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Abstract 

The principal question for this thesis is as follows:  

“How can freeze crystallization be utilized to treat flowback and 

produced water from oilfield operations?” 

Current waste water disposal methods in the oil industry primarily include water 

injection into disposal wells, with limited utilization of electrocoagulation for in-field 

reuse and thermal distillation at refineries. Brine hypersalinity and residual hydrocarbon 

has limited the application of membrane technology and simple environmental 

expulsion is heavily regulated by the EPA [2]. The problems associated with injection 

disposal, coupled with a lack of nearby Class II injection wells has limited the 

development of the Pennsylvanian Marcellus Shale Gas due to economic constraints 

imposed largely by the cost of water disposal. The challenge gas producers must now 

face is how to preserve the economics of shale gas production while simultaneously 

upholding responsible stewardship of resources and protecting public health. With 

increased concerns regarding induced seismicity from injection wells and the safety of 

that type of disposal, the need for water recycling methods has grown.  

Eutectic Freeze Crystallization (EFC) has the potential to treat complex, 

hypersaline co-produced brine and represents a sustainable water treatment 

technology towards achieving a near zero waste by producing potable water and pure 

salts [3]. Given that the hypersaline brines of the Marcellus Shale are sodium and 

chloride rich [4], EFC could be used to selectively recover the sodium as a pure sodium 
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chloride salt while simultaneously producing pure ice crystals. The pure ice would have 

innumerable uses; reuse for hydraulic fracturing, release into estuaries, and agriculture 

being only a few.  

The sodium chloride salt represents a potential revenue stream for water 

treatment companies and its sale to industrial chemical synthesizers could offset the 

cost of water treatment. While the applicability of using EFC to remove multiple salts 

from complex multi-component, hypersaline brines has not yet been demonstrated [5], 

the thermodynamics of freeze crystallization are extensively known. Verbeek shows that 

the overall efficiency an EFC crystallizer is 59% and that the energy requirement per unit 

feed is comparable to that of typical commercial evaporative crystallizers [6]. The cost 

of a large-scale freeze crystallization facility is estimated to be equitable to that of 

evaporative crystallization [7], but to be competitive EFC needs to be comparable to the 

injection disposal cost of $1.00 - $6.50 per barrel to be of interest to Exploration and 

Production companies [8]. 

Original simulation research of eutectic freeze crystallization of produced water 

using OLI Stream Analyzer was performed on various brine compositions generated 

from water quality reports provided by Baker Hughes Inc. This analysis shows EFC is 

suited for desalination of co-produced waters. These results indicate that EFC has a high 

level of compatibility with the task of co-produced water desalination and can be 

applied under favorable economic situations. A statistical cost estimate for water 

treatment by EFC is performed and concludes that if not currently economically viable, 
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in the near future EFC will be financially feasible in the Middle-Atlantic Region for shale 

gas water treatment.  

Additional research needs to be performed to complete the validation of EFC for the 

task of treating brines for release. Namely, it is unclear to date whether the presence of 

hydrocarbons, organic chemicals and biomass, fracturing fluid chemicals and other 

additives, or NORM material would interfere or contaminant the pure effluent streams 

of EFC. In Chapter 4 a research proposal to finish the validation of this method is 

included. 

The major findings are: 

• The co-formation of other salts near the eutectic point of hydrohalite can be 

limited through the mixing of waste water streams from multiple wells 

• An average Marcellus/Utica brine exhibits first the formation of ice, followed by 

eutectic co-formation of hydrohalite and ice 

• Marcellus produced water volumes in Pennsylvania are expected to raise to 71 

MMbbl by 2022 

• The nonrecoverable energy requirement for an average Marcellus Shale 

produced water stream is 179kWh/m3 

• The cost of EFC treatment in the Middle-Atlantic Region is estimated to be 

$1.93/bbl 

• When accounting for recovered costs from the potential sale of crystallized salt 

the treatment cost is reduced to $0.82/bbl, similar to that of membrane 

distillation [9]  
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1 Chapter 1 - Background and Motivation  

1.1 BACKGROUND AND MOTIVATION FOR SELECTION OF RESEARCH FOCUS 

1.1.1 What is Eutectic Freeze Crystallization 

Eutectic Freeze Crystallization (EFC) is a low temperature desalination technique that 

can retrieve salt and water in pure form from a brine at a relatively low energy cost. The 

basis of EFC is the existence of eutectic point (EP) for every salt solution. The EP is a 

characteristic point in the phase diagram of a salt-water mixture where an equilibrium 

exists between ice, salt and solution with a specific concentration. This specific 

concentration is called eutectic concentration (EC) and the temperature at which the 

equilibrium is achieved is called the eutectic temperature (ET). EFC is less energy 

intensive compared to evaporative crystallization because the energy required to 

separate water as ice is significantly lower than that required for separating it as a vapor. 

Numerically this can be seen by the fact that the heat of fusion of ice (6.01 kJ/mol) is 

less than the heat of evaporation of water (40.65 kJ/mol. Additionally, EFC allows for 

the recovery of pure salts from the solution. 

1.1.2 Oil and Gas Industry Overview 

The oil and gas industry is encompassing and broad; employing or supporting nearly 10 

million U.S. jobs, thereby accounting for a sizeable stimulus (9%) of the domestic 

economy [10]. Including jobs, the O&G industry includes an extensive network of pipes 

and refineries necessary to refine and produce useable forms of energy for crude oil and 

natural gases as well as chemical precursors used in nearly every industry on the planet 



 

2 
 

[11]-[12]. Internationally, the yearly consumption of hydrocarbons is around 35 billion 

barrels of oil and liquid equivalents (BOE) [13]. 

In general terms, the oil and gas industry is divided into three components: upstream, 

downstream and midstream [14]. Each provides different services and performs a 

distinguishing task in the job of producing hydrocarbon to the products consumers 

desire. Upstream production primarily includes those companies and industries 

involved with the exploration and production of the hydrocarbons to the surface, while 

downstream focuses on refining and distributing the products that are used by 

consumers, be it gasoline for automobiles, or industrial chemicals for the synthesis of 

plastics and polymers [11]. Naturally, the midstream division is responsible then for 

facilitating the transportation of the raw hydrocarbons from the upstream production 

sites to these downstream refineries and distribution centers. This is accomplished 

through a network of pipes, railcars, and oil tanker ships [15].   The service and supply 

structure of the actual hydrocarbon production process is also extensive. A network of 

service companies provides the technical expertise to these hydrocarbon producers as 

well as the products required, such as pipe, mud, sand, etc. it is this service and supply 

that help to drive innovation and growth in the oilfield by focusing on new methods of 

recovery, as well as innovative tools and equipment to produce at higher levels of 

recovery and lower the environmental impact of operations [16].  

The “Shale Boom” or “Shale Revolution” that started in 2008 has been a game changer 

that has reshaped both the US energy industry, and the global energy landscape [17]. 

As crooks (2015) puts it: “The US oil boom has had profound implications for the rest of 
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the world, boosting economic growth and enhancing America’s global influence [18].” 

Due to the recent massive exploitation of unconventional oil and gas reserves, the US 

has become the number one producer of the unconventional oil and gas in the world. 

As shown in Figure 1.1 and Figure 1.2, oil and gas production from unconventional 

reservoirs has grown significantly since the early days and has continuously increased 

until the downturn in 2014.  Natural gas production is projected to increase by 49% of 

the total US gas production by 2035. Furthermore, as shown in Figure 1.3, the US net 

import of natural gas has drastically decreased, and the US has gained more energy 

security as it has grown ever closer to energy independence from domestic sources.  

 

 Figure 1.1 - US Oil and Gas Production Historic Data and Projection (1995-2040) [1]. 
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Figure 1.2 - US Tight Oil Production Historic Data and Projection (2000-2040) [1]. 

 

Figure 1.3 - Impact of Shale Boom on US Energy Independence [1]. 



 

5 
 

In addition, the Shale Boom has greatly influenced the job market in the oil and gas 

industry, adding a significant number of jobs. According to Reuters (2015), “A U.S. oil 

and gas drilling boom fueled by hydraulic fracturing technology added about 725,000 

jobs nationwide between 2005 and 2012 [19].” In addition to such huge economic 

impacts, this boom has had political, social, and environmental effects domestically and 

globally, but these are beyond the scope of this work and will not be discussed further.  

The main causes of this boom are the recent technological advancements in horizontal 

drilling, and multistage hydraulic fracturing that enables drilling of extended reach wells 

that can contact a large section of the reservoir laterally.  Hydraulically fracturing the 

formation to create fractures increases the formation permeability and allows for the 

petroleum to flow through into the wellbore.  

Permeability of a reservoir rock describes how easily or fast the fluids can be moved into 

the wellbore and brought to the surface. Conventional reservoirs are characterized as 

high permeability reservoirs, while unconventional reservoirs have extremely low 

permeability. Due to high permeability of conventional reservoirs, when a vertical well 

is drilled into the reservoir rock, the fluids within the rock can easily travel through the 

rock and reach to the wellbore. However, in unconventional reservoirs, the fluids cannot 

travel and reach to the wellbore with native formation permeability. This is the main 

reason why the industry has been producing from conventional reservoirs for over one 

hundred years with vertical wells but has not been able to produce from unconventional 

reservoirs until just recently. The sources of unconventional reservoirs are shale oil, 
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shale gas, coalbed methane, tight sandstones, and methane hydrates. The US shale 

plays are shown in Figure 1.4.   

 

Figure 1.4 - Currently Producing Shale Plays in the Contiguous U.S [1]. 

1.1.3 Water Production in Oil and Gas Industry 

This constant need for technological advances is ever growing as societies and 

governments become more conscious of the environmental impact of anthropological 

carbon emissions and pollution caused by industrial processes. Technological 

improvements will always be necessary for companies to remain competitive, whether 

it’s designing new tools or developing unconventional energy resources [20].  

While common knowledge to industry professionals, the subject of co-produced water 

(also sometimes referred to as associated water) with the production of hydrocarbons 

is often unknown to those professionals of other industries. To explain how and why 
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water is present with oil, first an overview of the hydrocarbon generation process is 

necessary. 

Hydrocarbons originally form from bitumen, a thick tarry substance leftover from the 

decay of organisms that expire and are transported to anoxic conditions. Typically, this 

is either plankton sinking to the sea bed, or trees and plant material preserved in 

marshes and estuaries [21]. This organic material is chemically altered by the heat and 

pressure of successive sediment burial over time. Eventually the bitumen turns to 

kerogen and in turn to oil and/or gas, depending on the temperature and pressure to 

which it is subjected. Because this bituminous rock and subsequent sedimentary 

reservoir rocks were deposited in aquatic environments, they are naturally saturated 

with brine. The salinity and makeup of these brines can vary substantially based on the 

location and minerals present but consists largely of sodium chloride with some calcium 

carbonate.  Shown in Figure 1.5, These newly formed hydrocarbons, being less dense 

than water, begin to migrate towards the Earth’s surface through this brine reservoir 

under buoyancy drive.  

It is because of this replacement of brine with oil that there remains brine in reservoirs 

that are produced for their oil and gas. In the United States, the average ratio of water-

to-oil production in 2012 was 9.2 [22].  

This produced water represents a significant challenge from a disposal perspective as it 

is too saline for release to the environment without detrimental ecological effects but 
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can’t always be put back underground without ill effects to the reservoir. These 

dilemmas and their significance are further explored in Sections 2.3 and 2.4.  

 

Figure 1.5 - Depiction of hydrocarbon migration [23] 

1.1.4 Baker Hughes Challenge Problem 

The Baker Hughes 21st Century Co-Op at the University of Oklahoma through the Gallogly 

School of Aerospace and Mechanical Engineering and the Mewbourne School of 

Petroleum and Geological Engineering is a five year BS/MS degree pilot program in 

mechanical and petroleum engineering aimed at developing technical competencies and 

meta-competencies needed by engineers to hit the road running and succeed in the oil 

and gas industry [24]. In addition to core courses in mechanical engineering, the 

curriculum includes customized courses jointly offered by company engineers and faculty 

during summer internships, a senior capstone experience and graduate theses that are 

of relevance to the sponsoring company, and graduate cross-disciplinary courses from 

the School of Industrial and Systems Engineering and the Mewbourne School of 
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Petroleum and Geological Engineering. This program is duel disciplinary, bringing 

together undergraduates of both petroleum and mechanical disciplines so that they 

might leverage from each other’s foundational strengths to become successful future 

engineers. The Co-Op spanned multiple classes of students, each divided based on their 

year of program matriculation (i.e., BHI-13 consists of scholars who were undergraduate 

sophomores in the Spring of 2013).  

Larry Watkins of Baker Hughes Inc. presented the BHI Scholars with the “challenge 

problem” in the beginning of the 2014 Fall Semester. Below was the problem presented 

to the team: 

“The BHI-13 team focused on establishing an overview of 

unconventional hydrocarbon resources, primarily shale plays. The 

challenge for BHI-14 is to extend the efforts from where BHI-13 ended. 

The challenge for BHI-14 is to review and identify the go forward 

challenges facing development of shale. For this challenge, consider 

the following dimensions (question areas) for developing shale: 

• Technical Issues 

• Political Issues 

• Economics of Shale Development 

• Recovery Factors in Shale 

Political Issues: Identify and discuss factors in the political realm that 

currently influence development of shale resources. Provide thoughts 

on ways to mitigate these factors including but not limited to 

education or improved operating methods. 

 

Economics of Shale Development: Identify key factors that currently 

limit the economics of shale development. These factors include but 

are not limited to knowledge required for planning well paths and 
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completion methods, approaches of different types of E&P companies 

to well placement and planning, costs/supply of components for well 

completions and fracture operations. Discuss how these factors 

influence the overall economics for E&P companies in shale 

operations. 

 

Technical Issues: Identify and discuss the limitations of current 

technologies used in shale development. Discuss if the limitations are 

specific hardware, methods, materials, fundamental knowledge or 

combinations of these. Describe which technology areas influence the 

other elements of this challenge and then rank the technology issues 

in order of greatest positive impact on shale development going 

forward. 

 

Recovery Factors in Shale: Identify the factors that currently determine 

initial recovery factors in shale development areas. Describe how 

uncertainty in the input parameters influences the recovery from shale 

reservoirs. Provide a prioritized list of which information would provide 

the greatest reduction in uncertainty when initially estimating 

recovery. Discuss what actions might be possible to improve recovery.” 

As a group, the BHI Scholars framed the shale development problem in the industry today 

looking at four different perspectives: technical, political, economics, and recovery 

factors. Identifying the drivers, focuses, issues, and major dilemmas within the 

perspective further expanded each perspective using research techniques to be 

expanded upon in Sections 1.2.2 and 1.2.3. The dilemmas allow the team to pose 

research questions that will provide knowledge to manage the dilemmas. 

1.1.5 Baker Hughes Challenge Problem: Research Approach 

The BHI scholars broke into two interdisciplinary teams in order to tackle the challenge 

problem. Mechanical and petroleum engineering backgrounds were represented in both 

groups. The perspectives were split on terms of apparent connectivity. Each perspective 



 

11 
 

was framed using the sustainability triangle. 

A sustainability triangle, which is elaborated upon in Section 1.1.3, allows the team to 

organize complexity. The team assessed the perspectives from three different drivers 

including: social, environment, and economic. We further analyzed the drivers by 

determining the focus of the driver and the issues that are present in the industry from 

the corresponding perspective. The next step is to connect each issue from each driver 

to another issue of another driver. This connection needs to reveal tension present 

between the issues. These tensional connections propose dilemmas. The three types of 

dilemmas we analyzed are social/economic, social/environment, and 

economic/environment. This step is repeated for each of the issues in each of the drivers 

connected to each of the other issues in each of the other drivers. Once the team 

identified multiple dilemmas around each perspective, we were able to narrow down the 

choices to focus on the most relevant challenges that the industry is facing today. The 

end use for the Baker Hughes Challenge Problem paper was to identify these industry 

dilemmas, thereby allowing for research questions and, ultimately, master’s thesis topics 

to be identified by the BHI scholars.   

1.1.6 Sustainability Triangle and Issue Refinement 

It should be noted that the triangle is focused around a particular perspective. The three 

drivers, social, environmental, and economic, are used to identify issues surrounding the 

core perspective. Once the issues are addressed, tensions can easily be identified 

between the issues. A tension is represented by two issues that seemingly pull against 

each other. Once the tensions are identified, the dilemmas, or tensions with 0-1 solutions 
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can be identified. These dilemmas are quite complex and cannot be easily solved with a 

simple solution. The 0-1 solution to the dilemma implies that if one issue is addressed, 

the other issue seemingly must be ignored; in other words, there can seemingly be only 

one winner. A visual representation of the sustainability triangle used to identify industry 

dilemmas can be seen below as Figure 1.6. 

 
 
 

The completed sustainability triangle for the political perspective can be seen below in 

Figure 1.7. Notice the difference between the tensions and the boxed dilemmas. This 

sustainability triangle yielded six dilemmas which were later refined to just three; one 

for each node on the triangle. After each perspective had a completed sustainability 

triangle, the BHI team created a mind map, shown in detail in Section 1.2.1, which reveals 

the connectivity between the issues in all perspectives. By looking at the connectivity, 

the team is able to reveal tension present between perspectives resulting in dilemmas. 

The team was then able to further prioritize the dilemmas and decide where the focus of 

the challenge has the most tension present and thus is in most need of an innovative 

positive sum solution.  

Figure 1.6 - Visual Representation of the Sustainability Triangle 
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Figure 1.7 - Completed Sustainability Triangle for the Political Perspective 
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1.2 FORMULATON OF RESEARCH QUESTIONS 

1.2.1 Process for Selection of Research Questions 

Research Questions were formed from the tensions represented in each dilemma. The 

tensions lead to natural questions about the cause and effects of the dilemma. Why do 

these phenomena occur? What effects can come about because of the tension between 

issues? In what ways are the issues opposing one another? What variables are relevant 

to the tension? These high-level questions regarding the nature of the dilemma must 

lead to specific Research Questions that can be investigated through experimentation. 

The dilemma triangle that was used to construct these Research Questions is shown 

below in Figure 1.8. In the scope of this thesis, such question development follows: 

 
Since the beginning of the challenge problem research, my focus has been on the 

political perspective. The two primary dilemmas that were identified by my work on the 

challenge problem that I have chosen to investigate further both stem from 

environmental/social issues and are as follows:  

Dilemma 
Triangle

Dilemma 1-
2

Q1 .... Qn 

Dilemma
1-3

Q1 .... Qn 

Dilemma 
2-3

Q1 .... Qn 

Figure 1.8 - Visual of the Dilemma Triangle used to select Research Questions 
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• The dilemma between existing infrastructure and current regulations and 

legislation  

• The dilemma between concerns for public safety and the effects of subterranean 

contamination, specifically induced seismicity 

From these dilemmas and the connectivity “mind map” (Figure 1.9), I was able to 

develop four complex research questions based on the main research question: 

• How can the subterranean effects of waste water injection be reduced? 

The decision-making process to narrow down the potential research questions was 

complex. It was important that the questions were relevant to the main research 

question and also would provide valuable insight once addressed. Because the 

foundation of the issues with subterranean contamination surrounding waste water 

injection wells are largely economic and political, it made sense that those were the 

areas on the connectivity mind map that were utilized in the decision-making process. 

Also, the current social relevance of seismic activity resulting from injection wells around 

and in the state of Oklahoma heightened not just the importance and relevance of this 

thesis, but also the breadth and quality of available information. Because of the need 

for a new and more technological method for the disposal of waste water brines exists, 

the purpose of this thesis is to analyze in depth the applicability of an unconventional 

brine desalination method to the needs of oilfield waste water processing.  

The four research questions to be explored throughout this paper are: 

1. What changes need to be made to freeze crystallization desalination technology 
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with oilfield operations? 

2. What environmental benefits will be realized by treating water for reuse/release 

over underground injection? 

3. How can public safety be maintained or improved while decreasing the use of 

underground water injection? 

4. How can freeze crystallization be utilized with minimum impact to existing water 

treatment infrastructure? 

The connectivity between the Baker Hughes 21st Century Co-op and the research focus 

of this thesis can be seen below in Figure 1.9.The primary research question in 

consideration for this thesis, as well as secondary research questions, are discussed in 

further detail in Section 1.3.1. In order to expand upon and improve current knowledge, 

a firm understanding must be established on both the current laws and regulations 

surrounding waste water in ejection, as well as the current alternative methods of 

wastewater disposal. This is expounded upon in Section 2.1.1. 

1.2.2 Additional Information Needed to Proceed with Research 

Considering my Research Questions: 

1. How can freeze crystallization be utilized to treat flowback and produced 

water from oilfield operations? 

2. What changes need to be made to freeze crystallization desalination 

technology for compatibility with oilfield operations? 

3. What environmental benefits will be realized by treating water for 

reuse/release over underground water injection? 
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4. How can freeze crystallization be utilized with minimum impact to existing 

water treatment infrastructure? 

In order to continue my research, narrow in on potential methods, and to get started 

with more technical literary review, I requested the following information from Baker 

Hughes Inc.: 

• Lists of all injection wells in Oklahoma or Texas, including their positions and 

average volume of water injected per year. 

Research Focus 

Figure 1.9 – “Mind Map” Showing the Connectivity of Research Questions 
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• Current research papers Baker Hughes has written/taken part in that discuss 

negating seismic effects. 

• Current research papers Baker Hughes has written/taken part in that discuss 

alternative methods of wastewater disposal. 

• Information regarding potential resources for conducting experiments 

surrounding waste water injection volumes (and/or flow rates). 

• Water Quality Reports from wells under Baker Hughes authority, including 

common freshwater Water Quality Reports 

• The names of a few Baker Hughes contacts who I could communicate with 

regarding research questions and technical issues. 

The information requested, specifically the current research papers Baker Hughes has 

written/ taken part in that discuss negating seismic effects, will help substantially in 

narrowing my focus onto a feasible solution method that is not only logical, but of 

relevance to Baker Hughes. The information requested will assist me in addressing the 

Research Questions in the following ways: 

Table 1.1 - Visualization of the Requested Information for Each Research Question 

INFORMATION 
REQUESTED 

RESEARCH 
QUESTION 1 

RESEARCH 
QUESTION 2 

RESEARCH 
QUESTION 3 

RESEARCH 
QUESTION 
4 

 
Lists of injection wells in 
Oklahoma or Texas, 
including their positions 
and average volume of 
water injected per year. 
 

X X   
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Current research papers 
Baker Hughes has 
written/ taken part in 
that discuss negating 
seismic effects. 

 X X  

Current research papers 
Baker Hughes has 
written/taken part in 
that discuss alternative 
methods of wastewater 
disposal. 
 

 X X X 

Information regarding 
potential resources for 
conducting experiments 
surrounding waste 
water injection volumes 
(and/or flow rates) 

X   X 

The names of a few 
Baker Hughes contacts 
who I could 
communicate with 
regarding research 
questions and technical 
issues. 

X X X X 

 

1.3 GOALS AND FOCUS FOR THE WORK 

1.3.1 Intellectual Questions for Investigation 

In this section, I will outline and explain the importance of the intellectual research 

questions in the grand scheme of the entire paper. The four Research Questions serve 

not only as supplemental information for satisfactorily addressing the main Research 

Question, but they will individually provide amazing insight and connectivity to the 

process as a whole; all of the questions have elements that tie them to the issues and 

solutions posed with the other questions.  

• What changes need to be made to freeze crystallization desalination technology 
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with oilfield operations? 

• What environmental benefits will be realized by treating water for reuse/release 

over underground injection? 

• How can public safety be maintained or improved while decreasing the use of 

underground water injection? 

• How can freeze crystallization be utilized with minimum impact to existing water 

treatment infrastructure? 

The first Research Question addressed the physical nature of what causes seismic 

activity in the first place. Answering this question is central to this thesis. Without 

understanding what about waste water injection causes a predisposition for seismic 

activity, the problem could not be sufficiently addressed. This question leads into the 

discussion of the actual act of wastewater injection, how it could potentially be updated 

or improved, and how it could be done in a way that would reduce seismic activity.  

The second question is the most basic and fundamental. The legislation surrounding the 

oil and gas industry and hydraulic fracturing in particular, is a very interesting and 

complex topic in its own right. However, in order to appreciate the complexities of 

hydraulic fracturing and its byproducts in a political-economic mindset, one must first 

understand the legal boundaries and political opposition of the technology. In order to 

propose an alternative plan for waste water injection, understanding the intricacies of 

the laws is essential. This question is also particularly relevant currently, as litigation 

surrounding the amount of waste water injected in the state and the environmental and 

seismic concerns it is raising is coming to the forefront as oil and gas companies battle 
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with environmental and special interest groups. Another slightly subtler issue that 

answering this question will address is the education (or lack thereof) of the general 

public on the technology and methods involved in hydraulic fracturing and waste water 

disposal. The importance of this subtlety should not be overlooked, because public 

opinion is such an important influence over state legislators and their decision-making 

process. 

The third question is crucially important not only to myself, but to every single employer 

in the world. Employee safety is and should be the highest priority when it comes to oil 

and gas operation. Because of this, while investigating ways to make fundamental 

changes to the way waste water is disposed it is essential that worksite safety is factored 

into decision making. There are always ways to cut corners and take unnecessary risks 

to increase profits, but those are not acceptable solutions to a complex problem like the 

one posed in this thesis. 

The fourth Research Question addressed the utilization of existing infrastructure to 

address the waste water disposal issue. This is especially important when maintaining 

the economic feasibility of any proposed solution due to the massive savings associated 

with the utilization of existing infrastructure in lieu of building new facilities. Large scale 

waste water treatment plants have been utilized in North Dakota and Texas and are 

used to recycle massive amounts of flow back water and reuse it as fracking water, 

which greatly decreases associated costs of new water and water disposal. There are 

municipal wastewater plants all over North Dakota, but in the past, the flow back water 

has proven far too polluted with suspended particulates, radioactive earth, and other 
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fracturing chemicals to be treated in a municipal treatment center. Finding a way to 

utilize existing technology and water treatment facilities would be a step in the right 

direction to lower the dependence on waste water injection as the state’s primary 

method of disposal. 

1.3.2 Objective for the Thesis 

This thesis is to be one primarily of utility to Baker Hughes and the service industry as a 

whole, as well as lobbyists and policy makers in the state of Oklahoma and abroad by 

accomplishing the following objectives: 

• Proposing a reduction of the seismic effects of waste water disposal in Oklahoma 

and other actively developed petroleum regions by suggesting specific 

alternative methods and/or procedures of waste water disposal that could be 

utilized by corporations. Alternative methods to be considered are the surveying 

of fault lines prior to drilling injection wells to decrease the probability of seismic 

reactions, utilizing waste water recycling and reuse technology, or otherwise 

disposing of the water in a cost effective, environmentally friendly way. 

• Describing in detail the current available methods and technologies associated 

with waste water, as well as the current legislation and laws surrounding its 

disposal and reuse.  

• Providing insight amidst pending litigation to ongoing environmental, social, and 

political conflicts between waste water injecting companies and environmental 

groups. 

The following table outlines exactly where each intellectual research question is 
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addressed in the remaining chapters. 

Table 1.2 - Research Questions and Chapter Layout 

Relevant Sections: 

Intellectual Questions 

Chapter 2 Chapter 3 Chapter 4 

2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 3.5 4.1 4.2 4.3 4.4 

What are the main 

factors that facilitate 

seismic activity near 

the well site and how 

can those factors be 

successfully negated? 

X X X X X    X    X 

What legislation and 

regulations are 

currently in place that 

interferes with the 

efficient and safe 

disposal of waste 

water? 

X X  X X X X X X  X   

How can wellsite safety be 

maintained or improved all 

while decreasing the 

seismic effects associated 

with waste water injection? 

X X  X     X     

How can alternative 

methods of waste water 

disposal be utilized with 

minimum impact to existing 

infrastructure? 

X X  X X X X X X X X   

 
It is hoped that in the completion of this thesis, it will act as a comprehensive report on 

waste water disposal that can be used and referenced as a means of educating citizens 

about the oil and gas industry, their methods and technology, as well as the necessity of 

the safe and efficient disposal of waste water in the state. 

In Chapter 2 is a detailed literature review and research gap analysis, as well as framing 

the thought process for Chapters 3 and 4 while continuing to remain connected to the 

Challenge Problem outlined in Chapter 1, Sections 1.1.1 and 1.1.2.  

A very utility-heavy chapter, Chapter 3 includes simulation and commentary on a state 

of the art water recycling method used intermittently in the mining industry; Eutectic 

Freeze Crystallization. This chapter is of crucial importance to developing a deep 
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understanding of the benefits and drawbacks of alternative disposal methods, as well as 

the feasibility compared to underground injection in regards to the geographical and 

geological conditions and laws and regulations of oil producing states.  

Chapter 4 includes descriptions of further Research Gaps that must be explored to 

validate EFC for compatibility with oilfield operations and a system design for freeze 

crystallization is proposed, along with corresponding cost and feasibility analysis. 

Chapter 5 includes a statistical economic assessment of EFC thermodynamics and 

compares this to other methods that are employed to date for commercial water 

desalination and treatment in the petroleum industry.   

1.3.3 Connection of Thesis to Baker Hughes Challenge Problem 

The main, driving force behind the Baker Hughes 21st Century Co-Op program was to 

create a group of inter-disciplined, motivated and hardworking engineering students 

who would be able to hit the road running in the oil and gas industry after graduation 

thanks to the experiences gained in three summer internships, inter- disciplinary course 

work, and the team dynamic. The blending of mechanical engineering and petroleum 

engineering curriculum would make students a very unique and qualified candidate for 

employment. 

 Because of this, it was very important that from the beginning, the master’s theses 

produced by the group be related and relevant to Baker Hughes, further strengthening 
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the utility to them and the industry. Similar to the mind map, the Figure 1.10 is designed 

to demonstrate the connectivity between the research done in the Baker Hughes 21st  

Century Co-op and the thesis. However, this refined graphic shows not only the 

connectivity to this thesis, but also the connectivity to the other BHI15 member’s thesis.  

Figure 1.10 - Graphic Showing the Connectivity of Master’s Theses 
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Shown in Figure 1.10 are the dilemmas that were created through the use of the Baker 

Hughes challenge problem research using the dilemma triangle method. They are color 

coded to demonstrate their association with one of the three thesis topics seen to the 

right of the image. The green lines seen between the dilemmas cross into multiple 

theses, showing the connectivity between the two theses. 

1.3.4 Engineering and Scientific Relevance of the Work 

The engineering and scientific relevance to this thesis lies in the utility it provides to oil 

and gas corporations, Baker Hughes, and the general public. Regardless of one’s stance 

in the debate over what is causing the influx of earthquakes, it is fact that seismic activity 

is damaging, expensive, and increasingly prevalent in Oklahoma. 

Through a thorough analysis of the main existing methods of wastewater disposal 

(recycling for reuse, recycling, cleaning, and release into the environment, 

transportation away from well site and left in evaporation pools, and deep waste water 

injection) the potential for identifying research gaps in industry methods and research 

increases dramatically. Currently, waste water disposal methods vary based on region 

due to factors like legislation, cost, water availability, and executive decisions. By 

learning about the reasons behind the methods used across the country, the ability to 

propose a realistic, feasible solution in Oklahoma becomes possible. Ideally, after the 

method is proposed, seismic simulations can be used to verify the method’s “success.” 

The ability to propose a solution that would decrease the seismic effects associated with 

waste water injection would be a large leap in the correct direction for the state of 

Oklahoma, as well as for any corporation that actively altered their procedures and 
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policies to adhere to a stricter, more seismic-friendly method of waste water disposal. 

Especially for a company like Baker Hughes, an industry leader in environmental 

protection, public and employee safety, and innovation, it would be groundbreaking for 

them to consider a method to reduce waste water injection volumes. Hopefully, other 

companies would follow suit, creating a wave of change throughout the world as more 

companies look to decrease their negative environmental impacts. 

1.4 ORGANIZATION OF THE WORK 

1.4.1 Overview of Implementation Strategy 

Firstly, literature will be evaluated and compiled into a detailed review in order to sculpt 

the final structure of the research questions, while also leading towards the use of 

industry standard modelling software for the use in simulation. At this point, many 

chapters will be completed concurrently which will benefit each by making them more 

interconnected and easily updateable for a PhD dissertation at a later time.  

Verification and Validation of the work outlined above will be performed using the 

method described in Section 1.4.2. Applicability of the research questions will continue 

to be tested through the use of the Sustainability Triangle (Section 1.1.3). 

1.4.2 Overview of Verification and Validation Strategy 

In this report, the terms validation and verification refer to the justification of 

knowledge claims and the internal consistency of the context, respectively.  We will be 

paying close attention to the validation square which is also going to be the bases of the 

logical flow of the content of the thesis. As shown in Figure 1.11, the validation square 
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is composed of four categories which are theoretical structural validity, empirical 

structural validity, empirical performance validity, and theoretical performance validity. 

Theoretical structural validity deals with the internal consistency of the design method 

or the approach which basically means considering the logical soundness of the 

individual parts and integrated parts of the design or approach.  Chapters 2 and 3 in the 

thesis will be focused on this aspect of the validation square and will indicate if the 

design method is internally consistent.  In Chapters 2 and 3, we will do a literature review 

of the topics and subjects related to the investigated problem, and we will identify the 

current common methods used to deal with and study the investigated problem.  Once 

a common method has been determined or developed, the important parameters of 

the design method will be identified and discussed.  To ensure the internal consistency 

of the design method, the limitations and the uncertainty of the developed method will 

be clearly demonstrated at the end of chapter 3.  

The second aspect of the validation square is empirical structural validity which refers 

to the appropriateness of the chosen example problems intended to test the design 

method.  Chapters 4, and 5 are used to test the empirical structural validity of the design 

method.  In Chapter 4, some examples will be used to develop a decision model and the 

relationship of those examples to the actual problem will be closely checked to ensure 

they reflect the important parameters associated with the investigated problem. We 

will also include a discussion about the uncertainty associated with the chosen examples 

and how that uncertainty can affect the results. In Chapter 5, we will show some 

examples that can measure or show the performance of the design method or model 
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developed. Those examples will test only the performance of the model and at this stage 

some changes may be made to the model or method if required to ensure that the 

desired performance is achieved.  In Chapter 6, we will develop a comprehensive 

method or model and make all the changes needed based on the results of the examples 

used in Chapters 4 and 5.  Once a comprehensive model is developed, examples will be 

used to test the efficiency and effectiveness of the model and how reasonable are the 

results, this will lead us to the quadrant three of the validation square which is empirical 

performance validity. This quadrant deals with the ability to produce useful results for 

the chosen examples. The outputs of the approach or model will be checked for their 

feasibility against all the constraints of the chosen examples.  We also perform a 

sensitivity analysis of the model to check the rationality of the model’s outputs and to 

see how realistic the results are.   

The last part of the validation square is theoretical performance validity which deals 

with the ability of the model to produce useful results beyond the chosen example 

problems which requires testing the model with other problems and analyzing the 

results to see if they are reasonable and realistic [25].    

Chapter 5 is focused on this aspect of the validation square, and in this chapter, we also 

conclude the thesis with a discussion of the limitations of the model and the uncertainty 

associated with the results gained from the model.  Some recommendations for future 

studies in the related area will be introduced.  
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1.5 SYNOPSIS OF CHAPTER ONE 

In this chapter, the foundation for the thesis is laid. We begin with an introduction to 

the oil and gas industry and a review on the process of oil generation and cohabitation 

of brine in oil systems. A review into the necessitation of technological advance in the 

industry is followed by a background and a motivation section that describes the 18-

month long process of working with the Baker Hughes Challenge Problem, and the 

process of identifying and refining my research areas. From this process, four research 

questions are defined and the connectivity to the overall theme of the thesis is 

identified, only to be further elaborated upon throughout the rest of the thesis. Once 

the questions are posed and a strategy for their solution is created, significant 

engineering and scientific contributions of the work are discussed in Section 1.3.3. The 

connectivity between the research questions and the challenge problem will be further 

substantiated in Chapter 2 through the critical literature review.   

Figure 1.11 - Verification and Validation Square and Strategy 
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2 Chapter 2 - Critical Literature Review 

In this Chapter, literature about the social and political implications of waste water 

disposal is critically evaluated. Further, literature surrounding the physical components 

of the wellsite that contribute to the issue, as well as previous industry attempts to 

negate the effects of this problem will be considered and analyzed. From the 

information gathered, Research Gaps that exist in the current procedure are explored 

in the context of the Sustainability Triangle introduced in Section 1.2 and value of the 

thesis topic in relation to the needs of the industry as a whole and Baker Hughes is 

evaluated in Section 2.4. Our aim with this Chapter is to introduce the complexity of 

water disposal in the oilfield to those who might be unfamiliar, and to highlight 

shortcomings of current methodology which leads to the justification and potential 

benefit of using EFC as a new technology for waste water treatment. Once we have 

provided an overview of waste water disposal techniques currently in use and justified 

the Research Questions, we start answering the Research Questions in Chapter 3.   

2.1 CRITICAL LITERATURE REVIEW SUMMARY 

Provided in this Section is a condensed version of the overall literature review provided 

in the succeeding Sections (2.3 – 2.5) and that provides a contextual commentary to 

frame the Research Gap identification and Research Question generation of Section 1.2 

as they relate to Eutectic Freeze Crystallization. Following the connection of the 

Research Gaps to the relevant Research Questions, we show the connection of the 

literature review as a whole back to the Research Questions tabularly to show the 

connection of each succeeding section to this one. This connection of each individual 
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Research Question to the relevant following Chapters is outlined in Section 2.1.2 at the 

end of each paragraph.  

2.1.1 Connectivity of Literature Review to Research Questions 

In this Section, the connection between the critical evaluation of the literature and the 

elucidated Research Gaps is discussed. In Table 2.2 below, connection between key 

papers and the characteristics of a sustainable water treatment method (discussed in 

Section 1.2.1) are shown. Additionally, the objectives, constraints and uncertainties 

discussed within the papers are abbreviated and included to show connection to the 

Research Questions and their formulation (discussed in Section 1.2.2). The color scheme 

ties the sources to the specific Research Questions that are included in Table 2.1.  

Table 2.1 - Connection of Literature Review to Research Questions 

 

 

 

 

 

 

 

 

 

Chapters 

Research Questions 
1 2 3 4 5 

RQ1:    How can freeze crystallization be utilized 

to treat flowback and produced water from 

oilfield operations?  
F J Q1 Q2,3 Q4 

RQ2:  What changes need to be made to 

desalination technology for compatibility with 

oilfield operations? 

F J Q1,2  Q3,4 

RQ3:   What environmental benefits will be 

realized by treating water for reuse/release over 

underground water injection? 

 
F, 

J 
Q1,2 Q3 Q4 

RQ4: How can freeze crystallization be 

utilized with minimum impact to existing water 

treatment infrastructure? 

 F J Q1,2 Q3,4 
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Following the table in Section 2.1.2 is a dialogue in which the key points from each paper 

are synthesized and identifies the Research Gaps that exist and what needs to be done 

to resolve them. Specific continuation of the Research Gap identification through 

literature review is performed in Section 2.3.The ‘Objective’ identified in Table 2.2 is the 

objective of the author in the paper as it pertains to the Research Questions for this 

thesis, primarily the cause and effect of waste water disposal and recycling and the use 

of Eutectic Freeze Crystallization for desalination of produced water. ‘Constraints’ refers 

to the constraints I have identified that prohibit the use of the method the author has 

either introduced or defended, and in the case of papers regarding social implications, 

the effect of location and social attitude to the perception of the implemented 

technology.  Finally, ‘Uncertainty’ refers to the factors to which the proposed method 

or information is sensitive and what changes in the system could make it become 

unstable in the future. While this might seem unclear, with the use of an example it 

should become clear. Pierce and Bertrand [26] mention that water recycling helps with 

sustainability in their paper. Their analysis acknowledges that in shale plays “the access 

to injection wells for disposal of produced water is very limited” and that a partial 

solution to costly disposal that necessitates transportation would be “to recycle the 

[water] for use as Frac Fluid or as drilling fluid.” Their reasoning for the need to recycle 

water is not because of environmental damage caused by release or injection (such as 

induced seismicity), but rather cost; it is simply sometimes more economical to try and 

use the produced water for frac fluid (recycling) rather than paying for transportation to 

a disposal site. Therefore, in the ‘Objective’ category there is a label of “Max profit” as 
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the authors motivation for the paper and the technology is to maximize the margin for 

producers. Similarly, for ‘Constraints’, they understand and pose the question to the 

reader of “What techniques are used to clean this water and what regulations [pertain] 

to the various techniques.” Therefore, the constraint as identified is what laws and 

regulations must be followed in order to comply and simultaneously lower water 

management costs. Finally, the ‘Uncertainty’ in their analysis requires more evaluation 

than analysis. Pierce and Bertrand mention and pose the question of what techniques 

or methods should be used but they do not acknowledge that the method might not be 

uniform for all fields and could vary depending on the degree of separation desired, as 

well as the properties of the water itself. Additionally, their analysis focuses on the cost 

of disposal for West Texas which is enormously lower than that of the Northeast, 

therefore they have not considered the effects of regionality on proposing a solution. 

Because of the aforementioned, the ‘Uncertainty’ is identified as what method or 

methods to use. Similarly, the other papers were categorized, and the ‘Objective’, 

‘Constraint’, and ‘Uncertainties’ are listed, if they are pertinent or identifiable to the task 

at hand. The connection between the papers and the characteristics of the solution to 

the Research Gaps is performed in Section 2.3. 



 

 

3
5

 

Table 2.2 - Connectivity of Literature Review to Research Gaps 

Waste Water Management 

Paper 

Reduce Reuse Recycle Revenue Other Objective Constraints Uncertainty 
A

cc
es

s 
to

 U
n

d
er

gr
o

u
n

d
 In

je
ct

io
n

 

R
ed

u
ce

s 
R

ev
en

u
e 

St
re

am
 

R
ed

u
ce

s 
Se

is
m

ic
 A

ct
iv

it
y 

P
ro

vi
d

es
 u

se
 f

o
r 

Li
m

it
ed

 T
re

at
ed

 W
at

er
 

Fr
es

h
 W

at
er

 A
va

ila
b

ili
ty

 

R
eu

se
 f

o
r 

H
yd

ra
u

lic
 F

ra
ct

u
ri

n
g 

In
se

n
si

ti
ve

 t
o

 W
at

er
 Q

u
al

it
y 

Ze
ro

 L
iq

u
id

 D
is

ch
ar

ge
 (

ZL
D

) 

Sa
fe

ty
 o

f 
R

el
ea

se
d

 W
at

er
 

P
ro

vi
d

es
 R

ev
en

u
e 

St
re

am
 

R
ed

u
ce

d
 E

n
er

gy
 C

o
st

 

Lo
w

 F
ac

ili
ty

/ 
Eq

u
ip

m
en

t 
C

o
st

s 

M
ar

ke
t 

fo
r 

Tr
ea

te
d

 W
at

er
 

R
ed

u
ce

s 
Im

p
ac

t 
to

 o
th

er
 In

d
u

st
ri

es
 

U
se

s 
Ex

is
ti

n
g 

Te
ch

n
o

lo
gy

 

R
em

o
ve

s 
o

r 
In

se
n

si
ti

ve
 t

o
 T

SS
 

R
em

o
ve

s 
o

r 
In

se
n

si
ti

ve
 t

o
 O

&
G

 

Sc
al

ab
ili

ty
 

   

[26] *    *    *          Max Profit 
EPA 

Regulations for 
Release 

What method 
or methods to 

use 

[27]          *   *    * * 
Reduce 

Environmental 
Footprint 

Regulations, 
Local concerns 

Long term 
effects 

[28] *  * *           *    
Improve 

Reserves w/ 
Econ. Disposal 

- 
Scale of 
increase 

[29]     * * *         * *  
Reuse Prod. 
Water for 
Fracking 

Water Quality Scalability 

[30]     *  *  *     *     
Increase 

Regulation 
Anticipated 
Technology 

Regionality 

[31]  *  *       * *       - 
Cost of 

Disposal 
Regulatory 

Changes 

[32]     *         *     - - 
Model 

Adequacy 

[33]     *    *  *   *     
New Source of 
Potable Water 

Water 
Availability 

Climatic 
Changes 

[34]      *   * *   *     * - - - 

[35]    *       * * *  *    - - - 



 

 

3
6

 

Waste Water Management 

Paper 

Reduce Reuse Recycle Revenue Other Objective Constraints Uncertainty 

A
cc

es
s 

to
 U

n
d

er
gr

o
u

n
d

 In
je

ct
io

n
 

R
ed

u
ce

s 
R

ev
en

u
e 

St
re

am
 

R
ed

u
ce

s 
Se

is
m

ic
 A

ct
iv

it
y 

P
ro

vi
d

es
 u

se
 f

o
r 

Li
m

it
ed

 T
re

at
ed

 W
at

er
 

Fr
es

h
 W

at
er

 A
va

ila
b

ili
ty

 

R
eu

se
 f

o
r 

H
yd

ra
u

lic
 F

ra
ct

u
ri

n
g 

In
se

n
si

ti
ve

 t
o

 W
at

er
 Q

u
al

it
y 

Ze
ro

 L
iq

u
id

 D
is

ch
ar

ge
 (

ZL
D

) 

Sa
fe

ty
 o

f 
R

el
ea

se
d

 W
at

er
 

P
ro

vi
d

es
 R

ev
en

u
e 

St
re

am
 

R
ed

u
ce

d
 E

n
er

gy
 C

o
st

 

Lo
w

 F
ac

ili
ty

/ 
Eq

u
ip

m
en

t 
C

o
st

s 

M
ar

ke
t 

fo
r 

Tr
ea

te
d

 W
at

er
 

R
ed

u
ce

s 
Im

p
ac

t 
to

 o
th

er
 In

d
u

st
ri

es
 

U
se

s 
Ex

is
ti

n
g 

Te
ch

n
o

lo
gy

 

R
em

o
ve

s 
o

r 
In

se
n

si
ti

ve
 t

o
 T

SS
 

R
em

o
ve

s 
o

r 
In

se
n

si
ti

ve
 t

o
 O

&
G

 

Sc
al

ab
ili

ty
 

   

[36] *  * * * *   *    *      
Reduce Water 

Intensive 
Development 

Alternatives to 
Injection 
Disposal 

Local Needs 
and Impact 

[8]  *   *    * * *        Disposal Cost Regionality Reuse 

[2]  * *  *    * *   *      Reuse Water 
Non-potable 

Use 
Demand 

[37] *    *     *  *      * 
Improve 

Reserves w/ 
Econ. Disposal 

- 
Scale of 
increase 

[4] *     * *  * *  *      * 
Increase Shale 
Development 

Water Disposal 
Natural Gas 

Demand 

[38]        * *  *    *    
Social Water 
Management 

Social 
Education 

Degree of 
Water Recycling 

[39] *          *  *     * 
Increase Shale 
Development 

Water Disposal 
Natural Gas 

Demand 

[40] * *             * *   
Inject High 

Salinity Brines 
Suspended 

Solids 
Formation 

Compatibility 

[41]  * *  *  * *  *    *    * 
Desalination 

with EFC 
Salinity and 

Refrigeration 
Effect of 

Contaminants 

[42] *    * *        *     - - 
Water 

Availability 

[6]  *        * *  
 
 

 *   * Validate EFC 
System 

Adequacy 
Heat Transfer, 
Measurement 



 

 

3
7

 

Waste Water Management 

Paper 

Reduce Reuse Recycle Revenue Other Objective Constraints Uncertainty 

A
cc

es
s 

to
 U

n
d

er
gr

o
u

n
d

 In
je

ct
io

n
 

R
ed

u
ce

s 
R

ev
en

u
e 

St
re

am
 

R
ed

u
ce

s 
Se

is
m

ic
 A

ct
iv

it
y 

P
ro

vi
d

es
 u

se
 f

o
r 

Li
m

it
ed

 T
re

at
ed

 W
at

er
 

Fr
es

h
 W

at
er

 A
va

ila
b

ili
ty

 

R
eu

se
 f

o
r 

H
yd

ra
u

lic
 F

ra
ct

u
ri

n
g 

In
se

n
si

ti
ve

 t
o

 W
at

er
 Q

u
al

it
y 

Ze
ro

 L
iq

u
id

 D
is

ch
ar

ge
 (

ZL
D

) 

Sa
fe

ty
 o

f 
R

el
ea

se
d

 W
at

er
 

P
ro

vi
d

es
 R

ev
en

u
e 

St
re

am
 

R
ed

u
ce

d
 E

n
er

gy
 C

o
st

 

Lo
w

 F
ac

ili
ty

/ 
Eq

u
ip

m
en

t 
C

o
st

s 

M
ar

ke
t 

fo
r 

Tr
ea

te
d

 W
at

er
 

R
ed

u
ce

s 
Im

p
ac

t 
to

 o
th

er
 In

d
u

st
ri

es
 

U
se

s 
Ex

is
ti

n
g 

Te
ch

n
o

lo
gy

 

R
em

o
ve

s 
o

r 
In

se
n

si
ti

ve
 t

o
 T

SS
 

R
em

o
ve

s 
o

r 
In

se
n

si
ti

ve
 t

o
 O

&
G

 

Sc
al

ab
ili

ty
 

   

[43] *  *  * *    * *       * Validate EFC 
Regionality of 

Water 
Sensitivity of 

EFC 
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pH, common 
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Lifecycle 
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Desalination of 
produced water 

Salinity Effects of O&G 
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2.1.2 Identification of Research Gaps 

In Section 2.3, we see that there are few sustainable options that exist in the current 

technology of waste water disposal/treatment that are being applied to the task of 

produced water treatment in the oil industry. Little water treatment is performed on 

waste water due to the high perceived cost of treatment and the low cost of disposal 

through injection wells [50]. Aqwatec [35] mentions that the relevant constituents for 

removal in produced water are: “Salt content, Oil and Grease (O&G), organic 

compounds, and Naturally Occurring Radioactive Material (NORM).” Given the current 

research status of EFC is very young, there has been no investigation into the sensitivity 

of the crystallization nucleation process to the presence of contaminants such as 

suspended solids, O&G, or NORM. therefore, first an investigation of what effects, if any, 

the presence of these components would have on the EFC process needs to be 

performed to validate the method for the task of waste water treatment at an industrial 

capacity. The work presented in this thesis focuses primarily on the effects of NORM 

components on the nucleation of both salt and ice crystals, as it is assumed that a high 

level of preliminary treatment can be performed to remove most of the O&G and 

suspended solids. There are many well-known solutions to these problems, such as the 

use of an API separator for solids and gross Oil and Grease removal, while 

electrocoagulation can be used to flocculate remaining O&G [51, 52]. Further 

experimentation should be performed to determine the effect of suspended solids and 

O&G to determine whether their removal by pretreatment is warranted, or whether this 

step can be removed as well. This gap in knowledge between the ability of EFC to 
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desalinate brine streams and the effects of common coproduced water stream 

contaminants is a gap that leads to the formulation of Research Question 1: How can 

freeze crystallization be utilized to treat flowback and coproduced water from oilfield 

operations? The ability of EFC to desalinate complex brines is explored through Chapter 

3 via simulation to determine if the technology is capable of separating multi-species 

brines that are common of produced water. Sections 4.1 and 4.2 include discussion on 

future bench scale work that should be performed to validate EFC through physical 

processes. Finally, economic considerations are included in Section 5.2 to evaluate if the 

method of EFC desalination could be implemented commercially.  

The current EFC freeze chamber design that F. vd Ham [41] presents is of utility only for 

bench scale experimentation due to size (10 L). He outlines the design of a scraped 

cooled wall crystallizer (SCWC) capable of separating ice and salt crystals gravimetrically 

and the recycling of the mother liquor for further processing. Verbeek [6] builds on this 

original SCWC design and investigates the EFC process on a skid mounted EFC design 

that is capable of treating 200 L at a time. While this is a substantially larger volume, it 

is still not adequate in addressing whether EFC can accommodate the substantial ( ≥ 

1,500,000 L) stream that can be associated with a moderate ( 5 wells) sized advanced 

age oilfield. However, their work into the scalability of the EFC process can be expanded 

to address the gap of whether freeze crystallization desalination technology can be 

upscaled enough to handle the waste water streams. The compatibility of EFC to oilfield 

operation is primarily investigated to address any deficiencies or roadblocks that would 

delay implementation of this technology into the current infrastructure of treatment 
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facilities in the industry, such as refineries or injection wellhead locations where 

significant infrastructure already exists. Lu [43] addresses the use of EFC for treating 

coproduced water from Kuwait and the treatment of low salinity flowback water from 

Shale gas fracturing in the Marcellus. Unfortunately, Lu does not address what effect, if 

any, the presence of minute contaminants such as NORM, or solid contaminants such 

as residual hydrocarbon and suspend solids would have on the EFC process. He 

acknowledges that, “In order to be able to make better cost calculations and compare 

them with evaporative crystallization, a more thorough study of all parameters involved 

in the EFC and recrystallization process is necessary. Some examples of important 

aspects to investigate are continuous operation (a commercial process will be 

continuous) and scaling up to larger scale. Also, EFC of produced waters from different 

origin and composition have to be studied.” He hints on an important issue. The driving 

factor for adoption of this technology by the oil industry is precisely the cost of a 

commercial operation and the robustness of the method to be applied to waters of 

varying qualities and origin. The latter is addressed through Research Question 1, while 

the former relates to the changes that need to be made to the technology for 

commercial upscaling. This gap is foundational to Research Question 2: What changes 

need to be made to freeze crystallization desalination technology for compatibility 

with oilfield operations? This gap is further explored in Section 3.5 by investigating the 

effect of common waste water stream contaminants on the EFC temperature for 

streams from the Marcellus and Utica shales. Additionally, Section 5.2 contains a 
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discussion into the economics of EFC and preliminary work into cost estimation for 

treatment via EFC (in $/bbl) is presented.  

Many areas with developed oilfields in the U.S. are in areas deemed as vulnerable to 

drought [33] and there is an alarming history of mega-droughts lasting 300 years or 

longer in many western U.S. states such as Nevada, California, Arizona, and Utah [32]. 

This disturbing potential future of little potable water is underscored dramatically by the 

use and disposal of > 20,000 gallons per well of fresh water for hydraulic fracturing of 

new wells in these states. In many cases, the solution means recycling flowback or 

produced water to limit the need for fresh water in the production of hydrocarbons [31]. 

However, the recycling or release of produced water is often met with unintentional 

ecological consequences. Current regulation in Eastern Shale gas states (Pennsylvania 

and West Virginia) is heavy on regulating underground injection as a legacy of existing 

legislation passed in historic oil producing states such as Oklahoma and Texas, but have 

failed in implementing meaningful legislation regulating the release of tainted waters to 

the environment [30].Given that there are little Class II brine disposal wells associated 

with the Marcellus Shale Gas production states, it is likely that recycling will be the way 

forward for development, but that underground injection is currently the only long term 

viable option for a future of gas production in the area. Arthur, Dutnell, and Cornue [28] 

acknowledge that there is an associated infrastructural cost to the disposal through 

injection in the form of road damage, minor releases, and traffic related casualties that 

should be considered in an injection schema. Because of the potential detriments 

associated with injection are so many, Gupta and Hlidek [29] speculate that there is 
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potential for an optimized recycling operation for the recycling of frac fluid as the cost 

of sourcing fresh water and disposal of waste water increases with water scarcity that 

will reduce the dependence on injection for disposal and water management. Recently 

in Oklahoma a connection between Class II injection wells and earthquakes (hereto 

referred to as induced seismicity) has been noted [53]. A gap exists regarding whether 

there is a current recycling method that can help hydrologically impacted areas while 

simultaneously reducing anthropogenic seismic activity and associated environmental 

destruction such as roads and bridges by overuse of heavy disposal trucks and 

machinery and whether these recycling methods can reduce unforeseen environmental 

damage in the form of detrimental releases of toxic salts into estuaries and streams. This 

gap is analyzed through Research Question 3: What environmental benefits will be 

realized by treating water for reuse/release over underground water injection? This 

Research Question is evaluated through Section 3.5 in a discussion regarding the 

reduced water volumes associated with freeze crystallization and the potential energy 

savings realized through the use of the crystallization method over others. Additionally, 

in Section 4.2 commentary on the economic value of pure crystallized salt is presented 

and what impact this could have on national anhydrous NaCl production and associated 

environmental impact. Finally, in Section 5.2 a holistic economic analysis of freeze 

crystallization is performed that highlights the usefulness of the technology in reducing 

water injection disposal and the potential release of fresh water to the environment. 

Refineries on average use 2.5 gallons of water for every gallon of crude processed. This 

combined with the introduction on entrained water from crude delivery means that the 
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typically refinery deals with upwards of 10 million gallons of ‘dirty’ water daily. Typical 

dirty water processing at the refinery level includes membrane technologies (RO) and 

thermal distillation for water reuse [54]. Thermal distillation is the most common water 

treatment technique as it is economical and technically simple, the plants already have 

the necessary permits to use this technology. New refineries are stressed to reduce costs 

and consumption by adopting new lower energy desalination and treatment methods 

while minimizing discharges. Haddaway [55] mentions that the key is [to], “use existing 

waste or low-value streams from oil and gas exploration (and other industrial processes) 

to reduce the amount of effluent generated.” By recycling water again and again for use 

in the refinery, the newer plants are able to reduce their environmental footprint, 

reduce costly permitting and consumption costs, while simultaneously reducing energy 

consumption with energy efficient new equipment. What hasn’t changed however, is 

the technology that is in use. Thermal distillation, while appropriate for refinery use, is 

at the edge of what is theoretically possible through energy efficiency, and there are 

little gains to be had from further optimization at this point. EFC has the potential to use 

less energy than a thermal process while simultaneously allowing for the continued 

recycling of water within the refinery and being at an early technological stage, has 

numerous opportunities for energy optimization. While it is clear that there is need for 

efficient water treatment at the refinery level, and indeed waste water treatment from 

crude production as well, it isn’t certain what changes would need to be implemented 

at the refinery level to have compatibility with freeze crystallization, given refineries 

have been utilizing thermal distillation for so many years. This gap is addressed by the 
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Research Question 4: How can freeze crystallization be utilized with minimum impact 

to existing water treatment infrastructure? This Research Question is developed in 

Section 4.4 with discussion on the sensitivity analysis of EFC temperature and this 

implication on the design of a EFC treatment facility. Through Section 5.5, future 

research needs for EFC and discussion about other problems for which EFC can be 

applied are covered to strengthen the relationship between EFC as a water treatment 

method and refinery operations.  

2.2 CONCEPT AND RESEARCH GAP EXPLORATION 

In this Section, the connection of the Challenge Problem introduced in Chapter 1 to the 

Research Gaps identified in Section 2.1 is presented. The key background subjects and 

their connection to the Research Gaps are explored in Sections 2.2.2 and 2.2.3. Finally, 

having established the principal background subjects and the connection of the 

Research Gaps to the motivation for this work, the needs of desalination specifically in 

waste water recycling is explored. This Section is instrumental in understanding the 

disposal method critical literature evaluation performed in Section 2.3 and justifies the 

need subject of desalination in a sustainable oilfield environment for those unfamiliar 

with produced water and its properties.  

2.2.1 Connection of Challenge Problem to Research Gaps 

The main, driving force behind the Baker Hughes 21st Century Co-op program was to 

create a group of inter-disciplined, motivated and hardworking engineering students 

who would be able to hit the road running in the oil and gas industry after graduation 

thanks to the experiences gained in three summer internships, inter- disciplinary course 
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work, and the team dynamic. The blending of mechanical engineering and petroleum 

engineering curriculum would make students a very unique and qualified candidate for 

employment. 

Because of this, it was very important that from the beginning, the master’s theses 

produced by the group be related and relevant to Baker Hughes, further strengthening 

the utility to them and the industry as a whole. Similar to the mind map, Figure 2.1 below 

is designed to demonstrate the connectivity between the research done in the Baker 

Hughes 21st Century Co-op and the thesis. However, this refined graphic shows not only 

the connectivity to this thesis, but also the connectivity to the other BHI15 members’ 

theses. This is a visual demonstration of exactly how we can work as a team and support 

each other and our research endeavors throughout the thesis writing and research 

process. 

 

Figure 2.1 - Connectivity of Research Gaps to Challenge Problem 
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Having identified the relevant drivers through the process described in Section 1.1.3, 

the Research Gaps that are identified in Section 2.1 are anchored in the context of the 

Challenge Problem, specifically in the perspective of environmental effects in the focus 

of economic exploitation of unconventional resources.  

2.2.2 Introduction to Desalination 

Desalination is defined as any process that removes salts from water, or another solvent 

phase. Desalination processes are used in municipal, industrial, and commercial 

applications. With improvements in technology, desalination processes are becoming 

cost-competitive with other methods of producing usable water for our growing needs, 

but many new methods are being developed. The primary methods in use today are 

thermal or membrane technologies.  

During World War II, with limited fresh water availability in certain localities, it was felt 

that desalination should be developed to convert saline water to useful fresh potable 

water for use. Subsequently, “The Saline Water Act” was passed by Congress in 1952 to 

provide federal support for desalination technology for use both domestically and 

internationally. The U.S. Department of the Interior provided funding during the 1950s 

and 60s for initial development of desalination technology, and for construction of small 

scale desalination plants [56].  

Desalination is a relatively new science and continues to undergo technological 

improvements. While it is a new science, it has resounding social implications for 

maintaining quality of life and reducing political rancor the world over. President 
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Kennedy has said, “No water resources program is of greater long-range importance 

than our efforts to convert water from the world’s greatest and cheapest natural 

resources – our oceans – into water fit for our homes and industry. Such a break-through 

would end bitter struggles between neighbors, states and nations”. Those statement 

are truer today more than ever. 

2.2.3 Introduction to Produced Water 

According to OSPAR [57] (OSLO-PARIS) “Recommendation 2001/1” Produced Water 

means water which is produced in oil and/or gas production operations and includes 

formation water, condensation water and re-produced injection water; it also includes 

water used for desalting oil. Produced water is a complex mixture. It also has wide 

variations in composition within and between reservoirs as well as with the age of fields. 

The following materials are generally associated with produced water: 

• Dispersed hydrocarbons – oil droplets mainly aliphatic hydrocarbons  

• Dissolved hydrocarbons – aromatic and polycyclic aromatic hydrocarbons (PAHs)  

• Soluble organics: phenols, fatty acids  

• Salt content  

• Production chemicals  

• Heavy metals  

• Radioactive materials 
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Hydrocarbons originally form from bitumen, a thick tarry substance leftover from the 

decay of organisms that expire and are transported to anoxic conditions. Typically, this 

is either plankton sinking to the sea bed, or trees and plant material preserved in 

marshes and estuaries [21]. This organic material is chemically altered by the heat and 

pressure of successive sediment burial over time. Eventually the bitumen turns to 

kerogen and in turn to oil and/or gas, depending on the temperature and pressure to 

which it is subjected. Because this bituminous rock and subsequent sedimentary 

reservoir rocks were deposited in aquatic environments, they are naturally saturated 

with brine. The salinity and makeup of these brines can vary substantially based on the 

location and minerals present but consists largely of sodium chloride and calcium 

carbonate.  Shown in Figure 1.5, These newly formed hydrocarbons, being less dense 

than water, begin to migrate towards the Earth’s surface through this brine reservoir 

under buoyancy drive.  

Because of this replacement of brine with oil that there remains brine in reservoirs that 

are produced for their oil and gas. In the United States, the average ratio of water-to-oil 

production in 2012 was 9.2 [22]. 

This produced water represents a significant challenge from a disposal perspective as it 

is too saline for release to the environment without detrimental ecological effects but 

can’t always be put back underground without ill effects to reservoir performance. 

These dilemmas and their significance are further identified in Sections 2.3 and 2.4.  
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2.2.4 Needs of Desalination in Waste Water Recycling 

If there is any hope to recycle produced water for uses other than hydraulic fracturing 

or subsurface reuse in the oilfield, extensive treating need occur. Specifically, the 

majority of treating that needs to occur is in the desalinating of the produced water. As 

stated before in Section 1.1.2 and 2.2.3, produced water is a hypersaline brine that 

consists primarily of sodium, calcium, carbonate and chloride ions. The high salinity of 

this brine makes it unsuitable for release into estuaries and for agricultural given the 

stress sensitivity of flora and fauna [58]. As well, some dissolved minerals and trace 

elements that are harmful to life are present in produced water. This ranges from 

carcinogenic trace aromatic and aliphatic hydrocarbons to boron and NORM. While 

most hydrocarbons can be separated gravimetrically using an API separator [51], micro 

emulsions and polar hydrocarbons often remain in solution after separation and pose a 

threat to life if released to the environment immediately. Given that the largest 

proportion of contaminants, and the most difficult to remove, in produced water are 

the dissolved solids, it is therefore important that desalination occur prior to release in 

ensure that treated water meets the EPA standards for released waters [2]. The moral 

and legal obligations of corporations who wish to participate in water recycling over 

water disposal will be discussed in further detail in Section 5.3.  

2.3 WASTE WATER DISPOSAL ANALYSIS 

In this Section, expanding on Table 2.2 we provide a critical literature evaluation of the 

currently employed methods of waste water management and disposal in Section 2.3.1. 

Next in Section 2.3.2, the limitations of the disposal methods introduced in Section 2.3.1 
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are evaluated. In Section 2.3.3 the connection between injection disposal wells and 

seismic activity are explored briefly as a context setter for potential ramifications of the 

current methods discussed in Section 2.3.1. Because of many perceived notions of the 

higher cost of recycling compared to injection, this topic receives its own Section in 

2.3.4. The recycling cost is directly related to one of the characteristics of a sustainable 

water management system of Table 2.2 presented in Section 2.1. Given the validity of 

Section 2.3.4 on the economic considerations of recycling waste water, the potential of 

release of the treated water versus reuse is discussed in Section 2.3.5. Specifically, what 

potential reuse parameters and uses are also discussed. Finally, in Section 2.3.6, the 

current status of water recycling in the oilfield industry is discussed to set the scene for 

the potential implementation of recycling in the industry given the causes of induced 

seismicity presented in Section 2.3.3 and the potential for reuse in Section 2.3.5. 

Limitations and potential road blocks to the implementation of water recycling in the 

oilfield is introduced in Section 2.3.7 with specific emphasis on the impact of trace 

organics on different water processing methods and to what degree this issue must be 

solved for water recycling to move forward as a viable solution in the industry. This 

entire Section is foundational to the justification of Research Question 2 and the thesis 

as a whole by introducing the current status of the water management in the industry 

and evaluating to what degree current recycling methods are successful or unsuccessful.  

2.3.1 Study of Available Disposal Methods 

Historically, the treatment of produced water has been limited to the removal of free 

oil and suspended solids using physical separation, followed by overboard disposal for 
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offshore platforms or injection either for pressure maintenance or disposal inland [48]. 

Development of unconventional resources in deep shale reservoirs has emerged as a 

hotly debated issue in the domestic energy production market. The use of hydraulic 

fracturing to liberate the gases and oil is associated with the flow back of high TDS water 

to surface. These waters are costly and challenging to treat. Current economic 

constraints have promoted the use of Class II disposal wells as the primary management 

method of the water resources. Unfortunately, in many areas where shale gas 

production will be abundant, injection sites are not available and other management 

strategies will need be implemented to make economical exploitation of natural gas a 

viable fuel for the future of the United States [4]. Injection of water for disposal purposes 

is a relatively simple and low-cost management solution. Limitations and ramifications 

of its continued use in some shale play areas, such as Northeast Oklahoma, will be 

discussed in the succeeding Sections 2.3.2 and 2.3.3.  

A more technologically advanced method of disposal with limited application to the 

treatment of produced water is membrane distillation [46].  The use of this technology 

is limited to moderately high salinity water (70,000 mg/L) that is free of contaminants 

that could cause membrane fouling, such as suspended oil, aromatics, organics, solids, 

and microorganisms. Because of these constraints, the use of membrane distillation 

technology is limited to those uses where pretreatment has occurred. In some low 

contaminant, clean water areas membrane technology has been successfully 

implemented to reduce injection volumes of deep-well injection, thereby diminishing 

the environmental impacts associated with underground injection. The limitations of 
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current membrane technology to the task of treating specifically produced water are 

discussed in Section 2.3.2. 

In addition to deep-well injection, current refinery entrained water disposal methods 

include the use of thermal evaporators. These allow for the total evaporation of 

produced water which dramatically reduces the fresh water volume required to makeup 

fracturing water and other refinery water needs. The evaporation systems do require 

significant pretreatment to remove the oleic residuals and other suspended solids. 

Interestingly enough, the use of thermal evaporation has grown in niche markets where 

there is significant gas to power the thermal evaporators, but no nearby market 

connections for gas transportation. Specifically, its growth has been successful in SAGD 

areas such as the oil sands of Canada where the heated steam has local uses as well.   

While not entirely a disposal method per se, the use of electroagulation has remained 

popular since the 1980s as the preferred method to remove suspended solids and 

residual O&G from produced water. This treatment method is currently paired with API 

water separators for field water management and in refineries for specific flocculation 

use. Enumerated in Figure 2.2 is the process of electrocoagulation and how it allows for 

the flocculation of small suspended solids.  

The last common disposal method currently employed for produced water is the simple 

recycling for onsite reuse for hydraulic fracturing [2]. Fracture fluid is generally 

significantly viscosified for enhanced fracture generation and to carry proppant to 

effective areas of the fractures. The chemistry of surfactant-gel fluid is insensitive to 
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water quality which makes the recycling concept successful [29].  The reuse for 

fracturing or mud mixing is as old as the use of mud in drilling itself. The new technology 

that is greatly increasing the acceptance and use of reuse for the particular task of 

fracturing is the use of evermore sophisticated gelling agents that foam and gel 

successfully at high TDS. Combined with the expense for injection disposal and the fact 

that many areas of drilling have been experiencing draught condition on and off for the 

last few years, the average 50% reduction in fresh water consumption through reuse 

has become an attractive water management process.  

 

Figure 2.2 - Flocculation of suspended solids with Electrocoagulation [59] 

In the proceeding Section the limitations and ramifications of the above commonly used 

water disposal methods will be analyzed as they pertain to a sustainable and 

environmentally friendly water management system.  
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2.3.2 Limitation of Available Disposal 

One of the major limitations of deep-well injection is the impacts and implications 

associated with seismic activity. For more detail on the connection to seismic activity of 

deep-injection wells, see Section 2.3.3. As mentioned in Section 2.3.1, the historical and 

main water management tool currently remains injection wells. Increasingly high salinity 

brines are reducing the injectivity of some wells, which in turn is causing some water 

management firms to reject large volumes of high salinity brine in favor of more 

injectable fluids [40].The injection well offers a low-cost solution to water management 

needs and creates value from older nonproducing wells. Coupled with the fact that there 

are many nearby legacy wells that can be retrofitted to injection, it superficially appears 

to be a viable disposal solution for years to come. Only recently has there been a 

connection between injection rate and volumes with anthropogenic seismic activity. As 

perception of the negatives of injection disposal grows and the water cut of aging wells 

increases, the viability of injection disposal will diminish as costs inevitably rise [8]. As 

operators and the public become more aware of the ramifications of injection disposal 

and the possible environmental detriment caused therein, there will become a shift in 

mentality away from injection disposal to a water recycling method. This change will be 

fueled by cost effective and efficient solutions that need to be developed and designed 

for tomorrow.  

Thermal evaporation is used successfully in many arid regions for freshwater generation 

and disposal of produced waters [60]. The product of thermal evaporation is water 

vapor and a conglomerated salt inclusive of all the species present in solution. This type 
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of disposal of produced water is similar in cost to membrane treatment but is also met 

with increased facilities and equipment costs due to the corrosion rate of saturated, hot 

brines. Additionally, the produced salt represents a solid waste with little economic 

value that must now be disposed of as well. The disposal of the solid waste is generally 

by transportation to salt flats or other environments where disposal of a solid salt would 

be minimally disruptive. There is some use of the crystallized salt in the stabilization of 

muds for mining near salt domes, but this demand does little to offset the great supply. 

By switching from liquid to solid waste, there is little positive to come from this disposal 

management solution, other than the fact that there is increased fresh water availability 

in the form of the water vapor [36].  

Finally, reuse is the most recent waste water disposal development. By reusing water, 

the injection volumes diminish somewhat and allow of an economical reduction in fresh 

water use, simultaneously reducing the effect on municipal freshwater supply. The 

issues associated with reuse are mainly that of sustainability and cost. Currently the cost 

of reuse is still higher than the cost of purchasing fresh water. Additionally, the water 

cannot be reused indefinitely and needs to be disposed of eventually. This disposal then 

returns to one of the methods outlined above and the challenges associated with the 

available disposal methods. By reusing water, the operator can extend development 

into some areas where sourcing fresh water for fracturing and mud makeup can be 

difficult [39]. By targeting these areas that might be more difficult to reach but still 

economical with the reuse of flowback and produced water for fracturing, the domestic 

reserve capacity of the United States is increased [37]. The biggest concern when using 
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this water for reuse is the residual waste that comes out of the treatment processes that 

could be toxic and are not currently governed under waste rules [8].Given the short 

transportation distance of the Appalachia shale plays and the profitable eastern U.S. gas 

fuels market, these shale plays represent a significant future market segment for 

exploitation and empowerment for the U.S. for years to come.   

The limitations associated with EFC as a water treatment method mainly stem from 

issues of cost per unit water being unknown and the scalability of the method [44]. In 

Section 2.3.5, the specifics of proposed and common water recycling techniques are 

discussed in the context of their use to treating produced water.   

In the next Section the causes and impacts of seismic activity on the viability of injection 

disposal are discussed. The implications associated with the impacts of seismic activity 

on the economics of water disposal are then discussed further in Section 2.3.4.  

2.3.3 Causes and Impacts of Seismic Activity 

The jury is still out on the causes and ramifications of seismic activity in Northeast 

Oklahoma and its connection with the exploitation of unconventional resources. The 

USGS and OGS is investigating claims that wastewater injection wells are associated with 

the uptick in seismic activity in the area. There certainly appears to be a strong 

correlation as outlined below in Figure 2.3.  
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Figure 2.3 - Earthquakes in US Midcontinent 1967-2012 [61] 

“Between the years 1973–2008, there was an average of 21 

earthquakes of magnitude three and larger in the central and eastern 

United States. This rate has ballooned to over 600 M3+ earthquakes 

in 2014 and over 1000 in 2015. Through August 2016, over 500 M3+ 

earthquakes have occurred in 2016.” [61] 

In the simplest sense, the physics behind the theory of induced seismicity is easy enough 

to understand. Just at the sweeper in curling uses a broom to reduce the friction 

between the ice and the stone, so too does injection water lubricate existing faults 

allowing them to slide with less force, thereby allowing earthquakes to occur with more 

frequency. Figure 2.4 includes more detailed geophysics on the causes of seismicity that 

can be attributed to the production and alteration of in situ fluids.  

Because of the connection between unconventionals and waste water injection wells, 

the focus needs to shift to away from aiming to point blame at specific operators, but 

rather to governing remedial actions that can be taken to curb the seismic rates and 

determining if the causes of seismicity would appear in others plays, or to determining 
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if the conditions in Northeast Oklahoma are geologically more susceptible than others. 

If the latter is true, then this reiterates the imperative to finding an alternative water 

management system that does not include deep-well injection as a viable solution.  

In Pennsylvania, there is one seismically active region as identified by the USGS. It is the 

Triassic Rift in the Northwestern part of the state. Even given this area of higher density 

seismic activity, to date, there has only been one identified instance of seismic activity 

being correlated to oil and gas operations [62]. Since there is little perceived impact of 

drilling or injection on seismic activity in the Marcellus and Utica shale formations, the 

DEP is recommending that volumes and rates not be regulated unless specific seismic 

events occur within 6 and 3-mile radii of any active wellpath.  

 

Figure 2.4 - Mechanism for Inducing Earthquakes [55] 
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Because of the potential for an increase in seismic activity and the associated 

ramification imposed by the DEP on drilling and injection as seismicity increases, it is 

recommended that an alternative water management method be used. By not relying 

directly on injection disposal, operators can plan for the long-term viability of their 

developments and not be as susceptible to changes in environmental policy regarding 

seismicity. Having an environmentally neutral or friendly water management solution 

would reduce long term costs of oil and gas development and aid in the perception of 

the industry [38].  

2.3.4 Economic Consideration of Recycling and Injection 

In the oilfield, economy is king. That operator who can produce oil and gas for the 

cheapest cost per barrel will always be viable, while the recent downturn has shown 

that many are susceptible to even the slightest amount of change in the commodity 

price. For recycling or reuse of water to be adopted by the industry, it must be 

competitive to disposal by deep-well injection, else there is no incentive for change. 

Even a comparison to injection disposal costs is difficult. Some operators own their own 

disposal pads, while others have leasing agreements with water management service 

companies. Additionally, there is a large discrepancy in cost for disposal between 

different oil and gas regions. Energy and disposal costs vary across the U.S. with injection 

into disposal wells averaging $0.75-$1/bbl in West Texas to $6.50/bbl in the Northeast 

[8] due to regional differences in injection water volumes, disposal well availability, and 

transportation costs. 
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Recent chemical treatment advancements have made flocculation of suspended solids 

and O&G more economical. Current chemical treated water for reuse purposes is $0.50-

1.20/bbl. As the costs of chemical synthesis decreases and the cost of disposal increases, 

reuse for hydraulic fracturing and makeup is becoming more attractive and competitive. 

Compared to electrocoagulation at $1.50-$2.00/bbl, we see that the costs for reuse can 

be anywhere from 50% - 200% the cost of injection disposal.  

Estimates for the cost of produced water treatment using membrane technologies (RO 

or MD) is not widely available and varies significantly [46]. This is in part due to the costs 

of pretreating for the removal of hydrocarbons that could foul the membranes, the need 

for low salinity brine for treatment (30,000 – 100,000 mg/L TDS), and the type of 

membrane selected for treatment. Beni, Henni, and Duraisamy (2013) speculate that 

the cost for water treatment from coal bed methane is $0.30/bbl, however the quality 

of the water is not mentioned. They do recommend that pretreatment of the water prior 

to membrane separation be performed to remove hydrocarbons from fouling. The 

recoverable water from their experimentation was 60-70% implying that there was a 

significant volume of highly saline brine to be disposed of.  

Other considerations not included in many of the published literature include the need 

to account for the cost of environmental damage associated with disposal or reuse, and 

the byproducts of these processes. In the Bakken, disposal of solid waste from water 

treatment in a Class II Solid Waste Management System is compliant with the rule and 

regulations of the Montana’s Department of Environmental Quality. However, residents 

of Lindsay, Montana maintain that NORM material has seeped from the landfill and 
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contaminated the town [27]. With aging pipeline infrastructure, injection wells being 

shut in at increasing rates, and crumbling roads caused by truck rumbling down 

dilapidated streets [47] the time will come, and may already have arrived, that the cost 

of disposal may be as much as the cost of treatment. 

The recoverable water portion from EFC is discussed in Section 3.5. In Section 5.2 is a 

discussion about cost analysis for EFC and how it compares to the figures presented in 

this Section.  

2.3.5 Status of Water Recycling in the Petroleum Industry 

Every year, the industry generates over 800 billion gallons of wastewater [63]. The 

massive volume of water created over the life of the well, coupled with the millions of 

gallons of water used annually to hydraulically fracture wells makes it clear that the 

production of hydrocarbons is as much a water issue as it is an energy issue. However, 

water is not extensively recycled in the petroleum industry currently. Most water is 

either disposed through injection wells, reused for refracturing, or recycled on a small 

scale as novel research. To some extent, water recycling is growing in the industry. 

Operators are acknowledging there is an environmental benefit of reusing water in that 

it eliminates the water-drought dependency of localities. Some groups are even pushing 

for mandatory recycling policies. To some extent the increase in water recycling is great. 

Especially for the drought-stricken localities where oil and gas production is a big 

business, the impact of recycling money and water can help mitigate the impact on local 

water sources.  But water recycling also creates some environmental challenges as well 
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when not managed correctly. If the issues aren’t addressed prior to implementation, 

there is the risk that there is only a tradeoff for one problem to another.  

As mentioned previously, most reuse in the oilfield is done on treating produced and 

flowback water for refracturing. This makes sense as 41% of wells in the U.S. are in 

regions of extreme water stress or drought and in some counties in Texas, more than 

80% of municipal water goes to industrial and agricultural use [31]. Some municipalities 

do take cleaner flowback fluid as a waste stream for sewage plant treatment. This policy 

is largely being reverted in much of the country as the plants struggle to sufficiently treat 

the water for release. In 2011, water at the Greene County municipal plant tested 

barium levels were 5.99 mg/L while treating flowback water, while just 0.14 mg/L 

before. This pushed the treated water outside the EPA drinking water standards of a 

maximum of 2 mg/L, putting the public’s health at risk for the time the flowback water 

was treated [64].  

Given the large use of freshwater in hydraulic fracturing new wells (2-6 million gallons 

per well) and the high cost of water handling in the Marcellus shale ($3+/bbl for disposal 

or $7-10/bbl for transport), there is a new way for companies to profit from water 

management in this area. With thousands of wells projected to be drilled through 

Pennsylvania, West Virginia, and Ohio in the next decade with targets in the Marcellus 

Shale [65], it will be a major revenue source for someone. Experts also agree that public 

pressure and regulation to pressure producers for more recycling are coming. Because 

of this need for future greenfield recycling, the analysis of centralized treatment of 
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wastewater using EFC for long-term efficiency as a water management source in the 

Marcellus Shale is the subject of this thesis.  

2.4 JUSTIFICATION OF RESEARCH QUESTIONS 

In this Chapter, a literature review of the status and limitations of the waste water 

management schema for the oilfield industry is presented. In Section 2.3.1, the available 

disposal methods commonly used for water management are discussed and analyzed. 

The impacts and causes of seismic activity are discussed and the expectations with 

regard to the industries’ role in managing expectations of induced seismicity are 

introduced in Section 2.3.3. In Section 2.3.7 a brief introduction to the requirements for 

drinking water set forth by the EPA is given as motivation for the highest level of release 

Eutectic freeze crystallization could hope to achieve; release of fresh water into the U.S. 

water table as potable water. In this Section, the research opportunities identified 

through critical literature review are presented and the connection between the 

identifies research opportunities and Research Questions proposed in Chapter 1 is 

established.  

RQ 1. How can freeze crystallization be utilized to treat flowback and produced water 

from oilfield operations? In the study and limitations of available disposal methods 

Sections 2.3.1 and 2.3.2, almost all the methods currently in use in oilfield operations 

are shown to be in some way lacking, whether by causing detriment to the environment 

through unsatisfactory environmental release of tainted waters and induced seismicity, 

or by using unacceptable levels of energy without any realizable revenue generating 

stream. It is clear that there is no consensus or established method that is utilized 
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throughout the industry as all companies have a favorite method that has preference 

for internal reasons. It can then be concluded that there is a need to introduce a good 

reuse and release method that simultaneously generates revenue through low energy 

cost and isn’t met with environmental disaster.  

RQ2.  What changes need to be made to freeze crystallization desalination technology 

for compatibility with oilfield operations? In Section 2.3.4, I mention the economic 

consideration of recycling and how its higher economic cost has limited implementation 

to now versus the ease of use and low cost of underground injection and in Section 2.3.6 

the current extent of water recycling and reuse in the oilfield is evaluated. This analysis 

leads us to the determination that while current recycling methods are more capital and 

energy intensive and therefore there is limited recycling being performed, there is 

opportunity for a cost and energy efficient recycling method in the industry. The 

furthering research that needs to be conducted is in regards to what changes, if any, 

need to be made to introduce and make compatible EFC for oilfield use. Typically, E&P 

companies prefer equipment to be skid mounted and portable, but in Section 5.2.1, 

discussion is presented that shows the extent to which this technology can conform to 

this desire.  

RQ3.   What environmental benefits will be realized by treating water for reuse and 

release over underground water injection? In Section 2.3.5, the potential release of 

water extracted from effluent brine back into the environment is discussed. Many areas 

with developed oilfields in the U.S. are in areas deemed as vulnerable to drought and 

there is an alarming history of mega-droughts lasting 300 years or longer in many 
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western U.S. states. This disturbing potential future of little potable water is 

underscored dramatically by the use and disposal of > 20,000 gallons per well of fresh 

water for hydraulic fracturing of new wells in these states. In many cases, the solution 

means recycling flowback or produced water to limit the need for fresh water in the 

production of hydrocarbons. However, the recycling or release of produced water is 

often met with unintentional ecological consequences. In Section 1.3.4 it is shown that 

the main work that needs to be done to prove there is an environmental benefit to the 

release of this water is largely outside the scope of this thesis. However, what is 

discussed in Section 2.3.7 and Section 5. 2.4 regarding the release of water and the sale 

of crystallized salt provides motivation that there is clear environmental significance of 

the work by reducing the ecological footprint of other industries. The efficacy of an 

optimistic plan to release the extracted waters from EFC to streams and estuaries is 

underscored through the discussion on U.S. regulations for the release of produced 

waters and the requirements for drinking water (potable) discussed in Section 2.3.7.  

RQ4. How can freeze crystallization be utilized with minimum impact to existing water 

treatment infrastructure? The most commonly used water treatment infrastructure in 

the industry is thermal distillation treatment at refineries for entrained waters with 

crude deliver, and water used during crude processing. Additional water treatment 

infrastructure exists in the form of transportation pipeline networks to and from 

production and disposal wellheads. In Section 2.3.6 discussion is presented on the citing 

and permitting of water recycling and disposal in the oil industry. The introduction of a 

new (to the industry) recycling method will necessitate the re-permitting and update of 
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current methods to allow for continued water processing. This Research Question is 

developed in Section 4.4 with discussion on the sensitivity analysis of EFC temperature 

and this implication on the design of a EFC treatment facility. Through Section 5.5, future 

research needs for EFC and discussion about other problems for which EFC can be 

applied are covered to strengthen the relationship between EFC as a water treatment 

method and refinery operations. 

The utility of this thesis is to Baker Hughes and the Oil and Gas water management 

industry by:  

• Proposing an alternative waste water recycling scheme in Oklahoma and other 

producing states by suggesting freeze crystallization for desalination of produced 

water 

• Describing in detail the current available methods and technologies associated 

with waste water disposal, as well as the current legislation and laws surrounding 

disposal and reuse 

• Providing insight for implementation of a Eutectic freeze crystallization 

desalination for Baker Hughes’ H2PrO™ water reuse product line 

2.5 SYNOPSIS OF CHAPTER TWO 

In this Chapter, a critical evaluation of current waste water disposal methods, 

desalination, and water recycling literature are presented. In Section 2.1 this review of 

the literature is summarized and connectivity between the Research Questions and 

review established. In Section 2.2 principal concepts are introduced and the Research 
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Gaps connection to the motivation presented in Chapter 1 are discussed. Section 2.3 

contains an analysis of the waste water disposal methods currently in use and their 

limitations, as well as the requirements for released water that will be expanded in 

Section 5.3. In Section 2.4, the utility of Eutectic Freeze Crystallization to the industry 

and specifically Baker Hughes is established and is foundational to addressing Research 

Question 4 in Chapters 4 and 5.    
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3 Chapter 3 – Modeling of Eutectic Freeze Crystallization 

In this Chapter, building on the critical evaluation of the literature presented in Chapter 

2, the efficacy of Freeze Crystallization is tested using an established industry software. 

The use of software will allow for forward remarks to be drawn without the need for 

expensive bench scale research while also conforming to electrolytic chemical models, 

discussed further in Section 3.1.1. The simulation of EFC is performed in support of 

Research Questions 1, 2, and 3. Research Question 1 is addressed through the analysis 

of a singular species brine and complex brine system to address the question of how 

Freeze Crystallization can be utilized to treat produced water in Sections 3.3 and 3.5. 

Research Question 2 regarding the changes necessary to Freeze Crystallization for 

oilfield compatibility are discussed in Section 3.4 with commentary on the effects of 

contaminants and impurities on the sensitivity of the eutectic temperature. Finally, 

Research Question 3 regarding environmental benefits realized from implementation of 

EFC are discussed in Section 3.5 with commentary on the implications of water removal 

and salinity reduction on produced waters.  

3.1 SOFTWARE INTRODUCTION 

3.1.1 Summary of utility of the software 

In this thesis, The OLI Systems OLI Studio 9.5 Stream Analyzer [66] is utilized to model 

brine eutectic freeze crystallization. The use of this software allows for the direct 

production of results based upon water quality reports generated in the field for 

produced water streams, provided courtesy of Baker Hughes Incorporated. These water 

quality reports are generated by petroleum operators and service companies prior to 
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delivery of brines to commercial injection wells through pipeline or by truck. The report 

of water quality at minimum specifies TDS, pH, density, and major present ions so that 

companies and operators can assess whether there is likely to be corrosive damages, 

scaling or interaction with other disposal fluids. OLI Stream Analyzer is a commercially 

available software that is primarily used for electrolytic calculations and manipulations, 

thus allowing for easy industrial use with an active available help desk and an intuitive 

user interface. This widespread availability is beneficial should acceptance or use of 

eutectic freeze crystallization be realized as a feasible waste water processing method 

by allowing for researchers and technologists across the world to use one uniform 

platform for collaboration. The phenomena of eutectic freeze crystallization are 

introduced in greater detail in Chapter 3, Section 3.2.  

The crystallization model developed by OLI utilizes the revised Helgeson-Kirkham-

Flowers (HKF) model for calculation of thermodynamic properties of aqueous solutions 

and modifies the framework of the Debye-Huckel model for other excessive terms [3, 

67]. OLI Stream Analyzer uses the HRK method to carry out crystallization calculations 

to temperatures of -50°C, which is the lower limit of that model. Below this temperature, 

the OLI Stream Analyzer uses the Debye-Huckel model which causes a discontinuity of 

results between the two models; thus, all simulations in Chapter 3, Sections 3.3-3.5 are 

executed at temperatures greater than -50°C. Additional rationale for only modelling 

crystallization to this temperature is the difficulty in finding any chiller currently that 

would be able to cool sufficient volumes of water to below -50°C on a commercial level. 

The specifics of the freeze crystallization process are discussed in Chapter 3, Section 3.2. 
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Composition of brines can be altered by balancing to charge-neutral using the dominant 

ion method. In the case of these produced water streams, that would mean the addition 

of either Na+ or Cl- in the form of HCl or NaOH. The addition of these industrial chemicals 

is evaluated in the economics discussion of brine freeze crystallization in Chapter 5, 

Section 5.2. The addition of small amounts of these acids/bases respond as slight pH 

changes in the brine as calculated thermodynamically in the software when compared 

to the physical pH measurement of the brine in the field prior to reagent addition. 

Therefore, the charge-neutral brine stream is accepted as a starting point for analysis 

with the OLI Stream Analyzer [3].   It is shown subsequently in Chapter 3, Section 3.5 

that the use of charge-neutral balancing is not required in physical freeze crystallization.  

Limitations for the use of software to evaluate the efficacy of eutectic freeze 

crystallization on waste water streams is discussed further in Section 3.4.3 and Section 

4.4.2. 

3.1.2 Validation of its results through peer review 

As discussed in Chapter 3, Section 3.1.1, the OLI Systems is used to model theoretically 

the fractional crystallization due to temperature drops that are expected in a freeze 

crystallization system. Lewis et al. (2010) [3] first discussed The use of the OLI software 

for brine crystallization of multicomponent waste water streams. In their study, bench 

scale laboratory freeze crystallization of a 5 wt% Na2SO4 brine is compared to that 

generated by the OLI Stream Analyzer. Using the validation square discussed in Chapter 

1, Section 1.4.2., this agreement indicates a high level of confidence in the generated 

results of the OLI Systems software for multi component brines.  However, their analysis 
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does not accurately capture the high complexity and variability of waste water streams 

that are present in the oil and gas field, nor is there sufficient evaluation of freeze 

crystallization economics to justify further study of the matter at an industrial level. As 

mentioned in Chapter 1, Section 1.1.3, the hope is that the analysis presented in this 

thesis can fill these gaps and present clear validation for further examination as well as 

provide a potential avenue away from the use of waste water injection as a disposal 

method discussed in Chapter 2, Section 2.3.3.  

3.2 BENEFITS OF FREEZE CRYSTALLIZATION 

In Chapter 2, Section 2.3.6 we mention that thermal (evaporative) distillation is the main 

recycling method of produced water in the oil and gas industry and that the clear 

majority of produced water is simply injected underground, whether for reservoir 

pressure maintenance or disposal. The main use of evaporative distillation is in the 

recycling of water at hydrocarbon refineries for the entrained water that comes with 

delivered crude; usually 3-5% by volume. A logical presentation of the benefits that 

freeze crystallization provides over traditional underground injection is presented in this 

Section and relates back to the Requirements List first presented in Sections 1.3 and 1.4. 

This section, in conjunction with Section 2.3.1, presents the foundational basis for the 

motivation for freeze crystallizations application in waste water streams, while Sections 

3.3-3.5 focus primarily on the theoretical workings of freeze crystallization. This section 

is included to show the connection between the posed research questions from Section 

1.3.1 and how they connect to the main needs of desalination in the oilfield, as shown 
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in Figure 3.1. I outline these needs of desalination in greater detail in Section 2.3 and in 

more general terms in Section 5.1.  

 

Figure 3.1 - Connectivity of Research Questions to Desalination needs in Oilfield 

 Specifically, the focus of RQ1 is on how freeze crystallization can be utilized to treat 

flowback and produced water from oilfield operations. This is in the domain of 

compatibility of the safety of freeze crystallization as a disposal method (safety) as well 

as its compatibility of the need of the oilfield and in place infrastructure (environment 

compatibility. Similarly, in RQ2 what changes need to be made to freeze crystallization 

technology for compatibility is addressed. Clearly, this is in the domain of environmental 

compatibility, but also is focused on the need for an adaptive design and needs for 

change if water quality and throughput change drastically. This adaptive design and 

mobility is discussed in detail in Section 5.2.2. Finally, the focus of RQ3 is on what 
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environmental benefits are realized by treating water with freeze crystallization 

specifically over underground injection. This addresses the dilemma between the 

feasibility of the design of a freeze crystallization treatment facility and the potential 

safety of treating water using EFC, which is elaborated further in Section 3.5 and Section 

5.2.  

3.2.1 Scaling Reduction 

Scale is the bane of landholder and midstream operators alike. Scale is mineral deposits 

on pipe walls that reduces cross-sectional area and affects flow regime as well as fluid 

pressure in oil and water pipes. Scaling reduction of water recycling facilities and 

pipelines is a multimillion dollar per year business. Long distance transportation of high 

potential scaling brines that contain salts such as calcium carbonate or barium sulfate 

allows time for unfavorable depositions to form, leading to the need for costly pipe 

remediation or the use of expensive scale inhibitors. Scaling likelihood increases with 

increases in temperature and changes in pH [68]. Therefore, any method to control the 

scaling of waste water without the need for ancillary chemicals will reduce overall 

disposal and transportation costs, as well as prolong the lifetime of the piping and 

treatment infrastructure. Through freeze crystallization, it is shown that those salts 

which are most likely to cause scaling are removed first eutectically, thereby reducing 

future scaling by the same water stream [5]. This presents a major reduction in pipeline 

operating expenses if freeze crystallization is performed prior to long distance transport 

and also reduces the need for remediation which will limit non-productive pipeline time 

and associated costs.  
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3.2.2 Corrosion Reduction 

Likewise, corrosive tendencies increase with increase in temperature and increase in 

salt ion concentration [69]. Since eutectic freeze crystallization is not capable of 

lowering the concentration of ions within a salt (except for those that initially exist 

above the eutectic concentration) it has limited effect on reducing corrosion through 

ion reduction. However, due to the low temperature of eutectic processes, the facilities 

performing freeze crystallization will be less prone to corrosive damage as compared to 

those of a thermal distillation plant that result in highly corrosive salts and caustic 

byproducts [70]. The implementation of local or small-scale freeze crystallization 

facilities would also reduce the impact of corrosion as it would minimize the water 

volumes moved through pipeline and are thus able to cause damaging corrosion. 

Discussion in Chapter 4, Section 4.2 further describes the benefits of corrosion reduction 

facilitated by treatment using freeze crystallization and the economics of regional 

treatment is discussed in Chapter 5, Section 5.2.  

3.2.3 Low Energy Cost 

While the applicability of using eutectic freeze crystallization (EFC) to remove multiple 

salts from complex multi-component, hypersaline brines has not yet been 

demonstrated [5], the thermodynamics of freeze crystallization are extensively known. 

Overall, EFC requires 6 times less non-renewable energy input than evaporative 

crystallization in a stand-alone process comparison [44]. This low energy requirement is 

realized by recalling that, for water, the latent heat of fusion is 333 J/g, while the heat 

of vaporization is 2256 J/g; a difference on the magnitude of 6 times the energy, all else 
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being equal. Various researchers have performed analysis on the energy reductions 

afforded by EFC for the separation of single species salts from solution to compare to 

evaporative crystallization and have determined energy reductions of 60-70% [7, 41, 

71]. The cost of cooling energy is more expensive than that of heating, there is also 

energy benefits realized through the use of vapor-compression (Reverse-Rankine) 

chilling machines that have a coefficient of performance (COP) of 4.0 or more. The use 

of highly efficient chillers allows for additional energy savings that help reduce the total 

cost of the crystallization method. Van der Ham (1998) [41] outlines the use of the 

frozen water stream to precool the incoming brine stream, thereby reducing the energy 

requirement to cool the brine stream, as well as transform the water stream into a liquid 

form that could then be sent elsewhere with greater ease than in solid ice form. In 

conjunction with the lower energy costs, in Section 3.2.3 I discuss the potential cost 

savings realized from a freeze crystallization plant over that of a regional or mobile 

platform for EFC.  

3.2.4 Infrastructures Cost Assessment 

Increases in water consumption is causing water scarcity in many areas of the U.S. and 

indeed these problems are often exacerbated by discharge of polluted water [44]. In 

fact, the availability of fresh water is predicted to become more scarce [32, 36]. It is 

unclear what the cost of polluted water is economically, but there are estimates that 

the economic stimulus from recycling water for reuse rather than disposal is worth $3-

4/bbl [2, 5]. With aging pipeline infrastructure, injection wells being shut in at increasing 

rates, and crumbling roads caused by truck rumbling down dilapidated streets [47] the 
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time will come, and may already have arrived, that the cost of disposal may be as much 

as the cost of treatment. However, energy and disposal costs vary across the U.S. with 

injection into disposal wells averaging $0.75-$1/bbl in West Texas to $6.50/bbl in the 

Northeast [8] due to regional differences in injection water volumes, disposal well 

availability, and transportation costs.  

Himawan (2002) [7] estimates that the cost of a freeze crystallization system was 7% 

more costly than to evaporative crystallization, but could save up to 60% of the energy 

cost. The reality of this economic evaluation remains uncertain as freeze crystallization 

has only been used on a limited scale briefly for a pilot mining waste water processing 

in South Africa as I discuss in Chapter 2, Section 2.3.1. What that analysis does conclude, 

however, is that freeze crystallization is a new process with significant room for 

technological improvements and cost reduction as implementation occurs, while 

evaporative cooling and other processing methods is already established and has only 

incremental future cost savings only as a result of technological improvements [5].  

One additional aspect to review in the analysis of freeze crystallization for the task of oil 

and gas waste water recycling is the realization that the pure salts produced have the 

potential to be a revenue stream to those companies operating freeze crystallization 

systems, as well as limiting disposal volumes and energy costs [5]. The possible 

economic stimulus realized from the sale of these pure salts to industrial chemical 

manufacturers is discussed in an economic analysis in Section 5.2. 
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3.2.5 Known Limitations of Freeze Crystallization 

Adoption of freeze crystallization in the last decade has been small despite the fact that 

there are a variety of applications that could benefit from the specific advantages of 

freeze crystallization [69]. It is known in the oil and gas industry that major operators 

readily embrace new technology for the extraction and treatment of reservoir fluids, but 

are hesitant when it comes to implementing new technologies that are perceived to be 

mechanically complex, especially when established methods appear to be acceptable 

[72]. Case in point, the design for the pump-jack, an essential piece of oilfield machinery, 

is relatively unchanged since its introduction in 1925 [73]. Similarly, since disposal wells 

have been standardized and effectively operated for so many years, there is little 

incentive to invest in new infrastructure necessary to undertake recycling operations 

simply for the environmentally green initiative. Rather, the economic benefits of freeze 

crystallization are what will entice those major operators to embrace change. This 

economic benefit and impact to existing infrastructure embodies Research Question 4 

and is elaborated in Sections 4.1 – 4.3 and Section 5.1. 

Unfortunately for freeze crystallization, much of the cost for developing and 

construction is up in the air. Therefore, the most significant disadvantage of freeze 

crystallization is the capital expenditure to initially plan, design, and construct a facility 

capable of processing the volumes necessary in the oil and gas field which is on the 

magnitude of 10kbd+ (42 thousand gallons per day) [41, 74]. The cost for this facility is 

discussed in Section 3.2.3 and is also mentioned in Section 5.3. Johnson (1976)  [75] 

concludes that a combination of freeze crystallization and a membrane process would 
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be a potent combination for brine disposal when other disposal methods become 

obsolete. The chemical make-up of oilfield brines (specifically from the Marcellus and 

Utica Shale play) is elaborated in Section 3.5.1, but the main component is a high 

concentration of NaCl which is deemed to be suitably treatable only with freeze 

crystallization [76]. Unfortunately, oilfield brines also include high concentrations of 

other salt species that are not adequately removed with EFC [5]. Herein lies another 

limitation of freeze crystallization in the realization that it can likely not be implemented 

alone and would thus have to be paired with other disposal methods. 

It has been shown that the use of a wetland constructed to treat the produced water 

retentate of reverse osmosis is a viable alternative for water reuse [77] , but it is unlikely 

that a large enough artificial ecosystem can be created to process the required daily 

volume of water co-produced with oil production. In-field recycling and water 

processing would require significant resources to deploy since treatment would have to 

occur continuously through the day [78].  

While the combination of treatment of freeze crystallization and reverse osmosis allows 

water to meet most standards for irrigation use, it does not always meet toxicity 

standards and therefore cannot be released to the environment, except for some non-

potable use, such as agricultural or landscape irrigation [2]. One of the toxins that is 

difficult to remove is boron. Not many oilfield brines exhibit boron, but those of the 

Marcellus and Utica Shale can have measurable levels which will require either water 

dilution to reduce the boron levels to non-toxic quantities or will limit all treated water 

from these streams for only agricultural use. While boron is not represented in Table 7.1 
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as a constituent of produced water, it is a low concentration contaminant that is often 

not measured, but commonly present. Other potentially toxic constituents of produced 

water include naturally occurring radioactive materials (NORM). These present a social 

and transportation concern since retentate from both reverse osmosis and freeze 

crystallization will have increased levels of radioactive ions which limits public 

acceptance of local water disposal [27]. With no requirement to report the levels of 

radioactivity in produced water, further research or government intervention to 

illuminate the quantity and quality of radioactive isotopes present is necessary to 

determine what effect, if any, these isotopes would have on the effectiveness of freeze 

crystallization and the purity of the crystallized salts. The sensitivity of the freeze 

crystallization process to the presence of specific impurities is addressed in Section 4.2 

in the discussion of the goals for bench scale experimentation. Without bench scale EFC 

work, it is unclear whether appreciable amounts of NORM particles will become 

entrained in the nucleation of ice and salt crystals to influence the disposal and removal 

of these constituents, or whether the NORM will remain in the retentate water of the 

EFC process and could simple be removed in an ancillary manner through injection 

disposal or with RO.  

Social tensions of NORM material will remain even with the introduction of freeze 

crystallization as an alternative away from potentially anthropogenic earthquake 

causing underground injection [53]. Additionally, the invisibility of injection wells from 

the public eye allows them to go unnoticed, except for the occasional earthquake 

whereas freeze crystallization or other water treatment options would require 
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centralized treatment locations to be viable [79]. These centralized facilities will be 

easily visible and the need for public education on the matter will be paramount to 

ensure a successful transition away from underground injection. Government-industry 

alliance organizations such as the OERB in Oklahoma would be suitable candidates to 

take public education forward regarding the use and benefits of water recycling were it 

to be implemented on a commercial scale.  

3.3 SINGULAR SPECIES BRINE ANALYSIS 

To adequately evaluate the efficacy of the OLI Systems software, analysis on a simple 

singular species brine is performed to compare the results of the simulation to those 

physically measured in a laboratory setting to ensure there is verification of accuracy 

before moving forward with more complex scenarios. Given that freeze crystallization 

may be an obscure topic to those unfamiliar with electrolytic chemistry, the single 

species brine analysis is taken as an opportunity to carefully outline the freeze 

crystallization method so that all readers can proceed and have a basic understanding 

of the subsequent Sections of Chapter 3. A single species salt refers to a brine that is 

made up of one cation and anion. Similarly, a binary system would contain two different 

and distinct cations and two anions. 

3.3.1 Salt Selection Criteria and Concentration 

For single species analysis, a salt is needed that can accurately test the capabilities of 

the OLI software while simultaneously providing utility to the study at hand of oilfield 

produced water analysis. The analysis concentrations should only be those that are 

physical and realistic so as to ensure the software can handle that which will be present 
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in more complex systems as well as to evaluate the corroboration of published literature 

values of the same salt species under laboratory conditions. Multiple concentrations will 

be analyzed to describe and graphically show the various results that can be obtained 

for a brine system at concentrations above, below, and at/near the eutectic 

concentration.  

Given that the most prevalent ions present in oilfield brines is Na+ and Cl-, and the high 

eutectic point of a sodium chloride system, the selection of sodium chloride as the salt 

for single species analysis is justified through the plethora of literature published on 

freeze crystallization of sodium chloride and the utility a sodium chloride analysis will 

have for the thesis topic at hand. It is my intuition that given the high eutectic freezing 

temperature of NaCl brines (-21°C) that this crystal will likely be the first to form under 

crystallization conditions. The analysis I perform in Section 3.5 shows this is the case.  

The modeled freeze crystallization is performed using temperature reduction steps of 

2°C from a starting temperature of 20°C to -50°C. The rationale for the selection of these 

temperatures for use in the simulation are given in Section 3.1 and pertain to the 

physical continuity limitations of the software (-50°C), the lower realistic limit of 

commercial chillers, and an arbitrary value of ambient temperature (20°C). From the 

literature, it is expected that no freeze crystallization will occur at temperatures above 

5°C except for solutions that are previously supersaturated, or exhibit low solubility [5]. 

The 2°C temperature steps size is selected as there is no appreciable loss of accuracy 

when compared to incremental step sizes, but simulation time is reduced greatly. Each 

graph is representative of a 1L sample of brine with the qualities described, and 
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therefore a precipitation of 1 gram of any salt species indicates a reduction in the TDS 

by 1000ppm for each ion required for that salt species.  

3.3.2 Results from Software 

Three simulations are run on a single species NaCl brine using the OLI Stream Analyzer 

software [66]. Each simulation is executed at a different concentration of sodium 

chloride, in an effort to determine graphically the effects of being above, below, or at 

the eutectic point. The salt concentrations under study are 2.5%, 23.3%, and 51% weight 

percent respectively.  

 

Figure 3.2 - Simulation of Freeze Crystallization on a 2.5 wt% NaCl brine 

The simulation of freeze crystallization on the 2.5 wt% NaCl brine is shown above in 

Figure 3.2. The proper way to mentally observe the EFC graphic is by viewing right to 

left as that would be associated with a temperature reduction due to freezing. Ice begins 

forming at a slightly reduced temperature, but not significantly different than the known 

freezing temperature of water under atmospheric pressure of 14.69 psi of 0°C. Only ice 

is formed until a temperature of -20°C, at which point NaCl▫2H2O (hydrohalite) begins 

to form. By forming solely ice originally, the system is increasing in concentration of NaCl 
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until finally reaching the eutectic concentration at which point hydrohalite is formed. 

Hydrohalite is the stable form of halite (NaCl) at temperatures below -5°C [80]. 

Hydrohalite melts under its own vapor pressure at 0.1°C indicating that any hydrohalite 

removed from the brine solution will subsequently melt and dry, resulting in pure water 

and halite. Shown below in Figure 3.3 is a graphical representation of the process of 

freezing at concentrations below the eutectic concentration using a standard phase 

diagram for a NaCl brine operating under atmospheric pressure. Notice how the 

intersecting locations of the phase diagram coincide with the quantity of crystallized salt 

formed in Figure 3.2. Following the red arrow, we enter the phase diagram at a salt 

concentration. Following a depression in solution temperature, near -3°C the solution 

would begin to exhibit the formation of ice.  

 

Figure 3.3 - Solubility Curve for Halite Brine Below Eutectic Concentration 
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Figure 3.4 - Simulation of Freeze Crystallization on a 51 wt% NaCl brine 

Under supersaturated conditions shown above in Figure 3.4, a 51 wt% NaCl brine first 

exhibits halite crystallization until sufficient reduction in the concentration of NaCl is 

reached, to approximately 22 wt%. Temperature reductions after initial halite 

crystallization result in only halite crystallization until after reduction in temperature to 

-2°C. Halite forms due to the solution becoming supersaturated with NaCl. Hydrohalite 

is not formed at these temperatures as it is not a stable halite crystal until below -5°C. 

Between -2°C and -21°C hydrohalite forms without the formation of ice, resulting in a 

decrease in the concentration of sodium chloride until the eutectic concentration is 

reached, at which point both hydrohalite and ice are coproduced simultaneously. This 

process is shown graphically below in Figure 3.5.  

Freeze crystallization of a brine at a concentration near the eutectic concentration of a 

NaCl system is shown below in Figure 3.6. Almost simultaneously, the formation of 

hydrohalite and ice begins at -21°C. Again, below in Figure 3.7 this process is shown for 

freeze crystallization at the eutectic concentration. This is the phenomena that is 

exploited with the use of freeze crystallization as a waste water recycling method. By 

cooling brines to reduced temperatures, either ice or salt crystals are formed, thereby 
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effectively increasing or decreasing the wt% of salt in solution until the eutectic 

concentration is met. At this point, the brine is in a stable state and further reduction in 

temperature does not affect the system. At this concentration, the salt crystals and ice 

are coproduced. The salinity of the brine does not change at the eutectic concentration 

as water molecule and salt ions are removed in equal magnitude. This fact is imperative 

moving forward and will be discussed in Section 5.1 as a major limitation to the use of 

EFC as a water recycling method for oilfield waste water industry.  

 

Figure 3.5 - Solubility Curve for Halite Brine Above Eutectic Concentration 
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Figure 3.6 - Simulation of Freeze Crystallization on a 23.3 wt% NaCl brine 

 

Figure 3.7 - Solubility Curve for Halite Brine at the Eutectic Concentration 

3.3.3 Comparison to Published Data 

The work of B.J. Verbeek [6] concludes experimentally that the Eutectic point of a NaCl 

brine system is -21.1°C and corresponds to the theoretical value. This work also outlines 
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the sensitivity of the eutectic point for a NaCl solution to the presence of magnesium 

and other trace impurities, thereby necessitating the work in the proceeding section, 

Section 3.4.2 where we investigate the effect of barium sulfate on the eutectic point of 

a primarily NaCl system to determine if there is sensitivity to scaling salts that are 

commonly present in Marcellus and Utica waste water. The results of the analysis 

presented in Section 3.3.2 compare favorable to those presented in the preceding article 

and give confidence to the method employed in this thesis.  

3.3.4 Connection to Produced Water 

As I previously mention in Section 3.3.1, the use of NaCl as the brine species for single 

species analysis is conducted due to the prevalent nature of NaCl in waste brines from 

the oilfield [40] and overwhelming literature sources on the subject. In subsequent 

sections, we will delve into the realm not often covered in texts explicitly and that do 

not include peer reviewed published literature. Due to the stable nature of the Sodium-

Chlorine bond, it is seen in many EFC simulations and studies that Halite or the stable 

Hydrohalite form before other salt species, including other sodium species. Much of 

freeze crystallization research is focused on treating Reverse Osmosis (RO) retentate 

brines and subsequently the scope of this thesis will primarily pertain to the validation 

and applicability of EFC for use in treating oilfield brines. In the scope of this thesis work 

focusing on the water treatment of the Marcellus and Utica Shale plays specifically, NaCl 

is especially important as it can make up most of the TDS in the brines from these regions 

as shown in Table 7.1 in Appendix A. As mentioned previously, the sensitivity of the EFC 

process to the presence of impurities is addressed in Sections 4.1 – 4.3 and is validated 
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through the use of multiple examples to provide the theoretical performance validity 

necessary to validate this thesis.  

3.4 BINARY SPECIES BRINE ANALYSIS 

To determine the robustness of the simulation and to determine what effect, if any, the 

inclusion of other distinct salt species have on the reduction or increase in eutectic 

temperature, it is important to proceed with analyses using progressively more complex 

brines. A distinct salt species is one that contains two separate cations and anions. With 

appropriate selection of cation and anion, it is assured that only two salt crystal species 

will form. Following the singular species analysis then, is an analysis of a binary brine 

that should serve to introduce the complexity of freeze crystallization on complex brines 

and introduce concepts that are not covered in the discussion of singular species brines 

such as common ion effects. To design and simulate Eutectic Freeze Crystallization, it is 

important to have a detailed understanding of phase equilibria. However, limited 

availability of adequate examples in the literature and texts coupled with questionable 

data quality used in experimentation, using phase diagrams alone is of limited 

usefulness. Many authors have thus switched to using the extended UNIQUAC activity 

coefficient model to simulate freeze crystallization as the use of phase diagrams 

becomes impractical in systems with more than four types of ions [3]. It is with the 

UNIQUAC model that we proceed and gives justification to the use of the OLI Stream 

Analyzer in this thesis.  

3.4.1 Salt Selection Criteria and Concentration 

Similar to single species salt selection, salts are now needed that can: 
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1. Accurately test the capabilities of the OLI software while simultaneously 

providing utility to the study at hand 

2. Be separate and distinct without common ions to determine if the simulation 

can identify and proceed through multiple eutectic points 

3. Build on the previous simulation of NaCl in order to evaluate what changes, if 

any, the presence of additional salt species has on the eutectic point of Na+ and 

Cl- given they are the most prevalent ions in these hypersaline waste waters 

4. Have applicability to the oilfield and the ions commonly associated with 

Marcellus and Utica waste water and have a eutectic temperature that is 

different enough from NaCl that it can be readily identified graphically.  

For the above criteria, one salt is especially troublesome in the Marcellus and has a high 

eutectic point as evidenced by its scaling tendencies at very high (room) temperatures. 

Barium Sulfate, BaSO4, is an inorganic salt that has very low solubility in water and whose 

solubility is not appreciably temperature dependent [81]. While the eutectic 

temperature of BaSO4 is not low (due to the low solubility of this salt there is no distinct 

eutectic point per se, but rather near 0°C there is ice formation and this ice formation 

contributes to an increase in the concentration of BaSO4 in a single species Barium 

Sulfate brine) it is a salt that is present in all water quality reports that are provided for 

this thesis in the Marcellus and Utica Shale, and can be seen in Table 7.1 in Appendix A. 

This salt also has applicability to addressing the scaling concerns mentioned as drivers 

for waste water recycling solutions in Section 3.2 and Section 2.2. Calcium carbonate is 

not included as the second salt for analysis as Marcellus shale produced waters exhibit 
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little calcium carbonate, compared to those wells of the Permian Basin and Eagleford 

shale.  

The modeled freeze crystallization is performed using temperature reduction steps of 

2°C from a starting temperature of 20°C to -50°C. The rationale for the selection of these 

temperatures for use in the simulation are given in Section 3.1, and pertain to the 

physical continuity limitations of the software (-50°C), the lower realistic limit of 

commercial chillers, and an arbitrary value of ambient temperature (20°C). From 

previously published literature, it is expected that no freeze crystallization will occur at 

temperatures above 5°C except for solutions that are previously supersaturated, [5] or 

exhibit very low solubility. The 2°C temperature steps size is selected as there is no 

appreciable loss of accuracy when compared to incremental step sizes, but simulation 

time is reduced greatly. Each graph is representative of a 1L sample of brine with the 

qualities described, and therefore a precipitation of 1 gram of any salt species would 

indicate a reduction in the TDS by 1000ppm for each ion required for that salt species.  

3.4.2 Results from Software 

 

Figure 3.8 - Binary species brine of NaCl and BaSO4 
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The simulation of freeze crystallization on the binary brine of 2.0 wt% BaSO4 and 23.3 

wt% NaCl brine is shown above in Figure 3.8. The proper way to mentally observe the 

EFC graphic is by viewing right to left as that would be associated with a temperature 

reduction due to freezing. Due to the low solubility of BaSO4, Barium Sulfate gradually 

forms as temperature is reduced and the solubility is further reduced. Notice the low 

solids formation for BaSO4 (~1.7g in total, but 1.698g is deposited prior to cooling) 

indicating that rapidly, almost all the Barium Sulfate is removed from solution and 

further chilling does not significantly alter the solubility of Barium Sulfate and therefore 

the produced quantity of BaSO4 from EFC specifically is negligibly small. Ice begins 

forming at a reduced temperature of -12°C, significantly different than the known 

freezing temperature of pure water under atmospheric pressure of 14.69 psi of 0°C. Only 

ice (and negligible trace Barium Sulfate) is formed until a temperature of -20°C, at which 

point NaCl▫2H2O (hydrohalite) begins to be formed. By forming solely ice originally, the 

system is increasing in concentration of NaCl until finally reaching the eutectic 

concentration at which point hydrohalite is formed. However, different than the ice 

formation of the 2.5 wt% NaCl brine in Section 3.3.2, the ice formation temperature is 

now -12°C instead of 0°C and the formation temperature for hydrohalite is now -20°C 

instead of -22°C. this indicates that the presence of Barium Sulfate even in small 

quantities has a significant effect on the phase diagram of the brine and can alter the 

expected properties and action of the brine under chilling. The consequences of this 

effect will be discussed further in Section 5.1.1., Feasibility of Implementation.  
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3.4.3 Comparison to Published Data 

To date, there has been no published literature discussing the freeze crystallization of a 

Barium Sulfate and Sodium Chloride binary species brine. Relative to the plethora of 

available literature on Sodium Chloride brines, information on Barium Sulfate brines or 

crystallization is nonexistent. Likely this low availability of Barium Sulfate brine 

information is due to the low solubility of this salt and its propensity to be a salt crystal 

in nature, not necessarily be a brine species. Given the lack of information relating these 

two-salt species, there is little that can be said regarding their comparison to published 

information, whether experimental or simulated. Instead, this section will include 

remarks regarding the phenomena discussed in the proceeding section on the reduction 

in water crystallization temperature in a Sodium Chloride brine with the low 

concentration of Barium Sulfate relative to a single species Sodium Chloride brine and 

relating this back to known principles of electrolytic chemistry.  

Mentioned previously in Section 3.4.1, the common ion effect is the phenomena when 

multiple salt species in solution share a common ion. For waste water brines an example 

would be NaCl and MgCL2 both sharing Cl- ions for formation. Lewis et al. [3] determined 

that experimental results of a binary common ion brine are in agreement with the OLI 

Stream Analyzer model and that even in low concentrations, that impurities (such as 

Ba2+) have a clear effect on the eutectic temperature by depressing the freezing point 

of ice, and therefore the eutectic point of the system. Even though the hypothetical 

brine that is tested consists of Ba2+, Na+, Cl-, and SO4
2+, the higher reactivity of the 

chloride ion over the sulfate ion causes the system to react instead as if it is solely a 
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NaCl, BaCl2 brine and therefore there is an effect from the common ion, Cl-. This is an 

important consideration considering that Chloride ions are highly reactive and are also 

present in large quantities in oilfield waste brines. This implies that the common ion 

effect will similarly depress the freezing point of ice or salt in a complex brine simulation 

in Section 3.5.2. 

3.4.4 Connection to Produced Water 

As I mention in Section 3.3.1 and 3.4.1, the use of NaCl and BaSO4 in the binary species 

simulation is conducted due to the prevalent nature of these salts in brines from the 

oilfield, specifically the Marcellus and Utica Shale plays [40]. In the subsequent sections 

of this chapter, we will delve into freeze crystallization as it has yet to be studied; with 

the use of the OLI Stream Analyzer software to conduct simulation of EFC on multi-

species complex waste water brines. The effect that the small amount of BaSO4 had on 

depressing the freezing temperature of ice highlights clearly the importance of obtaining 

detailed and complete water quality reports for the waste water of the Marcellus if 

Freeze Crystallization is to be performed and that even small variations in composition 

might have profound effects on the sensitivity of the system. This could have 

implications on the ability of a Freeze Crystallization treatment facility to handle the 

volumes and rates of waste water necessary for commercial operation or impact the 

scaling of a system for mobile applications, as is discussed in Section 5.2.1. As well, the 

effect of the BaSO4 still in solution in trace quantities is addressed in Section 5.3.3 when 

discussing the robustness of EFC as a standalone water recycling method and the 

potential need for additional water processing steps, likely with the use of RO.  
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3.5 COMPLEX WASTE WATER BRINE ANALYSIS 

For the complex brine analysis, I am analyzing simulation of Freeze Crystallization using 

inputs from the water quality reports provided courtesy of Baker Hughes Inc. These 

water quality reports can be viewed in Table 7.1, Appendix A and are inclusive of 149 

wells that produce from the Utica in Ohio, and 182 wells that produce from the 

Marcellus in West Virginia or Pennsylvania. Included in these reports are 19 unique 

measures of the water quality, given as mg/L (ppm) of ions of interest and biocides or 

scale inhibitors. A selection of these wells is used to simulate freeze crystallization on a 

variety of Marcellus and Utica brines. The potential limitations of analysis using only 

these 19 parameters are discussed further in Section 5.4.1. Given the broad range of 

TDS from these water quality reports, multiple simulations are performed on a variety 

of the reported samples from each play, as well as a simulation of a representative 

average brine from each play. These multiple simulations are performed to determine 

if there is significant sensitivity to the impurities reported, or whether all the brines have 

eutectic points that are similar enough to be processed together and wouldn’t require 

individual processing systems for each specific well composition.  

3.5.1 Salt Selection Criteria and Concentration 

The TDS of the Marcellus brine water quality reports ranges from 59,000-310,000 ppm 

indicating these are very saline brines that would not be capable of undergoing RO 

treatment (see Chapter 2, Section 2.3.2). Recall from Section 1.3 that one selection 

criteria for the Marcellus Shale play specifically for water disposal investigation is 

because this region is limited in the application of injection wells for disposal and has 
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high costs for transportation to disposal sites. While the hypersalinity would make it 

challenging to process for typical water treatment methods, freeze crystallization is well 

situated for the cool temperatures of the Northeast and the high concentration of salts 

in general would mean that with reduced energy input pure salt can be generated in 

copious amounts. As mentioned in Section 3.2.3 there is economic value that could be 

obtained through the sale of these pure crystallized salts from the EFC process. The 

economic value of this sale and the implications on supply EFC could have are explored 

further in Section 5.3.  

For analysis, wells are selected that did not have reported quantities of SIs (scale 

inhibitors) or biocide as the specific chemical used is not listed and the effects these 

chemicals would have on the EFC process are unknown. SIs work by disrupting the 

formation of the crystal lattice structure of the salt by denying nucleation points or 

disrupting the active crystal growth sites [82]. Additionally, wells are selected that both 

did and did not exhibit net charges to test the robustness of the OLI Stream Analyzer in 

its ability to handle non-neutral charge. All the brine samples collect for analysis by BHI 

are collected from API separators [51] and should exhibit a minimal residual 

hydrocarbon or TSS. It is assumed in this thesis that any residual hydrocarbon or TSS are 

removed via an alternative processing method prior to EFC. 

3.5.2 Results from Software 

In this section, I will proceed in detail over 5 simulations performed using the OLI Stream 

Analyzer on actual oilfield brines reported from the Marcellus, Utica, and Permian 

basins. These brines represent a small sample of the available brine data provided 
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courtesy of Baker Hughes Inc. but provide a representative dataset for the expected 

Freeze Crystallization (FC) cases that would be represented across the spectrum of 

brines from these plays. The analysis and commentary to proceed will first give salient 

information about the makeup of the brine (complete data information is available for 

each in Table 7.1 in Appendix A, followed by an intuitive preliminary expectation that 

can be made regarding what we know from the preceding Sections 3.3 and 3.4 and then 

finally the simulation results are commented and explained. A discussion on the results 

from the simulation itself and the implications these results have on the design and 

implementation can be found in Section 5.1.  

The first simulation performed using the water quality reports is for the Marcellus Shale 

well 104 (API 37-019-22194) that has an estimated TDS of 144,552 ppm, of which 91,881 

is Cl- and 34,142 Na+. This represents a brine that is approximately 7 wt% NaCl with 

approximately 7 wt% other ions, the majority of which are Chloride. Given that the brine 

consists primarily of NaCl and that main contaminants are Chloride ions (126,022 ppm 

is either sodium or chloride) this suggests that less than 2 wt% of the brine is other 

contaminants. Intuitively, if we proceed as if the brine is just a pure NaCl brine of 7 wt%, 

we can predict a high side estimate for the first freezing temperature of the brine. 

Recalling from Section 3.3 the known solubility curve for an NaCl brine of 7 wt%, we 

would predict it to exhibit the formation of ice at a temperature of approximately -5°C. 

Since a pure NaCl brine of 7 wt% is below the eutectic concentration considerably, we 

would firstly expect ice to form with FC of the Marcellus 104 brine. Including the 

pertinent information from the water quality report for Marcellus 104, namely that 
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there are other cations that share a common ion (chloride) with sodium, we investigate 

what effect this would have on the observed ice crystallization temperature.  

We would expect, based on the results of the analysis presented in Section 3.4 and the 

literature from Lewis et al. (2011), that the presence of these other species that the 

eutectic temperature is depressed. Whether significantly or only moderately we cannot 

be sure based on approximation and intuition alone, but if the pure brine would exhibit 

a first freezing point of -5°C, then -10°C to -15°C wouldn’t be abnormal. Therefore, the 

expectation we proceed with based on a very limited subset of information regarding 

the brine from the Marcellus 104, just TDS, Chloride and Sodium, we make the 

prediction that the results from the simulation will yield a case where: 

1. Ice is formed prior to salt crystallization 

2. The salt that will crystallize is NaCl, or rather hydrohalite as the stable species 

3. The temperature of ice formation is depressed below that of a pure NaCl brine 

of -5°C 

4. The Eutectic temperature of the system should be lower than that of a pure 

NaCl brine of -21.1°C 

Presented below in Figure 3.9 is the OLI Stream Analyzer FC simulation for the Marcellus 

104. We conclude that our prediction from above given some limited information and 

assumptions is accurate. Specifically, we now identify the ice formation temperature to 

be near -8°C, and a eutectic temperature for co-formation of hydrohalite and ice at 

approximately -30°C.  
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Figure 3.9 - EFC Simulation of coproduced brine from Marcellus 104 

We see other eutectic points at much lower temperatures and associated with the 

formation of measurable salt crystallization, such as that of MgCl2 at -36°C and minute 

crystallization of antarctictite (<10 g/L or 10,000ppm). This FC graph has been simplified 

to reduce the number of formed salt species for clarification. Other salt species form, 

however they all exhibit a crystallization temperature substantially below that of 

hydrohalite, and each form in such minute quantities (<< 1 g/L) that they can be 

perceived as impurities in the formed solids and thusly be ignored. The cations of 

formation are not appreciably rare and do not include those that have significantly more 

economic value than NaCl, as is addressed in Section 5.2.  

Specifically, from this first simulation analysis of a Marcellus oilfield brine we note that 

intuitive interpretation of water quality provided rapid realization if a sufficient amount 

of information regarding likely formation temperatures and crystallization products, and 

that for a brine of approximately 150,000 ppm TDS, we first see crystallization of ice. 

This first production of ice and its association with the brine TDS is further quantified in 

succeeding analysis of other Marcellus brines.  
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Moving now to the Marcellus 75 brine (API 37-031-25508) that has an estimated TDS of 

310,161 ppm, of which 192,526 is Cl- and 67,795 Na+. This represents a brine that is 

approximately 13.5 wt% NaCl with approximately 17 wt% other ions, the majority of 

which are Chloride. Given that the brine consists primarily of NaCl and that main 

contaminants are Chloride ions (260,321 ppm is either sodium or chloride) this suggests 

that less than 5 wt% of the brine is other contaminants, the majority being either 

Calcium (Ca2+) at 3 wt% or Barium (Ba2+) of 0.8 wt%.  

Given the high TDS of this brine coupled with the very large total contribution of 

impurities in the form of Calcium, Barium, etc. we will not attempt to intuitively assess 

the outcome of FC on this sample as it is indeed, very complex. Instead, we will focus on 

interpreting the results of the FC for OLI Stream analyzer and the implications this would 

have on the formation of pure salts. The simulation for Marcellus 75 is shown below in 

Error! Reference source not found.. We identify that there are multiple eutectic points a

nd the potential formation of 4 salt species. The crystallization temperature of the 

Calcium Chloride and Magnesium Chloride is too low for commercial freezing and is 

excluded from consideration of the EFC analysis. At -8°C we see first formation of 

hydrohalite, followed by Barium Chloride at -18°C and finally eutectic formation of ice, 

BaCl2, and hydrohalite at -24°C.  

The formation of multiple salts at one eutectic temperature would indicate that the salt 

crystals formed are inseparable and would not be as marketable as if they are pure. 

Given for a 1 L sample it is predicted that 8 g of BaCl2 form with 200g hydrohalite, that 

would indicate salt formation that is 6% BaCl2 and 94% NaCl after dehydration of the 
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hydrohalite. 94% is still a relatively high purity and likely acceptable on an industrial 

reagents scale. This relative economic value is addressed in Section 5.2.  

The relevance of including the Marcellus 75 brine in this discussion is due to its 

uniqueness in having two salts crystallize at the temperature. In the dozens of 

simulations performed, it is one of only a few that exhibited this phenomenon. The 

others (Marcellus 63, 68, 69, and 76) all exhibited the formation of the same two salts. 

This is caused by the high proportion of Barium ions in each brine which has a similar 

propensity to form chlorine salts as other Alkaline Earth Metals. Given that only 5 of the 

332 brine samples exhibited considerably high levels of barium, the likelihood of this 

occurring during FC of a conglomerate brine from multiple sources is low. This is 

quantified later in this section by way of example using an average of all the Marcellus 

brines as one stream.   

 

Figure 3.10 - EFC Simulation of Coproduced brine from Marcellus 75 

The final Marcellus stream to be included is for an average of the 184 Marcellus brines 

reports in the water quality summary provide by Baker Hughes Inc This average would 

represent the comingling of many well produced water streams to one for central 
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treatment and processing. The average Marcellus brine has an estimated TDS of 221,451 

ppm, of which 137,753 is Cl- and 47,869 Na+. This represents a brine that is 

approximately 9.5 wt% NaCl with approximately 13 wt% other ions, the majority of 

which are Chloride. Given that the brine consists primarily of NaCl and that main 

contaminants are Chloride ions (Cl-) (185,622 ppm is either sodium or chloride) this 

suggests that less than 3.5 wt% of the brine is other contaminants, the majority being 

Calcium (Ca2+) at 2.8 wt%. This average Marcellus produced brine is generated using a 

weighted average of the stream volumes associated with the water quality reports 

provided courtesy of Baker Hughes Inc. Only those wells that did not indicate the use of 

biocides or scale inhibitors are included. The inclusion of this average brine in this 

analysis is to investigate what type of FC would be expected from the use of field wide 

processing. This field wide processing and related averaging should have the effect of 

reducing the contribution of individual wells producing large percentages of 

contaminants that could affect the sole formation of hydrohalite and ice at the eutectic 

temperature. For example, by averaging the Marcellus 75 brine in, the effect of Barium 

has been decreased. In fact, the Barium contribution to the average brine is now 0.08 

wt% compared to 0.8 wt% in the Marcellus 75. 
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Figure 3.11 - EFC Simulation of coproduced average brine from Marcellus Shale 

Shown above in Figure 3.11 are the results of FC simulation using the OLI Stream 

analyzer on the Marcellus average brine. We see that we have the formation of ice 

crystals only from -20°C to -24°C and then eutectic co-formation of hydrohalite and ice 

at -24°C. There again are other eutectic temperatures of -44°C for magnesium chloride 

and -46°C for Calcium Chloride however these salts are present in minute quantities 

compared to NaCl and ice. The formation of ice only prior to EFC is discussed in further 

detail in Section 5.2 as it has economic implications for the feasibility of EFC and its 

incorporation as a viable water recycling method in the oilfield industry.  

Following the average Marcellus (Pennsylvania) brine, we analyze an average Utica 

(Ohio) brine to determine if there is a distinctly different profile to be expected from 

this neighboring formation, or if similar EFC are present in all oilfield brines. 

Consequently, this analysis is followed by the analysis of a Permian Basin (West Texas) 

brine to eliminate potential regional and timescale concerns.  



 

103 
 

The average Utica brine has an estimated TDS of 169,089 ppm, of which 109,125 is Cl- 

and 34,677 Na+. This represents a brine that is approximately 8 wt% NaCl with 

approximately 9 wt% other ions, the majority of which are Chloride. Given that the brine 

consists primarily of NaCl and that main contaminants are Chloride ions (143,802 ppm 

is either sodium or chloride) this suggests that less than 2.5 wt% of the brine is other 

contaminants, the majority being Calcium (Ca2+) at 1.9 wt%. This average Utica produced 

brine is generated using a weighted average of the stream volumes associated with the 

water quality reports provided courtesy of Baker Hughes Inc. Only those wells that did 

not indicate the use of biocides or scale inhibitors are included. The inclusion of this 

average brine in this analysis is to investigate what type of FC would be expected from 

the use of field wide processing. This field wide processing and related averaging should 

have the effect of reducing the contribution of individual wells producing large 

percentages of contaminants that could affect the sole formation of hydrohalite and ice 

at the eutectic temperature. 

 

Figure 3.12 - EFC Simulation of coproduced average brine from Utica Shale 
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Shown above in Figure 3.12, are the results of FC simulation using the OLI Stream 

analyzer on the Utica average brine. We see that we have the co-formation of 

hydrohalite and ice at -24°C indicating the brine is near the first eutectic concentration 

for the hydrohalite species. There again are other eutectic temperatures and -44°C for 

magnesium chloride and -48°C for Calcium-Strontium Chloride, however these salts are 

present in minute quantities compared to NaCl and ice. The implication of EFC without 

prior salt or ice crystallization and potential sensitivity is discussed in further detail in 

Section 5.2 as it has economic implications for the feasibility of EFC and its incorporation 

as a viable water recycling method in the oilfield industry.  

Finally, we end the complex waste water brine analysis with a sample Permian waste 

water. The water quality report for this Permian stream comes from a different source 

than the Marcellus and Utica data. While much of the information provided remains the 

same, there are also many more ions reported. In general, these ions are present in 

minute quantities and likely will only have the effect of depressing the eutectic point of 

the mixture. Additionally, it should be noted that the Permian stream is much less saline 

than the brines of the Marcellus and Utica, as is to be expected, however the sample 

provided still seems remarkably low in TDS.  

The Permian brine has an estimated TDS of 34,568 ppm, of which 21,200 is Cl- and 12,200 

Na+. This represents a brine that is approximately 2.5 wt% NaCl with approximately 1 

wt% other ions, the majority of which are Chloride. Given that the brine consists 

primarily of NaCl and that main contaminants are Chloride ions (33,400 ppm is either 
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sodium or chloride) this suggests that less than 0.1 wt% of the brine is other 

contaminants, the majority being Carbonic acid (HCO3
-) at 0.09 wt%.  

 

Figure 3.13 - EFC Simulation of coproduced brine from the Permian Basin 

Shown above in Figure 3.13 is the OLI Stream Analyzer simulation for the Permian waste 

water brine. As might be expected for a brine of such low TDS and predominately NaCl, 

we first observe the formation of ice. Of note, is the formation of Mirabilite 

(Na2SO4∙10H20) at -14°C. This is interesting for the fact that the level of sulfate is low 

(284 ppm). Likely due to the high pH there is stability for this salt species to form. 

However as is the case in the Marcellus 75 and the formation of Barium Chloride, there 

formation of Mirabilite occurs in very minute quantities. Where FC to achieve -22°C, we 

would be left with a salt portion that is ~55 grams Hydrohalite and just 0.5 grams 

Mirabilite, or an impurity level of 2% after dehydration of the hydrohalite. We also 

observe that the eutectic point for this sample is approximately -22°C, similar to that of 

a pure singular species NaCl brine. It is clear that the impurities are having little effect 

on depressing the eutectic point of this sample. This is due to the low TDS nature of this 
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salt and the very low level (<0.1 wt%) of impurities compared with other brines that 

have been analyzed.  

3.5.3 Comparison to Published Data 

There is no published data regarding the freeze crystallization of oilfield brines. Much of 

the literature for eutectic freeze crystallization is focused on identifying the costs of an 

EFC facility compared to that of an RO facility [3, 7, 74], identifying potential uses for 

EFC as a tertiary desalination method for other desalination processes [83], or as a 

potential technology for the use of disposal in the mining industry for a simple binary 

salt [84]. The effects of residual hydrocarbon and TSS is unknown for the EFC process 

[85], as are the effects of industry standard scale inhibitors and biocides. While the 

oilfield brines are complex in terms on containing many ionic components, the main 

component is a high concentration of NaCl which has been deemed to be suitably 

treatable only with freeze crystallization [76]. Identified in Section 3.4 that Lewis et al. 

[3] determined that experimental results of a binary common ion brine are in agreement 

with the OLI Stream Analyzer model and that even in low concentrations, that impurities 

(such as Ba2+) have a clear effect on the eutectic temperature by depressing the freezing 

point of ice, and therefore the eutectic point of the system. Similarly, the effect of Ba2+ 

and its depression of the eutectic point to below that expected for a NaCl single species 

salt alone is also present in the complex oilfield brine as well. Section 5.3 will include a 

more detailed inspection of the published literature with regards to the implications of 

the transports, sale, and potential disposal of NaCl salt and brine retentate.  
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3.5.4 Connection to Produced Water 

The analysis presented above in Section 3.5.2 uses information provided courtesy of 

Baker Hughes Inc. from standard water quality reports generated in the field from 

samples collect from API water separators. In the reports are tabulate information 

including pertinent water quality information such as the TDS, use of biocides, scale 

inhibitors, etc. Also noted are the contributing proportion of 19 ions common in oilfield 

waters, such as sodium, magnesium, chlorine, etc. While not inclusive of all species 

present in these complex water systems, the water quality reports do include those ions 

that are present in measurable quantities and that are required by law. There is no 

current regulatory requirement to report the content or concentration of NORM in the 

waste water. Therefore, without further analysis the effects of NORM on the nucleation 

of salt and ice crystals can be speculated only. Further speculation into this effect are 

presented in Section 5.1.  

3.6 SYNOPSIS OF CHAPTER THREE 

In this Chapter, I have introduced potential benefits realized by the industry if EFC is to 

be incorporated as a recycling method for waste water over currently established 

methods. For information regarding current water disposal and recycling methods 

please see Section 2.3. Also included is the concept of Eutectic Freeze Crystallization 

with introductory examples to explain the phenomena and provided justification for the 

use of the OLI Stream Analyzer for the simulation work that is performed. Additionally, 

I have presented singular and binary species salt simulations to provide and illustrate 

the freeze crystallization process with reference to the current literature status of freeze 
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crystallization. Commentary on the gaps in the current EFC literature are mentioned 

explicitly in Section 3.4 and reinforce the research questions presented in Section 1.2 as 

well as the needs for further work that is expanded in Section 5.1. Finally, the Chapter 

is concluded with original simulation of complex multi-species oilfield brines provided 

by way of water quality reports courtesy of Baker Hughes Inc. in Section 3.5. The general 

implications of the results of this chapter are outlined below regarding the technical 

outcomes. For economic and system design implications please refer to Sections 5.2 and 

5.3, respectively.  

• The Eutectic temperature for singular species NaCl brine is -21.2°C with the 

formation of hydrohalite 

• Inclusion of other ions and chloride forming cations has the effect of depressing 

the crystallization temperature of hydrohalite, generally on the order of 5-10°C 

• The co-formation of other salts near the eutectic point of hydrohalite can be 

limited through the mixing of waste water streams from multiple wells 

• Oilfield brines, composing mainly Na+ and Cl- in the TDS, exhibit one realizable 

eutectic temperature (hydrohalite and ice) while the eutectic temperature for 

other salts is too low for commercial chilling operations 

• An average Marcellus/Utica brine exhibit first the formation of ice, followed by 

eutectic co-formation of hydrohalite and ice  
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4 Chapter 4 – Bench Scale Testing of Eutectic Freeze Crystallization 

In this Chapter, given the immense cost associated with contracting EFC work or building 

an experimental testing apparatus for EFC at the University of Oklahoma, we discuss 

briefly a method for establishing a working bench scale design and discuss the possible 

outcomes from this type of testing and why it is necessary for answering the Research 

Questions (Empirical Performance Validity). Section 4.1 includes a discussion of the 

pertinent outcomes that are required of experimental work and are necessary for the 

proof of concept for EFC implementation. Also, in Section 4.1, the results of the EFC 

simulation work presented in Section 3.5 are compared to those that would be 

generated from experimentation. Section 4.2 approaches the information that is missing 

in the current literature and necessitates original research to be able to answer 

important Structural Validity questions regarding EFC. Section 4.3 includes the design 

and construction of a bench scale EFC testing apparatus. Also, in Section 4.3 is discussion 

on procurement and associated costs for the construction of a EFC laboratory bench for 

the parameters which we would be interested in collecting for analysis. The anticipated 

possible outcomes of experimentation tie to the third quadrant of the validation square 

for Research Questions 1 and 3, and the Structural Validity for Questions 2 and 4 are 

provided in Section 4.2 and 4.4. In Section 4.4 we discuss in more detail the importance 

and process of quantifying relevant effluent stream qualities for the validation of EFC 

for oilfield use. This Chapter is essential for validating the thesis through a purposefully 

designed method with commentary on the implications for use in industry and 

technological development. In conjunction with the economic evaluation provided in 
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Chapter 5, this Chapter is primarily of utility to industrial researchers that have funding 

greater than academic parties and could take the validation of EFC to the next stage to 

verify and narrow the estimates of feasibility and cost presented herein. This chapter 

relies heavily on the use of the validation square to verify and validate the concept 

presented in this thesis. Chapter 1, Section 1.4.2 contains more information regarding 

the verification and validation strategy and is heavily dependent upon the work done by 

Pederson et al. (2000) [25]. 

4.1 CONFIRMATION OF SIMULATION 

In this Section we discuss the pertinent outcomes that are required of experimental 

work and that are necessary for the proof of concept for EFC implementation. In Section 

4.1.1 and 4.1.2, the results of the EFC simulation work presented in Section 3.5 are 

compared to those that are generated from experimentation. This is necessary given 

the lack of published literature concerning the efficacy of complex multicomponent 

freeze crystallization to physical results. Section 4.1.1 discusses the simplest verification 

necessary for EFC, determining the Eutectic Temperature of the brine, which relates to 

the work of Chapter 5, Section 5.2.2 and Chapter 3, Section 3.2.3. Section 4.1.2 has 

implications to the validation of EFC as a cost-effective water management solution in 

the oilfield, which is also discussed in more detail in Chapter 5, Section 5.2.2 and Chapter 

3, Section 3.2.3. Finally, Section 4.1.3 is included as a primer for the Performance Validity 

for EFC and Research Questions’ 1 and 2 that is presented in Chapter 5, Sections 5.2.3 

and 5.2.5 which relate to the sale and disposal of the produced salt stream.  
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4.1.1 Verification of Eutectic Temperature 

In this Section, we discuss the use of bench scale experimentation to verify the structural 

consistency of EFC by comparing the results of EFC simulation to experimentation. This 

is a necessary step in the proof of concept for EFC as the nature of the complex 

multicomponent oilfield brines is largely unknown. As discussed in Chapter 3, Section 

3.1.1, the OLI Systems is used to model theoretically the fractional crystallization due to 

temperature drops expected in a freeze crystallization system. Lewis et al. (2010) [3] 

first discussed the use of the OLI software for brine crystallization of multicomponent 

waste water streams. In their study, bench scale laboratory freeze crystallization of a 5 

wt% Na2SO4 brine is compared to that generated by the OLI Stream Analyzer, specifically 

the eutectic temperature and concentration. Using the validation square discussed in 

Chapter 1, Section 1.4.2., this agreement indicates a high level of confidence in the 

generated results of the OLI Systems software for simple multi component brines. 

However, their analysis does not accurately capture the high complexity and variability 

of waste water streams that are present in the oil and gas field, nor is there sufficient 

evaluation of freeze crystallization economics to justify further study of the matter at an 

industrial level. As mentioned in Chapter 1, Section 1.1.3, the hope is that the analysis 

presented in this thesis can fill these gaps and present clear validation for further 

examination as well as provide a potential avenue away from the use of waste water 

injection as a disposal method discussed in Chapter 2, Section 2.3.3. Much of the 

thermodynamic comparison that is discussed in this section is in relation to the work 

published by Verbeek (2011) [6]. 
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Verbeek performs work using a cooled disk column crystallizer (CDCC) as first mentioned 

by vd Ham (1998) [41] and a scraped cooled wall crystallizer (SCWC) of 10L and 200L 

volume, respectively. A depiction of the CDCC used in his experimentation is included as 

for clarity.  

 

Figure 4.1 - Cooled Disk Column Crystallizer Design [41] 

His work shows that the eutectic temperature of -21.1°C corresponds to the theoretical 

value for a NaCl brine of 23.3 wt%, the eutectic concentration. This agrees with the OLI 

System Stream Analyzer Simulation results obtained and discussed in Chapter 3, Section 

3.3.2 of a eutectic temperature of approximately -21°C for a NaCl brine of 23.3 wt%. 

Verbeek also explores the effect of a contaminants, Mg at 1 wt%, on the crystallization 

temperature and purity of NaCl. He concludes that the contaminant suppresses the 

freezing point slightly, but also increases the rate of heat transfer by 30%. He attributes 

this increased heat transfer to the reduced scaling of precipitated salts on the vessel 

body. This result holds promise that the high level of contaminant ions present in oilfield 
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waste water could be beneficial to the EFC process and help the thermal efficiency of 

the design.  

The crystallization model developed by OLI utilizes the revised Helgeson-Kirkham-

Flowers (HKF) model for calculation of thermodynamic properties of aqueous solutions 

and modifies the framework of the Debye-Huckel model for other excessive terms [3, 

67]. OLI Stream Analyzer uses the HRK method to carry out crystallization calculations 

to temperatures of -50°C, which is the lower limit of that model. This model appears to 

be adequate for the analysis presented insofar by Verbeek and Lewis et al. by verifying 

the eutectic temperature and concentration of a simple singular and binary species 

brine. What is unclear and necessitates further experimentation, is the verification of 

the eutectic temperature of a complex multi-species brines. Determining the eutectic 

temperature alone would not justify the high cost of developing an experimental setup 

but is one piece of information that would be useful in the path to providing a proof of 

concept for EFC in the oilfield industry. As mentioned previously in Chapter 3, Section 

3.5, the reduced eutectic temperature for the complex multi species brines is consistent 

with the results obtained by Lewis et al. showing a suppression of eutectic temperature 

in their experiments from the additional ions in solution and is consistent with the work 

of Verbeek. The magnitude of this suppression from simulation of oilfield brine is 

nontrivial as there is great difficulty in reaching -26°C compared to -21°C. Refer to 

Chapter 3 for more detail regarding the eutectic temperature and simulation of complex 

multi species brine.  
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4.1.2 Verification of Thermodynamic Requirements 

The main necessity for performing experimentation, then, is not for difficulty of 

determining the Eutectic Temperature of the brine mixture as in Section 4.1.2 we show 

that the OLI software has shown substantial evidence that the Eutectic Temperatures 

calculated are valid. Rather, the difficulty comes from determining the overall specific 

heat for the brine, as it is a complex calculation based on many physical phenomena – 

conductivity of slurries, contaminants, and penetration theory. The conductivity of the 

liquids and the contained solid particles is described by Tareef (1940). Ramires (1994) 

[86] provides the thermal conductivity for a sodium chloride solution based on 

temperature and concentration. His work does not discuss the role of contaminants on 

these constants. Verbeek assumes that given the small level of contaminants (<1 wt% 

Mg) in his test brine, that the deviation from the theoretical thermal conductivity will 

be small. Indeed, by his analysis the introduction of the contaminant could change the 

specific heat by the fluid by as much as 10% and result in only a 1% increase in total heat 

transfer for the crystallization chamber designs used. This is a sufficient assumption to 

be made under his circumstances but does not adequately describe the situation faced 

when using EFC for the produced water brine where contaminants account for upwards 

of 7 wt%. Finally the specific heat of the slurry of ice and salt in water is calculated by 

the process described by Meeuqisse and Infante (2001) [87].  

There is no literature to be found regarding the effect of such high level of 

contamination that consists of multiple salt species. To provide a proof of concept for 

EFC in the oilfield, experimentation must be done to verify that the high level of 
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contaminant species in the NaCl dominant produced brine would not adversely affect 

the heat transfer of the process as heat transfer directly influences the capacity of the 

crystallizer.  

The OLI Stream Analyzer calculates a specific heat for the NaCl brine at the eutectic 

concentration of 3.4 kJ/(kg∙°K) which does not correspond well to the specific heat 

Verbeek found to be 10 kJ/(kg∙°K). This deviation is likely due to the HKF model 

calculating the specific heat as a static fluid parameter at the simulation starting 

temperature, 24°C. This is not a correct nor similar method to that outlined above and 

used by Verbeek to calculate the specific heat. Additionally, the flow regime and slurry 

nature of the brine mixture also leas the OLI estimate to be off.  

Examining much of the thermodynamic work for freeze crystallization is outside the 

scope of this paper in its detail but underscores the insufficiency for simulation to 

adequately model the physics behind the temperature and salinity dependent process 

without empirically derived constants from which to begin calculations, as Ramires does 

for pure NaCl solutions. The OLI Stream Analyzer could be updated to include this 

stepwise method of calculating specific heat, but this would be futile without the 

constants necessary given the high wt% contaminants present in the oilfield brines.  

Therefore, either calculations could be performed with greater accuracy after 

developing these constants, or bench scale work could be used to empirically arrive at 

the specific heat by working backwards from the overall measured heat transfer and the 

known transfer rates of the refrigerant and vessel wall.  
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The estimates for Eutectic Temperature and specific heat are thankfully very consistent 

across the 61 brines that were evaluated using the OLI Stream Analyzer. This occurs due 

to the almost independent nature of the solubility of NaCl from the temperature. This 

can be visualized on the phase diagram as the steepness of the solubility line. Because 

of this steepness in the initial freeze crystallization of the hypersaline brine, large 

quantities of salt will precipitate quickly. This could provide difficulties in the filtration 

and washing of the produced salt as the system will be inundated rapidly. By performing 

bench experimentation on these hypersaline produced brines, not only could the 

specific heat of the fluid be determined, the energy required to reach the eutectic 

temperature would be easily identified. This would allow for a potentially economic 

method of high purity NaCl generation. The purity of this stream is dependent on the 

washing and drying stages of the hydrohalite, which is the subject of the succeeding 

Section. 

4.1.3 Purity of Effluent Streams 

This Section is included as a primer for the Performance Validity for EFC and Research 

Questions’ 1 and 2 that is presented in Chapter 5, Sections 5.2.3 and 5.2.5 which relate 

to the sale and disposal of the produced salt stream. Before the precipitated salt can be 

sold or marketed, a preliminary purity must be established with which to price it on the 

commodity market. The sale of the salt is necessary as it reduces the need to dispose of 

solid waste instead of a liquid waste, but also represents a valuable byproduct stream 

which offsets the higher energy cost of EFC over conventional injection disposal. In 

addition to the purity of the salt stream, the ice stream purity must be monitored. Water 
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with moderate salinity (between 1000 and 40,000 ppm) can treated using Reverse 

Osmosis to a purity that makes the water potable or viable for release to the 

environment through estuaries and streams, as shown in Figure 4.2.  

 

Figure 4.2 - Desalination method by TDS, courtesy Shell Oil Company [6] 

If the water stream is natively low salinity, no treatment is necessary for reuse for 

hydraulic fracturing or agriculture. Finally, while EFC is marketed by many researchers 

to be a zero-liquid discharge recycling method (ZLD), it remains that this would be 

impractical given the high level of contaminants present in an oilfield brine. The risks 

and problems associated with NORM materials and the third effluent stream from EFC, 

the mother liquor retentate, is discussed in Section 4.2.3.  

Verbeek finds that the ice slurry stream from EFC lost 42% of its mass from melting at 

room temperature as it was removed from the crystallizer and that the ice produced still 

contains 9 wt% NaCl. By washing the remaining ice with cooled water twice, nearly all 
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the contaminants and salts from the surface bound mother liquor was washed away. 

This washing step represented a 2-kW loss of heat. This heat loss to the environment is 

included in the economic evaluation of Chapter 5, Section 5.2.2. A viable method for 

secondary treatment is to remove the ice stream and rather than allow melting and 

washing, proceed to a secondary treatment to deal with the 90,000 ppm NaCl. By 

diluting this process stream 2:1, the salinity decreases to 45,000 ppm NaCl and be 

treatable with RO [69]. This in-series treatment option is addressed thermodynamically 

in Section 5.2.2 in a comparison with the energy requirements for multiple washings as 

mentions previously.  

The salt stream filter operates similarly in Verbeek’s setup and any trace mother liquor 

present on the crystal surface is removed by creating a vacuum under the belt. The salt 

stream is allowed to heat from the -21.1°C eutectic temperature to 0.1°C for 

recrystallization of the hydrohalite to halite, as mentioned in Chapter 3, Section 3.2. 

Verbeek finds that 0.73 kW of heat is lost to the environment for the warming of the 

filtrate to 0.1°C. 13% of the Mg contaminant of his experiment is present on the crystal 

surfaces. He finds the contaminant can be washed away easily implying that no 

contamination is built inside the NaCl crystals. Following a similar methodology, we can 

generate a preliminary estimate of the purity of the salt stream from EFC of produced 

water using the same 13% figure as a starting point. In the average Marcellus brine 

presented in Section 3.5, there is 3.5 wt% contaminants in 18.5 wt% NaCl brine, 2.8 wt% 

of the total contaminants is Ca2+. After washing, the NaCl salt stream mass flow rate of 

0.93 g/s, the 13% contaminant figure estimates that 1.05 g/s NaCl salt will be generated 
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with 0.12 g/s being contaminants, with no washing. Using a washing and water 

extraction mentioned above of 0.73 kW of heat is lost and the anhydrous salt is very 

clean NaCl, of greater than 95% purity. This 95% purity value is used in the economic 

evaluation Section 5.2.3 regarding the disposal and sale of the precipitated salts.  

It appears that additional experimentation would not be necessary to confirm the purity 

of the effluent streams, however this is incorrect. As discussed in Section 4.2.2, the 

content of produced water with NORM and other common industrial chemicals such as 

scale inhibitors and friction reducers on the ice and salt nucleation process are not 

understood. Therefore, we cannot conclude that the phenomena witnessed of pure 

crystals being formed independent of contaminants within the crystalline body will hold 

when introduced to these alternative contaminants. In the succeeding Section, we 

discuss the larger research gaps that exist and what must be done to provide a proof of 

concept for EFC and why bench scale experimentation is crucial in this development.  

4.2 RESEARCH GAPS ADDRESSED THROUGH EXPERIMENTATION 

In this Section we approach the knowledge information that is missing in the current 

literature and necessitates original research to be able to answer important Structural 

Validity questions regarding EFC. Of primary importance to the proof of concept is the 

unknown effect of hydrocarbon on the crystallization of salt and water, presented in 

Section 4.2.1 with commentary on expected outcomes and testing procedures and 

parameters for bench scale work. Section 4.2.2 includes the work that needs to be 

performed to better understand the anticipated corrosion and corrosion product 

problems the EFC facility should be aware of and includes common industry methods 
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used to control corrosion rates. Some discussion of corrosion and the potential of EFC is 

discussed in Chapter 3, Section 3.2.1 and 3.2.2. Finally, in Section 4.2.3 the unknown 

effect and product of radioactive isotopes that are naturally occurring in the produced 

waters is discussed.  The social implications of NORM material have been discussed 

already in Chapter 2, Section 2.3. 

4.2.1 Effect of Hydrocarbon on Crystallization 

Produced water contains up to 1% hydrocarbons after separation in an API separator. 

The API separator works to separate bulk suspended solids, hydrocarbon and water 

gravimetrically. While most hydrocarbons can be separated gravimetrically using an API 

separator [51], micro emulsions and polar hydrocarbons often remain in solution after 

separation and pose a threat to life if released to the environment immediately. These 

components still entrained in the fluid are small oil droplets contained in the water-

continuous phase are subject to the competing forces of dispersion and 

coalescence.  For oil wells, the droplets can contain heavier hydrocarbons and 

asphaltenes as well as the aromatics such as benzene, toluene, etc. Additionally, 

microbes and other fine solids may remain suspended in the produced water after 

separation. Natural gas wells and condensate wells such as those common in many shale 

plays such as the Eagleford and Marcellus have a proportionately larger contribution 

from the lighter hydrocarbons. Dispersed gas and flotation units can be used in 

conjunction with API separators to reduce the proportion of hydrocarbons within the 

produced water stream, but this treatment comes at an additional cost. 

Electrocoagulation is used with success for the flocculation of the O&G portion of the 
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water. It has the benefit of sometimes making flocs of highly polar chemicals and ions in 

the water stream. For water that is subject to overboarding or planned for reservoir 

pressure control injection, these additional treatments are standard, as the presence of 

hydrocarbons is impermissible.  

Little is known about what effect the trace hydrocarbons and aromatic present in 

produced water would have on freeze crystallization desalination. In general, there is 

too much hydrocarbon present in produced water (>15 ppm) to perform RO as the 

organic chemicals quickly degrade the osmotic membranes, not even mentioning the 

hypersalinity. From a freeze crystallization standpoint, this is a very minimal 

hydrocarbon content accounting for a minute level of contamination. The issue arises 

due to the fact that the type of crystallization that takes place in the crystallizer is 

heterogenous nucleation in which the formation begins around a nucleation site, such 

as salt, solids, or irregularities on the container surface [88].  

The ramifications to freeze crystallization come in identifying the effect of salt and water 

crystal nucleation from its presence. Since nucleation is sensitive even to minute 

impurities in the system it is critical to understand these effects before design and 

construction of a freeze crystallization facility at an industrial level [89]. It is speculated 

that if nucleation occurred around the residual hydrocarbon remaining in produced 

water following separation and flotation that the reduction in nucleation temperature 

would be miniscule in comparison to the effect on nucleation of the dissolved solids 

contaminants as previously mentioned in Section 4.1. There are social implications of 

the water crystalizing around hydrocarbons in that the ice stream would then be unfit 
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for release into the environment, as the release of hydrocarbons is detrimental to 

ecologies and health. Offshore regulations allow for trace hydrocarbons at levels less 

than 15ppm, but this could prove fatal in large doses to agriculture and aquatic life in 

sensitive inland ecologies that contain limited available water for dispersion, such as 

rivers, streams, and lakes. These concerns are present in release of produced water at 

sea, but the larger volume of water at sea and the vast surface area allows for quicker 

degradation of the aromatics by UV radiation and microorganisms.  

Alternatively, the hydrocarbon portion could contaminate the ice stream not through 

nucleation but through surface contamination. Since the hydrocarbons are less dense 

and do separate gravimetrically with time, like the ice stream in a crystallization settling 

chamber, it is feasible that the hydrocarbons form a surface film that is then transferred 

to the ice stream upon removal. Washing the ice stream should take place to remove 

the surface contamination of the mother liquor already, so this scenario would simply 

return the hydrocarbon back to the crystallization chamber with the returning washed 

fluid.  

It is unlikely that the hydrocarbon portion present would form stable hydrates as the 

pressures are too low to remain within the stability zone, regardless of depressed 

temperature [90]. While the other favorable circumstances for hydrate formation are 

present in an EFC crystallizer (free water, low temperatures, agitation), the operating 

pressures would need to be a minimum quadruple that of atmospheric pressure to 

remain stable. Additionally, the miniscule hydrocarbon portion in the aqueous phase 

would not be sufficient to create damaging or plugging hydrates. In fact, the high salinity 
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of the brine retards the formation of hydrate by creating unstable impurities in the 

hydrate ice crystal lattice [91]. 

One potential issue with the reduction in temperature with hydrocarbons would be 

precipitation of heavier alkanes at the depressed temperatures [92]. In this case, the 

solid hydrocarbons would float to the fluid surface in the separator and then coat the 

exiting ice stream.  It is again unlikely that there would be sufficient quantity of large 

hydrocarbon molecules remaining to be of concern or to constitute as a measurable 

contaminant in production. In fact, given one main application for this technology would 

be treating the produced water associated with Marcellus gas formation, there would 

be a very minimal volume of long chain alkanes in the oleic or condensate phase to begin 

with. However, the ability of the hydrocarbon to precipitate out, or to form a stable 

crystalline hydrate with the water phase should not be discounted as real possibilities 

with implications to the stability of the system. Additionally, there is a potential for 

stable micelle structures to form in the agitated, low temperature environment of a 

crystallization chamber. The micelle structure would not be separated gravimetrically 

and would likely serve as a nucleation point for crystal development. As state above 

regarding the minimal contribution of heavier hydrocarbons in a shale gas procued 

water stream, it is unlikely that long chain hydrocarbons would be present is significant 

quantity in a shale gas waste water stream. Were it to be shown that freeze 

crystallization was insensitive to the presence of hydrocarbons, this technology would 

potentially be much more valuable to operators as it would negate the need to treat 
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water using API separators, etc., and could be applied to condensate and heavy oil 

applications.  

Additionally, the salt nucleation could be affected by the hydrocarbon. There are tens 

of thousands of chemicals added to fracturing fluid and many of these return in the 

flowback water. Given the proprietary nature of many of these chemical cocktails, it is 

difficult to ascertain their effect on freeze crystallization. Some of the chemicals that can 

be added to reduce the viscosity of the fracturing fluid are glycols such as propylene and 

ethylene glycol, common antifreeze agents. The agents prevent nucleation of ice close 

to the freezing temperature in three ways [93]: 

1. They can maintain the supercooled state of body fluids by inhibiting the usual 

growth of ice. 

2. They have the capacity to inhibit recrystallization 

3. They may serve as plasma membrane protectors at low temperatures. 

Generally, the scale inhibitors are targeted to such agents as calcium carbonate and 

barium salts as they represent the highest propensity for damaging hard scales. Because 

of their nature, chelant scale inhibitors are not effective against NaCl salts. While they 

are effective against removing Chloride ions, the large contribution of chlorine ions in 

solution makes it infeasible for their use in the brines associated with the Marcellus 

shale [94].  

Most importantly, if these chemicals do reduce the temperature of ice crystallization, it 

is speculated that the crystal size will be reduced as well given the smaller mean log 
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temperature difference across the crystallization chamber [95]. This would represent an 

increased challenge of separation as the feeder belt away from the separation chamber 

would have to have a smaller screen to trap the reduced sized crystals. With too fine a 

screen there is a risk of plugging by contaminants that is not as pronounced at larger 

mesh sizes.  

To this end, it is imperative that bench scale testing be performed to identify to what 

effect, if any, the presence of hydrocarbon has on the nucleation temperature of the 

system (Eutectic Temperature), the energy required for freeze crystallization (likely 

insignificant in relationship to other energy requirements) and the associated solid 

stream purity for system stability analysis. Without understanding first what will happen 

to the hydrocarbon stream, and other nucleating agents for that matter, it would be 

inadvisable to proceed to industrial scale investment in freeze crystallization.  

4.2.2 Corrosion Study of High Salinity Retentate 

A corrosion study of this high salinity produced brine should be performed as carbon 

steel is prone to pitting and crevice corrosion from the acidic components and the 

chloride ions in solution. High levels of chlorine hasten the corrosion and can render 

even a stainless-steel vessel defunct in a matter of months to years depending on wall 

thickness. Additionally as corrosion occurs in the crystallizer vessel, surface 

crystallization of NaCl can lead to the development of “crystallization pressure” exerted 

by the growing crystal onto the walls, eventually causing disintegration or catastrophic 

damage [96].  
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Since eutectic freeze crystallization is not capable of lowering the concentration of ions 

within a salt (except for those that initially exist above the eutectic concentration) it has 

limited effect on reducing corrosion through ion reduction. However, due to the low 

temperature of eutectic processes, the facilities performing freeze crystallization will be 

less prone to corrosive damage as compared to those of a thermal distillation plant that 

result in highly corrosive salts and caustic byproducts [70]. The implementation of local 

or small-scale freeze crystallization facilities would also reduce the impact of corrosion 

as it would minimize the water volumes moved through pipeline and are thus able to 

cause damaging corrosion. 

Measuring corrosion rates has been unpredictable and empirical for many companies in 

the oil and gas industry. A long-standing practice has been the use of iron (Fe2+) counts 

from produced water to measure the corrosion rate of production casing. It is assumed 

that the iron present is primarily a byproduct of the corrosion process [97]. However, 

the Marcellus and Utica shale have iron counts from the water itself and therefore the 

iron count is an unreliable predictor of corrosion. Additionally, by only measuring iron 

concentration, there is only relative magnitude of corrosion processes available for 

analysis, rather than type, location, and extent of the corrosion process. By monitoring 

and accurately measuring the corrosion of the vessels used in the process of EFC water 

management, the system can be made more resilient to corrosive zones and a holistic 

facility cost better estimated that includes replacement and redundancies for piping and 

containment.   
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A coupon corrosion study is a relatively inexpensive method to test the corrosivity of a 

fluid on carbon steel. Given that the corrosion rate is dependent of temperature, contact 

time and fluid properties such as pH, it is imperative that through testing these 

parameters be controlled. Specifically, when testing the corrosion rate, it would be 

invaluable to have the rate near the reduced eutectic temperature of -25°C for the 

oilfield samples. Like the discussion in Section 4.2.1, the chemical cocktail included to 

fracturing fluid also includes corrosion inhibitors. However, since these inhibitors are 

usually proprietary it is unknown what their efficacy is at low temperature or under 

which physical method they operate to reduce corrosion. A coupon corrosion study 

could be performed on native oilfield brine samples and retentate brine samples 

following EFC to determine the properties of the hereto unknown retentate water from 

treatment.  

A corrosion study that would yield more information than a coupon study would be a 

dynamic flow test since an additional corrosivity parameter is the flow regime of the 

fluid. As the flow rate becomes less laminar and more turbulent and dynamic, the rate 

of corrosion increases as the kinetic fluid energy is increased and the rate of contact 

increases. A dynamic flow corrosion test is more expensive than a simple coupon 

analysis and should only be performed if the results of coupon analysis indicate high 

corrosion rates (>300 µm/year).  

4.2.3 Salinity and Radioactivity of Retentate 

Public perception of radioactivity in produced water is not very balanced. While many 

polled individuals agree and accept that the process of producing oil and gas comes with 
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risks and uses water for drilling and pressure maintenance, they are less receptive to 

disposal and water management when informed that produced water contains 

radioactive isotopes [98]. The work performed by Torres et al. (2017) indicates that 

those outside of the O&G industry perceive and understand the risk of radioactivity and 

produced water less than that of industry insiders. This risk perception is an effective 

tool be used by operators in developing and delivering a holistic safety measurement 

and management schema in and outside of the production fields. To increase the trust 

between producers and communities, there needs to be transparency in water 

management that reassures necessary precautions are being made to protect the 

community as well as realistically protect companies’ financial interests in economic 

water management. To this end, the disposal or saline, radioactive produced water is 

necessary, but should be done as safely as possible within the given constraints.  

The radioactive isotopes that are present in produced water are mainly uranium, 

radium, and radon. These NORM isotopes are dissolved in low concentrations in ground 

waters and are concentrated in reservoirs over time with the catagenesis of kerogen 

desorption of rock material, and radioactive decay from minerals [99]. Because of the 

richness of chloride ions in oil-field waters, other elements including radium exhibit 

enhanced solubilities [100]. Measuring the radioactivity and reporting of radioactive 

isotopes is not regulated by law. Since much of water is reinjected for pressure 

maintenance or as in UIC wells, there is little risk by low level NORM radiation from 

exposure. Measuring the retentate water volume, salinity, and radioactivity are 

imperative for proper water management and disposal. Some evidence exists that the 
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radiation waste from drilling and disposing of water in the Marcellus is more pervasive 

than other areas [101]. While EFC is touted as a ZLD water treatment method, there will 

be retentate water from processing oilfield brines since the Eutectic Point for some salts 

is drastically lower than that of NaCl. For reference, refer to Section 3.5 and note that 

the Eutectic Point for Calcium and magnesium Chloride are near -45°C, much lower than 

that of Hydrohalite near -25°C.  

Additionally, it is speculated that the radioactive isotopes that might be in solution will 

not form salt crystals in meaningful quantities to be of importance other than as a minor 

contaminant in the NaCl stream from EFC. However, as the liquid volume decreases with 

continued treatment, the concentration of the radioactive isotopes and the minor 

contributors as calcium and magnesium will increase. As the contribution of Calcium and 

Magnesium increase, the risk for scaling or formation of these less desirable radium salts 

to form increases. More importantly, increasing concentration of radioactivity could 

present a health risk from over exposure or add to anticipated disposal costs. For 

perspective, the drinking water standards are 5 pCi/L combined radium-226 and 228. 

The concentration in brine for natural gas wells in the Marcellus are shown to have up 

to 3000 times this concentration. Because of this, the practice or recovering salt or 

applying brine directly to highways as a de-icing solution has been suspended in many 

New England states [102]. 

The current methods used to manage the radioactive waste are avoidance, 

consolidation and volume reduction [103]. Clearly, avoiding radioactive material is not 

possible if exploitation of the Marcellus gas is to take place, nor is it possible to reduce 
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water production rates easily in fractured gas wells unless a water zone is detected and 

shut-in. Consolidation and volume reduction are both radioactive water management 

methods that are well suited to the freeze crystallization precipitation of brines. By 

decreasing the total volume of irradiated waters, consolidation allows for more 

manageable control of the contaminated waters and ensures more effective control of 

proper disposal will take place. The disposal of the radioactive retentate water is not 

regulated under Pennsylvania or Ohio law. This implies that if bench scale 

experimentation confirmed the radioactive isotopes remained in the retentate solution, 

their disposal could remain underground injection with minimal regulatory changes. 

However, if the isotopes form radioactive salts (solid waste) the gamma radiation 

exposure rate cannot be over 10 µR/hr [104]. Beginning In 2013 Ohio facilities that 

accept scales and solid wastes for oil field use (TENORM) must have a radiation 

concentration no higher than 5 pCi/g. In Texas this same solid waste could be disposed 

of by conventional means as it is considered a byproduct material, not a radioactive 

source material that is regulated differently [105]. 

To this end, it is imperative that bench scale testing be performed to identify to what 

increase in radioactivity can be expected using EFC as a treatment method for produced 

water, and what happens to these radioactive components. By creating more data on 

the sources and levels of radiation from fractured gas well produced water, the 

regulations controlling its disposal can be crafted more congruent to the desires of affect 

communities as well as the producers. Additionally, this is an important validation step 

for the efficacy of EFC for treating produced water as if it represents an increase to 
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human exposure it shouldn’t be pursued cautiously. Additionally, the quality, and 

therefore the value, of the produced salt and water streams of EFC are directly 

dependent upon whether the radioactivity is disassociated efficiently.  

4.3 TEST CHAMBER DESIGN 

In this Section, the design and construction of a bench scale EFC experiment is outlined 

and discussed. This builds on the motivation and inadequacies of previous testing 

presented in Section 4.1 and 4.2 that necessitate further experimentation for validation 

of EFC. First is a discussion of the design inspiration and construction followed by the 

requirements for design and Requirements List for experimentation. This Section 

includes the design and construction of a bench scale EFC testing apparatus. Also, there 

is discussion on procurement and estimated associated costs for the construction of a 

EFC laboratory bench for the parameters which we would be interested in collecting for 

analysis, as mentions in Section 4.2. The anticipated possible outcomes of 

experimentation tie to the third quadrant of the validation square for Research 

Questions 1 and 3, and the Structural Validity for Questions 2 and 4 are provided in 

Section 4.4. Finally, the section is concluded with the testing procedure that should be 

in place for measuring the pertinent testing parameters, the subject of Section 4.4. By 

including a design and testing section in the thesis, we aim to have a near ready-made 

project proposal created for anyone who wishes to take the concept of eutectic freeze 

crystallization forward for validation for oilfield use.  
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4.3.1 Design Requirements 

We propose that in order to review fully the applicability of EFC to desalination in the 

oilfield that further testing is necessary. As outlined in the preceding Sections, there 

exist research gaps in the current literature regarding fundamental aspects of the safety 

and quality of brine from produced water. Namely, further testing is necessary to: 

1. Determine the effect of hydrocarbon on crystal nucleation 

2. Validate the claims regarding reduced corrosion from EFC 

3. Investigate the effects of TENORM on the safety of retentate brines  

In performing experimentation for EFC, we desire a design that is capable of testing the 

brine in batch and in continuous operation in order to test under applicable conditions 

in implementation (continuous) and for testing the claims of ZLD (batch). Batch testing 

would be beneficial for limited supply testing as it allows for the experimentation with 

a small sample volume of brine, likely taken in the field, to be used, limiting 

transportation and storage costs. As well as testing simply for the eutectic temperature, 

we require a design that can adequately separate the effluent streams of water and salt 

so that they might be further quantified in purity through secondary testing. This testing 

could take the form of FTIR, IR, or GCMS testing to determine the makeup and purity of 

the crystals. Most research campuses in the United States have the facilities on hand to 

test crystal purity.  

The design for an EFC crystallizer should be easy to manufacture and operate, requiring 

little in the way of specialized equipment or technology to construct. It is speculated 
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that the most expensive single piece of equipment necessary for EFC is a refrigeration 

unit capable of reaching and holding temperature in the neighborhood of -25°C reliable 

and with a high level of accuracy. For long term testing and validation of EFC for 

desalination of oilfield brine, it is beneficial to have a design that can be operated in 

series at multiple eutectic temperatures so that serial continuous flow operation can be 

achieved. While this would yield similar results to batch testing in reaching ZLD product, 

it is an important step along the path of validation and eventually implementation. Then 

design selected should also be insensitive to the highly saline and corrosive nature of 

the brine samples. Aluminum would be a good material of choice for the crystallizer as 

its corrosion resistance is high, and it exhibits beneficial machining qualities.  

Any testing of EFC for oilfield use should also be accompanied by sensitivity testing of 

the EFC process by the presence of hydrocarbon and for testing the enhanced 

radioactivity of the mother liquor brine as salt and water are precipitated. For testing 

hydrocarbon, it is recommended that heptane be available for making up synthetic 

brines that have higher levels of hydrocarbon contamination. Heptane is the 

hydrocarbon of choice for simulating oil contamination as it is readily available and is 

the dominating constituent of the oleic phase of most sweet, light crude. Additionally. 

Minute amounts of H2S could be used to test the effect of souring on the process, 

although it is speculated that there would be little except enhanced corrosion. For 

determining the radioactivity of brines either an ionization chamber or scintillation 

crystal device should be readily available, depending on the level of radiation that is 

present. Every precaution should be taken to minimize human contact with the 
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potentially enhanced radioactive retentate brine, so an EFC crystallization chamber 

should have a valve for remote removal of a mother liquor sample for radiation 

detection.   

Below in Table 4.1 we outline the necessary equipment and process for construction 

and testing EFC for oilfield application. The Requirements List is inclusive of the demands 

for validation of EFC and the wishes of the authors to perform necessary testing for 

socially responsible engineering.  

In the following Section, we discuss a potential design that could be used in this 

experimentation of EFC. The design recommended has been used with success in the 

past and can be adapted to meet the needs of produced water validation with minor 

alterations.  

4.3.2 Design Inspiration 

The EFC crystallizer and design discussed herein is adapted from Verbeek (2015) [6] and 

vd Ham (1998) [41]. Vd Ham introduces the column type crystallizer with cooling disks, 

which he calls the cooled disk column crystallizer (CDCC), shown in Figure 4.3. This 

design removes heat through the cooling disks and allows for the gravimetric separation 

of salt and ice crystals from the mother liquor by allowing crystals to move between 

cooling compartments through orifices on the cooling disks. This design represents a 

simplistic approach at studying EFC as the crystalizing chamber is simple enough to 

manufacture using aluminum billet and a CNC machine. Additionally, surface area for 

cooling is increased with the inclusion of many cooling disks in parallel. The symmetrical 
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central design also allows for one motor to operate scrapers that facilitate agitation, and 

migration of the brine, and detachment of scale from the cooling disks and crystallizer 

walls. Verbeek (2015) uses this design for his small (10L) bench scale freeze 

crystallization and a larger (200L) skid mounted scraped cooled wall crystallizer (SCWC). 

Both designs allow for batch of continuous operation. The SCWC exhibits a higher 

cooling efficiency and helps validate the scalability of the technology but is more 

complex to manufacture. For basic research to answer questions regarding to oilfield 

brine desalination using EFC, the CDCC is sufficient.  The design Verbeek uses is equipped 

with a potassium formate cooling solution to reach freezing temperatures to -60°C. The 

refrigerant is cycled through the cooling disks that operate like a shell and tube type 

heat exchanger. Vd Ham recommends a one-stage refrigeration system for high salinity 

brines as the large amount of salt produced leads to a decrease in COP and the increased 

energy cost for two-stage refrigeration isn’t recovered by the increased COP.  For 

greater efficiency, he also recommends using CO2 refrigeration for cooling. It is 

important to recognize that the temperature between the cooling disks and the cooling 

brine shouldn’t be too large otherwise extreme scaling can occur on the cooling disks 

and unfavorable crystal shape is caused which can affect their purity. Some preliminary 

testing has been performed using liquid nitrogen as a cheap cooling liquid that doesn’t 

require refrigeration, but the cooling is too rapid to facilitate uniform crystal sizes and 

the scaling is too great for reasonable operation.  
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Table 4.1 - Requirements List 

 

 

Figure 4.3 - CDCC crystallizer proposed by vd Ham [41] 

Requirements List 
EFC Experimentation for Produced Water 

 

Wish/ 
Demand 

Requirement 

---------- Design Criteria ---------- 

W Batch Processing 

D Continuous Processing 

D Low Cost Construction 

W Corrosion Resistant Material 

W Ability to Be Run in Series 

D Compatibility with Common Oilfield Water Processing Equipment 

D Minimize Thermodynamic Heat Loses 

----------Evaluation of Solution---------- 

D Includes Laboratory Monitoring Software and Equipment 

D Availability of Crystal Purity Determination by FTIR or GCMS 

D Availability of Ionization or Scintillation Type Radiometer 

----------Administration---------- 

W Be Useful for Many Iterations of Testing 

W Manageable by Technicians 

D Low Operational Cost 

W Easily Sourced Produced Water Samples 

----------Outcomes---------- 

D Identification of Effect of Hydrocarbon on Crystallization 

D Identification of Radioactivity of Retentate Water from NORM Material 

W Corrosion Study of High Salinity Brines on Crystallization Chamber 

D Thermodynamic Requirement for Complex Multi-Species Brine Sample 
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Verbeek does not denote any inadequacies of the CDCC design to the process of EFC. 

Indeed, its simplistic nature allow for a basic, low cost build that can be used on a variety 

of fluid and applications. The CDCC operates by flowing refrigerant through the cooling 

disks of the crystallizer. This cooling encourages crystal formation at the eutectic 

temperature. The rotation and agitation of a scrapper serves to detach the precipitated 

crystals from the cooling disk. Orifices located in the cooling disks then allows for the 

gravimetric separation of the crystallized salt and water from the brine, with ice being 

less dense separating to the surface and salt the bottom.  

Some minor modifications that should be made to the CDCC design are:  

1. decreasing cooling disk spacing to increase agitation and nucleate crystals 

2. increasing cooling disk number to increase cooling area 

3. decrease energy for scrapers by using single speed motor with variable gearbox 

4. decrease heat loss by applying permanent polyurethane foam coating 

5. limit plugging of migration orifices by limiting cooling disk refrigeration nearby 

6. Install valve near bottom of the crystallization chamber for retentate removal 

7. Install CDCC design in series to operate at multiple eutectic temperatures for ZLD 

By implementing the above changes, the crystallizer can be operated with more 

efficiency while limiting all changes to very minor modifications. By increasing cooling 

area, the rate of cooling can be maintained constant at a lower temperature difference 

across the cooling disks. This would reduce the load on the refrigeration units but come 

at the cost of an increased refrigerant volume. Additionally, the freezing chamber 



 

138 
 

volume could be increased for constant temperature difference across the cooling disk 

if more disks are used. 

By installing a gearbox for the scrapper not only can turbidity of the brine be maintained 

and changed, but different motors can be installed based on the anticipated motor 

torque due to scaling that ensures the motor is operating in its most efficient region. 

Verbeek has insulation installed around the CDCC during testing, but we speculate that 

by using a spray foam insulation, the rate of heating due to the external environment 

can be limited even further, thereby reducing the cooling needed per volume of brine.  

Verbeek mentions that higher processing rates could cause plugging due to salt volumes 

in the SCWC. To that end, in order to limit the possibility of plugging at larger 

temperature difference across the cooling disks, the ‘tubes’ of refrigerant that run 

through the cooling disks should be direct away from the migration orifices to limit 

scaling in the neighborhood. If too much scaling occurs in the orifice, it becomes plugged 

and manual remediation must take place. 

A valve installed near the center of the crystallization chamber would allow for periodic 

testing of retentate water for composition and radioactivity, were it to be necessary 

during sample testing. While a minor improvement, the installation of this valve would 

be nontrivial as it would represent a major location of heat transfer to the CDCC with 

foam insulation installed. The use of a low heat transfer material such as plastic might 

be advisable.  
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Finally, installing the CDCC design in series would allow for testing at multiple eutectic 

temperatures and validation of the ZLD claim for an oilfield sample. For Marcellus 

samples similar in composition to those simulated in Section 3.4, there would be 3 total 

eutectic temperatures for complete brine elimination. While likely not cost effective for 

industrial application, it would be academically prudent to verify the ZLD claim under 

real time conditions.    

Other process changes that should be incorporated to test the feasibility of EFC for 

produced water processing would be the inclusion of common oilfield processing 

equipment (small scale) in series as well to have the option to run EFC experimentation 

with or without pre-processing. The below flow diagram Figure 4.4 is a simplification of 

the mentioned process. This design would represent a modest increase in cost but 

increase the complexity of testing situations that could be performed.  

 

Figure 4.4 - Process EFC Testing Procedure 

In the succeeding section we discuss the requirements of the design for testing EFC. This 

includes discussion about the above design and what should be measured at each step 

along the process testing. This testing design is low cost and allow for the option to run 

EFC experimentation with or without pre-processing.  

API Separator Flotation Unit
Electrocoagulation 

Unit
Freeze Crystallizer 

Chamber
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4.4 EXPERIMENTAL PROPOSAL 

Having now shown the parameters that we are interested in measuring with the use of 

EFC and the recommended construction and design method for the EFC crystallization 

chamber, we now introduce the proposal for EFC validation testing for produced water 

disposal. This section is not intended to discuss the necessary criteria of the measured 

properties or how to measure them. Instead, it is included as a rough outline of the 

organization for testing and testing order to proceed through the validation of the 

method. The rationale and motivation for testing these parameters is indicated in the 

preceding Sections 4.1 and 4.2, respectively. Implications of these parameters and their 

financial impact on the implementation of EFC are discussed in Chapter 5. Connection 

of these parameters to the simulations of Chapter 3 and the social impacts of waste 

water management of Chapter 2 can be found in Section 4.1.  

4.4.1 Introduction 

Managing wastewater is likely to become a defining challenge for the shale gas industry 

to confront [39]. Extracting and marketing shale gas requires large volumes of water and 

produces even larger volumes of flowback and produced water over the life of the well. 

While Marcellus wells produce much less wastewater per MCF than other natural gas 

wells, the total wastewater generated in the region is on the rise. One of the current 

limiting factors to Marcellus gas exploitation is the overwhelmed current wastewater 

disposal infrastructure. Current waste water disposal methods in the oil industry 

primarily include water injection into disposal wells, with limited utilization of 

electrocoagulation for in-field reuse and thermal distillation at refineries. Brine 
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hypersalinity and residual hydrocarbon has limited the application of membrane 

technology and simple environmental expulsion is heavily regulated by the EPA [2]. The 

problems associated with injection disposal, coupled with a lack of nearby Class II 

injection wells has limited the development of the Pennsylvanian Marcellus shale gas 

due to economic constraint imposed by the cost of water disposal and transportation. 

The challenge gas producers must now face is how to preserve the economics of shale 

gas production while simultaneously upholding responsible stewardship of resources 

and protecting public health. With increased concerns regarding induced seismicity and 

the safety of that type of disposal, the need for water recycling methods has grown.  

Eutectic Freeze Crystallization has the potential to treat complex, hypersaline 

coproduced brine and represents a sustainable water treatment technology towards 

achieving a near zero waste by producing potable water and pure salts [3]. Given that 

the hypersaline brines of the Marcellus Shale are sodium and chloride rich [4], EFC can 

be used to selectively recover the sodium as a pure sodium chloride salt while 

simultaneously producing pure ice crystals. The pure ice would have innumerable uses; 

reuse for hydraulic fracturing, release into estuaries, and agriculture being only a few. 

The sodium chloride salt represents a potential revenue stream for water treatment 

companies and its sale to industrial chemical synthesizers could offset the cost of water 

treatment. While the applicability of using EFC to remove multiple salts from complex 

multi-component, hypersaline brines has not yet been demonstrated [5], the 

thermodynamics of freeze crystallization are extensively known. Verbeek shows that the 

overall efficiency an EFC crystallizer is 59% and that the energy requirement per unit 
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feed is comparable to that of typical commercial evaporative crystallizers [6]. The cost 

of a large-scale freeze crystallization facility is estimated to be equitable to that of 

evaporative crystallization [7], but to be competitive EFC would need to be comparable 

to the injection disposal cost of $1.00 - $6.50 to be of interest to Exploration and 

Production companies [8]. 

While industrial treatment facilities often employ methods to precipitate and flocculate 

suspended solids, few facilities currently have the capacity to remove ions and therefore 

address water management in a comprehensive and holistic manner.  

4.4.2 Statement of Problem 

Produced water contains up to 1% hydrocarbons after separation in an API separator. 

The API separator works to separate bulk suspended solids, hydrocarbon and water 

gravimetrically. While most hydrocarbons can be separated gravimetrically using an API 

separator [51], micro emulsions and polar hydrocarbons often remain in solution after 

separation and pose a threat to life if released to the environment. Little is known about 

what effect the trace hydrocarbons and aromatics present in produced water would 

have on freeze crystallization desalination. In general, there is too much hydrocarbon 

present in produced water (>15 ppm) to perform RO as the organic chemicals quickly 

degrade the osmotic membranes. Since nucleation is sensitive even to minute impurities 

in the system it is critical to understand these effects before design and construction of 

a freeze crystallization facility at an industrial level [89]. 
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Additionally, there are tens of thousands of chemicals added to fracturing fluid and 

many of these return in the flowback water. Given the proprietary nature of many of 

these chemical cocktails, it is difficult to ascertain their effect on the freeze 

crystallization process. Some of the chemicals that are added to reduce the viscosity of 

the fracturing fluid are glycols such as propylene and ethylene glycol, common 

antifreeze agents. Added scale inhibitors are targeted to such agents as Calcium 

Carbonate and Barium salts as they represent the highest propensity for damaging hard 

scales, but by their nature they could affect the crystallization of Sodium Chloride salts. 

Most importantly, if these chemicals do alter greatly the temperature of crystallization 

away from the modelled Eutectic Point, an implement design could have inferior cooling 

properties and not be effective at separating the brine stream to salt and water.  

Some evidence exists that the radiation waste from drilling and disposing of water in the 

Marcellus is more pervasive than other areas [101]. As the liquid volume decreases with 

continued EFC treatment, the concentration of the radioactive isotopes will increase. 

Increasing the concentration of radioactivity could present a health risk from over 

exposure or add to anticipated disposal costs by requiring adherence to stricter 

governmental regulations. In order to better understand these perceived health risks, 

further testing with actual oilfield brine samples is necessary.  

It would be inadvisable to proceed to industrial scale investment in freeze crystallization 

without addressing the above concerns regarding trace hydrocarbon, fracturing 

chemicals and radioactive isotopes on the freeze crystallization process.  To do so, it is 
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recommended that further bench scale EFC testing be performed to answer the above 

questions.  

4.4.3 Objectives 

We propose that to review fully the applicability of EFC to desalination in the oilfield 

that further testing is necessary. There exist Research Gaps in the current literature 

regarding fundamental aspects of the safety and quality of brine from produced water 

and how those aspects relate to the EFC process. Further testing is necessary to: 

1. Investigate the effect of hydrocarbon and chemicals on crystal nucleation 

2. Validate the claims regarding reduced corrosion from EFC 

3. Investigate the effects of NORM on the safety of retentate brines  

By performing bench scale testing specifically to address the above concerns, we will 

add to the knowledge that exists on EFC to date and validate its effectiveness at 

addressing real world complex water management in the oil industry. Without this 

additional bench scale testing, there would be insufficient evidence to rationalize EFC as 

an applicable technology to address waste water in the oilfield adequately.  

4.4.4 Testing Procedure 

Here we outline the procedure for testing oilfield brine samples using a designed EFC 

crystallizer after the work of vd Ham (1998) and Verbeek (2015). This process is not 

meant to be inclusive of all testing or steps that should be taken, but rather to serve as 

an outline of the major milestones of verification through experimental testing and what 

the outcome should be at each step along the way.  
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1. Construct Cooled Disk Column Crystallizer (after vd Ham) from billet aluminum 

2. Verify thermodynamic accuracy by freeze crystallizing 21.1 wt% NaCl 

3. Test supplied oilfield brine sample of known quality with no hydrocarbon or TSS 

4. Compare and validate tested sample to results of EFC simulation 

5. Test supplied oilfield brine with TSS and hydrocarbon 

6. Take and measure radioactivity of retentate brine  

7. Assess effect of hydrocarbon, suspended solids and fracturing chemicals on EFC 

process 

a. If no effect of above, validation complete, proceed to cost estimation for 

oilfield water management with EFC 

b. If measurable and ill effect of above, perform testing of CDCC in series 

with API separator and flotation unit to remove hydrocarbon and 

suspended solids 

c. If ill effects continue, re-evaluate position of EFC as technology with 

applicability to oilfield industry 

A simplified representation of the equipment and process is included in the figure 

below, Figure 4.5.  
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Figure 4.5 - EFC Process Flow Diagram 

By following the general outline above, the major milestones of validation are met. 

Steps 1 and 2 are crucial to the Empirical Structural Validity of EFC as they ensure what 

has been constructed and achieved are in line with the published literature. Steps 3 and 

4 are critical in testing the Empirical Performance Validity of the method by applying it 

now to a specific example problem and comparing that with accepted simulation 

modelling. Finally, steps 5-7 are specific Theoretical Performance Validity steps aimed 

at addressing if EFC is suited for applications outside the example problem and its 

robustness to change. This proof of concept experimentations relies heavily on the use 

of the validation square to verify and validate the concept presented above. This 
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verification and validation strategy and is heavily dependent upon the work done by 

Pederson et al. (2000) [25].  

4.4.5 Concluding Remarks 

The experimentation outcome will be new knowledge that will result in the connection 

and evaluation of a new desalination method (EFC) to the problem of sustainable oilfield 

water disposal. By addressing the effects that hydrocarbon, hydraulic fracturing 

chemicals, and the effects of NORM radiation have on the EFC process, we can better 

understand what changes, if any, need to be made to ensure compatibility of EFC with 

oilfield waste water management processes.  

4.5 SYNOPSIS OF CHAPTER FOUR 

In Section 4.1 we discuss the use of further bench scale experimentation as a method 

for validating the performed EFC simulation work of Chapter 3. Additionally, the gaps 

that remain for empirical structural validation of EFC for compatibility in the oilfield are 

discussed in Section 4.2 as research gaps that can be closed with further 

experimentation. By providing both of these preceding sections as motivation, we 

proceed to Section 4.3 with a proposal for experimentation that includes the bench scale 

design and equipment requirements along with a testing procedure for experimentation 

of actual oilfield brine samples. Incorporating the feasibility aspect of EFC for oilfield 

use, the next Chapter includes discussion on preliminary cost estimation for EFC as well 

as estimated produced water stream in the Marcellus shale play for the next few years. 

In conjunction with the economic evaluation provided in Chapter 5, this Chapter is 

primarily of utility to industrial researchers that have funding greater than academic 
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parties and could take the validation of EFC to the next stage to verify and narrow the 

estimates of feasibility and cost presented herein. This chapter relies heavily on the use 

of the validation square to verify and validate the concept presented in this thesis. 

Chapter 1, Section 1.4.2 contains more information regarding the verification and 

validation strategy and is heavily dependent upon the work done by Pederson et al. 

(2000) [25]. In this Section, the research opportunities identified through critical 

literature review are presented and the connection between the identifies Research 

Opportunities and Research Questions proposed in Chapter 1 is established. 

RQ 1. How can freeze crystallization be utilized to treat flowback and produced water 

from oilfield operations? In this Chapter, we discussed the rationale behind the need 

for an alternative water treatment method for the Marcellus shale as adequate geology 

does not exist for injection disposal at economic rates and the cost of truck 

transportation is high. We propose that EFC can be used as an alternative water 

treatment method in conjunction with industry standard techniques such as flotation 

and API separation to remove suspended solids and organics prior to desalination. The 

use of EFC explicitly is not the subject of this Chapter, but the idea of applying this 

technology to produced water and its complete validation are discussed.  

RQ2.  What changes need to be made to freeze crystallization desalination technology 

for compatibility with oilfield operations? The core of Chapter 4 is devoted to 

answering this Research Question. By investigating in which ways produced water 

differs from the test examples used by previous researchers, we have identified several 

key components of a produced water stream that must be addressed in order to validate 
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EFC for oilfield brine treatment. Section 4.1. is devoted to the verification of simulation 

work performed in Chapter 3 and how that is important in successful implementation 

of the technology in industry. In Section 4.2 we discuss the preliminary speculations as 

to the effects of different qualities produced water might have on the EFC process, 

namely the effect of hydrocarbon, corrosion of high salinity brines on the crystallization 

chamber, and the potential radioactivity of the retentate brines. In Section 4.3 we 

introduce a proposal for the building of a test apparatus to answer these Research Gaps 

identified in 4.2. By answering these Gaps, we can better answer the question of which 

changes are necessary to insure the success of EFC in industrial desalination treatment 

for the oilfield.  

RQ3.   What environmental benefits will be realized by treating water for reuse and 

release over underground water injection? In Section 2.3.5, the potential release of 

water extracted from effluent brine back into the environment is discussed. Many areas 

with developed oilfields in the U.S. are in areas deemed as vulnerable to drought and 

there is an alarming history of mega-droughts lasting 300 years or longer in many 

western U.S. states. In Section 1.3.4 it is shown that the main work that needs to be 

done to prove there is an environmental benefit to the release of this water is largely 

outside the scope of this thesis. However, what is discussed in Section 2.3.7 and Section 

5. 2.4 regarding the release of water and the sale of crystallized salt provides motivation 

that there is clear environmental significance of the work by reducing the ecological 

footprint of other industries. Similarly, a reduction of pre-treatment equipment 

represents a reduction in the ecological footprint of oilfield water management itself.  
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RQ4. How can freeze crystallization be utilized with minimum impact to existing water 

treatment infrastructure? This Research Question is addressed preliminarily in this 

Chapter and Chapter 2. By recommending testing of EFC in series with API separation 

and flotation chambers, we can determine if the methods are compatible in rates of 

flow as well as determine whether pre-treatment is necessary for desalination, or if one 

can simply proceed directly to the EFC treatment with no ill effects caused by the 

organics and suspended solids. This Research Question is addressed in the succeeding 

Section 5.3 with regards to the implementation of this technology with a discussion on 

the availability of equipment, technicians and the robustness of the process.   
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5 Chapter 5 – EFC Cost Evaluation and Implementation 

In this Chapter is a discussion of the estimated treatment and implementation cost of 

EFC using a field level treatment schema. The assumptions of future water production 

associated with Marcellus shale development and the scalability of EFC are discussed in 

Section 5.1. Following this is a cost analysis based on a simple thermodynamic analysis 

of EFC and regional industrial electrical costs for the Marcellus Shale play are found in 

Section 5.2. This per barrel estimate of cost is the culmination of careful statistical 

engineering analysis and is inclusive of the fixed and variable costs associated with 

treatment via EFC, as stated in Section 5.1.2. A comparison of this estimated cost of 

treatment compared to other common disposal methods is given in Section 5.2.4 and is 

a vital component of propelling this technology forward by providing motivation for 

industry research and further necessary validation, as discussed in Chapter 4. Finally, in 

Section 5.3 recommendations and considerations to the ability of this technology to be 

incorporated into current waste water disposal schema is evaluated and commentary 

on the complexity of the method to aid in preliminary managerial level discussion of the 

technology.  In this Chapter the answer to the below Research Questions are provided:  

 RQ1:  How can freeze crystallization be utilized to treat flowback and produced water 

from oilfield operations?  

RQ2:  What changes need to be made to freeze crystallization desalination technology 

for compatibility with oilfield operations? 
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5.1 PRODUCED WATER VOLUMES IN PENSSYLVANIA SHALE PRODUCTION  

Produced waters come from a variety of sources; conventional wells, unconventional 

shales, flow back water, drilling fluids, etc. Waters from conventional wells are generally 

reinjected to provide pressure support within the formation of interest and poses little 

water management challenges outside of treatment, transportation, and injection for 

disposal of the residual volume. The unconventional shale waters, both produced and 

flowback, are problematic as there is no benefit in injecting these waters into the shale 

formation and limited management solutions existed outside of UIC II well injection. 

Indeed, the treatment and disposal of produced water from the unconventional shale 

wells is our concern in this Chapter, as discussed in Section 1.3.2. In attempting to 

address the water problem in Pennsylvania, we must look to predict the quantity and 

quality of the produced water to adequately manage treatment options and 

expectations. Since EFC is a new and unimplemented solution, it would be useful for any 

interested in taking the technology further to have an appreciable scale of the situation. 

In this Section, we attempt to provide an estimate for the water production in 

Pennsylvania through 2024 from unconventional sources only by performing simple 

statistical regression analysis given the limited available data and largely market 

controlled nature of the natural gas commodity. Additionally, in Section 5.1.2, we 

discuss the optimization and up scaling of EFC to address this future water stream.   

5.1.1 Expected Marcellus Volumes 

The Marcellus Shale is a primarily gas producing play. By many estimates it is the single 

largest gas field in the United States and the second largest worldwide [106]. As early as 
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2002 the USGS deemed the Marcellus shale to be capable of only 1.9 Tcf recoverable 

reserves; small by most measures. By 2011, the EIA had updated the estimated 

unproved recoverable reserves to 400 Tcf using current technological capability [107]. 

In 2016, the Marcellus shale produced an astounding 5.1 Tcf of natural gas in 

Pennsylvania alone, with every indication that the production rates will increase for the 

foreseeable future [108]. With this increased exploitation comes the challenges of water 

management. Contrary to common perception, the Marcellus gas wells produce much 

less water per unit of gas (approximately 35%) compared to the conventional natural 

gas wells [39]. The problem lies in the overwhelming quantity of gas, and therefore 

water, the region has generated in recent years, coupled with an inadequate 

infrastructure. Since 2004 the total wastewater generated in the area has increased by 

570%. As of 2016, Pennsylvania has only 8 native UIC II wells for produced water with 

pending permits for 2 more. To begin laying the groundwork for EFC as an effective 

solution to water management, outside the technical difficulties that are yet addressed 

in previous EFC research (refer to Chapter 4), we need to discuss the scope of the 

problem with quantitative information. In Section 3.5, we discuss the water quality that 

is associated with Marcellus and Utica unconventionals. The complete water quality 

information provided for these wells by BHI can be found in Appendix A.  

An exceedingly difficult number to assign a point value is the water cut for wells. The 

water cut (WC) is the ratio of water produced compared to the volume of total liquids 

produced. The water cut in water drive reservoirs can reach very high values as reservoir 

depletion and coning occur over the life of the well. Similarly, for gas wells, the water 

http://www.glossary.oilfield.slb.com/en/Terms/w/waterdrive.aspx
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gas ratio (WGR) is equally difficult to assign a value. The number changes over time as 

wells initially flowback fracturing waters, then increases with time via similar 

mechanisms as those listed above for conventional oil wells. Additionally, the WGR is a 

function of well technology (downhole equipment) and simply natural random 

variability as no two wells exhibit the same reservoir conditions, and indeed WGR. 

Without spending an exorbitant amount of time with data collection and processing, a 

simple average of WGR is provided in the literature by observing the total volume of gas 

produced in the Marcellus Shale in 2012 and dividing that by the total produced water 

under the same conditions. Veil 2015 reports this data for 2012 as 17,406,287 bbl of 

produced water and 2,041,753 Mmcf of gas [109]. With appropriate unit conversions, 

this becomes 8.5 MMbbl/Tcf for the year 2012. As a global average of the data, this will 

prove to be sufficient as a first pass as the estimated mean WGR for Marcellus 

unconventionals for further analysis. More recent data was not easily available in 

conjunction between the two necessary values. On an individualistic basis, the WGR for 

unconventionals can be generated in the Marcellus by observing individually reported 

production rates of gas and water on a per well basis using platforms such as Drillinginfo. 

This tedious analysis is compounded as the reporting standards maintained by the state 

vary across The Union. States such as NM, WV, and PA require reporting of water, while 

OK, TX, and others do not.  

Having now pinpointed preliminarily the WGR for Marcellus shale gas production, we 

must identify the quantity of gas that is expected to be produced yearly to identify the 

requisite quantity of produced water. The historical information regarding shale gas 
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production from the Marcellus are collected from the Pennsylvania Department of 

Environmental Annual Report [108]. This report clearly denotes the quantity of gas 

produced in the state that is sourced from unconventionals. Shown in Figure 5.1 is the 

historical annually reported information from the PDEP that is the basis for the 

regression analysis of gas forecasting.  

 

Figure 5.1 - Annual Unconventional Gas Production in Pennsylvania 2009-2016 

 As can be seen in the figure above, prior to 2009 insignificant quantities of natural gas 

were produced in Pennsylvania through unconventional sources (< 0.5 Bcf), but gas 

rates steadily rose until 2014, followed by flattening production increases year over 

year. This change in rate of production in 2014 is largely due to the market collapse of 

2013 and 2014 reducing natural gas prices from $5.17 to $3.96 per MMBtu [110]. Post 

2014, we also see a flattening in the annual production rates, indicative of a saturated 

market with growth now controlled by increase in demand rather than lack of supply 

induced inflated prices. Given that natural gas is a commodity and prices fluctuate daily, 

we must also realize that regulatory and population demands are likely to have effects 

on the ultimate yearly output of gas from the Marcellus shale. Pennsylvania doesn’t 
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currently have a gas severance tax, although that is subject to change in upcoming 

legislative sessions [111]. This severance tax could change producer’s decisions in this 

area and lead to a decrease in natural gas production. World energy organizations, such 

as ExxonMobil, are predicting increases in demand for natural gas through the 2040 

(World Energy Outlook Figure 5.2). It is important to remain critical of the role this 

commodity has in predicting the water management needs of the future for the Middle-

Atlantic Region of the U.S.  

 

Figure 5.2 - ExxonMobil's World Energy Outlook [112]. 

For the above reasons, it is prudent to be conservative in estimating natural gas rates in 

the region. For our analysis, we turn to simple statistical regression analysis to attempt 

to make an estimation into the future without introducing or taking into consideration 

changing political or demand climates. Below in Figure 5.3 the forecast of annual gas 

production from unconventional sources in Pennsylvania is shown. The regression 
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technique employed was combinative linear-logarithmic. This combinatory approach 

served to minimize the mean absolute percentage error (MAPE) of the model to the 

historical data for the years 2009-2016 while also conforming to intuitive reasoning that 

market forces would not likely sustain a linear increase in gas production into such large 

annual outputs were simple linear regression forecasting employed. The associated 95% 

forecast confidence interval is given in green.  

 

Figure 5.3 - Forecast of Pennsylvania unconventional gas production through 2024. 

This regression forecasting in conjunction with the above calculated WGR will be used 

in Section 5.1.2 as the basis for the projected water desalination needs in Pennsylvania 

in the coming years. Additionally, this scale of use will be useful in the economic analysis 

of Section 5.2.  
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5.1.2 Scalability of EFC to Industrial Level 

Water management is the new paradigm of oil and gas exploration. Elevating effective 

water management solutions is a key strategic concern for sustainable production in 

unconventional plays in the U.S. and worldwide. Companies should not only focus on 

cost reduction, but on mitigating risks. The Green Economy Initiative states that the 

payback for every dollar invested in sustainably developed water treatment on health, 

societal, and environmental benefits is between $3.00 - $4.00 [113]. The ultimate goal 

of produced water management, especially in areas of rapid development and those 

traditionally unaffected by the oil industry, is to remove dissolved components and use 

the desalinated water for beneficial uses that can effectively alleviate environmental 

impact and water shortage. Unfortunately, to date no large-scale application of 

produced water desalination by membrane technology or EFC processes has not yet 

been built at industrial scale [44, 49]. Conventional desalination attempts in the industry 

have been through the use of evaporative or thermal distillation. One of the most 

significant disadvantages of are the capital costs necessary for an effective large scale 

system (2-3x those of the former), but these costs can be overcome as the technology 

develops [69].  

A critical step in the validation of a new process of method is involved in the transition 

for lab-scale model to full-size plant processing. Not only are there technical engineering 

problems to be overcome, there are ethical and social implications in the building and 

regulation of such a facility. Outside of the tangible efforts that must be made on the 

citing and permitting of a facility, the energy and process requirements for EFC are highly 
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dependent on the location in which it operates. A plant in West Texas will natively have 

less waste cold (heat sink) available for preprocessing when compared with one in the 

Northeast. Additionally, the products of EFC can be used and processed to recycle and 

recover the available cold for cooling the incoming process streams.    

In the coming Section, we will discuss the estimated costs associated with building an 

industrial scale EFC plant and a cost comparison of EFC to the other typical industry 

water treatment methods. This analysis is performed to address if and how EFC can be 

utilized in the oil industry for desalination of produced waters.  

5.2 ECONOMIC EVALUATION 

In this Section is a cost analysis for EFC based on a simple thermodynamic analysis of 

EFC and regional industrial electrical costs for the Marcellus Shale play. This per barrel 

estimate of cost is the culmination of careful statistical engineering analysis and is 

inclusive of the fixed and variable costs associated with treatment via EFC, as stated in 

Section 5.1.2. The potential for sale or disposal of precipitated salts is discussed in 

Section 5.2.2. This is an important consideration when evaluating the cost of EFC 

treatment as it provides a potentially substantial windfall to operators to offset energy 

costs associated with treatment through sale. The per barrel cost estimate of Section 

5.2.3 includes values for both sale gains and disposal costs of precipitated salt to provide 

a high and low bound to the treatment cost. Section 5.2.3 also includes a comparison of 

this estimated cost of treatment to other common disposal methods in the industry. 

This is a vital component for propelling this technology forward be incentivizing and 
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providing motivation for further industry led research. Further research is necessary for 

validation of EFC to the task of produced water desalination, as discussed in Chapter 4.  

5.2.1 Thermodynamic Energy Efficiency 

Verbeek (2015) calculates an energy cost for EFC of a 23 wt% NaCl brine from 10°C to -

21°C and a 3.0 COP refrigeration cycle to be 132 kWh/m3 of feed stream, which is nearly 

3 times the theoretical energy requirement of 51 kWh/m3 for a 5wt% brine, indicating 

substantial engineering gains are possible in the future with efficient design. His 

theoretical analysis for the 51 kWh/m3 figure is described with a 20% return of the 

effluent water for washing liquid and that an ice slurry with 20% solid fraction is sent to 

the washing column, which is a good estimate of the requirements for EFC processing 

and washing.  

These same parameters will be used below in estimating the theoretical energy 

requirement for EFC of produced water. This estimated ideal energy is the requirement 

using a chiller with a COP of 3.0 and doesn’t include thermodynamic heat loss and other 

inefficiencies. This tabulated data below is for the West Texas Permian Basin brine 

described in Section 3.5, as well as the Marcellus average brine and Marcellus 75 using 

the treatment of 1 m3 of feed water.   

The difference in cooling required for the feed streams in the Marcellus Shale region 

and the Permian Basin are due to differences the in regional yearly ambient temperature 

in West Texas of 18°C and in the Middle-Atlantic Region (including Pennsylvania) of 11°C 

[114, 115]. While only mildly significant, the increase in energy require to cool the feed 
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stream in West Texas accounts for an increase in the total process of 4%. This is an 

increase that no optimization would be able to recover as it is an artifact of the 

environment. This also highlights some benefits that would occur through the 

employment of EFC in the Marcellus shale play. Not only are natural gas prices higher in 

the winter, and subsequent production on natural gas wells is increased, the outside 

ambient temperature is drastically reduced, which is beneficial in energy savings for EFC 

processing. 

Table 5.1 - Energy Requirements for Ideal Process Permian Basin Brine 

 

Table 5.2 - Energy Requirements for Ideal Process Marcellus 75 Brine 

 

Table 5.3 - Energy Requirements for Ideal Process Marcellus Average Brine 

 

 

The estimates for thermodynamic energy required for EFC on the three brines provided 

is in agreement with the results obtained by Verbeek of 132 kWh/m3 for his brine near 

Permian Basin kWh

Crystallization of Water 106

Crystallization of Salt 2.7

Cooling of feed from 18 to -21°C 44

153

Marcellus 75 kWh

Crystallization of Water 156

Crystallization of Salt 9.1

Cooling of feed from 11 to -25°C 38

203

Marcellus Ave kWh

Crystallization of Water 134

Crystallization of Salt 7.3

Cooling of feed from 11 to -25°C 38

179
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the eutectic point of a NaCl brine. The Permian Basin brine has a salinity near that of sea 

water and therefore exhibits a lower energy requirement when compared to that of the 

Marcellus brines which have concentrations near and above the eutectic concentration 

of a halite brine, respectively.  

These energy costs summarized in Tables 5.1-5.3 above should be used cautiously, as 

they do not include the energy required for transportation of brines within a facility, the 

energy for operating refrigerators, or other machinery necessary for the process. These 

energy figures simply are the non-recoverable heat loss for the crystallization process to 

occur. In Section 5.2.3 this preliminary energy requirement for EFC processing will be 

converted to a per barrel cost by combining the above figures with statistically relevant 

regional industrial electricity costs.  

5.2.2 Sale of Precipitated Salts 

As previously mentioned in Section 4.3, the purity of the salt is crucial in identifying a 

market and marketable price for this portion of the effluent stream. Low purity salt is 

not a valuable commodity as there are readily available sources of pure salt on the 

market that are lower in cost than the purification necessary to treat low grade product. 

Subsequently, a high-grade salt would require little processing before use and in fact 

would have multiple marketable end users as a very pure salt is more difficult to find. In 

the case of EFC for produced water, the salt we are discussing is NaCl. Van der Ham 

(1998) asserts that EFC is able to produce pure water and salt crystals from a waste 

water stream [41]. Verbeek (2011) also reports high purity salt effluent when 

performing EFC experimentation with NaCl brines with magnesium as a contaminant [6]. 
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As discussed in Section 4.3, until otherwise disproven, given the consensus of published 

research on EFC of the high purity of salt products from EFC of >95%, we will proceed 

with the speculation that produced water treated in this manner will similarly yield a 

salt that is 95% pure, which is a very high-grade salt.  Worldwide, 62% of all salt is used 

in the manufacturer of industrial chemicals and for industrial purposes. Only 6% of salt 

that is used is food grade [116].   

Salt has commercial markets as it is a required material in the manufacturing of a great 

deal of consumer products. Some examples would be the production of paper, dye 

setting in clothing, soaps, brass, tires, steel, and even bleach [117]. Today, the main 

production method for salts in through evaporative crystallization using the sun on 

seawater, brine extraction from deep salt domes by thermal liquefaction, and mining of 

near surface deposits. Finally, a subset of the salt produced is table quality salt. This is 

salt that is 97%+ pure and often contains anticaking materials and potassium iodide, an 

essential macronutrient. Of course, there are also specialty salt markets for 

consumption, such as sea salt, kosher salt, and specialty salts that are colored due to 

mineral impurities, such as black and pink salts. The published literature anticipates that 

EFC can produce this quality of salt.  

Other uses for salt are oilfield direct applications. When drilling near salt formations, it 

is imperative that drilling muds be stabilized with the use of salt to maintain borehole 

integrity and reduce the chance for collapse or failure of the well [118]. In the event that 

the salt effluent from produced water via EFC is not to the quality necessary for 
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industrial precursor or table salt, it could still be used within the oilfield for mud 

weighting and stability purposes.   

It is difficult to assess the market price of an NaCl salt when realizing it is a commodity 

with fluctuating price that is based on purity and location. This analysis becomes even 

more difficult when the purity of the hypothetical salt is unknown, as is the location of 

production. Nevertheless, we press forward and will present some general market value 

information that is accurate to date. In this way, we will show that there is value in the 

sale of the salt that could potentially offset the cost of treatment of produced water in 

this manner. Global salt demand is expected to grow 1.9% annually through 2020 [119]. 

In 2020, the global average price per metric ton is expected to be USD 42. This is in 

consensus with other economic analysis that state that the average selling price is USD 

40-50 in 2018 [120]. The Economist also reports that this figure of USD 40-50 is for lower 

grade salts, and that higher grade (precursor level) used for table salt manufacturing 

and the pharmaceutical industry has an upward value of USD 150/ton. Therefore, it is 

reasonable to expect that the value of EFC effluent salt to be within the range of USD 

40-150, likely on the high side, conservatively on the low. This price is not inclusive of 

transportation costs, only market value. In the Northeast U.S. this salt would have a 

seasonal value for road gritting and pharmaceutical use, depending on the respective 

purity.  

5.2.3 Per Barrel Cost for EFC Treatment 

In order to calculate a per barrel cost of EFC treatment of produced water, first a 

preliminary energy requirement for treatment is necessary. This analysis is presented in 
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Section 5.2.1. Next, any cost recovery from sale of products should be included. The 

main product, salt, and its recovery cost is the subject of the preceding Section. It is here 

that we combine the preliminary recovery cost and energy requirement for treatment 

into a per barrel treatment cost. We then compare this number with literature published 

values for treatment of produced water via other methods.  

 

Figure 5.4 - EIA Electric Regions for Contiguous U.S. 

The cost of electric energy varies yearly in the U.S. and across several distinct economic 

and geographic regions as show in Figure 5.4. We speculate that the applicability of EFC 

to the treatment of produced water will be viable across all U.S. regions and have 

therefore included the cost of electricity for the contiguous U.S. The electricity cost for 

industrial electric consumers in the U.S. in 2017 is graphically depicted below in Figure 

5.5 as a normal distribution. The source of region electric cost for industrial users was 

sourced from the EIA [121]. The cost by region was determined to be normally 
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distributed by the Shapiro-Wilke test with significance p = 0.034. The mean cost is 

6.76¢/kWh.  

 

Figure 5.5 - U.S. Industrial Electric Energy Cost in 2017 

Subsequently, it appears that the regional electric cost in the Middle-Atlantic Region 

(which is inclusive of the Marcellus Shale in Pennsylvania) is on the decline with 

significance F = 8.32 x 10-5, as shown in Figure 5.6. In fact, the two figures show an 

astonishing level of agreement in that it appears the mean industrial electric cost for the 

U.S. is similar to the expected industrial electric cost in the Middle-Atlantic Region for 

the years 2018-2020. By combining this cost of electricity with the anticipated energy 

requirements to treat the average Marcellus produced water in Section 5.2.1 of 179 

kWh/m3, we can generate a reasonable estimate for treatment cost for the contiguous 

U.S. with the best estimate being the most likely cost for the Middle Atlantic Region 

today.  
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Figure 5.6 - Mean Industrial Electric Cost for Middle-Atlantic Region 

Shown in Figure 5.7 is the anticipated treatment cost for produced water via EFC in the 

contiguous U.S. using regional industrial electric costs from the EIA as of 2017 and with 

a treatment energy requirement of 179 kWh/m3, the Marcellus Shale average from the 

analysis presented in Section 5.2.1. This results in a mean treatment cost of $1.93/bbl.  

 

Figure 5.7 - Anticipated Treatment Cost for Produced Water via EFC 
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Comparing then this cost to those of other treatment methods in the U.S. shown in Table 

5.4 - Comparison of Desalination Technologies [116]Table 5.4 for the produced water, 

we see that the energy cost is quite large. However, the analysis presented herein is not 

indicative of theoretical energy requirements as those listed in the table below and is 

instead a realistic depiction of the energy necessary to treat the produced water using 

EFC with the technology available today. EFC has the potential to use less energy than 

other thermal processes and being at an early technological stage, has numerous 

opportunities for energy optimization. 

Table 5.4 - Comparison of Desalination Technologies [116] 

 

Additionally, when the potential value of the effluent salt is added to the economic 

analysis, we see that the picture for treatment costs changes drastically. The Marcellus 

average water quality report indicates that the brine contains approximately 60 lb/bbl 

of NaCl. With recovery of this salt and selling it at the $40/ ton figure is a recovery of 

$1.11/bbl. This would significantly lower the overall cost of treatment to a mean value 

of approximately $0.82/bbl and is then similar to the cost of membrane distillation.  
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This economic analysis is useful in estimating a preliminary cost for treatment and is a 

vital component for propelling this technology forward by incentivizing and providing 

motivation for further industry led research. There is much room for improvement 

through technological advances of EFC that can further reduce anticipated energy 

requirements and the sale price for the effluent salt is very low given the anticipated 

quality. For both these reasons it would not be at all surprising if the cost of treatment, 

with some significant engineering work, would be approaching null. In the next Section 

we discuss the steps remaining between implementation of EFC technology for 

desalination of produced waters and continue to frame the technology around the 

needs of the oilfield industry. 

5.3 EASE OF IMPLEMENTATION 

This Section is included in conjunction with Section 5.2 to discuss the topics of 

considerations that must be addressed before implementation of EFC can be achieved. 

In Section 5.3.1, The considerations for construction of an EFC facility are discussed 

along with some preliminary, order of magnitude, cost estimates to help facilitate 

initiating ideation for industry. Section 5.3.2 is supplemental to 5.3.1 by discussing the 

rates that should be considered in the construction of a facility. Finally, tying back to 

Chapter 3, Section 5.3.3. includes discussion on the ability of EFC to meet the changing 

brine composition within and between regions. In conjunction with the economic 

analysis presented in Section 5.2 and the anticipated scale of problem from 5.1, this 

Section is necessary to frame the solution (EFC) to the problem in a meaningful, yet open 

direction.  
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5.3.1 Fixed Facility Construction and Cost  

As can easily be imagined, estimating the cost of water treatment systems is 

complicated; not only due to the factors and variables that are involved in the system 

design, but also due to the requirements of the system that are imposed by designers. 

The cost of an industrial treatment system is only one part of the entire equation, the 

other being the main factors that govern the cost and the target goals of the treatment 

design. These are: 

1. Required flow-rate of the system 

2. Quality of influent stream 

3. Target quality of effluent stream 

4. Construction material and design 

The construction and design of the system is a critical first step in conceptualizing the 

planning phase for water treatment. Generally, the largest capital expenditure is 

required in purchasing and constructing the necessary facility and equipment. However, 

engineering costs should not be underestimated as for novel and new technologies the 

engineering solutions for a facility can typically run 10-15% of the total project cost. 

Likely for EFC these engineering costs will be higher as it is less developed than many 

water treatment methods. Some of the important factors to consider in the material 

and design of the system would be space requirements, installation, automation, 

regulatory costs, waste disposal costs, and other fees and costs that might require 

additional capex.  
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The target purity should be understood early in the planning phase. For EFC and for a 

sustainable recycling endeavor, that target can be pushed relatively low, with clean 

releasable water as the inevitable outcome. Clearly, a target is to comply with the 

regulatory standards and meeting minimum contaminant thresholds that are imposed 

by the locality and state. By working backwards from the target purity, secondary and 

tertiary processing equipment can be included in the technological assessment to 

determine what is necessary in conjunction with EFC. For this reason, additional testing 

is necessary for EFC to determine the purity of its effluent stream from the processing 

of produced water, as discussed in Section 4.3.  

Next the quality of the influent stream should be well understood. This is the easiest 

portion of the pre-planning phase as it includes only the sourcing and evaluation of data 

from operators in the target area (in our case the Marcellus shale gas play) and creating 

a robust model for the expect water qualities. A first pass of this has been done in this 

thesis and is included in Appendix A which includes an estimated average water quality 

of Marcellus Shale gas well produced water. A more in-depth study should be performed 

that includes quality and quantity of flowback water from these wells to determine what 

effect that would have on the total water quality stream incorporated for processing. In 

general, the greater the contamination level of the influent stream, the more costly and 

greater number of steps required to treat the water for the target effluent quality. It is 

speculated that EFC may be able to negate this dilemma and reduce significantly the 

capex for water treatment of produced brine. For this reason, additional testing is 
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necessary for EFC to determine the purity of its effluent stream from the processing of 

produced water, as discussed in Section 4.3. 

Generally, flow rates are a sliding measure of facility costs. Lower flow rates translate to 

lower capital costs, etc. This is a general truth, but there are cost differences between 

low and high flowrate systems. For example, an increase in flow rate of 50% cost 

increase costs by 20%, etc. The scalability of EFC is one uncertainty of the design of a 

full-scale treatment facility and is the subject on conversation in Section 5.1.2. By 

continuing testing of EFC at larger scales, the efficiency of the method and the expected 

flow rates can be better understood. Verbeek using the 200L SCWC crystallization 

chamber discussed in Section 4.2 has an influent flow rate of approximately 37 g/sec 

which is equivalent to a substantial 11,679 GPD at a brine density of 1036 kg/m3 [6]. 

Finally, cost estimates for most industrial applications follows. SAMCO (2017) estimates 

that the capital cost for a 150 kGPD system for general industrial applications would cost 

1.5 million USD [122]. Considering that the cost of EFC is estimated to be about 2-3x that 

of thermal distillation, this raises a preliminary capex of 3-4.5 million USD for the 150 

kGPD application [69]. Remembering that the quantity of waste water produced daily 

by Marcellus shale gas sources in Pennsylvania alone is approximately 5 million gallons, 

we can see that the estimated cost for a treatment facility capable of this total stream 

volume is infeasible. However, SAMCO does estimate a 1000 GPM (1.5 million GPD) 

capacity ZLD system to cost 50 million USD, which is a realistic and feasible cost for a 

production company to be able to source.  
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Having discussed the relevant factors and issues to be considered in the design and 

construction of an EFC facility for industrial water treatment of produced brines, we next 

discuss the potential throughput of EFC discussed by other authors to facilitate to which 

degree these values are congruent with those provided above by SAMCO in generating 

a realistic and feasible rate to be anticipated by an EFC facility using currently available 

secondary and tertiary equipment.  

5.3.2 Potential Throughput Through Upscaling 

As mentioned previously, most reuse in the oilfield is done on treating produced and 

flowback water for refracturing. This makes sense as 41% of wells in the U.S. are in 

regions of extreme water stress or drought and in some counties in Texas, more than 

80% of municipal water goes to industrial and agricultural use [31]. Some municipalities 

do take cleaner flowback fluid as a waste stream for sewage plant treatment. This policy 

is largely being reverted in much of the country as the plants struggle to sufficiently treat 

the water for release. Given the large use of freshwater in hydraulic fracturing new wells 

(2-6 million gallons per well) and the high cost of water handling in the Marcellus shale 

($3+/bbl for disposal or $7-10/bbl for transport), there is a new way for companies to 

profit from water management in this area if they can provide reliable, available 

produced water disposal. With thousands of wells projected to be drilled through 

Pennsylvania, West Virginia, and Ohio in the next decade with targets in the Marcellus 

Shale [65], it will be a major revenue source for someone. Experts also agree that public 

pressure and regulation to pressure producers for more recycling are coming 
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Himawan (2002) [7] estimates that the cost of a freeze crystallization system was 7% 

more costly than to evaporative crystallization, but could save up to 60% of the energy 

cost. The reality of this economic evaluation remains uncertain as freeze crystallization 

has only been used on a limited scale briefly for a pilot mining waste water processing 

in South Africa. What that analysis does conclude, however, is that freeze crystallization 

is a new process with significant room for technological improvements and cost 

reduction as implementation occurs, while evaporative cooling and other processing 

methods is already established and has only incremental future cost savings only as a 

result of technological improvements [5].  

Unfortunately for freeze crystallization, much of the cost for developing and 

construction of a large-scale treatment facility is up in the air. Therefore, the most 

significant disadvantage of freeze crystallization is the capital expenditure to initially 

plan, design, and construct a facility capable of processing the volumes necessary in the 

oil and gas field which is on the magnitude of 10kbd+ (42 thousand gallons per day) [41, 

74]. The main operational expenditure for treatment is electricity. Given the lower 

industrial energy costs in the Northeast and the increased disposal costs, this appears 

to be the most logical location to pilot test new produced water disposal techniques.  

Verbeek’s 200L SCWC processes a stream of 11,679 GPD, so several similarly sized 

crystallizers could be used in parallel to provide sufficient brine processing power for 

produced water needs. Additionally, singular, larger crystallizer could be manufactured 

to allow for grater throughput volumes. A static crystallizer heat transfer rate of 0.18 – 

0.25 kW/m2/°C is recommended to reduce scaling but still maintain sufficiently low 
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freezing times to make crystal size optimal for filtration and not induce undesirably high 

scale formation.  

To be an appreciably effective force on the market with EFC, a daily treatment capacity 

of 40 kbd, or 168,000 GPD process volume should be considered. Using the numbers 

Verbeek generates in his analysis this would require an expected 14 SCWC to achieve 

the desired flowrate. Ideally the design would be upscaled to contain fewer, larger 

volume crystallizers working in parallel and series to optimize the characteristics of the 

EFC process and minimize waste heat. A benefit of operating multiple crystallizers at a 

singular eutectic temperature would also be further thermodynamic enhancement by 

the use of larger, more efficient chillers with COP of 4.0 or more. It is speculated that 

the cost to construct an EFC facility as described would be well within the capex estimate 

of 3-4.5 million USD.  

This Section is supplemental to 5.3.1 in discussing the rates that should be considered 

in the construction of an EFC facility. And the scale of treatment water available in the 

U.S. and Marcellus shale for potential market capitalization.  

5.3.3 Robustness of Method to Different Brine Species 

During simulation work using the OLI stream analyzer presented in Section 3.4 and 3.5, 

it is clear that the many salts exhibit eutectic points below NaCl, which is in agreement 

with published literature [123]. Because of this, if EFC treatment is performed holding 

only a temperature of -21.1°C, only halite salts and ice will be created. Remaining salt 

species will be entrained in a reduced water volume. Previously we express that in 
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conjunction with EFC other technologies can be employed to result in an efficient, ZLD 

stream for produced water. In this section we briefly reintroduce those previous 

concepts and reiterate why they are necessary and how this could potentially change 

the implementation cost for a scale EFC treatment facility.  

With the high salinity retained brine after EFC processing to remove halite salt species, 

there will remain many ions, mainly calcium, magnesium and other chloride forming 

salts. These all exhibit a eutectic temperature lower than halite and will not be removed 

unless treated to a further reduced temperature. If water processing for bulk salt 

removal is the goal, then further processing is not necessary; simply discard the 

remaining retained brine in the conventional manner using injection disposal or 

evaporative crystallization. Each of these is associated with a historically known price 

and exhibits little technological gain or engineering work. 

Alternatively, other technologies could be used to further reduce the volume of water 

necessary for disposal. Reverse Osmosis is a potential technology with a proven history 

and known concerns based on brine salinity. As mentioned in Section 4.4.2, there are 

questions regarding the applicability of RO for treating brines of this nature as the 

osmotic membranes are highly susceptible to deterioration if organics and 

hydrocarbons are present in measurable quantities. If shown to pose no threat to 

continued treatment by RO, then the two technologies can be used well in conjunction 

with each other, given the retentate salinity is not unduly high. In instances where the 

retentate salinity is too high for treatment with RO, the water can be disposed of in with 

conventional means, or instead diluted considerably with the processed fresh ice stream 
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from EFC. With halite composing most of the TDS in produced brines, when remade 

without the halite portion, the produced water can exhibit a low enough salinity for 

potential release. This is unlikely in the case of Marcellus produced waters as they 

exhibit a high level of contamination. For cleaner, low salinity brines this is a distinct 

possibility.  

This could have implications on the ability of a Freeze Crystallization treatment facility 

to handle the volumes and rates of waste water necessary for commercial operation or 

impact the scaling of a system for mobile applications, as is discussed in Chapter 2, 

Section 2.3.5. As well, the effect of salts such as BaSO4 still in solution in trace quantities 

mentioned in Section 3.4 could necessitate the need for additional water processing 

steps to reduce scaling of equipment in the stages after EFC takes place. No pre-

treatment of the waters for EFC should be necessary [75].   

By using these technologies in series, reduced volumes of brines can be created that 

require less injection disposal, thereby reducing the impact of induced seismicity and 

lowering the overall cost of water management. Additionally, by treating the brine in 

such a fashion, the fresh stream of water can be used for agriculture or oilfield use 

thereby limiting the effect of industry on local municipal water supplies. The crystallized 

salt can also be sold on the market which would be financially rewarding and present a 

major incentive for implementing these technologies [5].  
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5.4 SYNOPSIS OF CHAPTER FIVE 

In this Chapter we discuss the implications of implementing EFC to industry scale level 

and provide a cost estimate for the treatment of produced brines from Marcellus shale 

gas wells to that of other desalination and disposal methods that are commonly used in 

the industry. In initiating this analysis, we provide insight into the scale of the problem 

by performing statistical analysis to forecast the volume of produced water from 

unconventional sources in Pennsylvania through 2024. Using this volume as a metric for 

water necessitating treatment, we perform analysis regarding the scale up of EFC in 

Section 5.1.2. Section 5.2 is primarily a economic evaluation for EFC to relate generally 

the cost of treatment and disposal of crystallized salts into a per barrel estimate for 

produced water disposal. This cost is then compared to other disposal methods to show 

favorably that EFC exhibits a reduced water management cost if implemented in this 

region under the given constraints. Finally, is Section 5.3 we discuss in more detail what 

the constraints are for the given analysis and the causes and concerns that will be faced 

in the implementation phase of EFC, were it to be undertaken. In doing so we have 

bounded our analysis within the context of the oilfield industry as stated in Chapters 1 

and 2. The analysis present in Chapter 5 address mainly Research Questions 2 and 3.  

RQ2.  What changes need to be made to freeze crystallization desalination technology 

for compatibility with oilfield operations? The core of Chapter 5 is devoted to 

answering this Research Question. By investigating and identifying the cost and manner 

of treatment utilizing EFC at an industrial scale, we have shown that potential changes 

need to be made in the expectations of EFC for desalination and that likely it is with 



 

179 
 

multiple technologies employed in conjunction in which successful water management 

lies. By addressing preliminarily a cost for EFC treatment, we can invite more minds to 

investigate and add to the knowledgebase of EFC for further development and to 

address compatibility concerns that the author didn’t or was unable to address with his 

experience.  

RQ3.   What environmental benefits will be realized by treating water for reuse and 

release over underground water injection? In Section 2.3.5, the potential release of 

water extracted from effluent brine back into the environment is discussed. Many areas 

with developed oilfields in the U.S. are in areas deemed as vulnerable to drought and 

there is an alarming history of mega-droughts lasting 300 years or longer in many 

western U.S. states. In Section 1.3.4 it is shown that the main work that needs to be 

done to prove there is an environmental benefit to the release of this water is largely 

outside the scope of this thesis. However, what is discussed in Section 2.3.7 and Section 

5. 2.4 regarding the release of water and the sale of crystallized salt provides motivation 

that there is clear environmental significance of the work by reducing the ecological 

footprint of other industries. Similarly, a reduction of pre-treatment equipment would 

represent a reduction in the ecological footprint of oilfield water management itself. 

Additionally, the sale of crystallized salt and a source of fresh water would be 

instrumental in providing benefits for field development.  

The main results from this Chapter are: 
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• The cost of EFC treatment in the Middle-Atlantic Region is estimated to be 

$1.93/bbl 

• Cost of EFC treatment can be reduced from selling crystallized salt worth greater 

than $1.11/bbl 

• Marcellus produced water volumes in Pennsylvania are expected to raise to 71 

MMbbl by 2022 

• The nonrecoverable energy requirement for an average Marcellus Shale 

produced water stream is estimated to be 179kWh/m3 
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6 Chapter 6 – Concluding Remarks 

In the previous Chapter, the results of a statistical analysis of the anticipated per barrel 

cost of EFC treatment of produced water and anticipated produced water volumes for 

the Marcellus Shale play of Pennsylvania were evaluated and compared to other 

literature published results. It was found that currently, EFC would exhibit a higher cost 

for treatment than other existing treatment technologies, but that with the potential 

for sale and reuse of salt and water effluent streams respectively, that the cost of 

treatment can be offset to be low or null. In this Chapter, a summary of the work is 

provided, and the main points of the chapters are highlighted in Section 6.1. The 

Research Questions and their answers are briefly mentioned in Sections 6.2. Then the 

relevant achievements and contributions of this thesis are presented in Section 6.3. The 

remaining questions and research gaps for future work are the subject of Section 6.4, 

bringing this work to a close.  

6.1 A SUMMARY OF THESIS 

My main goal through this thesis regards the potential benefits of utilizing freeze 

crystallization for desalination and recycling of oilfield produced water, while 

considering the trade-off between economic and environmental costs. A large part of 

this is to fill the gaps that exist in current research of EFC and present clear validation 

for further examination, as well as provide a potential avenue away from the use of 

waste water injection for the oilfield that is economically feasible and environmentally 

beneficial.  
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In Chapter One, the foundation for the thesis is laid. I begin with an introduction to the 

oil and gas industry and a review on the process of oil generation and cohabitation of 

brine in oil systems. A review into the necessity of technological advance in the industry 

is followed by a background and a motivation section that describes the 18-month long 

process of working with the Baker Hughes Challenge Problem, and the process of 

identifying and refining my research area. From this process, four Research Questions 

are developed and the connectivity to the overall theme of the thesis is identified. The 

connectivity between the Research Questions and the Challenge Problem are further 

substantiated in Chapter 2 through the critical literature review. 

In Chapter Two, a critical evaluation of current waste water disposal methods, 

desalination, and water recycling literature are presented. In Section 2.1 this review of 

the literature is summarized and connectivity between the Research Questions and 

review established. In Section 2.2 principal concepts are introduced and the Research 

Gaps connection to the motivation presented in Chapter 1 are discussed. Section 2.3 

contains an analysis of the waste water disposal methods currently in use and their 

limitations, as well as the requirements for released water that will be expanded in 

Section 5.3. In Section 2.4, the utility of Eutectic Freeze Crystallization to the industry 

and specifically Baker Hughes is established. This chapter is beneficial to those outside 

the industry unfamiliar with common practices, and their rationale.  

In Chapter 3, I introduce potential benefits realized by the oil industry if EFC is to be 

incorporated as a recycling method for waste water over currently established methods 

discussed in detail in Chapter 2. Also included is the concept of Eutectic Freeze 
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Crystallization with introductory examples to explain the phenomena and provide 

justification for the use of the OLI Stream Analyzer for the simulation work that is 

performed. Additionally, singular and binary species salt simulations are presented to 

provide and illustrate the freeze crystallization process with reference to the current 

literature status of freeze crystallization. Commentary on the Gaps in the current EFC 

literature are mentioned explicitly in Section 3.4 and reinforce the Research Questions 

presented in Chapter 1, Section 1.2 as well as the needs for further work that is 

expanded in Chapter 5, Section 5.1. Finally, the Chapter is concluded with original 

simulation of complex multi-species oilfield brines provided by way of water quality 

reports courtesy of Baker Hughes Inc. in Section 3.5. The main findings of Chapter 3 are: 

• The Eutectic temperature for singular species NaCl brine is -21.2°C with the 

formation of hydrohalite 

• Inclusion of other ions and chloride forming cations has the effect of depressing 

the crystallization temperature of hydrohalite, generally on the order of 5-10°C 

• The co-formation of other salts near the eutectic point of hydrohalite can be 

limited through the mixing of waste water streams from multiple wells 

• Oilfield brines, composing mainly Na+ and Cl- in the TDS, exhibit one realizable 

eutectic temperature (hydrohalite and ice) while the eutectic temperature for 

other salts is too low for commercial chilling operations 

• An average Marcellus/Utica brine exhibit first the formation of ice, followed by 

eutectic co-formation of hydrohalite and ice 
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In Chapter 4, I discuss the use of further bench scale experimentation as a method for 

validating the performed EFC simulation work of Chapter 3. Additionally, the Gaps that 

remain for empirical structural validation of EFC for compatibility in the oilfield is 

discussed in Section 4.2 as Research Gaps that can be closed with further 

experimentation. By providing both of these preceding sections as motivation, we 

proceed to Section 4.3 with a proposal for experimentation that includes the bench scale 

design and equipment requirements along with a testing procedure for experimentation 

of actual oilfield brine samples. The work of Chapter 4 is done to be of use to industrial 

researchers and are maintained as independent of the original work done in this thesis 

for the purpose of being a take-away document that can be used to explain the current 

Research Gaps that exist in the literature and solicit funding for industrial and academic 

sources to close these gaps. To further motivate these positions for their support, a 

preliminary cost analysis is the subject of Chapter 5.  

In Chapter 5 I discuss the implications of implementing EFC to industry scale level and 

provide a cost estimate for the treatment of produced brines from Marcellus shale gas 

wells to that of other desalination and disposal methods that are commonly used in the 

industry. In initiating this analysis, I provide insight into the scale of the problem by 

performing statistical analysis to forecast the volume of produced water from 

unconventional sources in Pennsylvania through 2024. Using this volume as a metric for 

water necessitating treatment, I perform analysis regarding the scale up of EFC in 

Section 5.1.2. Section 5.2 is primarily an economic evaluation for EFC to relate generally 

the cost of treatment and disposal of crystallized salts into a per barrel estimate for 
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produced water disposal. This cost is then compared to other disposal methods to show 

favorably that EFC exhibits a reduced water management cost if implemented in this 

region under the given constraints. Finally, is Section 5.3 we discuss in more detail what 

the constraints are for the given analysis and the causes and concerns that will be faced 

in the implementation phase of EFC, were it to be undertaken. In doing so we have 

bounded our analysis within the context of the oilfield industry as stated in Chapters 1 

and 2. 

In Section 6.2, I will discuss explicitly my take-away that embodies the answers I have 

formed to the posed Research Questions developed in Chapter 1. These Research 

Questions were first introduced in Section 1.3.2. The content of Section 6.2 is not 

intended to be accurate in a scientific sense and is intended to be opinionated in nature. 

For the explicit facts relating to each Research Question as discovered through the work 

of each Chapter, please refer to the Chapter synopsis sections.  

6.2 ANSWER TO THE RESEARCH QUESTIONS 

My primary research question was “How can freeze crystallization be utilized to treat 

flowback and produced water from oilfield operations?” To answer this question, 

there are several other questions that need to be answered first. The four secondary 

Research Questions are presented in Section 1.3.2, and the support and answers to 

these Research Questions are presented in the Chapter synopses. I have stated those 

Questions and answered each one of them as the following:  

Research Question 1: How can freeze crystallization be utilized to treat flowback and 

co-produced water form oilfield operations?  
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The ability of EFC to desalinate complex brines is explored through Chapter 3 via 

simulation to determine if the technology is capable of separating multi species brines 

that are common of produced water. Sections 4.1 and 4.2 include discussion on future 

bench scale work that should be performed to validate EFC through physical processes. 

Finally, economic considerations are included in Section 5.2 to evaluate if the method 

of EFC desalination could be implemented commercially.  

The current EFC freeze chamber design that F. vd Ham [41] presents is of utility only for 

bench scale experimentation due to size (10 L). he outlines the design of a scraped 

cooled wall crystallizer (SCWC) capable of separating ice and salt crystals gravimetrically 

and the recycling of the mother liquor for further processing. Verbeek [6] builds on this 

original SCWC design and investigates the EFC process on a skid mounted EFC design 

that is capable of treating 200 L at a time. While this is a substantially larger volume, it 

is still not adequate in addressing whether EFC can accommodate the substantial ( ≥ 

1,500,000 L) stream that can be associated with a moderate (5 wells) sized advanced 

age oilfield. However, their work into the scalability of the EFC process can be expanded 

to address the gap of whether freeze crystallization desalination technology can be 

upscaled enough to handle the waste water streams. The compatibility of EFC to oilfield 

operation is primarily investigated to address any deficiencies or roadblocks that would 

delay implementation of this technology into the current infrastructure of treatment 

facilities in the industry, such as refineries or injection wellhead locations where 

significant infrastructure already exists. Lu [43] addresses the use of EFC for treating 

coproduced water from Kuwait and the treatment of low salinity flowback water from 
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Shale gas fracturing in the Marcellus. Unfortunately, Lu does not address what effect, if 

any, the presence of minute contaminants such as NORM, or solid contaminants such 

as residual hydrocarbon and suspend solids would have on the EFC process. He 

acknowledges that “In order to be able to make better cost calculations and compare 

them with evaporative crystallization, a more thorough study of all parameters involved 

in the EFC and recrystallization process is necessary. Some examples of important 

aspects to investigate are continuous operation (a commercial process will be 

continuous) and scaling up to larger scale. Also, EFC of produced waters from different 

origin and composition have to be studied.” He hints on an important issue. The driving 

factor for adoption of this technology by the oil industry is precisely the cost of a 

commercial operation and the robustness of the method to be applied to waters of 

varying qualities and origin. The latter is addressed through Research Question 1, while 

the former relates to the changes that need to be made to the technology for 

commercial upscaling.  

By all accounts it appears that EFC is a compatible candidate for treatment of co-

produced water from oilfield operations. This water is high in salinity and primarily NaCl, 

which has a relatively high eutectic temperature when compared to other salt species. 

This compatibility of the technique and the availability of current technology capable of 

cooling this water to the desired temperatures with competitive energy requirements 

insinuates that in the near future this technology can have rapid success in the oil 

industry, even with the significant research that still need be performed, as outlined in 

Chapter 4.  
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Research Question 2: What changes need to be made to freeze crystallization 

desalination technology for compatibility with oilfield operations? 

This gap is further explored in Section 3.5 by investigating the effect of common waste 

water stream contaminants on the EFC temperature for streams from the Marcellus and 

Utica shales. Additionally, Section 5.2 contains a discussion into the economics of EFC 

and preliminary work into cost estimation for treatment via EFC (in $/bbl) is presented.  

Many areas with developed oilfields in the U.S. are in areas deemed as vulnerable to 

drought [33] and there is an alarming history of mega-droughts lasting 300 years or 

longer in many western U.S. states [32]. This disturbing potential future of little potable 

water is underscored dramatically by the use and disposal of > 20,000 gallons per well 

of fresh water for hydraulic fracturing of new wells in these states. In many cases, the 

solution means recycling flowback or produced water to limit the need for fresh water 

in the production of hydrocarbons [31]. However, the recycling or release of produced 

water is often met with unintentional ecological consequences. Current regulation in 

Eastern Shale gas states (Pennsylvania and West Virginia) is heavy on regulating 

underground injection as a legacy of existing legislation passed in historic oil producing 

states such as Oklahoma and Texas, but have failed in implementing meaningful 

legislation regulating the release of tainted waters to the environment [30].Given that 

there are little Class II brine disposal wells associated with the Marcellus Shale Gas 

production states, it is likely that recycling will be the way forward for development, but 

that underground injection is currently the only long term viable option for a future of 

gas production in the area. Arthur, Dutnell, and Cornue [28] acknowledge that there is 
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an associated infrastructural cost to the disposal through injection in the form of road 

damage, minor releases, and traffic related casualties that should be considered in an 

injection schema. Because of the potential detriments associated with injection are so 

many, Gupta and Hlidek [29] speculate that there is potential for an optimized recycling 

operation for the recycling of frac fluid as the cost of sourcing fresh water and disposal 

of waste water increases with water scarcity that will reduce the dependence on 

injection for disposal and water management. Recently in Oklahoma a connection 

between Class II injection wells and earthquakes (hereto referred to as induced 

seismicity) has been noted [53].  

Few changes need to be made. If the outcomes of the further research in Chapter 4 

reveal that EFC is insensitive to hydrocarbons and the radioactivity of the effluent water 

and crystallized salt is reasonably low, the technology can be implemented with little to 

no pretreatment required. Indeed, it would seem that EFC would be easily compatible 

with oilfield operations and readily adopted by many operators for use in water 

treatment facilities and for refining water treatment.  

Research Question 3: What environmental benefits will be realized by treating water 

for reuse/release over underground water injection?  

A gap exists regarding whether there is a current recycling method that can help 

hydrologically impacted areas while simultaneously reducing anthropogenic seismic 

activity and associated environmental destruction such as roads and bridges by overuse 

of heavy disposal trucks and machinery and whether these recycling methods can 



 

190 
 

reduce unforeseen environmental damage in the form of detrimental releases of toxic 

salts into estuaries and streams. 

This research question is evaluated through Section 3.5 in a discussion regarding the 

reduced water volumes associated with freeze crystallization and the potential energy 

savings realized through the use of the crystallization method over others. Additionally, 

in Section 4.2 commentary on the economic value of pure crystallized salt is presented 

and what impact this could have on national anhydrous NaCl production and associated 

environmental impact. Finally, in Section 5.2 a holistic economic analysis of freeze 

crystallization is performed that highlights the usefulness of the technology in reducing 

water injection disposal and the potential release of fresh water to the environment. 

Refineries on average use 2.5 gallons of water for every gallon of crude processed. This 

combined with the introduction on entrained water from crude delivery means that the 

typically refinery deals with upwards of 10 million gallons of ‘dirty’ water daily. Typical 

dirty water processing at the refinery level includes membrane technologies (RO) and 

thermal distillation for water reuse [54]. Thermal distillation is the most common water 

treatment technique as it is economical and technically simple, the plants already have 

the necessary permits to use this technology. New refineries are stressed to reduce costs 

and consumption by adopting new lower energy desalination and treatment methods 

while minimizing discharges. Haddaway [55] mentions that the key is [to] “use existing 

waste or low-value streams from oil and gas exploration (and other industrial processes) 

to reduce the amount of effluent generated.” By recycling water again and again for use 

in the refinery, the newer plants are able to reduce their environmental footprint, 
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reduce costly permitting and consumption costs, while simultaneously reducing energy 

consumption with energy efficient new equipment. What hasn’t changed however, is 

the technology that is in use. Thermal distillation, while appropriate for refinery use, is 

at the edge of what is theoretically possible through energy efficiency, and there are 

little gains to be had from further optimization at this point. EFC has the potential to use 

less energy than a thermal process while simultaneously allowing for the continued 

recycling of water within the refinery and being at an early technological stage, has 

numerous opportunities for energy optimization.  

By allowing for central treatment of unconventional water sources, injected volumes 

can be decreased. This decrease will have direct environmental benefits through 

reduced induced seismic events. Additionally, there are indirect benefits to the recycling 

of this water such as limited strain on water resources from operators reusing water 

rather than purchasing it fresh, and reduced mining and sourcing operations for the 

generation of high quality NaCl. These environmental impacts should be included in any 

LCA and would have resounding implications on a global scale.  

Research Question 4: How can freeze crystallization be utilized with minimum impact 

to existing water treatment infrastructure?  

While it is clear that there is need for efficient water treatment at the refinery level, and 

indeed waste water treatment from crude production as well, it isn’t certain what 

changes would need to be implemented at the refinery level to have compatibility with 

freeze crystallization, given refineries have been utilizing thermal distillation for so many 

years. 
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This research question is developed in Section 4.4 with discussion on the sensitivity 

analysis of EFC temperature and this implication on the design of a EFC treatment 

facility. Through Section 5.3, future research needs for EFC and discussion about other 

problems for which EFC can be applied are covered to strengthen the relationship 

between EFC as a water treatment method and refinery operations.  

This question is more difficult to answer pre-implementation. Likely this technology 

would be disruptive and decrease the demand on many water treatment equipment 

such as API separators, electro-coagulators and others. Additionally, the reduction in 

water injection volumes and other changes to the economics of well drilling and 

production would change the scope of the industry altogether. While these changes are 

broad and might be overreaching, at the minimum this technology represents an 

opportunity for an ambitious entrepreneur to enter the market and take a large share 

away from conventional management sources.  

6.3 ACHIEVEMENTS AND CONTRIBUTIONS 

The principal question for this thesis is as follows:  

“How can freeze crystallization be utilized to treat flowback and 

produced water from oilfield operations?” 

Current waste water disposal methods in the oil industry primarily include water 

injection into disposal wells, with limited utilization of electrocoagulation for in-field 

reuse and thermal distillation at refineries. Brine hypersalinity and residual hydrocarbon 

has limited the application of membrane technology and simple environmental 
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expulsion is heavily regulated by the EPA [2]. The problems associated with injection 

disposal, coupled with a lack of nearby Class II injection wells has limited the 

development of the Pennsylvanian Marcellus shale gas due to economic constraint 

imposed by the cost of water disposal. The challenge gas producers must now face is 

how to preserve the economics of shale gas production while simultaneously upholding 

responsible stewardship of resources and protecting public health. With increased 

concerns regarding induced seismicity from injection wells and the safety of that type 

of disposal, the need for water recycling methods has grown.  

Eutectic Freeze Crystallization has the potential to treat complex, hypersaline 

coproduced brine and represents a sustainable water treatment technology towards 

achieving a near zero waste by producing potable water and pure salts [3]. Given that 

the hypersaline brines of the Marcellus Shale are sodium and chloride rich [4], EFC could 

be used to selectively recover the sodium as a pure sodium chloride salt while 

simultaneously producing pure ice crystals. The pure ice would have innumerable uses; 

reuse for hydraulic fracturing, release into estuaries, and agriculture being only a few.  

The sodium chloride salt represents a potential revenue stream for water 

treatment companies and its sale to industrial chemical synthesizers could offset the 

cost of water treatment. While the applicability of using EFC to remove multiple salts 

from complex multi-component, hypersaline brines has not yet been demonstrated [5], 

the thermodynamics of freeze crystallization are extensively known. Verbeek shows that 

the overall efficiency an EFC crystallizer is 59% and that the energy requirement per unit 

feed is comparable to that of typical commercial evaporative crystallizers [6]. The cost 
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of a large-scale freeze crystallization facility is estimated to be equitable to that of 

evaporative crystallization [7], but to be competitive EFC would need to be comparable 

to the injection disposal cost of $1.00 - $6.50 per barrel to be of interest to Exploration 

and Production companies [8]. 

Original simulation research of eutectic freeze crystallization of produced water 

using OLI Stream Analyzer was performed on various brine compositions generated 

from water quality reports provided by Baker Hughes and indicated EFC is suited for 

desalination of co-produced waters. These results indicate that EFC has a high level of 

compatibility with the task of co-produced water desalination and can be applied under 

favorable economic situations. A statistical cost estimate for water treatment by EFC is 

performed and concludes that: 

Additional research needs to be performed to complete the validation of EFC for the 

task of treating brines for release. Namely, it is unclear to date whether the presence of 

hydrocarbons and NORM material would interfere or contaminant the pure effluent 

streams of EFC. In Chapter 4 a research proposal to finish the validation of this method 

is included. 

The major findings are: 

• The co-formation of other salts near the eutectic point of hydrohalite can be 

limited through the mixing of waste water streams from multiple wells 

• An average Marcellus/Utica brine exhibit first the formation of ice, followed by 

eutectic co-formation of hydrohalite and ice 
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• Marcellus produced water volumes in Pennsylvania are expected to raise to 71 

MMbbl by 2022 

• The nonrecoverable energy requirement for an average Marcellus Shale 

produced water stream is estimated to be 179kWh/m3 

• The cost of EFC treatment in the Middle-Atlantic Region is estimated to be 

$1.93/bbl 

• When accounting for recovered costs from the potential sale of crystallized salt 

the treatment cost is reduced to $0.82/bbl /bbl, similar to that of membrane 

distillation [9] 

6.4  PERSONAL REFLECTION 

This Section is included at the bequest of my committee chair. By including a personal 

reflection section to the thesis, I am allowing myself a platform from which to now speak 

subjectively about my research and how it has shaped my thinking and understanding, 

rather than only objective evidence and insight.  

In this thesis, I have identified that EFC treatment is applicable to produced water 

desalination and can do so within the neighborhood treatment cost of other methods. 

What remains is to complete the validation process of EFC from what has been 

previously published to ensure compatibility with actual oilfield water samples, not just 

simulated waters utilizing modelling software.  

Some evidence exists that the radiation waste from drilling and disposing of water in the 

Marcellus is more pervasive than other areas [101]. As the liquid volume decreases with 
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continued EFC treatment, I believe the concentration of the radioactive isotopes will 

increase. Increasing the concentration of radioactivity could present a health risk from 

over exposure or add to anticipated disposal costs by requiring adherence to stricter 

governmental regulations. In order to better understand these perceived health risks, 

further testing with actual oilfield brine samples is necessary. It would be inadvisable to 

proceed to industrial scale investment in freeze crystallization without addressing the 

above concerns regarding trace hydrocarbon, fracturing chemicals and radioactive 

isotopes on the freeze crystallization process.  To do so, I recommended that further 

bench scale EFC testing be performed to answer the above questions.  

I believe that further examination and exploration of EFC as a viable recycling method 

over UIC wells for produced water management is necessary. Many industries in the U.S. 

are increasingly aware of their environmental footprint as well as economic footprint in 

their supply chain generation. Refineries are reducing carbon emissions, governments 

are subsidizing renewable energy research, and municipalities are encouraging citizens 

to reduce, reuse, and recycle to limit the strain on the environment from anthropogenic 

causes. Much of what is done in the petroleum industry occurs downhole. Out of sight 

and out of mind, nevertheless the difficulty of truly measuring subterranean 

contamination in a meaningful way. Unfortunately, the effects of injection wells have 

come into view of the public perception. Rather than add mystery to the process of 

hydrocarbon recovery, we as an industry should welcome public scrutiny and be open 

to discussion. While many of the engineering concerns might be outside of common 
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understanding, it is our duty as engineers to simplify our work to make it understood by 

everyone.  

All of this to say, we should be focusing now on greener alternatives to necessary 

petroleum activities, such as waste water management, so that when regulatory or 

social bodies demand change we are ready. It is unfortunate that many companies 

operate under the fleece of environmental compliance but refuse to do all that is 

possible and conform only to the prescribed regulations. While permissible, it is this 

attitude that doesn’t garner sympathy from society and is not conducive to disruptive 

breakthroughs. It is my belief that as we continue to strive for environmental 

equilibrium, that it is necessary to look ahead of the regulations and prepare for the 

good of posterity without sacrificing quality of life today. We should allow our social 

conscience to guide us to engineering solutions, not just fiscal conscience. While my 

research presented herein shows that EFC represents a costlier disposal alternative to 

injection or other recycling methods, that does not mean it is less viable from an 

implementation standpoint. No one wishes to pay more for fuel or petroleum 

derivatives, but if a slight increase in cost is necessary for greenproofing future work, it 

is worthy of the investment. It is our commitment to ourselves and our beliefs that 

makes us human. Let’s not take the humanity out of engineering.   
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Appendix A  - Water Quality Report Data 

This appendix includes the relevant water quality report information for the brines that 

are used in the simulation section for hypersaline multi-component brines in Chapter 3, 

Section 3.4 with ion concentration reported in ppm. These specific water quality reports 

are included as they were used in the analysis presented in Section 3.5. The data was 

provided courtesy of Baker Hughes Inc. and was solicited only for academic purposes. 

Table 7.1 has the water quality reports for the East Coast shale plays analyzed in this 

thesis. Similarly, Table 7.2 includes the Permian Basin brine that was used in EFC 

simulation. The inclusion of wells from multiple plays was to validate EFC to test the 

sensitivity to changing concentrations of contaminants and ions. The average water 

quality for the Utica and Marcellus shale are included as they represent the best 

estimate for the water stream that would be sent for central treatment in the region. 

The average columns are a simple average of all the water quality reports provided by 

Baker Hughes. In an effort to better protect the privacy of BHI and their customers, the 

water quality report for every well has not been included. There was not an adequately 

large sample size of water quality reports from the Permian to merit the inclusion and 

simulation of EFC for that play. The unit of TDS is mg/L unless otherwise specified in 

Tables 7.1 and 7.2 
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Table 7.1 - Marcellus and Utica WQR 

Formation(s) Marcellus 7 Marcellus 75 Marcellus Ave. Utica Ave. 

State PA PA PA OH 

API # 37-031-25508 37-019-22194 - - 

Sample Point Separator Separator Separator Separator 

pH 6.6 5.9 6.05 6.11 

S.G. 1.155 1.2 1.085 1.1608 

Temp. (F) 70.5 67.8 75.2 76.8 

C02 (ppm) 202.4 410 286 380 

H2S (mg/L) 0 0 0 0 

Bicarbs (mg/L) 95.3 61 152.5 118.2 

TDS (mg/L) 221451 310161 144552 257774 

Calcium (Ca++) 28147.9 32871.9 13882.9 51120 

Magnesium (Mg++) 2097.59 2074.1 1278.12 115.531 

Sodium (Na+) 47869.3 67794.8 34141.6 17.254 

Iron  (Fe++) 104.046 127.1 133.961 3051.18 

Manganese (Mn++) 17.169 12.6 4.71 109.018 

Strontium (Sr++) 3861 5948 2467.95 118.2 

Barium (Ba++) 931.524 8292.8 93.194 0 

Bicarb (HCO3-) 95.3 61 152.5 168471 

Sulfate (SO4=) 0 0 0 1.89 

Chloride   (Cl-) 137753 192526 91881 0 

Biocide - - - - 

Scale Inhibitor - - - - 
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Table 7.2 - Permian WQR 

Formation(s) Permian 

State TX 

API # - 

Al 3.51 

B 62 

Ba 2.53 

Ca 420 

Cu 0 

Fe 0.969 

K 159 

Mg 67.4 

Mn 0.715 

Mo 0 

Na 12200 

P 5.29 

SO4 284 

Si 20.4 

Sr 143 

Zn 0 

Gravity 1.0219 

Cl 21200 

pH 7.71 

HCO3 1315 

OH 0 

CO3 0 

Calc TDS 35884 

TSS 198 

Oil & Grease 98 

H2S NM 

Turbidity NM 
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Appendix B  - Definition of Terms 

To facilitate understanding by many audiences, the below list of terms and associated 

definitions has been included. This list is not comprehensive of all terminology of the 

thesis nor are the presented definitions adopted by any industrial standards institution. 

These select definitions are included in this appendix as they include the most inclusive 

and obscure that might not be readily found online or could have ambiguous meaning 

in other publications.  

1) Brine – A water saturated with salt, can include many salt ions and other 

contaminants such as suspended solids, entrained gases, and residual hydrocarbons. 

2) Hypersaline – A brine containing saline levels exceeding that of the ocean (3.5 wt% 

sodium chloride, i.e. 35 g/L or 35,000 ppm), used in this paper for oilfield brines that 

are exceedingly saline with sodium chloride content of 100,000 ppm (10 wt%).  

3) Species – A salt that is formed using only one cation and anion, this definition does 

not include double salts or complexes. A binary salt species would be a saturated 

brine that contains ions to form two unique salt species that are composed of only 

one cation and anion. 

4) Hydrohalite - a mineral that occurs in saturated halite brines at cold temperatures 

(−5 °C), NaCl·2H2O. 

5) Eutectic Point - The point in a phase diagram indicating the chemical composition and 

temperature corresponding to the lowest melting point of a mixture of components. 

In Eutectic Freeze Crystallization, this is the point and which crystalline water and 

salt are coproduced.  

6) Eutectic Concentration – The concentration of a salt, in wt%, of a brine at the point 

that the mixture reaches its eutectic point. 

7) Eutectic Temperature – The temperature of a brine at the eutectic point necessary 

to cause supersaturation and concurrent crystallization of ice and salt.  

https://en.wikipedia.org/wiki/Mineral
https://en.wikipedia.org/wiki/Halite
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8) Potable Water – Pure water. Colorless, odorless, and tasteless. Set by the U.S. EPA 

to have a maximum TDS of 500 mg/L. Local jurisdictions cover legal maximums of 

specific TDS contributors.  

9) Proppant – A proppant is a solid material, typically sand, treated sand or man-made 

ceramic materials, designed to keep an induced hydraulic fracture open, during or 

following a fracturing treatment.  

10) Oleic – Of or relating to the liquid portion of a hydrocarbon stream consisting of 

alkanes, alkenes and aromatics. 
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Appendix C  - Acronyms, Abbreviations, and Units 

API – American Petroleum Institute 

BBL – Unit of volume equal to 42 US Gallons 

CDCC – Cooled Disc Column Crystallizer 

DEP – Pennsylvania Department of Environmental Protection 

EFC – Eutectic Freeze Crystallization  

EP – Eutectic Point 

Gallon – Unit of volume equal to 3785.4 milliliters 

GPD – Gallons per Day 

MCF – Thousand Standard Cubic Feet 

MD – Membrane Desalination or Distillation 

MMSCF – Million Standard Cubic Feet 

NORM – Naturally Occurring Radioactive Material 

O&G – Oil and Grease 

RO – Reverse Osmosis 

SCF – Standard Cubic Foot. Volume occupied by gas at STP (60°F and 1 atmosphere) 

SCWC – Scraped Cooled Wall Crystallizer 

SI – Scale Inhibitor 

SPE – Society of Petroleum Engineers 

STP – Standard Temperature and Pressure 

TCF – Trillion Standard Cubic Feet 

TDS – Total Dissolved Solids  

USGS – United States Geological Survey 
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Appendix D  - Brine Crystallization using OLI Stream Analyzer 

This is a prepared example showing how to use OLI Studio to model salt crystallization 

based on temperature and ion concentration. The case file contains one of the water 

surveys entered into the brine analysis object and then transferred to a stream where 

a temperature survey produces and simulates the ice. This information is provided for 

illustrative purposes only and is not indicative of work performed by the author. 

Additional information and files can be found at 

http://downloads.aqsim.com/BrineCrystallizationExample.oad  

Here are the key instructions: 

1. Use the Brine Analysis to enter the data  

 

2. Change the Thermodynamic framework to MSE. The default is AQ 

 

3. If a species is missing, type it in with the correct charge 

 

4. The elements B, P, and Si (for example) are MOSTLY present as B(OH)3, HPO4
-2 

and SiO2 at the case file 77 pH. A user will need to convert the mass to these 

oxyanions. 

http://downloads.aqsim.com/BrineCrystallizationExample.oad
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5. Add the pH and alkalinity in the Reconciliation tab grid and use pH-Alkalinity 

reconciliation (see key images) 

6. Create the Process stream by right-mouse-clicking on the Brine Object in the 

navigation panel and then Add as Stream (see key images) 

7. Turn on the So button (Solids) ON. They are off by defaults when creating a 

stream from a brine analysis.  

 

8. Add a Survey Calculation using the Add Calculation button in the upper right 

 

9. Modify the temperature survey using the Spec. button. Use 25°C (or ambient) 

to the lowest temperature needed (depends on EP, generally I use -30°C) by 

small increments 

10. Plot the solids forming using the Variable button to open the 

variables list. You should change the solids units for mg/l to mass since the 

liquid volume amount varies. 

  

Key Images: 

1. Reconcile tab for pH/Alkalinity calculation 
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2. How to Add a Stream from the Brine Analysis – user right-mouse-clicks 

 

3. Changing the Temperature survey range to crystallize ice 

 

4. Modify Solids units by clicking the Customize button and then changing from 

concentration to mass 
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5. Plotting the Solids variables 

 


