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Abstract 

Characterizing matrix permeability in shale formations is vital to determining the long 

term productivity of a reservoir as well as determining the optimal completion design. 

Permeability of shales lies in the nanodarcy (six orders of magnitude lower than 

conventional reservoir formations) range and the pore structure of these rocks is often 

complex, characterized by mixed wettability and presence of organics.  

In this work, we find that the permeability of shales is dependent on the pore fluid used 

for estimation. Gas (nitrogen) and liquid (dodecane) permeability measurements carried 

out on the same core plug successively can differ by up to a factor of 4.  

Gas and liquid permeability measurements were made on 16 samples from Bakken, Eagle 

Ford, Wilcox and Wolfcamp formations. Higher TOC samples correspond to higher gas 

to liquid permeability ratios, exacerbating the effect of pore fluid on the permeability 

measurement.   

Contrary to some published literature, permeability creep, i.e. the change of permeability 

as a function of time at constant net effective stress has been observed to be insignificant. 

The laboratory measurement time for permeability tests can thus be minimized. This 

observation also suggests minimal long-term loss of production due to permeability 

creep. Creep measurements were made on three samples using nitrogen (on a Bakken 

sample) and dodecane (Wolfcamp samples). With respect to temperature effects, 

permeability measurements performed at 158 °F on shale samples from Marcellus, Vaca 

Muerta and Wolfcamp formations indicates insignificant (<10%) change in permeability 

compared to room temperature measurements. This seems to suggest that permeability 
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measurements can thus be carried out at room temperature for shale formations, without 

any significant corrections required for temperature effects. 

Two phase flow experiments in shales i.e. flow of oil and gas through water saturated 

samples reveals the complexity of porous media in shales. Oil (dodecane) showed poor 

displacement efficiency while flowing through a water saturated Bakken formation 

sample. NMR results indicate that dodecane does not enter the major connected pore 

network and is bypassed through alternate flow paths (cracks, fractures etc.). Gas 

(nitrogen) permeability in a water saturated sample increased with decreasing water 

saturation. Conducting flow-through experiments with continuous NMR recording can 

help generate relative permeability curves.  

Using MICP (Mercury Injection Capillary Pressure) data, permeability values have been 

calculated using Kozeny’s, Winland’s, Swanson’s, Kat and Thompson’s and Thomeer’s 

methods. These estimates are compared to the corresponding steady-state nitrogen 

permeability measurements performed on core plugs at an effective pressure of 3000 psi. 

In some cases, MICP measurements can be performed on drill cuttings and require 

considerably less time than some permeability measurements. 

Nineteen samples from the Bakken, Eagle Ford, Marcellus, Utica, Wilcox and Wolfcamp 

formations have been used in this study. The MICP derived permeability values using 

some of the aforementioned methods lie within a factor of 4 of the measured slippage-

corrected core plug permeability. 

MICP permeability estimates, therefore, can be used as a screening tool to determine the 

zones of interest over which further analysis can be performed. As MICP measurements 

can be performed on drill cuttings, high permeability zones can be identified even in the 
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absence of cores. Selective zonal analysis after the screening proposed by this study can 

therefore save time and costs significantly.
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Chapter 1: Introduction 

1.1 Shale Hydrocarbon Resources  

Within the U.S., a 92% increase in oil production and almost all growth in the gas 

production between 2011 and 2014 came from the following shale plays (Fig. 1): Bakken, 

Eagle Ford, Haynesville, Marcellus, Niobrara, Permian and Utica (EIA, 2017).  

 

 

Figure 1: Major US shale plays accounting for 92% oil production growth and all 

gas production growth between 2011 - 2014 (EIA, 2017). 

 

Low permeability formations will contribute to an increasing percentage in the energy 

mix, both within the U.S. and shale resource-rich countries all across the world. There is 

a need to better understand and characterize these formations to optimize production.  
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1.2 Objective 

The objectives of this thesis are to understand  

• Effects of pore fluid, creep and temperature on shale permeability 

measurements 

a) Shales have a complex porous structure due to presence of organics as well as 

inorganics and may not have a pore fluid-independent permeability. Variation 

in permeability when using different pore fluids (permeants) can be 

significant. It is important to characterize this difference as these values 

impact completion design.  

b) If permeability changes significantly as a function of time (creep), it has 

important implications on the long-term reservoir performance as well as 

laboratory measurements.  

c) Reservoir temperatures are higher than laboratory room temperature. It is 

therefore important to understand the dependence of permeability 

measurements on temperature or the lack thereof. 

• Two phase flow in shales  

To gain a qualitative understanding of two phase flow in shales by studying 

displacement in water saturated cores by gas (nitrogen) and oil (dodecane). 

• Estimation of shale permeability using Mercury Injection Capillary Pressure 

(MICP) data 

Indirect estimation of permeability using MICP data can serve as a valuable 

screening tool to determine the zones of interest. This method can also aid in 
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characterizing permeability in the absence of core, as MICP measurements can be 

performed on drill cuttings.   
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Chapter 2: Literature Review 

 

2.1 Matrix Permeability of Shale 

Permeability in shales is often several order of magnitudes lower than conventional 

reservoir rocks and their permeability is often quantified in the nanodarcy range (Wang 

et al., 2016). This is attributed to small pore sizes in shales (Bustin et al., 2008; Tinni et 

al., 2012). SEM images taken by Loucks et al., (2009) and Curtis et al. (2010) indicate 

that pore sizes in shale can be exceedingly small, often just nanometers in diameter. This 

is further confirmed by NMR measurements (Sondergeld et al., 2010) and BET data (Ross 

and Bustin, 2009). Presence of organics adds to the complexity of the microstructure by 

introducing anisotropy and changes in wettability (Curtis et al. 2010; Sondergeld et al., 

2010).   

Exploiting shale resources involves stimulating the pay zone to enhance its permeability 

(Morsy et al., 2013). Although fluid flow from hydraulic fractures primarily controls the 

production performance of a well initially, matrix permeability dictates the ultimate 

recovery (Heller and Zoback, 2013; Wasaki and Akkutlu, 2015 and Wang et al., 2016). 

Determination of matrix permeability is thus an important aspect in the overall 

characterization of a reservoir (Moghadam and Chalaturnyk, 2015).  Furthermore, matrix 

permeability is a key input in reservoir simulation and aids uncertainty reduction in 

history matching (Sinha et al., 2012 and Heller and Zoback, 2013). It is also required in 

completion design to optimize fracture spacing. Understanding and quantifying the flow 

behavior within these low permeability systems, therefore, has direct economic 

implications which can determine the long-term viability of production.  
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Laboratory determination of shale permeability is typically done on crushed rock samples 

or core plugs (Guidry et al., 1996, Luffel et al., 1993). Pressure decay technique on 

crushed rock was first employed by Luffel et al. (1993) to measure permeability of shales. 

However, this method has been found to have several inadequacies including lack of 

repeatability (Passey et al., 2010), dependence of measured permeability on the size of 

the crushed rock sample, inability to apply a confining stress and lack of directional 

sensitivity (Cui et al., 2009; Profice et al., 2012; Tinni et al., 2012) . 

Plug permeability measurements can be performed by using transient or steady state 

methods. Transient methods include pressure-pulse decay (Brace et al., 1986; Jones, 

1997; Hsieh et al., 1982; Dicker and Smits, 1988) and pressure build up (Metwally and 

Sondergeld, 2011). Other transient techniques have also been developed by Clarkson et 

al. (2012) and a ‘step decay’ technique by Lasseux et al. (2012).  

The steady state method is a reliable technique for permeability measurement. It can be 

accomplished by applying a constant differential pressure across the core plug and 

computing the steady state (time invariant) flow rate. Darcy’s Law can then be used to 

determine the permeability of a rock with the assumptions of fluid incompressibility, rock 

fluid non-interaction, rock homogeneity and laminar flow through the core plug. 

However, the time for such a measurement is generally greater than transient methods 

(Metwally and Sondergeld, 2011). Furthermore, the pressure differential across the core 

plug must be kept low to ensure laminar flow.   

Permeability measurements from transient techniques (pressure pulse decay and pressure 

build up) have been found to be comparable, i.e. within 30% of steady state permeability 

values (Jin et al., 2015; Mathur et al., 2016). 
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Depending on the measurement conditions and the permeant used, permeability 

measurements may need to be corrected using appropriate flow regime paradigms. 

Apparent permeability measured using gas is higher than the intrinsic permeability of 

porous media due to gas slippage at the pore walls (Klinkenberg, 1941). However, 

Klinkenberg’s correction might not be adequate to estimate permeability of tight 

formations at low pore pressures. Second order corrections (Beskok and Karniadakis, 

1999; Civan, 2010; Sakhaee-Pour and Bryant, 2012; Fathi et al., 2012) can better quantify 

the flow behavior in low permeability media.  

Mathur et al. (2016) characterized the flow regimes in shale and recommended the 

appropriate slippage correction at different pore pressure levels. At pore pressures of less 

than 250 psi, transition flow was found to be dominant; double slip corrections are 

appropriate for this pressure range. For higher pore pressures ≈ 1000 psi, slip flow 

dominates and Klinkenberg corrections are deemed appropriate for this pressure range. 

At pressures greater than 2000 psi, the slippage corrections are negligible. Measurements 

done at these pore pressures can be used without corrections.  

In this thesis, all permeability measurements have been carried out using steady state  and 

at a pore pressure of at least 2000 psi. 

 

2.2 Effect of Pore Fluid, Creep and Temperature on Permeability Measurements 

2.2.1 Effect of Pore Fluid 

Mathur (2015) measured the difference in magnitude of steady state permeability while 

using dodecane and nitrogen as pore fluids for seven Wolfcamp shale samples (Fig. 2). 

These measurements were carried out at a pore pressure of 3000 psi to avoid any 
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significant slippage effects and at an effective pressure of 3000 psi. The porosity for these 

samples varied between 2 - 10%, while the TOC ranged between 0 and 4 wt. %. The 

reported nitrogen permeability was greater than dodecane permeability by as much as a 

factor of 2.  

 

Figure 2: Comparison of nitrogen and dodecane permeability for seven Wolfcamp 

shale samples (Mathur, 2015). Nitrogen permeability is higher than dodecane 

permeability by up to a factor of approximately 2. 

 

Brezovski and Cui (2013) and Chhatre et al. (2014) also performed liquid and gas 

permeability measurements on different shale samples. Brezovski and Cui (2013), 

performed pulse decay measurements on five Montney shale samples using helium and 

decane. They found a difference of as high as an order of magnitude between these 

measurements. Chhatre et al. (2014) performed steady state measurements on eight Vaca 

Muerta shale samples at reservoir pressure and temperature conditions using both liquid 

and gas. They found that the slippage corrected gas permeability for some of the samples 



8 

was higher than the measured liquid permeability by up to a factor of two. These results 

indicate that the permeability of nanoporous shales is dependent on the pore fluid. 

Matrix drainage in tight gas wells is characterized by transient linear flow regime (Bello, 

2009). The distance of investigation (DOI) concept can be used to design the spacing 

between different stages in hydraulic fracture treatments (Zheng, 2016). Wattenbarger et 

al. (1998) related the distance of investigation during the linear flow regime to the square 

root of matrix permeability. Differences in magnitude of permeability even by a factor of 

up to 4 will have an impact on the number of fracture stages required to drain the reservoir 

optimally. 

The total cost of hydraulic fracture treatment per stage can be as high as $200,000, with 

average cost per stage in the Bakken field being $125,000 (Oilfield Technology, 2013). 

The cost per stage of fracture treatment in STACK play in Oklahoma for a 10,000 ft. 

lateral averaged at approximately $215,900 (OKOGA, 2017).  

 

2.2.2 Effect of Creep 

Permeability creep measurements are important to quantify the long-term production 

performance of a reservoir. Laboratory measurement times can also be affected, if 

significant creep effects are observed. Long term permeability creep measurements over 

a period of several weeks have been performed by several authors on Berea sandstone 

and Horonobe mudstone (Yashura et al., 2012) as well as several shale formations 

(Chhatre et al., 2014; Mathur, 2016). 

Yashura et al. (2012) measured steady state permeability of Berea sandstone using water 

as the pore fluid over a period of 400 days. The first set of experiments were conducted 
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at room temperature of 20 °C (68 °F) at two effective stresses of 7.5 and 15 MPa (1100 

and 2200 psi). There were no significant changes observed at either effective stress for 

the first 300 days, wherein the permeability remained around 10 md and 2 md for the 

lower and higher effective stresses respectively. 

 

Figure 3: Permeability of two Berea sandstone samples at confining pressure of 1100 

psi and 2200 psi over a period of over 400 days measured at 20 °C (68 °F) (Yashura 

et al., 2012). Change in permeability up till 300 days is minimal. 

 

The permeability increased after 300 days for both samples (Fig. 3). The increase in 

permeability is attributed to mineral dissolution with time. The second set of experiments 

performed at 90 °C (194 °F) yielded similar results, with the permeability registering an 

increase at 200 days (Fig. 4). A similar pattern is also observed for a fractured Horonobe 

mudstone sample in their study. At higher temperature, the period of permeability 

increase was advanced by ~100 days. The dissolution is exacerbated at a higher 

temperature causing the permeability increase to occur earlier. 
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Figure 4: Permeability of three Berea sandstone samples at confining pressure of 

1100 psi and 2200 psi over a period of around 400 days measured at 90 ° C (194 °F) 

(Yashura et al., 2012). The permeability changes are minimal up till 200 days of 

measurement. 

 

Permeability creep measurements reported by Chhatre et al. (2014) on Vaca Muerta 

shales at multiple effective stresses indicate a significant change in permeability over a 

period of eight weeks (Fig. 5). The permeability measurements were conducted using 

steady state method and toluene as the pore fluid. Permeability reduced by around 75% 

within the first 30 days. They recommend, therefore, to ‘stress age’ the samples i.e. 

subject the samples to reservoir pressure conditions for a period of time as long as a month 

before conducting permeability measurements. Stress aging of a sample to reach a stable 

value of permeability then becomes particularly important for transient methods of 
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permeability measurement, wherein the individual experimental duration is typically 

shorter than that of steady state method.   

 

Figure 5: Permeability of a Vaca Muerta shale sample at multiple net confining 

stresses (2500 – 5500 psi) over a period of eight weeks using toluene\decalin as the 

pore fluid (Chhatre et al., 2014). Permeability value reduces significantly within the 

first 30 days of measurement. 

 

However, it must be noted that toluene is an organic solvent. It is not recommended for 

use as a permeant as it can react with organics within the shale samples. The significant 

creep observed can possibly be a consequence of the choice of pore fluid used.  

Mathur (2015) performed permeability creep measurements on Wolfcamp, Vaca Muerta 

and Eagle Ford shale. He used liquid (dodecane) and gas (nitrogen) as pore fluids for 

these tests. Pressure build-up method (transient) was used for Eagle Ford samples. All 

other measurements were done using steady state method.  
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Figure 6: Steady state permeability measurement for four Wolfcamp shale samples 

over a period of 30 days. Insignificant change in permeability observed (Mathur, 

2015). 

 

 

Figure 7: Permeability of a Vaca Muerta shale sample at multiple net confining 

stresses (2500 – 4500 psi) over a period of six weeks. Insignificant change in 

permeability observed at each net confining stress (Mathur, 2015).  
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Permeability creep was insignificant for steady state as well as transient methods. Creep 

behavior was negligible using either nitrogen or dodecane as the permeant. No creep was 

observed for Wolfcamp and Vaca Muerta shale (Fig. 6 and 7) for the entire period of 

measurement of over a month. A change in permeability of less than 25% was observed 

for Eagle Ford shale over the same period of time (Fig. 8). 

 

Figure 8: Permeability measurement for two Eagle Ford shale samples over a period 

of 30 days. Insignificant change (≤ 25%) in permeability observed (Mathur, 2015). 

 

2.2.3 Effect of Temperature 

The average reservoir temperatures of a majority of shale plays including Barnett, 

Bakken, Fayetteville, Horn River, Marcellus, Wolfcamp and Woodford are less than 200 

°F, while those for Eagle Ford and Haynesville are higher than 300 °F (Bangia et al., 

1993; Roth, 2011). 

Sinha et al. (2013) studied the effect of elevated temperature on permeability using steady 

state permeability measurements for four shale samples at reservoir effective stress and a 

pore pressure of 125 psi. The measurements were performed using helium at two different 
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temperatures: 72 °F and 230 °F. They found that the permeability was consistently lower 

at the higher temperature for all four samples by 3 – 25% (Fig. 9). This was attributed to 

reduction in the size of pore throats due to swelling.  

 

Figure 9: Permeability of four shale samples at 72 °F and 230 °F measured using 

steady state method. Modified after Sinha et al. (2013). 

 

Such a difference is not significant for ultra-low permeability formations. At low pore 

pressures (125 psi) gas slippage should be dominant. The reported permeability values 

are not slippage corrected. The mean free path of gas (λ) is temperature dependent. 
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NA: Avogadro number 

 

According to Equation 1, mean free path should be greater at elevated temperature. 

Lower permeability at higher temperature is therefore unexpected. 

Yashura et al. (2012) studied the long-term evolution of permeability for Berea sandstone 

at room temperature (68 °F) as well as at an elevated temperature (194 °F). The onset of 

permeability increase was advanced by ~100 days at the higher temperature. This change 

in trend is attributed to mineral dissolution over a period of time, which was more 

pronounced at elevated temperatures (Fig. 3 and 4). 

The effect of temperature on permeability evolution is relevant for in-situ oil shale 

extraction. Yang et al. (2012) quantified the permeability evolution with increasing 

temperature for Daqing and Changqing oil shales. They used nitrogen as the permeant for 

steady state measurements over a temperature interval of 200 °C to 500 °C (392 °F – 

932 °F). The authors reported a critical temperature for both the samples below which a 

reduction in permeability was observed with increasing temperature. With further 

increase in temperature, the permeability increased as well (Fig. 10).  
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Figure 10: Evolution of permeability in Daqing oil shale with increasing 

temperature at different pore pressures. Nitrogen  was used as the permeant at pore 

pressures ranging from 1 to 4 MPa. Permeability decreases up till the critical 

temperature of ~350°C is achieved and increases thereafter. (Yang et al., 2012). 

      

2.3 Two Phase Flow in Shales 

Complexity of fluid flow mechanisms and wettability in shales is affected by its lithology, 

pore structure and presence of organics (Lan et al., 2014). Shale pores generally tend to 

have mixed wettability due to presence of both organics and inorganics (Odusina et al., 

2011).  

NMR measurements before and after permeability measurement using nitrogen as well 

as dodecane on a Wolfcamp shale core plug by Mathur (2015) showed that water 

saturation within the sample remained unchanged (~22%). The helium porosity of the 

sample was 7.2%, while the TOC was 1.2 wt.%. Permeability measurements in shales are 

essentially relative permeability measurements.  
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NMR response of brine and oil imbibition on Barnett, Haynesville and Woodford shale 

core plugs suggest that brine saturated porosity is higher than the oil saturated porosity 

(Tinni et al., 2014). Furthermore, the NMR responses show that oil and methane have 

access to a limited fraction of pore spaces, while brine is able to access the entire pore 

spectrum. Flow path in the shales studied is controlled primarily by the water-wet 

porosity.  

  

2.4 Permeability Estimation from MICP Data 

Mercury injection capillary pressure, MICP, data for rock samples can be used to estimate 

permeability. Purcell (1949) first demonstrated that permeability could be derived from 

capillary pressure curves generated by injecting mercury into porous media. By 

combining Poiseuille’s equation with Darcy’s Law for a bundle of tubes and introducing 

a lithology factor ‘F’ to account for the intrinsic properties of fluid flow media, he 

proposed an equation to estimate permeability: 

 
𝐤 = 𝟐𝐅(𝛔𝐜𝐨𝐬𝛉)𝟐 ∫

𝐝𝐒𝐧𝐰

𝐝𝐏𝐜
𝟐

𝟏

𝟎

 (2) 

Where: 

 k: Permeability, md 

 F: Lithology factor 

 σ: Interfacial tension, dynes/cm 

 θ: Contact angle, degrees 

 Pc: Capillary pressure, psi 

 Snw: Non-wetting phase saturation, fraction 
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Over the years, several other empirical models have been developed. Comisky et al. 

(2007) applied thirteen different empirical models to estimate the permeability of 63 tight 

gas sand rock samples from five different basins across Argentina and the United States. 

In their study, the Klinkenberg corrected steady state permeability for the samples ranged 

from 0.0001 md – 0.20 md, while the porosity varied between 2 – 15%. They found that 

the estimates of permeability from the empirical models considered were inaccurate for 

these tight gas sand samples (with permeability in all cases lower than 0.20 md). Their 

measured permeability values cross plotted against Winland correlation ( Pittman, 1992) 

are shown in Fig. 11 and Fig. 12. As can be seen, both correlations overestimate the 

permeability for most samples.  
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Figure 11: (a) Crossplot showing the measured permeability (Klinkenberg corrected 

steady state) against the estimated permeability from Winland correlation (Comisky 

et al., 2007). (b) Histogram depicting the data in four discrete sets with varying ratio 

‘r’ i.e. the ratio of Klinkenberg corrected steady state to estimated Winland 

permeability. 
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Figure 12: (a) Crossplot showing the measured permeability (Klinkenberg corrected 

steady state) against the estimated permeability from Pittman correlation (Comisky 

et al., 2007). (b) Histogram depicting the data in four discrete sets with varying ratio 

‘r’ i.e. the ratio of Klinkenberg corrected steady state to estimated Pittman 

permeability. 
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Chapter 3: Experimental Methodology 

Permeability measurements on core plugs reported in this thesis have been performed 

using the steady state method described earlier. This chapter details the experimental 

setup used for making these measurements and the underlying procedure to calculate 

permeability.  

  

3.1 Steady State Method 

Steady state method to measure permeability involves maintaining a constant pressure 

differential between the upstream and downstream side of a core sample and measuring 

the flow rate of the pore fluid (permeant) through it as a function of time. When steady 

state is achieved, i.e. a constant flow rate, permeability is measured using Darcy’s Law. 

According to Darcy’s Law, flow rate of an incompressible fluid through a homogenous 

porous medium under laminar flow condition with no interaction between the fluid and 

the medium is given by 

 
𝐤 =

𝐪𝛍𝐋

𝐀∆𝐏
 (3) 

 

Where: 

 k: Permeability (Darcy) 

q: Flow rate (cm3/s) 

 A: Cross-sectional area (cm2) 

 ∆P: Pressure difference across the sample (atm) 

 μ: Viscosity of the permeant (cP) 

 L: Length of the sample (cm) 
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For the above equation following assumptions are made: (a) pore fluid is incompressible, 

(b) the porous medium is homogenous (c) the fluid flow through the medium is in the 

laminar flow regime, and (d) there is no rock-fluid interaction. 

 

Typically, steady state permeability measurements are made using gas, i.e. nitrogen or 

helium, which are compressible. The behavior of these gasses at different pressures can 

be described using Boyle’s Law. At constant temperature: 

 𝐏𝟏𝐕𝟏 = 𝐏𝟐𝐕𝟐 (4) 

Where: 

 P1, P2: Pressure of the gas upstream and downstream 

 V1, V2: Volume of the gas upstream and downstream 

For steady state flow across a constant cross sectional area, 

 𝐏𝟏𝐪𝟏 = 𝐏𝟐𝐪𝟐 =  𝐏𝐦𝐪𝐦 (5) 

Where: 

 Pm, qm: Pressure and flow rate of the gas at mean pore pressure  

The mean pore pressure is calculated as the simple average of the upstream and 

downstream pressure at two ends of the test core plug.  

 
𝐏𝐦 =  

𝐏𝟏 + 𝐏𝟐

𝟐
 (6) 

Accounting for the compressibility of gas, permeability value can thus be calculated at 

the mean pore pressure using either the upstream (P1, V1) or the downstream (P2, V2) 

parameters using Darcy’s Law (Equation 7).  

 
𝐤 =  

𝟐𝛍𝐋𝐪𝟏𝐏𝟏𝐙𝐦

𝐀(𝑷𝟏
𝟐 − 𝑷𝟐

𝟐)𝐙𝟏

 (7) 
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Where: 

 Zm: Compressibility factor of gas at mean pore pressure 

 Z1: Compressibility factor of gas at upstream pressure 

 

The time taken for steady state permeability measurements is typically greater than 

transient methods. For low permeability rocks such as shales, flow rates can be in the 

order of 10-5 cm3/s. Depending on the length of the sample and its inherent permeability, 

the time taken for flow-through of at least two pore volumes through a core plug sample 

can be several days. The differential pressure between upstream and downstream is kept 

small (typically 100 psi) to prevent turbulence in the fluid flow. Reynold’s number for 

fluid flow through a sample core plug of 1.5” length and 1” diameter at typical test 

conditions (i.e. 2000 psi pore pressure and 76° F) is within the range for laminar flow. 

 

The data collected for permeability calculation for an Eagle Ford shale sample is shown 

in Figure 13.  
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Figure 13: Downstream pump volume as a function of time for permeability 

measurement of Eagle Ford sample XX149 using nitrogen. The effective pressure is 

held at 3000 psi. The calculated permeability is 356 ± 18 nd. 

 

In this example, the core sample is subject to a confining pressure of 5000 psi and a mean 

pore pressure of 2000 psi. The effective pressure on the sample is thus 3000 psi. The 

downstream pump volume recorded as a function of time is used to calculate the flow 

rate of nitrogen. This flow rate is used to calculate the permeability of the sample using 

Equation 7. The calculated permeability using nitrogen is 356 ± 18 nd. 

 

3.2 Experimental Setup 

A schematic of the experimental setup used for permeability measurements is shown in 

Figure 14. The setup consists of a Hassler type core holder placed inside an oven to 

minimize temperature variation during measurement. The core sample is held inside a 

Viton sleeve within the core holder. The confining pressure and pore pressure on the 
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sample are applied using three individual syringe pumps. Nine pneumatically controlled 

valves are used to direct fluid flow and maintain pressure. All three pumps and valve 

actuation are computer controlled. The syringe pumps have a capacity of 103 cm3.  The 

pressure accuracy over the operational pressure range (0 – 10,000 psi) is 0.5% and the 

flow accuracy is 10-5 ml/min (accurate to 0.3% of the set point). 

 

Figure 14: Schematic of the experimental setup used for measuring permeability. 

 

 The core holder can accommodate a polished one-inch diameter cylindrical core plug 

with length varying between 1 to 1.5 inches. The confining pressure pump applies stress 

radially on the sample surrounded by the Viton sleeve using mineral oil as the confining 

fluid. The upstream and downstream pumps apply the pore pressure using either gas or 

liquid. 



26 

The system is similar to the permeability measurement setup used by Mathur (2015). 

Mathur et al. (2016) established that pulse decay and pressure build-up permeability 

values after appropriate corrections lie within 30% of the steady state permeability values. 

Steady state permeability measurements provide a standardized method of measuring 

permeability. Furthermore, reduced number of connection and valves reduce the 

possibility of pressure leaks. In this thesis, all permeability measurements have been 

performed using steady state method.  

 

For permeability measurements at elevated temperatures (section 4.1.3), the source 

(upstream section), sink (downstream section) and the test cell are heated using a silicon 

heat tape. For temperature control to within ±2 °C of the set point, a J-type thermocouple 

is used with a controller. Permeability measurement is performed when temperature 

stabilizes. 

 

Figure 15: Test cell for permeability measurement. The system consists of an 

adjustable top end and a fixed bottom assembly. The sample is held inside the core 

holder within a rubber sleeve. 
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The core plug sample placed inside the core holder is held between a fixed bottom 

assembly and an adjustable top end (Fig. 15). During heating of the sample, the top 

assembly is not tightened completely in order to provide room for thermal expansion of 

the core plug sample, howsoever insignificant. This decreases the possibility of stress 

cracking by thermal expansion.  

 

Section 4.2 discusses experiments related to two phase flow in shales. To determine the 

sweep efficiency of dodecane through a water saturated sample, dodecane was flowed 

through it in the permeability test cell and NMR T2
 spectrum was recorded at different 

times to calculate the changes in saturation within the sample during the flow experiment. 

To record the change in saturation with flow of dodecane using NMR, a ‘silent’ 

background was required that could be used to saturate the sample prior to flowing 

dodecane. Heavy water, expected to have an insignificant signal on the NMR T2 spectrum 

was chosen. The NMR T2 spectrum of water and dodecane mixtures was recorded to 

establish the applicability of heavy water for two phase flow experiments. 

    

NMR T2 spectrum of heavy water (D2O) was measured and compared with water (H2O) 

and dodecane. 1 cm3 of water was put in a glass vial with total volume of 7.5 cm3 and its 

T2 spectrum was recorded (Fig. 16 (a)). T2 spectrum of heavy water was recorded in a 

similar glass vial with total volume 7.5 cm3 (Fig. 16 (b)). Thereafter, 1 cm3 of water was 

added to the glass vial containing heavy water and its T2 spectrum was recorded as well 

(Fig. 16 (c)). 
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Figure 16: Sample for confirmation of NMR signal for heavy water (D2O) in the 

presence of water. 

 

In Fig. 17, the volume fraction occupied by liquid is indicated by the cumulative porosity 

on the NMR T2 spectrum. 1 cm3 of heavy water occupies a negligible volume fraction.  
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Figure 17: The NMR T2 cumulative porosity plot for determining the NMR signal 

for heavy water. The addition of 1 cm3 heavy water (D2O) to 1 cm3 water (H2O) in 

the test vial does not alter the cumulative porosity recorded. 

 

Similar measurements were done using dodecane and a mixture of dodecane and heavy 

water (Fig. 18). 1 cm3 of dodecane was put in a glass vial (Fig. 18 (a)). The recorded 

cumulative porosity on the T2 spectrum i.e. occupied volume fraction of the glass vial by 

dodecane is ~15%. Addition of 1 cm3 of heavy water to the glass vial does not lead to any 

significant change in the recorded signal (Fig. 18 (b)). The NMR T2 cumulative porosity 

for these fluids is shown in Fig. 19. 

0

2

4

6

8

10

12

14

16

100 1000 10000

C
u

m
u

la
ti

v
e 

P
o
ro

si
ty

, 
%

T2, ms

Water D2O Water + D2O



30 

 

Figure 18: Samples for confirmation of NMR signal for heavy water (D2O) in the 

presence of dodecane. 
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Figure 19: The NMR T2 cumulative porosity plot for determining the NMR signal 

for heavy water. The addition of heavy water (D2O) to dodecane in the test vial does 

not alter the cumulative porosity recorded. 

 

Heavy water can thus be used as a ‘silent’ background to record the saturation of water 

as well as dodecane. 
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Chapter 4: Results and Discussion 

4.1 Effect of Pore Fluid, Creep and Temperature 

This section deals with experimental parameters of permeability measurements such as 

the choice of pore fluid, the length of time over which the measurement is carried out and 

the temperature maintained during the course of the measurement. 

 

4.1.1 Effect of Pore Fluid 

The effect of pore fluid on permeability measurements has been studied using different 

pore fluids including nitrogen and dodecane on samples from multiple shale formations. 

The comparison between gas and liquid permeability was performed on a total of 16 

samples from Bakken, Eagle Ford, Wilcox and Wolfcamp formations. For the samples 

studied, helium porosity ranged between 1 and 9%, and the TOC between 1 and 6 wt. %. 

All measurements were performed at a pore pressure of 2000 psi and an effective pressure 

of 3000 psi. The difference between upstream and downstream pressures (ΔP) was 

maintained at 100 psi. Table 1 shows the FTIR mineralogy for samples from each 

formation. 

 

Table 1: FTIR Mineralogy, TOC and maturity window for samples used in 

comparison of liquid and gas permeability 

Formation Sample Quartz Carbon-

ates 

Clays Feldspar Other TOC Maturity 

Window 

 
ID wt.% 

Wolfcamp XX40 22 6 62 6 4 2.0 Oil 

Wolfcamp XX12 11 15 60 10 4 1.7 Oil 
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Wolfcamp XX48 6 16 56 17 4 2.0 Oil 

Eagle 

Ford 

XX937 4 43 44 8 1 3.4 Dry Gas 

Eagle 

Ford 

XX063 7 33 49 11 0 3 Dry Gas 

Eagle 

Ford 

XX134 1 62 30 4 3 3.9 Dry Gas 

Eagle 

Ford 

XX439 0 90 2 4 4 2.7 Conden-

sate 

Eagle 

Ford 

XX536 0 91 5 0 4 1.0 Conden-

sate 

Eagle 

Ford 

XX747 0 88 9 1 2 1.7 Conden-

sate 

Eagle 

Ford 

XX752 3 58 26 7 6 1.7 Conden-

sate 

Eagle 

Ford 

XX110 3 87 4 2 4 2.5 Conden-

sate 

Eagle 

Ford 

XX149 3 80 12 2 3 2.5 Conden-

sate 

Eagle 

Ford 

XX899 2 66 27 4 1 5.7 Dry Gas 

Wilcox XXSH 37 10 43 9 1 1.2 - 
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(Middle) 

Bakken 

XX90 0 85 8 6 1 2.4 Oil 

(Middle) 

Bakken 

XX485 36 33 18 13 0 1.5 Oil 

 

 

Nitrogen permeability was found to be greater than the dodecane permeability for all 

samples. As the measurements were performed at pore pressure of 2000 psi, the slippage 

corrections are negligible. For a majority of the samples (12 out of 15), the difference in 

magnitude ranged between a factor of 2 to 4. For the other three samples, the difference 

in magnitude was less than a factor of 2. For a single Eagle Ford sample, the difference 

in magnitude was found to be a factor of ~8 (Fig. 20). 
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Figure 20: A comparison between nitrogen and dodecane permeability for 16 

samples from multiple formations (Bakken, Eagle Ford, Wilcox and Wolfcamp). 

Nitrogen permeability is higher than dodecane permeability by up to a factor of 4. 

 

 

As described earlier in Chapter 2, Brezovski and Cui (2013), Chhatre et al., (2014) and 

Mathur (2015) have also reported differences between the measured liquid and gas 

permeability, ranging between a factor of 2 to well over an order of magnitude.  

Nitrogen to dodecane permeability ratio for the three Wolfcamp samples studied lies 

between 2.2 to 2.7. These samples have similar helium porosities (6.5 – 7.5 %), TOC (2 

– 4 wt. %) and clay content (~60%). Mathur (2015) performed measurements on seven 

Wolfcamp samples using a similar setup. Nitrogen and dodecane were used as pore fluids 

at an effective stress of 3000 psi. Pore pressure for all measurements was 3000 psi and 
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ΔP was maintained at 100 psi. Permeability measured on Wolfcamp samples along with 

Wolfcamp core plug measurements performed by Mathur (2015) using a steady state 

method as well is shown in Fig. 21. For a majority of samples, the gas to liquid 

permeability ratio is ranges between 1 and 4. Brezovski and Cui (2013) measured the 

permeability of five Montney shale samples using helium and decane and suggested a 

power law dependence between liquid and gas permeability.  

 

 

Figure 21: A comparison between nitrogen and dodecane permeability for 

Wolfcamp shale samples including measurements made by Mathur (2015). 

Gas/liquid permeability ratios lie between 1 and 4. 

 

Dependence of difference in magnitude between gas and liquid permeability was 

analyzed as a function of porosity, TOC and clay content for 16 samples (Figs. 22 (a), 

1

10

100

1000

10000

100000

1 10 100 1000 10000

N
it

ro
g
en

 P
er

m
ea

b
il

it
y
, 

n
d

Dodecane Permeability, nd

Wolfcamp Wolfcamp - Mathur (2015)

1:1 2:1

4:1



37 

(b) and (c)). A single Eagle Ford sample with gas permeability approximately eight times 

higher than its liquid permeability was not included.  

The presence of organics and inorganics including clay leads to mixed wettability in 

shales. NMR measurements performed on a Wolfcamp core plug by Mathur (2015) 

before and after flowing dodecane indicate that water saturation within the sample 

remains unchanged. It is possible that oil wet pores could be contributing to a decrease in 

liquid (dodecane) permeability. Higher TOC should thus correlate with relatively lower 

dodecane permeability compared to the nitrogen (non-wetting) permeability. Fig. 22 (b) 

shows a weak correlation wherein an increase in the ratio of nitrogen to dodecane 

permeability corresponds to increasing TOC. 

  

No relation is observed between either porosity or clay content with increasing difference 

in magnitude of nitrogen to dodecane permeability (Figs. 22 (a) and (c)). 
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Figure 22: Ratio of nitrogen permeability to dodecane permeability for 15 shale 

samples sample plotted against (a) helium porosity, (b) TOC and (c) clay content. 

Nitrogen to dodecane permeability ratio increases with increasing TOC. Porosity 

and clay content do not show any correlation with the gas to liquid permeability 

ratio.  
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Gas permeability values for a majority of samples have been found to be up to four times 

higher than the corresponding liquid permeability. Gas/liquid permeability ratio of up to 

4 can lead to an overestimation in the distance between fracture stages by a factor of 2. 

Using gas permeability to characterize oil or condensate systems for designing fracture 

treatments can thus double the estimated distance between fracture stages. Optimum 

drainage of a play may thus require greater number of fracture stages than estimated using 

gas permeability.  

The total cost of hydraulic fracture treatment can vary significantly across different plays 

and operators, as well as wellbore specifics. Assuming an average cost of $150,000 per 

fracture stage, the total cost of well completion can vary significantly based on number 

of fracture stages. The correct estimation of permeability can thus help reduce costs of 

well completion. 

 

4.1.2 Effect of Creep 

Permeability creep measurements entail applying a constant net effective stress, i.e. 

constant pore pressure and confining pressure to a sample, and recording the evolution of 

permeability with time. 

Creep measurements were performed on one Bakken sample (Upper Three Forks) using 

nitrogen as pore fluid and two Wolfcamp samples using dodecane. 

The FTIR mineralogy for the Bakken (Upper Three Forks) sample from the oil window 

is shown in Fig. 23. 
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Figure 23: FTIR mineralogy for sample XXX37 (Bakken – Upper Three Forks). 

 

The helium porosity of the sample is 6%. The permeability of the sample was recorded 

for a period of 10 days with a measurement performed every 24 hours. The pore pressure 

was kept at 2000 psi, and the effective pressure was maintained at 3000 psi. The measured 

permeability values are shown in Fig. 24.  

A change of 7% is observed in the values of permeability over the entire period of 

measurement although no particular trend can be observed.  



41 

 

Figure 24: Measured permeability of Bakken (Upper Three Forks) sample XXX37 

over a period of 10 days at an effective pressure of 3000 psi. A change of 7% is 

observed in the values of permeability over the entire period of measurement 

although no particular trend pointing to a correlation can be observed. The 

variation of temperature of the duration of measurement was minimal. 

  

 

Figure 25: FTIR mineralogy for samples XX34 and XX58 (Wolfcamp). 
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Figure 26: Permeability creep test on Wolfcamp sample XX34 at successively 

higher effective pressures ranging from 3000 psi to 5000 psi.  The change in 

permeability at each effective pressure is insignificant. Permeability reduces at 

increasing net effective stress.  

 

The FTIR mineralogies for Wolfcamp samples XX34 (oil window) and XX58 (oil 

window) are shown in Fig. 25. The TOC of the samples is 4.6 wt.% and 2.5 wt.% and 

helium porosity 6.9% and 3.5%, respectively. For Wolfcamp sample XX34 (Fig. 26), the 

average permeability at net effective stress of 3000 psi is 101 ± 5 nd. At an effective 

pressure of 4000 psi, permeability reduces by 39% to 62 ± 3 nd and further reduces to 59 

± 3 nd at an effective pressure of 5000 psi. The change in permeability value at each 

pressure stage is negligible. 
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Figure 27: Permeability creep test on Wolfcamp sample XX58 at successively higher 

effective pressures ranging from 3000 psi to 5000 psi.  The change in permeability 

at each effective pressure is insignificant. Permeability reduces at increasing net 

effective stress. 

 

For Wolfcamp sample XX58 (Fig. 27), the average permeability at net effective stress of 

3000 psi is 168 ± 8 nd. At an effective pressure of 4000 psi, the permeability reduces by 

19% to 142 ± 7 nd and further reduces to 79 ± 4 nd at an effective pressure of 5000 psi 

(46% reduction). The change in permeability value at each pressure stage ranges from 

15% to negligible. 

For all three samples, using nitrogen for XXX37 (Bakken - Upper Three Forks) and 

dodecane for XX34 (Wolfcamp) and XX58 (Wolfcamp) the change in permeability over 

a time period of up to 10 days is insignificant (<15%). For the Wolfcamp sample (XX58), 

the permeability reduces with increase in effective pressure; however, the permeability 

variation at each effective pressure does not change significantly (<12%).  

These results indicate that the long-term reservoir performance due to permeability creep, 

using either liquid or gas as permeant is insignificant. This is in agreement with previous 
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findings on shale (Mathur, 2016 and Yashura et. al., 2012). As expected, permeability 

reduction is observed at increasing net effective stress (pore pressure has been kept 

constant). Furthermore, laboratory permeability measurement time can be kept to a 

minimum and ‘stress aging’ of the sample, i.e. keeping the sample under net effective 

stress prior to measurement (Chhatre et al., 2014) may not be necessary. However, this 

may vary with sample maturity and pore fluids. 

 

4.1.3 Effect of Temperature 

Permeability of four samples, one Marcellus, two Vaca Muerta and one Wolfcamp were 

studied at elevated temperatures.  

The method involved drying each sample for 24 hours at 212 °F before the permeability 

measurement to remove free water. Thereafter the permeability of the sample was 

measured at room temperature (~76 °F) using nitrogen as the pore fluid at net effective 

stress of 0.5 psi/ft. 

The temperature was raised to 158 °F, using silicon heating tapes at the source (upstream 

section), sink (downstream section) and the test cell itself. Temperature was maintained 

to within ±2 °C of the set temperature using a controller. The permeability measurement 

at elevated temperature was performed after the system temperature stabilized.  

After the system cooled to room temperature, a second set of permeability measurement 

was performed to ascertain if temperature related effects, if any, were irreversible. 

For the four samples studied TOC lies between <1 – 5 wt. %, while the porosity ranges 

between 3 – 8%. The Marcellus sample was from the gas window, the Vaca Muerta 
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samples are from the condensate window, while the Wolfcamp sample was from the late-

oil to condensate window.  

The FTIR mineralogy for these samples is shown in Figure 28. 

 

 

Figure 28: FTIR mineralogy of the four samples used for studying the effect of 

temperature on permeability measurement. 
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The permeability at elevated temperature of 158 °F changed by ~10% for all four samples. 

The second set of room temperature permeability measurements showed a difference of 

less than 6 % compared to the original room temperature measurements (Fig. 29).  

The effect of temperature over the range studied on permeability of core plugs from 

Marcellus, Wolfcamp and Vaca Muerta formations is insignificant.  

 

Figure 29: Permeability of 4 samples at room temperature (initial), elevated 

temperature and room temperature (after cooling down). Permeability at the 

elevated temperature changes by ~10% for all 4 samples.  

 

The measured samples had different mineralogies (carbonate rich to clay rich) and 

porosity ranging from 3% to 8%. The TOC of the samples ranged between 1 and 5 wt.%. 
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No sensitivity is observed to any of the aforementioned properties. There are no 

thermodynamic or mechanical effects that cause the permeability to change within the 

range of temperature studied. Permeability measurements may thus be carried out at room 

temperature for a majority of shale formation. This contrasts with the findings of Sinha 

et al. (2013) who indicated that permeability of shale samples reduced by up to 25% at 

230 °F compared to the room temperature steady state measurement. 

As discussed in Chapter 3, while heating the samples from ambient room temperature to 

the elevated measurement temperature (158 °F), the test cell configuration allowed 

expansion of the core plug. Furthermore, the samples were dried prior to measurements 

to allow for removal of free water. Any thermodynamic effects owing to change in 

viscosity of the permeant are accounted for by using its measured viscosity at the pressure 

and temperature conditions of the experiment. 

Permeability measurements while sensitive to the choice of pore fluid, show insignificant 

creep and negligible dependence on temperature. 

  

 

4.2 Two Phase Flow in Shales 

4.2.1. Flow of oil through a water saturated sample 

The flow of oil (dodecane) through a water saturated sample was studied on a core plug 

from Lower Bakken formation (XXX66) from the oil window. The helium porosity of 

the sample was 5.5% and its TOC was 8.1 wt. %. The FTIR mineralogy of the sample is 

shown in Figure 30.  
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Figure 30: FTIR mineralogy of sample XXX66 from the Lower Bakken formation. 

 

 

The sample was cleaned using pressurized solvent extraction using a toluene\methanol 

mixture. The sample was then saturated with heavy water (deuterium oxide – D2O) at 

5000 psi for 48 hours. Dodecane was flowed through the sample at an effective pressure 

of 3000 psi and pore pressure of 2000 psi. T2 NMR spectrum of the sample was recorded 

at the following three stages to determine its saturation state: 

1. After cleaning the sample using toluene\methanol mixture (at 230 °F). 

2. After saturating the sample with heavy water (at 5000 psi for 48 hours). 

3. After flowing dodecane through the sample at effective pressure of 3000 psi (>1 

pore volume).  
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Fig. 31 shows the cumulative porosity from NMR (2 MHz, τ = 57 usec) data for sample 

XXX66 (Lower Bakken). Cumulative porosity of the cleaned sample is indicated by the 

curve ‘Post Sohxlet’ (diamond marker). Cumulative porosity recorded after saturating the 

sample with heavy water is indicated by ‘Post D2O’ (triangular marker).  The curve (‘Post 

Dodecane’) indicates the cumulative porosity recorded after the sample is saturated by 

dodecane at 2000 psi (square marker).   The bulk volume of the sample is ~14 cm3. The 

amount of heavy water that enters the sample is recorded by measuring the weight of the 

sample before and after saturation. In this case 0.69 g of heavy water (ρ = 1.1 gm/cm3), 

or 0.62 cm3 of it enters the sample. The heavy water porosity is thus calculated as ~4.4%. 

The indicated porosity however, is only ~3.5%.  Upon flowing dodecane at 2000 psi pore 

pressure, the cumulative porosity of dodecane is ~4.5%. This represents the increase in 

incremental porosity. Thus, the fraction of pore volume that dodecane enters is only about 

1%. This can possibly indicate that dodecane is not entering the major pore network, or 

it is by-passed through a crack or fracture network. The sweep efficiency of dodecane is 

poor. 
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Figure 31: The NMR T2 cumulative porosity plot for Lower Bakken sample XXX66 

at three stages – after cleaning (diamond marker), after saturating with heavy water 

(square marker) and after saturating with dodecane (triangular marker). 

 

Heavy water is used to saturate the sample because it is expected to have a negligible 

NMR signature. This allows quantification of pore volume occupied by dodecane while 

heavy water acts as a ‘silent’ background. This usage of heavy water for dodecane 

saturation determination using NMR has been discussed in section 3.2. 

 

Flow behavior of dodecane in Lower Bakken sample XXX66 indicates that the 

displacement efficiency of dodecane is poor. In this subsequent test, the pore pressure of 

dodecane was successively increased and the changes in the magnitude of permeability 

were recorded. Two additional Bakken samples, XXX51 (Middle) and XXX14 (Three 

Forks) from the oil window, were used to measure the change in permeability with 
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increasing oil (dodecane) saturation. The helium porosity for the samples is 3.5% and 

6.4%, respectively, while the TOC is 0.3 and 1.1 wt. %. The FTIR mineralogy for both 

the samples is shown in Figure 32. 

 

 

Figure 32: FTIR mineralogy of Bakken samples (Middle) XXX51 and (Three Forks) 

XXX14. 

 

The samples were cleaned using pressurized solvent extraction with a toluene\methanol 

mixture at 1100 psi and 230 °F. Both samples were saturated with heavy water (D2O) for 

a period of 48 hours at 5000 psi. The permeability of samples was recorded at 

successively higher pore pressures by flowing dodecane at a pore pressure of 2000 psi, 

3000 psi and 4000 psi while keeping the effective pressure constant at 3000 psi. The 

saturation of dodecane based on the NMR cumulative porosity was recorded after flow 

of at least one pore volume through the core plug.  
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Figure 33: The NMR T2 cumulative porosity plot for Middle Bakken sample XXX51 

after flowing dodecane at 2000, 3000 and 4000 psi pore pressure (constant effective 

pressure = 3000 psi). An increase in the saturation of dodecane is seen with 

increasing pore pressure.  
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Figure 34: The NMR T2 cumulative porosity plot for Bakken (Three Forks) sample 

XXX14 after flowing dodecane at 2000, 3000 and 4000 psi pore pressure (constant 

effective pressure = 3000 psi). An increase in the saturation of dodecane is seen 

with increasing pore pressure. 

 

The permeability of dodecane through the heavy water saturated sample increases with 

increasing pore pressure. The saturation of dodecane, measured after flow-through at each 

pore pressure increases with successively higher pore pressure (Figs. 33 and 34). 

The increased permeability at higher pore pressure (Fig. 35) can possibly be attributed to 

dodecane entering into more pore space accessible at increasing pore pressures. The 

increase in saturation in smaller pores with increasing dodecane saturation suggests that 

dodecane channels into pores unavailable at lower pore pressures. 
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Figure 35: Change in dodecane permeability for samples XXX14 and XXX51 

(Bakken/Three Forks formation) as a function of increasing pore pressure from 

2000 to 4000 psi (constant effective pressure = 3000 psi, ΔPpore = 100 psi). An increase 

in permeability is seen for both the samples with increasing pore pressure.  

 

 

4.2.2 Flow of gas through a water saturated sample 

The flow of gas (nitrogen) through a water saturated sample was studied on two core 

plugs from Utica formation. Both samples had low porosity (1 – 2%), low TOC content 

(~1 wt. %) and were from the condensate window. The FTIR mineralogy of the samples 

is shown in Fig. 36. 
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Figure 36: FTIR mineralogy of sample XX04 and XX27 from the Utica formation. 

 

For this experiment involving flow of gas through a water saturated sample, the following 

steps were followed: 

1. The initial ‘reference’ gas permeability (using N2) of the sample at 2000 psi pore 

pressure and an effective pressure of 3000 psi was recorded (ΔPpore = 100 psi). T2 

NMR (2 MHz, τ = 57 µs) spectrum of the sample was recorded before and after 

the permeability measurement. A reduction in the water saturation was observed 

for both Utica samples: ~6% in XX04 and ~26% in XX27. 

2. The sample was saturated with brine (2.5% KCl) for 48 hours at 5000 psi. T2 NMR 

spectrum of the sample was recorded (Fig. 37(a) and 38(a)). 

3. Permeability measurements were done at the aforementioned pressure conditions 

and the changes in permeability were recorded as function of water saturation. 

The water saturation at each stage was measured using NMR (Fig. 37(b) and 

38(b)). 
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Figure 37: T2 NMR cumulative porosity plot for Utica sample XX04, at (a) The ‘as 

received’ or ‘native’ saturation and after flowing N2 to obtain the reference gas 

permeability and (b) the cumulative porosity after completely saturating the sample 

and at subsequent stages. Nitrogen is flowed through the sample at each stage for 

permeability measurement. A decrease in water saturation can be seen at each 

successive stage. 
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Figure 38: T2 NMR cumulative porosity plot for Utica sample XX27, at (a) The ‘as 

received’ or ‘native’ saturation and after flowing N2 to obtain the reference gas 

permeability and (b) the cumulative porosity after completely saturating the sample 

and at subsequent stages. Nitrogen is flowed through the sample at each stage for 

permeability measurement. A decrease in water saturation can be seen at each 

successive stage. 

 

 

For Utica sample XX04, the nitrogen permeability was measured as 2.8 ± 0.1 µd. This 

was considered as the native permeability of the sample. The ‘native’ water saturation at 

this stage (after the initial permeability measurement) was 36%. After saturating the 

sample with water (100%) and subsequently measuring nitrogen permeability, the 
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saturation decreased to 92%, 87% and 86% at successive stages, corresponding to 

permeability values of 5.5 ± 0.27 µd, 2.0 ± 0.04 µd and 0.28 ± 0.01 µd, respectively. At 

each successive permeability measurement, more than one pore volume of nitrogen was 

flowed through the sample. The gas permeability increases with decreasing water 

saturation at each step (Fig. 39). For sample XX04, the permeability at stage 1 (i.e. Sw = 

92%) the measured permeability is actually greater than the ‘as received’ permeability of 

the sample. This may be attributed to stress cracking within the sample. These tests must 

therefore be conducted with caution; repeated changes in the stress conditions of the 

sample as it is removed from the test cell for saturation estimation using NMR may cause 

stress cracking. Sw of Utica sample XX04 is plotted against the nitrogen permeability in 

Fig. 39. 

 

Figure 39: Steady state permeability using nitrogen plotted as function of water 

saturation for two samples from the Utica formation. The initial ‘as is’ nitrogen 

permeability is indicated by square markers. The subsequent values of permeability 

at different stages of water saturation are plotted with round markers. 
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Using a similar procedure for sample XX27, the value of nitrogen permeability as a 

function of water saturation was recorded (Fig. 39). The native permeability of the sample 

was measured as 730 ± 37 nd at Sw = 39%. The sample was saturated with brine (2.5% 

KCl) for a period of 48 hours at 5000 psi. Subsequently the permeability of the sample at 

Sw 94% and 79% was measured as 17 ± 1 nd and 139 ± 7 nd, respectively. 

For both the samples, nitrogen (gas) permeability is found to increase with decreasing 

water saturation. The dependence of gas permeability on water saturation is nonlinear. 

 

4.3 Permeability Estimation from MICP 

Estimation of permeability using MICP data, while not precise, can be invaluable as a 

screening tool when whole core plugs are not available. Furthermore, permeability 

measurements on core plugs are typically long-duration experiments taking several days. 

Routine MICP measurements have thus been used to estimate the permeability of 19 shale 

samples which are compared to the measured steady state permeability with nitrogen as 

the pore fluid. The FTIR minerology of these samples from multiple formations including 

Bakken, Eagle Ford, Marcellus, Utica, Wilcox and Wolfcamp is shown in Table 2.  
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Table 2: FTIR Mineralogy, TOC and maturity window for samples used in 

estimation of permeability using MICP data 

Formation Sample Quartz Carb-

onates 

Clays Feldspar Other TOC Maturity 

Window 

 
ID wt.% 

(Middle) 

Bakken 

XX485 36 33 18 13 0 1.5 Oil 

(Three 

Forks) 

Bakken 

XX737 32 27 17 11 13 - Oil 

(Three 

Forks) 

Bakken 

XX835 0 50 35 15 0 - Oil 

Eagle Ford 

1 

XX063 7 33 49 11 0 3.0 Dry Gas 

Eagle Ford 

1 

XX536 0 91 5 0 4 1.0 Conden-

sate 

Eagle Ford 

2 

XX692 1 81 9 5 4 5.4 Conden-

sate 

Eagle Ford 

2 

XX721 0 42 36 10 12 4.4 Conden-

sate 

Marcellus XX60 2 8 75 12 3 3.1 Dry Gas 

Utica XX81 2 28 30 5 35 1.3 Conden-

sate 
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Utica XX31 0 52 35 13 0 0.4 Conden-

sate 

Wilcox XX11 37 10 43 9 1 1.2 - 

Wolfcamp 

1 

XX65 61 12 7 20 0 0.4 Late Oil 

to Cond-

ensate 

Wolfcamp 

1 

XX83 43 19 25 12 1 1.4 Late Oil 

to Cond-

ensate 

Wolfcamp 

1 

XX87 27 17 19 32 5 0.7 Late Oil 

to Cond-

ensate 

Wolfcamp 

1 

XX07 45 5 25 24 1 0.7 Late Oil 

to Cond-

ensate 

Wolfcamp 

1 

XX01 59 3 23 12 3 1.4 Late Oil 

to Cond-

ensate 

Wolfcamp 

2 

XX40 22 6 62 6 4 2.0 Oil 

Wolfcamp 

2 

XX12 11 15 60 10 4 1.7 Oil 

Wolfcamp 

2 

XX48 6 16 56 17 5 2.0 Oil 
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Permeability estimation from MICP data has been evaluated using the following methods: 

(a) Kozeny equation, (b) Winland’s method, (c) Swanson’s method, (d) Thomeer’s 

method and (e) Katz Thompson method. 

 

Kozeny equation relates the permeability of a porous medium having porosity ‘Φ’ 

consisting of a bundle of tubes with radius ‘r’. The point on the capillary pressure curve 

where 35% saturation of Hg is achieved has been designated as r35. Using the 

aforementioned parameters, the permeability of the samples has then been estimated 

using Equation 8. 

 

 
𝐤 =  ∅ 

𝐫𝟑𝟓
𝟐

𝟖
∗ 𝟏. 𝟎𝟏𝟑𝟐𝟓 ∗ 𝟏𝟎𝟑 (8) 

Where: 

 k = Permeability (nd) 

 ∅ = Porosity (%) 

 r35 = Pore throat radius at 35% Hg Saturation (nm) 

 

A crossplot on the log-log scale between the measured steady state permeability (x-axis) 

and the estimated permeability (y-axis) is shown in Fig. 40.  
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Figure 40: Crossplot between measured steady state permeability and MICP 

estimated permeability (using Kozeny equation – r35) for 19 samples. ~60% of the 

estimated values lie within a factor of 4 of the measured permeability. 

  

11 of the 19 samples, i.e. ~60% of the samples lie within a factor of 4 from the measured 

permeability. 

Using Equation 8 but employing rmax, i.e. the peak of the incremental mercury volume 

plotted against pore throat radius, 13 of 19 samples, i.e. ~70% of the samples lie within a 

factor of 4 of the measured permeability (Fig. 41).  
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Figure 41: Crossplot between measured steady state permeability and MICP 

estimated permeability (using Kozeny equation - rmax) for 19 samples. ~70% of the 

estimated values lie within a factor of 4 of the measured permeability. 

 

 

Winland (Pittman,1992) built a correlation between porosity and r35 values of 82 

sandstone and carbonate samples with slippage corrected measured permeability as well 

as an additional 240 samples without any slippage corrections. The permeabilities for 

these samples were measured at ambient pressure conditions of 800 – 1000 psi (Comisky 

et al., 2007). This correlation (Equation 9) has also been used to estimate the 

permeability of shale samples. Only six of 19 samples studied have the estimated 

permeability within a factor of 4 of the measured steady state permeability (Fig. 42) 
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 𝐥𝐨𝐠(𝐫𝟑𝟓) = 𝟎. 𝟕𝟑𝟐 + 𝟎. 𝟓𝟖𝟖 𝐥𝐨𝐠(𝐤𝐰𝐢𝐧𝐥𝐚𝐧𝐝𝐚𝐢𝐫) − 𝟎. 𝟖𝟔𝟒 𝐥𝐨𝐠 (∅) (9) 

 

Where: 

 r35 = Pore throat radius at 35% Hg Saturation (nm) 

 kair = Permeability estimated from Winland’s correlation (nd) 

 ∅ = Porosity (%) 

 

Figure 42: Crossplot between measured steady state permeability and MICP 

estimated permeability (using Winland’s equation) for 19 samples. ~30% of the 

estimated values lie within the a factor of 4 of the measured permeability. 

 

 

The apex of (Sb/Pc) plot is a point where the permeability controlling major connected 

pore spaces were saturated with mercury (Fig. 43). Swanson (1981) formulated an 

empirical relation (Equation 10) based on measurements on 319 samples (sandstones 
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and carbonates). The net confining stress on these samples was between 800 - 1000 psi 

(Comisky et al., 2007).  

 
𝐤𝐒𝐰𝐚𝐧𝐬𝐨𝐧 = 𝟑𝟗𝟗 (

𝐒𝐛

𝐏𝐜
) 

𝟏.𝟔𝟗𝟏
 

 

(10) 

Where: 

 kSwanson = Swanson permeability (md) 

 Sb/Pc = Hg saturation (% of bulk volume)/Capillary Pressure at Apex  

   

 

Figure 43: Apex plot for a Wilcox formation sample (XXSH) using Swanson’s 

method. The apex of (Sb/Pc) is indicative of the point where the permeability-

controlling pore spaces are connected.  

 

The estimated permeability using Swanson’s method for Wilcox sample (XXSH) is 282 

nd, which is nearly equal to the measured steady state permeability (289 ± 14 nd). 
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The permeability of 19 samples was estimated this method (Fig. 44). 12 of 19 samples, 

i.e. ~65% of the samples have estimated permeability within a factor of 4 of the measured 

steady state permeability.  

 

 

Figure 44: Crossplot between measured steady state permeability and MICP 

estimated permeability (using Swanson’s method) for 19 samples. ~65% of the 

estimated values lie within a factor of 4 of the measured permeability. 

 

Thomeer (1960; 1983) showed that mercury capillary pressure curve can be uniquely 

defined by a hyperbola with three specific factors quantifying its shape and asymptotes 

(Equation 11). 

 
𝐤𝐓𝐡𝐨𝐦𝐞𝐞𝐫 = 𝟑. 𝟖𝟏 𝑭𝒈

−𝟏.𝟑𝟑 (
𝐒𝐛∞

𝐏𝐝
)𝟐 (11) 

Where: 
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 kThomeer =  Thomeer permeability (md) 

 Fg = Pore geometrical factor 

 Sb∞ = Percentage bulk volume occupied by Hg at infinite PC  (%) 

 Pd : Displacement pressure, psi  

 

The values of Fg, Sb∞ and Pd were calculated for each sample analyzed by fitting a curve 

to the mercury capillary pressure data. Fig. 45 shows the aforementioned shape factors 

determined for a Bakken sample. The measured steady state permeability of the sample 

is 258 ± 13 nd and permeability estimated using Thomeer’s method for the sample is 481 

nd. The estimated permeability is higher than the measured permeability by a factor of 

1.86. 
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Figure 45: Determination of Fg, Sb∞ and Pd using for a Bakken sample. The values 

determined have then been used to estimate the permeability of the sample as 481 

nd. The measured steady state permeability value is 258 ± 13 nd. 

 

Using Thomeer’s estimation, 12 of 19 samples (~65%) have estimated permeability 

within a factor of 4 of the measured steady state permeability (Fig. 46). 
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Figure 46: Crossplot between measured steady state permeability and MICP 

estimated permeability (using Swanson’s method) for 19 samples. ~65% of the 

estimated values lie within a factor of 4 of the measured permeability. 

 

 

 Katz and Thompson (1986) characterized the fluid flow and electrical conductance 

through porous media using percolation theory. The fluid flow through a porous medium 

was defined by characteristic length (LC) i.e. the pore diameter where the pore spaces 

across the sample were saturated by mercury, and maximum electrical conductance 

length (LEmax), i.e. the pore throat diameter where the ionic conductance was maximized.  

 

 
𝐤𝑳𝑬 =

𝟏𝟎𝟏𝟑

𝟐𝟐𝟔
∗ 𝑳𝑪

𝟐 ∗  
𝑳𝑬𝒎𝒂𝒙

𝑳𝑪
∗  ∅ ∗ 𝑺𝑳𝑬𝒎𝒂𝒙 (12) 
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Where: 

kLE: Permeability, µm2  

LC: Characteristic length, µm 

LEmax: Effective pore throat diameter at maximum ionic conductance, µm 

∅: Porosity, fraction 

SLEmax: Mercury saturation at LEmax, fraction 

 

The permeability of 19 samples estimated using Katz-Thompson method has been plotted 

against the measured steady-state permeability (Fig. 47). The estimated permeability is 

one to three orders of magnitude higher than the measured permeability.  

 

 

Figure 47: Crossplot between measured steady state permeability and MICP 

estimated permeability (using Katz-Thompson’s method) for 19 samples. Estimated 

values are higher than measured permeability by one to three orders of magnitude. 
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Table 3: Predicting power of correlations studied to estimate permeability to 

within a factor of 4 of the measured permeability 

 

Method % of samples within a factor of 4 of 

the measured permeability 

Kozeny (r35) 60 

Kozeny (rmax) 70 

Winland 30 

Swanson 30 

Thomeer 65 

Katz Thompson 0 

 

All correlations were developed for conventional rocks, which have different pore 

structures than shales. A correlation based on a larger data set of shale samples can help 

establish a correlation better describing the permeability of that particular zone. 

Using these measurements and estimating permeability values using Thomeer and 

Swanson methods amongst others can provide a valuable screening tool to indicate zones 

with low and high permeability. It can also provide a relative sense of high or low 

permeability within a dataset. Where core plugs are not available, drill cuttings can be 

used for such estimations as well. Preliminary petrophysical analysis on drill cuttings, 
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including estimation of permeability from MICP data, can provide valuable information 

for screening of productive zones. 
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Chapter 5: Conclusions 

Three distinct studies were performed to characterize and understand matrix permeability 

in shales: 

1. Effects of pore fluid, creep and temperature 

2. Two phase flow experiments involving oil (dodecane) and gas (nitrogen) flow 

through water saturated samples 

3. Estimation of permeability using MICP 

 The main conclusions are as follows: 

• Measured steady-state gas permeability can be significantly higher than steady-

state liquid permeability. The nitrogen permeability for Bakken, Eagle Ford, 

Wilcox and Wolfcamp shales are greater than the dodecane permeability by as 

much as a factor of 4. 

• Permeability creep, i.e. change in permeability as a function of time is 

insignificant for Bakken (oil window) and Wolfcamp (oil window) shales.  

• Permeability measurements conducted at room temperature are within 10% of the 

elevated temperature measurements (158° F) for Marcellus, Vaca Muerta and 

Wolfcamp formations.  

• Gas permeability at different water saturations was determined for Utica shales. 

Gas permeability increases nonlinearly with decreasing water saturation. 

• MICP derived permeability can serve as a screening tool to determine zones of 

high permeability. Using different correlations, estimated permeabilities for up to 

70 % of the samples studied were within a factor of 4 of the measured 

permeability. For the data set used, using Kozeny equation with rmax, works best 
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to estimate the permeability within a defined range of a factor 4 times the 

measured permeability. 
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