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Abstract

We give a representation theoretic approach to the Klingen lift generalizing

the classical construction of Klingen Eisenstein series to arbitrary level for both

paramodular and Siegel congruence subgroups.

Moreover, we give a computational algorithm for describing the one-dimensional

cusps of the Satake compactifications for the Siegel congruence subgroups in the case

of degree two for arbitrary levels. As an application of the results thus obtained,

we calculate the co-dimensions of the spaces of cusp forms in the spaces of modular

forms of degree two with respect to Siegel congruence subgroups of levels not divisible

by 8.
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Chapter 1

A summary of the main results

1.1 Introduction

The primary objects of our concern in this thesis are Klingen Eisenstein series in

degree two. One goal is to understand the classical Klingen Eisenstein series using

representation theoretic methods. Moreover, our investigations of these classical

objects lead us to some interesting results on the co-dimensions of cusp forms in the

spaces of Siegel modular forms of degree two with respect to Siegel congruence sub-

groups. We have employed both the classical methods and representation theoretic

techniques in this thesis and we now give a context to our work under these two

broad headings.

1.1.1 Classical results

One of the most basic questions about the spaces of modular forms is to ask for the

dimensions and the co-dimensions of the spaces of cusp forms. For the spaces of

Siegel modular forms of degree two with respect to the full modular group Sp(4,Z)

the answers are well known for several decades. However, the answers for the spaces

of modular forms with respect to Siegel congruence subgroups are not so clear. Only
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some special cases have been treated in the literature. Dimensions of the spaces of

cusp forms with respect to Γ0(p) have been computed by Hashimoto [9] for weights

k ≥ 5. For Γ0(2), in [10] Ibukiyama gave the structure of the ring of Siegel modular

forms of degree 2. Poor and Yuen [27] computed the dimensions of cusp forms

for weights k = 2, 3, 4 with respect to Γ0(p) in the case of a small prime p. In

[29] Poor and Yuen described the one-dimensional and zero-dimensional cusps of

the Satake compactifications for the paramodular subgroups in the degree two case

and calculated the co-dimensions of cusp forms. More recently, in [3] Böcherer and

Ibukiyama have given a formula for calculating the co-dimensions of the spaces of

cusp forms in the spaces of modular forms of degree two with respect to Siegel

congruence subgroups of square-free levels. In this work we generalize their result

and give a formula for the co-dimensions of the spaces of cusp forms in the spaces of

modular forms of degree two with respect to Siegel congruence subgroups of level N

with 8 - N . The method used to find the co-dimensions of the spaces of cusp forms

makes use of a result from the theory of Satake compactification. The cusp structure

of the Satake compactification encodes information about the co-dimensions of cusp

forms and works of several authors indicate that it is an important object worth

investigating.

1.1.2 Representation theoretic results

Eisenstein series are important and concrete examples of modular forms. Siegel

generalized the classical holomorphic Eisenstein series to higher dimensional Siegel

spaces. Klingen in a paper published in [13] further generalized Siegel Eisenstein

series to define, what is now known as, Klingen Eisenstein series. Klingen Eisenstein

series Ek
n,r are Siegel modular forms of degree n and weight k which are constructed

by a natural lift from a given Siegel cusp form of degree r and weight k. In his seminal
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work in [13], Klingen gave conditions for the regions of convergence of such series.

In the following we will restrict our attention to the degree two case. The degree two

case has been well studied, for example, in a series of papers in the 1980s Mizumoto

and Kitaoka [21, 18, 22, 11] gave explicit formulas for Fourier coefficients of Klingen

Eisenstein series which are eigenforms under the action of Hecke operators.

In contrast to the attention the classical degree two Klingen Eisenstein series

have received there is no comparable explicit work available from the automorphic

representation theory point of view. Of course, the general theory of Eisenstein series

is well established [19, 23], and is well known to experts, but the author is not aware

of any explicit representation theoretic construction of Klingen Eisenstein series in

the literature. We note that the classical Klingen Eisenstein series were defined for

the group Sp(4,Z) and do not admit any level structure. However, recently there

have been attempts to define Klingen Eisenstein series of level N with respect to

the Siegel congruence subgroup Γ0(N) for square free N (c. f., [7]). In this work

we give a representation theoretic explicit construction of Klingen Eisenstein series

with arbitrary level N with respect to both the paramodular and Siegel congruence

subgroups.

1.2 Notations

We shall use the following notations throughout this work unless otherwise stated.

(i) In this thesis, except in Chapter 8, we realize the group GSp(4) as

GSp(4) := {g ∈ GL(4) | tgJg = λ(g)J for some λ(g) ∈ GL(1)},

with J =

[
I2

−I2

]
.

Important Note: In Chapter 8, we realize the group GSp(4) using
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J =
[

J1
−J1

]
in the definition above with J1 = [ 1

1 ]. We note that this

symmetric version of GSp(4) is isomorphic to the classical version of

GSp(4) and we denote this isomorphism by the map  which inter-

changes the first two rows and the first two columns of any matrix.

(ii) By B(Q) we will mean the Borel subgroup of GSp(4,Q) consisting of the

matrices of the form {

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

 | ∗ ∈ Q}.

(iii) Q(Q) will denote the Klingen parabolic subgroup of GSp(4,Q) consisting of

the matrices of the form {

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

 | ∗ ∈ Q}.

(iv) P (Q) denotes the Siegel parabolic subgroup of GSp(4,Q) consisting of the

matrices of the form {

∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗
∗ ∗

 | ∗ ∈ Q}.

(v) We denote by K(N) the paramodular congruence subgroup defined as

K(N) := {

 ∗ ∗N ∗ ∗
∗ ∗ ∗ ∗N−1

∗ ∗N ∗ ∗
∗N ∗N ∗N ∗

 ∩ Sp(4,Q) | ∗ ∈ Z}.

(vi) The local paramodular subgroup Kp(p
n) of level pn is defined to be

Kp(p
n) := {k =

 ∗ ∗p
n ∗ ∗

∗ ∗ ∗ ∗p−n
∗ ∗pn ∗ ∗
∗pn ∗pn ∗pn ∗

 ∈ GSp(4,Qp) | ∗ ∈ Zp, det(k) ∈ Z×p }.

(vii) Hn := {z ∈ Mn(C) | tz = z, Im z > 0} will denote Siegel half space of degree

(or genus) n.

(viii) s1 :=

 1
1

1
1

 , s2 :=

 1
1

−1
1

 .
4



(ix) For the integer i and the prime p we define Li :=

 1 pi

1
1
−pi 1

 .

(x) We define for integer N , LN :=

1 N
1

1
−N 1

 .
(xi) We define the Siegel congruence subgroup of level N as

Γ0(N) = Γ4
0(N) := {

∗ ∗ ∗ ∗∗ ∗ ∗ ∗
a b ∗ ∗
c d ∗ ∗

 ∈ Sp(4,Z) | a, b, c, d ≡ 0 mod N}.

(xii) We will use Γ2
0(N) := {

[
a b
c d

]
∈ SL(2,Z) | c ≡ 0 mod N} to denote the Hecke

congruence subgroup of SL(2,Z). Sometimes we will also use the symbol Γ0(N)

for Γ2
0(N) and by context the meaning will be clear without any confusion.

(xiii) We define the local Siegel congruence subgroup of GSp(4,Qp) of level pn by

Si(pn) := {α =

∗ ∗ ∗ ∗∗ ∗ ∗ ∗
a b ∗ ∗
c d ∗ ∗

 ∈ GSp(4,Zp) | a, b, c, d ∈ pnZp}.

(xiv) Let K2
p(pnp) := {

[
a b
c d

]
∈ GL(2,Zp) | c ∈ pnpZp, d ∈ 1 + pnpZp}.

(xv) Let Γ2
∞(Z) := {±

[
1 b

1

]
| b ∈ Z}.

(xvi) Γ∞(Z) := Q(Q) ∩ Sp(4,Z) and ∆(Z/NZ) := {
[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

]
∈ Sp(4,Z/NZ)}.

(xvii) Γ∞(Z/NZ) := {γ mod N | γ ∈ Γ∞(Z)}.

(xviii) For f : H→ C, g =

[
a b
c d

]
∈ GL(2,R+) and z ∈ H, we define

(f |k g)(z) = det(g)
k
2 (cz + d)−kf

(
az + b

cz + d

)
.

5



(xix) For Z ∈ H2 := {z ∈ M2(C) | tz = z, Im z > 0}, and for any m =

[
A B
C D

]
∈

Sp(4,Z) we define m〈Z〉 := (AZ + B)(CZ + D)−1, j(m,Z) := CZ + D and

m〈Z〉∗ = τ̃ for m〈Z〉 =

[
τ̃ z̃
z̃ τ̃ ′

]
.

(xx) C0(N) = #(Γ0(N)\GSp(4,Q)/P (Q)) = The number of zero-dimensional cusps

for Γ0(N).

(xxi) C1(N) = #(Γ0(N)\GSp(4,Q)/Q(Q)) = The number of one-dimensional cusps

for Γ0(N).

(xxii) K = The maximal standard compact subgroup of Sp(4,R).

(xxiii) K1 = The maximal standard compact subgroup of GSp(4,R).

(xxiv) Let ω1(q) := [ a b
c d ] for q =

[
a b ∗
∗ ∗ ∗ ∗
c d ∗

∗

]
∈ Q(Q) and let ı1 be the embedding map

ı1([ a b
c d ]) :=

[
a b

1
c d

1

]
from SL(2,Q) to Q(Q). For g ∈ GSp(4,Q), we define

Γg := ω1(g−1Γ0(N)g ∩Q(Q)).

1.3 Main results

1.3.1 Co-dimension of cusp forms

We recall cusps in the degree one case. Let Γ be a congruence subgroup of SL(2,Z)

which acts on the complex upper half plane H by the usual action. In order to

compactify Γ\H we adjoin Q∪{∞} to H to define the extended plane H∗ = H∪Q∪

{∞} and take the quotient X(Γ) = Γ\H∗. Then a cusp of X(Γ) is a Γ-equivalence

class of points in Q ∪ {∞}. As SL(2,Z) acts transitively on Q ∪ {∞} there is just

one cusp of the modular curve X(1) = SL(2,Z)\H∗. It is well known that cusps of

X(Γ2
0(N)) correspond to the double coset decompositions of Γ2

0(N)\SL(2,Z)/Γ2
∞(Z),

for example see Prop. 3.8.5 in [6] or §4.2 in [20].
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The theory of Satake compactification is explained in [33]. Section 3 in [29]

gives a quick review. In fact similar to the degree one case, the one-dimensional

cusps for the Siegel congruence subgroup Γ0(N), in the degree two case, correspond

to the double coset decompositions Γ0(N)\Sp(4,Z)/Γ∞(Z) and also equivalently to

Γ0(N)\GSp(4,Q)/Q(Q). Similarly the zero-dimensional cusps correspond to the

double coset decompositions Γ0(N)\GSp(4,Q)/P (Q). It turns out that for even

weights k > 4, the co-dimension of cusp forms can be obtained by using Satake’s

theorem (cf. [34]) if the structure of zero-dimensional cusps and one-dimensional

cusps are known.

We prove the following result concerning one-dimensional cusps in the case when

N = pn for some prime p and n ≥ 1. In fact, the one-dimensional cusps for Γ0(pn)

are inverses of the representatives listed below.

Important note: We use the symmetric version of GSp(4) in Theorem

8.1.10 and Theorem 8.2.2 (c.f. Section 1.2, Notations).

Theorem 8.1.10. (Double coset decomposition). Assume n ≥ 1. A complete

and minimal system of representatives for the double cosets Q(Q)\GSp(4,Q)/Γ0(pn)

is given by

1, s1s2, g1(p, γ, r) =

 1
1

1
γpr 1

 , 1 ≤ r ≤ n− 1,

g2(p, s) =

 1
1

ps 1
ps 1

 , 1 ≤ s ≤ n− 1,

g3(p, δ, r, s) =

 1
1

ps 1
δpr ps 1

 , 1 ≤ s, r ≤ n− 1, s < r < 2s,

7



where γ, δ runs through elements in (Z/f1Z)× and (Z/f2Z)× respectively with f1 =

min (r, n− r) and f2 = min (2s− r, n− r). The total number of representatives

given above is

C1(pn) =


p
n
2

+1 + p
n
2 − 2

p− 1
if n is even,

2(p
n+1
2 − 1)

p− 1
if n is odd.

(1.1)

The above result can be extended by using the strong approximation theorem

and the Chinese remainder theorem to arbitrary N . We have the following lemma.

Lemma 8.2.1. Assume N =
m∏
i=1

pnii . Then, the number of inequivalent representa-

tives for the double cosets Q(Q)\GSp(4,Q)/Γ0(N) is given by C1(N) =
∏m

i=1C1(pnii ).

We have the following result based on Theorem 8.1.10 and Lemma 8.2.1.

Theorem 8.2.2. Assume N =
m∏
i=1

pnii . A complete and minimal system of represen-

tatives for the double cosets Q(Q)\GSp(4,Q)/Γ0(N) is given by

g1(γ, x) =

 1
1

1
xγ 1

 , 1 ≤ γ ≤ N, γ|N,

g3(γ, δ, y) =

 1
1

δ 1
yγ δ 1

 , 1 < δ < γ ≤ N, γ|N, δ|N, δ|γ, γ|δ2;

where for fixed γ and δ we have

x = M + ζ
∏

pi-M,pi|N

pnii , y = L+ θ
∏

pi-L, pi|N

pnii

with M = gcd(γ,
N

γ
), L = gcd(

δ2

γ
,
N

γ
), ζ and θ varies through all the elements of

(Z/MZ)× and (Z/LZ)× respectively. Here we interpret (Z/Z)× as an empty set.

8



We note that the one-dimensional cusps for Γ0(N) are given by the inverses of

the representatives listed above.

The number of zero-dimensional cusps C0(pn) for odd prime p was calculated by

Markus Klein in his thesis (cf. Korollar 2.28 [12]) as

C0(pn) = 2n+ 1 + 2

(
n−1∑
j=1

φ(pmin(j,n−j)) +
n−2∑
j=1

n−1∑
i=j+1

φ(pmin(j,n−i))

)
. (1.2)

It is the same as

C0(pn) =



3 if n = 1,

2p+ 3 if n = 2,

−2n− 1 + 2p
n
2 + 8p

n
2 −1
p−1

if n ≥ 4 is even,

−2n− 1 + 6p
n−1
2 + 8p

n−1
2 −1
p−1

if n ≥ 3 is odd.

(1.3)

The above formula remains valid if p = 2 and n = 1. The above result also remains

true for p = 2 and n = 2 as calculated by Tsushima (cf. [38]). Hence, assume 8 - N

and if N =
m∏
i=1

pnii then following an argument similar to the one given in the proof

of Lemma 8.2.1 we obtain

C0(N) =
m∏
i=1

C0(pnii ). (1.4)

Finally, by using Satake’s theorem (cf. [34]) and the formula for C0(N) and C1(N)

described above we obtain the following dimension formula.

Theorem 9.4.1. Let N ≥ 1, 8 - N and k ≥ 6, even, then

dimMk(Γ0(N))− dimSk(Γ0(N)) = C0(N) +

∑
γ|N

φ(gcd(γ,
N

γ
))

 dimSk(Γ
2
0(N))

+
∑

1<δ<γ, γ|N, δ|γ, γ|δ2

∑′
dimSk(Γg), (1.5)
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where C0(N) is given by (1.4) if N > 1, C0(1) = 1, φ denotes Euler’s totient

function, and for a fixed γ and δ the summation
∑ ′ is carried out such that g runs

through every one-dimensional cusps of the form g3(γ, δ, y), with y taking all possible

values as in Theorem 8.2.2, and Γg denotes ω1(g−1Γ0(N)g ∩Q(Q)).

Some remarks.

(i) We note that Markus Klein did not consider the case 4|N for calculating the

number of zero-dimensional cusps in his thesis. Tsushima provided the result

for N = 4. Since we refer to their results for the number of zero-dimensional

cusps we have this restriction in our theorem. We hope to return to this case

in the future.

(ii) The above result in the special case of square-free N reduces to the dimension

formula given in [3] for even k ≥ 6. [3] also treats the case k = 4 for square-free

N .

Next we note the following theorem which describes a linearly independent set

of Klingen Eisenstein series with respect to Γ0(N).

Theorem 9.3.1 . Assume N ≥ 1. Let g1(γ, x) and g3(γ, δ, y) be as in Theorem

8.2.2.

1. Let f1 be an elliptic cusp form of even weight k with k ≥ 6 and level N . Let

g be a one-dimensional cusp for Γ0(N) of the form (g1(γ, x)−1). Then

Eg(Z) =
∑

ξ∈(gQ(Q)g−1 ∩Γ0(N))\Γ0(N)

f1(g−1ξ〈Z〉∗) det(j(g−1ξ, Z))−k,

defines a Klingen Eisenstein series of level N with respect to the Siegel con-

gruence subgroup Γ0(N).
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2. Let f2 be an elliptic cusp form of even weight k with k ≥ 6 and level δ. Let h

be a one-dimensional cusp for Γ0(N) of the form (g3(γ, δ, y)−1). Then

Eh(Z) =
∑

ξ∈(hQ(Q)h−1 ∩Γ0(N))\Γ0(N)

f2(h−1ξ〈Z〉∗) det(j(h−1ξ, Z))−k,

defines a Klingen Eisenstein series of level N with respect to the Siegel con-

gruence subgroup Γ0(N).

As g and h run through all one-dimensional cusps of the form (g1(γ, x)−1) and

(g3(γ, δ, y)−1) respectively, and for some fixed g and h, as f1 and f2 run through

a basis of Sk(Γ0(N)) and Sk(Γ0(δ)) respectively, the Klingen Eisenstein series thus

obtained are linearly independent.

1.3.2 Paramodular Klingen lift

As noted earlier the classical Klingen Eisenstein series as defined by Klingen does

not admit any level structure. The representation theoretic formulations of Klingen

Eisenstein series have the features that there are no restrictions on the level N with

respect to both the paramodular and Siegel congruence subgroups. Also in the case

of a paramodular lift, the cusp form appearing in (2.11) can be twisted by a Dirichlet

character χ.

In the case of paramodular lift we have the following result.

Theorem 6.2.1. (Paramodular Klingen lift). Let S be a finite set of primes

and N =
∏

p∈S p
np be a positive integer. Assume χ to be a Dirichlet character modulo

N . Let f be an elliptic cusp form of level N , weight k, with k ≥ 6 an even integer,

and character χ, i.e., f ∈ S1
k(Γ0(N), χ). We also assume f to be a newform. Let φ

be the automorphic form associated with f and let (π, Vπ) be the irreducible cuspidal

automorphic representation of GL(2,A) generated by φ. Moreover, χ could be viewed

11



as a continuous character of ideles, which we also denote by χ. Then there exists

a global distinguished vector Φ in the global induced automorphic representation

χ−1|·|so|·|−s2 π of GSp(4,A), for s = k − 2, such that,

Ē(Z) := det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

(Φ(γbZ))(1), (1.6)

(with Z = X + iY ∈ H2, bZ ∈ B(R) such that bZ〈[ i i ]〉 = Z),

defines an Eisenstein series which is the same as the Klingen Eisenstein series of

level N2 with respect to the paramodular subgroup, defined by

E(Z) :=
∑

γ∈D(N)\K(N2)

f(LNγ〈Z〉∗) det(j(LNγ, Z))−k, (1.7)

where,

LN =

1 N
1

1
−N 1

 and D(N) = (L−1
N Q(Q)LN) ∩K(N2).

It is to be noted that if one starts from an elliptic newform f of level N then

the level of the paramodular Klingen Eisenstein series obtained is N2. Another

interesting feature of this construction is that the level of the paramodular Klingen

Eisenstein series does not depend upon the character χ of f .

1.3.3 Siegel congruence Klingen lift

A similar construction for the congruence subgroup Γ4
0(N) turns out to be more

difficult than the paramodular case as the relation between the local double coset

decomposition Q(Qp)\GSp(4,Qp)/Si(pn) and the global double coset decomposition

Q(Q)\GSp(4,Q)/Γ4
0(pn) is not as straightforward as was the case for the correspond-
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ing double coset decompositions involving the paramodular subgroup. For example,

the number of double cosets depends on the prime p in the former case while it does

not depend on the prime p in the latter case involving the paramodular subgroup.

But, with the above result in place, by appropriately selecting the local distinguished

vectors and gluing them together one gets a global distinguished vector, which is

then used to establish the following theorem.

Theorem 7.3.1. (Klingen lift for Γ4
0(N)). Let S be a finite set of primes and

N =
∏

p∈S p
np be a positive integer. Let f be an elliptic cusp form of level N ,

weight k, with k ≥ 6 an even integer, i.e., f ∈ S1
k(Γ

2
0(N)). We also assume f

to be a newform. Let φ be the automorphic form associated with f and let (π, Vπ)

be the irreducible cuspidal automorphic representation of GL(2,A) generated by φ.

Then there exists a global distinguished vector Φ in the global induced automorphic

representation |·|so|·|−s2 π of GSp(4,A), for s = k − 2, such that,

Ē(Z) := det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

(Φ(γbZ))(1), (1.8)

(with Z = X + iY ∈ H2, bZ ∈ B(R) such that bZ〈[ i i ]〉 = Z),

defines an Eisenstein series which is the same as the Klingen Eisenstein series of

level N with respect to Γ4
0(N), defined by

E(Z) :=
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

f(γ〈Z〉∗) det(j(γ, Z))−k. (1.9)

Next we state the following theorem obtained by picking a different support for

the non-archimedean distinguished vectors.

Theorem 7.3.2. (Another Klingen lift for Γ4
0(N)). Let S be a finite set of

primes and N =
∏

p∈S p
np be a positive integer. Let f be an elliptic cusp form of
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level N , weight k, i.e., f ∈ S1
k(Γ

2
0(N)). We also assume f to be a newform. Let φ

be the automorphic form associated with f and let (π, Vπ) be the irreducible cuspidal

automorphic representation of GL(2,A) generated by φ. Then there exists a global

distinguished vector Φ in the global induced automorphic representation |·|so|·|−s2 π

of GSp(4,A), for s = k − 2, such that,

Ē(Z) := det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

(Φ(γbZ))(1), (1.10)

(with Z = X + iY ∈ H2, bZ ∈ B(R)such that bZ〈[ i i ]〉 = Z),

defines an Eisenstein series which is same as the Klingen Eisenstein series of level

N with respect to Γ4
0(N), defined by

E(Z) =
∑

γ∈((s1s2)−1Q(Q)s1s2 ∩Γ4
0(N))\Γ4

0(N)

f(s1s2γ〈Z〉∗) det(j(s1s2γ, Z))−k

=
∑

γ∈{

 −1
a b

1
c d

−µ 1
−k l 1 µ
l 1
−1

∩Sp(4,R) | c, l, k∈NZ, a, b, d, µ∈Z}\Γ4
0(N)

f(s1s2γ〈Z〉∗) det(j(s1s2γ, Z))−k

(1.11)

Some remarks

(i) In Theorem 7.3.1, a Klingen Eisenstein series of level N , with respect to the

group Γ4
0(N), was obtained by using an elliptic cusp form f of level N , weight

k, i.e., f ∈ S1
k(Γ

2
0(N)). However, for the paramodular lift, f ∈ S1

k(Γ
2
0(N))

yields a Klingen Eisenstein Series of level N2 with respect to the group K(N2).

(ii) The following table gives a short summary.
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Subgroup f = modular form Character Klingen Eisenstein series
with respect to with respect to

Paramodular Γ2
0(N) χ mod N K(N2)

Siegel Γ2
0(N) 1 Γ4

0(N)

Table 1.1: Paramodular and Siegel lifts.

1.3.4 A connection with the paramodular conjecture

We recall the paramodular conjecture, which predicts a connection between abelian

surfaces and Siegel modular forms of degree 2, just as elliptic curves of conductor

N are associated with modular cusp forms of weight 2 and level N with respect to

the congruence subgroup Γ2
0(N). Essentially, the paramodular conjecture which is

due to Brumer and Kramer [4], proposes that abelian surfaces of conductor N cor-

respond to Siegel modular forms with respect to the paramodular subgroup K(N).

There is some computational evidence to support this conjecture. For instance, in

2015 Cris Poor and David Yuen classified Siegel modular cusp forms of weight two

for the paramodular group K(p) for primes p < 600 and found it consistent with

the paramodular conjecture [28]. The paramodular conjecture can be reformulated

in terms of automorphic representations (see Figure 1.1). We review this briefly in

the following.

abelian

surface A

local repre-

sentations πp

automorphic

π = ⊗πp

paramodular

form F

1 2 3

Figure 1.1: Paramodular conjecture reformulated in terms of automorphic represen-
tations.

Given any abelian surface of conductor N , the step 1 is to find local represen-
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tations πp for each prime p. Let ` be a prime different than p and also coprime

to N . Then one considers the action of the absolute Galois group Gal(Q̄p/Q) on

the Tate module T`(A) and on T`(A)⊗Q`. This results in an `-adic representation

Gal(Q̄p/Q)→ GL(4,Q`). Then following the procedure described in §4 of [31], this

`-adic representation can be converted to a complex representation σp of the Weil-

Deligne group W ′(Q̄p/Q). The determinant of σp can be made to be 1 after a twist.

Moreover, using the symplectic structure on the Tate module that comes from the

Weil pairing, σp can be assumed to be a map

σp :W ′(Q̄p/Q) −→ Sp(4,C). (1.12)

Since the dual group of the split orthogonal group SO(5,Qp) is Sp(4,C) and the local

Langlands correspondence for SO(5) is known, one can now invoke it to associate to

σp an irreducible, admissible representation πp of SO(5,Qp). One can also obtain the

local archimedean representation π∞. Hence, in the step 2 combining all these local

representations and using the Tensor Product Theorem, one obtains a global repre-

sentation π = ⊗πp of the adelic group SO(5,A). Since SO(5,A) ∼= PGSp(4,A), the

paramodular conjecture, in terms of automorphic representations can be formulated

as: for an abelian surface A one can associate a global L-packet of representations

of GSp(4,A) with trivial central character such that at least one representation in

the L-packet is automorphic. One degenerate case of this conjecture is when the

abelian surface is a product of two isogenous elliptic curves, say E1 × E2. Interest-

ingly, using the representation theoretic formulation of the paramodular conjecture

described above, it can be shown that the distinguished vector Φ in the automorphic

representation constructed in Theorem 6.2.1, in the special case of s = 0 or equiva-

lently k = 2, and χ = 1, corresponds to the abelian surface E1 × E2. This confirms

and provides a proof of the paramodular conjecture in the special degenerate case
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of the product of two isogenous elliptic curves.

1.4 Method of proofs

1.4.1 Automorphic representations

The key idea of the proof is to establish the existence of a global distinguished

vector which corresponds to the classical Klingen Eisenstein series. More explicitly,

suppose f is the cusp form appearing in (2.11) and φ is the automorphic form asso-

ciated with f . Let (π, Vπ) be the irreducible cuspidal automorphic representation of

GL(2,A) generated by φ. Then, for some appropriately chosen s ∈ C, there exists

a vector Φ in a certain model of the global induced representation Π = |·|so|·|−s2 π

of GSp(4,A) that corresponds to the Klingen Eisenstein series defined in (2.11).

The global representation Π decomposes as the restricted tensor product of local

representations Π =
⊗

p≤∞Πp. Similarly, the global automorphic representation

π associated with the modular form f also breaks up into local constituents π =

⊗πp. By construction the global representation Π depends upon π and the local

components Πp depend on πp, just as the classical Klingen Eisenstein series depends

upon the modular form f by definition. The non-archimedean local paramodular

newform theory established by Brooks Roberts and Ralf Schmidt (see [30]) contains

all the necessary ingredients for picking up appropriate local distinguished vectors.

Hence by appropriately picking up local distinguished vectors and then gluing then

together via restricted tensor products one can create different distinguished vectors

in Π. More explicitly, we pick a local newform for each prime p|N which coupled with

the choice of certain lowest weight vector for the local archimedean distinguished

vector, provides a global distinguished vector, say Ψ, such that Ψ corresponds to

a Klingen Eisenstein series with level structure with respect to the paramodular
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elliptic modular

newform f

distinguished

vector φ in

automorphic π

local πp

Klingen

Eisenstein

series F1

paramodular

Klingen Eisenstein

series F2

distinguished

vectors Φ and Ψ

in automorphic Π

local Πp

via φ

via Φ

via Ψ

Figure 1.2: Proof sketch for the paramodular Klingen lift.

subgroup (see Figure 1.2).

1.4.2 Co-dimension formula for cusp forms

We noted earlier in Section 1.3.1 that, in the degree 2 case, the one-dimensional

cusps for the Siegel congruence subgroup Γ0(N) correspond to the double coset

decompositions Γ0(N)\GSp(4,Q)/Q(Q) and the zero-dimensional cusps correspond

to the double coset decompositions Γ0(N)\GSp(4,Q)/P (Q). Once the structures of

zero-dimensional and one-dimensional cusps are known, our co-dimension formula

for cusp forms follows from Satake’s theorem (cf. [34]).

1.4.2.1 Determining the structure of one-dimensional cusps

It is clear from the earlier discussions that determining the complete structure of one-

dimensional cusps is essential for obtaining the main results in this work. We have

used Bruhat decomposition and elementary number theory to establish this result.

One feature of our method is that it is completely constructive and algorithmic and
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one can write a computer program to implement it. We have used the computer

algebra system ‘Sagemath’ to code and test our algorithm. One downside of our

approach is that the proof is rather long. We have restricted ourself to degree 2 but

it would be interesting to generalize this result to higher degrees.

A Remark: We note that most of the material in Chapter 8 and Chapter 9 has

already appeared in [37].
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Chapter 2

A brief historical introduction to

modular forms

In this chapter, we begin with a brief historical overview of modular forms. The

material is classic and can be skipped by experts.

2.1 Modular forms

Modular forms are very beautiful and special objects which miraculously connect

seemingly diverse and disjoint subfields of mathematics, and undoubtedly they have

played a significant role in mathematics since they appeared in works of Jacobi,

Eisenstein, Fuchs, Dedekind, Klein and Poincaré , to name but a few pioneers, in

the nineteenth century mathematics. 1

Gray, Jeremy gives a very engaging historical account in [8] and describes the

1“For fifteen days I strove to prove that there could not be any functions like those I have
since called Fuchsian functions. I was then very ignorant; every day I seated myself at my work
table, stayed an hour or two, tried a great number of combinations and reached no results. One
evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds;
I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next
morning I had established the existence of a class of Fuchsian functions, those which come from the
hypergeometric series; I had only to write out the results, which took but a few hours.”- Poincaré
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origin of elliptic and modular functions and their close connections with certain

linear differential equations. In the following we give a little glimpse of some of

these fascinating connections.

2.1.1 Gauss, AM & GM, elliptic integrals and a modular

connection

Gauss’ remarkable computational abilities and legendary skills in manipulating in-

finite series led him to a certain hypergeometric function and its associated second

order hypergeometric differential equation. Moreover this hypergeometric function

is also closely connected with a certain elliptic integral and therefore to elliptic

curves and modular forms. It is instructive to follow his original arguments.

Gauss discovered the arithmetico-geometric mean (agm) when he was 15. He

started with two numbers a and b and wrote a1 =
a+ b

2
for the arithmetic mean

and b1 =
√
ab for the geometric mean of a and b. He then created sequences {an}

and {bn} of arithmetic and geometric means by defining an =
an−1 + bn−1

2
and

bn =
√
an−1bn−1 for n ≥ 1 with a0 = a and b0 = b. It is not hard to see that the

sequences {an} and {bn} converge to a common limit, known as the agm of a and b,

which Gauss denoted by M(a, b). It is clear that M(αa, αb) = αM(a, b). It is also

obvious that M(1 + x, 1− x) is an even function. Gauss assumed that its reciprocal

has an infinite series expansion.

1

M(1 + x, 1− x)
=
∞∑
k=0

Akx
2k. (2.1)

Now, the substitution x =
2t

1 + t2
leads to

1

M(1 + x, 1− x)
=

1 + t2

M((1 + t)2, (1− t)2)
=

1 + t2

M(1 + t2, 1− t2)
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giving the relation
∞∑
k=0

Ak

(
2t

1 + t2

)2k

=
∞∑
k=0

Akt
4k.

Gauss determined the coefficients Ak from the above relation and thus he obtained

the following infinite series development for M(1 + x, 1− x)−1

y := M(1 + x, 1− x)−1 = 1 +

(
1

2

)2

x2 +

(
1.3

2.4

)2

x4 +

(
1.3.5

2.4.6

)2

x6 + · · · . (2.2)

Further it satisfies the following differential equation

(x3 − x)
d2y

dx2
+ (3x2 − 1)

dy

dx
+ xy = 0. (2.3)

Gauss then noticed a remarkable connection between M(1 + x, 1− x) and the com-

plete elliptic integral of the first kind defined as

K(x) :=

∫ π
2

0

1√
1− x2 sin2 φ

dφ. (2.4)

Theorem 2.1.1. (Gauss). Assume |x|< 1. Then

K(x) =
π

2

1

M(1 + x, 1− x)
.

Proof. The result follows by expanding (1−x2 sin2 φ)−
1
2 using the binomial theorem,

integrating the resulting series term by term and then making use of (2.2).

It is already amazing to see the creation of a mathematical theory with beautiful

interconnections from a seemingly innocent looking idea of agm. However, this was

just the beginning. In fact, the general hypergeometric series is defined as

F (α, β, γ, x) := 1 +
αβ

γ

x

1!
+
α(α + 1)β(β + 1)

γ(γ + 1)

x2

2!
+ · · · , (2.5)
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and it is a solution of the general hypergeometric differential equation defined by

Gauss as

x(1− x)
d2y

dx2
+ [γ − (α + β + 1)x]

dy

dx
− αβy = 0. (2.6)

It is readily seen that on substituting z = x2 the equation (2.3) reduces to a special

case of the general hypergeometric differential equation defined by (2.6) with α =

β = 1
2

and γ = 1.

The function M(1, x) is also connected with the well known Jacobi Theta Func-

tion. We define for q = e2πiz with Im(z) > 0,

θM(q) =
∞∑

n=−∞

qn
2

θF (q) =
∞∑

n=−∞

(−1)nqn
2

θM(q) is a generating function for the number of ways of representing a number

as a sum of squares. More, precisely,

θkM(q) =
∑
n≥0

rk(n)qn

where,

rk(n) = #{(x1, · · ·xk) ∈ Zk | x2
1 + · · ·x2

k = n}.

It can be shown that

θ2
M(q) + θ2

F (q)

2
= θ2

M(q2) and
√
θ2
M(q)θ2

F (q) = θ2
F (q2), (2.7)

from which it follows that

M(θ2
M(q), θ2

F (q)) = 1. (2.8)
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One common underlying theme in the development of modern mathematics is

solution of equations: polynomial equations and the symmetry of their roots re-

sulted in Galois theory, a similar study for the roots of differential equations led

to the development of Lie theory and the beautiful subject of algebraic geometry

also has its roots in the study of roots of equations! The study of hypergeomet-

ric differential equation motivated and provided an impetus for development of a

large body of important mathematics such as the theory of complex analysis and

also of Riemann surfaces. The solutions of hypergeometric differential equations are

messy multivalued functions. New methods and concepts such as that of analytic

continuation were invented to systematically study and tame these beasts!

Let us now return to the elliptic integral K(x). These integrals arose naturally

in several ways, for example in calculating the time period of a simple pendulum

and also in calculating the arc length of an arbitrary ellipse. Legendre studied these

integrals extensively and Jacobi and Abel are credited for coming up with the idea

of studying the inverse functions of the elliptic integrals instead. The entries in

Gauss’ personal diaries reveal that he had already discovered most of Jacobi’s and

Abel’s results but chose not to publish them. The other important idea was to study

the complex valued functions instead of real valued functions. In this situation we

can draw a parallel with the familiar circular trigonometric functions as follows. A

circle with equation y2 = 1− x2 is parametrized by x = sinu and y = sin′ u = cosu

and u = sin−1 x is given by the familiar integral
∫ x

0

1√
1− t2

dt. On extending to the

complex domain the sin−1 x function defined by the above integral is a multivalued

function. For example one can choose a path for integration from 0 to x on the

complex plane such that it goes around an arbitrary number of times around the

singularities ±1. However, if we study the inverse of the function defined by the

above integral we get a nice single valued periodic function sinx. The periodicity

of sinx is a manifestation of the multivalued nature of the integral defining sin−1 x.
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Similarly it turns out that the multivalued nature of elliptic integrals lead to inverse

functions which are doubly periodic. After Gauss, Abel, and Jacobi, Weierstrass was

the mathematician to make significant contributions in the study of elliptic integrals

with his ℘(z) function. In fact, similar to the example of the parametrization of a

circle considered earlier, x = ℘(z) and y = ℘′(z) parametrize the elliptic curve

E(C) : y2 = 4x3 − g2x− g3, with

z =

∫ ∞
x

dt√
4t3 − g2t− g3

.

The function ℘(z) has many remarkable properties. Suppose Λ is a lattice, i.e., a

subgroup of the form Λ = Zω1 + Zω2 with {ω1, ω2} being an R-basis for C. A

meromorphic function on C relative to the lattice Λ is called an elliptic function if

f(z + ωi) = f(z) for all z ∈ C and i ∈ {1, 2}. It turns out that ℘(z) is an even

elliptic function. In fact, there is another formulation of ℘(z) given below.

℘(z) =
1

z2
+

∑
ω∈Λ−{0}

(
1

(z − ω)2
− 1

ω2

)
,

with

g2 = 60 G4(Λ), g3 = 140 G6(Λ)

and

G2k(Λ) :=
∑

ω∈Λ−{0}

ω−2k. (2.9)

One can define a map

φ : C/Λ −→ E(C) ⊂ P2(C), z ←→ [℘(z), ℘′(z), 1]
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which is an isomorphism of Riemann surfaces that is also a group homomorphism.

From the previous discussion it is clear that now we have a map from lattices to

elliptic curves. Further,

C/Λ ' C/Λ′ ⇐⇒ Λ = cΛ′ for some c ∈ C.

Also on writing Λ(τ) := Z · τ + Z · 1 ' Z · ω1 + Z · ω2 with τ = ω1

ω2
for some

τ ∈ H, we see that Λ(τ) = Λ(τ ′) if and only if there exist a matrix [ a b
c d ] ∈ SL(2,Z)

such that

τ ′ =
aτ + b

cτ + d
.

One can show that there is one-to-one correspondence between

SL(2,Z)\H↔ elliptic curves over C/' .

We now define a modular form of weight k, with respect to a congruence subgroup

Γ of SL(2,Z), as a holomorphic function on the complex upper half plane H, that

satisfies the condition

f

(
az + b

cz + d

)
= (cz + d)kf(z) for

[
a b
c d

]
∈ Γ, (2.10)

and which is holomorphic at the cusp ∞. It can be checked that the Eisenstein

series G2k(Λ) defined in (2.9) is a modular form of weight 2k.

We have given a very brief historical account of the origin of modular forms,

but many important connections are already beginning to show up. In fact, since

their first appearance in connection with hypergeometric equations, modular forms

have become a fertile meeting ground for various subfields of mathematics such as

elliptic curves, quadratic forms, quaternion algebras, Riemann surfaces, algebraic
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geometry, algebraic topology, to name but a few, with fruitful consequences. One

such example is the celebrated modularity theorem (formerly Taniyama, Shimura,

Weil conjecture), which states that every elliptic curve defined over Q is modular.

The proof of a version of the modularity theorem by Wiles resulted in the resolution

of Fermat’s last theorem, the single most famous problem in number theory. The

classical ideas of modular forms were further extended in a more general setting

using representation theoretic tools by Gelfand, Ilya Piatetski-Shapiro and others

in the 1960s resulting in the modern theory of automorphism forms. Langlands

created a general theory of Eisenstein series and produced some far reaching and

deep conjectures. Automorphic forms play an important role in modern number

theory. In this context the following remark of Langlands on automorphic forms

comes to mind- “It is a deeper subject than I appreciated and, I begin to suspect,

deeper than anyone yet appreciates. To see it whole is certainly a daunting, for the

moment even impossible, task.”.

2.2 Klingen Eisenstein series

We have already encountered Eisenstein series as our first concrete example of mod-

ular forms. Eisenstein series encode the continuous spectrum of L2(G(Q)\G(A))

and are important objects. In fact, the origin of the Langlands functoriality conjec-

tures can be traced back to his work on Eisenstein series and their constant terms

that he carried out around 1965.

Siegel generalized the classical holomorphic Eisenstein series to higher dimen-

sional Siegel spaces. Klingen further generalized the Siegel Eisenstein series to ob-

tain, what is known in his honor as, the Klingen Eisenstein series [14]. Suppose f

is an elliptic cusp form of weight k, then the Klingen Eisenstein series in the degree
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2 case is defined as

Ek
2,1(Z, f) =

∑
m∈C2,1\Sp(4,Z)

f(m〈Z〉∗) det(j(m,Z))−k. (2.11)

Here, Z ∈ H2 = {z ∈ M2(C) | tz = z, Im z > 0}, C2,1 := {
[ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗

]
∈ Sp(4,Z)},

for Sp(4,Z) 3 m =

[
A B
C D

]
, m〈Z〉 := (AZ + B)(CZ + D)−1, j(m,Z) := CZ + D,

m〈Z〉∗ = τ̃ for m〈Z〉 =

[
τ̃ z̃
z̃ τ̃ ′

]
. Klingen proved that if k ≥ 6 is an even integer

then the series defined in (2.11) converges absolutely and uniformly on any vertical

strip of positive height.
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Chapter 3

Eisenstein series using local

newforms

3.1 Introduction

In this chapter we construct a classical Eisenstein series via a global distinguished

vector using local newforms. The results as well as the methods used in this chapter

are well known, but perhaps some of the explicit calculations are new. In any case,

this chapter serves as a good starting point for illustrating the techniques in an

easier setting, which shall be used later for obtaining the main results of this work.

3.2 Eisenstein series in the adelic setting

In this section we briefly review the construction of adelic Eisenstein series for the

group G(A) = GL(2,A). We refer readers to [23] for the general case of an arbitrary

reductive group.

Let B(A) be the Borel subgroup of G(A). Let χ1 and χ2 be continuous characters
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of ideles. Let χ be the continuous character of B(A) defined as

χ(

[
a b
d

]
) = χ1(a)χ2(d) for

[
a b
d

]
∈ B(A).

Let ind
G(A)
B(A)(χ) be the representation of G(A) induced form the character χ, consist-

ing of smooth functions f : G(A)→ C which satisfy the transformation property

f(

[
a b
d

]
g) =

∣∣∣a
d

∣∣∣ 12 χ1(a)χ2(d)f(g) for all

[
a b
d

]
∈ B(A), g ∈ G(A),

and certain other regularity conditions (like K-finiteness, see Chapter 3 in [5]). Now

for f as above we define the Eisenstein series

E(g, f) :=
∑

γ∈B(Q)\G(Q)

f(γg), for g ∈ G(A), (3.1)

provided the sum is convergent. We may also write

E(g, f) =
∑

γ∈Γ2
∞(Z)\SL(2,Z)

f(γg). (3.2)

Let π be an irreducible and admissible constituent of ind
G(A)
B(A)(χ). One can decom-

pose π using the tensor product theorem as π ∼=
⊗
p≤∞

πp. Here πp are representations

of the local groups GL(2,Qp) and are irreducible and admissible constituents of the

local induced representations ind
G(Qp)

B(Qp)(χp). Also almost all πp are unramified. Next

we will use some special (or distinguished) vectors in local representations πp to

construct a classical Eisenstein series, showing the connection between the adelic

and the classical formulations of Eisenstein series.
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3.3 A calculation in degree one

Let χ1 and χ2 be primitive Dirichlet characters of conductors N1 and N2 respectively.

We consider χ1 and χ2 as continuous characters of ideles. For i = 1, 2 let χi =

⊗pχi,p be the decomposition of χi into local components. We consider an irreducible

admissible representation πp of GL(2,Qp) which is induced from the Borel subgroup

via the characters |·|s1χ1,p and |·|−s1χ2,p with s1 ∈ C. Let n1,p = n1 and n2,p = n2

be the conductors of χ1,p and χ2,p respectively. Then n = n1 + n2 is the conductor

of a local newform, i.e., n is the smallest integer such that there exists a non-trivial

vector that is invariant under

K2
p(n) :=

{[
a b
c d

]
∈ GL(2,Zp): c ∈ pnZp, d ∈ 1 + pnZp

}
.

Following (20) in [35], we write a newform explicitly as,

fp(g) =


∣∣a
d

∣∣s1+ 1
2

p
χ1,p(p

−n2)χ1,p(a)χ2,p(d) if g ∈ [ a ∗d ]γn2 K2
p(n)

0 otherwise

(3.3)

where γn2 =

[
1

pn2 1

]
. Now, for the prime p we pick a local distinguished vector φp

such that it is invariant under

Γ0(n1, n2) := {
[
a b
c d

]
∈ GL(2,Zp): a ∈ Z×p ,

b ∈ pn2Zp, c ∈ pn1Zp, d ∈ 1 + p(n1+n2)Zp}.

Here we note that the above definition is a local analog of the group Γ0(n1, n2)

defined in (7.1.3) of [20]. A simple calculation shows that the local distinguished
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vector is given by

φp(g) := πp

([
pn2

1

])
fp(g) = fp

(
g

[
pn2

1

])
. (3.4)

Lemma 3.3.1. Let the newform vector fp be defined as above. Then for

[
a b
c d

]
∈

SL(2,Z) with c 6= 0, n2 > 0 and n1 > 0 we have

fp

([
p−n2

1

] [
a b
c d

] [
pn2

1

])
=


χ1,p(p

−n2c−1)χ2,p(d) if p - c, p - d

0 if p|c or p|d
(3.5)

Proof. First, we consider the case p - c and p - d. Then we have

fp

([
p−n2

1

] [
a b
c d

] [
pn2

1

])
= fp

([
a p−n2b

pn2c d

])
= fp

([
c−1 p−n2b

d

] [
1

pn2 1

] [
d−1c

1

])
=

∣∣∣∣c−1

d

∣∣∣∣s1+ 1
2

p

χ1,p(p
−n2)χ1,p(c

−1)χ2,p(d)

= χ1,p(p
−n2)χ1,p(c

−1)χ2,p(d).

Next, we consider the case p|c and p - d. Let the valuation of c be m. Then,

fp

([
a p−n2b

pn2c d

])
= fp

([
pmc−1 p−n2b

d

] [
1

pn2+m 1

] [
p−mcd−1

1

])
= 0.

We note that the hypothesis n1 > 0 is needed for the above equality to hold,

otherwise if n1 = 0 then we get a different result (see (3.7) below).

Next, we consider the case p - c and p|d. In this case, suppose the valuation of d is

32



v(d) = m with 0 < m ≤ n2. Then we obtain,

fp

([
a p−n2b

pn2c d

])
= fp

([
1
pm

] [
a p−n2b

pn2−mc p−md

])
= pm(s1+ 1

2
) χ2,p(p

m)fp

([
p−mc−1 p−n2b

p−md

] [
1

pn2−m 1

] [
pmcd−1

1

])
= 0.

Finally, we are still assuming p - c and p|d. Let m = the valuation of d. Further,

suppose m > n2 or d = 0. Then

fp

([
a p−n2b

pn2c d

])
= fp

([
1
pn2

] [
a p−n2b
c dp−n2

])
= pn2(s1+ 1

2
) χ2,p(p

n2)

fp

([
c−1p−n2 a− p−n2c−1(1 + pn)

c

] [
1
1 1

] [
1 + pn (1 + pn)c−1dp−n2 − 1
−pn 1− pnc−1dp−n2

])
(where n = n1 + n2)

= 0.

This completes the proof.

The proposition proved below characterizes the distinguished vector φp depend-

ing on the conductors of local characters.

Proposition 3.3.2. Let the conjugated newform vector φp be defined as in

(3.4) and let n1,p = n1 and n2,p = n2 be conductors of χ1,p and χ2,p respectively.

Then for

[
a b
c d

]
∈ SL(2,Z) with c 6= 0,

i. if n2 > 0 and n1 > 0 then

φp(

[
a b
c d

]
) =


p−n2(s1+ 1

2
)χ1,p(c

−1)χ2,p(d) if p - c and p - d,

0 if p|c or p|d.
(3.6)
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ii. if n2 > 0 and n1 = 0

φp(

[
a b
c d

]
) =


p−n2(s1+ 1

2
)χ2,p(d) if p - d,

0 if p|d.
(3.7)

iii. if n2 = 0 and n1 > 0

φp(

[
a b
c d

]
) =


χ1,p(c

−1) if p - c,

0 if p|c.
(3.8)

iv. if n2 = 0 and n1 = 0

φp(

[
a b
c d

]
) = 1. (3.9)

Proof. For the first part of the proposition we have,

φp(

[
a b
c d

]
) = fp(

[
a b
c d

] [
pn2

1

]
)

= fp(

[
pn2

1

] [
p−n2

1

] [
a b
c d

] [
pn2

1

]
)

= |pn2|(s1+ 1
2

)
p χ1,p(p

n2)fp(

[
p−n2

1

] [
a b
c d

] [
pn2

1

]
)

= p−n2(s1+ 1
2

)χ1,p(p
n2)χ1,p(p

−n2)χ1,p(c
−1)χ2,p(d)

= p−n2(s1+ 1
2

) χ1,p(c
−1)χ2,p(d).

We note that the second last equality follows from the Lemma 3.3.1.

Next, for the first case of the second part suppose p - d. Then

[
1

cd−1pn2 1

]
∈

K2
p(n), so we obtain,

φp(

[
a b
c d

]
) = fp(

[
apn2 b
cpn2 d

]
)
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= fp(

[
d−1pn2 b

d

] [
1

cd−1pn2 1

]
)

= fp(

[
d−1pn2 b

d

]
)

= p−n2(s1+ 1
2

)χ2,p(d).

For convenience, let w = cd−1pn2 and let the valuation of w be i. Next, to conclude

the proof of the second part we need to show that if p | d then

φp(

[
a b
c d

]
) = 0.

So, suppose p | d. Then v(w) = i < n2. Now the desired result follows from the

following observation.

fp(

[
1
w 1

]
) = fp(

[
piw−1

1

] [
1
pi 1

] [
p−iw

1

]
)

= 0.

This completes the proof of the second part.

For the third part we note that, if n2 = 0 and n1 > 0 then the distinguished

vector φp is same as the newform fp and then the result follows from the Lemma

2.1.1 and Proposition 2.1.2 of [35].

The fourth part follows from the fact that under the given hypotheses fp is K2
p(0)

invariant.

Now, for p =∞ we pick φ∞ as a weight k vector defined as

φ∞(

[
a b
d

]
r(θ)) =

∣∣∣a
d

∣∣∣s1+ 1
2

∞
exp(ikθ) for all a, d ∈ R× , b, θ ∈ R. (3.10)
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Next, we set s1 = s+ k−1
2

. We also assume that

χ−1
1 (−1)χ2(−1) = (−1)k. (3.11)

Next, we define our global distinguished vector

φ := φ∞ ⊗
⊗
p<∞

φp . (3.12)

Let g =

[
1 x

1

] [
y1/2

y−1/2

]
, with x, y ∈ R, y > 0. Before proceeding further, we note

a simple matrix identity which will be useful later.

[
a b
c d

] [
1 x

1

] [
y1/2

y−1/2

]
=

[
1 x′

1

] [√
y′ √

y′
−1

]
r(θ) (3.13)

where, [
a b
c d

]
∈ SL(2,Z), x′ + iy′ =

aτ + b

cτ + d
and exp(iθ) =

cτ̄ + d

|cτ + d|
.

Then we obtain an Eisenstein series, using the global distinguished vector φ

defined in (3.12) and with a convenient normalizing factor of y−(s+ k
2

), as follows.

E(φ, g) = y−(s+ k
2

)
∑

γ∈Γ2
∞\SL(2,Z)

φ(γg)

= y−(s+ k
2

)
∑

[ a b
c d ]∈Γ2

∞\SL(2,Z)

(
φ∞

([
a b
c d

]
g

) ∏
p<∞

φp

([
a b
c d

]))

= y−(s+ k
2

)
∑

[ a b
c d ]∈Γ2

∞\SL(2,Z)

N2
−(s+ k

2
) χ−1

1 (c)χ2(d)φ∞

([
a b
c d

]
g

)

(The above equality follows precisely from Proposition 3.3.2.)

=(3.13) y−(s+ k
2

)
∑

[ a b
c d ]∈Γ2

∞\SL(2,Z)

N2
−(s+ k

2
) χ−1

1 (c)χ2(d)
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φ∞

([
1 x′

1

] [√
y′ √

y′
−1

]
r(θ)

)
= y−(s+ k

2
)

∑
[ a b
c d ]∈Γ2

∞\SL(2,Z)

N2
−(s+ k

2
) χ−1

1 (c)χ2(d)

(
y

|cτ + d|2

)(s+ k
2

) (
cτ + d

|cτ + d|

)−k
=

∑
[ a b
c d ]∈Γ2

∞\SL(2,Z)

N2
−(s+ k

2
) χ−1

1 (c)χ2(d) |cτ + d|−2s (cτ + d)−k

=
∑

{±1}\{(c,d)∈Z×Z | gcd(c,d)=1}

N2
−(s+ k

2
) χ−1

1 (c)χ2(d) |cτ + d|−2s (cτ + d)−k

=(3.11) 1

2

∑
(c,d)∈Z×Z
gcd(c,d)=1

N2
−(s+ k

2
) χ−1

1 (c)χ2(d) |cτ + d|−2s (cτ + d)−k

=
1

2N2
(s+ k

2
) L(χ−1

1 χ2, 2s+ k)

∑
(c,d)∈Z×Z
(c,d) 6=(0,0)

χ−1
1 (c)χ2(d) |cτ + d|−2s (cτ + d)−k,

where as usual

L(χ−1
1 χ2, 2s+ k) =

∞∑
n=1

χ−1
1 χ2(n)

n2s+k
.

We see that after taking into account the Dirichlet L-function factor noted above,

in the region of convergence k + 2 Re s > 2, the Eisenstein series defined in (7.2.1)

of [20] corresponds to the distinguished vector φ = ⊗φp in the global induced rep-

resentation.
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Chapter 4

Klingen Eisenstein series

In this chapter we show the existence of a vector, in a parabolically induced global

representation, that corresponds to a given classical Klingen Eisenstein series.

4.1 Global induction

We describe two different models of the global induced representations of GSp(4,A)

and we also show that a C-valued function Φ could be realized as a vector in one of

the models. In this discussion we closely follow Section 2.3 of [25]. Let (π, Vπ) be a

cuspidal automorphic representation of GL(2,A) and let χ be a character of ideles.

Let us denote by χo π the induced representation of GSp(4,A) that is obtained by

Q(A) via normalized parabolic induction. The space of χo π consists of functions

φ̃: GSp(4,A)→ Vπ with the transformation property

φ̃(hg) = |t2 (ad− bc)−1|χ(t) π(

[
a b
c d

]
) φ̃(g),

for h =

a b ∗
∗ t ∗ ∗
c d ∗

t−1(ad− bc)

 ∈ Q(A). (4.1)
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Let us denote by I(s, π) the representation |·|so|·|−s2 π. To each φ̃ ∈ I(s, π) we may

associate the C-valued function Φ such that Φ(g) = φ̃(g)(1). Let IC(s, π) be the

model of I(s, π) thus obtained.

Let Z ∈ H2 such that

Z =

[
τ z
z τ ′

]
, τ = x+ iy, z = u+ iv, τ ′ = x′ + iy′, (4.2)

where x, y, u, v, x′, y′ are real numbers, y, y′ > 0, and yy′ − v2 > 0. Let

bZ =

1 x u
1 u x′

1
1


 1
v/y 1

1 −v/y
1


b a b−1

a−1

 (4.3)

with

a =

√
y′ − v2

y
and b =

√
y. (4.4)

It can be checked that

bZ〈I〉 = Z. (4.5)

Theorem 4.1.1. Let k be an even integer. Let f be an elliptic cusp form of weight

k. Let φ be the automorphic form associated with f and let (π, Vπ) be the irreducible

cuspidal automorphic representation of GL(2,A) generated by φ. Then there exists a

function Φ : GSp(4,A)→ C in the model IC(s, π) of the global induced representation

|·|so|·|−s2 π of GSp(4,A) with s = k − 2 such that

F (Z, s) := det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

Φ(γbZ), (4.6)

(with bZ ∈ B(R) as defined in (4.3), so that bZ〈[ i i ]〉 = Z),

defines an Eisenstein series that is exactly the same as the classical Klingen Eisen-
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stein series defined in (2.11) in its region of convergence, i.e., for k ≥ 6.

Proof. It is given that φ ∈ (π, Vπ) is the cuspidal automorphic form associated with

f . It means φ is a function defined on GL(2,A) such that for g = γg∞kg with

γ ∈ GL(2,Q), g∞ ∈ GL(2,R+) and kg ∈
∏

p<∞GL(2,Zp)

φ(g) = (f |kg∞)(i). (4.7)

Here we note that it is a consequence of the strong approximation theorem that any

g ∈ GL(2,A) can be written as g = γg∞kg for some γ ∈ GL(2,Q), g∞ ∈ GL(2,R+)

and kg ∈
∏

p<∞GL(2,Zp). From (4.7) it follows that for x+ iy ∈ H

y−k/2φ

([
1 x
0 1

] [√
y

(
√
y)−1

])
= f(x+ iy) (4.8)

Moreover, φ has the following properties.

1. φ(γg) = φ(g) for all γ ∈ GL(2,Q), g ∈ GL(2,A),

2. φ(gr(θ)) = exp(ikθ)φ(g), where r(θ) =
[

cos θ sin θ
− sin θ cos θ

]
,

3. φ(gkp) = φ(g), for kp ∈ GL(2,Zp),

4. φ is smooth, of moderate growth, and it satisfies other ‘nice’ properties of

an automorphic form.

5. φ is cuspidal, i.e.,
∫
Q\A φ([ 1 x

1 ] g) dx = 0 for every g ∈ GL(2,A).

Next we want to lift φ to define an automorphic form on GSp(4,A). We define

φ̃ : GSp(4,A)→ Vπ as

φ̃(g)(

[
a b
c d

]
) = |t1|k |a1d1 − b1c1|−

k
2 det(j(k1∞, I))−kφ(

[
a b
c d

] [
a1 b1

c1 d1

]
), (4.9)
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where g = h1k1 with

h1 =

a1 b1 ∗
∗ t1 ∗ ∗
c1 d1 ∗

t−1
1 (a1d1 − b1c1)

 ∈ Q(A),

[
a b
c d

]
∈ GL(2,A) (4.10)

and k1 is in the standard maximal compact subgroup of GSp(4,A), k1∞ is the

archimedean component of k1 and I := [ i i ]. Here we have used the Iwasawa

decomposition to write g = h1k1. We need to check that φ̃ is well-defined. Suppose

q1k1 = q2k2 where q1, q2 ∈ Q(A) and k1, k2 ∈ κ, with κ denoting the standard

maximal compact subgroup of GSp(4,A). We need to show that φ̃(q1k1) = φ̃(q2k2).

Let

qi =

ai bi ∗
∗ ti ∗ ∗
ci di ∗

t−1
i (aidi − bici)

 for i = 1, 2 and

k2k
−1
1 =


ã b̃ ∗
∗ t̃ ∗ ∗
c̃ d̃ ∗

(t̃)−1(ãd̃− b̃c̃)

 .

We note that k2k
−1
1 ∈ κ means that (k2k

−1
1 )∞ consists of the matrices of the form[

A B
−B A

]
∈ Sp(4,R). The symplectic conditions then imply that for some θ ∈ [0, 2π]

the matrix

[
ã∞ b̃∞
c̃∞ d̃∞

]
is of the form

[
cos θ sin θ
− sin θ cos θ

]
. This means that |ãd̃ − b̃c̃|= 1,

because we also have that at any non-archimedean place p,

[
ãp b̃p
c̃p d̃p

]
∈ GL(2,Zp).

We now calculate for h ∈ GL(2,A)

φ̃(q1k1)(h) = φ

(
h

[
a1 b1

c1 d1

])
)|t1|k|a1d1 − b1c1|−k/2det(j(k1∞, I))−k

= φ

(
h

[
a2 b2

c2 d2

] [
ã b̃
c̃ d̃

])
)|t2t̃|k|a2d2 − b2c2|−k/2|ãd̃− b̃c̃|−k/2

det(j(k1∞, I))−k
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= φ

(
h

[
a2 b2

c2 d2

] [
ã∞ b̃∞
c̃∞ d̃∞

])
)|t2t̃|k|a2d2 − b2c2|−k/2det(j(k1∞, I))−k

= exp(ikθ)φ

([
a2 b2

c2 d2

])
|t2t̃|k|a2d2 − b2c2|−k/2(

exp(iθ)|t̃|det(j(k2∞, I))
)−k

= φ

(
h

[
a2 b2

c2 d2

])
)|t2|k|a2d2 − b2c2|−k/2det(j(k2∞, I))−k

= φ̃(q2k2)(h).

This shows that φ̃ is well-defined. It is also easy to see that φ̃ ∈ I(k − 2, π). Now

associated to φ̃ we define the function Φ : GSp(4,A)→ C given by Φ(g) = φ̃(g)(1).

We write Φ more explicitly by unraveling its definition as

Φ(h1k1) = Φ


a1 b1 ∗
∗ t1 ∗ ∗
c1 d1 ∗

t−1
1 (a1d1 − b1c1)

 k1

 = φ

([
a1 b1

c1 d1

])
|a1d1 − b1c1|−k/2

|t1|kdet(j(k1∞, I))−k,

(4.11)

with h1 as in (4.10) and k1 ∈ κ.

Next we write Z = X + iY and for γ ∈ Sp(4,Z) we set Z̃ = X̃ + iỸ = γ〈Z〉. A

straightforward calculation shows that

Ỹ = t(CZ +D)−1Y (CZ̄ +D)−1, γ =

[
A B
C D

]
. (4.12)

For Z = I and γ = bZ it follows that

det(j(bZ , I)) = det(Y )−1/2. (4.13)

Let γ ∈ Sp(4,R), Z ∈ H2, Z̃ = γ〈Z〉 and bZ̃ ∈ Q(R) such that bZ̃〈I〉 = Z̃. Then it

42



follows from (4.12) and (4.13) that γbZ = bZ̃κ∞ with

det(j(κ∞, I)) =

√
det Ỹ

detY
det(j(γ, Z)). (4.14)

Let us define, for g ∈ GSp(4,A)

E(Φ, g) :=
∑

γ∈Q(Q)\GSp(4,Q)

Φ(γg). (4.15)

Since from the strong approximation for GSp(4,A) and the definition of Φ as in

(4.11) it follows that Φ is determined only on GSp(4,R), we define

F (Z, s) := det(Y )−k/2E(Φ, bZ) = det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

Φ(γbZ). (4.16)

We have,

F (Z, s) = det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

Φ(γbZ)

= det(Y )−k/2
∑

γ∈Q(Z)\Sp(4,Z)

Φ(γbZ)

= det(Y )−k/2
∑

γ∈Q(Z)\Sp(4,Z)

Φ(bZ̃κ∞).

Let

bZ̃ =

1 x̃ ũ
1 ũ x̃′

1
1


 1
ṽ/ỹ 1

1 −ṽ/ỹ
1


b̃ ã

b̃−1

ã−1

 (4.17)

with ã and b̃ defined analogous to the definition of a and b in (4.4). Then,

F (Z, s) = det(Y )−k/2
∑

γ∈Q(Z)\Sp(4,Z)

φ

([
1 x̃
0 1

] [
b̃
b̃−1

])
det(j(κ∞, I))−k|ã|k
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=(4.14) det(Y )−k/2
∑

γ∈Q(Z)\Sp(4,Z)

φ

([
1 x̃
0 1

] [
b̃
b̃−1

])
√det Ỹ

detY
det(j(γ, Z))

−k |ã|k
=(4.4)

∑
γ∈Q(Z)\Sp(4,Z)

φ

([
1 x̃
0 1

] [
b̃
b̃−1

])(√
det Ỹ det(j(γ, Z))

)−k
(

det(Ỹ )

ỹ

)k/2

=
∑

γ∈Q(Z)\Sp(4,Z)

φ

([
1 x̃
0 1

] [√
ỹ

(
√
ỹ)−1

])
(ỹ)−k/2 det(j(γ, Z))−k

=
∑

γ∈Q(Z)\Sp(4,Z)

f(x̃+ iỹ) det(j(γ, Z))−k

=
∑

γ∈Q(Z)\Sp(4,Z)

f(γ〈Z〉∗) det(j(γ, Z))−k

Therefore we see that the Klingen Eisenstein series given by (2.11) can be obtained

from the function Φ defined in (4.11). It is clear that Φ ∈ IC(k − 2, π).
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Chapter 5

Local representations

In the previous chapter we have seen how to obtain a Klingen Eisenstein series for

the full group Sp(4,Z) using the representation theoretic method of global parabolic

induction. Our objective in this chapter is to understand the corresponding local rep-

resentations. Assume Z 3 k ≥ 4 to be an even integer and let Π be the automorphic

representation |·|so|·|−s2 π of GSp(4,A). We know from the tensor product theorem

that Π ∼=
⊗
p≤∞

Πp, where almost all Πp are unramified. Similarly, π ∼=
⊗
p≤∞

πp. Here

πp denotes an irreducible admissible representation of GL(2,Qp) and almost all πp

are unramified.

5.1 The non-archimedean local representations

νs o ν−s/2πp

In the notation of [30], for p <∞ we are interested in the local representation νs o

ν−s/2πp. The non-supercuspidal representations of GSp(4,Qp) are well understood

and classified. We refer the reader to [30] and [32] for further details.
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5.2 The archimedean story

The main goal of this section is to look at the archimedean component Π∞ in the

broader context of the representation theory of real reductive groups and to show

that inside this representation there exists a distinguished vector, which shall be

essential in obtaining a holomorphic Siegel modular form associated to Π. We shall

describe this distinguished vector more explicitly later in this section, but first we

recall some well known facts related to the representation theory of real reductive

groups. Our main references for this section are [15], [16], [26] and [24]. Experts

may skip most of this section and go directly to Proposition 5.2.7.

5.2.1 Preliminaries

Let G be a real reductive algebraic group. A unitary representation (π, V ) of G

is a norm preserving continuous group action of G on a Hilbert space V . Let

(π, V ) be a unitary representation of G. The set of equivalence classes of irreducible

unitary representations of G is called the unitary dual of G, denoted as Ĝ. An

important problem in representation theory is the unitarity problem, which refers to

the problem of finding Ĝ for any given G. For example, the classical theory of Fourier

series can be viewed as the unitarity problem for the unitary representation of the

circle group S1 on L2(S1). In this case, as S1 is compact, its unitary representation

on L2(S1) decomposes as a discrete sum of irreducible unitary representations. In

general, the analysis of L2(G) consists of both a discrete part and a continuous

part. Some of such early examples came from Physics. Bargmann [2] classified

representations of SL(2,R) in 1947. One can already see some features of the general

theory such as the appearance of the Lie algebra in his work. However, the analysis

for a general real reductive group G is much more complicated. In a series of

groundbreaking papers Harish-Chandra, with his deep insight, provided a framework
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to deal with the general case. Let K be a maximal compact subgroup of G. We say

that a vector v ∈ V is K-finite if π(K)v is finite dimensional. It is a consequence

of the Peter-Weyl theorem that (π|K , VK) decomposes as a discrete sum

VK ∼=
⊕
Vλ∈K̂

nλVλ (5.1)

where K̂ is the unitary dual of K, i.e., the set of equivalence classes of unitary

irreducible representations of K and nλ is the multiplicity with which Vλ occurs

in the sum. If nλ is positive then the corresponding equivalence class is called

a K-type occurring in π. We say π is admissible if each nλ occurring in the

sum above is finite, i.e., if each K-type occurs with finite multiplicity. It turns

out that irreducible unitary representations are admissible (see Theorem 8.1, [15]).

Suppose g denotes the Lie algebra of G and gC denotes the complexification of g.

Let hC be a Cartan subalgebra of gC. Then by differentiating the action of G on

V , one can consider VK as a module for the universal enveloping algebra of gC.

Actually, VK may be thought of as a (g, K)-module as clearly K acts on VK . We

say that two admissible representations of G are infinitesimally equivalent if

the underlying (g, K)-modules are algebraically equivalent. Harish-Chandra proved

that two irreducible unitary representations of G on Hilbert spaces are unitarily

equivalent if and only if they are infinitesimally equivalent (see Theorem 0.6, [17]).

This Lie algebra representation (along with K-module structure) captures complete

information of the group representation, so the upshot of this approach is that in

place of considering an admissible representation of G on the Hilbert space V , one

could now deal with an algebraic object, namely the (g, K)-module VK . Next, it is

natural to consider the action of the center Z(gC) of U(gC). It follows from Schur’s

Lemma that any z ∈ Z(gC) acts by a scalar. This scalar could be computed by

considering the action of z on a non-zero highest weight vector. But first we fix some
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notation. Let h be a real form of hC. Let ∆ be a set of roots of gC with respect to

hC. Let W be the Weyl group of this root system. W acts on (hC)′ := HomC(hC,C)

and so it also acts on hC via the pairing that comes from the inner product 〈· , ·〉

built from g. This action can be further extended to an action of W on H: = U(hC)

giving an algebra automorphism of H. Let HW be the subalgebra that consists of

W invariant vectors of H.

Next we fix a system of positive roots ∆+ and also assume that gC has the

following root space decomposition

gC = hC ⊕
⊕
α∈∆+

g−α
⊕
α∈∆+

gα. (5.2)

We define

n+ =
⊕
α∈∆+

gα, n− =
⊕
α∈∆+

g−α,

b = hC ⊕ n+, δ =
1

2

∑
α∈∆+

α. (5.3)

We know that with α ∈ ∆+, dim(g±α) = 1 and we also assume that E±α ∈ g±α

constitute a Chevalley basis. We define

P =
∑
α∈∆+

U(gC) Eα, N =
∑
α∈∆+

E−α U(gC). (5.4)

By Poincaré-Birkhoff-Witt theorem we can write

U(gC) = H⊕P ⊕N . (5.5)

Let γ∆+ be the projection of Z(gC) on H-term in (5.5). A computation shows that

in order to understand the action of any z ∈ Z(gC) on a highest weight vector, it
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is enough to consider the action of γ∆+(z) (see Lecture 5, [16]). Harish-Chandra

observed that a slight adjustment in γ∆+ leads to better symmetry properties. We

define, a linear map σ∆+ : hC → H given by

σ∆+(H) = H − δ(H)1, (5.6)

and extend it to an algebra automorphism of H by the universal property of H.

Then we define the Harish-Chandra homomorphism γ = σ∆+ ◦ γ∆+ as a map

of Z(gC) into H.

Theorem 5.2.1. (Harish-Chandra, Theorem 8.1, [15]) The Harish-Chandra homo-

morphism γ is an algebra isomorphism of Z(gC) onto HW and it does not depend

on the choice of the positive system ∆+.

Fix some λ ∈ (hC)′. One can define an algebra homomorphism χλ = λ ◦ γ from

Z(gC) to C. In fact, every algebra homomorphism from Z(gC) to C is of the form

χλ for some λ ∈ (hC)′ (see Proposition 8.21, [15]). Suppose Φ is an irreducible

admissible representation of G such that Z(gC) acts on the space of K-finite vectors

VK via the character χ = χλ for some λ ∈ (hC)′, then we say that the representation

Φ has an infinitesimal character χλ (or sometimes λ, depending on the context).

An infinitesimal character is defined up to the action of the Weyl group W , i.e., if

λ, λ′ ∈ (hC)′, then χλ = χλ′ if and only if λ = wλ′ for some w ∈ W (see Proposition

8.20, [15]).

Next we recall definitions of discrete series and tempered representations. It is

well known that an irreducible unitary representation π of a unimodular group, the

following three conditions are equivalent (see Proposition 9.6, [15]):

1. Some nonzero matrix coefficient is in L2(G).

2. All matrix coefficient is in L2(G).
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3. π is equivalent to a direct summand of the right regular representation of G

on L2(G).

If a representation π satisfies these equivalent conditions, then we say that π is in

the discrete series of G. If for an irreducible representation π of G all K-finite

matrix coefficient are in L2+ε(G) for every ε > 0, then we say that π is an irreducible

tempered representation of G.

The next step towards our initial objective of classification of unitary duals of

G involves a celebrated theorem of Langlands, namely the Langlands classifica-

tion theorem. Roughly speaking, the Langlands classification theorem reduces the

classification of unitary duals of G to the problem of classification of irreducible

tempered representations of M where P = MAN is the Langlands decomposition

of a parabolic subgroup P of G. Further the classification of irreducible tempered

representations of M depends on the data coming from certain discrete series, or

limits of discrete series, representations. We provide more details in the following.

We shall continue to assume G to be a linear connected reductive group. We also as-

sume that the center of G is compact. Let a be the Lie algebra of A. Suppose (σ, V )

is an irreducible representation of M and ν is a member of ia′ then we shall denote

by IndGMAN(σ ⊗ eν ⊗ 1) the representation of G obtained via normalized induction

(c.f. Chapter VII, [15] ). Now we recall the Langlands classification theorem.

Theorem 5.2.2. (Langlands, Theorem 8.54, [15]) Fix a minimal parabolic subgroup

Sp = MpApNp of G. Then the equivalence classes (under infinitesimal equivalence)

of irreducible admissible representation of G stand in one-to-one corresponds with

all triples (S, [σ], ν) such that

S = MAN is a parabolic subgroup containing Sp,

σ is an irreducible tempered representation of M and [σ] is its equivalence class,

ν is a member of (a′)C with Re ν in the open positive Weyl chamber.

50



The correspondence is that (MAN, [σ], ν) corresponds to the class of the unique

irreducible quotient of IndGMAN(σ⊗eν⊗1). The parameters (MAN, [σ], ν) are called

the Langlands parameters of the given representation.

The next theorem, given below, relates the classification of irreducible tempered

representations to discrete series representations.

Theorem 5.2.3. (Theorem 8.53,[15]): For an irreducible admissible representation

of G the following are equivalent:

1. All K-finite matrix coefficients are in L2+ε(G) for every ε > 0.

2. π is infinitesimally equivalent with a subrepresentation of a standard induced

representation U(S, ω, ν) := IndGMAN(σ ⊗ eν ⊗ 1) for some parabolic subgroup

S = MAN , a discrete series representation ω of M and an imaginary param-

eter ν on a.

Next we note the following theorem of Harish-Chandra on parametrizations of dis-

crete series, but first we fix some notations. Let G be a linear connected semisimple

group and let K be a maximal compact subgroup of G with rank G = rank K. The

equal-rank condition is essential for the existence of a discrete series. Let g and k

denote the Lie algebras of G and K respectively. Let b ⊂ k be a Cartan subalgebra.

Let ∆ = roots of (gC, bC) and ∆K = roots of (kC, bC) = the set of compact roots.

Assume WG and WK to be the Weyl groups of ∆ and ∆K , respectively.

Theorem 5.2.4. (Harish-Chandra, Theorem 9.20, [15]) Let G be linear connected

semisimple with rank G = rank K. Suppose that λ ∈ (ib)′ is nonsingular relative to

∆ (i.e., 〈λ, α〉 6= 0 for all α ∈ ∆ ) and that ∆+ is defined as

∆+ = {α ∈ ∆ | 〈λ, α〉 > 0}. (5.7)
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Let δG = 1
2

∑
α∈∆+ α and δK = 1

2

∑
α∈(∆+∩∆K) α. If λ + δG is analytically integral,

then there exits a discrete series representation πλ of G with the following properties:

(a) πλ has infinitesimally character χλ.

(b) πλ|K contains with multiplicity one the K-type with the highest weight

Λ = λ+ δG − 2δK .

(c) If Λ′ is the highest weight of a K-type in πλ|K, then Λ′ is of the form

Λ′ = λ+
∑
α∈∆+

nαα for integers nα ≥ 0.

Two such constructed representations πλ are equivalent if and if only if their param-

eters λ are conjugate under WK.

λ is known as the Harish-Chandra parameter of the discrete series πλ and the

K-type parameter Λ is called the Blattner parameter. The representations de-

scribed above exhaust discrete series representations, i.e., only discrete series repre-

sentations of G, up to equivalence, are πλ described in Theorem 5.2.4 (see, Theorem

12.21 [15]).

5.2.2 Discrete series representations of Sp(4,R)

After having described the well known abstract theory, we now turn our attention

to the special case of our interest, which is the group GSp(4,R). In the following we

shall closely follow the exposition in [25]. We shall first consider the representations

of Sp(4,R) and then see how to extend these to representation of GSp(4,R).

Let us fix some notations. Let K be the standard maximal compact subgroup of

52



Sp(4,R). K is, in fact, isomorphic to U(2) via the mapping
[

A B
−B A

]
to A+ iB. We

will use the following coordinates on K ( c.f., (1), [26]).

R4 3 (ϕ1, ϕ2, ϕ3, ϕ4) 7 −→ r1(ϕ1)r2(ϕ2)r3(ϕ3)r4(ϕ4) ∈ K, (5.8)

where

r1(ϕ1) =

 cos(ϕ1) sin(ϕ1)
− sin(ϕ1) cos(ϕ1)

cos(ϕ1) sin(ϕ1)
− sin(ϕ1) cos(ϕ1)

 ,
r2(ϕ2) =

 cos(ϕ2) sin(ϕ2)
cos(ϕ2) sin(ϕ2)
− sin(ϕ2) cos(ϕ2)

− sin(ϕ2) cos(ϕ2)

 ,
r3(ϕ3) =

 cos(ϕ3) sin(ϕ3)
1

− sin(ϕ3) cos(ϕ3)
1

 ,
r4(ϕ4) =

1
cos(ϕ4) sin(ϕ4)

1
− sin(ϕ4) cos(ϕ4)

 .
Definition 5.2.5. Let p, t be integers, and if Ψ is a function on K with the property

that k = r3(ϕ3)r4(ϕ4) ∈ K acts on Ψ as follows

k.Ψ(g) = Ψ(gr3(ϕ3)r4(ϕ4)) = ei(pϕ3+tϕ4)Ψ(g) for all ϕ3, ϕ4 ∈ R,

then we say that Ψ has weight (p, t).

The above definition will make more sense once we consider the corresponding

action at the Lie algebra level. But, first we note the following consequence of this

definition.

Lemma 5.2.6. If Ψ has weight (k, k) and r1(ϕ1).Ψ(g) = r2(ϕ2).Ψ(g) = Ψ(g) for
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all ϕ1, ϕ1 ∈ R then

κ.Ψ(g) = Ψ(gκ) = Ψ(g) det (j(κ, I))−k for all κ ∈ K.

Proof. The result follows form an easy calculation using the definition of weight and

the coordinates on K as defined above.

Now, following Harish-Chandra, as described earlier, in order to understand

admissible representations of Sp(4,R), we shall examine the structure of (g, K)-

modules, where g denotes the Lie algebra of Sp(4,R). Explicitly, g = {
[
A B
C D

]
∈

M(4,R) : A = − tD, B = tB, C = tC}. Let k be the Lie algebra of K. A basis

of k is given by (which could be obtained by, for example, differentiating (5.8) at

ϕi = 0)

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,
 0 0 0 1

0 0 1 0
0 −1 0 0
−1 0 0 0

 ,
 0 0 1 0

0 0 0 0
−1 0 0 0
0 0 0 0

 ,
0 0 0 0

0 0 0 0
0 0 0 1
0 −1 0 0

 .
(5.9)

A convenient basis for the complexified Lie algebra gC = g⊗ C is as follows.

Z = −i

 0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , Z ′ = −i
0 0 0 0

0 0 0 1
0 0 0 0
0 −1 0 0

 , N+ =
1

2

 0 1 0 −i
−1 0 −i 0
0 i 0 1
i 0 −1 0


N− =

1

2

 0 1 0 i
−1 0 i 0
0 −i 0 1
−i 0 −1 0

 , X+ =
1

2

1 0 i 0
0 0 0 0
i 0 −1 0
0 0 0 0

 , X− =
1

2

 1 0 −i 0
0 0 0 0
−i 0 −1 0
0 0 0 0


P1+ =

1

2

0 1 0 i
1 0 i 0
0 i 0 −1
i 0 −1 0

 , P1− =
1

2

 0 1 0 −i
1 0 −i 0
0 −i 0 −1
−i 0 −1 0

 , P0+ =
1

2

0 0 0 0
0 1 0 i
0 0 0 0
0 i 0 −1


P0− =

1

2

0 0 0 0
0 1 0 −i
0 0 0 0
0 −i 0 −1

 .
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We note that a basis of k, as given in (5.9), could also be obtained by calculating

the 1-eigenspace of the Cartan involution θ : X 7→ −X t of g. In any case, it follows

from (5.9) that the complexified Lie algebra kC = k⊗C is spanned by Z,Z ′, N+ and

N−. We note the following multiplication table for the Lie algebra gC.

Z Z ′ N+ N− X+ X− P1+ P1− P0+ P0−

Z 0 0 N+ −N− 2X+ −2X− P1+ −P1− 0 0

Z ′ 0 0 −N+ N− 0 0 P1+ −P1− 2P0+ −2P0−

N+ −N+ N+ 0 Z ′ − Z 0 −P1− 2X+ −2P0− P1+ 0

N− N− −N− Z − Z ′ 0 −P1+ 0 −2P0+ 2X− 0 P1−

X+ −2X+ 0 0 P1+ 0 Z 0 N+ 0 0

X− 2X− 0 P1− 0 −Z 0 N− 0 0 0

P1+ −P1+ −P1+ −2X+ 2P0+ 0 −N− 0 Z + Z ′ 0 N+

P1− P1− P1− 2P0− −2X− −N+ 0 −Z − Z ′ 0 N− 0

P0+ 0 −2P0+ −P1+ 0 0 0 0 −N− 0 Z ′

P0− 0 2P0− 0 −P1− 0 0 −N+ 0 −Z ′ 0

It is clear that Z and Z ′ span the Cartan subalgebra, say hC, of gC as well as kC. We

define gα : = {X ∈ gC : [H,X] = α(H)X, for all α ∈ (hC)′ := HomC(hC,C)}. Let

∆ be the set of all roots, i.e., ∆ = {α ∈ (hC)′ : α 6= 0 and gα 6= 0}. We can identify

any λ ∈ (hC)′ with the pair (λ(Z), λ(Z ′)) . Let E ∼= R2 be the plane that contains

all pairs (λ(Z), λ(Z ′)) with λ(Z), λ(Z ′) ∈ R. As elements of ∆, i.e., roots, span (hC)′

we can also say that E is the R-span of roots and it corresponds to the space (ib)′ in

Theorem 5.2.4. Further, we say λ is analytically integral if (λ(Z), λ(Z ′)) ∈ Z2.

Figure 5.1 shows the analytically integral elements and the root vectors.
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X− X+

P0−

P0+

P1−

P1+

N+

N−

Figure 5.1: The root vectors and the analytically integral elements.

We note that the set of roots is ∆ = {(±2, 0), (0,±2), (±1,±1), (±1,∓1)} and

the set of compact roots is ∆K = {±(1,−1)}. Suppose Sα denotes reflection in

the hyperplane perpendicular to the root vector α. Then the Weyl group W of

this root system is a group with 8 elements generated by 〈Sα〉α∈∆. Let WK denote

the compact Weyl group generated by SN+ = reflections against the hyperplane

perpendicular to the compact root N+. Clearly WK is a two element group.

K-types and lowest weight representations. We defined the weight of a func-

tion on K above (see Def. 5.2.5). By taking the corresponding derived action of the

Lie algebra we define a vector v in a representation of kC to be of weight (p, t) ∈ Z2

if Zv = pv and Z ′v = tv. The Lie algebra kC contains a subalgebra isomorphic to

su(2). In fact, we have the following direct sum decomposition

kC = 〈Z − Z ′, N+, N−〉 ⊕ 〈Z + Z ′〉,

with 〈Z − Z ′, N+, N−〉 ∼= su(2) and 〈Z + Z ′〉 = span of Z + Z ′ = the center of

kC. It follows from the representation theory of su(2) that its irreducible repre-

sentations are characterized by the weight of a highest weight vector, with the
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highest weight being a non-negative integer. Hence, we get that the isomorphism

classes of irreducible representations of K are in one-one correspondence with the

set {(p, t) ∈ Z2 : p ≥ t}. Here we also note that as infinitesimal characters are

defined up to the action of the Weyl group, WK in this case, only the pairs (p, t)

with p ≥ t were considered above in characterizing the isomorphism classes of ir-

reducible representations of K. The K-type V(p,t) contains a highest weight vector

of weight λ = (p, t) annihilated by N+ and a lowest weight vector of weight (t, p)

annihilated by N−. It is also clear that V(p,t) contains the weight between these

two extreme weights with multiplicity one, i.e., each vector with weight in the set

{(p − i, t + i) : 0 ≤ i ≤ p − t} appears exactly once in V(p,t). It is clear that the

dimension of the K-type V(p,t) is p− t+ 1.

Minimal K-type

πλ

I

II

IIIIV

Figure 5.2: The root vectors and the minimal K-type.

It follows from (5.1) that any admissible representation (πλ, VK) of Sp(4,R), i.e.,

any admissible (gC, K)-module, is a direct sum of its constituent K-types, with each

K-type occurring with finite multiplicity. We say that VΛ is the minimal K-type
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λ in region ∆+ δG δK
Λ− λ =
δG − 2δK

I {(1, 1), (2, 0), (1,−1), (0, 2)} (2, 1) (1
2
,−1

2
) (1, 2)

II {(1, 1), (2, 0), (1,−1), (0,−2)} (2,−1) (1
2
,−1

2
) (1, 0)

III {(−1,−1), (2, 0), (1,−1), (0,−2)} (1,−2) (1
2
,−1

2
) (0,−1)

IV {(−1,−1), (−2, 0), (1,−1), (0,−2)} (−1,−2) (1
2
,−1

2
) (−2,−1)

Table 5.1: The relation between the Harish-Chandra parameter λ and the Blattner
parameter Λ for different types of discrete series representations.

contained in VK if it occurs in VK with a non-zero multiplicity and Λ = (p, t) is

closer to the origin than the weight of any other K-type that occurs with non-zero

multiplicity in the direct sum decomposition of VK . In view of Theorem 5.2.4; we

calculate and tabulate the relation between the Harish-Chandra parameter λ and

the Blattner parameter Λ considering the possibility of λ lying in any one of the

regions I, II, III or IV in Figure 5.2.

We note that, according to Theorem 5.2.4, for discrete series to exist λ must be

non-singular and λ + δG must be integral. Since we see from Table 5.1 above that

δG is always integral, we assume λ to be analytically integral. We also assume λ

to be non-singular. With these assumptions on λ, we obtain the following type of

discrete series representations of Sp(4,R) depending upon the region λ belongs to.

λ in region I. We assume that λ lies in the region I. It is evident that πλ has

minimal K-type Λ = λ+(1, 2). The πλ in this case is said to be in the holomorphic

discrete series. If λ = (k − 1, k − 2) with k ≥ 3, then Λ = λ + (1, 2) = (k, k) lies

on the main diagonal that is orthogonal to compact roots and so a one-dimensional

K-type.

We shall be interested in these discrete series representations in this work, be-
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2

1

Λ

λ

πλ

Figure 5.3: Holomorphic discrete series: λ in region I.

cause they arise as the archimedean component of the automorphic representations

generated by holomorphic degree 2 Siegel modular forms of weight k.

λ in region II. We assume that λ lies in the region II. Then πλ has minimal

K-type Λ = λ + (1, 0). The πλ in this case is said to be in the large discrete

series. These representations are generic representations.

λ in region III. We assume that λ lies in the region III. Then πλ has minimal

K-type Λ = λ + (0,−1). In this case once again we obtain large discrete series

representations. The picture in this case is symmetric to the one for region II with

respect to the diagonal that contains compact roots.

λ in region IV. We assume that λ lies in the region IV. Then πλ has minimal

K-type Λ = λ + (−2,−1). In this case πλ is known to be in anti-holomorphic
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λ Λ

1

πλ

Figure 5.4: Large discrete series: λ in region II.

discrete series representations. The picture in this case is symmetric to the one

for region I.

In addition to the discrete series representations described above, there are so

called limits of discrete series representations, which are obtained in cases

when λ is singular. We shall only be interested in the holomorphic discrete series

representations and we shall not consider other types of (limits of) discrete series

representations in this work.

5.2.3 Representations of GSp(4,R), Sp(4,R)±

It is clear that any representation of GSp(4,R) can be restricted to Sp(4,R)±, where

Sp(4,R)± denotes the subgroup of GSp(4,R) with multiplier ±1. On the other

hand, any representation of Sp(4,R)± can be extended to that of GSp(4,R) by

properly defining the action of the center of GSp(4,R). Since we shall be dealing
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with representations with trivial central characters, it would be sufficient for us to

consider the representations of Sp(4,R)±. Next we note that Sp(4,R) is an index

2 subgroup of Sp(4,R)±. More explicitly, Sp(4,R)± = Sp(4,R) t γ Sp(4,R) where

γ = diag(1, 1,−1,−1). We note that if k ∈ K acts with weight (p, t) on a function

Ψ on K then γkγ−1 acts with weight (−p,−t) on Ψ (c.f., 5.2.5). Suppose (p, t) is

in region I. Then the reflection of (−p,−t) in the diagonal orthogonal to compact

roots is (−t,−p). Let λ = (p, t) and λ′ = (−t,−p) be analytically integral and non-

singular elements of E and let πλ and πλ′ denote the corresponding discrete series

representations. Then we conclude that on inducing the holomorphic discrete series

representation πλ of Sp(4,R) to Sp(4,R)± we obtain a representation that combines

the K-types of πλ and πλ′ .

5.2.4 Holomorphic discrete series representations and holo-

morphic Siegel modular forms

Following [1] we note the condition for holomorphy of a smooth function f on Hn that

transforms like a modular form. For this we note that associated to f is the adelic

function Φf defined on G(A) := GSp(2n,A) and given by Φf (g) = (f |kg∞)(I) (c.f.,

(23) [1]). Here using the strong approximation for G, g is written as g = gQg∞k0 with

gQ ∈ Q, g∞ ∈ G(R)+ and k0 ∈
∏

p<∞G(Zp). Then the condition for holomorphy

of f could be given in terms of the annihilation of the associated adelic function Φf

by certain differential operators. Let

P−C =

{[
A −iA

−iA −A

]
∈M(2n,C) : A = tA

}
.

Then Lemma 7 in [1] says that f is holomorphic if and only if P−C · Φf = 0.

Translating this condition to our situation for n = 2 means that in order to
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obtain holomorphic Siegel modular forms the archimedean distinguished vector must

be chosen such that it is annihilated by P1−, P0− and X−.

5.2.5 Klingen parabolic induction and a distinguished vec-

tor

Suppose χ is a character of R× and π is an admissible representation of GL(2,R).

Then we let χoπ stand for the representation of GSp(4,R) obtained by normalized

parabolic induction from the representation of the Klingen parabolic subgroup Q(R)

given by  a b ∗
∗ t ∗ ∗
c d ∗

t−1(ad− bc)

 7→ χ(t) π(

[
a b
c d

]
).

Similarly, let π now be an admissible representation of SL(2,R) and let χ denote

a character of R× as earlier. Then we write χ o π for a representation of Sp(4,R)

induced from the Klingen parabolic subgroup via normalized parabolic induction.

There shall not be any confusion, as the context would make it clear for the repre-

sentation of which group, GSp(4,R) or Sp(4,R), the notation χo π stands for.

We are interested in the representation |·|k−2o|·|
−(k−2)

2 π of GSp(4,R). In view of

an earlier discussion (in Subsection 5.2.3), it would be sufficient to consider the

representation |·|k−2oπ of Sp(4,R).

Proposition 5.2.7. Assume k ≥ 4 to be an even positive integer. Let π = X(k −

1,+) be a discrete series representation of SL(2,R) with the lowest K-type k. Then

the representation |·|k−2oπ of Sp(4,R) contains a holomorphic discrete series as a

subrepresentation with minimal K-type (k, k).

Proof. The proposition is a special case of Theorem 10.1, (10.2) in [24], with p = k−1

and t = k − 2. This completes the proof.
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For an easy reference we reproduce Theorem 10.1 in [24] below.

Theorem ( 10.1, [24], Muić ). Assume p > t > 0. Then the following sequences

are exact:

X(p,−t)⊕X(t,−p) ↪→ δ(|·|(p−t)/2 sgnt, p+ t) o 1

� Lang(δ(|·|(p−t)/2 sgnt, p+ t) o 1) (5.10)

X(p, t)⊕X(p,−t) ↪→ |·|t sgnt oX(p,+) � Lang(|·|t sgnt oX(p,+))

X(t,−p)⊕X(−t,−p) ↪→ |·|t sgnt oX(p,−) � Lang(|·|t sgnt oX(p,−)) (5.11)

Moreover, X(p,−t) and X(t,−p) are large.
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Chapter 6

Paramodular Klingen Eisenstein

series

6.1 Some useful lemmas

In this chapter we shall give one of our main results, Theorem 6.2.1, which is to

obtain a paramodular Klingen Eisenstein series using parabolic induction. But, first

we state the following result due to Reefschläger.

Lemma 6.1.1. Assume N =
∏

p p
np to be a positive integer. Then,

GSp(4,Q) =
⊔

γ∈N: γ|N

Q(Q) Lγ K(N). (6.1)

Here

Lγ =

1 γ
1

1
−γ 1

 .
Further, for any non-zero integer x, gcd(x,N) = 1 if and only if

Q(Q) Lxγ K(N) = Q(Q) Lγ K(N). (6.2)
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Proof. The first assertion is essentially the same as Theorem 1.2 in [29] with a

slightly different notation. The second assertion is also clear form the discussion

after Theorem 1.2 in [29].

Next, we prove the following two lemmas, which will be employed later in proving

the main theorem of this chapter.

Lemma 6.1.2. Assume N =
∏

p p
np to be a positive integer. Then

⋂
p|N

Q(Q)LpnpK(p2np) = Q(Q)LNK(N2). (6.3)

Proof. It is clear that for each prime p|N we haveQ(Q)LNK(N2) ⊆ Q(Q)LNK(p2np).

Further, it follows from Lemma 6.1.1 that Q(Q)LNK(p2np) = Q(Q)LpnpK(p2np).

This implies Q(Q)LNK(N2) ⊆ ∩
p|N
Q(Q)LpnpK(p2np). Next we prove the other di-

rection. Let g ∈ ∩
p|N
Q(Q)LpnpK(p2np). We know, from Lemma 6.1.1, that {Lγ :

γ|N2, γ ∈ N} constitute a set of representatives for the double coset decomposi-

tion of Q(Q)\GSp(4,Q)/K(N2). Then g must belong to one of these double cosets.

Suppose g ∈ Q(Q) Lγ K(N2) with γ|N2. Then g ∈ Q(Q) Lγ K(p2np) for each prime

p|N . This means g ∈ (Q(Q) Lγ K(p2np)) ∩ (Q(Q) Lpnp K(p2np)) for each prime p|N .

Once again by referring to Lemma 6.1.1, (6.2), for each prime p|N , we conclude

that γ = pnpx with gcd(x, p) = 1. Therefore, γ = y
∏

p|N p
np = yN for some y with

gcd(y,N) = 1. But γ also divides N2, hence γ = N , and g ∈ Q(Q)LNK(N2). This

completes the proof of the lemma.

Lemma 6.1.3.

(a) There exists a bijection between Q(Q)\Q(Q)LN K(N2) and(
L−1
N Q(Q)LN ∩K(N2)

)
\K(N2).

Q(Q)\Q(Q)LN K(N2) ∼=
(
L−1
N Q(Q)LN ∩K(N2)

)
\K(N2). (6.4)
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(b) The intersection L−1
N Q(Q)LN ∩K(N2) from part (a) is given more explic-

itly as the set D(N) defined below.

D(N) := ±{g = L−1
N

1 +N∗ ∗
1

N∗ 1 +N∗
1


1 µN−1

∗ 1 µN−1 kN−2

1 ∗
1

LN ∈ Sp(4,R)

| ∗, µ, k ∈ Z, µ ≡ k mod N}. (6.5)

Proof. The proof of part (a) is trivial and follows from an easy group theoretic

consideration. For part (b) let us write D(N) more explicitly. Let q ∈ Q(Q). Then

we can write q = mu where

m =

a b
t

c d
t−1∆

 ,u =

1 µ
l 1 µ κ

1 −l
1


with m,u ∈ Q(Q) and ∆ = (ad− bc) .

We want, (LN)−1 q LN ∈ K(N2). First of all we note that ∆ = 1 from the definition

of K(N2). Let M := (LN)−1 q LN . Then we have

M =

 −lNt+a −(lNt−a)N−Nt −µNt+(kNt+bl−aµ)N+b −kNt−bl+aµ
lt lNt+t −kNt+µt kt
c cN (dl−cµ)N+d −dl+cµ
cN c(N)2 (dlN−cµN− 1

t )N+dN −dlN+cµN+ 1
t

 (6.6)

In the following Mij will indicate the element at ith row and jth column in the

matrix M . So, we must have,

lt ∈ Z (follows from looking at M21) , (6.7)

t ∈ Z (follows from M22 and (6.7)), (6.8)

c ∈NZ (follows from M41), (6.9)
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cµ− dl ∈ Z (follows from (M34)), (6.10)

d ∈ Z (follows from M33 and (6.10)), (6.11)

∆

t
=

1

t
∈ Z (follows from M44 and (6.10)). (6.12)

So, we have t ∈ {−1, 1}. We note that, for any r ∈ K(N2),

((LN)−1Q(Q)LN∩K(N2))\K(N2) =

((LN)−1Q(Q)LN ∩K(N2))r\K(N2). (6.13)

Let

r =

−1
−1
−1
−1

 .
r ∈ K(N2). If necessary on multiplying by r, we can assume that

t = 1. (6.14)

So, now we have,

l ∈ Z (follows from (6.14) and (6.7)) , (6.15)

a ∈ 1 +NZ (follows from M12 and (6.15)) , (6.16)

κ ∈ N−2Z (follows from M24), (6.17)

µ ∈ N−1Z (follows from M23) , (6.18)

b ∈ Z (follows from M14), (6.19)

µ ≡ k mod N (follows from M23). (6.20)

Now the lemma follows.
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6.2 The main result

Now we give the main result of this chapter on a representation theoretic formulation

of Klingen Eisenstein series with respect to the paramodular subgroup.

Theorem 6.2.1. Let S be a finite set of primes and N =
∏

p∈S p
np be a posi-

tive integer. Assume χ to be a Dirichlet character modulo N . Let f be an elliptic

cusp form of level N , weight k, with k ≥ 6 an even integer, and character χ, i.e.,

f ∈ S1
k(Γ0(N), χ). We also assume f to be a newform. Let φ be the automorphic

form associated with f and let (π, Vπ) be the irreducible cuspidal automorphic repre-

sentation of GL(2,A) generated by φ. Moreover, χ could be viewed as a continuous

character of ideles, which we also denote by χ. Then there exists a global distin-

guished vector Φ in the global induced automorphic representation χ−1|·|so|·|−s2 π of

GSp(4,A), for s = k − 2, such that,

Ē(Z) := det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

(Φ(γbZ))(1), (6.21)

(with Z = X + iY ∈ H2, bZ ∈ B(R) as in (4.3)),

defines an Eisenstein series which is the same as the Klingen Eisenstein series of

level N2 with respect to the paramodular subgroup, defined by

E(Z) :=
∑

γ∈D(N)\K(N2)

f(LNγ〈Z〉∗) det(j(LNγ, Z))−k, (6.22)

where,

LN =

1 N
1

1
−N 1

 and D(N) = (L−1
N Q(Q)LN) ∩K(N2).
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Proof. Let Π denote the automorphic representation χ−1|·|so|·|−s2 π of GSp(4,A). Π

decomposes by the tensor product theorem as

Π ∼=
⊗
p≤∞

Πp . (6.23)

where almost all Πp are unramified. In the following, for each prime p we shall pick a

local distinguished vector Φp ∈ Πp, which would yield a global distinguished vector

Φ = Φ∞ ⊗
⊗
p<∞

Φp . (6.24)

Similarly, it follows from the tensor product theorem that φ = φ∞⊗
⊗

p<∞ φp. Here

φ is the adelic cusp form associated with f ∈ Sk1 (Γ0(N), χ). It is clear that for every

finite prime p with p - N , φp is a spherical vector and for each prime p with p|N , φp

is a K2
p(pnp)-invariant vector. Let χ = ⊗p χp be the decomposition of χ into local

components. Next, we describe our choices for the local distinguished vectors.

Archimedean distinguished vector. For p = ∞ we pick a distinguished vector

Φ∞ such that it is of the minimal K-type (k, k). It was shown in Proposition 5.2.7

that such a vector exists in Π∞. More explicitly we define Φ∞ as follows

Φ∞(h∞k∞) := det(j(k∞, I))−k|t2(ad− bc)−1| |t|s |ad− bc|−
s
2π∞(

[
a b
c d

]
)φ∞ (6.25)

where

h∞ =

a b ∗
∗ t ∗ ∗
c d ∗

t−1(ad− bc)

 ∈ Q(R)

and k∞ ∈ K1, the maximal standard compact subgroup of GSp(4,R). It can be

checked that Φ∞ is well defined.

Unramified non-archimedean distinguished vectors. For every prime q such
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that q - N , we pick unramified local distinguished vectors such that,

Φq(g) = Φq(hqkq) = |t2(ad− bc)−1|q |t|sq |ad− bc|
− s

2
q πq(

[
a b
c d

]
)φq, (6.26)

where using the Iwasawa decomposition g ∈ GSp(4,Qq) is written as g = hqkq with

hq =

a b ∗
∗ t ∗ ∗
c d ∗

t−1(ad− bc)

 ∈ Q(Qq)

and kq ∈ GSp(4,Zq). It can be checked that Φq is well defined.

Ramified non-archimedean distinguished vector. For each finite prime p

such that p|N we select a local new form, i.e., a paramodular vector of level p2np ,

as distinguished vector. More explicitly, we pick our distinguished vector Φp as a

Kp(p
2np)-invariant vector. The existence of such a vector and that it is supported

only on Q(Qp) Lnp Kp(p
2np) follows from the proof of the Theorem 5.4.2 in [30]. So,

our distinguished vector Φp is zero on all double cosets other thanQ(Qp) Lnp Kp(p
2np)

and on Q(Qp) Lnp Kp(p
2np) it is given by

Φp


a b ∗
∗ t ∗ ∗
c d ∗

t−1(ad− bc)

Lnp κ

 =|t2(ad− bc)−1|p |t|sp χ−1
p (t)|ad− bc|−

s
2

p

πp(

[
a b
c d

]
)φp (6.27)

where, κ ∈ Kp(p
2np),

[
a b
c d

]
∈ GL(2,Qp) and φp ∈ ν−s/2πp is such that

ν−
s
2πp(

[
a b
c d

]
)φp = ω

ν−
s
2 πp

(a)φp for all

[
a b
c d

]
∈
[

Z×p Zp
pnpZp Z×p

]
.

We note that the hypothesis of the Theorem 5.4.2 in [30] requires that, the

representation χ−1
p νk−2 o ν−(k−2)/2πp should have trivial central character. This
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condition is satisfied as we know that in the passage from f ∈ S1
k(Γ0(N), χd) to its

associated adelic cusp form, the central character ω of the adelic cusp form is given

by the adelization of χ (see section 3.6 in [5]).

Now the Klingen Eisenstein series coming from the global distinguished vector

Φ is obtained as

Ē(Z) = det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

Φ(γbZ)(1)

= det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

Φ∞(γbZ)
⊗
p|N

Φp(γ)
⊗

q<∞, q-N

Φq(γ)

 (1)

= det(Y )−k/2
∑

γ∈Q(Q)\Q(Q)LNK(N2)

Φ∞(γbZ)
⊗
p|N

Φp(γ)
⊗

q<∞, q-N

Φq(γ)

 (1)

= det(Y )−k/2
∑

γ∈D̄(N)

Φ∞(LNγbZ)
⊗
p|N

Φp(LNγ)
⊗

q<∞, q-N

Φq(LNγ)

 (1),

where, D̄(N) =
(
L−1
N Q(Q) LN ∩K(N2)

)
\K(N2).

In the above calculation the third equality follows from the Lemma 6.1.1, the fact

that Φp is supported only on Q(Qp)LNKp(p
2N) (see (6.27)) and the Lemma 6.1.2. We

have used Lemma 6.1.3 for the last equality. If q - N then Φq(LNγ) = Φq(1) = φq,

as Φq is unramified and LNγ ∈ GSp(4,Zq), the maximal compact subgroup of

GSp(4,Qq). Also from the definition of Φp we get that Φp(LNγ) = φp. Therefore,

we obtain,

Ē(Z) = det(Y )−k/2
∑

γ∈D̄(N)

(
Φ∞(LNγbZ)

⊗
p<∞

φp

)
(1)

= det(Y )−k/2
∑

γ∈D̄(N)

(
Φ∞(bZ̃κ∞)

⊗
p<∞

φp

)
(1),
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where bZ̃ is as in (4.17), bZ̃κ∞ = LNγbZ and κ∞ ∈ K1. Then,

Φ∞(bZ̃κ∞) = π∞

([
1 x̃
0 1

] [
b̃
b̃−1

])
Φ∞(1) det(j(κ∞, I))−k|ã|k

= det(j(κ∞, I))−k|ã|kπ∞
([

1 x̃
0 1

] [
b̃
b̃−1

])
φ∞.

So, we get

Ē(Z) = det(Y )−k/2
∑

γ∈D̄(N)

φ

([
1 x̃
0 1

] [
b̃
b̃−1

])
det(j(κ∞, I))−k|ã|k

=4.14 det(Y )−k/2
∑

γ∈D̄(N)

φ

([
1 x̃
0 1

] [
b̃
b̃−1

])
√det Ỹ

detY
det(j(LN γ, Z))

−k |ã|k
=4.4

∑
γ∈D̄(N)

φ

([
1 x̃
0 1

] [
b̃
b̃−1

])(√
det Ỹ det(j(LN γ, Z))

)−k(det(Ỹ )

ỹ

)k/2

=
∑

γ∈D̄(N)

φ

([
1 x̃
0 1

] [√
ỹ

(
√
ỹ)−1

])
(ỹ)−k/2 det(j(LN γ, Z))−k

=
∑

γ∈D̄(N)

f(x̃+ iỹ) det(j(LN γ, Z))−k

=
∑

γ∈D̄(N)

f(LNγ〈Z〉∗) det(j(LN γ, Z))−k.

Thus we obtain the desired Klingen Eisenstein series.
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Chapter 7

Klingen Eisenstein series for Γ0(N)

In this chapter we will obtain a precise representation theoretic formulation of Klin-

gen Eisenstein series with respect to the congruence subgroups Γ0(N). In the fol-

lowing sections we will make use of certain double coset decompositions which will

only be proven later in the next chapter.

To begin with we reformulate Proposition 8.3.1 using the classical version of

GSp(4) and note the result in the following.

Proposition 7.0.1. Assume n ≥ 1. A complete and minimal system of represen-

tatives for the double cosets Q(Qp)\GSp(4,Qp)/Si(pn) is given by

1, s1s2, hr =

1
1

1
pr 1

 , 1 ≤ r ≤ n− 1,

gs =

 1
1
ps 1

ps 1

 , 1 ≤ s ≤ n− 1,

h(r,s) =

 1
1
ps 1

ps pr 1

 , 1 ≤ s, r ≤ n− 1, s < r < 2s.
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7.1 Existence of well-defined local vectors

Let f : GSp(4,Qp) → Vπp be a smooth function in χpν
s o ν−s/2πp, where πp is an

irreducible, admissible representation of GL(2,Qp) and χp = ω−1
πp is the inverse of

the central character of πp. Let a(πp) be the conductor of πp. Assume n to be a non-

negative integer. Let f be Si(pn) invariant. Then it is clear that f is determined by

its values on a set of double-coset representatives of Q(Qp)\GSp(4, F )/Si(pn), such

as the one given by Proposition 7.0.1. Let h denote any of these representatives.

We further assume that f is supported only on the double coset Q(Qp)hSi(pn). Let

f(h) = vh. Then for f to be well defined it must satisfy the following condition,

|t2 det(A)−1|p χp(t)|t|sp|det(A)|−s/2p πp(A) vh = vh (7.1)

for all g =

a b ∗
∗ t ∗ ∗
c d ∗

t−1 det(A)

 ∈ Q(Qp) ∩ h Si(pn)h−1.

Suppose q ∈ Q(Qp) ∩ h Si(pn)h−1. Then we must have h−1qh ∈ Si(pn). In the

following we shall explore if (7.1) is satisfied and f is well defined for various choices

of h. We will take a general q ∈ Q(Qp) as having the form q = mu with m =a b
t

c d
1
t

 and u =

1 µ
l 1 µ k

1 −l
1

.

h = 1. To check the condition (7.1) we take g =

a b ∗
∗ t ∗ ∗
c d ∗

t−1 det(A)

 ∈ Q(Qp) ∩

Si(pn). Then it is clear from the definition of Si(pn) that det(g) = 1. It also follows

from the definition of Si(pn) that b ∈ Zp, c ∈ pnZp. Also from the compactness

of Si(pn) it follows that |t|p= 1, so t, a, d ∈ Z×p . Therefore the condition (7.1) is

satisfied for all matrices g ∈ Q(Qp)∩ Si(pn) if and only if χp is unramified and v1 is
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such that

πp(

[
a b
c d

]
)v1 = v1 for all

[
a b
c d

]
∈
[

Z×p Zp
pnZp Z×p

]
. (7.2)

It is clear that if a(πp) > n then such a function f can not exist. If a(πp) = n then

on taking v1 to be a local newform we get that the dimension of functions supported

on the double coset Q(Qp)1Si(pn) is 1. This will be the case of our interest.

h = s1s2. For h = s1s2 we have

s−1
2 s−1

1 mus1s2 =


1
t

bl − aµ a b
−kt lt t µt

dl − cµ c d

 .
It follows from the definition of Si(pn) that b ∈ Zp, c ∈ pnZp. Also as noted earlier,

det(m) = ∆2 = (ad−bc)2 ∈ Z×p and |t|p= 1, so t, a, d ∈ Z×p . Therefore the condition

(7.1) is satisfied for all matrices g ∈ Q(Qp) ∩ s1s2 Si(pn)s−1
2 s−1

1 if and only if χp is

unramified and vs1s2 is such that

πp(

[
a b
c d

]
)vs1s2 = vs1s2 for all

[
a b
c d

]
∈
[

Z×p Zp
pnZp Z×p

]
. (7.3)

That the above condition is necessary follows by noting that given t ∈ Z×p and [ a bc b ]

as in (7.3)

s−1
2 s−1

1 us1s2 =


1
t
a b
t

c d

 ∈ Si(pn).

Once again it is clear that if a(πp) > n then such a function f can not exist. If

a(πp) = n then on taking vs1s2 to be a local newform we see that the dimension of

functions supported on the double coset Q(Qp)s1s2Si(pn) is 1.
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7.2 Intersection lemmas

Next, we prove the following lemmas which will be useful in proving the main results

of this chapter.

Lemma 7.2.1. Let N =
∏

p p
np be a positive integer. Then,

(i) ∩
p|N
Q(Q) 1 Γ4

0(pnp) = Q(Q) 1 Γ4
0(N).

(ii) ∩
p|N
Q(Q) s1s2 Γ4

0(pnp) = Q(Q) s1s2 Γ4
0(N).

(iii) ∩
p|N
Q(Q)hp Γ4

0(p2np) = Q(Q)hΓ4
0(N2). where

hp =

 1
1
pnp 1

pnp 1

 and h =

 1
1
N 1

N 1

 .

Proof. We shall prove only the first part of the lemma, i.e., we shall show that

∩
p|N
Q(Q) 1 Γ4

0(pnp) = Q(Q) 1 Γ4
0(N).

The remaining parts are similar. The implication ∩
p|N
Q(Q) 1 Γ4

0(pnp) ⊇ Q(Q) 1 Γ4
0(N)

is clear. Therefore, we need to prove the other direction. Let g ∈ ∩
p|N
Q(Q) 1 Γ4

0(pnp).

Consider g as an element of GSp(4,Q), then it must lie in one of the double cosets

having representatives as listed in Theorem 8.2.2. If g ∈ Q(Q) 1 Γ4
0(N) then we

are done. Hence, suppose g ∈ Q(Q) s1s2 Γ4
0(N). Then for any p|N we get that

g ∈ Q(Q) s1s2 Γ4
0 (pnp) but this contradicts that g ∈ Q(Q) 1 Γ4

0(pnp). Next, suppose

g ∈ Q(Q) g1(γ, x) Γ4
0(N) where g1(γ, x) is defined as in Theorem 8.2.2. But this

means

g ∈ (Q(Q) g1(γ, x) Γ4
0(pnp)) ∩ (Q(Q) 1 Γ4

0 1 (pnp))

for each prime p|N . This forces pnp |γ for each p|N . Therefor N |γ but then it
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contradicts that γ < N . Therefore, g /∈ Q(Q) g1(γ, x) Γ4
0(N). A similar argument

shows that g does not lie in any of the double cosets represented by the remaining

representatives g2(η) and g3(γ, δ, y). Therefore, we conclude that g must lie in

g ∈ Q(Q) 1 Γ4
0(N). This completes the proof of the lemma.

Lemma 7.2.2. There exists a bijection between Q(Q)\Q(Q)hΓ4
0(N) and

(h−1Q(Q)h ∩ Γ4
0(N)) \Γ4

0(N), where h is any one of the representatives listed in

Theorem 8.2.2.

Q(Q)\Q(Q)hΓ4
0(N) ∼=

(
h−1Q(Q)h ∩ Γ4

0(N)
)
\Γ4

0(N) (7.4)

Proof. The proof is trivial.

The following lemma gives a more explicit description of h−1Q(Q)h∩Γ4
0(N) for

h = s1s2.

Lemma 7.2.3.

(s1s2)−1Q(Q) s1s2 ∩ Γ4
0(N) = (7.5)

± {
[ −1
a b

1
c d

] [ −µ 1
−k l 1 µ
l 1
−1

]
∩ Sp(4,R) | c, l, k ∈ NZ, a, b, d, µ ∈ Z}

Proof. Let q ∈ Q(Q). Then we can write q = mu where

m =

a b
t

c d
t−1∆

 ,u =

1 µ
l 1 µ κ

1 −l
1


with m,u ∈ Q(Q) and ∆ = ad− bc.
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If (s1s2)−1 q s1s2 ∈ Γ4
0(N). Then ∆ = 1 from the definition of Γ4

0(N). We also have,

(s1s2)−1 q s1s2 =

 −1
a b

1
c d


−µ 1
−k l 1 µ
l 1
−1

 =


1
t

bl − aµ a b
−kt lt t µt

dl − cµ c d

 ∈ Γ4
0(N). (7.6)

It follows that t = ±1. In fact, we can assume t = 1 by multiplying with an

appropriate element in Γ4
0(N). We also get c, l, k ∈ NZ and a, b, d, µ ∈ Z. The

result follows.

7.3 Main results

Now we are ready to prove the following result, which shows the existence of a

Klingen Eisenstein series of level N with respect to the subgroup Γ4
0(N).

Theorem 7.3.1. Let S be a finite set of primes and N =
∏

p∈S p
np be a positive

integer. Let f be an elliptic cusp form of level N , weight k, i.e., f ∈ S1
k(Γ

2
0(N)).

We also assume f to be a newform. Let φ be the automorphic form associated with

f and let (π, Vπ) be the irreducible cuspidal automorphic representation of GL(2,A)

generated by φ. Then there exists a global distinguished vector Φ in the global induced

automorphic representation |·|so|·|−s2 π of GSp(4,A), for s = k − 2, such that,

Ē(Z) := det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

(Φ(γbZ))(1), (7.7)

(with Z = X + iY ∈ H2, bZ as in (4.5))

defines an Eisenstein series which is same as the Klingen Eisenstein series of level

N with respect to Γ4
0(N), defined by

E(Z) :=
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

f(γ〈Z〉∗) det(j(γ, Z))−k, (7.8)
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Proof. Let Π denote the automorphic representation |·|so|·|−s2 π of

GSp(4,A). We know from the tensor product theorem that

Π ∼=
⊗
p≤∞

Πp (7.9)

where almost all Πp are unramified. In the following, for each prime p we shall pick a

local distinguished vector Φp ∈ Πp, which would yield a global distinguished vector

Φ = Φ∞ ⊗
⊗
p<∞

Φp . (7.10)

Similarly, it follows from the tensor product theorem that

φ ∼= φ∞ ⊗
⊗
p<∞

φp.

Here, as φ is the adelic cusp form associated with f ∈ S1
k(Γ

2
0(N)), it is clear that for

every finite prime p with p - N , φp is a spherical vector and for each prime p with

p|N , φp is a

K2
p(pnp) :=

{[
a b
c d

]
∈ GL(2,Zp): c ∈ pnpZp, d ∈ 1 + pnpZp

}

invariant vector. Next, we describe our choices for the local distinguished vectors.

Archimedean distinguished vector

For p =∞ we pick a distinguished vector Φ∞ such that it is of the minimal K-type

(k, k). It was shown in Proposition 5.2.7 that such a vector exists in Π∞. A more

explicit description of Φ∞ is given in (6.25).

Unramified non-archimedean distinguished vectors

For all primes q such that q - N , we pick unramified local distinguished vectors such
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that,

Φq(1) := φq . (7.11)

This means we have

Φq(g) = Φq(hqkq) = |t2(ad− bc)−1|q |t|sq |ad− bc|
− s

2
q πq(

[
a b
c d

]
)φq, (7.12)

where using the Iwasawa decomposition g ∈ GSp(4,Qq) is written as g = hqkq with

hq =

a b ∗
∗ t ∗ ∗
c d ∗

t−1(ad− bc)

 ∈ Q(Qq)

and kq ∈ GSp(4,Zq). It is easy to check that Φq is well defined.

Ramified non-archimedean distinguished vector

For each finite prime p such that p|N we select a Γ4
0(pnp) invariant vector as distin-

guished vector. We note that the existence of such a vector that is supported only

on Q(Qp)1Γ4
0(p2np) follows from (7.2) and the discussion preceding that. Therefore,

our distinguished vector Φp is zero on all double cosets other than Q(Qp)1Γ4
0(p2np)

and on Q(Qp)1Γ4
0(p2np) it is given by

Φp


a b ∗
∗ t ∗ ∗
c d ∗

t−1(ad− bc)

 1κ

 =|t2(ad− bc)−1|p |t|sp

|ad− bc|−
s
2

p πp(

[
a b
c d

]
)φp (7.13)

where, κ ∈ Si(pn),

[
a b
c d

]
∈ GL(2,Qp) and φp ∈ πp is such that

πp(

[
a b
c d

]
)φp = φp for all

[
a b
c d

]
∈
[

Z×p Zp
pnpZp Z×p

]
.
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Now the Klingen Eisenstein series coming from the global distinguished vector Φ is

obtained as

Ē(Z) = det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

Φ(γbZ)(1)

= det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

Φ∞(γbZ)
⊗
p|N

Φp(γ)
⊗

q<∞, q-N

Φq(γ)

 (1)

= det(Y )−k/2
∑

γ∈Q(Q)\
(
∩
p|N

Q(Q)Γ4
0(pnp )

)
Φ∞(γbZ)

⊗
p|N

Φp(γ)
⊗

q<∞, q-N

Φq(γ)

 (1)

= det(Y )−k/2
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

Φ∞(γbZ)
⊗
p|N

Φp(γ)
⊗

q<∞, q-N

Φq(γ)

 (1)

In the above calculation the third equality needs a little explanation. In fact, only

those γ ∈ GSp(4,Q) contribute to the sum, which, for each prime p|N , consid-

ered as an element of GSp(4,Qp) belong to the double coset Q(Qp) 1 Si(pnp); as

Φp is supported only on Q(Qp) 1 Si(pnp) (see (7.13)). It then follows from the dou-

ble coset decompositions of Q(Qp)\GSp(4,Qp)/Si(pnp) (see Proposition 7.0.1) and

Q(Q)\GSp(4,Q)/Γ4
0(pnp) (see Theorem 8.1.10) that any such γ ∈ GSp(4,Q), con-

tributing non-trivially to the sum, must belong to ∩
p|N
Q(Q)Γ4

0(pnp).

If q - N then Φq(γ) = Φq(1) = φq, as Φq is unramified and γ ∈ GSp(4,Zq) the

maximal compact subgroup of GSp(4,Qq). Also from the definition of Φp, we get

that Φp(γ) = φp. Therefore, we obtain

Ē(Z) = det(Y )−k/2
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

(
Φ∞(γbZ)

⊗
p<∞

φp

)
(1)
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= det(Y )−k/2
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

(
Φ∞(bZ̃κ∞)

⊗
p<∞

φp

)
(1),

where bZ̃ is as in (4.17), bZ̃κ∞ = γbZ and κ∞ ∈ K1. Then

Φ∞(bZ̃κ∞)(1)

=
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

(
π∞

([
1 x̃
0 1

] [
b̃
b̃−1

])
Φ∞(1)

)
(1) det(j(κ∞, I))−k|ã|k

=
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

det(j(κ∞, I))−k|ã|k
(
π∞

([
1 x̃
0 1

] [
b̃
b̃−1

])
φ∞

)
(1)

=
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

det(j(κ∞, I))−k|ã|k φ∞
([

1 x̃
0 1

] [
b̃
b̃−1

])
.

So, we get

Ē(Z) = det(Y )−k/2
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

φ

([
1 x̃
0 1

] [
b̃
b̃−1

])
det(j(κ∞, I))−k|ã|k

=(4.14) det(Y )−k/2
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

φ

([
1 x̃
0 1

] [
b̃
b̃−1

])
√det Ỹ

detY
det(j( γ, Z))

−k |ã|k
=(4.4)

∑
γ∈(Q(Q)∩Γ4

0(N))\Γ4
0(N)

φ

([
1 x̃
0 1

] [
b̃
b̃−1

])(√
det Ỹ det(j( γ, Z))

)−k
(

det(Ỹ )

ỹ

)k/2

=
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

φ

([
1 x̃
0 1

] [√
ỹ

(
√
ỹ)−1

])
(ỹ)−k/2 det(j( γ, Z))−k

=
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

f(x̃+ iỹ) det(j(γ, Z))−k
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=
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

f(γ〈Z〉∗) det(j(γ, Z))−k.

Thus we obtained the desired Klingen Eisenstein series.

In the above proof, for each p|N , we have picked our ramified non-archimedean

distinguished vectors which were supported only on Q(Qp)1Γ4
0(p2np). One can obtain

different Klingen Eisenstein series by changing these local distinguished vectors.

Theorem 7.3.2. Let S be a finite set of primes and N =
∏

p∈S p
np be a positive

integer. Let f be an elliptic cusp form of level N , weight k, i.e., f ∈ S1
k(Γ

2
0(N)).

We also assume f to be a newform. Let φ be the automorphic form associated with

f and let (π, Vπ) be the irreducible cuspidal automorphic representation of GL(2,A)

generated by φ. Then there exists a global distinguished vector Φ in the global induced

automorphic representation |·|so|·|−s2 π of GSp(4,A), for s = k − 2, such that,

Ē(Z) := det(Y )−k/2
∑

γ∈Q(Q)\GSp(4,Q)

(Φ(γbZ))(1), (7.14)

(with Z = X + iY ∈ H2, bZ as in (4.5)),

defines an Eisenstein series which is same as the Klingen Eisenstein series of level

N with respect to Γ4
0(N), defined by

E(Z) =
∑

γ∈((s1s2)−1Q(Q)s1s2 ∩Γ4
0(N))\Γ4

0(N)

f(s1s2γ〈Z〉∗) det(j(s1s2γ, Z))−k

=
∑

γ∈{

 −1
a b

1
c d

−µ 1
−k l 1 µ
l 1
−1

∩Sp(4,R) | c, l, k∈NZ, a, b, d, µ∈Z}\Γ4
0(N)

f(s1s2γ〈Z〉∗) det(j(s1s2γ, Z))−k

(7.15)

Proof. We note that the last explicit description for E(Z) follows from Lemma 7.2.3.
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The rest of the proof is similar to Theorem 7.3.1, except that for each p|N we pick

our ramified non-archimedean distinguished vector Φ̃p such that it is supported only

on Q(Qp)s1s2Si(pnp) and it is given by

Φ̃p


a b ∗
∗ t ∗ ∗
c d ∗

t−1(ad− bc)

 s1s2 κ

 =|t2(ad− bc)−1|p |t|sp |ad− bc|
− s

2
p πp(

[
a b
c d

]
)φp

(7.16)

where, κ ∈ Si(pn),

[
a b
c d

]
∈ GL(2,Qp) and φp ∈ πp is such that

πp(

[
a b
c d

]
)φp = φp for all

[
a b
c d

]
∈
[

Z×p Zp
pnpZp Z×p

]
.

We omit further details.

7.3.1 Action of the Atkin-Lehner element

Let N =
∏

p∈S p
np be a positive integer. Let Φp and Φ̃p be the local non-archimedean

distinguished vectors defined in (7.13) and (7.16). We recall that the support of Φp

is Q(Qp)1Si(pnp) and Φ̃p is supported on the double coset Q(Qp)s1s2Si(pnp). The

Atkin-Lehner element ωnp =

 −1
1

pnp

−pnp

 acts on the subspace generated by

Φp and Φ̃p. In fact, we note that ωnpΦp is supported on Q(Qp)s1s2Si(pnp). To

see this we find all g ∈ GSp(4,Qp) such that ωnpΦp(g) = Φp(gωnp) 6= 0. This is

equivalent to finding all g such that gωnp ∈ Q(Qp)1Si(pnp). Now using the identity

ω−1
np =

 − 1
pnp

1
pnp

1
1

 s1s2
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and the fact that ωnpSi(pnp)ω−1
np ⊆ Si(pnp) we get that g ∈ Q(Qp)s1s2Si(pnp).

We can now write ωnpΦp = c Φ̃p, for some constant c ∈ C. To determine this

constant c we evaluate both the sides on s1s2. Thus we get

c Φ̃p(s1s2) = ωnpΦp(s1s2) = Φp(s1s2ωnp) = Φp(

 1
pnp

−pnp
1

)

=⇒ c φp = p−np(1+ s
2

)πp

([
1

−pnp
])

φp = p−np(1+ s
2

)πp

([
1

pnp

])
φp.

It follows from Theorem 3.2.2, [35], that the Atkin-Lehner eigenvalue of πp could be

given in terms of the local ε-factor attached to πp. We obtain c = ε(1/2, πp)p
−np(1+ s

2
).

Similarly, we have ωnpΦ̃p = ε(1/2, πp)p
np(1+ s

2
) Φp. It is now clear that for the action

of ωnp the two eigenvectors are Φp + c Φ̃p and Φp− c Φ̃p with with eigenvalues 1 and

−1 respectively.

The above results could also be interpreted in terms of the action of the classical

Atkin-Lehner operator up (as defined in [36]) on the classical Klingen Eisenstein

series. We very briefly reproduce the definition of up here and refer readers to [36]

for more details on the classical Atkin-Lehner action on the classical Siegel modular

forms. Let p be a prime with p|N . We pick a matrix γp ∈ Sp(4,Z) such that

γp ≡
[

J1
−J1

]
mod pnp with J1 = [ 1

1 ] and γp ≡ [ I I ] mod Np−np with I = [ 1
1 ].

Then the Atkin-Lehner element up is defined as

up := γp

p
np

pnp

1
1

 .
The Atkin-Lehner element up acts on a weight k Siegel modular form F with respect

to Γ4
0(N) as F 7→ F |kup.

The following result is now evident from Theorem 7.3.1, Theorem 7.3.2 and the
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above discussion.

Proposition 7.3.3. Let

E(Z) =
∑

γ∈(Q(Q)∩Γ4
0(N))\Γ4

0(N)

f(γ〈Z〉∗) det(j(γ, Z))−k

and

Ẽ(Z) =
∑

γ∈((s1s2)−1Q(Q)s1s2 ∩Γ4
0(N))\Γ4

0(N)

f(s1s2γ〈Z〉∗) det(j(s1s2γ, Z))−k

be the classical Klingen Eisenstein series appearing in Theorem 7.3.1 and Theo-

rem 7.3.2 respectively. Let ε be the classical Atkin-Lehner eigenvalue of f and let

c = εp−np(1+ s
2

) with s = k − 2. Then the classical Atkin-Lehner operator up acts on

the two dimensional space generated by E(Z) and Ẽ(Z). Moreover, E(Z) + cẼ(Z)

and E(Z) − cẼ(Z) are eigenvectors for this action with eigenvalues 1 and −1 re-

spectively.
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Chapter 8

Some double coset decompositions

8.1 Double coset decomposition

Q(Q)\GSp(4,Q)/Γ0(pn)

In the following we determine a complete and minimal system of representatives for

the double cosets Q(Q)\GSp(4,Q)/Γ0(pn). The proof is algorithmic and essentially

uses elementary number theory to establish the result. Before stating the main

theorem, we state and prove several lemmas.

Notations: In this chapter we will use the symmetric version of GSp(4),

instead of the classical version we have used so far. Which means in this

chapter we realize the group GSp(4) as

GSp(4) := {g ∈ GL(4) | tgJg = λ(g)J for some λ(g) ∈ GL(1)},

with J =
[

J1
−J1

]
and J1 = [ 1

1 ]. We note that this version of GSp(4) is isomorphic

to the classical version of GSp(4) which we have used in earlier chapters. We denote

this isomorphism by the map  which interchanges the first two rows and the first
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two columns of any matrix.

We will also use the following notation:

g ∼ h ⇐⇒ Q(Q) g Γ0(pn) = Q(Q)hΓ0(pn), for g, h ∈ GSp(4,Q).

8.1.1 Some technical lemmas

Lemma 8.1.1. Let p be a prime number and let x1, x2 be integers such that x1,

x2 and p are pairwise co-prime. Further, assume y1, y2 to be integers such that

y1, y2 and p are pairwise co-prime with gcd(x1, y1) = 1. Let x = x1x
−1
2 p−r and

y = y1y
−1
2 p−s with r, s ≥ 0, x2 6= 0, y2 6= 0. Let n ≥ 1. Let

g = s1s2

1 y
1 x y

1
1

 .
Then we have the following results.

1. If s > r, then there exist integers η1 and η2 which are co-prime to p such that

Q(Q)gΓ0(pn) = Q(Q)

 1
1

η1p
s 1

η2p
−r+2 s η1p

s 1

Γ0(pn).

2. If s ≤ r < n, then there exists a non-zero integer x3 co-prime to p such that,

Q(Q)gΓ0(pn) = Q(Q)

 1
1

1
x3p

r 1

Γ0(pn),
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and if s ≤ r and r ≥ n then,

Q(Q)gΓ0(pn) = Q(Q)1Γ0(pn).

Proof. We have,

s1s2

1 y
1 x y

1
1

 ∼

−x −y −1

−1

1 y2

x
y
x

− 1
x

 s1s2

1 y
1 x y

1
1

 s1

=

 1
−1

− y
x

1
1
x

y
x

1

 ∼
 1

1
− y
x

1
1
x
− y
x

1

 s2.

Now we prove the first part of the lemma.

Case 1: s > r. Assume s > r. Let gcd(y2, x2) = τ . Let l1 and l2 be integers such

that

l1x2y1 + l2p
s−rx1y2 = τ.

Let

d1 =
l21x2y2p

s

τ
, d2 =

l1l2x2y2p
s

τ
.

It follows that

d1x2y1 + d2x1y2p
s−r = l1p

sx2y2.

Then we have,


1

−1

−prx2y1
psx1y2

1
prx2
x1

prx2y1
psx1y2

1


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=


p−r+sx1y2

τ
−l1

− l21p
sx2y2
τ

−p−r+sx1y2
τ

−l1
pr−sτ
x1y2

pr−sτ
x1y2




1

1

− l1psx2y2
τ

1
p−r+2 sx1x2y22

τ2
− l1psx2y2

τ
1




l2 l1
−x2y1

τ
p−r+sx1y2

τ

l2 −l1
x2y1
τ

p−r+sx1y2
τ



∼


1

1

− l1psx2y2
τ

1
p−r+2 sx1x2y22

τ2
− l1psx2y2

τ
1

 .

This completes the proof of the first part of the lemma with η1 = −l1x2y2
τ

and

η2 =
x1x2y22
τ2

.

Example 1: Assume:

p=31, r=2, s=3, n=4, x=5/13454 and y=143/2085370.

Then we have,

s1s2


1 2−1 · 5−1 · 7−1 · 11 · 13 · 31−3

1 2−1 · 5 · 7−1 · 31−2 2−1 · 5−1 · 7−1 · 11 · 13 · 31−3

1

1



∼


− 5

13454
− 143

2085370
−1

−1

1 20449
1616161750

143
775

−13454
5

 s1s2


1 143

2085370

1 5
13454

143
2085370

1

1

 s1

=


1

−1

−143
775

1
13454

5
143
775

1


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∼


1 −168

775

1

1 168
775

1




1
775

775

− 1
775
−58857482880

775




1

−1

−143
775

1
13454

5
143
775

1



=


31 −168

−143 775

10860606960 −58857482880 31 168

2085370 143 775



=


1

1

350342160 1

1616161750 350342160 1




31 −168

−143 775

31 168

143 775



∼


1

1

24 · 3 · 5 · 72 · 313 1

2 · 53 · 7 · 314 24 · 3 · 5 · 72 · 313 1

 .

Now we prove the second part of the lemma.

Case 2: s ≤ r. Assume s ≤ r and gcd(x1, y1) = 1. Let gcd(y2, x2) = τ .

Let l1 and l2 be integers such that

l1x2y1p
r−s + l2x1y2 = τ. (8.1)

Let d1 and d2 be integers such that

d1y1 + d2x1p
s = −l1ps. (8.2)

Let c1 and c2 be integers such that

c1
x1y2

τ
+ c2p

max(0,n−s) =
−d1y2

ps
. (8.3)
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Let

β =
x2

τ
(d2τ − c1y1). (8.4)

It is easy to see that β ∈ Z.

Further, if r < n then we make the following choices. Let l3 and l4 be integers such

that,

l3
x2y2

τ
+ l4p

n−r = β. (8.5)

Let x3 and x4 be integers such that

x3(l3p
r−sx2y1

τ
− l2)− x4p

n−r = −x2y2

τ
. (8.6)

Here the case when r = s and l3
x2y1
τ
− l2 is divisible by p needs a little explanation.

Assume this is the case. Next if p - l1 then we pick integers α1 and α2 such that

α1x1y2 + α2p = l1. We note that for any integer α1 we can replace l1 and l2 by

l1−α1x1y2 and l2 +α1x2y1 respectively. It is easy to see that it does not affect (8.1)

and all the subsequent arguments remain valid. So we can assume that p|l1 and

p - l2 to begin with. Next we can also assume that ps+1|d1 and p|d2 (see (8.2)). In

picking the integer c1 in (8.3) we can assume that p|c1. Next it is clear that p|β and

hence p|l3 (see (8.5)). But since p - l2 this shows that p does not divide l3
x2y1
τ
− l2.

Now x3 and x4 could be picked using the usual Euclidean algorithm such that (8.6)

holds.

Next, If r ≥ n then let

l3 = l4 = x3 = x4 = 0. (8.7)

92



Let us define

q1 =


τ

x1y2

l3x1y2
τ

+ l1
x1y2
τ

− τ
x1y2

c1psx1y2
τ

+ d1y2 − l3x1y2
τ
− l1
x1y2
τ


and

γ1 =


− l3pr−sx2y1

τ
− l1pr−sx2y1

x1y2
+ τ

x1y2

l3x1y2
τ

+ l1

−pr−sx2y1
τ

x1y2
τ

− c1prx2y1
τ
− d1pr−sx2y1

x1
− l3prx2y2

τ
− l1prx2

x1

c1psx1y2
τ

+ d1y2(
l3pr−sx2y1

τ
+ l1pr−sx2y1

x1y2
− τ

x1y2

)
prx3 + prx2y2

τ
−
(
l3x1y2
τ

+ l1
)
prx3

− l3pr−sx2y1
τ

− l1pr−sx2y1
x1y2

+ τ
x1y2

− l3x1y2
τ
− l1

pr−sx2y1
τ

x1y2
τ

 .

One can check that q1 and γ1 are indeed elements of GSp(4,Q). Next we verify that

γ1 ∈ Γ0(pn). Let ci,j denote the (i, j) entry of γ1. Then c3,1 = − c1prx2y1
τ
− d1pr−sx2y1

x1
−

l3prx2y2
τ
− l1prx2

x1
. We will show that pn|c3,1. We have

c3,1 =
−prx2

x1ps
(l1p

s + d1y1)− c1p
rx2y1

τ
− l3p

rx2y2

τ

= d2p
rx2 −

c1p
rx2y1

τ
− l3p

rx2y2

τ
(follows from (8.2))

=
prx2

τ
{(τd2 − c1y1)− l3y2}

=
prx2

τ
(
τβ

x2

− l3y2) (follows from (8.4)).

If r ≥ n then l3 = 0 and we are done. Otherwise if r < n then we proceed as follows.

c3,1 =
prx2

τ
(
τβ

x2

− l3y2) =
pr

τ
(τβ − l3x2y2)

=
pr

τ
(τ l4p

n−r) (follows from (8.5))
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= l4p
n.

Next, we consider c4,1 with r < n. We have

c4,1 =

(
l3p

r−sx2y1

τ
+
l1p

r−sx2y1

x1y2

− τ

x1y2

)
prx3 +

prx2y2

τ

=

(
l3p

r−sx2y1

τ
− l2

)
prx3 +

prx2y2

τ
(follows from (8.1))

= x4p
n (follows from (8.6)).

Similarly, the remaining cases can be verified. One could also verify that

q1


1

−1

−pr−sx2y1
x1y2

1
prx2
x1

pr−sx2y1
x1y2

1

 =


1

1

1

prx3 1

 γ1.

From this we get


1

−1

−pr−sx2y1
x1y2

1
prx2
x1

pr−sx2y1
x1y2

1

 ∼


1

1

1

prx3 1

 ,

and the second part of the lemma follows.

Example 2: Assume:

p=3, r=4, s=3, n=5, x=5/1134 and y=11/1890.
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Then we have,

s1s2


1 2−1 · 3−3 · 5−1 · 7−1 · 11

1 2−1 · 3−4 · 5 · 7−1 2−1 · 3−3 · 5−1 · 7−1 · 11

1

1



∼


− 5

1134
− 11

1890
−1

−1

1 121
15750

33
25

−1134
5

 s1s2


1 11

1890

1 5
1134

11
1890

1

1

 s1

=


1

−1

−33
25

1
1134

5
33
25

1



∼


1 − 3

25

1

1 3
25

1




1
25

25

− 1
25
−277830

25




1

−1

−33
25

1
1134

5
33
25

1



=


4 −3

−33 25

367416 −277830 4 3

5670 33 25



∼


1 −448224

1

1 448224

1




1

1

1111320 1

1




4 −3

−33 25

367416 −277830 4 3

5670 33 25



=


1

1

1

5670 1




14791396 −11205603

−33 25

2505123936 27505170 14791396 11205603

−83867209650 63535769010 33 25



∼


1

1

1

2 · 34 · 5 · 7 1

 .
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Example 3: Assume:

p=3, r=6, s=3, n=5, x=5/10206 and y=11/1890.

Then we have,

s1s2


1 2−1 · 3−3 · 5−1 · 7−1 · 11

1 2−1 · 3−6 · 5 · 7−1 2−1 · 3−3 · 5−1 · 7−1 · 11

1

1



∼


− 5

10206
− 11

1890
−1

−1

1 121
1750

297
25

−10206
5

 s1s2


1 11

1890

1 5
10206

11
1890

1

1

 s1

=


1

−1

−297
25

1
10206

5
297
25

1



∼


1 8

25

1

1 − 8
25

1




1
25

25

− 1
25

740880

25




1

−1

−297
25

1
10206

5
297
25

1



=


−95 8

−297 25

−8817984 740880 −95 −8

51030 297 25



∼


1

1

1

1




1

1

−2963520 1

1




−95 8

−297 25

−8817984 740880 −95 −8

51030 297 25


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=


1

1

1

1




−95 8

−297 25

871347456 −73347120 −95 −8

51030 297 25



∼


1

1

1

1

 .

Lemma 8.1.2. Assume p to be a prime number. Let n be a positive integer. Let

x =
x1

prx2

, y =
y1

psy2

and z =
z1

ptz2

,

where r, s, t are non negative integers, x1, x2, y2, z2 are non-zero integers and y1,

z1 are integers. Let any two non-zero elements selected from the set {x1, y1, z1,

x2, y2, z2, p} be mutually co-prime except, possibly, when both the chosen elements

belong to {x2, y2, z2}. Let

g = s1s2s1

1 x
1

1 −x
1


1 y z

1 y
1

1

 .
Then there exist x′, y′ ∈ Q such that

Q(Q) g Γ0(pn) = Q(Q)s1s2

1 y′

1 x′ y′

1
1

Γ0(pn).

Proof. We have

g ∼ s1s2s1

1 x
1

1 −x
1


1 y z

1 y
1

1

 s1
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=

 1
1

−x 1
−x 1

 s1s2

1 y
1 z y

1
1


∼

x 1
x 1

1
x

1
x


 1

1
−x 1
−x 1

 s1s2

1 y
1 z y

1
1


= s2s1s2s1s2

1 x−1

1
1 −x−1

1


1 y

1 z y
1

1

 . (8.8)

Case 1: y 6= 0, z 6= 0. Let us first consider the case when y 6= 0 and z 6= 0. Let

α = gcd(x2y2, z2).

Further,

if s > t− r then let



−d1p
n+t + d2x1 = 1 with d1, d2 ∈ Z,

d3 = d1x2y2z2 p
n+s+r+t,

c1 = (x2y2z1 p
r+s−t + x1y1z2)α−1,

τ = gcd(d3, c1),

y4 = ατ x−1
1 z−1

2 p−s,

−d4τp
n + d5x1 = 1 with d4, d5 ∈ Z,

d = d4x2y2z2α
−1pn+s+r.

(8.9)
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Otherwise,

if s ≤ t− r then let



−d1p
n+s+r + d2x1 = 1 with d1, d2 ∈ Z,

d3 = d1x2y2z2 p
n+s+r+t,

c1 = (x2y2z1 + x1y1z2 p
−r−s+t)α−1,

τ = gcd(d3, c1),

y4 = ατ x−1
1 z−1

2 pr−t,

−d4τp
n + d5x1 = 1 with d4, d5 ∈ Z,

d = d4x2y2z2α
−1pn+t.

(8.10)

Here we note that in order to define d4 and d5 as above in (8.9) and (8.10) we need

gcd(τ, x1) = 1. To see that gcd(τ, x1) = 1, we first note gcd(d1, x1) = 1 from the first

statement in both (8.9) and (8.10). Then the next statement gives gcd(x1, d3) = 1 on

using the hypothesis of the lemma. Since τ = gcd(d3, c1) we obtain gcd(x1, τ) = 1.

Now let c2 = c1τ
−1. Clearly gcd(d3, c2) = 1. All the prime factors of d, ex-

cept possibly those of d4, are also the factors of d3. This means that gcd(d, c2) =

gcd(d4, c2). Let τ ′ = gcd(d4, c2). Let τ ′′ be the largest factor of c2 that is co-prime

to τ ′. If needed on replacing d4 by d4 − τ ′′x1 and d5 by d5 − τ ′′τpn, and noting that

gcd(x1, c2) = 1, we can assume that τ ′ = gcd(d4, c2) = 1. Then we pick integers a1

and b such that

a1d− bc2 = 1. (8.11)

Next, we set

a =a1 + bz1z
−1
2 p−t,
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c =c2 + dz1z
−1
2 p−t,

x4 =
cprx2y4

x1

+
prx2y1

psx1

+
dy1y4

psy2

.

Then

g ∼ s2s1s2s1s2

1 x−1

1
1 −x−1

1


1 y

1 z y
1

1

 (from (8.8))

= s2


1

1 −prx2
x1

−1 − z1
ptz2

− y1
psy2

−1 −prx2
x1
−prx2z1
ptx1z2

− y1
psy2
−prx2y1
psx1y2

 (note that s2 ∈ Q(Q))

∼

1
a b
c d

1




1
1 −prx2

x1
−1 − z1

ptz2
− y1
psy2

−1 −prx2
x1
−prx2z1
ptx1z2

− y1
psy2
−prx2y1
psx1y2



=


1

−b a− bz1
ptz2
−aprx2

x1
− by1

psy2

−d c− dz1
ptz2
− cprx2

x1
− dy1

psy2

−1 −prx2
x1
−prx2z1
ptx1z2

− y1
psy2

−prx2y1
psx1y2



=

 1
1 y4

y2
1

−1 −x4 −y4
y2




−b a− bz1
ptz2

−aprx2
x1
− by1

psy2
− y4

y2

1 prx2
x1

+ dy4
y2
− cy4

y2
+ prx2z1

ptx1z2
+ dy4z1

pty2z2
+ y1

psy2

cprx2y4
x1y2

− x4 + prx2y1
psx1y2

+ dy1y4
psy22

1
−d c− dz1

ptz2
− cprx2

x1
− dy1

psy2


=

 1
1 y4

y2
1

−1 −x4
y2
−y4
y2


 −b a1 −a1d5x2p

r

1 d5x2p
r

1
−d c2 −c2d5x2p

r

 (8.12)

∼

 1
1 y4

y2
1

−1 −x4
y2
−y4
y2


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= s1s2

1 y′

1 x′ y′

1
1


with

x′ =
x4

y2

and y′ =
y4

y2

.

Here only the equality (8.12) needs an explanation. We assume that (8.10) holds.

The details are similar for (8.9) and can easily be verified. Let mi,j denote the (i, j)

entry of the second matrix appearing in (8.12). We begin with m2,2. We have

pr
x2

x1

+
dy4

y2

= pr
x2

x1

+

(
d4x2y2z2p

n+t

αy2

)(
ατpr

x1z2pt

)
(from the definition of d and y4 in (8.10))

=
x2p

r

x1

(1 + d4τp
n)

= d5x2p
r (from the second last relation in (8.10)),

as desired. Next we consider m4,4. We have in this case

cprx2

x1

+
dy1

y2ps
=
c2p

rx2

x1

+
dx2z1p

r

x1z2pt
+
dy1

psy2

(using the definition of c)

=
c2p

rx2

x1

+
dpr−t

x1y2z2

(x2y2z1 + x1y1z2p
t−r−s)

=
c2p

rx2

x1

+
dpr−t

x1y2z2

(αc1) (using the definition of c1)

=
c2p

rx2

x1

+
dpr−t

x1y2z2

(ατc2) (using the definition of c2)

=
c2p

rx2

x1

+
c2dy4

y2

(using the definition of y4)

= c2

(
prx2

x1

+
dy4

y2

)
= c2m2,2 = c2d5x2p

r = −m4,4,
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as we wanted. Next we consider m1,4. We have

aprx2

x1

+
by1

psy2

+
y4

y2

=
aprx2

x1

+
y4

y2

+
bpr−t

x1y2z2

(ταc2 − x2y2z1) (using the definition of c2 and c1)

=
aprx2

x1

+
pr−tτα

x1y2z2

+
bpr−t

x1y2z2

(ταc2 − x2y2z1) (using the definition of y4)

=
aprx2

x1

+
−bx2z1p

r−t

x1z2

+
ταpr−t

x1y2z2

(1 + bc2)

=
aprx2

x1

− bx2z1p
r−t

x1z2

+
ταpr−t

x1y2z2

(a1d) (from (8.11))

=
aprx2

x1

− bx2z1p
r−t

x1z2

+
a1τx2d4p

n+r

x1

(using the definition of d)

=

(
a− bz1

ptz2

)
x2p

r

x1

+
a1τx2d4p

n+r

x1

=
a1x2p

r

x1

+
a1τx2d4p

n+r

x1

(using the definition of a)

=
a1x2p

r

x1

(1 + d4τp
n)

= a1d5x2p
r (using the definition of d4 and d5)

= −m1,4,

as desired. Next we consider m2,3 as follows.

− cy4

y2

+
prx2z1

ptx1z2

+
dy4z1

pty2z2

+
y1

psy2

=
prx2z1

ptx1z2

+
y1

psy2

+
y4

y2

(
dz1

z2pt
− c
)

=
prx2z1

ptx1z2

+
y1

psy2

+
y4

y2

(−c2) (using the definition of c)

= 0 = m2,3 (using the definition of y4 and c2).

From the definition of x4 it is easy to see that m2,4 = 0. One can easily check the re-

maining cases. This completes the proof in the case when both y and z are non-zero.
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Case 2: y = 0, z 6= 0. If y = 0, z 6= 0 then we set y1 = 0, y2 = 1 and s = 0.

It is easy to see that the previous proof remains valid for this case as well.

Case 3: y 6= 0, z = 0. If z = 0, y 6= 0 then we set z1 = 0, z2 = 1, and t = 0;

and it is easy to see that the proof given in the first case remains valid for this case

as well.

Case 4: y = 0, z = 0. Finally, we consider the case when both y and z are zero. In

this case we make the following choices. Let

c = x1, d = −pn

and select integers a and b such that

ad− bc = 1.

If r ≥ n then set

y4 =
x2p

r−n

x1

, x4 = x2y4p
r, e = bx2p

r−n, f = 0,

otherwise if r < n then set

y4 =
−ax2p

r

x1

, x4 = x2y4p
r, e = 0, f = −bx2p

r.
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Now we have

g ∼ s2s1s2s1s2

1 x−1

1
1 −x−1

1

 (from (8.8))

∼

1
a b
c d

1




1
1 −prx2

x1
−1

−1 −prx2
x1



=

 1
1 y4

1
−1 −x4 −y4




−b a −aprx2
x1
− y4

1 dy4 + prx2
x1
−cy4

cprx2y4
x1
− x4

1
−d c − cprx2

x1


=

 1
1 y4

1
−1 −x4 −y4


 −b a e

1 f −p−n+rx2

1
pn x1 −prx2


∼

 1
1 y4

1
−1 −x4 −y4

 = s1s2

1 y′

1 x′ y′

1
1


with

x′ = x4 and y′ = y4.

This completes the proof of the lemma.

Example 1: Assume:

p=13, r=2, s=3, t=7, n=8,

x=29/24167, y=3/101062 and z=7/1380467374.
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Then we have,

s1s2s1s2


1 24167

29
646

19050187
33

1334

1 7
1380467374

3
101062

1 −24167
29

1



=


1

1 −24167
29

−1 − 7
1380467374

− 3
101062

−1 −24167
29

− 646
19050187

− 33
1334



∼


1

−8157958185984318059325
1380467374

−1165422597980799695023

22195217188012 4377110455206956994098

1




1

1 −24167
29

−1 − 7
1380467374

− 3
101062

−1 −24167
29

− 646
19050187

− 33
1334



=


1

1 2
19050187

1

−1 −270240673953745
17342

− 2
19050187




1165422597980799695023 −86 39519979425764266

1 459534644485631

1

−4377110455206956994098 323 −148429690168858813



= s1s2


1 2

19050187

1 270240673953745
17342

2
19050187

1

1

 .

Example 2: Assume:

p=11, r=5, s=3, t=7, n=8,

x=23/23030293, y=3/42592 and z=7/370256249.
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Then we have,

s1s2s1s2


1 23030293

23
353663

18612704
51909
736

1 7
370256249

3
42592

1 −23030293
23

1



=


1

1 −23030293
23

−1 − 7
370256249

− 3
42592

−1 −23030293
23

− 353663
18612704

−51909
736



∼


1

−15057809491092633085093
370256249

−2151115644942145535231

−226589340960673 −11985159939775253897952

1




1

1 −23030293
23

−1 − 7
370256249

− 3
42592

−1 −23030293
23

− 353663
18612704

−51909
736



=


1

1 1
18612704

1

−1 171098394218543935
13984

− 1
18612704




2151115644942145535231 63476 40873696328817023672

1 −643923629857222

1

11985159939775253897952 353663 227731962706194704186



= s1s2


1 1

18612704

1 −171098394218543935
13984

1
18612704

1

1

 .

Lemma 8.1.3. Assume n and s to be positive integers. Also let p be a prime number
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and η be an integer such that gcd(η, p) = 1. Then

Q(Q)

 1
1

ps 1
ps 1

Γ0(pn) = Q(Q)

 1
1

ηps 1
ηps 1

Γ0(pn).

Proof. If s ≥ n then, of course, both sides equal Q(Q)1Γ0(pn). Therefore, in the

following we assume that s < n . Next we consider the case when n ≥ 2s and make

the following choices. Since gcd(η, p) = 1, there exist integers α1 and β1 such that

α1η + β1p
n−s = 1. Further, we also have gcd(α1, p

n−s) = 1, so there exist β′2 and β′3

such that α1β
′
2 + β′3p

n−s = 1. Let β2 = β1β
′
2 and β3 = −β1β

′
3. Now set

a =
1− β1p

n−s

η
= α1, b = pn−2sβ3, c = pn, d = η + β2p

n−s.

We also check that

ad− bc = α1(η + β2p
n−s)− β3p

2n−2s = 1− β1p
n−s + α1β2p

n−s − β3p
2n−2s

= 1− β1p
n−s(1− α1β

′
2 − β′3pn−s) = 1.

On the other hand if 2s > n, then we make the following choices. Since gcd(η, p) = 1

there exist integers α1 and β1 such that α1η + β1p
n−s = 1. Further, we also have

gcd(α1, p
s) = 1, so there exist β′2 and β′3 such that α1β

′
2 + β′3p

s = 1. Let β2 = β1β
′
2

and β3 = −β1β
′
3. Now set

a =
1− β1p

n−s

η
= α1, b = β3, c = pn d = η + β2p

n−s.

Next we note,

ad− bc = α1(η + β2p
n−s)− β3p

n = 1− β1p
n−s + α1β2p

n−s − β3p
n
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= 1− β1p
n−s + α1β1β

′
2p
n−s + β1β

′
3p
n = 1− β1p

n−s(1− α1β
′
2 − β′3ps) = 1.

Now the lemma follows from the following calculations.

Q(Q)

 1
1

ps 1
ps 1

Γ0(pn) = Q(Q)

1
a b
c d

1


 1

1
ps 1

ps 1

Γ0(pn)

= Q(Q)

 1
1

ηps 1
ηps 1


 1

bps a b
dps − ηps c d
−bη(ps)2 −aηps + ps −bηps 1

Γ0(pn)

= Q(Q)

 1
1

ηps 1
ηps 1

Γ0(pn).

Lemma 8.1.4. Assume s, r and n to be positive integers with 0 < s ≤ n. Also let

p be a prime number and η1, η2 be integers such that gcd(η1, p) = 1, gcd(η2, p) = 1.

Then

Q(Q)

 1
1

ps 1
η2p

r ps 1

Γ0(pn) = Q(Q)

 1
1

η1p
s 1

η2p
r η1p

s 1

Γ0(pn).

Proof. Let

z1 =

 1
1

ps 1
η2p

r ps 1

 and z2 =

 1
1

η1p
s 1

η2p
r η1p

s 1

 .
Then we note that,

z−1
2

1
a b
c d

1

 z1 =

 1
bps a b

dps − psη1 c d
−b(ps)2η1 −apsη1 + ps −bpsη1 1

 .
Now, the result follows by proceeding as in the proof of Lemma 8.1.3.

Lemma 8.1.5. Assume n to be a positive integer and s to be a non-negative integer.
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Also let p be a prime number. Let y1, y2 ∈ Z such that p, y1, y2 are pairwise co-

prime. Then we have the following results.

1. If s < n then there exists an integer b1 with gcd(b1, p) = 1, such that

Q(Q)

 1
1

y1
y2
ps 1

y1
y2
ps 1

Γ0(pn) = Q(Q)

 1
1

b1p
s 1
b1p

s 1

Γ0(pn).

2. If s ≥ n then

Q(Q)

 1
1

y1
y2
ps 1

y1
y2
ps 1

Γ0(pn) = Q(Q)1Γ0(pn).

Proof. Let α1 and β1 be integers such that

α1p
sy1 + β1y2 = 1.

If 0 < s < n then set:

α = α1, β = β1,

b1, b2 ∈ Z, such that b1β + b2p
n−s = y1,

b = b1p
s.

Otherwise, if s ≥ n then set:

α = α1, β = β1,

b2 = y1p
s−n, b1 = 0, b = 0.
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If s = 0 then set:

α =


α1 − y2 if p | β1

α1 if p - β1

,

β =


β1 + y1 if p | β1

β1 if p - β1

,

b1, b2 ∈ Z, such that b1β + b2p
n = y1,

b = b1.

We note that, for each of the cases considered above, i.e., whenever s ≥ 0, the

following holds,

−bβ + psy1 = (−b1β + y1)ps = b2p
n.

Then,

 1
1

y1
y2
ps 1

y1
y2
ps 1

 ∼
y
−1
2 −α

y−1
2 −α

y2

y2


 1

1
y1
y2
ps 1

y1
y2
ps 1

 =

 β −α
β −α

psy1 y2

psy1 y2


=

1
1

b 1
b 1


 β −α

β −α
−bβ + psy1 αb+ y2

−bβ + psy1 αb+ y2


∼

 1
1

b1p
s 1
b1p

s 1

 .
This completes the proof of the lemma.
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Lemma 8.1.6. Assume n to be a positive integer, r to be a non-negative integer and

p to be a prime number. Let x1, x2 ∈ Z such that p, x1, x2 are pairwise co-prime.

Then we have the following results.

1. If r < n then there exists an integer c1 with gcd(c1, p) = 1, such that

Q(Q)

 1
1

1
x1
x2
pr 1

Γ0(pn) = Q(Q)

 1
1

1
c1p

r 1

Γ0(pn).

2. If r ≥ n then

Q(Q)

 1
1

1
x1
x2
pr 1

Γ0(pn) = Q(Q)1Γ0(pn).

Proof. Let α1 and β1 be integers such that

α1p
rx1 + β1x2 = 1.

If 0 < r < n then set:

α = α1, β = β1,

c1, c2 ∈ Z, such that c1β + c2p
n−r = x1,

c = c1p
r.

Otherwise, if r ≥ n then set:

α = α1, β = β1,

c2 = x1p
r−n, c1 = 0, c = 0.
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If r = 0 then set:

α =


α1 − x2 if p | β1

α1 if p - β1

,

β =


β1 + x1 if p | β1

β1 if p - β1

,

c1, c2 ∈ Z, such that c1β + c2p
n = x1,

c = c1.

We note that, for r ≥ 0 the following holds,

−cβ + prx1 = (−c1β + x1)pr = c2p
n.

Then,

 1
1

1
x1
x2
pr 1

 ∼
x
−1
2 −α

1
1

x2


 1

1
1

x1
x2
pr 1

 =

 β −α
1

1
prx1 x2


=

1
1

1
c 1


 β −α

1
1

−βc+ prx1 αc+ x2

 ∼
 1

1
1

c1p
r 1

 .
This completes the proof of the lemma.

Lemma 8.1.7. Assume n to be a positive integer and p to be a prime number. Let

x, y be non-zero integers co-prime to p. Then we have the following results.
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1.

Q(Q)

1
1

1
x 1

Γ0(pn) = Q(Q)s1s2Γ0(pn).

2.

Q(Q)

1
1

y 1
y 1

Γ0(pn) = Q(Q)s1s2Γ0(pn).

3.

Q(Q)

1
1

y 1
x y 1

Γ0(pn) = Q(Q)s1s2Γ0(pn).

Proof. Let k1 and k2 be integers such that

k1x+ k2p
n = 1.

Then we have,

1
1

1
x 1

 ∼
1

1
1

x 1


 −k1 1

1
1

k1x− 1 −x


=

1 k1

1
1

1

 s1s2 ∼ s1s2.

This completes the proof of the first part of lemma.

Now, let l1 and l2 be integers such that l1y + l2p
n = −1. Then,

1
1

y 1
y 1

 ∼
1

1
y 1
y 1


 l1 1

l1 1
−l1y − 1 −y

−l1y − 1 −y


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=s2

1 l1
1

1 −l1
1

 s1s2 ∼ s1s2.

This completes the proof of the second part of lemma. Finally we have,

1
1

y 1
x y 1

 ∼
1

1
y 1
x y 1


 l1 1

l21x l1 1
−l1y − 1 −y

−l21xy − l1x −l1y − 1 −x −y


=

1
l21x 1
−1

1


1 l1

1
1 −l1

1

 s1s2 ∼ s1s2.

This completes the proof of the last part of lemma.

Lemma 8.1.8. Assume n and r to be integers such that 0 < r < n. Let p be a prime

number and x, y ∈ Z such that gcd(x, p) = gcd(y, p) = 1. Let

g1(x, p, r) =

 1
1

1
prx 1

 and g1(y, p, r) =

 1
1

1
pry 1

 .
Then,

Q(Q)g1(x, p, r)Γ0(pn) = Q(Q)g1(y, p, r)Γ0(pn),

if and only if

x ≡ y mod pf

where f = min(r, n− r).

Proof. It is clear that g1(x, p, r)Γ0(pn) ∼ g1(y, p, r)Γ0(pn) if and only if there exists

an element

q =

t a b
c d

ad−bc
t


1 l µ k

1 µ
1 −l

1

 ∈ Q(Q),

such that g1(y, p, r)−1qg1(x, p, r) ∈ Γ0(pn). Suppose g1(y, p, r)−1qg1(x, p, r) ∈ Γ0(pn).
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Then on comparing the multiplier on both the sides we get ad − bc = 1. Now we

have,

g1(y, p, r)−1qg1(x, p, r) =

 kprtx+ t lt µt kt
−(bl − aµ)prx a b −bl + aµ
−(dl − cµ)prx c d −dl + cµ

−
(
kprty − 1

t

)
prx− prty −lprty −µprty −kprty + 1

t

 .
We conclude t = ±1. We also need the condition that

−
(
kprty − 1

t

)
prx− prty ≡ 0 mod pn

=⇒ t2y − x ≡ 0 mod pf =⇒ y − x ≡ 0 mod pf .

Conversely, we show that if y − x ≡ 0 mod pf then g1(x, p, r) and g1(y, p, r) lie in

the same double coset. Suppose x − y = k2p
f . As gcd(pn−r−f , xypr−f ) = 1 there

exist integers k and k1 such that kxypr−f + k1p
n−r−f = k2. So we obtain,

− (kpry − 1)prx− pry = k1p
n.

Therefore,

g1(y, p, r)−1

1 k
1

1
1

 g1(x, p, r) =

 kprx+ 1 k
1

1
−(kpry − 1)prx− pry −kpry + 1

 ∈ Γ0(pn).

This means that g1(x, p, r) and g1(y, p, r) lie in the same double coset. This com-

pletes the proof of the lemma.

Lemma 8.1.9. Assume s, r and n to be integers such that n ≥ 1, 0 < s < n. Let

115



p be a prime number and x, y ∈ Z such that gcd(x, p) = gcd(y, p) = 1. Let

g3(p, x, r, s) =

 1
1

ps 1
xpr ps 1

 , g2(p, s) =

 1
1

ps 1
ps 1


and g3(p, y, r, s) =

 1
1

ps 1
ypr ps 1

 .
1. If r < n and 0 < s < r < 2s and f = min(2s− r, n− r) then

Q(Q)g3(p, x, r, s)Γ0(pn) = Q(Q)g3(p, y, r, s)Γ0(pn) ⇐⇒ x ≡ y mod pf .

2. If 2s ≤ r then

Q(Q)g3(p, x, r, s)Γ0(pn) = Q(Q)g2(p, s)Γ0(pn).

3. If r ≥ n then

Q(Q)g3(p, x, r, s)Γ0(pn) = Q(Q)g2(p, s)Γ0(pn).

Proof. It is clear that Q(Q)g3(p, x, r, s)Γ0(pn) = Q(Q)g3(p, y, r, s)Γ0(pn) if and only

if there exists an element

q =

t a b
c d

ad−bc
t


1 l µ k

1 µ
1 −l

1

 ∈ Q(Q),

such that g3(p, y, r, s)−1qg3(p, x, r, s) ∈ Γ0(pn). Suppose g3(y, p, r, s)−1qg3(x, p, r, s) ∈

Γ0(pn). Then on comparing the multiplier of the matrices on both the sides, we see

that ad − bc = 1. Then on writing the matrix on the left explicitly it also follows
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that t = ±1. We can assume t = 1. Now,

g3(p, y, r, s)−1qg3(p, x, r, s) = kprx+ µps + 1
−(bl − aµ)prx+ bps

−(dl − cµ+ kps)prx− (µps − d)ps − ps
(blps − aµps − kpry + 1)prx− (µpry + bps)ps − pry

kps + l µ k
−(bl − aµ)ps + a b −bl + aµ

−(dl − cµ+ kps)ps − lps + c −µps + d −dl + cµ− kps
−lpry + (blps − aµps − kpry + 1)ps − aps −µpry − bps blps − aµps − kpry + 1

 .
Then on looking at the lowest left entry we get,

(blps − aµps − kpry + 1)prx− (µpry + bps)ps − pry ≡ 0 mod pn

=⇒ pr(x− y) + (bl − aµ)xpr+s − kxyp2r − µypr+s − bp2s ≡ 0 mod pn

=⇒ x− y + (bl − aµ)xps − kxypr − µyps − bp2s−r ≡ 0 mod pn−r

=⇒ x− y ≡ 0 mod pf .

Conversely, we show that if y− x ≡ 0 mod pf then g3(p, x, r, s) and g3(p, y, r, s) lie

in the same double-coset. If f = n− r then, let x− y = k1p
n−r.

Q(Q)g3(p, x, r, s)Γ0(pn)

= Q(Q)g3(p, y, r, s)

 1
1

1
prx− pry 1

Γ0(pn)

= Q(Q)g3(p, y, r, s)

 1
1

1
pnk1 1

Γ0(pn)

= Q(Q)g3(p, y, r, s)Γ0(pn).
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On the other hand if f = 2s− r or equivalently 2s ≤ n, then let x− y = k2p
2s−r.

Q(Q)g3(p, x, r, s)Γ0(pn)

= Q(Q)

1
1 k2

1
1

 g3(p, x, r, s)Γ0(pn)

= Q(Q)g3(p, y, r, s)

 1
k2p

s 1 k2

1
−k2p

s 1

Γ0(pn)

= Q(Q)g3(p, y, r, s)Γ0(pn).

This means that g3(p, x, r, s) and g3(p, y, r, s) lie in the same double coset and the

first part of lemma follows. Next,

Q(Q)g3(p, x, r, s)Γ0(pn)

= Q(Q)

1
1 pr−2 sx

1
1

 g3(p, x, r, s)Γ0(pn)

= Q(Q)g2(p, s)

 1
pr−2 spsx 1 pr−2 sx

1
−pr−2 spsx 1

Γ0(pn)

= Q(Q)g2(p, s)Γ0(pn)

This completes the proof of the second part of lemma. Finally, the last part of the

lemma follows from the calculation

g2(p, s)−1g3(p, x, r, s) =

 1
1

1
prx 1

 ∈ Γ0(pn).
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Theorem 8.1.10. (Double coset decomposition). Assume n ≥ 1. A complete

and minimal system of representatives for the double cosets Q(Q)\GSp(4,Q)/Γ0(pn)

is given by

1, s1s2, g1(p, γ, r) =

 1
1

1
γpr 1

 , 1 ≤ r ≤ n− 1,

g2(p, s) =

 1
1

ps 1
ps 1

 , 1 ≤ s ≤ n− 1,

g3(p, δ, r, s) =

 1
1

ps 1
δpr ps 1

 , 1 ≤ s, r ≤ n− 1, s < r < 2s,

where γ, δ runs through elements in (Z/f1Z)× and (Z/f2Z)× respectively with f1 =

min (r, n− r) and f2 = min (2s− r, n− r). The total number of representatives

given above is

C1(pn) =


p
n
2

+1 + p
n
2 − 2

p− 1
if n is even,

2(p
n+1
2 − 1)

p− 1
if n is odd.

(8.13)

Proof. First we prove completeness. We begin by writing

GSp(4,Q) = Q(Q) tQ(Q)s1

1 ∗
1

1 ∗
1


tQ(Q)s1s2

1 ∗
1 ∗ ∗

1
1

 tQ(Q)s1s2s1

1 ∗ ∗ ∗
1 ∗

1 ∗
1

 , (8.14)

by using the Bruhat decomposition. We consider all the different possibilities.
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First Cell: If g ∈ Q(Q), then, of course, Q(Q)gΓ0(pn) is represented by 1.

Second Cell: Assume that g is in the second cell. Then we may assume that

g = s1

1 x1
x2
1

1 −x1
x2
1

 , x1, x2 ∈ Z, and gcd(x1, x2) = 1.

As gcd(x1, x2) = 1, there exist integers l1 and l2 such that −l1x1 + l2x2 = 1.

Q(Q)gΓ0(pn) = Q(Q)


1
x2

l1
x2

1
x2
−l1
x2

 gΓ0(pn)

= Q(Q)

 l1
l1x1
x2

+ 1
x2

x2 x1

−l1 l1x1
x2

+ 1
x2

x2 −x1

Γ0(pn) = Q(Q)1Γ0(pn).

Third Cell: Next let g be an element in the third cell. We may assume that

g = s1s2

1 y
1 x y

1
1

 , x, y ∈ Q(Q).

The following calculation shows that we can replace x, y by x+ 1 and y + 1 respec-

tively.

s1s2

1 y
1 x y

1
1

 ∼ s1s2

1 y
1 x y

1
1


1 1

1 1 1
1

1


∼ s1s2

1 y + 1
1 x+ 1 y + 1

1
1

 .
Let x1, x2, x3 and p be pairwise co-prime. Also assume y1, y2, y3 and p to be pairwise
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co-prime. Let x = x3pr1/x2 with r1 > 0. Then the above calculation shows that we

can change x to x+ 1 = (x3pr1+x2)/x2. So we can always assume x to be of the form

x1/x2pr for some r ≥ 0. Similarly, we can also assume y to be of the form y1/y2ps with

s ≥ 0. Next, suppose τ = gcd(x1, y1) > 1. Then replacing x = x1/x2pr by x + τ1,

with τ1 being the largest factor of y1 that is co-prime to τ , we can also assume that

gcd(x1, y1) = 1.

Now we consider all the different possibilities that may arise. First of all, it

is clear that, if both x and y are in Z, i.e., x2 = y2 = 1, r = 0, s = 0 then

Q(Q)gΓ0(pn) = Q(Q)s1s2Γ0(pn). Next, if x ∈ Z but y /∈ Z, then

Q(Q)gΓ0(pn) = Q(Q)s1s2

1 y
1 y

1
1

Γ0(pn) = Q(Q)

1
y 1

1
−y 1

 s1s2Γ0(pn)

= Q(Q)s1

1 y−1

1
1 −y−1

1

 s1s2Γ0(pn)

= Q(Q)

 1
1

y−1 1
y−1 1

Γ0(pn)

= Q(Q)


1

1
y2ps

y1
1

y2ps

y1
1

Γ0(pn).

We note that the third equality follows from the following matrix identity.

1
y 1

1
−y 1

 =

−y
−1 1

y
y−1 1
−y

 s1

1 y−1

1
1 −y−1

1

 .
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But, now from the Lemma 8.1.5 and 8.1.3 it follows that if 0 < s < n then

Q(Q)gΓ0(pn) = Q(Q)

 1
1

ps 1
ps 1

Γ0(pn),

and if s ≥ n then

Q(Q)gΓ0(pn) = Q(Q)1Γ0(pn).

Further, If s = 0 then from the Lemma 8.1.5 and 8.1.7 it follows that

Q(Q)gΓ0(pn) = Q(Q)s1s2Γ0(pn),

which is one of the listed representative in the statement of the theorem. Therefore

we are done in this case.

Now consider the case when x 6∈ Z and y ∈ Z. Then we have,

Q(Q)gΓ0(pn) = Q(Q)s1s2

1
1 x

1
1

Γ0(pn)

= Q(Q)

x 1
1

1
1
x

 s1s2

1
1 x

1
1

Γ0(pn)

= Q(Q)

 1
1

1
x−1 1


 −1

1
1

−1

Γ0(pn)

= Q(Q)

 1
1

1
x−1 1

Γ0(pn).

Now it follows from Lemma 8.1.6 and 8.1.7 that if r = 0 then

Q(Q)gΓ0(pn) = Q(Q)s1s2Γ0(pn),
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and if r ≥ n then

Q(Q)gΓ0(pn) = Q(Q)1Γ0(pn).

Further, if 0 < r < n then Lemma 8.1.6 yields that

Q(Q)gΓ0(pn) = Q(Q)

 1
1

1
c1p

r 1

Γ0(pn),

for some integer c1 such that gcd(c1, p) = 1. Then it follows from Lemma 8.1.8 that

g lies in the same double coset as one of the elements listed in the statement of the

theorem.

Next, suppose x /∈ Z and y /∈ Z. If s = r = 0 then from Lemma 8.1.1 and Lemma

8.1.7 it follows that

Q(Q)gΓ0(pn) = Q(Q)s1s2Γ0(pn).

Further it follows from Lemma 8.1.1 that if s ≤ r and r ≥ n then

Q(Q)gΓ0(pn) = Q(Q)1Γ0(pn);

otherwise, if s ≤ r < n then

Q(Q)gΓ0(pn) = Q(Q)g1(x3, p, r)Γ0(pn)

for some non-zero integer x3 co-prime to p. But then these cases have already been

considered . Hence, we are left with the case when s > r and then if s ≥ n from

Lemma 8.1.1 we get

Q(Q) g Γ0(pn) = Q(Q)1Γ0(pn),
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and we are done. Otherwise still assuming s > r but s < n, we get

Q(Q) g Γ0(pn) = Q(Q)

 1
1

η1p
s 1

η2p
−r+2 s η1p

s 1

Γ0(pn),

where η1, η2 ∈ Z and gcd(ηi, p) = 1 for i = 1, 2. In view of Lemma 8.1.4 it further

reduces to

Q(Q) g Γ0(pn) = Q(Q)

 1
1

ps 1
η2p
−r+2 s ps 1

Γ0(pn).

Now, the result follows from Lemma 8.1.9 and we are done in this case as well.

Fourth Cell: Next we consider an element g from the fourth cell and let

g = s1s2s1

1 x
1

1 −x
1


1 y z

1 y
1

1

 .
If x ∈ Z then

Q(Q)gΓ0(pn) = Q(Q)s1s2

1 y
1 z + 2xy y

1
1

Γ0(pn),

and we are reduced to the case of the third cell. Therefore let us assume that x 6∈ Z.

If necessary on multiplication by a suitable matrix from right, we can assume that,

x = x1/prx2, y = y1/psy2 and z = z1/pr1z2 where xi, yi, zi ∈ Z, for i = 1, 2; r, s,

r1 are non-negative integers, x1, x2, p are mutually co-prime integers; y1, y2, p are

mutually co-prime integers and z1, z2, p are also mutually co-prime integers. We

can further adjust x1, y1 and z1 by multiplication by a proper matrix from the right

such that any two non-zero elements selected from the set {x1, y1, z1, x2, y2, z2,

p} are mutually co-prime except, possibly, when both the chosen elements belong
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to {x2, y2, z2}. Then by the virtue of Lemma 8.1.2 once again we are reduced to

the case of the third cell. This proves that the representatives listed in the theorem

constitute a complete set of double coset representatives.

Disjointness.

Now we prove that the listed representatives in the theorem are disjoint. Let w1

and w2 be any two of the listed representatives. It is clear that w1 and w2 represent

the same double coset if and only if there exists an element

q =

t a b
c d

(ad− bc)t−1


1 l µ k

1 µ
1 −l

1

 ∈ Q(Q)

such that w−1
2 qw1 ∈ Γ0(pn). On comparing the multiplier on both the sides we

conclude that ad− bc = 1. On explicitly writing w−1
2 qw1 for each possible choice of

w1 and w2 it becomes clear that both t and t−1 must be integers for the condition

w−1
2 qw1 ∈ Γ0(pn) to hold. Therefore t = ±1. We can assume that t = 1. Also

clearly q must be a matrix with integral entries. Now we consider different pairs of

the listed representatives for checking disjointness.

w1 = g3(p, α, r, s), w2 = g3(p, β, v, w). Let

w1 = g3(p, α, r, s) =

 1
1

ps 1
αpr ps 1

 and w2 = g3(p, β, v, w) =

 1
1

pw 1
βpv pw 1

 ,
with α, β integers co-prime to p and r, s, v, w ∈ Z such that 0 < s < r < 2s, 0 < v <

w < 2v, 0 < s, r < n, 0 < w, v < n. We see that,

w−1
2 qw1 =

 ∗
∗

−(dl − cµ+ kpw)αpr − (µpw − d)ps − pw
−(βkpv − blpw + aµpw − 1)αpr − (βµpv + bpw)ps − βpv
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∗ ∗ ∗
∗ ∗ ∗

−(dl − cµ+ kpw)ps − lpw + c ∗ ∗
−βlpv − (βkpv − blpw + aµpw − 1)ps − apw ∗ ∗


Suppose s > w. If w−1

2 qw1 ∈ Γ0(pn) then looking at the bottom two entries of the

second column we conclude that p must divide both a and c. But, then it contradicts

that ad− bc = 1. Similarly, if s < w by looking at first two entries of the third row

we get that p|d and p|c contradicting ad − bc = 1. Therefore, we assume s = w.

Now looking at the bottom most entry of the first column we conclude that if r 6= v

then the valuation of this element can not be n. Therefore, if r 6= v or s 6= w then

g3(p, α, r, s) and g3(p, β, v, w) lie in different double cosets. If r = v and s = w

then Lemma 8.1.9 describes the condition for g3(p, α, r, s) and g3(p, β, v, w) to lie in

the same double coset. We conclude that such representatives listed in the theorem

represent disjoint double cosets.

w1 = g3(p, α, r, s), w2 = g2(p, w). Let w1 = g3(p, α, r, s) and w2 = g2(p, w). Assume

w−1
2 qw1 ∈ Γ0(pn). Then we see that w−1

2 qw1 =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−(dl − cµ+ kpw)αpr − (µpw − d)ps − pw −(dl − cµ+ kpw)ps − lpw + c ∗ ∗
(blpw − aµpw + 1)αpr − bpspw (blpw − aµpw + 1)ps − apw ∗ ∗


and it is clear that p|c and if s > w then and p|a or else if s < w then p|d. In any

case p|ad− bc = 1 which is a contradiction. Hence, we further assume s = w. Now,

as s < r < 2s, looking at the last entry of the first column we see that the valuation

of the element (blps − aµps + 1)αpr − b(ps)2 is r. Since r < n, we conclude that

g3(p, α, r, s) and g2(p, w) lie in different double cosets.

w1 = g3(p, α, r, s), w2 = g1(p, β, v). Let w1 = g3(p, α, r, s) and w2 = g1(p, β, v). As-
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sume w−1
2 qw1 ∈ Γ0(pn). Then we see that,

w−1
2 qw1 =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−(dl − cµ)αpr + dps −(dl − cµ)ps + c ∗ ∗
−βµpspv − (βkpv − 1)αpr − βpv −βlpv − (βkpv − 1)ps ∗ ∗

 .
Clearly, p|c. Since, r > s, p also divides d and it contradicts the condition ad−bc = 1.

Therefore g3(p, α, r, s) and w2 = g1(p, β, v) lie in different double cosets.

w1 = g2(p, s), w2 = g1(p, β, v). Let w1 = g2(p, s) and w2 = g1(p, β, v). Assume that

w−1
2 qw1 ∈ Γ0(pn). Then we see that,

w−1
2 qw1 =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

dps −(dl − cµ)ps + c ∗ ∗
−βµpspv − βpv −βlpv − (βkpv − 1)ps ∗ ∗

 .
Once again we see that p divides both c and d which is a contradiction to the

condition ad− bc = 1. Therefore g2(p, s) and w2 = g1(p, β, v) lie in different double

cosets.

w1 = g2(p, s), w2 = g2(p, w). Let w1 = g2(p, s) and w2 = g1(p, w). Let us assume

that w−1
2 qw1 ∈ Γ0(pn). Then we see that,

w−1
2 qw1 =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

dps −(dl − cµ)ps + c ∗ ∗
−βµpspw − βpw −βlpw − (βkpw − 1)ps ∗ ∗

 .
Once again we see that p|c and if s > w then p|a or else if s < w then p|d. In any

case p|ad − bc = 1, which is a contradiction. Therefore g2(p, s) and g2(p, w) lie in

different double cosets.

w1 = g1(p, α, r), w2 = g1(p, β, v). Let w1 = g1(p, α, r) and w2 = g1(p, β, v). Let us
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assume that w−1
2 qw1 ∈ Γ0(pn). Then we see that,

w−1
2 qw1 =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−(dl − cµ)αpr c ∗ ∗
−(βkpv − 1)αpr − βpv −βlpv ∗ ∗

 .
Since r, v < n, we see that if r 6= v then valuation of −(βkpv − 1)αpr − βpv is

less than n. Therefore g1(p, α, r) and g1(p, β, v) lie in different double cosets. This

completes the proof of disjointness.

The number of representatives.

Finally, we calculate the total number of inequivalent representatives. First let n be

even, say n = 2m for some positive integer m. Then

#(Q(Q)\GSp(4,Q)/Γ0(p2m))

= 2 + 2m− 1 +
2m−1∑
r=1

φ(pmin(r,2m−r)) +
2m−1∑
s=1

min(2s−1,2m−1)∑
r=s+1

φ(pmin(2s−r,2m−r))

=
pm+1 + pm − 2

p− 1
.

Similarly, if n is odd, say n = 2m+ 1 then,

#(Q(Q)\GSp(4,Q)/Γ0(p2m+1))

= 2 + 2m+
2m∑
r=1

φ(pmin(r,2m+1−r)) +
2m∑
s=1

min(2s−1,2m)∑
r=s+1

φ(pmin(2s−r,2m+1−r))

= 2 + 2m+
m∑
r=1

φ(pr) +
2m∑

r=m+1

φ(p2m+1−r) +
m∑
s=1

2s−1∑
r=s+1

φ(p2s−r)

+
2m∑

s=m+1

2m∑
r=s+1

φ(p2m+1−r)

= 2 + 2m+ pm − 1 + pm − 1 +
pm −mp+m− 1

p− 1
+
pm −mp+m− 1

p− 1
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=
2(pm+1 −mp+m− 1)

p− 1
=

2(pm+1 − 1)

p− 1
.

Thus on combining these we obtain the formula (8.13) giving the number of one-

dimensional cusps.

8.2 Double coset decomposition

Q(Q)\GSp(4,Q)/Γ0(N)

We begin by proving the following lemma.

Lemma 8.2.1. Assume N =
m∏
i=1

pnii . Let C1(pnii ) denote the number of inequiva-

lent representatives for the double cosets Q(Q)\GSp(4,Q)/Γ0(pnii ) (refer Theorem

8.1.10). Then, the number of inequivalent representatives for the double cosets

Q(Q)\GSp(4,Q)/Γ0(N) is given by C1(N) =
∏m

i=1C1(pnii ).

Proof. Before proceeding with the proof we recall Γ∞(Z) := Q(Q) ∩ Sp(4,Z),

∆(Z/NZ) := {
[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

]
∈ Sp(4,Z/NZ)} and Γ∞(Z/NZ) := {γ mod N | γ ∈

Γ∞(Z)}.

Next we note that the representatives for Q(Q)\GSp(4,Q)/Γ0(N) may be ob-

tained from the representatives of Q(Q)\GSp(4,Q)/Γ0(pnii ) for i = 1 to m. This

observation is essentially based on the following two well known facts.

1. The natural projection map from Sp(4,Z) to Sp(4,Z/NZ) is surjective.

2. Sp(4,Z/
∏

p p
eZ)

∼→
∏

p Sp(4,Z/peZ).

In fact, we have

Sp(4,Z)/Γ0(N)
∼→ (Sp(4,Z)/Γ(N)) /(Γ0(N)/Γ(N))

∼→ Sp(4,Z/NZ)/∆(Z/NZ).
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Clearly, ∆(Z/NZ) =
∏m

i=1 ∆(Z/pnii Z) and the following diagram is commutative.

Sp(4,Z/NZ)
∏m

i=1 Sp(4,Z/pnii Z)

g (g1, · · · , gm)

g∆(Z/NZ) (g1∆(Z/pn1
1 Z), · · · , gm∆(Z/pnmm Z))

A = Sp(4,Z/NZ)/∆(Z/NZ)
∏m

i=1 Sp(4,Z/pnii Z)/∆(Z/pnii Z) = B

∈

∼
ψ

∈

∈ ∈

∼
φ

Next we show that the left action by Γ∞(Z) is compatible with the isomorphisms

described in the commutative diagram above. In fact, Γ∞(Z) acts on both sides as

follows:

• on A: via

Γ∞(Z)→ Γ∞(Z/NZ)

γ → γ̄

• on B: via

Γ∞(Z)→ Γ∞(Z/NZ)
∼→

m∏
i=1

Γ∞(Z/pnii Z)

γ → γ̄
∼→ (γ1, γ2, · · · · · · γm−1, γm) .

Let g ∈ Sp(4,Z/NZ), a = g∆(Z/NZ) ∈ A and γ ∈ Γ∞(Z) then it is easy to check
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that φ(γa) = γ(φ(a)). Therefore we obtain,

Q(Q)\GSp(4,Q)/Γ0(N)
∼→ (Q(Q) ∩ Sp(4,Z))\Sp(4,Z)/Γ0(N)

∼→ Γ∞(Z/NZ)\Sp(4,Z/NZ)/∆(Z/NZ)

∼→
m∏
i=1

Γ∞(Z/pnii Z)\Sp(4,Z/pnii Z)/∆(Z/pnii Z).

Now, the result follows from Theorem 8.1.10.

Now we describe a minimal and complete set of representatives for the double

cosets Q(Q)\GSp(4,Q)/Γ0(N) in the following theorem.

Theorem 8.2.2. Assume N =
m∏
i=1

pnii . A complete and minimal system of represen-

tatives for the double cosets Q(Q)\GSp(4,Q)/Γ0(N) is given by

g1(γ, x) =

 1
1

1
xγ 1

 , 1 ≤ γ ≤ N, γ|N,

g3(γ, δ, y) =

 1
1

δ 1
yγ δ 1

 , 1 < δ < γ ≤ N, γ|N, δ|N, δ|γ, γ|δ2;

where for fixed γ and δ we have

x = M + ζ
∏

pi-M,pi|N

pnii , y = L+ θ
∏

pi-L, pi|N

pnii

with M = gcd(γ,
N

γ
), L = gcd(

δ2

γ
,
N

γ
), ζ and θ varies through all the elements of

(Z/MZ)× and (Z/LZ)× respectively. Here we interpret (Z/Z)× as an empty set.

Proof. It is easy to check that the listed representatives are disjoint. Let α(N) de-

note the total number of representatives listed in the statement of the theorem. We

note that for N = pn, with p a prime and n ≥ 1, the number of listed representa-
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tives are the same as given by Lemma 8.1.10 (moreover, the set of representatives

in this case will be seen to be equivalent to the set of representatives given by

Theorem 8.1.10 if one applies the second part of Lemma 8.1.9 and works out the

details). We will show that for any pair of co-prime positive integers R and S we

have α(RS) = α(R)α(S). Then it will follow that the listed representatives form a

complete set because for any N their number will agree with the number given in

Lemma 8.2.1. We have,

α(RS) = 1 +
∑
γ|RS

1<γ≤RS

φ(gcd(γ,
RS

γ
)) +

∑
γ|RS

1<γ≤RS

∑
δ|γ, γ|δ2
γ>δ

φ(gcd(
δ2

γ
,
RS

γ
))

= 1 +
∑
γ|RS

1<γ≤RS

∑
δ|γ, γ|δ2
γ≥δ

φ(gcd(
δ2

γ
,
RS

γ
))

= 1 +
∑

γ1|R, γ2|S
1<γ1γ2≤RS

∑
δ|γ1γ2, γ1γ2|δ2

γ1γ2≥δ

φ(gcd(
δ2

γ1γ2

,
RS

γ1γ2

))

+
∑
γ1|R

1<γ1≤R

∑
δ|γ1, γ1|δ2
γ1≥δ

φ(gcd(
δ2

γ1

,
RS

γ1

))
∑
γ2|S

1<γ1≤S

∑
δ|γ2, γ2|δ2
γ2≥δ

φ(gcd(
δ2

γ2

,
RS

γ2

))

=

1 +
∑
γ1|R

1<γ1≤R

∑
δ1|γ1, γ1|δ21
γ1≥δ1

φ(gcd(
δ2

1

γ1

,
R

γ1

))


1 +

∑
γ2|S

1<γ2≤S

∑
δ2|γ2, γ2|δ22
γ2≥δ2

φ(gcd(
δ2

2

γ2

,
S

γ2

))


= α(R)α(S).

This completes the proof.
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8.3 Double coset decomposition

Q(Qp)\GSp(4,Q)/Si(pn)

We thank Prof. Ralf Schmidt and Prof. Brooks Roberts for sharing the following

result from one of their forthcoming manuscripts.

Proposition 8.3.1. Assume n ≥ 1. A complete and minimal system of represen-

tatives for the double cosets Q(Qp)\GSp(4,Qp)/Si(pn) is given by

1, s1s2,

 1
1

1
pr 1

 , 1 ≤ r ≤ n− 1,

 1
1

ps 1
ps 1

 , 1 ≤ s ≤ n− 1,

 1
1

ps 1
pr ps 1

 , 1 ≤ s, r ≤ n− 1, s < r < 2s.

In particular, #(Q(Qp)\GSp(4,Qp)/Si(pn)) =
[(n+ 2)2

4

]
for all n ≥ 0.

Proof. We first prove disjointness. Abbreviate

gr =

 1
1

1
pr 1

 , hs =

 1
1

ps 1
ps 1

 .
Two elements A and B represent the same double coset if and only if there exists

an element

q =

e a b
c d

(ad− bc)e−1


1 w

1
1 −w

1


1 y z

1 y
1

1

 ∈ Q(Qp)

such that A−1qB ∈ Si(pn). If we have this relation where A and B are two of the

listed elements, then necessarily q ∈ Q(Zp). Since the multiplier on both sides must
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be a unit, we conclude that

[
a b
c d

]
∈ GL(2,Zp). Then also e ∈ Z×p . Multiplying the

relation A−1qB ∈ Si(pn) from the left with e−11, we may assume that e = 1. We go

through the cases:

gr and gt. We have

g−1
t qgr =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

pt + pr(ad− bc− pt(wy + z)) ∗ ∗ ∗

 .
Since ad − bc is a unit, the valuation of pr(ad − bc − pt(wy + z)) is r. Hence this

matrix can only then be in Si(pn) if r = t.

gr and hs. We have

h−1
s qgr =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ c− wps ∗ ∗
∗ −aps ∗ ∗

 .
From c−wps ∈ pnZp it follows that c is not a unit. It then follows from ad−bc ∈ Z×p

that a is a unit. Hence −aps /∈ pnZp.

gr and gths. We have

(gths)
−1qgr =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ c− wps ∗ ∗
∗ −aps − wpt ∗ ∗

 .
From c− wps ∈ pnZp it follows that c is not a unit, and then a ∈ Z×p . Since s < t,

we get v(−aps − wpt) = s. Hence the matrix cannot be in Si(pn).

hs and hu. We have

h−1
u qhs =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

dps − pu(1 + psy) c+ p(. . .) ∗ ∗
∗ ∗ ∗ ∗

 .
If this matrix is in Si(pn), then c cannot be a unit. But ad − bc ∈ Z×p , hence
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a and d are units. Therefore v(dps) = s and v(pu(1 + psy)) = u. Hence from

dps − pu(1 + psy) ∈ pnZp it follows that u = s.

hs and grhu. We have

(grhu)
−1qhs =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

dps − pu(1 + psy) c+ p(. . .) ∗ ∗
∗ ∗ ∗ ∗

 .
As in the previous case we conclude u = s. But

(grhs)
−1qhs =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−pr − bp2s − ypr+s ∗ ∗ ∗

 .
Since r < 2s we get v(−pr − bp2s − ypr+s) = r. Hence the matrix cannot be in

Si(pn).

grhs and gthu. We have

(gthu)
−1qgrhs =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ c+ p(. . .) ∗ ∗
∗ −apu − wpt + ps(ad− bc+ p(. . .)) ∗ ∗

 .
Assume this matrix is in Si(pn). It follows from c + p(. . .) ∈ pnZp that c cannot be

a unit. Since ad− bc ∈ Z×p , we get that a is a unit (also d). Since u < t we obtain

v(−apu−wpt) = u. But v(ps(ad− bc+ p(. . .))) = s. Hence the (2, 4)–coefficient can

only then be in pnZp if u = s. Now

(gths)
−1qgrhs =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

pr(ad− bc)− bp2s + (bw − ay)pr+s − pt(1 + p(. . .)) ∗ ∗ ∗

 .
Since r < 2s, we have v(pr(ad−bc)−bp2s+(bw−ay)pr+s) = r. But v(pt(1+p(. . .))) =

t. It follows that the (4, 1)–coefficient can only then be in Si(pn) if t = r. We proved
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that u = s and t = r, so the two representatives are identical.

In a similar manner one can check all matrices against the representatives 1 and

s1s2. The result is that all the double cosets represented by the elements listed in

the proposition are pairwise disjoint.

Next we prove that the double cosets represented by the listed elements exhaust

all of GSp(4,Qp). By the Bruhat decomposition,

GSp(4,Qp) =Q(Qp) tQ(Qp)s1

1 ∗
1

1 ∗
1

 tQ(Qp)s1s2

1 ∗
1 ∗ ∗

1
1


tQ(Qp)s1s2s1

1 ∗ ∗ ∗
1 ∗

1 ∗
1

 . (8.15)

If g ∈ Q(Qp), then, of course, Q(Qp)gSi(pn) is represented by 1. Assume that g is

in the second cell. We may assume that

g = s1

1 x
1

1 −x
1

 , x ∈ Qp.

If x ∈ Zp, then Q(Qp)gSi(pn) = Q(Qp)s1Si(pn) = Q(Qp)1Si(pn). But if x /∈ Zp,

then, using the usual matrix identity,

Q(Qp)gSi(pn) = Q(Qp)

1
x 1

1
−x 1

 s1Si(pn)

= Q(Qp)s1

1 x−1

1
1 −x−1

1

 s1Si(pn) = Q(Qp)1Si(pn).
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Now let g be an element in the third cell. We may assume that

g = s1s2

1 y
1 x y

1
1

 , x, y ∈ Qp.

If both x and y are in Zp, then Q(Qp)gSi(pn) = Q(Qp)s1s2Si(pn). If x ∈ Zp but

y /∈ Zp, then

Q(Qp)gSi(pn) = Q(Qp)s1s2

1 y
1 y

1
1

 Si(pn) = Q(Qp)

1
y 1

1
−y 1

 s1s2Si(pn)

= Q(Qp)s1

1 y−1

1
1 −y−1

1

 s1s2Si(pn)

= Q(Qp)

 1
1

y−1 1
y−1 1

 Si(pn).

Since y−1 ∈ pZp, the last matrix is equivalent to one of our representatives. Now

assume x /∈ Zp but y ∈ Zp. Then

Q(Qp)gSi(pn) = Q(Qp)s1s2

1
1 x

1
1

 Si(pn) = Q(Qp)

1
1

1
x 1

 s1s2Si(pn)

= Q(Qp)s1s2s1

1 x−1

1
1

1

 s1s2Si(pn)

= Q(Qp)

 1
1

1
x−1 1

 Si(pn).

Since x−1 ∈ pZp, the last matrix is equivalent to one of our representatives. Now
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assume that x /∈ Zp and y /∈ Zp. Then

Q(Qp)gSi(pn) = Q(Qp)

1
y 1

1
x −y 1

 s1s2Si(pn)

= Q(Qp)s1

1 y−1

1
1 −y−1

1


−x

−1 −1
1

1
−x

 s1s2s1

1 x−1

1
1

1

 s1s2Si(pn)

= Q(Qp)

 1
y−1 1

1
−y−1 1


1
−x−1

−x
1

 s2s1

1 x−1

1
1

1

 s1s2Si(pn)

= Q(Qp)

 1
−xy−1 1

1
xy−1 1


1

1
x−1 1

1

 Si(pn). (8.16)

Assume that xy−1 /∈ Zp. Then

Q(Qp)gSi(pn) = Q(Qp)s1

1 −x−1y
1

1 x−1y
1


1

1
x−1 1

1

 Si(pn)

= Q(Qp)s1

1
1
x−1 1

1

 Si(pn)

= Q(Qp)

 1
1

1
x−1 1

 Si(pn).

Since x−1 ∈ pZp, this is one of our cosets. But if xy−1 ∈ Zp, then

Q(Qp)gSi(pn) = Q(Qp)

 1
−xy−1 1

1
xy−1 1


1

1
x−1 1

1

 Si(pn)

= Q(Qp)

 1
1

y−1 x−1 1
xy−2 y−1 1


 1
−xy−1 1

1
xy−1 1

 Si(pn)
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= Q(Qp)

 1
1

y−1 1
xy−2 y−1 1

 Si(pn).

Since xy−1 ∈ Zp, we are in a situation

Q(Qp)gSi(pn) = Q(Qp)

 1
1

ps 1
pr ps 1

 Si(pn) with 0 < s ≤ r.

We are done if r ≥ n. Assume that 0 < s ≤ r < n. If s = r, then we are also done

because of  1
1

pr 1
pr pr 1

 =

1 −1
1
−pr 1 1

1


 1

1
1

pr 1


1 1

1
1 −1

1

 . (8.17)

Assume therefore that 0 < s < r < n. If r ≥ 2s, then we are done again because of

 1
1

ps 1
pr ps 1

 =

1
1 −pr−2s

1
1


 1

1
ps 1

ps 1


 1
pr−s 1 pr−2s

1
−pr−s 1

 . (8.18)

We can therefore assume that 0 < s, r < n and s < r < 2s. But then we have one

of the representatives listed in the proposition. Finally, assume that an element

g = s1s2s1

1 x
1

1 −x
1


1 y z

1 y
1

1


in the last cell in the decomposition (8.15) is given. If x ∈ Zp, then

Q(Qp)gSi(pn) = Q(Qp)s1s2

1 y
1 z + 2xy y

1
1

 Si(pn),
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and we are reduced to the case of the third cell. If x /∈ Zp, then

Q(Qp)gSi(pn) = Q(Qp)s1s2s1

1 x
1

1 −x
1


1 y z

1 y
1

1

 Si(pn)

= Q(Qp)

1
1

x 1
x 1

 s1s2

1 y
1 z y

1
1

 Si(pn)

= Q(Qp)s2s1s2

1 x−1

1 x−1

1
1

 s1s2

1 y
1 z y

1
1

 Si(pn)

= Q(Qp)s2s1s2s1s2

1 x−1

1
1 −x−1

1


1 y

1 z y
1

1

 Si(pn)

= Q(Qp)s1s2s1

1 y′ z′

1 x′ y′

1
1

 Si(pn)

= Q(Qp)s1s2

1 y′

1 z′ y′

1
1

 Si(pn)

with new elements x′, y′, z′. Hence we are again reduced to the case of the third cell.

This completes the proof.
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Chapter 9

Co-dimensions of the spaces of

cusp forms

9.1 Introduction

In this chapter first we will briefly review Satake compactification and cusps and

then prove the main result of this chapter, Theorem 9.4.1. We will also prove

Theorem 9.3.1 giving a classical construction of a linearly independent set of Klingen

Eisenstein series with respect to Γ0(N). We note that in this chapter we will use

the classical version of GSp(4).

9.2 Cusps of Γ0(N)

We recall a few basic facts related to the Satake compactification S(Γ\H2) of Γ\H2

(cf.[33],[34],[3],[29]). Here Γ is a congruence subgroup of Sp(4,Z). We will be in-

terested in S(N) := S(Γ0(N)\H2). By Bd(N) we denote the boundary of S(N).

The one-dimensional components of Bd(N) are modular curves and are called the

one-dimensional cusps. The one-dimensional cusps intersect on the zero-dimensional
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cusps. We define Mk(Bd(N)) to be the space of modular forms on Bd(N) which

consists of modular forms of weight k on the one-dimensional boundary components

such that they are compatible on each intersection point. In the following we make

the above description more explicit. Let GSp(4,Q) = tli=1Γ0(N)giQ(Q). Let ω1(q) =

[ a b
c d ] for q =

[ ∗ ∗ ∗ ∗
a b ∗
c d ∗
∗

]
∈ Q(Q) and let ı1 be the embedding map ı1([ a b

c d ]) =

[
1
a b
c d

1

]
from SL(2,Q) to Q(Q). Then the one-dimensional cusps bijectively correspond to

{gi}. Let Γi = ω1(g−1
i Γ0(N)gi∩Q(Q)). In this situation the one-dimensional cusp gi

can be associated to the modular curve Γi\H1. The zero-dimensional cusps of Γi\H1

correspond to the representatives hj of Γi\SL(2,Z)/Γ2
∞(Z). In fact, hj can be identi-

fied with the zero-dimensional cusp of S(N) that corresponds to Γ0(N)giı1(hj)P (Q).

If Γ0(N)giı1(hj)P (Q) = Γ0(N)grı1(hj)P (Q) for two inequivalent one-dimensional

cusps gi and gr then it means that these two one-dimensional cusps intersect at a

zero-dimensional cusp. Next for F ∈ Mk(Γ0(N)), we define a function Φ(F ) on H1

by (Φ(F ))(z) = lim
λ→∞

F ([ z iλ ]) with z ∈ H1. It is clear that Φ(F |kgi) defines a map

from Mk(Γ0(N)) to Mk(Γi), where |k denotes the usual slash operator defined as

F |kg = det(CZ + D)−kF (g〈Z〉) for g = [ A B
C D ] and g〈Z〉 = (AZ + B)(CZ + D)−1

with g ∈ Sp(4,R). Then we define Φ̃ : Mk(Γ0(N)) → Mk(Bd(N)) by F →

(Φ(F |kgi))1≤i≤l. Any element (fi)1≤i≤l in the image of Φ̃ satisfies the condition

that fi|kh1 = fj|kh2 whenever Γ0(N)giı1(h1)P (Q) = Γ0(N)gjı1(h2)P (Q); where

h1, h2 ∈ SL(2,Q) and 1 ≤ i, j ≤ l. It essentially means that fi and fj, which are

modular forms on the one-dimensional cusps gi and gj respectively, are compatible

on the intersection points of these cusps.
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9.3 Klingen Eisenstein Series with respect to

Γ0(N)

Now we describe an explicit construction of a set of linearly independent Klingen

Eisenstein Series with respect to Γ0(N).

Theorem 9.3.1. Assume N ≥ 1. Let g1(γ, x) and g3(γ, δ, y) be as in Theorem

8.2.2.

1. Let f1 be an elliptic cusp form of even weight k with k ≥ 6 and level N . Let

g be a one-dimensional cusp for Γ0(N) of the form (g1(γ, x)−1). Then

Eg(Z) =
∑

ξ∈(gQ(Q)g−1 ∩Γ0(N))\Γ0(N)

f1(g−1ξ〈Z〉∗) det(j(g−1ξ, Z))−k,

defines a Klingen Eisenstein series of level N with respect to the Siegel con-

gruence subgroup Γ0(N).

2. Let h be a one-dimensional cusp for Γ0(N) of the form (g3(γ, δ, y)−1). Let

f2 ∈ Sk(Γ(h)) with even weight k such that k ≥ 6. Then

Eh(Z) =
∑

ξ∈(hQ(Q)h−1 ∩Γ0(N))\Γ0(N)

f2(h−1ξ〈Z〉∗) det(j(h−1ξ, Z))−k,

defines a Klingen Eisenstein series of level N with respect to the Siegel con-

gruence subgroup Γ0(N).

As g and h run through all one-dimensional cusps of the form (g1(γ, x)−1) and

(g3(γ, δ, y)−1) respectively, and for some fixed g and h, as f1 and f2 run through

a basis of Sk(Γ0(N)) and Sk(Γh) respectively, the Klingen Eisenstein series thus

obtained are linearly independent.
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Proof. Since k ≥ 6 and even the Klingen Eisenstein series defined in the statement of

the Corollary have nice convergence properties. Let α and β be two one-dimensional

cusps for Γ0(N). Let

Eα(z) =
∑

ξ∈(αQ(Q)α−1 ∩Γ0(N))\Γ0(N)

fα(α−1ξ〈Z〉∗) det(j(α−1ξ, Z))−k,

be a Klingen Eisenstein series associated to α. We have, (Eα|kβ)(Z)

=
∑

ξ∈(αQ(Q)α−1 ∩Γ0(N))\Γ0(N)

fα(α−1ξ〈β〈Z〉〉∗) det(j(α−1ξ, β〈Z〉))−k det(j(β, Z))−k

=
∑

ξ∈(αQ(Q)α−1 ∩Γ0(N))\Γ0(N)

fα(α−1ξβ〈Z〉∗) det(j(α−1ξβ, Z))−k.

Next consider Φ(Eα|kβ)(z) = lim
λ→∞

(Eα|kβ)([ z iλ ]) where Φ is the Siegel Φ operator

defined earlier. The limit can be evaluated term by term because of nice convergence

properties of the Eisenstein series. It follows from the proof of Prop. 5, Chap. 5,

[14], that on taking limit only surviving terms are those with α−1ξβ ∈ Q(Q) with

ξ ∈ Γ0(N). If α and β are inequivalent cusps then clearly no term survives and

Φ(Eα|kβ)(z) = 0. Whereas, we see that Φ(Eα|kα)(z) = fα(z). We have shown that

each Eisenstein series is supported on a unique one-dimensional cusp. Further for

a fixed one-dimensional cusp all the associated Klingen Eisenstein series are clearly

linearly independent. The result is now evident.
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9.4 A co-dimension formula for cusp forms

The number of zero-dimensional cusps C0(pn) for odd prime p was calculated by

Markus Klein in his thesis (cf. Korollar 2.28 [12]).

C0(pn) = 2n+ 1 + 2

(
n−1∑
j=1

φ(pmin(j,n−j)) +
n−2∑
j=1

n−1∑
i=j+1

φ(pmin(j,n−i))

)
. (9.1)

It is the same as

C0(pn) =



3 if n = 1,

2p+ 3 if n = 2,

−2n− 1 + 2p
n
2 + 8p

n
2 −1
p−1

if n ≥ 4 is even,

−2n− 1 + 6p
n−1
2 + 8p

n−1
2 −1
p−1

if n ≥ 3 is odd.

(9.2)

The above formula remains valid if p = 2 and n = 1. The above result also remains

true for p = 2 and n = 2 as calculated by Tsushima (cf. [38]). Hence, assume 8 - N

and if N =
m∏
i=1

pnii then following an argument similar to the one given in the proof

of Lemma 8.2.1 we obtain

C0(N) =
m∏
i=1

C0(pnii ). (9.3)

Finally, by using Satake’s theorem (cf. [34]) and the formula for C0(N) and C1(N)

described earlier we obtain the following result.

Theorem 9.4.1. Let N ≥ 1, 8 - N and k ≥ 6, even, then

dimMk(Γ0(N))− dimSk(Γ0(N)) = C0(N) +

∑
γ|N

φ(gcd(γ,
N

γ
))

 dimSk(Γ
2
0(N))

+
∑

1<δ<γ, γ|N, δ|γ, γ|δ2

∑′
dimSk(Γg), (9.4)
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where C0(N) is given by (9.3) if N > 1, C0(1) = 1, φ denotes Euler’s totient

function, and for a fixed γ and δ the summation
∑ ′ is carried out such that g

runs through every one-dimensional cusps of the form (g3(γ, δ, y)), with y taking

all possible values as in Theorem 8.2.2, and Γg denotes ω1(g−1Γ0(N)g ∩Q(Q)).

Some remarks.

(i) We note that Markus Klein did not consider the case 4|N for calculating the

number of zero-dimensional cusps in his thesis. Tsushima provided the result

for N = 4. Since we refer to their results for the number of zero-dimensional

cusps we have this restriction in our theorem. We hope to return to this case

in the future.

(ii) The above result in the special case of square-free N reduces to the dimension

formula given in [3] for even k ≥ 6. [3] also treats the case k = 4 for square-free

N .

(iii) We remind the reader that by  we denote the map that interchanges the first

two rows and the first two columns of any matrix.

Proof. We consider the map Φ̃ : Mk(Γ0(N))→Mk(Bd(N)) by F → (Φ(F |kgi))1≤i≤l

which was described earlier in Sect. 9.2. The kernel of this map is the space of cusp

forms Sk(Γ0(N)). By Satake’s theorem (cf. [34]), the map Φ̃ is surjective. It follows

that the co-dimension of the space of cusp forms is dimMk(Bd(N)). We recall

that by definition f ∈ Mk(Bd(N)) means: f is a modular form of weight k on the

boundary components of S(N) such that f takes the same value on each intersection

point of the boundary components. If f ∈ Sk(Γi) on a boundary component Γi\H1

corresponding to a one-dimensional cusp, say gi, then f vanishes at every cusp

of gi and in particular f takes the same value zero at every intersection point of

146



the boundary components. Hence f ∈ Mk(Bd(N)). Since k > 4 and even, there

exists a basis of (elliptic modular) Eisenstein series that is supported at a single

zero-dimensional cusp. We denote the space spanned by such Eisenstein series as

Ek(Bd(N)). It is clear that dimEk(Bd(N)) = C0(N), and if f ∈ Ek(Bd(N)) then

f ∈ Mk(Bd(N)). Let C0 and C1 denote the set of zero and one-dimensional cusps

of Bd(N) respectively. We have the following short exact sequence

0 −→ ⊕′Sk(Γg)
θ1−→Mk(Bd(N))

θ2−→ CC0(N) ∼→ Ek(Bd(N)) −→ 0.

Here ⊕′ denotes the direct sum as g runs through the set of one-dimensional cusps

C1 and the maps θ1 and θ2 are described in the following. First we note that any

cusp form fg ∈ Sk(Γg) can be extended to the whole of Bd(N) by defining it to be

zero on all the one-dimensional cusps other than g (i.e., fg is trivial on the modular

curve Γh\H1 associated to any one-dimensional cusp h with h 6= g). We denote this

extension also by the same symbol fg. The map θ1 is then the following map,

θ1((fg)g∈C1) =
∑
g∈C1

fg,

with fg appearing on the right side of the equality being the extension of fg ∈ Sk(Γg)

to the whole of Bd(N). Next the map θ2 is defined by evaluating f ∈ Mk(Bd(N))

at zero-dimensional cusps as follows

θ2(f) = ( lim
z→∞

(f |kh)(z))h∈C0 ,

with C0 being the set of zero-dimensional cusps of Bd(N) and z ∈ H1. It is clear

that the image θ2(Mk(Bd(N))) is CC0(N), which is isomorphic to Ek(Bd(N)). Hence

we have dimMk(Bd(N)) = dimEk(Bd(N)) + dimSk(Γg).
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We note that the first terms in the summation formula (9.4) is dimEk(Bd(N)) =

C0(N) and it counts the Siegel Eisenstein series associated to each zero-dimensional

cusp.

Next we show that the last two terms in the summation formula (9.4) add up

to dim⊕′Sk(Γg). It is easy to check that for any representatives g1 of the form

(g1(γ, x)) with g1(γ, x) defined as in Theorem 8.2.2, we have ω1(g−1
1 Γ0(N)g1 ∩

Q(Q)) = Γ2
0(N) and similarly for any representatives g3 of the form (g3(γ, δ, y))

a simple calculation shows that Γg3 = ω1(g−1
3 Γ0(N)g3 ∩ Q(Q)) ⊂ Γ2

0(δ). It follows

that each one-dimensional cusp of the form (g1(γ, x)) contributes dimSk(Γ
2
0(N))

linearly independent cusp forms and this accounts for the second term in the for-

mula (9.4). For a fixed δ and γ such that 1 < δ < γ, γ|N, δ|γ, γ|δ2 and for a fixed

y such that y ∈ (Z/LZ)× with L = gcd( δ
2

γ
, N
γ

), the one-dimensional cusp g of the

form (g3(γ, δ, y)) contributes dimSk(Γg) cusp forms. These contributions account

for the last term in the summation formula (9.4). We remark that the last two terms

in the summation formula (9.4) count the Klingen Eisenstein series associated to

each one-dimensional cusp as defined in Theorem 9.3.1.
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