pain. Codeine is a weak opioid analgesic with 

weak affinity for MOR, with a potency that is 50% of morphine, and its analgesic 

properties are presumed to come from its metabolism to morphine (Trescot et al., 2008). 

Dihydrocodeine is similar in structure to codeine and its analgesic properties are 

considered to be equipotent to codeine (S. C. Armstrong & Cozza, 2003; Trescot et al., 

2008).   

Along with codeine, meperidine is also a weak opioid agonist at MOR, which 

only has about 10% the effectiveness of morphine (Trescot et al., 2008). Meperidine is 

metabolized by glucuronidation to normeperidine, which has significant neurotoxic 

properties, such as mood effects, tremors, multi-focal myoclonus and seizures, which are 

not reversible by naloxone (Trescot et al., 2008). Another opioid analgesic, hydrocodone, 

is the most commonly used opioid and is indicated for moderate-to-moderately severe 

pain, as well as nonproductive cough (Trescot et al., 2008). Hydrocodone is also 

considered a prodrug, which displays weak binding capacity for MOR (Trescot et al., 
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2008). Oxycodone is a phenanthrene class opioid that has activity at all three classical 

opioid receptors and is metabolized by glucuronidation to noroxycodone, which has less 

than 1% of the analgesic potency of its parent compound; as well as by CYP2D6 to 

oxymorphone, which is an active metabolite with high affinity for MOR (Poyhia et al., 

1992; Trescot et al., 2008).  

Opioid Antagonists 

Opioid antagonists are molecules that block opioid binding and activation of receptors 

and recent evidence suggests antagonists may provide potential benefits, such as 

monotherapy and adjuvants for enhancing analgesic effects of opioid agonists (Leavitt, 

2009). Two such non-selective opioid antagonists, naloxone and naltrexone, are chemical 

analogs of morphine that were first synthesized in the 1960s and are currently used as 

antidotes for opioid overdose, and treatments for opioid addiction and alcoholism, 

respectively (Brenner et al., 2010; Leavitt, 2009). These antagonists interact with the 

classical opioid receptors, mu, delta, and kappa but have greater affinity for MOR 

(Reisine, 1996). 

The first account of an antagonist-like molecule was in 1915, when N-

allylnorcodeine was observed to block respiratory depression mediated by morphine and 

heroin. Soon after, the opioid antagonist, nalorphine was synthesized, which was also a 

partial agonist that produced dsyphoria as a side effect (Gonzalez & Brogden, 1988; 

Leavitt, 2009). Due to adverse effects of nalorphine, treatment was discouraged and 

instead naloxone and naltrexone are favored. Naloxone is more potent and less toxic than 

nalorphine, but has a short duration of action (1-4 h) and limited oral bioavailability (2%) 

due to its high first-pass metabolism, and, therefore, is fifteen times more potent by 
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intravenous/intramuscular injection (Leavitt, 2009). Additionally, naltrexone, is 2× as 

potent as naloxone, has a longer duration of action (up to 24+ h) and 40% oral 

bioavailability (Gonzalez et al., 1988; Reisine, 1996). 

Treatment with low dose antagonists leads to up-regulation of MOR in areas of 

the brain responsible for pain responses, which leads to an increase in the number of 

receptors available for binding to pain-relieving opioids, whether endogenous or 

exogenous (Leavitt, 2009; Mannelli et al., 2006). Opioid receptor blockage by 

antagonists also increases endogenous levels of natural endorphins, but this also depends 

on the extent and length of exposure (Leavitt, 2009; Smith et al., 2007).   

The analgesic effects of naloxone occur at low-doses (up to 2 mg), but not at 

higher doses (7.5-10 mg) (Sloan & Hamann, 2006). Several studies have indicated 

analgesic therapeutic use of naloxone, or in conjunction with other opioid agents. For 

example, significant analgesic effects were produced with naloxone (0.4 or 1.0 mg) 

compared with placebo for postoperative dental pain in a trial of 90 patients. 

Additionally, naloxone plus pentazocine (60 mg, mixed agonist-antagonist opioid) 

produced greater dental pain relief than monotherapy with pentazocine (Levine et al., 

1988). Another proposed application for naloxone is the prevention or relief of opioid-

induced constipation, which can be a side effect of long-term opioid use (Leavitt, 2009).  

Like naloxone, low-dose naltrexone can enhance opioid analgesia with opioid 

drug reduction, and even increase responses to morphine (Crain & Shen, 2001; Gonzalez 

et al., 1988; Leavitt, 2009). In addition to treatment for opioid tolerance and alcoholism, 

clinical trials have been successful with treatment of low-dose naltrexone for Crohn’s 

disease (89% achieved favorable response, 67% achieved remission), irritable bowel 
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syndrome (76% showed symptom relief), and fibromyalgia (greater than 30% reduction 

of symptoms over placebo) (Kariv et al., 2006; Leavitt, 2009; Smith et al., 2007). Studies 

have also shown the benefits of combination therapy with low-dose naltrexone including 

treatment of oxycodone plus naltrexone (Oxytrex) in patients with chronic, painful 

osteoarthritis and chronic back pain and naltrexone combined with intrathecal morphine 

infusions in patients with chronic, refractory nonmalignant pain (Chindalore et al., 2005; 

Hamann & Sloan, 2007; Webster et al., 2006). Additionally, research as early as 1997, 

showed that opioid combination therapy with low-dose naltrexone led to suppression of 

opioid-induced tolerance and dependence in MOR signaling in mice, attenuation of 

chronic morphine-induced gliosis in rats, and suppression of rewarding and adverse 

effects of opioids in rats (Mattioli et al., 2010; Olmstead & Burns, 2005; Shen & Crain, 

1997; Wang et al., 2005). 

Another well-characterized opioid antagonist is β-FNA, which is highly selective 

for MOR. X-ray crystal structures of alpha-funaltrexamine (α-FNA) and β-FNA revealed 

that these two enantiomers have almost identical conformations in the fused ring moiety 

except for ring C, where α-FNA is observed in a twist boat confirmation, while β-FNA 

exist in the chair conformation (Griffin et al., 1986). Both of these isoforms have 

interactions between the receptor and positively charged nitrogen, the phenolic ring, and 

hydroxyl group (Griffin et al., 1986). β-FNA, on the other hand, goes through a second 

recognition step, where the nucleophilic residue in the receptor is positioned to attack the 

fumarate group in β-FNA (Griffin et al., 1986). Thus, unlike α-FNA, β-FNA binds MOR 

in an irreversible manner (Griffin et al., 1986). 
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β-FNA, a fumarate methyl ester derivative of naltrexone, is not used clinically but is 

widely employed as a tool to investigate opioid receptor mechanisms due to its high 

selectivity at MOR and the ability to bind to delta and kappa (acts as agonist) receptors as 

well (Takemori et al., 1981; Takemori & Portoghese, 1985; Ward et al., 1982).  

Opioid Receptor Signaling 

Opioid receptors activate signaling via conformational change in the cytoplasmic domain 

and interaction with G proteins (Kieffer et al., 2009). These intracellular domains interact 

with inhibitory G proteins (Go/Gi), which then dissociate and initiate signal transduction 

that can lead to inhibition of neuronal activity or modification of gene expression; the 

exact pathway depends on the specific ligand (Kieffer et al., 2009).  

Opioid receptor activation in neurons typically results in inhibition of 

neurotransmitter release, although some neurotransmitters are differentially modulated 

based on the receptor-agonist interaction. For instance, mu and delta agonists increase 

dopamine (DA) release by inhibiting the GABAergic interneurons that inhibit DA 

release, while kappa agonists inhibit DA release by acting directly at the presynaptic 

dopaminergic terminals (Corbett et al., 2006; Law et al., 2013). These opioid receptor 

effects, and many others, are mediated by receptor-ligand binding and association with 

G-proteins, which lead to signaling, mediated by pertussis toxin (PTX)-sensitive Gαi and 

Gαo, and possibly, cholera toxin-sensitive Gαs (Connor & Christie, 1999; Jordan et al., 

1998). 

Receptor signaling is controlled by the ability of G proteins to bind and hydrolyze 

guanosine triphosphate (GTP) to guanine diphosphate (GDP) (Snyder et al., 2003). 

During basal conditions, the heterotrimeric G-protein complex αβγ associates with GDP. 
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Ligand binding to the receptor induces a conformational change, which allows GDP 

dissociation from and GTP binding to the alpha subunit leading to dissociation of the βγ 

subunit (McDonald et al., 2011; Y. Wang et al., 2013). This cascade of events allows 

both the α and βγ subunits to associate with intracellular effector molecules thereby 

affecting change in downstream signaling pathways. In the case of opioid Gαi/Gαo 

signaling, these effects include closing of N/P-type voltage-sensitive Ca2+ channels, 

opening of inwardly rectifying K+ channels and inhibition of cyclic adenosine 

monophosphate (cAMP) production through inhibition of adenylyl cyclase (McDonald et 

al., 2011; Y. Wang et al., 2013).   

Opioid Receptor Signaling Regulation: Internalization and Down-regulation  

Opioid receptor signaling is regulated through receptor desensitization, internalization, 

and degradation. Regulatory steps include G protein-coupled receptor kinase (GRK)-

mediated receptor phosphorylation, β-arrestin recruitment, and receptor signaling 

disruption via G-protein coupled effectors (Kovoor et al., 1998; Nagi & Pineyro, 2011; 

Qiu et al., 2007; X. Zhang et al., 2005b). The propensity for opioid receptor 

desensitization, which is the progressive loss of receptor function under continued 

exposure to an agonist, and internalization, results from activation by specific agonists 

(Hong et al., 2009; Liu & Anand, 2001). 

Mu and delta activated receptors at the plasma membrane are phosphorylated by 

GPCR kinases (GRKs), and other protein kinases such as protein kinases A and C (PKA 

& PKC), mitogen-associated protein kinases (MAPKs) and Ca2+/calmodulin-dependent 

protein kinase II (CaMKII), which facilitate arrestin binding and prevent receptor 

coupling to G proteins (Bailey & Connor, 2005; Liu et al., 2001). Receptor-arrestin 
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complexes are engulfed in clathrin-coated pits and undergo dynamin-mediated 

internalization into early endosomes (Corbett et al., 2006). One factor responsible for 

receptor sorting to lysosomes is receptor ubiquitination, which both MOR and DOR 

undergo (Marchese et al., 2008; Nagi et al., 2011). In addition, trafficking to late 

endosomes/lysosomes is dependent upon association with sorting proteins of the G 

protein-coupled receptor-associated sorting protein (GASP) family, which bind with high 

affinity to delta but not mu opioid receptors, which may explain the low (20%) frequency 

of MOR lysosomal degradation (Heydorn et al., 2004; Nagi et al., 2011; Whistler et al., 

2002). Due to high affinity association with GASP family members, delta receptors are 

trafficked to lysosomes for receptor degradation and about 80% of mu opioid receptors 

translocate to early endosomes for dephosphorylation and recycling back to the plasma 

membrane (resensitization); Kappa opioid receptors do not undergo agonist-mediated 

internalization (Bailey et al., 2005; Corbett et al., 2006). 

Opioid Tolerance, Dependence, and Addiction 

The mesolimbic reward system is activated by opioids. Once opioids bind to MOR in the 

brain, cells located in the ventral tegmental area (VTA) release DA that is then 

recognized in the nucleus accumbens and produces a sensitization of pleasure (Kosten & 

George, 2002). For this reason, it is important to be cautious when using opioids because 

they may lead to tolerance and addiction (Compton, 2008; DuPen et al., 2007; C. Stein et 

al., 2003). Morphine-induced receptor activation does not lead to receptor internalization, 

which may be related to the increased potential for producing opioid tolerance (Liu et al., 

2001). The inability of opioid receptors to uncouple from G proteins during long-

exposure of morphine treatment may be another explanation for clinical manifestations of 
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opioid tolerance and dependence (Liu et al., 2001). Phosphorylation of opioid receptors is 

mediated by different kinases depending on whether treatment is chronic or acute. PKA-

mediated phosphorylation causes uncoupling of opioid receptors from G proteins during 

chronic therapy, while PKC-mediated phosphorylation occurs during acute opioid 

treatment (Liu et al., 2001). 

In addition to receptor phosphorylation by protein kinases, changes in signal 

transduction mechanisms also are implicated in clinical manifestations of opioid 

tolerance and dependence. Up-regulation or super-sensitization of the cAMP signal 

transduction system, including adenylate cyclase (AC), PKA, CaMKII, and MAPK 

cascades in opioid-sensitive neurons contribute to clinical manifestations of opioid 

tolerance and dependence (Feng et al., 2012; Liu et al., 2001; Suresh & Anand, 1998).  

Opioid abuse leads to addiction, which affects brain function and homeostasis 

(Feng et al., 2012). Addiction often results in several neurological impairments and 

behavioral patterns including deficits in cognition, motivation, emotional instability, 

depression, impulsiveness, movement disorders, compulsive drug-seeking, persistent 

abuse of substances regardless of emotional detachment from loved ones, or deterioration 

of physical health and high probability of relapse even after prolonged drug-free periods 

(Cunha-Oliveira et al., 2008; Feng et al., 2012; Ivanov et al., 2006). Chronic morphine 

exposure in vivo up-regulates cAMP formation and PKA activity in specific brain regions 

that mediate drug addiction, for example, intracerebro-ventricular or LC administration of 

a selective and non-selective PKA inhibitor attenuated the behavioral signs of opioid 

withdrawal (Liu et al., 2001; Maldonado et al., 1995; Self & Nestler, 1995). Drugs of 
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abuse also directly or indirectly affect neurotransmitters, particularly dopaminergic and 

glutaminergic neurons (Cunha-Oliveira et al., 2008; Feng et al., 2012).   

Opioid Receptors and Immune Function 

Opioid receptor activation has been shown to modulate immune responses and functions 

by suppressing humoral and cell-mediated responses including inhibition of antimicrobial 

resistance, antibody production, cytokine expression, natural killer activity, monocyte-

mediated phagocytosis and neutrophil and monocyte chemotaxis (Feng et al., 2012; 

Ordaz-Sanchez et al., 2003). Additionally, acute and chronic administration of opioids 

has been associated with increased susceptibility of animals to bacterial and viral 

infections with decreased survival in tumor-bearing animals (Vallejo et al., 2004). 

Immune suppression by opioids may also predispose individuals to opportunistic 

infections, such as bacterial pneumonia, tuberculosis, hepatitis, CNS infections, 

abscesses, endocarditis and AIDS (Feng et al., 2012; Quaglio et al., 2003).   

The effects by which central opioid receptors modulate immune function can be 

attributed to central and peripheral mechanisms, involving both the hypothalamic-

pituitary-adrenal (HPA) axis and the autonomic nervous system (Vallejo et al., 2004). 

Acute administration of opioids alters immune function through the sympathetic nervous 

system, while chronic administration largely affects the HPA axis (Vallejo et al., 2004). 

Alternatively, immune cells expressed in the periphery, under the influence of cytokines, 

can also secrete endogenous opioids and modulate analgesia and inflammation at the site 

of injury (Vallejo et al., 2004).  

Several studies have demonstrated opioid-mediated immune suppression 

including morphine-induced down-regulation of MCP-1 and MIP-1β, and increased 
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expression of specific receptors, CCR2b, CCR3 and CCR5 in normal human astrocytes, 

which was reversed by naloxone, and DOR agonist-mediated monocyte adhesion (Feng 

et al., 2012; Mahajan et al., 2005; Pello et al., 2006). On the other hand, it has been 

suggested that KOR-mediated activation promotes anti-inflammatory responses, such as 

down-regulation of cytokine, chemokine and chemokine receptor expression (Feng et al., 

2012; Finley et al., 2008). 

The presence of opioid receptors on immune cells may contribute to crosstalk 

with other immune receptors. Opioid modulation of immune function is mediated through 

direct interaction with opioid receptors expressed in immune cells, as in studies showing 

TNFα inhibition in naltrexone-treated MOR knockout mice and differential morphine-

modulation in LPS-induced IL-6 and TNFα expression in macrophages (Feng et al., 

2012; Greeneltch et al., 2004; Roy et al., 1998; Roy et al., 2006).   

Opioids can modulate immune function, whether anti-inflammatory or pro-

inflammatory, in cells of the CNS, such as microglia, neurons and astrocytes, through 

opioid interaction at non-opioid sites. Studies from the Hutchinson/Watkins group 

demonstrated that opioid agonists, in particular morphine, induced neuroinflammation via 

an extracellular TLR4 event, and not via the classic opioid receptors (Hutchinson et al., 

2010). For example, co-immunoprecipitation studies revealed that morphine binds to the 

accessory molecule, MD2, thereby inducing TLR4 oligomerization in HekBlue-hTLR4 

and Ba/F3 cells (X. Wang et al., 2012b). Morphine also induced IL-1β, TLR4 and MD2 

mRNA expression in CNS endothelial cells, and an increase in IL-1β in BV-2 murine 

microglial cells; this induction was reduced with administration of a TLR4 or MD2 small 

molecule inhibitor (X. Wang et al., 2012b). These studies suggest that morphine and 
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possibly other opioid agonists have the potential to cause neuroinflammation through a 

TLR4-dependent mechanism. In contrast, other studies have demonstrated the anti-

inflammatory potential that opioid agonists produce in immune-competent cells of the 

CNS. Morphine (IC50= 1 fM) and DAMGO (IC50=1 nM) potently inhibited directed 

migration of human fetal microglial cells to complement factor 5a, suggesting an anti-

inflammatory role of hMOR within the brain (Chao et al., 1997). In addition, morphine 

exerted potent anti-inflammatory and neuroprotective effects through inhibition of LPS- 

and 1-mehtyl-4-phenylpyridinium (MPP+)-induced microglial activation in rat primary 

mesencephalic neuron-glia cultures (Qian et al., 2007). Others demonstrated morphine-

mediated suppression of LPS-induced IL-6, TNFα and NF-κB, which was not reversible 

with naloxone, suggesting the involvement of a non-classical opioid receptor (Ninkovic 

et al., 2013; Roy et al., 1998).   

More recently, studies in the Davis/Stevens lab using NHA and HekBlue-hTLR4 

cells have shown that IFN-γ + HIV-1 Tat-induced CXCL10 expression was inhibited by 

β-FNA, and, LPS-induced NF-κB activation was inhibited by opioid agonists, morphine 

and fentanyl, but these inhibitory effects were not reversed by opioid antagonists, 

naltrexone and β-FNA, respectively (R. L. Davis et al., 2013; Stevens et al., 2013). LPS-

induced TLR4 activity was decreased in response to increasing doses of morphine and 

fentanyl (Stevens et al., 2013). Taken together, these studies indicate the potential for 

opioid agents, both agonists and antagonists, to impart anti-inflammatory properties 

through down-regulation of immune functions. 

Expression of MOR in microglia  
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Opioids can cross the BBB, and in doing so are construed as foreign to immune receptors 

in the brain mainly expressed on microglia (Batchell et al. 2015). Because opioids can 

induce immune-modulatory effects, it is almost certain that opioid receptors are 

expressed across many cell types, including those in the CNS. Research shows that MOR 

is expressed in many cell types, but substantive evidence showing the expression of MOR 

in microglial cells is controversial.  In this next section we look at the literature to 

provide in vivo, ex vivo, and in vitro evidence regarding MOR expression in microglia. 

One such study prepared microglial cells from 16-22 week old human fetal brain tissue 

and found constitutive MOR gene and protein expression in untreated cells using RT-

PCR, sequence analysis, and immunocytochemical staining (Chao et al., 1997). Several 

other studies have validated MOR gene and protein expression in primary microglia from 

Balb/c mice and Sprague Dawley rats, utilizing flow cytometry, immunofluorescence, 

and siRNA knockdown analyses (El-Hage et al., 2013; Gessi et al., 2016; Horvath et al., 

2008). 

PURPOSE 

The effect of opioids on inflammation and neuroinflammation still remains debatable. 

With these controversial implications at the forefront, we chose to investigate the opioid-

mediated effects on LPS-induced TLR4 neuroinflammatory signaling using an 

immortalized microglial cell line, CHME-5. Studies have indicated that opioid agents 

mediate immunomodulatory effects, specifically, on TLR4 inflammatory signaling in the 

CNS. Fentanyl, a potent MOR agonist, is used to treat acute and chronic pain associated 

with cancer and other neurodegenerative diseases. There is evidence that microglia, along 

with other cells of the CNS, differentially express TLRs and opioid receptors, but the 
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precise mechanisms on how fentanyl and morphine modulate TLR signaling is not well 

understood. CHME-5 cells were treated with Escherichia coli LPS to simulate a 

neuroinflammatory environment through the activation of TLR4, and fentanyl citrate, 

morphine sulfate, and naltrexone hydrochloride were used as pharmacological agents to 

study immune modulation of the TLR4 MyD88-dependent signal transduction pathway. 

Defining the effects of fentanyl and morphine on TLR4 signaling mechanisms in 

microglial cells has the potential to advance therapeutic strategies for neuroinflammatory 

processes involved in injury, chronic diseases (AD, PD and MS) or cancer-associated 

pain. 

AIM II 

This aim was to determine the effects of fentanyl (fentanyl citrate) and morphine 

(morphine sulfate) on LPS-induced TLR4 inflammatory signaling and determine the 

extent to which MOR is involved, using the opioid antagonist, naltrexone hydrochloride. 

HYPOTHESIS (H1) 

Previous studies from the Davis/Stevens laboratory demonstrated the anti-inflammatory 

properties of both fentanyl and morphine in several in vitro models. Therefore, I 

hypothesized that fentanyl and morphine down-regulate LPS-induced TLR4 

neuroinflammatory signaling in CHME-5 microglial cells. 

NULL (HO) HYPOTHESIS 

Opioid agonists fentanyl and morphine have no effect on LPS-induced TLR4 

neuroinflammatory signaling in CHME-5 microglial cells.  
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METHODOLOGY 

CHME-5 

CHME-5 GM consisted of DMEM with 4.5 g/L glucose and sodium pyruvate without L-

glutamine, FBS, 200 mM L-glutamine, penicillin-streptomycin (100 U/ml potassium 

penicillin, 100 µg/ml streptomycin sulfate, and 250 µg/ml amphotericin B. CHME-5 cells 

were maintained in GM at 37oC, with 5% CO2. Growth media was replaced every 48 h 

and for experimental assays, GM was replaced with serum free media (SFM), for no less 

than 16 hours at 37oC.   

 

LPS Treatment 

Lipopolysaccharide from Escherichia coli O55:B5 (L2880) was purified by phenol 

extraction (Sigma-Aldrich, Saint Louis, MO). The lyophilized powder was reconstituted 

in HyPure cell culture grade water and sterile filtered to a stock concentration of 1.2 

mg/ml.   

Opioid Compounds  

Fentanyl citrate salt (Sigma, #F-3886), morphine sulfate (Sigma, #M8777), and 

naltrexone HCl (NIH-National Institute on Drug Abuse) were reconstituted in nuclease-

free water and sterile filtered to a stock concentration of 10 mM. Fentanyl citrate and 

morphine sulfate were used at a final concentration range (1-100 µM) and naltrexone HCl 

at final concentrations of 10, 30 and 100 µM. CHME-5 cells were stimulated with LPS (1 
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µg/ml) and fentanyl citrate (1-100 µM) or morphine sulfate (1-100 µM) and incubated at 

37oC for 10min-18h. For naltrexone studies, naltrexone (10, 30, and 100 µM) was added 

to CHME-5 cells after LPS and opioid agonists and stimulated for 10 min at 37oC. 

 

RNA Extraction with Trizol 

Following cell stimulation, cells were washed three times with ice-cold PBS, incubated in 

Trizol (1 ml/100 mm dish) at 25oC for 5 min, and then lysates were collected in nuclease-

free tubes. Chloroform (0.2 ml) was added to lysates followed by manual shaking of 

tubes for 15 sec. Lysates were then incubated at 25oC for 3 min, centrifuged at 12,000 × g 

for 15 min (4oC) and then the upper aqueous phase was collected. Isopropanol (0.5 ml) 

was added to the aqueous phase, followed by incubation at 25oC for 10 min, and 

centrifuged at 12,000 × g for 10 min (4oC). Next, the supernatant was removed and RNA 

pellets washed with ethanol, and centrifuged at 7,500 × g for 2 min (4oC). This ethanol 

wash step was repeated twice. RNA pellets were dried at 25oC for 15 min, followed by 

addition of 35 µl nuclease-free water. RNA samples were incubated in a 65oC water bath 

for 10 min and then stored at -80oC. To obtain RNA concentrations, RNA was thawed on 

ice and ng/ml determined with a Nanodrop Spectrophotometer 1000 (ThermoScientific), 

and validated with the 260/280 and 260/230 ratios greater than 1.80.  

 

RNA Integrity with NorthernMax-Gly Kit 

RNA gels were prepared with NorthernMax-Gly Reagents to assess RNA integrity. A 1% 

agarose gel was prepared with NorthernMax-Gly buffer. To prepare samples, 3 µl RNA, 

3 µl nuclease-free water and 6 µl glyoxal sample loading dye (equal parts) were 
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incubated at 50oC for 30 min. Samples were loaded and electrophoresed at 100 V for 45 

min. RNA gels were stained with SYBR Safe (3 µl/50 ml in NorthernMax-Gly buffer) 

and rocked on a Multimixer for 30 min. To visualize the 28S and 18S bands, RNA gels 

were imaged on Typhoon Scanner 9410 at 450 V.   

 

Reverse Transcription 

First 10× ezDNase buffer and ezDNase enzyme were added to 2 µg RNA, and nuclease-

free water was added up to 10 µl total volume. Samples were mixed gently and incubated 

at 37oC for 2 min. Samples were placed on ice and Superscript master mix (4 µl) or “no 

RT” control (4 µl) was added to each sample and water added up to 20 µl total volume. 

Samples were gently mixed and incubated at 25oC for 10 min, 50oC for 10 min, and 85oC 

for 5 min. Samples were diluted with nuclease-free water up to 100 µl volume, for a final 

concentration of 20 ng/ml.  

 

Reverse Transcription-Polymerase Chain Reaction  

cDNA (100 ng/ml) was used to perform reverse-transcription polymerase chain reaction 

(RT-PCR) for genes of interests. The primer for MOR was designed using rat MOR 

mRNA from the NIH NCBI website and ordered from IDT Technologies. RT-PCR mix 

included 2× PowerUp SYBR Green, 0.5 µM forward primer, 0.5 µM reverse primer, and 

nuclease-free water up to 15 µl. Thermocycler settings were as follows: 50oC-2 min, 

95oC-2 min, (95oC-15 sec, 60o-1 min for 40 cycles), 95oC-15 sec, 60oC-1 min, 95oC-15 

sec. Primer sequences were as follows: MOR-Forward: 5’-CTC AGT TAC AGC CTA 

CCT AGT CCG C -3’, 60.2oC; Reverse: 5’-CCA TCA ACG TGG GAC AAG TTG AGC 
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-3’, 60.4oC and β-actin-Forward: 5’-GAA GGA TTC CTA TGT GGG CGA CGA-3’, 

60.5oC; Reverse: 5’-GAG CCA CAC GCA GCT CAT TGT AG-3’, 60.3oC. 

 

Protein extraction 

For WCLs, cells were washed with ice-cold PBS and then 400 µl of CBL was added to 

each 100-mm dish. Following a 5 min incubation at 4oC, lysates were collected and 

centrifuged at 14,000 × g (4oC) for 10 min. The supernatant was collected and stored at -

20oC. For cytoplasmic and nuclear extracts, cells were washed with and collected in 1 ml 

ice-cold PBS. Cells were centrifuged at 129 × g (4oC) for 5 min. The supernatant was 

aspirated and combined with 400 µl LB1 and vortexed vigorously for 10 sec, followed by 

incubation on ice for 15 min. Next, 100 µl 5.4% Igepal was added, samples were 

vortexed for 10 sec, then centrifuged at 14,000 × g (4oC) for 5 min. The supernatant was 

collected and stored at -20oC; then 100 µl LB2 was added to the remaining pellet. The 

samples were vortexed for 15 min at 4oC and then centrifuged at 14,000 × g (4oC) for 22 

min. The supernatant was collected and stored at -20oC.   

 

Protein assay 

The BCA protein assay was used to determine protein concentrations for WCL, and, 

cytoplasmic and nuclear extracts. WCLs and cytoplasmic/nuclear extracts were measured 

using BCA. First, a standard curve was prepared from lysis buffer, 1 mg/ml BSA, and 

water to reflect the following concentrations: 0, 2, 4, 6, 8, 10, 12 µg/ml. Standards and 

samples (10 µl), in duplicate, were pipetted into a 96-well plate. The working solution 
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containing Reagent A + Reagent B (200 µl) was added to each well, incubated at 37oC 

for 1 h, and absorbance read at 570 nm.  

 

Immunoblot analysis 

Antibodies: Several antibodies were obtained from Santa Cruz including phospho-IκBα-

Ser32/36 (sc-847), total IκBα (sc-101713), TLR4 (sc-293072), and β-tubulin (sc-9104). 

Antibodies purchased from Cell Signaling included phospho-p38, p38, MyD88 (4283S), 

anti-rabbit IgG (7054S), and anti-mouse IgG (7056S). Protein lysates were subjected to 

SDS-page electrophoresis and immunoblot analysis. Acrylamide gels (10-well) were 

made ranging from 7-13% (depending on the protein being measured) and placed in 4oC, 

overnight. Protein extracts (50 µg) were prepared using loading dye, 0.05% bromophenol 

blue, and 50 µl/ml β-mercaptoethanol). Samples were boiled for 10 min and brought to a 

standing temperature of 37oC. Samples were loaded into gels with running buffer and 

electrophoresed at 100 V for 15 min, and then increased to 125 V for 145 min for an 

overall running time of 2 h. Proteins were transferred onto PVDF membranes in transfer 

buffer and electrophoresed at 100 V for 90 min. After transfer, PVDF membranes were 

rinsed and blocked in 5% BSA-TBST for 2 h at 25oC with rocking. Primary antibodies 

(1:500-1:2000) diluted in 5% BSA-TBST, were added to membranes and rocked 

overnight at 4oC. The following day, membranes were washed three times with TBST for 

5 min. AP-linked secondary antibodies (1:1000-1:5000) diluted in 5% BSA-TBST were 

added to membranes, which were rocked for 2 h at 25oC and then washed three times 

with TBST for 20 min. ECF fluorescent substrate was used to image blots using the 
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Typhoon Scanner 9410. Image J software was used to obtain the mean grey intensity for 

the bands of interest. Protein expression was normalized to β-tubulin. 

 

MTT assay 

MTT assays were performed to determine reagent cytotoxicity. CHME-5 cells were 

plated in 12-well plates at a density of 40,000 cells/well.  Cells were incubated overnight 

with SFM. After corresponding treatments, fresh SFM (1 ml) was added to each well 

followed by addition of 111 µl MTT. Cultures were then incubated at 37oC for 45 min. 

Media was aspirated from each well and 1.5 ml DMSO added for 30 min, rocking at 

25oC. Absorbance was read at 492 nm with the Synergy 2 plate reader.   

 

NF-κB p65 binding assay 

CHME-5 nuclear extracts were used to analyze NF-κB p65 binding activity using the NF-

κB p65 transcription factor kit. Initially, binding buffer (50 µl) was added to each well, 

which contained the NF-κB consensus sequence. Then, 10 µl of nuclear extracts or 

positive control, TNFα-activated HeLa cells, were added to duplicate wells. Extracts 

were incubated for 1 h with mild agitation. Wells were washed three times with 200 µl of 

wash buffer; 100 µl of primary antibody (1:1000) was then added to each well, and 

incubated for 1 h at 25oC, without agitation. Wells were washed three times with 200 µl 

of wash buffer, 100 µl of secondary antibody (1:10,000) was then added, and incubated 

for 1 h at 25oC, without agitation. Wells were washed four times with 200 µl of wash 

buffer, and 100 µl of chemiluminescence substrate added to each well. 

Chemiluminescence was read immediately with a Synergy 2 plate reader. Binding 
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activity was quantified relative to protein concentrations obtained with BCA protein 

assay.  

 

Statistical Analysis 

Image J Software was used to obtain the mean grey intensity of all immunoblots and the 

mean was calculated for each time point. GraphPad Prism 7.0 was used for 

transformation, quantification, and graphing of all data.  For statistical analysis of mRNA 

and protein expression, binding activity, cell viability, and immunofluorescence, an 

ANOVA with Dunnett’s multiple comparison tests compared to LPS-treated cells were 

used, unless otherwise stated in the results section. Kruskal-Wallis and Dunn’s multiple 

comparison’s non-parametric tests were used for data that failed the Bartlett’s test and 

two Y=Log (Y) transformations. Significance was determined at p<0.05. 
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RESULTS 

LPS-induced mu opioid receptor (MOR) gene expression in CHME-5 cells.  

MOR gene expression was examined in CHME-5 cells. Stimulation with LPS 

significantly increased MOR gene expression at 3 (p<0.01) and 6 (p<0.05) h compared to 

unstimulated cells, as indicated by Kruskal-Wallis and Dunn’s multiple comparison tests 

(Figure 1A). As an internal control, RNA integrity was verified by visualizing the 28S 

and 18S ribosomal RNA (rRNA) bands (Figure 1B).   

 

Fentanyl-mediated effect on LPS-induced TLR4 expression  

TLR4 protein expression was analyzed in whole cell lysates after LPS and fentanyl 

treatment for 3, 10, and 30 min (Figure 2A, 2C, 2E). TLR4 expression remained at basal 

levels at 3 (p=0.81), 10 (p=0.54), and 30 (p=0.14) min, as indicated by ANOVA (Figure 

2B, 2D, 2F).  

 

Fentanyl-mediated effect on LPS-induced MyD88 expression  

MyD88 protein expression was analyzed in whole cell lysates after LPS and fentanyl 

treatment for 3, 10, and 30 min (Figure 3A, 3C, 3E). MyD88 expression remained at 

basal levels at 3 (p=0.40), 10 (p=0.30), and 30 (p=0.21) minutes, as indicated by 

ANOVA (Figure 3B, 3D, 3F).  
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Fentanyl-mediated effect on LPS-induced IκBα activation  

Phosphorylation of IκBα was used as a measure of IκBα activation in cytoplasmic lysates 

(Figure 4A). ANOVA and Dunnett’s multiple comparison tests revealed that fentanyl 

significantly decreased LPS-induced IκBα activation at 100 µM, p<0.001, as compared to 

cells treated with LPS alone (Figure 4B).  

 

Fentanyl-mediated effect on LPS-induced NF-κB p65 binding activity  

 The fentanyl-mediated effect on NF-κB p65 binding activity was assessed at 10 min 

using CHME-5 nuclear lysates. ANOVA and Dunnett’s multiple comparison tests 

revealed significant down-regulation of LPS-induced NF-κB p65 binding activity at 10 

(p<0.05) and 100 µM (p<0.05) (Figure 5A). MTT assay was performed to ensure the 

viability of cells after co-treatment with LPS and fentanyl citrate. ANOVA revealed no 

significant differences between control and LPS/fentanyl co-treated cells, p=0.54 (Figure 

5B).   

 

Effect of naltrexone on fentanyl-mediated down-regulation of LPS-induced NF-κB 

p65 binding activity 

 Nuclear NF-κB p65 binding activity was analyzed after treatment with LPS, fentanyl, 

and naltrexone. ANOVA and Tukey’s multiple comparison tests revealed a 1.0-fold 

decrease in response to LPS and fentanyl co-treatment compared to cells treated with 

LPS alone (p<0.01), and no difference with naltrexone treatment compared to cells co-

treated with LPS and fentanyl (10 µM: p=1.0; 30 µM: p=0.90; 100 µM; p=0.30) (Figure 

6A). MTT assay was performed to ensure the viability of cells after co-treatment with 
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LPS, fentanyl, and naltrexone. ANOVA revealed no significant difference between 

control and LPS/fentanyl/naltrexone co-treated cells, p=0.94 (Figure 6B).   

 

Morphine-mediated effect on LPS-induced TLR4 expression 

TLR4 protein expression was analyzed in whole cell lysates after LPS and morphine 

treatment for 3, 10, and 30 min (Figure 7A, 7C, 7E). There was no change in TLR4 

expression at 3 (p=0.32), 10 (p=0.50) or 30 (p=0.60) min as compared to cells treated 

with LPS alone (Figure 7B, 7D, 7F).  

 

Morphine-mediated effect on LPS-induced MyD88 expression 

MyD88 protein expression was analyzed in whole cell lysates after LPS and morphine 

treatment for 3, 10, and 30 min (Figure 8A, 8C, 8E). Kruskal-Wallis revealed no change 

in MyD88 expression at 3 (p=1.0), 10 (p=0.53), and 30 (p=1.0) min, as compared to cells 

treated with LPS alone (Figure 8B, 8D, 8F).  

 

Morphine-mediated effect on LPS-induced IκBα activation  

Phosphorylation of IκBα was used as a measure of IκBα activation in cytoplasmic lysates 

(Figure 9A). ANOVA and Dunnett’s multiple comparison tests revealed morphine 

significantly decreased LPS-induced IκBα activation at 1 µM (p<0.01), 3 µM (p<0.01), 

10 µM (p<0.01), 30 µM (p<0.001), 100 µM (p<0.01), as compared to cells treated with 

LPS alone (Figure 9B).  

 

Morphine-mediated effect on LPS-induced NF-κB p65 binding activity  
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The morphine-mediated effect on NF-κB p65 binding activity was assessed at 10 min 

using CHME-5 nuclear lysates. ANOVA revealed no difference in LPS-induced NF-κB 

p65 binding activity in response to morphine treatment, p=0.10 (Figure 10A). MTT 

assay was performed to ensure the viability of cells after co-treatment with LPS and 

morphine. ANOVA revealed no significant difference between treatment groups and 

untreated cells, p=0.70 (Figure 10B).   
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FIGURES 

 
 
 
Figure 1. LPS-induced mu opioid receptor expression in CHME-5 cells. 

CHME-5 cells were stimulated with (1 µg/ml) and incubated at 37oC for 3, 6, and 18 h. A. MOR 

mRNA expression was analyzed using RT-PCR. Kruskal-Wallis and Dunn’s multiple comparison 

tests revealed a significant increase at 3 and 6 h compared to unstimulated cells. Image is 

representative of three independent experiments (n=3) for each treatment group. Bars for all 

experiments are presented as mean ± SEM. 

** p<0.01, * p<0.05 vs. unstimulated cells 
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Figure 2. Fentanyl does not affect LPS-induced TLR4 expression in CHME-5 cells 

CHME-5 cells were stimulated with or without LPS and/or fentanyl for 3, 10, and 30 min. Whole 

cell lysates were subjected to SDS-PAGE and immunoblotted with TLR4 (1:1000) and β-tubulin 

(1:1000) antibodies (A, C, E). ANOVA revealed no difference in TLR4 expression at B. 3 

(p=0.81), D. 10 (p=0.54), or F. 30 (p=0.14) min. Three independent experiments were performed 

in duplicate; n=3 for each treatment group. Bars for all experiments are presented as mean ± 

SEM.   
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Figure 3. Fentanyl does not affect LPS-induced MyD88 expression in CHME-5 cells 

CHME-5 cells were stimulated with or without LPS and/or fentanyl for 3, 10, and 30 min. Whole 

cell lysates were subjected to SDS-PAGE and immunoblotted with MyD88 (1:1000) and β-

tubulin (1:1000) antibodies (A, C, E). ANOVA revealed no difference in MyD88 expression at B. 

3 (p=0.40), D. 10 (p=0.30), or F. 30 (p=0.21) min. Three independent experiments were 

performed in duplicate; n=3 for each treatment group. Bars for all experiments are presented as 

mean ± SEM.   
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Figure 4. Fentanyl down-regulates LPS-induced IκBα activation in CHME-5 cells 

CHME-5 cells were stimulated with LPS and fentanyl for 10 min. A. Cytoplasmic lysates were 

subjected to SDS-PAGE and immunonlotted with p-IκBα (1:1000), IκBα (1:1000), and β-tubulin 

(1:1000) antibodies. B. phospho-IκBα was quantified with IκBα and ANOVA and Dunnett’s 

multiple comparison tests revealed a significant decrease with fentanyl at 100 µM (p<0.001). 

Images are representative of three independent experiments (n=3) for each treatment group. Bars 

for all experiments are presented as mean ± SEM.  

*** p<0.001, * p<0.05 vs. cells treated with LPS alone 
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Figure 5. Fentanyl down-regulates LPS-induced NF-κB activity in CHME-5 cells 

CHME-5 cells were stimulated with LPS and fentanyl for 10min. A. Nuclear extracts were 

analyzed for NF-κB p65 binding activity. ANOVA and Dunnett’s multiple comparison tests 

revealed significant decreases in NF-κB p65 binding activity with fentanyl at 10 and 100 µM, as 

compared to cells treated with LPS alone. Image is representative of six independent experiments 

(n=6) for each treatment group. B. Following cell stimulation, MTT cell viability was performed 

and absorbance measured at 492 nm. ANOVA revealed no significant difference between control 

and LPS/fentanyl co-treated cells, p=0.54. Three experiments were performed in duplicate; n=3 

for each treatment group.  Bars for all experiments are presented as mean ± SEM.  

*p<0.05 vs. cells treated with LPS alone 
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Figure 6. Naltrexone has no effect on fentanyl-mediated effect in CHME-5 cells 

CHME-5 cells were stimulated with LPS, fentanyl, and naltrexone for 10min. A. Nuclear extracts 

were analyzed for NF-κB p65 binding activity. ANOVA with Tukey’s multiple comparison tests 

revealed a 1-fold decrease in LPS/fentanyl co-treated cells and no difference in cells co-treated 

with naltrexone, as compared to LPS/fentanyl co-treated cells. Image is representative of four 

independent experiments (n=4) for each treatment group. B. MTT cell viability absorbance was 

measured at 492 nm. ANOVA revealed no significant difference between control and 

LPS/fentanyl/naltrexone co-treated cells, p=0.94. Three experiments were performed in duplicate 

(n=3) for each treatment group. Bars for all experiments are presented as mean ± SEM. 

** p<0.01 vs. cells treated with LPS alone 
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Figure 7. Morphine does not affect LPS-induced TLR4 expression in CHME-5 cells 

CHME-5 cells were stimulated with or without LPS and/or morphine for 3, 10, and 30 min. 

Whole cell lysates were subjected to SDS-PAGE and immunoblotted with TLR4 (1:1000) and β-

tubulin (1:1000) antibodies (A, C, E). ANOVA revealed no difference in TLR4 expression with 

LPS/morphine co-treatement at B. 3 (p=0.32), D. 10 (p=0.50), nor F. 30 (p=0.60) min, as to cell 

treated with LPS alone. Three independent experiments were performed in duplicate; n=3 for 

each treatment group. Bars for all experiments are presented as mean ± SEM.   
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Figure 8. Morphine does not affect LPS-induced MyD88 expression in CHME-5 cells 

CHME-5 cells were stimulated with or without LPS and morphine for 3, 10, and 30 min. Whole 

cell lysates were subjected to SDS-PAGE and immunoblotted with MyD88 (1:1000) and β-

tubulin (1:1000) antibodies (A, C, E). A. Kruskal-Wallis revealed no difference in MyD88 

expression at B. 3 (p=0.80), D. 10 min (p=0.50), nor F. 30 min (p=0.35). Three independent 

experiments were performed in duplicate; n=3 for each treatment group. Bars for all experiments 

are presented as mean ± SEM.   
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Figure 9. Morphine decreases LPS-induced IκBα activation in CHME-5 cells 

CHME-5 cells were stimulated with or without LPS and morphine for 10 min. A. Cytoplasmic 

lysates were subjected to SDS-PAGE and immunonlotted with p-IκBα (1:1000), IκBα (1:1000), 

and β-tubulin (1:1000) antibodies. B. phospho-IκBα was quantified with IκBα and ANOVA and 

Dunnett’s multiple comparison tests revealed a significant decrease in LPS-induced IκBα 

activation with morphine at 1-100 µM. Images are representative of four independent 

experiments (n=4) for each treatment group. Bars for all experiments are presented as mean ± 

SEM.  

**** p<0.0001, ** p<0.01, * p<0.05 vs. cells treated with LPS alone 
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Figure 10. Morphine does not affect LPS-induced NF-κB p65 activation in CHME-5 cells 

CHME-5 cells were stimulated with LPS and morphine for 10 min. A. Nuclear extracts were used 

to analyze NF-κB p65 binding activity. ANOVA revealed no difference in NF-κB p65 binding 

activity (p=1.00). Image is representative of six independent experiments (n=6) for each 

treatment group. B. Following stimulation, MTT cell viability was performed and absorbance was 

measured at 492 nm. ANOVA revealed no difference between control and LPS/morphine co-

treated cells, p=0.70. Three independent experiments were performed in duplicate; n=3 for each 

treatment group. Bars for all experiments are presented as mean ± SEM. 
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DISCUSSION 

Opioids remain the gold standard for analgesia of postoperative and chronic pain, 

including pain associated with cancer. More research indicates the use of opioids to treat 

pain during neurodegeneration including MS, AD and PD, which display inflammatory 

components (Broen et al., 2012; de Tommaso et al., 2016). It is important therefore to 

understand the exact mechanisms occurring during treatment with opioid agonists and 

antagonists to determine the impact of opioids on inflammation. In the present study, we 

show the anti-inflammatory potential of fentanyl, and to a lesser extent morphine, on 

LPS-induced TLR4 neuroinflammatory signaling in microglia. 

  Microglia are the “macrophages” of the CNS and, therefore, are responsible for a 

majority of inflammation potentiated during injury or infection. Microglia have been 

shown to express TLRs 1-9, and thus, LPS was used to induce an inflammatory response 

through activation of TLR4 in a microglial cell line, CHME-5. Determination of MOR 

expression in the CHME-5 microglial cell line was important because of the use of 

fentanyl and morphine, which are agonists for the MOR. To our knowledge this is the 

first time MOR gene expression is shown in CHME-5 cells, which was up-regulated in 

response to LPS. As previously discussed, MOR gene and protein expression in microglia 

has been detailed using in vivo, ex vivo, and in vitro analysis, including in human, mice, 

and rat microglia, so it was not surprising that MOR expression was up-regulated in 

CHME-5 cells (Chao et al., 1997; El-Hage et al., 2013; Gessi et al., 2016; Horvath et al., 
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2008). Other reports have also shown a 2-fold increase in MOR mRNA expression in 

response to LPS (10 µg/ml) in rat peritoneal macrophages, and a 1.5-fold difference with 

LPS (5 µg/ml) at 24 h in TPA-HL-60 macrophage-like human cells (Byrne et al., 2012; 

Chang et al., 2007; Langsdorf et al., 2011). It would be interesting to investigate whether 

up-regulation of LPS-induced MOR gene expression is correlated with protein 

expression, even though expression of these two biological molecules are not always 

equivalent, as in the case of TLR4 (Bachtell et al., 2015).  

Along with changes in LPS-induced MOR expression, we examined TLR4 and 

MyD88, which are two crucial proteins in the TLR4-MyD88-dependent pathway that are 

necessary for LPS recognition and signaling, respectively, leading to production of 

inflammatory mediators. Thus, I examined whether fentanyl or morphine could modulate 

LPS-induced TLR4 and MyD88 protein expression in CHME-5 cells. There were no 

significant changes in LPS-induced TLR4 expression, as opposed to what was observed 

previously in chapter one, which revealed increases in response to LPS no earlier than 90 

minutes. The fact that expression was examined at earlier time points (3, 10, and 30 min) 

may be the reason we did not see this increase. A previous study in our lab, Stevens et al. 

2013, showed significant increases in TLR4 signaling, which differs from TLR4 

expression, because TLR4 signaling was measured as a response of NF-κB activation in 

HEK-Blue-hTLR4 cells (Stevens et al., 2013). In contrast, other studies have detected 

increases in LPS-induced TLR4 expression in mouse and rat microglial cells, BV2 and 

N9, respectively, which could be due to longer incubation periods (24 h) and higher doses 

of LPS (up to 30 µg/ml) (Dai et al., 2015; P. Wang et al., 2014; Yoon et al., 2013). LPS-

induced MyD88 expression did not change in response to LPS treatment in CHME-5 
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microglial cells. Similarly, one such study using human pericytes detected no change in 

MyD88 expression at 4 h in response to LPS (1 µg/ml) (Guijarro-Munoz et al., 2014). 

Conversely, the studies mentioned above also showed increases in LPS-induced MyD88 

expression in BV2 and N9 microglial cells at 24 h with LPS doses as high as 30 µg/ml 

(Dai et al., 2015; P. Wang et al., 2014; Yoon et al., 2013). Thus, modulation of these two 

proteins in response to LPS may differ based on cell type, LPS concentration, and 

duration of LPS exposure. With regard to opioid co-treatment, neither fentanyl nor 

morphine had any effect on TLR4 and MyD88 expression. A survey of the literature 

revealed no studies on fentanyl or morphine-mediated effects on TLR4 and MyD88 

expression with LPS co-treatment. Once again, Stevens et al. 2013, showed that fentanyl 

and morphine-mediated down-regulation of LPS-induced TLR4 signaling in HEK-Blue-

hTLR4 cells at 24 h. These data suggest that fentanyl and morphine do not affect earlier 

events in the TLR4/MyD88 pathway in CHME-5 microglial cells. Further investigation is 

needed to determine whether stimulation for 24 h leads to a difference in TLR4 and 

MyD88 expression in response LPS and fentanyl or morphine co-treatment. 

Upon LPS-induced TLR4 activation, there are several downstream signaling 

events that occur, including activation of IκBα and NF-κB nuclear translocation. IκBα 

activation was increased in response to LPS, as determined by protein phosphorylation, 

and subsequently decreased with fentanyl or morphine co-treatment. LPS-induced NF-κB 

p65 binding activity was also down-regulated with fentanyl co-treatment. In contrast, 

others observed an increase in p-IκBα immunoreactivity and NF-κB p65 activation in 

cytoplasmic and nuclear extracts, respectively, in primary murine microglial cells 

following LPS and morphine (10 µM) co-treatment for 15 minutes in primary murine 



	 111	

microglial cells (Gessi et al., 2016). Previous research in our lab revealed that opioids 

reduced cytokine-induced NF-κB activation in astrocytes. For instance, IL-1β induced 

p65 activity, which was inhibited by β-FNA; and TNFα-induced NF-κB nuclear 

translocation was inhibited by fentanyl, morphine, and β-FNA (R. L. Davis et al., 2007; 

R. L. Davis et al., 2013). In the present study, unlike fentanyl, morphine did not 

significantly affect LPS-induced NF-κB p65 binding activity, which may have been due 

to the high degree of variability in the response. Alternatively, the differential effects 

between fentanyl and morphine may be attributed to their potency as MOR agonists; 

fentanyl is 80-100× more potent than morphine. These responses indicate that fentanyl, 

and to a lesser extent morphine, can modulate TLR4-mediated downstream signaling 

events.  

I investigated whether fentanyl-mediated down-regulation of LPS-induced NF-κB 

p65 binding activity was occurring through MOR or through another non-classical opioid 

site. Co-treatment with naltrexone did not reverse the fentanyl-mediated effect seen 

during co-treatment with LPS and fentanyl, which is consistent with data from our lab 

showing that naltrexone did not reverse the fentanyl or morphine-mediated effects of 

LPS-induced TLR4 signaling (Stevens et al., 2013). Together, these findings suggest that 

the fentanyl-mediated effect on LPS-induced NF-κB p65 binding activity is MOR-

independent.  

Data published by the Hutchinson and Watkins labs suggest that opioid agonists 

and antagonists mediate their effects by interacting with the MD2 binding pocket 

(Hutchinson et al., 2012; Hutchinson et al., 2010; Wang et al., 2012a). Several studies 

showed that morphine interacts with the MD2 binding pocket, induces TLR4 
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oligomerization, and mediates MD2 conformational changes, thereby stabilizing the 

TLR4/morphine heterotetrameric complex, all of which are similar characteristics of LPS 

binding (Wang et al., 2012a). Naltrexone may not have reversed the fentanyl-mediated 

effect due to lower affinity for the TLR4/MD2 pocket than LPS (Wang et al. unpublished 

data) or naltrexone may not have had sufficient incubation time to mediate an effect. 

Additionally, naltrexone was added after LPS/fentanyl co-treatment, therefore naltrexone 

may not have had the opportunity to bind the MD2 docking site before LPS and fentanyl; 

this may be important because computer modeling showed that pre-docking of naltrexone 

disrupted the preferred binding sites of morphine, which led to displacement of opioids 

outside LPS binding pocket (Bachtell et al., 2015). 

We also demonstrated that co-treatment with LPS and fentanyl or morphine, 

along with addition of naltrexone was not cytotoxic to the CHME-5 microglial cells, 

which is consistent with data from other cell viability assays in our laboratory showing 

that increasing doses of opioid agonists and antagonists are not cytotoxic (R. L. Davis et 

al., 2007). This data suggests that down-regulation in response to opioid co-treatments 

was not due to cytotoxicity of the compound(s). 

And finally, I guess I should address the elephant in the room: what about the 

opioid-induced addiction epidemic? Opioid dependence and addiction results from 

biological abnormalities that occur as a result of chronic opioid use (Kosten et al., 2002). 

Brain centers in the VTA are stimulated upon opioid-receptor activation, which leads to 

release of DA thereby producing a feeling of pleasure, and ultimately dependence and 

addiction. How can it be suggested that opioids be given to patients therapeutically to 

treat neurodegeneration or inflammatory conditions when there is an opioid epidemic 
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around the world? Data from this study, along with others cited throughout this 

dissertation, suggests that during inflammatory conditions, opioids have anti-

inflammatory effects, which are not mediated through MOR. But even though the anti-

inflammatory effects are MOR-independent, the opioids are still binding MOR. 

Therefore, the potential for using opioids to treat neuroinflammatory conditions is still a 

work in progress, given the risk of tolerance and addiction.  

Additionally, since the literature shows that neurons and astrocytes express TLRs, 

including TLR4, it will be necessary to determine if similar fentanyl and morphine-

mediated effects, along with effects of opioid antagonists, are present in the other cells 

within the CNS. This would give us a sense as to whether the non-classical opioid site 

theory translates across all cell types in the CNS.  
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CONCLUSION 

This dissertation focused on two main points: LPS-induced neuroinflammatory signaling 

and the opioid-mediated effects in microglia. CHME-5 immortalized microglial cells 

were expected to impart similar responses as have been defined in peripheral immune 

cells, due to their nature as the immune cell of the CNS. Neuroinflammatory signaling 

was achieved through activation of TLR4 in response to Gram-negative bacterial LPS, 

which allowed us to assess signaling mechanisms occurring in the MyD88-dependent 

pathway.  

Due to the unforeseen event that occurred at the latter end of my research, namely 

discovering that CHME-5 were not of human origin, we needed to redirect our purpose 

for this project. Nevertheless, the literature shows homology (>60%) in the human TLR4 

gene compared to its rat counterpart, as well as conservation of biological function and 

downstream signaling, which was demonstrated in similarities seen from data collected 

throughout this dissertation as compared to human microglial studies. Ultimately, these 

data confirmed that CHME-5 cells remain a useful tool as evidenced by the retention of 

morphological, phenotypical, and functional characteristics of microglia.  

 The effects of the two opioid agonists, fentanyl and morphine, on LPS-induced 

TLR4 neuroinflammatory signaling were also assessed. Fentanyl, and to a lesser extent 

morphine, displayed anti-inflammatory actions on several crucial signaling molecules in 

the TLR4 MyD88-dependent pathway. Fentanyl and morphine are prototypical ligands 
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for the MOR and were expected to mediate their effects through this classical opioid 

receptor. What we discovered was that treatment with the opioid antagonist, naltrexone, 

failed to reverse the opioid-mediated effects on LPS-induced neuroinflammatory 

signaling.  

Therefore, these data lead us to several conclusions: 1) CHME-5 cells are rat 

microglial cells that retain microglial attributes, 2) CHME-5 cells remain a beneficial tool 

for studying neuroinflammatory responses in microglia, 3) fentanyl and morphine have 

anti-inflammatory potential, and 4) opioid-mediated effects on inflammatory signaling in 

CHME-5 cells are not occurring through the MOR, but through a non-classical opioid 

site.  
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