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ABSTRACT

Dynamic forces such as strong seismic, wind, and impact loads can cause severe

deterioration of structural elements in residential, commercial and other structural

systems. In the field of structural health monitoring (SHM), inherent dynamic at-

tributes of structures are often utilized to assess structural integrity. In modeling

and testing, a free vibration refers to a vibration when a sustained excitation force

is not required but a non-zero initial displacement and/or velocity is. A free vibra-

tion is useful because it reveals inherent dynamic characteristics of the structure

itself, which include but are not limited to modal frequencies and mode shapes in

linear analysis, as commonly used, and backbones in nonlinear analysis, which are

gaining attention.

This study consisted of experimental investigation and data analysis conducted

on some of the most common structural elements subjected to free vibration. The

scope of the experimental work was extensive spanning two years and involving a

real-world prestressed concrete bridge girder tested after four decades of service,

a half-scale reinforced masonry wall, a full-scale timber shear wall, and a number

of scaled timber connection specimens. All tests were conducted using a modal

hammer. A large amount of quality data was collected for future studies using

nonlinear techniques (e.g., backbones). The data analysis in this study, however,

had a reduced scope focused on only two test specimens; the bridge girder and

masonry wall. The goal was to achieve a good understanding of modeling using

collected data, and develop a detailed and general linear dynamics data processing

and result analysis procedure - paired with modular code - for the two specimens

considered in-depth and other test specimens to follow.
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Such an in-depth study for a seemingly straightforward free vibration test is

motivated as follows: First, a modal hammer test in fact generates both forced

and free vibration; using only the free vibration portion of the data is the most

proper for exacting fundamental frequency. Next, all models have their applica-

ble range. The A real-world specimen has more than one degree of freedom. Thus,

other degrees-of-freedom will be checked using the experimental data to better un-

derstand what the extracted fundamental frequency represents for each specimen.

The procedure and code developed during this research are demonstrated using

the real-world bridge girder and half-scale masonry wall, the two specimens with

significance for SHM.
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1 INTRODUCTION

1.1 Motivation

Like humans, structures do not last forever. From the moment they are built, struc-

tures begin their aging process. Structural aging is generally accelerated by envi-

ronmental effects such as wind forces, seismic and temperature fluctuation. The

ASCE Infrastructure Report Card for America’s infrastructures (ASCE [2017]) in-

dicated that infrastructures in the nation have an average grade of D+. It was also

noted that “deteriorating infrastructure is impeding our ability to compete in the

thriving global economy, and improvements are necessary to ensure our country

is built for the future” (ASCE [2017]). These necessary improvements are certainly

not helped by the alarming increment in the negative effects that deteriorate struc-

tures at a quicker pace. In Oklahoma, specifically, seismicity has grown exponen-

tially within the last decade as data have shown that the number of magnitude 3+

earthquakes has risen from 1.5 per year prior to the year 2008 to about 2.5 per day

in 2015 (Andrews and Holland [2015]). Tornadoes, on the other hand, have also

done plenty of damage in the state.

The number of alarming effects that impact the structures is the key influence

of this study. This study strives to contribute to the resiliency of structures by

providing both data and a better understanding of structural behaviors under cer-

tain dynamic circumstances. Specimens tested in this study represent some of the

most common structural elements currently used including: a prestressed bridge

girder, a masonry shear wall, a timber shear wall and a number of timber joint

models. The prestressed concrete girder is a retired component extracted from a

demolished bridge after serving for over forty years. The masonry and timber

shear walls are laboratory-fabricated specimens designed by other researchers to
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study the behaviors of typical lateral force resisting elements used in schools and

residential homes, respectively. The timber joint specimens are a set of inexpensive

models that represent some of the commonly used stud to plate connections types

in timber construction. These timber joints were first built and studied by Sugeng

[2006] and Mai et al. [2008] for nonlinear dynamics.

The goal of this study is to begin a series of studies to understand quantitatively

the behaviors of the selected structural elements under free vibration. Free vibra-

tion is believed to be unavoidable in a structural response after every induction of

dynamic loads until the vibration dies out. This, in addition to the fact that free vi-

bration reveals some inherent properties of structures, promotes the author’s deci-

sion to conduct free vibration analysis. The structural elements will be tested with

representative data analyzed. The test data is not only useful for this study, but

for future studies as well. By applying digital signal processing (DSP) techniques

learned from electrical engineering and concepts in structural engineering, the au-

thor performs refined data analysis to the test data. The computer programs and

the analysis tools developed in this study, will directly benefit future free vibration

tests.

1.2 General Technical Background

1.2.1 Structural dynamics

Structural dynamics is a field of study with numerous engineering applications.

Examples of the applications include structural engineering (as in this study), me-

chanical engineering and aerospace engineering. In structural engineering, dy-

namics can be defined as a time varying behavior of structures. Just like any object

in motion, structures under dynamic loads will have a certain displacement, ve-
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locity and acceleration. There are numerous types of external forces that building

structures are exposed to, and some of the most common ones are wind, seismic

and impact forces. Structural properties such as mass, stiffness and damping are

inherent properties often used to predict structural responses under dynamic con-

ditions.

Mass, denoted as m, is a well-known concept and can either be lumped or dis-

tributed. The product of mass and acceleration, mü, is an inertia force according

to the Newtons second law of motion. Stiffness, denoted as k, is defined as the

amount of force required to give an object a unit displacement. The product of

stiffness and displacement, ku, produces the spring force according to the Hooke’s

law. Stiffness can be measured experimentally, and estimated theoretically and nu-

merically. Damping, denoted as c, is the structure’s ability to attenuate its motion.

Damping force is often considered proportional to velocity, i.e., cu̇ is the so-called

linear viscoelastic damping force, the first approximation of a really complicated

effect.

The forces associated with, m, c, and k, sum up to produce an internal resis-

tance force called the restoring force. The restoring force balances out any external

force - at any time instance - through the force equilibrium equation shown below,

according to the Newtons second law of motion.

mü + cu̇ + ku = P (1.1)

where P represents the external force acting on the structural system. Equation (1.1)

is a general equation of motion used to define most simplified dynamic systems.
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1.2.2 Modeling

Modeling is the act and art of quantitatively reconstructing a real-world phenomenon

for a certain purpose. One cannot anticipate a model to capture all attributes of a

real-world system because a model is created to only serve a particular purpose.

Real-world structures and test specimens are complicated. They possess many

attributes, at least, due to their constitution of composite materials. Taking a build-

ing as an example, the different aspects could include, sub-structure, super-structure,

mechanical electrical system, cladding, etc. If an engineer were to model a build-

ing, it would be impossible to model all aspects simultaneously. As a matter of

fact, there may or may not be a real need of doing so given the purpose of the

investigation that motivates the modeling. In another general example, a car has

multiple systems, each of which performs a specific function. It is impractical to

model the entire car at once, instead, the engine system can be modelled as the

Rankine cycle, the suspension system as a dynamic system and the transmission

system as a pulley system. It is more common and practical to model one system

at a time for a thorough understanding.

Structural dynamic systems could be modelled at three levels in analysis: single

degree-of-freedom (SDOF), multiple degrees-of-freedom (MDOF) and continuous

systems. An SDOF model typically represents the simplest form of a dynamic

system. An MDOF model assumes that the system has multiple governing fre-

quencies and corresponding “mode shapes.” An MDOF models is more complex

thus more accurate than an SDOF model, making it a better representation of a

real world structure in general. The same can be said about a continuous model

with respect to an MDOF model. This is because, intuitively, a real world structure

would be the closest to a continuous system, than to an MDOF system, and last, to

an SDOF system. Both SDOF and MDOF models are discrete models - in contrast
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to continuous models (Anderson and Naeim [2012]).

An SDOF model is created by greatly simplifying a continuous system. This

simplification is useful in determining the fundamental frequency of the system.

The fundamental frequency is the lowest frequency at which a dynamic system

inherently oscillates when vibrating freely.

One way of the ways of simplifying a continuous structure into an SDOF model

is by lumping its mass at a proper coordinate. An example is illustrated in Figure 1.

c, k

P
m

(b)(a)

Figure 1: SDOF model example: (a) a water tower on the campus of the University

of Oklahoma (OU), and (b) SDOF model for the water tower

In this figure, a water tower and its corresponding SDOF model are presented.

In this SDOF system, the fundamental frequency can be estimated using Equa-

tion (1.2):

fn =
1

2π

√

k

m
(1.2)

where fn, k and m represent fundamental frequency (in Hz), stiffness, and mass,
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respectively.

Although not the key focus of this study, an MDOF model is generally used

to analyze both simple and complex structures. Modal frequency is the frequency

at which a structure resonates (Chopra [2012]). In MDOF modelling, modal fre-

quencies cannot be mentioned without mentioning mode shapes. The number of

modal frequencies is the same as the number of degrees-of-freedom. Each modal

frequency corresponds to a mode. A mode shape is the deflected shape of a certain

dynamic system at any discretized mode or degree-of-freedom. Since continuous

systems are typically discretized into MDOF systems in analysis, the masses and

stiffnesses are individually lumped at discrete points, and are typically represented

in matrices for analysis purposes. In order to determine the modal frequencies

and their corresponding mode shapes, finite element method is one of the popu-

lar schemes utilized. Without trying to achieve perfect estimations of structural

dynamic properties, the “close-enough” approximations of a systems modal fre-

quencies are acceptable for designing and/or monitoring.

In the real world, neither SDOF nor MDOF systems exist, since they are dis-

cretized forms of continuous systems. However, they are used to simplify contin-

uous systems for analytical purposes.

1.2.3 Linear dynamics

Structural members generally have a unique way of responding to dynamic forces.

Since most structural members are made from composite materials (such as con-

crete, masonry and wood), the prediction of their behaviors is complicated. Struc-

tures can be modelled linearly or nonlinearly relative to excitation forces. Linear

dynamic system can be defined as systems where the resisting forces are propor-

tional to the motion (Chopra [2012]). This study conducts linear analysis only on
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tested structural members. However, the data collected can be utilized to conduct

nonlinear analysis in the future. Modal analysis is popular in linear dynamics. The

digital signal processing (DSP) tools to be applied in this study are linear analysis

tools as well. The understanding gained from linear dynamics will help predict

structural behaviors in serviceability condition.

1.2.4 Varieties in specimens

This study involves different types of materials, structural types, specimen scales,

and test boundary conditions. In this study, four different structural members

are tested: a prestressed concrete girder, a masonry wall, a timber wall and some

timber joint specimens. Each of the members are supported during testing. Since

these tests are conducted to mimic real-world scenarios, the specimens were set

up accordingly. The prestressed concrete girder is a 46 f t long pre-existing bridge

girder and was simply supported across bridge piers in-service to support vertical

loads. Hence, it is tested as a simply supported specimen. The two wall specimens

represent vertically standing structural systems of buildings that primarily resist

lateral loads. Thus, they are tested as cantilever upright systems as they appear in

the real-world. Among the tested specimens are a set of timber connections that

were designed to mimic common connection types used in timber construction

(Sugeng [2006]). They are also tested as cantilever upright systems.

1.2.5 Structural health monitoring

SHM is a process of implementing a damage identification strategy for aerospace,

civil, and mechanical engineering infrastructure (Worden et al. [2007]). Although

having its primary roots in aerospace engineering as a means of tracking and

monitoring flexible space structures, structural health monitoring (SHM) technol-
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ogy rapidly moved into civil engineering to protect civil infrastructure such as

bridges and buildings from extreme loads of earthquake and winds to serviceabil-

ity (Housner et al. [1997]).

In the current era of architecture, there is high competition in building heights

and distinct physical appearances. These pose higher challenges in maintaining

building resistance against dynamic forces and manifest the need for structural

monitoring and control. As it can be compared with a cardio monitor in hospitals,

SHM keeps a live feed of structural health performance. In other words, “SHM

refers to the use of in-situ, nondestructive sensing and analysis of system charac-

teristics, including structural response for the purpose of detecting changes, which

may indicate damage or degradation” (Lynch and Loh [2006]).

Basic components involved in a SHM system include the following:

Sensing incorporates traditional engineering techniques such as measuring strain,

acceleration, velocity, displacement, rotation, and other parameters into rev-

olutionary technology such as newly improved sensors, high resolution data

acquisition, digital communications technology, and real-time computational

capabilities to ensure a complete and uninterrupted flow of data between the

structure and its monitor (Housner et al. [1997]). In this study, rugged com-

mercial sensors and modal hammers are utilized to measure acceleration and

impact force, respectively.

Data acquisition is the process of collecting test data. Systems that are designed

primarily to facilitate data acquisition are called Data Acquisition Systems

(abbreviated as DAQ or DAS). These systems can typically perform func-

tions such as data collection, data display, data transformation and data stor-

age (Yu et al. [2008]). Nowadays, the majority of DAQs are fully digitized

and can range from being completely manual, i.e., will function based on
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user prompts, to fully automated, i.e., will continue to acquire data without

user prompts. Automated DAQs are usually pre-programmed by the user to

complete the desired task in their absences. They are mostly utilized in SHM

since SHM requires a continuous flow of data in order to monitor the struc-

tural system. Laboratory testing, on the other hand, mostly requires manual

or semi-automatic DAQs. This is because experimental specimens are typi-

cally put to test in a shorter duration than structures in service, and thus do

not require continuous monitoring.

DAQs are generally composed of two key components, namely: hardware

and software. These two work hand in hand to collect analog data and con-

vert it into digital signals, which are then processed for analysis of results.

In this study, a semi-automated DAQ is utilized and it is comprised of both

hardware and software that are products of National Instruments (NI).

Testing involves all laboratory and in-situ techniques employed to put the struc-

tural elements on trials and study their performances. Laboratory dynamic

testing is systematically carried out after a careful design process in this

study. The author’s main focus is to induce dynamic excitation forces to

study the specimens’ behaviors without causing any unintended damage.

The factors to be decided could be called operational parameters (Lynch and

Loh [2006]).

Data processing involves synthesizing the collected data using computer programs

to analyze and present results that are readable. Data processing systems are

highly digitized. The tools mostly utilize a series of algorithms that work

collaboratively to make the data readable in a certain way. In this study, a

modular code is developed to process the test data. This modular code is

designed to automatically generate results and does not require robust com-
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puter tools.

Indeed, structures, including bridges, aircrafts, ships, and other utility struc-

tures, have been engineered to ensure economic and industrial success (Lynch and

Loh [2006]). Therefore, the need to protect them is in the best interest of society.

This is where damage identification of structures, a widely studied subject under

SHM, plays a key role. Worden et al. [2007] studied the literature published in the

prior two decades and derived some fundamental axioms of SHM geared towards

damage identification. The eight fundamental axioms are described as follows:

Axiom I: explains that all materials have inherent micro defects. Worden et al.

[2007] depicts that fabricated materials such as metals and fiber-reinforced

plastic are never perfect single crystals with perfect periodic lattice.

Axiom II: is described as the most basic axiom by the authors. It suggests that for

samples to be tested for damage, one must have a similar sample that is in

normal condition to compare it with.

Axiom III: categorizes damage detection into supervised and unsupervised learn-

ing modes, the concepts from machine learning to infer general information

and predict new events based on data collected from structures. This axiom

states that identifying the existence and location of damage can be conducted

unsupervised, but identifying severity can only be done under supervised

learning.

Axiom IVa: portrays that sensors are only capable of collecting data. Detecting

damage entirely relies on the data processing.

Axiom IVb: reveals the concern of sensor sensitivity being a disadvantage in ad-

dition to its advantages. This axiom suggest that the more sensitive a sensor

is to damage detection, the more sensitive it is to environmental changes.
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Axiom V: states that the time and length variation of the damage detection affects

required sensing capabilities. For example, a rigid structural member that

is being tested for free vibration requires a high sampling rate due its rapid

response.

Axiom VI: denotes a trade-off between sensitivity to damage and noise rejection

capabilities of a sensor. It is hard to achieve both at the same time. This

relates axiom IVb above in the sense that the sensitivity to damage is directly

proportional to its sensitivity to noise.

Axiom VII: relates the size of a damage to the frequency of the excitation and

reveals that the damage size is inversely proportional to the frequency range.

This study is focused on structural testing and data processing. Thus, this study is

a direct application of a number of the fundamental axioms by Worden et al. [2007]

stated above. This study involves analyzing damaged structures, hence it can di-

rectly relate to axioms III, IVa and VII. The disadvantage of sensors discussed in

axioms IVb and VI is encountered in this study and discussed in Section 6.1. Axiom

V can be related to this study as sampling rate and other operational parameters

are carefully decided for testing.

As a field of study, SHM keeps expanding every day. There are numerous sub-

jects under SHM yet to gain maturity. Newly designed SHM systems feature wire-

less sensing protocols as well as automated control systems that can counteract ab-

normal dynamic behavior. Lynch and Loh [2006] studied the importance of wire-

less sensor and sensor networks in structural health monitoring. The paper notes

that wireless is not only a financial saver for project owners, they help expand the

scope of structural monitoring and facilitate regular upgrades to optimize their

functionalities.
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1.3 Research Objectives

This study involves both testing and analyses. One of the key objectives of this

research is to design an experimental methodology to enable the collection of clean

and well-organized free vibration response data from all tested specimens that are

made up of different construction materials and of different scales. The data is to

be used by the author in SDOF linear dynamic models, and by future researchers

in this team in nonlinear dynamic modeling.

Another key objective of this research is to conduct linear SDOF analyses on

the data collected from the prestressed girder and masonry wall through develop-

ing a modular MATLAB code. These specimens are two typical examples chosen

to showcase the capability of the modular code that can be utilized by future re-

searchers in studying the remaining specimens and other types of structures sub-

ject to free vibration.

1.4 Intended Contributions and Structure of Thesis

Table 1 is a summary of the data inventory showing the number of test datasets

acquired from the experimental investigation and the number of processed set for

analyses.

Table 1: List of collected and processed datasets in this study † specificities par-

tially done and not tested with the data yet, ‡ not sponsored by the major professor

Specimen Acquired Datasets Mfiles Processed Dataset

Prestressed concrete girder 18 Yes 18

Masonry wall 114 Yes 13

Timber wall ‡ 331 Yes † 0

Timber joints 30 Yes † 0
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Every successful analysis is preceded by a successful physical test. This study

follows a systematic manner for testing structural elements for free vibration re-

sponse. The author carefully designs and conducts all tests to ensure proper data

acquisition. The data acquired in this project is not only used by the author, but

will be used by future researchers to conduct different analyses on the same struc-

tural element.

A simplified SDOF approach is adopted for analyzing the data in this study,

which mainly relies on the knowledge of structural engineering and tools in DSP. A

modular code is developed, thoroughly explained and documented in this study,

to facilitate data processing by future researchers.

As it can be seen in Figure 2 this thesis is comprised of two main parts: experi-

mental investigation and data processing. The experimental investigation portion

involves all four types of specimens and includes a setup portion and a testing por-

tion. The setup entails preparing both the data acquisition system and the speci-

mens for testing. A bulk of the time spent on the experimental investigation was

concentrated on setup to ensure a proper execution of the experimental procedures

saving data for sensor calibration. Data processing involves the development of a

modular code using MATLAB® to thoroughly analyze the two specified specimens

using SDOF models. MATLAB® is a mathematical programming software devel-

oped by Mathworks®. The code generated in this study is prepared for all four

specimens and similar specimens in the future but only applied to and validated

using the two specified specimens.
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Figure 2: Composition of this Study

Chapter 1 of this thesis offers the motivation, a general technical background,

and clearly defined research objectives of this study. Chapter 2 presents a sum-

mary of some relevant publications. Chapter 3 presents the general methodology

employed in this study. Chapter 4 presents an overview of a typical test, details of

the data acquisition used, and descriptions, test setups and procedures for the tim-

ber wall and prestressed concrete girder tested in this study. Chapter 5 present the

overall analysis approach conducted for the prestressed concrete girder and ma-

sonry wall specimens, as well as details of the modular code. Chapter 6 presents

the limitations of this study and future work recommendations. Chapter 7 offers

concluding remarks. Appendix A contains descriptions, test setups and proce-

dures for the masonry wall and timber joint specimens. Finally, Appendix B.1 con-

tains tables for the nomenclature adopted for three of the specimens, a completion

of what is presented in Section 5.4.4.
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2 LITERATURE REVIEW

2.1 Summary of Some Relevant Studies

While a technical background of this thesis has been discussed in Chapter 1, this

chapter presents a review of some publications on dynamic testing and analysis.

Papers were selected based on their direct relevance to the focus of this study. This

review was conducted to study some relevant testing methods, analysis and/or

results. The chapter mainly offers summaries of the reviewed papers while exam-

ining each of them in important aspects that could be applied to this study and/or

future work.

Table 2 provides a summary of these papers in terms of testing procedure, anal-

ysis procedure and/or scope.
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Table 2: Summary of literature imost relevant to this study
Studies relevant to prestressed concrete Girder

Reference
Specimen Setup

Loading methods
Free vibration

Analysis scope
Type Span/Height,

f t
Boundary
conditions

Support Excitation Magnitude,
lb f

fn estima-
tion

fs, (Hz)1

Grace and
Ross [1996]

Post-tensioned
girders with
web openings

16.5 Simply sup-
ported

N/S Impact, log-
decrement, and
destructive static
loading

Actuator
sudden
impact

300 FFT N/S System identification
of damaged structure

Jacobs et al.
[2007]

Post-tensioned
girder

55 Simply sup-
ported

Air spring
bellows

Destructive quasi-
static loading and
impact free vibration

Mass drop2 254 3 SPICE4 256 System identification
of damaged structure
and instrumentation
feasibility study

Prestressed concrete girder in this study

N/A Pretensioned
girder

45 f t Simply sup-
ported

Elastomeric
pads

Non-destructive im-
pact free vibration

Modal ham-
mer5

Varied 6 FFT and
STFT

10, 000 Hz Linear SDOF fn iden-
tification

Studies relevant to masonry wall

Paquette
and
Bruneau
[2003]

Un-reinforced
masonry wall7

9 f t Cantilever
wall

Bolted
on strong
floor

Pseudo-dynamic
seismic induction8

MTS hy-
draulic
actuator

Varied N/A N/A Behavior of masonry
wall under earth-
quake loads

Masonry wall in this study
N/A Reinforced ma-

sonry wall
6 f t Cantilever

wall
Bolted
on strong
floor

Destructive static and
impact free vibration

Modal ham-
mer

Varied FFT and
STFT

10, 000 Hz SDOF damage detec-
tion through changes
in fn

1 fs refers to sampling rate which is the rate at which the DAQ samples test data in a second
2mass is dropped from a height of 3.3 f t
3weight of dropped mass
4a system identification software developed at K.U. Leuven and based on the stochastic subspace identification method Peeters [2000]
5see Section 4.2.1 for description
6Manually controlled hammer force varied from test to test
7four sided full-scale wall (two wythe solid bricks) with dimensions 13.5 × 18.7 f t, built with a door and window on either of the sides in loading plane
8The time history La Malbaie with varying amplification factors were induced laterally a the diaphragm
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2.2 Summary of Relevant Literature

2.2.1 Full-Scale Dynamic Testing of Bridge Structures

Dynamic field tests have been carried out on bridges since the late 19th century

(Salawu and Williams [1995]). Although they were mainly conducted as part

of safety inspection and involved monitoring vibration in the earlier days, it is

mostly conducted nowadays to: improve analyses and design procedures, assess

design for code provisions and monitor in-service behaviors of bridges (Salawu

and Williams [1995]).

Salawu and Williams [1995] presented a review of the different dynamic tests

but mainly categorized them into two: ambient vibration testing and forced vibra-

tion based on the degree of control the user has over the input excitation. Ambient

vibration testing was defined as testing systems where the input loading is not un-

der the control of the test engineer and these include wind, vehicular and any other

service loads. Forced vibration, on the other hand, involves experiments where the

force is known and controlled by the experimentalist.

The following is a list of the reasons for conducting full-scale dynamic testing

according to Salawu and Williams [1995]:

• It can contribute to the increase in database for the dynamic behavior of sim-

ilar structures

• It can be a troubleshooting tool to verify that structural behavior conforms to

what is expected

• It can validate theoretical models of structures to check assumptions with

regards to boundary conditions
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• It can be used to assess structural integrity when higher load levels are fore-

seen

• It can monitor the overall condition of a structure through a SHM

• It can determine the integrity of structures after an overload and can pinpoint

the type of loading induced on a structure

2.2.2 Damage detection using natural frequencies (Salawu [1997] and Kato and

Shimada [1986])

Structural damage can be detected through various methods. Salawu [1997] de-

notes that frequency analysis is one of the popular and inexpensive ways of detect-

ing structural damage as he reviewed its use as a diagnostic parameter in structural

assessment procedures. As an inherent property of structures, a change in natu-

ral frequencies is a sensitive indicator of structural integrity, thus it can be used to

monitor structural condition (Salawu [1997]).

Salawu [1997] discussed the relationships between frequency changes and struc-

tural damage and reviewed various methods for measuring damage using funda-

mental frequencies. The presence of damage or deterioration can alter the funda-

mental frequencies of structures because deterioration causes abnormal reduction

in stiffness which then lowers the fundamental frequencies (Salawu [1997]).

Kato and Shimada [1986] monitored the changes in dynamic parameters during

the failure process of a prestressed concrete bridge, and observed small change in

vibrational characteristic while the prestressing wires were in elastic state despite

concrete cracking. Kato and Shimada [1986] noticed a sudden decrement in the

fundamental frequency occurred when the strands exceeded their elastic limit.
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Salawu [1997] argues that utilization of theoretical damage models could in-

troduce uncertainties to results, and denotes that civil engineering structural dam-

ages are better off being analyzed solely through measured data without any prior

theoretical data. Salawu [1997] concluded that the method of detecting structural

damage through fundamental frequencies can be a potential approach for routine

integrity assessment of structures but they may not be sufficient in uniquely iden-

tifying damage locations.

2.2.3 Free Vibration of Beams: Numerical Approach (Prokic et al. [2014])

Numerical methods are well established ways of analyzing structural systems.

They provide a great deal of flexibility and usually do not encounter constrains

like experimental analyses do if developed properly and maturely. Following an

approach, first proposed by Hajdin [1958] and later used in further studies by other

researchers, Prokic et al. [2014] used numerical methods in the free vibration anal-

ysis of fictitious beams. Prokic et al. [2014]’s approach was applied to a set of

second-order ordinary differential equations of variable coefficients, with arbitrary

boundary conditions. The numerical method used by Prokic et al. [2014] is based

on numerical integration rather than numerical differentiation.

In demonstrating the applicability of their approach on a transversely vibrat-

ing uniform Timoshenko beam, Prokic et al. [2014], chose to analyze the cantilever

glass-epoxy composite beam of Han et al. [1999] clamped on the left end. With

up to forty intervals, Prokic et al. [2014] was able to replicate the first six funda-

mental frequencies produced by Han et al. [1999] with less than 0.5% error. The

beam model studied by Mirtalaie et al. [2012] where the analysis not only consid-

ered bending, but torsion and shear was also solved by Prokic et al. [2014] with

differences of less than 0.2%.
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Prokic et al. [2014] concluded that the numerical approximations used in their

study were, in most cases, accurate for a fairly low number of integration intervals.

It was also noted that the proposed method can serve as a convenient alternative

to similar numerical techniques in the analysis of problems defined in a similar

manner.

2.2.4 Dynamic Analysis of Prestessed Beams

Three papers are found and reviewed herein:

“Prestress force effect on vibration frequency of concrete bridges” (Saiidi et al.

[1994])

Saiidi et al. [1994] studied the effect of prestress force on the fundamental fre-

quencies of concrete bridges based on measured data. Saiidi et al. [1994] noted that

theoretical prediction showed that the increment in axial compressive force from

prestressing steel decreases the fundamental frequencies of the specimen and vice

versa.

Experimental measurements by Saiidi et al. [1994] showed an opposite trend

as conducted both field and laboratory tests to confirm their observations. It was

their understanding that, as the prestress force decreases, more micro-cracks open

which softens the beam leading to a lowered fundamental frequency. Saiidi et al.

[1994], hence, developed an empirical equation, Equation (2.1), that estimates the

effective rigidity of the beam based on the presence of prestress force.

EIe =

(

1 + 1.75
N

f ′c

)

EIg (2.1)

where,
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EIe = effective flexural rigidity

N = axial compressive force

f ′c = compressive strength of concrete

EIg = original flexural rigidity

Test data signified that the effect of prestress force on fundamental frequencies

is quiet small but the method can be carried out in order to estimate the amount

of prestress losses that has occurred for a bridge after years of service (Saiidi et al.

[1994]).

“Dynamic characteristics of post-tensioned girders with web openings” (Grace

and Ross [1996])

As summarized in Table 2, Grace and Ross [1996] conducted an experimen-

tal and theoretical investigation on the dynamic characteristics of post-tensioned

concrete girders with web openings under repeated cyclic loading. Girders with

cross-sections including rectangular, I and T were fabricated for testing purpose.

Web openings were placed on the specimens to mimic utility openings in gird-

ers under service conditions. Modal frequencies were measured prior to and post

tensioning the beams, and throughout the cyclic test.

Theoretical values for the modal frequencies were determined under prestress-

ing load conditions only. It was observed that experimentally obtained modal fre-

quencies fairly conformed to the theoretical values with the exception of one of the

I-girders (Grace and Ross [1996]).

Experimental results by (Grace and Ross [1996]) showed that placement of one

or two web openings barely affected the modal frequencies of the specimens as the

greatest percentage difference obtained was 4%. It was also observed that modal
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frequencies for the specimens with one web opening were about the same as those

with two web openings. Significant reduction was seen on the second modal fre-

quency values from inducing one and two web openings. Reductions of up to

8.9% and 16.5% of the second modal frequencies was observed for one and two

web openings, respectively. Grace and Ross [1996] suggested that this observation

could be due to the coincidence of the locations of web openings and the nodal

point of the second mode shape at the mid-span of the specimens. After induc-

ing several millions of cycles of fatigue loading, Grace and Ross [1996] noticed

slight decreased in all of the specimens’ fundamental frequencies which indicates

slight decrease in stiffness as a result. An interesting observation was that the I-

sections had the least decrement in modal frequencies, thus Grace and Ross [1996]

concluded that due to the presence of the top and bottom flanges, the I-sections

maintained more of their inherent stiffness throughout the fatigue loading.

Results of a parametric study conducted by Grace and Ross [1996] indicated

that parabolic shaped strands caused higher modal frequencies and additional in-

crease in prestress force caused further increase in the modal frequencies. Pure

axial prestress force induced by straight strands had an opposite effect.

“Testing of a prestressed concrete girder to study the enhanced performance of

monitoring by integrating optical fiber sensors” (Jacobs et al. [2007])

To investigate the monitoring technology of concrete members using integrated

fiber optic, Jacobs et al. [2007] conducted static and dynamic laboratory tests on

a post-tensioned I-shaped concrete girder with a total length and span of about

58 f t and 55 f t, respectively, as summarized in Table 2. They measured strain,

deflection and acceleration. From the measured acceleration history, Jacobs et al.

[2007] calculated the mode shapes, modal frequencies and damping using a system
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identification software called SPICE.

The specimen was post-tensioned using seven parabolic strands. During the

quasi-static tests, the load was applied to four points within the span and bending

deflection was measured at six locations. During the static loading of the specimen,

a number of extensive concrete cracks were observed on the specimen prior to the

yielding of prestressing strands.

For the dynamic setup, the girder was lifted from its static supports and then

supported by two air spring bellows at each end but with a shorter span. The

shorter span allowed the possibility of applying excitation force at one overhang-

ing end of the beam and not within the simply supported span. The excitation

force was applied using a 250 lb mass dropped from a height of about 3 f t. The

impact plane was offset from the neutral axis of the beam in order to excite both

bending and torsion responses. A damper was placed on the impact location to act

as a mechanical low-pass filter.

After the initial dynamic test, a total of seven damage levels of static loading cy-

cles were performed. Six of the static tests were followed by dynamic tests. The dy-

namic results allowed Jacobs et al. [2007] to study frequencies up to 128 Hz. Within

this range, eight modes were found: four torsional and four bending modes. Jacobs

et al. [2007] observed a slight decrease in eigenfrequencies with increased damage

on the specimen. Reinforcement yielding caused significant decrease in the modal

frequencies.

2.2.5 Dynamic Studies on Masonry Walls

“Pseudo-dynamic testing of unreinforced masonry building with flexible di-

aphragm” (Paquette and Bruneau [2003])
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As summarized in Table 2, Paquette and Bruneau [2003] tested full-scale un-

reinforced masonry (URM) wall under a seismic loading by inducing pseudo-

dynamic excitation. Their specimen was a 9ft tall four-sided wall enclosing a total

rectangular area of around 250 ft2 with a window and door openings on the two

parallel walls oriented in-plane to its loading axis. The wall was designed to study

the flexible-floor/rigid-wall interaction and the impact of wall continuity at the

corners on the wall’s seismic behavior.

Based on theoretical analyses conducted by Paquette and Bruneau [2003], the

anticipated behaviors of the specimen included pier rocking behavior, bed joint

sliding, diagonal tension and toe crushing. The test setup for the experiment fea-

tured a single degree-of-freedom (SDOF) system induced by a single actuator act-

ing on the diaphragm center span. Prior to testing, a series of pseudo-dynamic

simulated free vibration tests were conducted by Paquette and Bruneau [2003] to

determine the vibrating period and damping ratio of the specimen. During test-

ing, the time history of La Malbaie, Canada earthquake was applied to the spec-

imen in multiple trials starting with the first 10 seconds of a quarter scale of the

ground shaking. In the first trial, elastic behavior was observed but as half scaled

ground shaking was applied stiffness softening was observed. The full-scale of

the La Malbaie created additional cracking with increased openings. When one

and half scaled ground shaking was applied, some cracking noise was observed

as new cracks were seen. Rocking of the door pier also occurred as a result of the

1.5 multiplier. The specimen was then subjected to a double scaled La Malbaie. At

the wall’s ultimate capacity, severe cracking was observed to separate due to the

combination of rocking and sliding motion. Cracks openings as wide as half inch

was observed by Paquette and Bruneau [2003].

Considering hysteresis in their analysis process, Paquette and Bruneau [2003]
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was able to conclude that the combined rocking and sliding mechanism induced by

the pseudo-dynamic force caused large deformations without significant strength

reduction in the masonry specimen. The elastic phase of the diaphragm was not

exceeded, they noted. Paquette and Bruneau [2003] also noted that some theoreti-

cal seismic response procedures such those in FEMA 273 and 306 predicted similar

behaviors as what was experimentally observed, although the codes did not ac-

count for the presence of continuous corners. This resulted in the understanding

that continuity had negligible effect on the lateral strength of the shear wall.

2.3 Implications of Previous Studies on This Study

The papers summarized above in Section 2.2 have key findings that directly apply

to this study. These implications are given herein:

Full-scale dynamic tests are conducted in this study. In conjunction to the mo-

tivations stated in Section 1.1, the reasons stated by Salawu and Williams [1995]

give additional motivation for conducting the full scale dynamic tests on the re-

tired bridge girder. According to definitions given in Salawu and Williams [1995],

this study can be categorized as a forced vibration test where a modal hammer is

used to induce an excitation force, and the free vibration response is analyzed.

In this study, natural frequencies will be analyzed using the free vibration data

of the specimens, some of which will be tested through different damage states.

Hence, based on findings by Salawu [1997] and Kato and Shimada [1986], it is ex-

pected that the fundamental frequencies will decrease through the damage states.

Thus a decrement in the fundamental frequency will be anticipated during analy-

sis of the masonry wall specimen.

Although, in this study, specimens are tested and analyzed using a modular
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code rather than numerically, the approach used by Prokic et al. [2014] could be a

possible application in future studies. Results of the numerical approach could be

compared with the results of the current study.

Part of the analysis in this study is extracting the fundamental frequency of a

prestressed concrete girder that has served and was retired after more than forty

years. Over the years of service, time dependant prestress losses have occurred.

Thus the understanding gained from Saiidi et al. [1994] would assist analyzing the

obtained results.

A few implications of the study conducted by Grace and Ross [1996] apply to

the prestressed concrete girder in this study. First, cyclic loading is denoted by

Grace and Ross [1996] that it causes a slight reduction of modal frequencies of a

prestressed beam. Since the girder tested in this study undertook cyclic vehicular

loading for more than forty-years, the experimentally obtained fundamental fre-

quency of the girder is expected to slightly less than the theoretically estimated

based on Grace and Ross [1996]’s observations. Secondly, as it is observed by

Grace and Ross [1996] that the presence of holes have very little effects on the

beams’ modal frequencies and that I-sections tend to retain most of their inherent

stiffnesses, the AASHTO Type II prestressed girder tested in this study is expected

to have little to no change in the fundamental frequency due to the presence of

core openings, should there be any. Core openings are openings drilled in a beam

to extract a sample of the concrete for material analysis after structural testing is

completed.

Similar to observations in Grace and Ross [1996], Jacobs et al. [2007]’s observa-

tion of a slight decrease in modal frequency due to damage can be expected in the

masonry wall analysis of this study. Jacobs et al. [2007] studied the torsional mo-

tion of the girder and stated that a similar decrement is observed in the torsional
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response of the girder. This study aims at figuring out what an identified natural

frequency means, in-plane bending, out-of-plane bending, or torsion?

As suggested by Paquette and Bruneau [2003], the continuity of the wall’s cor-

ners does not affect the lateral strength of the wall. Although this study is con-

ducted on a masonry wall with a non-continuous corner, the need to study the ef-

fect of continues corners its in-plane and out-of-plane responses is recommended

for future studies and results obtained should be compared with the results of this

study.
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3 METHODOLOGY

3.1 Scope of Work

In this study, some of the most crucial elements in commonly seen structures are

under investigation in terms of test specimens. The specimens, as presented in the

Figures 3 and 4, include a real-world AASHTO Type II girder that had served more

than forty years, a half-scale masonry wall, a full-scale timber wall and a number

of timber joint specimens. Unlike the first one, the remaining three specimens were

built solely for testing purposes.

(a1) (b)

(c) (d)

(a2)

Figure 3: Pictures of specimens studied: (a) prestressed concrete girder; (b) ma-

sonry wall; (c) timber wall, and (d) timber joints
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(a) (b)

(c) (d)

1’-0”

8’-3/2”

6’-8”

46’-0”

1’-0”

Figure 4: AutoCAD drawings of the tested specimens highlighting overall dimen-

sions and testing boundary conditions: (a) prestressed concrete girder, (b) masonry

wall; (c) timber wall, and (d) timber joints, see Table 3 for full dimensions

Pre-stressed concrete girder (GC): This is a full-scale 46 f t long specimen extracted

from a real-world bridge that was demolished. The girder itself was not pre-

damaged.

Masonry wall (MW): This is a half-scale reinforced masonry wall with a reinforced

concrete top and base. The specimen was fabricated for experimental pur-

pose.

Timber wall (TW): This is a full-scale timber shear wall specimen also fabricated

for experimental purpose.

Timber joints (TJ): These include a number of timber joint specimens that were
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built by Sugeng [2006] and Mai et al. [2008] to mimic some popular con-

nection types used in timber constructions and generate data for nonlinear

dynamic analysis.

As represented in Table 3, the scope of this study is bounded by four specimens.

For each of the specimens, Table 3 provides a brief summary of the type of struc-

ture, origin, its construction materials, nature, boundary conditions and dimen-

sions. Full descriptions of the specimens can be found in Sections 4.6, A.2, 4.3 and

A.3 respective of the order of presentation in Table 3.

Table 3: A brief summary of properties of all four specimens †OSB - Oriented

strand board

Specimen Prestressed Con-

crete

Masonry Wall Timber Wall Timber Joints

Schematic

Struct.

Type

Girder Wall Wall Joint

Origin Retired Fabricated Fabricated Fabricated

Constr. Ma-

terial

Pretensioned pre-

stressed concrete

Reinforced ma-

sonry

OSB† sheathed

timber shear wall

Wood and vari-

ous connectors

Nature Real-world

AASHTO Type II

girder

Half-scale lab

specimen9

Full-scale lab

specimen

Lab specimens

Boundary

Con’d

Simple beam Cantilever wall Cantilever wall Cantilever col-

umn

Dim. 46’-0” × 3’- 1
2 ” ×

3’-9”

6’-8” × 2’-6” × 6’-

2”

8’- 3
2” × 0’-4” × 8’-

1 1
8 ”

1’-0” × 0’-3 1
2” ×

1’-3”

The scope of work of this project can be categorized into two: experimental
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investigation and data processing.

Experimental investigation refers to the tasks of specimen design and fabrication

(if applicable), instrumentation and testing. As suggested by their origins,

not all the specimens were designed and fabricated by the author. However,

all specimens were tested for free vibration by the author, when an excitation

force was induced using a modal hammer. The instrumentation setup and

testing procedure was carefully designed and executed for both proper ac-

quisition of clean data, for linear, and nonlinear data analysis in the present

and future work, respectively.

Data processing refers to the generation of results from the measured data leading

to a better understanding of the specimens’ structural behaviors. To com-

plement the experimental investigation, a major portion of this study, data

analysis, is directed towards studying two tested specimens: the prestressed

concrete girder and the masonry wall. The data processing, in this study, is

facilitated by a modular code that is developed to study the SDOF models

adopted for the specimens. Data analysis serves two purposes: (1) to study

the behavior of the two specimens under free vibration, and (2) document

and demonstrate the use of the modular code for analyzing other structures

tested in a similar way.

3.2 Models Specific to Study

Specimens of different nature are tested in this study. Models are created for each

type of specimen beforehand. These models are tailored toward the main focus

of this research. They are then utilized to extract meaningful results that are more

likely to answer the research questions. Figure 6 presents illustrations of the mod-
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els used in this study.

(a) (b)

x

c, k

z

H

F(x)
m

k c

u, u, u

m

 .   ..

Figure 5: Models adopted in this study for each specimen type: (a) simple beam

SDOF model, and (b) cantilever wall/beam lumped mass model

Simply supported beam SDOF model: As illustrated in Figure 6(a), this model is

used to represent a typical simply supported beam with mass uniformly dis-

tributed across the length as an sdof system. It is adopted for the prestressed

concrete girder in the analysis portion of this study.

Cantilever wall/beam model with lumped mass: As illustrated in Figure 6(b), this

model represents a system with lumped mass at the top and has a massless

shaft with flexural rigidity and damping ratio. This model is used to repre-

sent the masonry wall, timber joints, and the timber wall specimen.
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3.3 Anticipated Results

3.3.1 Anticipated results: simply supported specimen

For a simply supported beam (typical for the prestressed concrete girder with span,

L, constant flexural rigidity, EI, density, ρ, and cross-sectional area, A), the modal

frequencies can be estimated using Equation (3.1) which assumes a continuous

model. Results obtained from the continuous beam formula will be compared

with the fundamental frequency obtained from an SDOF estimation.

ωi =

(

iπ

L

)2
√

EI

ρA
(3.1)

where

ωi = ith modal frequency,

i = a positive integer,

L = span,

E = Young’s modulus (modulus of elasticity) of the material assuming the beam

is made of a homogenous material,

I = moment of inertia of the cross section,

ρ = density of material, and

A = cross sectional area.

The parameter values of the governing quantities in Equation (3.1) are esti-

mated one by one as follows:

Span, L:
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Although the total length of the girder is 46 f t, it was supported on elastomeric

pads in such a way that the span was 45 f t.

Modulus of elasticity of concrete, Ec:

According to American Concrete Institute [2014], the elastic modulus of con-

crete, Ec can be estimated using Equation (3.2).

Ec = 33w
3
2
c

√

f ′c (3.2)

where

wc = air-dry weight of the concrete (pc f ), and

f ′c = compressive strength of concrete (psi).

Floyd et al. [2016] conducted compressive tests on six cores acquired from

Girder C with three from the deck and three from the web. The average f ′c was

6, 452 psi and its magnitude puts Girder C’s concrete on the high strength category

(greater than 6, 000 psi). Hence, according to recommendations by Russell et al.

[1977] and Precast/Prestressed Concrete Institute [2010], Equation (3.3) would pro-

duce a more accurate estimation for the Young’s modulus of high-strength con-

crete.

Ec =
(

40, 000
√

f ′c + 106
) ( wc

145

)
3
2

(3.3)

Normal weight concrete was utilized on the specimen as confirmed by Floyd

et al. [2016]. Thus, wc is assumed to be 145pc f and a Young’s modulus, Ec of

4, 213 ksi is obtained using Equation (3.3) and adopted for this analysis.
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Density of reinforced concrete, ρ:

Density is defined as the amount of matter in a unit volume. It is the ratio

of the unit weight of the material to acceleration due to gravity, g as shown in

Equation (3.4). The imperial form of g, 386.09 in
s2 is used.

ρ =
wc

g
(3.4)

Estimating moment of inertia, I and cross sectional area, A:

In estimating the area moment of inertia for the girder, I, two methods are

employed. In the first method, the presence of steel is ignored and a gross section

of concrete only is considered. The second method takes the steel into account

by using the transformed section approach, which converts the area of steel into an

equivalent area of concrete based on the ratio of their Young’s moduli.

Floyd et al. [2016] tested two prestessing strands obtained from Girder A, an-

other specimen that was extracted from the same bridge as Girder C, and deter-

mined an average ultimate tensile strength, Fu, and modulus of elasticity, Es of

283.6 ksi and 26, 350 ksi, respectively. Assuming that Es is the same for strands

used in both girders, a section transform coefficient of n = 6.254 is obtained from

the ratio Es
Ec

. Table 4 presents the set of section properties obtained.
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Table 4: Estimated cross-sectional properties of Girder C using the two methods:

(a) gross concrete section, and (b) transformed section

Section Property
Strong Axis (xx)

Weak Axis (yy)
Gross section Transformed

section

Area, A (in2) 697.5 710.4 697.5

Centroid, ȳ or x̄ (in) 27.45 27.03 11.24

Moment of Inertia, Ixx

or Iyy (in4)

158, 971 165, 622 45, 724

Gross section is only considered for the weak axis moment of inertia. The prop-

erties of the section about its weak axis are also presented in Table 4 above.

The values acquired from both methods for strong axis were utilized to estimate

two different sets of strong axis modal frequencies for Girder C are given in Table 5.

With about a 4 percent increase in its strong axis moment of inertia after applying

transformed section, transformed section is expected to be more accurate due to a

closer depiction of the reality. The weak axis modal frequencies are also presented

in Table 5.
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Table 5: Estimated modal frequencies for Girder C using the section properties

calculated in 4 above

Modes (i)

Strong Axis (xx) Weak Axis (yy)

Method (a) Method (b)
ωi (

rad
s ) fi

ωi (
rad

s ) fi (Hz) ωi (
rad

s ) fi (Hz)

1 69.94 11.13 71.39 11.36 37.51 5.97

2 279.78 44.53 285.58 45.45 150.05 23.88

3 629.52 100.19 642.55 102.26 337.61 53.73

4 1119.14 178.12 1142.31 181.80 600.20 95.53

5 1748.65 278.31 1784.86 284.07 937.81 149.26

6 2518.06 400.76 2570.20 409.06 1350.45 214.93

7 3427.36 545.48 3498.32 556.78 1838.12 292.55

8 4476.56 712.47 4569.24 727.22 2400.81 382.10

9 5665.64 901.71 5782.94 920.38 3038.52 483.60

10 6994.62 1113.23 7139.44 1136.28 3751.26 597.03

Considering the girder as an SDOF system with the mass lumped at the mid-

span, the relationship between fundamental frequency, mass and stiffness is gov-

erned by Equation (3.5).

fn =
1

2π

√

k

m
(3.5)

where fn, k, and m represent fundamental frequency, stiffness, and mass, respec-

tively.

The stiffness for Girder C can be estimated using Equation (3.7):

k =
48EI

L3
(3.6)
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where

E = Young’s modulus of the material,

I = moment of inertia of inner cross-section and

L = span.

Using the moments of inertia obtained from the transformed section properties,

the stiffness about the strong axis is obtained.

The mass of the specimen is estimated by W
g , where self weight W is estimated

by multiplying the assumed unit weight of the specimen, 150 pc f (unit weight of

reinforced concrete) by the cross sectional area and half length of the girder.

Eventually, this estimation produces a fundamental frequency of 11.28 Hz. This

number validates the first modal frequency acquired using the beam formula.

To rule out a possible torsional motion in the data analysis to be presented in

Section 5.2, the fundamental torsional frequency of the girder is estimated by using

Equation (3.7):

fn =
1

2L

√

GJ

ρIp
(3.7)

where

L = span of the girder,

G = shear modulus of the assumed isotropic material of the entire girder,

J = torsional constant of the assumed uniform cross-section along the span,

ρ = density of reinforced concrete,

Ip = polar moment of inertia of the assumed isotropic material of the entire
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girder.

Shear modulus, G, is estimated using Equation (3.8),

G =
E

2(1 + ν)
(3.8)

where the assumed isotropic material has a Young’s Modulus, E, estimated using

Equation (3.3) and a poisson’s ration, ν, of 0.15 (Wight [2016]).

Ip is estimated as the sum of the moments of inertia about the strong and weak

axes of the specimen. J, for the girder is estimated as an open section using Equa-

tion (3.9) (Boresi and Schmidt [2003]).

J =
1

3

n

∑
i=1

bit
3
i (3.9)

where b and t are the larger and smaller dimensions, respectively, of the individual

rectangular sections that the girder is comprised of. J is estimated to be 12, 159 in4

for the girder.

A fundamental torsional frequency of 20.05 Hz is estimated for the girder.

3.3.2 Anticipated results: cantilever specimens

A lumped mass cantilever SDOF model with two different boundary conditions,

as illustrated in Figure 6, is adopted for a number of the tested specimens in this

study.
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(a) (b)

Figure 6: Two deflected shapes corresponding to the two different boundary con-

ditions studied for a lumped mass cantilever SDOF model: (a) bending deflected

shape, and (b) sidesway deflected shape

The bending mode occurs when the top mass is free to rotate thereby causing

a quarter-sine deflected shape. Sidesway, on the other hand occurs when the top

mass is assumed to have very little rotation. The sidesway has an inflection point

at about half of the wall height and appears to have a half-sine deflected shape.

The masonry wall, timber wall and timber joint specimens are first modeled

as lumped SDOF models with the same fixed-free boundary condition. Thus, the

estimations of their theoretical results follow a similar procedure.

The properties (including both mass and stiffness) are calculated in order to es-

timate the fundamental frequencies of all the cantilever specimens using the SDOF

model. Equation (3.10) is used to estimate mass:

m = ρAl (3.10)

where
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m = lumped mass,

ρ = density of the lumped material by using Equation (3.4),

A = cross-sectional area of the beam or wall section for mass estimation and

l = proper length for estimating the lumped mass.

Stiffness is estimated for each specimen depending on the assumed deflected

shape; see Figure 6. The fundamental frequencies are estimated using Equation (3.5).

For the three types of specimens, the estimation for their fundamental frequencies

are detailed as follows:

Masonry wall:

For the masonry wall, the lumped mass is assumed to comprise the mass of

the concrete block on top and half of the mass of the masonry wall. A total

lumped weight of 2400 lb f was estimated.

Stiffness, for the masonry wall, is estimated for both in-plane and out-of-

plane responses. For in-plane responses, two possible deflected shapes are

analyzed: bending and sidesway, as represented in Figure 6(a) and (b), re-

spectively.

Bending controls when the lumped mass is free to rotate, while sidesway

controls when the top mass is unable to rotate. As the fixity of the top mass

is more or less an unknown, both the bending and sidesway stiffnesses are

estimated using Equations (3.11) and (3.12), respectively (Chopra [2012]).

k =
3EI

h3
(3.11)

k =
12EI

h3
(3.12)
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where

k = stiffness of the wall,

E = Young’s modulus of the material,

I = moment of inertia associated with the correct bending axis

h = height from the top of the fixed base to the center of the lumped mass on

top.

For the out-of-plane motion of the wall, bending is assumed to control, thus,

its stiffness is estimated using Equation (3.11).

EI is obtained from the combined flexural rigidities of both masonry wall

and its reinforcing rebars. For in-plane bending of the wall, the transformed

section iss used to calculate EI. Based on the information given about the

wall’s construction, the author neglected deformation compatibility of the

wall and the rebars in the sidesway mode due to an imperfect bond between

the two. Thus, the rebars are assumed to act independently from the masonry

and deform laterally rather than bending about the centroid of the wall. With

three #3 bar reinforcements, the total stiffness of the wall is estimated as the

sum of that of the three rebars acting as separate columns within the wall and

that of the masonry wall itself.

The stiffness of each rebar is calculated using Equation (3.12) and multiplied

by three to obtain to total stiffness contribution of the reinforcement. For each

bar, the moment of inertia is estimated to be 9.71× 10−4 in4 and an assumed

Young’s modulus, Es of 29, 000 ksi (that of mild steel) is utilized. For the

masonry wall as well, Equation (3.12) is utilized to estimate its stiffness for

the sidesway mode.

The Young’s modulus of masonry, E is estimated to be 40, 250 psi using Equa-
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tion (3.13) (Masonry Standards Joint Committee [2008]):

Em = 900
√

f ′m (3.13)

where f ′m is the compressive strength of the masonry unit and was estimated

to be 2, 000 psi according to Floyd [2017]. This estimation is based on the as-

sumption of a partially grouted masonry wall, which accounts for the opened

hollow portions of the wall as well as the partial grout. It should be noted

that sidesway case can also be estimated using either gross or transformed

section. A more detailed analysis of the effect of the voids within the wall

and interaction of the composite materials as well as analyzing the wall as a

deep beam should be considered in future research.

To ensure a thorough analysis of results, the torsional fundamental frequency

for the masonry wall is estimated using Equation (3.14) (Rao [2007]):

ωn =
1

4h

√

GJ

ρIp
(3.14)

where

h = height of the from the top of the base to the center of the top mass,

G = shear modulus,

J = torsional constant of the assumed uniform cross-section along the height

of the wall,

ρ = density of the lumped material,

Ip = polar moment of inertia of the cross-section

Shear modulus, G, for the wall, is also estimated using Equation (3.8), with

assumptions of an isotropic masonry wall with a Young’s modulus E as esti-
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mated using Equation (3.13) and poisson’s ratio, ν of 0.165 (Narayanan and

Sirajuddin [2013]).

Ip is estimated as the sum of the moments of inertia of the strong and weak

axes assuming a solid rectangular cross section of the wall. J, for the ma-

sonry wall is also estimated with assumptions of a solid wall for simplicity

and consistency using Equation (3.15) (Boresi and Schmidt [2003]). Thus the

hollows of the masonry wall should be taken into account in future studies

when in-depth torsional analyses are conducted.

J = k1bh3 (3.15)

where k1 is determined based on the ratio of b and h, and b and h represent the

lengths of the long and short sides, respectively, of the rectangular wall cross

section. A k1 value of 0.303 is obtained based on the b
h ratio of 7.34 in con-

junction with torsional parameters provided in Boresi and Schmidt [2003]. J

is estimated to be 7, 522 in4.

Table 6, provides a summary of the estimated modal parameters for the ma-

sonry wall.

Table 6: Estimated fundamental frequencies and other parameters for the different

anticipated modes of vibration for the masonry wall

Response mode k
(

lb
in

)

m
(

lb f .s2

in

)

ωn

(

rad
s

)

fn (Hz)

In-plane bending 132, 580 6.22 146.0 23.24

In-plane sidesway 291, 030 6.22 216.4 34.44

Out-of-plane bending 1, 350 6.22 14.73 2.34

Torsion – 6.22 70.06 11.15

Timber wall
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The wall was tested with three different setups: the first only consists of the

wall by itself and was denoted as setup (a), the second consists of a 4 f t steel

W-section centered at the top of the wall - denoted as setup (b), and the third

setup consists of two 4 f t W-sections – setup (c). These three setups are further

described in Section 4.4. Similar to the masonry wall, sidesway is assumed

to control the in-plane response of the timber wall under setup (b) and (c).

For simplicity, however, the specimen is analyzed using the sidesway as-

sumption for all three setups. The weights of the three setups consisted of

half of the wall for the first setup and half of the wall plus the weight of the

added steel section for the second and third setups. The lumped weights for

the three setups were estimated to be w(a) = 115 lb f , w(b) = 315 lb f and

w(c) = 515 lb f , respectively.

The timber wall specimen consists of seven studs and two OSB sheathing

panels. The total stiffness combines that of all the studs and sheathings. The

individual stud stiffnesses are estimated using Equation (3.12), above. The

moment of inertia of the 2 × 4 studs are the same as that of the timber joint

specimens (I = 0.984 in4), and the Young’s modulus of E = 1, 200, 000 psi –

that of a No. 2 Douglas Fir – is also utilized (American Wood Council [2014]).

As for the OSB sheathing panels, the bending rigidity, EI of 78, 000 lb in2 per

foot of panel width (Ame [2015]) is used.

Timber joints

The tested timber joint specimens consist of two different shapes: a T-shaped

and a frame model. A steel block of weight w = 8.93 lb f was used as

the lumped weight for all the timber joint specimens while the timber self-

weights are neglected. With only one 2 × 4 vertical lumber in the T-shaped

model as opposed to two in the frame model, half the stiffness of the frame
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model is expected in the T-shaped model. The timber joint specimens are also

analyzed as sidesway specimens (see Figure 6). Given that the lumped mass

for the timber joints – particularly the T-shaped model – is more free to rotate

than that of the other specimens, the bending mode may be significant and

should be analyzed in future studies when in-depth analysis of the timber

joints is conducted. As described by Sugeng [2006], the specimen was de-

signed using Grade 2 Spruce-Pine-Fir timber, hence its modulus of elasticity

is 1, 400, 000 psi (American Wood Council [2014]). The moment of inertia for

a single 2 × 4 about its weak axis (as it was loaded) is calculated to be about

0.984 in4. Using a height of 14 in (from the bottom of shaft(s) to the cen-

ter of the steel block), two stiffness values are obtained for the two models:

kt−shape = 4441 lb/in and k f rame = 8882 lb/in.

Table 7, represents the computed fundamental frequency for the masonry wall,

timber joints and timber wall.

Table 7: Estimated fundamental frequencies for the lumped mass modelled speci-

mens in this study

Specimen Timber Joints Timber Wall

Config. Frame T-shaped (a) (b) (c)

fn(Hz) 2.39 1.69 3.14 1.90 1.49
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3.4 General Approach

While Chapter 5 will detail data analysis in this study, the main approach involved

in the experimental investigation follows three steps:

Step 1 - Creating a model:

For each specimen, a model is created for a certain analytical aspect of it.

Models establish a certain path towards answering research questions; this

path leads in the design and testing processes. Although no model can repre-

sent all aspects of the structure, it can be a good representation of a particular

aspect of interest.

Figure 7 presents an illustrative example of a tested specimen’s representa-

tion of a real-world scenario using the masonry wall as an example. The

reinforced masonry wall studied in this paper represents the shear wall of

a masonry building between two door openings. The timber wall similarly

represents the shear wall components of a timber building. More information

on the modeling aspect of the prestressed concrete girder and the timber joint

specimens can be found in Floyd et al. [2016] and Sugeng [2006], respectively.
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(a)

(b)

Figure 7: Representation of a specimen design in real-world application: (a) ma-

sonry building, and (b) representative masonry wall specimen

Using the masonry wall specimen as an example, when loaded in its in-plane

direction with an excitation force that may not be precisely in-plane, the au-

thor anticipates not only in-plane motion, but out-of-plane and torsional mo-

tions as well. When an SDOF model is created to study this specimen, that

model can only be used to analyze one direction of responses. An illustra-

tion of this limitation is shown in Figure 8. In this study, all models are SDOF

models. With the limitation in mind, other DOFs will be checked.
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Figure 8: Representation of model in comparison with the real structure: (a)

demonstrates a specimen in reality, where for the heavy top, motions along i, ii,

and iii are all possible, and (b) shows the model’s representation of the specimen,

where only the motion along one direction can be studied at one time

Step 2 - Specimen design and fabrication (when applicable):

Since Girder C is a retired specimen, its design and fabrication conducted in

the 1960’s. See Table 8 for more information on the history of the design and

fabrication of the specimens as well as the participants. Designing a spec-

imen takes a number of factors into consideration. These factors include:

scale, materials and connections. In this study, it was intended to create a

close representations of real-world structural elements. Some of the speci-

mens are of full-scale and others were not. Girder C and the timber wall

specimen are full-scale specimens. The masonry wall is a half-scale speci-

men and the timber joint specimens are representatives of the common types

of connections used in industry (Sugeng [2006]). The design of the specimens
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was not conducted by the author, but was conducted by faculty members

and/or students. The author did, however, participated in the fabrication

of the timber wall specimen, the experience of which will be documented in

Section 4.3.

Step 3 - Testing specimens:

Testing offers the chance to analyze the structural behavior. Again, a close

representation of real-world conditions are to be generated during testing.

These conditions include the types of loading (location and magnitude) and

boundary conditions.

Specifically for the two wall specimens, different damage states are created

to emulate structures that are deep in their deterioration process. These are

the occasions where other researchers conducted destructive static loading

on the specimens parallel to its dynamic modal hammer tests conducted by

the author. Testing methods utilized in this study will be discussed in-depth

in Chapter 4.

In this study, several structural elements are tested in a similar way. For a single

specimen even, numerous identical procedures are employed in its testing. Table

8 is a road map summarizing the design, fabrication and test month, duration, and

participants for all specimens.
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Table 8: Summary of major activities in the experimental work: The initials in the

table represent: AJ - Alieu Jobe (author), JSP - Dr. Jin-Song Pei, RWF - Dr. Royce W.

Floyd, PSH - Dr. Phillip S. Harvey Jr., MFS - Michael F. Schmidt (lab coordinator),

CWC - Conor W. Casey, CDM - Dr. Cameron D. Murray, SDT - Stephen D. Tanksley,

and YPS - Yohanes P. Sugeng

Specimen
Design and Construction Experimental Setup and Testing

Date Duration Participants Date Duration Participants

Prestressed

Girder

∼

1960’s

No info. No info. Jun

2015

One

Month

AJ, JSP,

CMD,

CWC, MFS

and SDT

Masonry

Wall

Feb

2016

∼ 2

Months

RWF, CWC,

PSH and

MFS

Mar

2016

One

Day

AJ, JSP,

PSH, RWF,

CWC and

MFS

Timber

Wall

Jun

2016

One

Week

RWF, AJ

and MFS

Jul

2016

One

Week

AJ, RWF,

PSH, CWC

and MFS

Timber

Joints

∼

2007

∼ 2

Months

YPS May

2016

One

Week

AJ and MFS
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4 EXPERIMENTAL INVESTIGATION

This chapter details the instrumentation and test procedures on representative

specimens in this study. As previously mentioned, four types of specimens were

tested. This chapter will cover the experimental procedures for two specimens: the

prestressed girder (Girder C) and the timber wall. Of the four specimens, Girder

C is one of its kind due its simply supported boundary conditions and its. The

remaining three specimens are modeled as cantilever upright specimens. Of the

three cantilever specimens, the timber wall is considered to have the most com-

plicated test setup and procedure, thus, it is used for illustration purpose to detail

the experimental procedures of a typical cantilever specimen. Brief descriptions of

the nature, test setup and procedure of each of the masonry wall and timber joint

specimens can be found in Appendix A.

4.1 Overview of Typical Test

As mentioned previously, the general methodology used in this study includes ex-

perimental investigation and data processing. Experimental investigation involves

designing the tests, setting up the equipment and conducting the modal hammer

test. Serving as an overview of a typical test, Figure 9 is an illustration of the se-

quential overview of the data acquisition path in this study. Following the figure

are brief descriptions of the sequence.
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1a

1b

+g

1c

1d

2a 2b
2c

2

1

1

1a

1b

1c

1d

2

2a

2b

2c

Experimental Work

Excitation Force Applied

Response Captured

Modal Hammer Data Acquired

All Data Acquied through DAQ

Data Analysis

Data Saved to Computer

Data Processed using MATLAB

Results Plotted and Analyzed

Figure 9: Illustrative overview of the processes involved in a typical test

First a modal hammer was used to manually apply an excitation force (Figure 9-

1a) to induce a vibration of the specimen. The modal hammer is equipped with a

force sensor that enables the recording of the magnitude of the excitation force.

The hammer was intentionally controlled by the author so that the excitation force

was of moderate and consistent magnitude. The reason is that too large of a force

could cause unintended (hardly seen or existed) damage to the specimen and too

low of a force may not be enough to overcome the noise level. For the masonry wall

specimen sometimes however, the force intensity was dialed down for the interest

of studying the specimen’s behavior under a low excitation force with the intended

practical application to residential buildings in mind. The hammer was powered
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using a Dytran 4110C current source. The hammer force signal was received by the

current source and then fed directly into an NI SCB-68 block, which is connected

to the data acquisition computer through a 68 pin DAQ connector.

Second, accelerometers were utilized to record the acceleration of the specimen

at different locations of interest. The acceleration data was fed directly into the

SCB-68 block.

LabVIEW® from NI was utilized to facilitate data acquisition. Operational pa-

rameters to be specified included sampling rate, number of channels, channel as-

signments to respective sensors, etc. The operational parameters were specified

under LabVIEW’s block diagram and tests were run under the front panel win-

dow. LabVIEW program files are known as “VI” files which stands for virtual

instrument. The VI files used in this study were inspired by Dr. Peng F. Tang’s

original design which enables automation of test duration and file saving. The

author further improved the files and tailored them to fit the current testing proto-

cols. For the timber wall testing, Dr. Philip S. Harvey assisted in further enhancing

the “VI” files.

MATLAB® will be employed to process the data after proper acquisition and

storage. Details of the data processing procedure are discussed in Chapter 5.

4.2 Instrumentation and Data Acquisition

This section reviews key components of the data acquisition system utilized in this

study. Figure 10 illustrates the data acquisition system highlighting the connectiv-

ity of the individual components.
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DC Power Supply
Laptop Equiped with LABVIEW 

for Acquisition Purpose

NI SCB-68 DAQ

Clean AC 120V Supply

Dytran 4110C

Current Source

Specimen

Modal Hammer

NI DAQCard

-6036E

Accelerometers

Figure 10: Configuration of experimental setup and data acquisition system

The two major components of the instrumentation are the modal hammer and

accelerometers. The modal hammer was used to excite the specimen and the ac-

celerometers to record the acceleration responses at designated locations. The re-

maining components, shown in Figure 10, are behind the scenes to facilitate data

collection during testing.

For each test, there were two data paths that eventually converged. First, the

modal hammer force data was fed through the power supply, the Dytran 4110C

current source, and then into the SCB-68 block. The second path was the accel-

eration data, which was fed directly into the SCB-68 block. The block and the

accelerometers were powered with about 10 V DC by a DC power supply. From

the block, data flowed through a 68-pin connector into the DAQcard-6036E, which

fed the data into the data acquisition computer. The computer was equipped with

software packages such as “NI LabVIEW” and “Measurement and Instrumenta-

tions” to facilitate data acquisition process. The overall system was connected to a

clean 120 V AC power receptacle (outlet). The reason for a clean electrical supply

is to avoid other electrical noise from interfering with the sensitive data acquired
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from tests. The receptacle’s circuitry is isolated from that of other receptacles that

power other equipments in the lab. This isolation creates a shield from the major-

ity of the electrical noise induced by other lab equipments, although the presence

of noise was observed on some tests.

For all specimens, trials were conducted prior to the actual test. This was done

to mitigate any possible source of malfunction in the instrumentation. Most of the

problems encountered during trials were related to electrical noise distorting the

sensor signals.

4.2.1 Hammers

Two different hammers were used in this experimental investigation: a big ham-

mer and a small one, both of which are products of Dytran.

The big hammer, referred to as the modal hammer in this study, is designed to

excite large, heavy structures and machines such as buildings, bridges, trucks and

other massive structures (Dytran Instruments, Inc. [b]). The “Impulse Hammer”,

as named by the manufactorer is a 12 lb sledge hammer equipped with an inte-

gral piezoelectric force sensor at the tip. This sensor utilizes self-generating quartz

crystals to output voltage signal at a sensitivity of 1.0 mV
lb f . The output signal is

proportional to the impact force of the hammer (Dytran Instruments, Inc. [b]).

The modal hammer is designed for a maximum nominal impact force of 5000 lb f

which is equivalent to a maximum voltage output of 5 V. As shown in Figure 11,

the hammer comes equipped with four different color-coded tips that are distin-

guished based on their hardness or softness. Each of these tips has a suitable ap-

plication for recommended use (Dytran Instruments, Inc. [b]). The modal hammer

is powered with 12 V DC using the 4110C current supply, which is also a prod-

uct of Dytran. The hammer was used to excite the prestressed concrete girder, the
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masonry wall and the timber wall during testing.

0510

Inches

Figure 11: Dytran modal hammer

The small hammer used in this study is also a product of Dytran. Named

“Dynapulse Impulse Hammer,” it is also equipped with a force sensor that uses

a quartz sensing element with a maximum allowable force of 1000 lb (Dytran In-

struments, Inc. [a]). The force sensor has a voltage sensitivity of 10 mV
lb f (Dytran

Instruments, Inc. [a]). This hammer was used only in this study to excite the tim-

ber joints specimens. As shown in Figure 12, the small hammer also comes with

different heads with different levels of hardness.

2 1 0

Inches

Figure 12: Dytran dynapulse impulse hammer
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4.2.2 Accelerometers

Accelerometers are sensors that measure acceleration of a body. They can be uni-

axial (i.e. measure in a single axis), biaxial (i.e. measure in two axes) or triaxial

(i.e. measure in three axes). In this study, they are the key facilitators of the exper-

imental investigation. Two brands of analog uniaxial accelerometers were utilized

in this study: a Silicon Designs (SD) brand and an Analog Devices (ADXL) brand,

as shown in Figure 13.

(a) (b)

Figure 13: Accelerometers used in this study: (a) Analog Devices (ADXL) ac-

celerometer, and (b) Silicon Designs (SD) accelerometer

The SD accelerometers are manufactured by Silicon Designs Inc. and are char-

acterized by their high drive low impedance buffering (Silicon Designs, Inc. [2006]).

Two different models of sensors were utilized in the study: a ±2g range and a ±5g

range. The ±2g range was preferred and used for most of the experimentation

first and foremost, due to the accelerometer’s high resolution. There is a limitation

due to measurement saturation when acceleration beyond its range is encountered

during the timber joint tests.
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The ADXL accelerometers made by Analog Devices have options for both uni-

axial or triaxial. During the time of testing, only uniaxial ±4g range ADXL mod-

ules were available. They were only used during the testing of Girder C due to a

limited number of available SD sensors.

Since two brands of accelerometers were utilized, each of which required a dif-

ferent mounting method, two different mounting brackets were fabricated. Figure

14 presents photos of the sensor mounting accessories.

(b)

(a)

(c)

Figure 14: Accelerometer mounting accessories: (a) L-bracket for SD sensors, flat

bracket for mounting ADXL sensors on the prestressed concrete girder only, Loc-

tite 410 instant adhesive to be applied on bracket before mounting and for mount-

ing, and Loctite 7452 accelerator for accelerating the adhesive bonding power, (b)

a mounted SD sensor and (c) a mounted ADXL sensor

The sensors were mounted on the brackets using small screws and bolts and
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the brackets were mounted on the specimens using the Loctite 410 adhesive. Loc-

tite 7453 accelerator was sprayed on the brackets before the adhesive was applied

in order to accelerate the curing process of the adhesive. For the timber joint speci-

mens, only L-brackets were used for mounting and were mounted to the specimen

using screws. For the timber wall specimens, the sensors were directly mounted

to the specimen using wood screws.

4.2.3 SCB-68 and DAQ card

The SCB-86 and DAQ card are the key in the data collection and modulation. Fig-

ure 15 presents photos of the components of the DAQ unit used in this study.

(a) (b)

(c)

Figure 15: The National Instruments (NI) digital acquisition system utilized in this

study (a) SCB-68 block; (b) DAQcard-6036E connected to the 68 pin connector, and

(c) DAQ card

The SCB-68 block is a shielded input/output (I/O) connector block manufac-

tured by National Instruments (NI). The SCB-68 block interfaces I/O signals to

plug-in data acquisition (DAQ) devices with a 68-pin connector (National Instru-
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ments). The block is limited to two configurations: a sixteen-channel single-ended

mode and an eight-channel differential mode. Two units of the SCB-68 block were

available and one was configured in single-ended mode and the other in differen-

tial mode. Thus, both configurations were utilized in the study. The first con-

figuration was utilized in testing the prestressed concrete girder and the latter

was utilized on the remaining specimens. Due to its size, the prestressed con-

crete girder required a comprehensive setup to record it in-plane and out-of-plane

motion along multiple locations. However, the DAQ is limited to a maximum

of fifteen single-ended channels that can accommodate accelerometers. With the

single-ended mode comes another limitation that only half the resolution of the

sensors can be utilized.

Another crucial component of the acquisition system is the DAQcard. The

DAQ device used in this study is the DAQcard-6036E, which is a digital I/O card –

also manufactured by NI. The DAQcard modulates the analog data from the SCB-

68 block into useful digital signals that are fed into the data acquisition computer

where it is stored for processing.

4.2.4 Field calibration of accelerometers

Prior to every test, and sometimes after, field calibration was conducted on the

sensors. The purpose of the calibration is to record the positive and negative “g”

voltage readings for each of the accelerometers used. It was conducted by placing

the accelerometer on a horizontal surface with its measuring axis facing vertically

down and then running the acquisition system for a short time. The same pro-

cedure was repeated for the opposite end of the sensor’s measuring axis. When

the measuring axis faces vertically down, gravity will have full effect on the ac-

celerometer and thus the reading should represent either positive or negative “g”.
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Repeating the procedure on the opposite end will ensure the recording of both

positive and negative “g” readings for the sensor. These reading are inputs of the

modular code and are know as the sensitivity values later discussed in Section 5.4.

4.3 Timber Wall: Specimen Description

The timber wall specimen tested in this study was designed to mimic shear walls

that are most commonly used in typical timber homes. The specimen is designed

based on the International Building Code (IBC) 2009, and with nominal dimen-

sions of 8× 8 feet (height × width). The 8 feet height is a standard dimension from

floor to ceiling for a typical home. See Figure 20 for the overall dimensions and

other details to be explained herein.
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Figure 16: Timber wall dimension detailing. All dimensions are in inches.

The wall is framed using 2 × 4 dimension lumber and it consists of a single

horizontal plate at the bottom, double at the top and seven vertical studs spaced

at 16 in on center (O.C.). Nails are utilized in all of the specimen’s connections.

The stud (vertical elements) of the framing are connected to the plates (horizontal

elements) using two 16d end nails at each joint. The two top plates are nailed

together using 10d spaced at 24 in O.C. Although designed as described above,

a 2 × 6 plate is placed nailed at the top to accommodate the placement of a W-

sections (as added mass in the form of distributed load) during testing. Two 4 × 8
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feet 3
8 in thick Oriented Strand Board (OSB) are nailed on one side of the framing

using 10d common nails spaced 4 in O.C. at its edges and 6 in O.C. in field. The

wall sheathing is designed based on City of Moore [2014].

4.4 Timber Wall: Test Setup

In this study, the timber wall specimen was tested both statically and dynamically,

specifically, modal hammer tests for the latter. The intermittent modal hammer

tests were performed by the author in between a series of destructive shear load-

ings. During the experimental procedures, the timber wall specimen was mounted

on a rigid floor (at Fear Lab structural engineering high bay) using two 0.5 in an-

chor bolts spaced at 6 f t on center. The specimen was maintained at the same

location through all tests.

To apply lateral load by pulling as shown in Figure 17, a hydraulic jack was

mounted on a rigid column, attached (in series) to the load cell which was then

hooked on to a steel plate mounted at the top of the specimens. This plate was

mounted with four bolts at the top of the specimen in such a way that the center of

the hook was directly aligned to anchor bolt on the base closest to the loading sys-

tem. To measure the deflection as the specimen was loaded, a string potentiometer

(wirepot) was mounted on the rigid column underneath and parallel to the load-

ing system. The wirepot was then hooked to the specimen at the end of the 2 × 6

plate as illustrated in Figure 18.
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(a)

(b)

(c)

Figure 17: Timber wall lateral test setup: (a) bolted anchor for the loading system,

(b) bolts to the rigid floor spaced at six feet, (c) rigid floor
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(a) (b) (c) (d)

Figure 18: The lateral loading system for the timber wall: (a) wire potentiometer

for measuring displacement; (b) hydraulic arm for applying lateral force; (c) ad-

justable chain for transferring lateral force and allowing slack during disengage-

ment of loading system, and (d) s-shaped load cell for measuring applied force

For all hammer tests, six accelerometer were mounted at different locations of

interest on the specimen as illustrated in Figure 19, where the arrows indicate the

positive direction of measurement. The sensor layout was designed to capture

in-plane, out-of-plane and torsional responses. Accelerometers were mounted at

the base of the specimen to correct rigid body motion in the data analysis. The

numeric numbers assigned to the accelerometers in Figure 19 are actually the ana-

log channel IDs, which are given in Table 9. Accelerometer IDs assigned by the

manufacturers, and the mounting locations and orientations, are also specified in

Table 9.
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Figure 19: Timber wall sensor layout
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Table 9: Description sensor allocation details. †“ai” stands for analog input

Channel ID† Sensor ID Location Orientation

ai1 Hammer N/A N/A

ai2 750 base in-plane

ai3 628 top in-plane

ai4 751 base out-of-plane

ai5 753 mid-height in-plane

ai6 627 top-south out-of-plane

ai7 754 top-north out-of-plane

In addition to the accelerometers occupying channels 2 through 7, the modal

hammer was connected to channel 1 for force monitoring purpose. An eight-

channel differential mode setup was utilized for this particular specimen, however,

channel 0 was not used due to its faultiness.

For all accelerometers mounted on the specimen, the following is a description

of their primary roles referring to Figure 19 and Table 9:

Sensor 2 measures in-plane ground motion. The data from this sensor enables the

exclusion of the translational rigid body motion in the specified direction

for the calculation of elastic deformation.

Sensor 3 measures the in-plane acceleration closest to the lumped mass, i.e., on

the top plate of the timber wall specimen to obtain the anticipated first

mode.

Sensor 4 measures the out-of-plane ground acceleration. The data from this sensor

is used as ground reference for all relative out-of-plane accelerations.

Sensor 5 measures the in-plane acceleration at specimen’s mid-hight to confirm
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the mode shape during data analysis.

Sensor 6 measures the top out-of-plane motion.

Sensor 7 measures the top out-of-plane motion.

The average of the responses obtained from sensors 6 and 7 is used to assess the

out-of-plane bending of the specimen, and the difference gives the torsional re-

sponse.

Figure 20 shows the three loading configurations. In order to mimic the gravity

loads that may be bearing upon a typical timber shear wall in service, two loading

configurations were created in addition to the specimen’s default configuration.

(a) (b) (c)

Figure 20: Three loading configurations for the timber wall during the modal ham-

mer test: (a) the specimen is under no distributed load from the top; (b) the speci-

men is with a 4 ft long W15 × 50 centered at the top, and (c) the specimen is with

two 4 ft long W15 × 50 placed at the top

These loads were added only during the dynamic test, and were done in three
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levels.

Level 1 The specimen was tested with no weight added to the top as illustrated by

Figure 20a.

Level 2 A single 4 ft long W15 × 50 section was used to give a 4 f t long 50 lb
f t

distributed load as illustrated by Figure 20b.

Level 3 Two 4 ft long W15 × 50 sections were used to give it an 8 f t long 50 lb
f t

distributed load as illustrated by Figure 20c. This loading condition be

considered the most accurate representation of real world situations.

C-clamps were used to secure the loads on the top plate of the specimen to

ensure a monolithic reaction during the modal hammer tests. A crane was utilized

during loading and unloading the added loads after every test.

4.5 Timber Wall: Test Procedure

As mentioned, two types of tests were conducted on the timber wall specimen:

lateral shear test and modal hammer test, the procedure of which will be presented

in Sections 4.5.1 and 4.5.2, respectively.

4.5.1 Lateral shear test

Although not the main focus of this study, the lateral shear test involved applying

lateral load to the top of the specimen while the bottom was anchored on the rigid

floor. The load was applied using a hydraulic jack in the direction shown earlier

in Figure 17. As the specimen was loaded, the load cell was used to record the ap-

plied force. A string potentiometer (wirepot) was used to monitor the specimen’s
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deflection. The specimen was loaded and unloaded successively until failure was

reached. During this loading and unloading process, different stages of the speci-

men’s damage state were reached.

4.5.2 Modal hammer test

The modal hammer tests were executed before, after and in between each of the

of the lateral loading cycles. The hammer test involved using the modal hammer

to excite the specimen at the designated impact locations to induce free vibration.

See Figure 21 for all impact locations and Table 10 for explanations. The impact

locations were designed to excite multiple responses to produce a wide scope of

analysis for future studies.
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Figure 21: Timber wall impact locations where a cross head is used to indicate each

impact location
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Table 10: Details on Impact Locations

Location ID Position on Specimen Impact direction

a North - Top In-plane

b South - Top In-plane

c Second Stud from North - Top Out-of-plane

d Middle Stud - Top Out-of-plane

e Second Stud from South - Top Out-of-plane

f North - 6 f t from bottom In-plane

g South - 6 f t from bottom In-plane

All three loading configurations presented previously in Figure 20 give a broad

set of scenarios to model the specimens for real-world situations where the wall

is load-bearing. Modal hammer test helps contrast the effect of gravity loads on

the modal frequencies. Finally, the different damage states induced by the shear

test would further widen the scope of analysis into the study of damaged structure

analysis.

4.6 Prestressed Concrete Girder: Specimen Description

As one of the structures tested in this study, Girder C is a “retired” prestressed con-

crete girder that had served about 47 years on the I-244 bridge over the Arkansas

river in Tulsa, Oklahoma (Floyd et al. [2016]) before the bridge was demolished,

and the specimen was extracted, transported to, and tested at Fears Structural En-

gineering Laboratory at the University of Oklahoma. .

Spanning 46 f t, Girder C used to be one of the seven girders supporting a 46-

ft section of the east bound lanes of I-244 (STU [1967]). The girder is an Amer-

ican Association of State Highway and Transportation Officials (AASHTO) Type
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II prestressed girder that was precast in the 1960’s (STU [1967]). The girder was

extracted as the bridge was demolished for a replacement in 2013 (Floyd et al.

[2016]). It was, however, extracted with an asymmetric portion of bridge deck and

diaphragms (as documented in Figure 22). Figure 22 presents AutoCAD drawings

with the exterior dimensions of the girder and some other details relevant to its

testing setup. More details on the girder can be found in (Floyd et al. [2016]) where

the material properties of the cored samples of Girder C are provided.
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Figure 22: Prestressed girder dimension detailing
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4.7 Prestressed Concrete Girder: Test Setup

Although the girder was tested both statically and dynamically, they were con-

ducted independently. The dynamic test was only a minor task before the major

shear destructive tests. This section discusses only the dynamic test.

Girder C was tested differently from all the other specimens in this study in

terms of boundary conditions. In modeling, unlike all the other tested speci-

mens modelled as a cantilever beams/walls, the girder is modeled as a simply-

supported beam. The testing protocol is thus different accordingly.

During testing, the girder was placed in Fears Lab high bay and was simply

supported on elastomeric pads. These one inch thick pads were utilized to mimic

the real-world supporting conditions of the girder in service (Floyd et al. [2016]).

These pads were centered at 6 in form the ends of the girder, giving the specimen

a span of 45 f t.

Accelerometers were utilized to capture the free vibration response of the spec-

imen after excitation was applied. The accelerometers were mounted with the use

of aluminium plates and Loctite 410 adhesive (given earlier in Figure 14).

The sensor layout for Girder C is presented in Figure 23. Note that notations of

N and S imply north and south direction, respectively, based on the orientation of

the girder during testing. The numerical values represent the length in f t from the

mid-span of the girder.
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Figure 23: Prestressed sensor layout
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Fifteen accelerometers were mounted at key locations of interest on the girder

to capture in-plane, out-of-plane, torsion and/or longitudinal accelerations. To-

gether with one channel reserved for the modal hammer, this number of channels

makes a total of 16 channels to saturate the single-ended mode capability of SCB-

68. Two items played an important role in the placement of sensors: cable lengths

and resolution. Accelerometers were generally prioritized based on the impor-

tance of the mounted locations in the analysis presented earlier in Section 3.3.

Due to the huge dimensions of the specimen, some sensors had limited reaches

because of their short cables. Sensors with longer cables were generally mounted

farther from the mid-span and shorter ones were mounted closer to and at the

mid-span.

Sensors with shorter ranges of measurement (i.e. 2g sensors) were considered

to have a higher resolution and those with long ranges (i.e. 4g and 5g) are consid-

ered to have a lower resolution. Higher resolution sensors were mostly used on

important locations (i.e. mid-span in-plane, supports in-plane, etc.). Tables 11 and

12 give more information on the location and nature of the accelerometers.
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Table 11: Accelerometers with their corresponding channel “ai” designations, res-

olutions, cable lengths and directions of measurement

Channel No. Sensor ID Range Sensor Cable length ( f t) Direction

ai1 626 2g SD 44 In-plane

ai2 751 2g SD 24 In-plane

ai3 752 2g SD 26.5 Out-of-plane

ai4 628 2g SD 27 Out-of-plane

ai5 539 5g SD 11 In-plane

ai6 263 4g ADXL 6 Out-of-plane

ai7 229 4g ADXL 7 Out-of-plane

ai8 627 2g SD 7 In-plane

ai9 537 5g SD 11 Longitudinal

ai10 753 2g SD 10 Out-of-plane

ai11 750 2g SD 11.5 Out-of-plane

ai12 749 2g SD 25 In-plane

ai13 535 5g SD 12 Out-of-plane

ai14 536 5g SD 12 Out-of-plane

ai15 754 2g SD 46 In-plane

Table 12: Locations of all sensors

Coordinate ( f t) N22.5 N15 N4 0 S11 S22.5

Top flange N/A 752 263 753 535 N/A

Web 626 751 539 627 749 754

Bottom flange N/A 628 229 750 & 537 536 N/A

As part of the preliminaries of the experimental work, the specimen was painted

white and sharpies were used to draw a grid with a resolution of one foot. Since
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the grid was precisely labeled at every one-foot line, it functioned as a ruler and

helped avoid repetitive measurement during the dynamic setup. The white paint

and grid also helped the trace and document of cracks when the specimen was

later tested for shear.

4.8 Prestressed Concrete Girder: Test Procedure

The dynamic hammer test on Girder C involved using the modal hammer to excite

the specimen at the designated impact locations specified in Figure 24 with the

response was captured by the mounted accelerometers.

0 represents mid-span and the others follow a similar coordinates as the speci-

men’s sensor layout. The longitudinal impact locations are designed to excite dif-

ferent modal responses. For each longitudinal location on the girder, three trans-

verse impact locations were chosen; center, offset west and offset east. The center

location was positioned through the centroid of the girder (alone without the slab)

and the other two were offsets from the centroid. The off-center locations are de-

signed to excite out-of-plane and torsional responses for future models to be used;

their analysis in principle would be the same as that in Chapter 5 but omitted in

this study..

For each impact location on the girder, the author took the initiative of grind-

ing the surface to ensure smoothness, which would promote proper application of

excitation force and mounting of some accelerometers as detailed in Figure 25.
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Figure 24: Prestressed girder impact locations
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(b)(a) (c) (d) (e)

(f ) (g) (h) (i) (j) (k)

Figure 25: Top view of the prestressed concrete surface sanded and labeled with

impact locations and side view of sensor layout: (a) Impact 15N, (b) Impact 11N,

(c) Impact 0, (d) Impact 11S, (e) Impact 15S, (f) Sensor at 22.5N, (g) Sensors at 15N,

(h) Sensors at 4N, (i) Sensors at 0, (j) Sensors at 11S, (k) Sensor at 22.5S
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5 DATA PROCESSING

5.1 Overview

This study is heavily based on data analysis; therefore, the need for advanced pro-

cessing tools is mandatory. The goal of this data processing is to better understand

the behaviors of the specimens studied. For clarity, the research questions and

approach are stated first and foremost.

5.1.1 Research Questions

For this study, the main interests are geared towards studying the dynamic free

vibration behaviors of the tested prestressed concrete girder and the masonry wall

specimens. The research questions are as follows:

Question 1 What are the fundamental frequencies for Girder C and the masonry

wall specimens?

Question 2 What is the nature of the mode shapes corresponding to the two spec-

imens’ fundamental frequencies?

Question 3 How does the fundamental frequency vary for the masonry wall through

the different damage states?

Question 4 How are the results of the gentle impacts compared with those normal

impacts for the masonry wall?

Questions 1 and 2 are not quiet straightforward given the asymmetrical cross

section of Girder C, to begin with. Therefore, a procedure is generated to determine

the fundamental frequency of the specimen from its SDOF response and verify it
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by checking its existence in other degrees of freedom (DOFs). A similar procedure

is conducted for the masonry wall specimen.

5.1.2 Research Approach

As a reminder, the specimens were tested for free vibration and to be analyzed

as single degree-of-freedom (SDOF) systems. To satisfy the fact that structures

naturally have infinite number of DOFs, other DOFs shown up in the selected low

mode free vibration response will be checked. By doing so, the author can draw

some meaningful conclusions concerning the linear responses of these structural

systems.

For the purpose of properly answering the research questions, three types of

plotted figures are utilized.

Acceleration-time history plot:

This is a time-domain plot that displays the measured absolute or calculated

relative acceleration of the specimen within various time windows of inter-

est. The longest time window is the original recorded time window, where

the response of the specimen can be visualized before, during and after the

excitation force was initially applied and until the transient response com-

pletely dissipates. There are other acceleration-time history plots using other

time windows as will be discussed in later sections.

Power spectrum density (PSD) plots:

This is a frequency-domain plot that presents the energy level of various fre-

quencies corresponding to the time history that it uses to process. There will

be two PSD plots utilized in this analysis for two time windows and will be

discussed later.
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Short-time Fourier transform (STFT) plot:

STFT plot is a time-frequency domain plot that displays short-time averaged

frequency of the response at various time instances. This plot is used to visu-

ally distinguish between the existence of forced and free vibration at different

time instances and thus, free vibration where the low modes dominate can

be separated from the forced vibration response of the recorded acceleration.

The research question is answered in three different analysis phases, where

various steps are taken within certain phases.

Phase I

This phase involves all relative acceleration responses obtained from either of

the two specimens. For each test, the recorded response in fact contains both forced

and free vibration. The forced vibration, in this context, refers to vibration of the

structure during the application of excitation. The duration is very brief; the pro-

cess is very complicated. As it can be depicted on the STFT plots, it is the area of

high energy levels. After the forced vibration, free vibration occurs and takes con-

trol of the rest of the response. The free vibration portion of the overall response is

when the structure’s motion is directly under by the impact force, but rather by an

initial condition caused by the impact. The purpose of this phase is to separate the

free vibration from the full response in order to extract the fundamental frequency.

It is hard to tell when exactly the free vibration starts from the signal, but it is fea-

sible to identify the portion of the free vibration when the fundamental frequency

and a few other low modal frequencies dominate. This phase involves three steps

as illustrated by Figure 26.
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Figure 26: Illustrative summary of phase I steps: (a) show the plotted results: (a.i) full relative acceleration-time history of a

particular test and its corresponding PSD plot, (a.ii) zoomed plot of the major response window drawn on plot a.1 and its

corresponding STFT plot, and (a.iii) zoomed plot of free vibration window on a.ii and the corresponding PSD plot where

fundamental frequency, fn, is be obtained
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Step 1 entails plotting the full time history that spans from the beginning to the

end of the data acquisition duration. This step also involves plotting the

frequency-domain (PSD) response for the full time history. The full time

history displays all the information in a superficial manner while useful

information is hidden inside. The useful information is the major response

of the structure from the time of modal hammer impact till the end of its

response. For the purpose of extracting the major response, a time window

that is suspected to cover the major response is established; this window

will be discussed in step 2 below. Step 1 is illustrated in the left panel of

Figure 26.

Included in this step, is another short window created on the full time his-

tory prior to the application of excitation. This window is called calibration

time window and is not plotted but is used in making the calibration for

zero-g output. The output variable is used to create the zero-gravity accel-

eration baseline for all the plots in a particular test.

Step 2 involves the use of peak hammer force to detect the time of impact, and cre-

ate a window ranging from shortly before the time instance of impact till a

proper time instance when the majority of the response has dissipated. This

time window captures the major acceleration time history and it includes

both forced and free vibration responses. The need for separating the free

from forced vibration requires not only looking at the acceleration time his-

tory but also looking at the STFT plot. STFT is a three dimensional plot

and the three dimensions include time (displayed on the x-axis), frequency

(displayed on the y axis) and frequency amplitude or energy levels (which

occupies the z-axis but displayed using color contours). For the STFT plot,

the hot colors signify intense energy levels while the cold colors show the

presence of low energy levels (Tang [2015]). The STFT plot shows the distri-
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bution of the energy levels through the major response in a time-frequency

domain where the fundamental and a few low structural modal frequen-

cies (as depicted by the horizontal peaks) will be revealed to be dominant

after a certain time. This time is a sign of the end of the forced vibration

response; thus, the free vibration window can be identified. This step is

illustrated in the middle panel of Figure 26.

Step 3 involves plotting the free vibration window after it is identified in step 2. As

illustrated in the right panel of Figure 26, this step plots both a time history

and a PSD spectrum for the free vibration response. For the latter plot,

the frequency axis limits are set to low range knowing that the specimen’s

fundamental frequency will not exceed this range based on the anticipated

results computed in Section 3.3.

It is worth noting that these steps are conducted with no use of filtering, i.e., no

distortion of the acquired data in the analysis.

In later sections, Step 1 figures will not be presented to avoid repetitiveness.
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Phase II

As illustrated in Figure 27, this phase involves three key analyses to conclude

the fundamental frequency and the nature of its corresponding mode shape. Know-

ing that an intended in-plane excitation could produce both out-of-plane and tor-

sional responses in addition to in-plane responses, in-plane bending (IPB), out-

of-plane bending (OPB) and torsional (TOR) response analyses are conducted in

this phase. In-plane bending refers to the vertical bending of the girder as demon-

strated by the red deflected shape (labeled (1)) in Figure 27(a). Out-of-plane bend-

ing refers to the horizontal bending of the specimen as represented by the blue

deflected shape (labeled (2)) on the same figure. Torsion refers to the free rotation

of the specimen about the x-axis as illustrated by the green arrows (labeled (3))

on the same figure as well. The illustrations of the three motions in Figure 27 do

not apply for the masonry wall specimen. Hence, the corresponding three motions

for the masonry wall are illustrated as i, ii and iii in Figure 8(a). For each of the

described motions, step 3 of phase I results are presented to extract the fundamen-

tal frequency. The frequencies obtained from this phase will be compared with

the estimated fundamental frequencies of each respective specimen as presented

in Section 3.3.
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Figure 27: Illustrative summary of the Girder C’s analysis procedure: (a) 3D Auto-

CAD drawing of specimen showing (1) the in-plane bending deflected shape, (2)

the out-of-plane bending deflected shape and (3) the torsional motion about the

x-axis of the specimen, (b) showing the sensors of focus for each of the response

analyses.

In-plane bending (IPB) analysis involves extracting the fundamental frequency

from the relative responses of some combinations of the available in-plane

sensors. The extraction of fundamental frequencies from each combination

is conducted using the procedures in phase I. Given the rough estimations

in Section 3.3, this analysis next involves verifying that all the analyzed re-

sponses with the same fundamental frequency are in phase to confirm that

they belong to the first mode. As it can be seen in Figure 27(b), the in-plane

bending involves the accelerometers at locations 15N, 0 and 11S. If these three

locations share the same fundamental frequency and are in phase, then it can

be justified that the frequency obtained is indeed the fundamental frequency
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which corresponds to the first mode. An analysis following a similar concept

will be conducted for the masonry wall as well. Note that the author com-

puted the estimated fundamental torsional frequencies for both specimens in

Section 3.3 to rule out the possibility of torsion.

Out-of-plane bending (OPB) analysis involves checking the presence of the fun-

damental frequency obtained from the IPB analysis in the out-of-plane re-

sponse. This is to verify the existence of out-of-plane bending in the first

mode, which is a possible observation given the asymmetrical cross section

of the girder. If the existence of the fundamental frequency in OPB response

is not confirmed, then conclusion can be made that the first mode obtained

from IPB is purely in-plane. Otherwise, it is not purely in-plane.

Torsional (TOR) analysis also involves checking the presence of the fundamental

frequency obtained from the IPB analysis in the torsional response. Again,

due to the asymmetrical cross section of the girder, the existence of torsion

in the first mode is a possible observation. The same conclusion as the one

made for the OPB can be made here if the fundamental frequency is observed

in the TOR response.

Phase III

This phase is only applicable to the masonry wall specimen. It involves extract-

ing the fundamental frequencies of the specimen through the different damage

states and comparing them. This comparison leads to a better understanding of

the change in the fundamental frequency of a structure at different damage states.

This will be relevant to structural health monitoring (SHM).

For the masonry wall specimen, this phase is built on phase I and II. First, phase

I is utilized to determine the fundamental frequency at an elastic state. Secondly,

91



phase II procedures are utilized to verify that the fundamental frequency is purely

in-plane, or not. Finally, phase III studies the change in the fundamental frequency

through its damage states.

5.2 Results and Analysis: Prestressed Concrete Girder

This section presents representative results obtained from all the tests conducted

on Girder C. For clarity in presentation, one particular hammer impact at mid-

span (i.e. location 0) will be used to start with (see Sections 5.2.2 and 5.2.4). Results

from other hammer locations will be presented afterwards (see Section 5.2.5). The

meaningful results of this section are only expected to surface through phases II

and III analyses. Hence to avoid repetition, results for phase I are only presented

for the mid-span relative response when the specimen was excited at the mid-span

impact location.

5.2.1 Sensor layout

Figure 28 shows the locations of sensors whose measurements are utilized in this

section. The presence of electrical noise was a limitation in using one of the in-

plane sensors for this analysis; thus, it was excluded from this analysis. This sensor

with a higher noise level was located 4 ft from the mid span toward in the north

direction during testing but is not included in Figure 28. Although other out-of-

plane sensors were available at other locations, the focus of this study is directed

towards mid-span. Supports’ out-of-plane motions were not recorded due to lim-

ited number of available accelerometers; therefore relative out-of-plane bending

and torsion are not utilized in this section.
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Figure 28: Girder C’s sensor locations showing the positions of sensors only ana-

lyzed herein

Based on Section 3.3 the in-plane fundamental frequency for Girder C is esti-

mated to be around 11 Hz. This estimated value and the mode shape are to be

verified using phases I and II procedures described in Section 5.1.2.

5.2.2 Phase I demonstrated using mid-span impact

The three steps in phase I are applied to the analysis of Girder C. As a demon-

stration, the mid-span impact location is utilized to analyze the recorded response

at mid-span relative to the supports. For this specific test, attention is given to

the sensor combination of those at locations 0, 22.5N and 22.5S, which represent

mid-span, north-end support and south-end support, respectively.

In step 1, full time histories and the corresponding PSD plots are given in Fig-

ures 29 and 30, respectively. In each figure, the absolute motions presented for the

mid-span and supports in-plane motions are plotted together on the first panel,

while the second panel plots a relative in-plane response at mid-span.
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Figure 29: Full in-plane absolute acceleration responses for Girder C at locations

22.5N, 0 and 22.5S (i.e., mid-span and supports), as well as the relative acceleration

when specimen was excited at location 0 (i.e., mid-span) - center
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Figure 30: PSD for the response presented in Figure 29

Step 2 is represented by Figure 31 where the major response of the relative mo-
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tion is plotted in terms of both time history and STFT response. Using this figure,

the author comes up with a “free vibration window” to continue with Step 3. As

it can be seen in Figure 31, the free vibration window (i.e. the box drawn on the

acceleration time history) corresponds to the portion of the STFT plot where most

of the dense energy levels have dissipated and the controlling modal frequencies

can be seen as horizontal peaks.

Figure 31: Truncated in-plane relative acceleration response for Girder C at mid-

span as well as the STFT plot when specimen was excited at mid-span - center

Step 3, as shown in Figure 32, first presents the identified free vibration re-

sponse of the relative acceleration. For this portion of the acceleration time history,

PSD is performed one more time to extract meaningful structural modal frequen-

cies.
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Figure 32: Further truncated response per window in Figure 31 and its truncated

PSD spectrum

As it can be seen on the lower panel of Figure 32, the first peak appears to be

9.7656 Hz. This frequency is fairly close to the anticipated result; however, it is

not enough to conclude that the it is the fundamental frequency. Hence further

analyses are to be conducted in Sections 5.2.4 and 5.2.5 to verify this. In addition,

the resolution of the PSD plot will be discussed in Section 5.5.3.

5.2.3 Governing equations for Girder C relative responses

All relative responses are obtained after correcting the rigid body motion. The

interest of this study is in analyzing elastic deformation; thus correcting rigid body

motion is necessary. Hence, the need for defining the proper equations for the

relative plots with rigid body motion corrections is the key. The rigid body motion

includes both translational and rotational movements; thus a linear relationship is

assumed. Figure 33 is a trapezoidal approach for doing this correction.
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Figure 33: Demonstration of the rigid body motion at various sensor locations in-

duced by support movement; a linear relationship is given by the trapezoid shown

here

By using Figure 33, the following equations are obtained. Note: The “v”, “t”

and “b” refer to vertical, top and bottom, respectively, and imply the transverse

location and/or directions of measurements of the sensors at the specified coordi-

nate on the beam as presented in Figure 28. Also the notations “rel” and “abs” refer

to the relative and absolute accelerations, respectively. IPB, OPB and TOR refer to

in-plane bending, out-of-plane bending and torsion as defined in Section 5.1.2.

Girder C governing in-plane acceleration equation

ü0,IPB(rel) = ü0,v(abs) −
üA,v + üB,v

2
(5.1)

ü15N,IPB(rel) = ü15N,v(abs) −

(

üA,v +
7.5

45
(üB,v − üA,v)

)

(5.2)
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ü11S,IPB(rel) = ü11S,v(abs) −

(

üA,v +
33.5

45
(üB,v − üA,v)

)

(5.3)

For the following governing equations, support motion was not recorded; thus

rigid body motion correction cannot be conducted.

Girder C governing out-of-plane acceleration equation

ü0,OPB =
ü0,t(abs) + ü0,b(abs)

2
(5.4)

Girder C governing torsional acceleration equation

ü0,TOR = ü0,t(abs) − ü0,b(abs) (5.5)

5.2.4 Phase II demonstrated using mid-span

The purpose of this phase is to conduct analysis on the fundamental frequency

of the structure. The goal is to verify that the fundamental frequency obtained in

phase I can be characterized as purely for in-plane bending. First mode shape is as-

sumed to begin with. For the mid-span impact location, all three motions: in-plane

bending, out-of-plane bending and torsional analyses, are studied, as initially out-

lined in Section 5.1.2.

In-plane bending (IPB) analysis involves analyzing the in-plane motions. Girder

C was tested with boundary conditions mimicking a simply supported beam.

Therefore, its first mode shape is assumed to be represented by Figure 34b -

as a great deal of simplification by neglecting the asymmetrical cross-section.
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Figure 34: A schematic to show: (a) the locations of the three in-plane sensors and

center hammer impact location and (b) the first harmonic mode shape for Girder

C

Based on pure in-plane assumptions, an excitation applied at mid-span will

only excite the first mode. This analysis entails plotting relative time histo-

ries from the in-plane accelerations responses on a single panel. Sensors 15N,

0 and 11S as shown in Figure 34a are used for this analysis. The three cor-

responding PSD responses are also plotted on a separate panel. The goal is

to observe that the three responses share the same fundamental frequency

and that the accelerations time histories are in phase assuming that the first

mode shape shown in Figure 34b will dominate. The resulting plots for the

IPB analysis are presented in Figure 35.
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Figure 35: Girder C’s phase II analysis for in-plane responses at locations 15N,

mid-span and 11S when excitation force was applied at mid-span

The point of this analysis is to the check the purity of the in-plane first mode.

From Figure 35, it can be said that the dominating frequency for all of the

three in-plane responses is 9.7656 Hz (the first peak on the lower panel). In

addition to this observation, it can be observed on the upper panel that the

three accelerations are in phase with a period of about 0.1s. This confirms

that the fundamental frequency is 9.7656 Hz and is indeed first mode. This

observation, however, does not confirm that the first mode observed in this

analysis is purely for in-plane bending. Thus, out-of-plane bending and tor-

sional responses will be analyzed to check the existence of the 9.7656 Hz fre-

quency in their responses.

Out-of-plane bending (OPB) and torsional (TOR) analyses are lumped into one

because there are not many sensor combinations for the two as there were in
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the IPB analysis. In this analysis, both the out-of-plane bending and torsional

motions are plotted on the same panels for both time and frequency domain

analyses as presented in Figure 36. The responses for this analysis are only

obtained at mid-span.
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Figure 36: Girder C’s phase II analysis for out of plane and torsional responses at

mid-span when excitation force was applied at mid-span

As it can be seen in Figure 36, the out-of-plane bending has its first frequency

peak appearing at 53.71 Hz and there is no sign of the 9.7656 Hz frequency.

The torsional response has its first small peak at 24.41 Hz and its dominating

frequency at 53.71 Hz. There is no sign of the 9.7656 Hz frequency on the

torsional motion either. The manifested out-of-plane bending frequency is

very large compared to the estimated fundamental frequency of 5.97 Hz. For

torsion, however, the experimental frequency is about 122% the estimated

value.

These two observations give evidence that the in-plane response of the mid-

101



span impact location is dominated by a pure in-plane first mode with a fundamen-

tal frequency of 9.7656 Hz.

In order to verify that the purity of the fundamental frequency, this procedure

is repeated for responses of locations 15N and 11S, as presented in Section 5.2.5.

5.2.5 Other phase II results and conclusion

Phase II results for 15N and 11S impact locations

The phase II procedure conducted for Girder C’s mid-span impact location

demonstrated in Section 5.2.4 is repeated for 15N and 11S impact locations. The

results are presented in Figures 37 through 40.
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Figure 37: Girder C’s phase II analysis for in-plane responses at locations 15N,

mid-span and 11S when excitation force was applied at location 15N
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Figure 38: Girder C’s phase II analysis for out of plane and torsional responses at

mid-span when excitation force was applied at location 15N
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Figure 39: Girder C’s phase II analysis for in-plane responses at locations 15N,

mid-span and 11S when excitation force was applied at location 11S
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Figure 40: Girder C’s phase II analysis for out of plane and torsional responses at

mid-span when excitation force was applied at location 11S

In the figures presented above, it can be observed that the fundamental fre-

quency is obvious on the IPB responses for all three sensor locations at both lo-

cations 15N and 11S impact locations – similar to the observation made on the

mid-span impact results. The OPB and TOR responses for the two named impacts

locations, however, indicate results that are different from what is observed for

mid-span impact. There is indications of the 9.7656 Hz frequency on both OPB

and TOR responses of the girder. This implies that first mode of the prestressed

concrete girder is not purely for in-plane bending. It includes some out-of-plane

bending and torsional motion. This is not a surprising observation given that the

specimen is asymmetric and, therefore, its main flexural strength is not acting at

its global centroid (i.e. centroid of the girder plus slab), rather, it is acting at the

centroid of the girder only.
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5.3 Results and Analysis: Masonry Wall

In this section, representative results for the masonry wall experiment are pre-

sented. During its modal hammer tests, the specimen was excited on seven loca-

tions as detailed in Figure 41. The analysis herein, however, focuses only on the

in-plane impact locations a and c on the figure. Data from other impact locations

may be used to conduct similar analysis later in Section 5.5.1 and in future studies.
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TOP VIEW

6’-2”

2’-6”

6’-8”

a bdc

e g f

a b
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e
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f a e & f

g
c

CenterNorth South CenterEast West

Figure 41: Details showing impact locations from a to g where the highlighted

location a and c are the main focus in this section

The excitation force was applied with two intensities. Although these forces

were applied using human control, which guarantees no accuracy in repeating the

same force intensity, there were significant differences, on average, in the amount

force between the two as intended. The intensities were named after normal impact
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and gentle impact and their forces ranged from 2700 lb f to 3500 lb f and 900 lb f to

1200 lb f , respectively. More details will be given in Section 5.5.2.

Gentle impact was conducted for the purpose of studying its feasibility in the

field of structural health monitoring (SHM). To be able to conduct a modal ham-

mer test on a building with high occupance (i.e. an apartment or an office building)

by applying low enough impact force that will generate the least amount of dis-

turbance (in terms of sound noise and vibration) and obtain the same result is the

goal.

Most of the tests were carried out using the normal impact; however, the gentle

impact was applied in a number of the tests. For the analyses in this section, com-

parison will be made between the results of the normal impact and gentle impact.

As mentioned in Section A.2 for the masonry wall specifically, intermittent

modal hammer tests were conducted in between the static lateral loading cycles.

Thus, it enabled dynamic analyses of the different damage states. This section

eventually compares the specimen’s fundamental frequencies obtained from every

damage state and how they evolve. The motivation of this analysis is to verify the

known structural damage by using the observed lowered fundamental frequency

in the progressive damage of a structure.

5.3.1 Masonry wall setup

Figures 41 and 42 display the impact locations and accelerometer layout, respec-

tively. The impact locations were designed to excite the specimen for different

responses, such as in-plane bending, out-of-plane bending and torsion. The sensor

layout was designed to allow the measurement of each of the responses mentioned

above. Table 13 provides additional information to the sensor arrangement and

details.
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Although only in-plane impact locations (i.e. locations a and c) are analyzed in

this section, the analysis will involve in-plane bending, out-of-plane bending and

torsion, as conducted for Girder C.
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TOP VIEW

6’-2”

2’-6”

6’-8”

4 5

1

2

6 3

4 & 5
1

2

6 3

4

2 6
1
3

5

Figure 42: Details of the mounted sensor locations on the masonry wall, refer to

Table 13 for the list of the corresponding sensor details
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Table 13: Masonry wall list of sensors IDs, channel IDs and measured acceleration,

†channel 1 reserved for hammer and channel 0 is not functioning

No. Sensor ID Allocated Channel † Measured Acceleration

1 750 2 in-plane motion at the top

2 753 5 in-plane motion at mid-height

3 628 3 in-plane motion at the base

4 754 7 out-of-plane motion at the north end

5 627 6 out-of-plane motion at the south end

6 751 4 out-of-plane at the base

5.3.2 Governing equations for masonry wall relative responses

For all of the response analyses conducted for the masonry wall specimen, relative

acceleration is used rather than absolute. For the purpose of data processing, Equa-

tions (5.1) to (5.9) are prepared for converting absolute accelerations into relative

acceleration. Due to the limited number of properly functioning sensor channels

on the DAQ system, only a single accelerometer was mounted to capture base in-

plane motion. This resulted in a limitation of not being able to correct rotational

rigid body motion. Thus, only translational motion correction is made. The sub-

scripts used in the equations represent the designated sensor numbers according to

Figure 42 and Table 13. The other subscripts carry the same meaning as previously

defined in Section 5.2.3.

Masonry wall governing relative top in-plane acceleration equation

ü1,IPB(rel) = ü1(abs) − ü3(abs) (5.6)
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Masonry wall governing relative mid-height in-plane acceleration equation

ü2,IPB(rel) = ü2(abs) − ü3(abs) (5.7)

Masonry wall governing relative out-of-plane acceleration equation

üOPB(rel) =
ü4(abs) + ü5(abs)

2
− ü6 (5.8)

Masonry wall governing relative torsional acceleration equation

üTOR(rel) = (ü4(abs) − ü5(abs))− ü6(abs) (5.9)

The masonry wall is analyzed in a similar manner as Girder C to identify the

in-plane bending fundamental frequency first and foremost. This is necessary

to eventually analyze different damage states. Both phases I and II are utilized

just like for Girder C to obtain and confirm whether the fundamental frequency

is purely for in-plane bending. Presentation of phase I for the masonry wall is

skipped to avoid repetitiveness while phase II is demonstrated next:

5.3.3 Phase II demonstrated using masonry wall

Similar to Girder C, in-plane bending (IPB), out-of-plane bending (OPB) and tor-

sional (TOR) analyses are conducted for the masonry wall specimen.

In-plane bending (IPB) analysis: Discussions on different boundary conditions

used in analyzing the IPB was given previously in Section 3.3. Figure 43 sup-

ports the two models adopted there. It is important to note that these models

are nonetheless preliminary and must be improved in the future work, e.g.,
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by considering the deep beam effect.

FRONT VIEW
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Figure 43: An illustration of the wall’s bending and sidesway mode shapes in con-

junction to the in-plane sensors: (a)Shows the wall with the three in-plane sensors,

(b) shows the fundamental bending mode shape and (c) shows the fundamental

sidesway mode shape

In IPB, the relative top and mid-height in-plane responses are plotted to-

gether to study the fundamental frequency and verify if they are in-phase.

Figures 44 and 45 present the results of the IPB analysis when the specimen

was excited with normal and gentle impacts, respectively.
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Figure 44: Phase II IPB results for masonry the masonry wall when normal impact

was applied at location a
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Figure 45: Phase II IPB results for the masonry wall when gentle impact was ap-

plied at location c
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It can be seen in Figures 44 and 45 that both the mid-hight and top responses

for the masonry wall share an identical fundamental frequency of 31.74 Hz.

The top and mid-height responses appear to be in phase, thus indicating that

the first mode controls the response. This observation is made for results ob-

tained from both the normal and gentle impacts. This frequency comparable

to the estimated sidesway fundamental frequency of 34.44 Hz, thus showing

that the sidesway mode controls in the in-plane response of the wall.

Out-of-plane bending (OPB) and torsion (TOR) analyses: Due to the section prop-

erties of the specimen and nature of the impact, out-of-plane bending and

torsion are two responses expected to show even when the specimen was

excited in-plane through its neutral axis. Since the excitation force was ap-

plied manually, despite the fact that the intended direction of force is in-plane

through the neutral axis direction, human imperfections could have directed

the force slightly out of plane. This, in addition to the fact that the speci-

men is inherently weaker in the out-of-plane, make a case for us to study the

out-of-plane and torsional behaviors.

As before, OPB and TOR are presented in the same figure. The goal is to

examine whether the fundamental frequency observed on the in-plane anal-

ysis is also observed on either out-of-plane bending or torsion. Figures 46

and 47 present the results of this analysis when the specimen was excited

with normal and gentle impacts, respectively.
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Figure 46: Phase II OPB and TOR results for the masonry wall when normal impact

was applied at impact location a
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Figure 47: Phase II OPB and TOR results for the masonry wall when gentle impact

was applied at impact location c

Figures 46 and 47 indicate the presence of the frequency, 31.74 Hz in the out-

of-plane and torsional responses for both normal and gentle impacts. This obser-

vation implies that 31.74 Hz is not a pure in-plane frequency. In other words, the

31.74 Hz frequency is a combination of in-plane bending, out-of-plane bending

and torsion.

5.3.4 Phase III demonstrated using masonry wall

The masonry wall was subjected to an incremental lateral pushover tests con-

ducted by others – with the modal hammer tests conducted by the author fitted

into every intersession. After five progressive lateral pushover loadings to fail-

ure, five different damage states were defined and illustrated in Figure 48 and

described in Table 14. The purpose of phase III is to study the evolution of the
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fundamental frequency of the wall at each damage state.

Modular Code

fn(c)fn(b)fn(a) fn(d) fn(e)

(b)(a) (c) (d) (e)

>> >> >> >>

Figure 48: Phase III analysis illustration for the masonry wall with hand traced

crack patterns that are based on the recorded ultimate crack pattern, see Table 14

for labeling description

Note: Although the crack pattern for all damage states are presented in Figure 48,

only damage states (a), where there was no cracks, and (e), where all cracks had

occurred, are confirmed. Panel (a) shows no cracks because it was during the elas-

tic state and (e) represents the exact final crack pattern as recorded after ultimate

loading. The crack patterns in between were not recorded during testing but are

drawn for illustration purpose only.

Table 14: Damage states on the masonry wall specimen

Label Damage State Nickname Occurrence Load, (kips)

(a) Elastic Prior to initial loading 4.03

(b) First crack After first crack 7.04

(c) Post-crack After further cracks 12.17

(d) Post-crack 2 Before ultimate failure 17.08

(e) Ultimate After ultimate failure 20.14
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Figure 48 displays an illustration of the processes involved in phase III analysis

for the masonry wall and Table 14 presents brief description of each damage state.

After the fundamental frequency of the specimen has been determined, the five

different damage states are analyzed using their in-plane bending responses only.

The modular code developed in this study (described in Section 5.4) was utilized

for this analysis and all the previous analyses. It is anticipated that the funda-

mental frequency of the specimen will decrease after every damage state due to

reduction of stiffness arising from increment in cracks. Figures 49 and 50 represent

the results of phase III analysis for the normal and gentle impacts, respectively.
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Figure 49: Summary of the masonry wall results at all five damage states when

excitation force ranging from 2700 lb f to 3500 lb f (so-called normal impact) was

applied
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Figure 50: Summary of the masonry wall results at all five damage states when

excitation force approximately ranging from 900 lb f to 1200 lb f (so-called gentle

impact) was applied
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Figures 49 and 50 indicate that the fundamental frequency of the wall has pro-

gressively decreases as the specimen’s damage increased. The same observation is

made regardless of the intensity of the excitation.

5.3.5 Masonry wall: Results conclusion

In this section, phases II and III results for the masonry wall were conducted. The

masonry wall’s fundamental frequency was determined to be 31.74 Hz according

to phase II analysis, which turned out to be 92% of the anticipated fundamental fre-

quency for sidesway and 136% of the anticipated fundamental frequency for the

bending mode. This shows that the wall’s deflected shape is relatable to sidesway

rather than bending. The same analysis shows that the determined fundamental

frequency is the first mode but not a purely in-plane first mode since it was ob-

served to occur in the out-of-plane bending and torsional responses.

Comparison is made between normal and gentle impact intensities in this sec-

tion as well. Generally, gentle impact averaged to be about one-third of the normal

impact force magnitude. This is done to study the applicability of using gentle

excitation, which causes less environmental noise and vibration than normal exci-

tation, in SHM for damage detection. The results within the analysis scope of this

study shows consistency between the two excitation intensities, except at ultimate

failure – which, at that point the specimen is unpredictable. Thus, it can be said

that gentle impact can be applied in SHM for damage detection as it has been.

An interesting observation made while comparing the results of normal and

gentle impacts is that beating occurred on some of the results arising from the

normal impact. This observation was not made on the gentle impacts, however.

This observation is inconclusive within the scope of this study.

Another interesting observation made is the existence of another frequency in
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the response, 43.95 Hz. This frequency was observed to fade away after a few

damage states. This observation is inconclusive in this analysis.

5.4 Modular Code

5.4.1 Architecture

The modular code is developed using an automated interaction among a series of

mfiles coded using MATLAB®. The code is prepared for use in this study and can

be conveniently adapted for future study involving similar tests and collected data

format. Figure 51 presents its architecture in its simplest form.
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Main data !ow
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Figure 51: Flowchart showing the overall architecture of the modular code

The key purpose of this modular code is to conduct time-domain, frequency-

domain and time-frequency domain analyses, generating acceleration time histo-

ries, PSD, and STFT plots, respectively.

The inputs to the entire modular code are the data inputs and supplemental

quantitative inputs that are illustrated on the left side of Figure 51. The data inputs
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are lvm files consisting of voltage outputs from the sensors that are sorted column-

wise according to the DAQ’s channel sequence. The supplemental inputs are the

“convert channel” and “convert sensitivity” mfiles that are used to accommodate

different sensor channel assignments and calibration values, respectively.

The outputs of the modular code are mainly plots and identified critical values

as illustrated in phase I analysis overview, Figure 26, and are direct products of

four different mfiles in the code.

The main processing flow of the code follows a tree shape with six mfiles inter-

acting with each other in a hierarchy. The black arrows carry the main data flow,

the blue arrows show logic sequences for the loop and the green arrows show the

direction of output returns. The logic sequence, in this context refers to the se-

quence of the data sets as defined in the “main” file and looped to load the data

for processing in the order in which they are defined. Output returns are utilized

when a branch in the processing is desired and the outputs of a subsequent file

is needed for the deviation. The different types of specimens are accommodated

inside the “main” file and plotting functions through the use of switching. The

individual mfiles are described in further detail in following section.

5.4.2 Description of individual data processing files

Channel Conversion file “convert channel.m” converts the sensor IDs, i.e. ham-

mer, 750, etc., into the actual analog channel ID corresponding to the hammer

force and sensor reading, i.e. 1, 2, respectively, which will be used for data ex-

traction purposes. Different specimens have different channel assignments; all as-

signments are programmed into this mfile under a switch function using specimen

ID for selection.
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Sensitivity Conversion file “convert sensitivity.m” calculates sensitivity value

for each accelerometer so that the voltage outputs of the individual sensors can be

later converted into an acceleration vector. +g and -g voltage readings obtained

prior to each test are used in the calculation. The sensitivity, in conjunction with

the zero-g value, will be used to convert voltage to acceleration by following the

common practice of field calibration.

Main file“main.m”

• takes the specimen IDs as the inputs

• defines the test ID vector for each test using the specimen IDs

• defines the beginning and ending time instances for the major response win-

dows (MRW) and the free vibration windows (FVW)

• calls one test.m in a loop that runs for each test

• calls plot phase III.m and plot stat.m for when applicable

Plotting preliminaries file “one test.m”

• calls both convert channel.m and convert sensitivity.m for hammer channel

assignment and sensor sensitivity values, respectively

• plots the hammer data-time history for each test

• uses the MRW and FVW variables given in main.m in conjunction with the

time instance of the peak hammer force occurrence to define time instances

for the two named plotting windows to be drawn by subsequent files
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• defines the calibration time window which would be used in conjunction

with convert sensitivity.m to obtain zero-g output values for calibration pur-

pose

• calls plot phase I.m and plot phase II.m for the proper plotting commands

to be executed

Phase I plotting file “plot phase I.m”

• calls both convert channel.m and convert sensitivity.m for collecting the ac-

celerometer channel assignment and sensitivity value, respectively, of each

involved accelerometer

• calculates the zero-g voltage values for all accelerometers used in each dataset

by utilizing the calibration time window defined in one test.m

• plots the full, truncated (i.e., main response) and further truncated (i.e., free

vibration response) time histories for both absolute and relative accelerations

• plots PSD for the full and free vibration time histories

• plots STFT for the main response

Phase II plotting file “plot phase II.m” generates figures such as the free vibra-

tion response and its corresponding PSD for phase II analysis, as the name implies.

Phase III plotting file “plot phase III.m” generates figures such as the free vi-

bration response and its corresponding PSD for the individual damage states in

phase III analysis, as the name implies.
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Statistics plotting file “plot phase III.m” plots a histogram for the impact ham-

mer force magnitudes for a group of tests on one specimen.

Table 15 lists the inputs and outputs of each mfile in the modular code, while

the following list offers a short descriptions of items in Table 15:
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Table 15: Mfiles’ inputs and outputs

Mfile Inputs Outputs

convert channel.m Specimen ID, and (2) Sensor ID Channel IDs

convert sensitivity.mSpecimen ID, and (2) Sensor ID sensor sensitivity values esti-

mated from the dataset

main.m Specimen ID (1) Test IDs, and (2) Trunca-

tion Variables

one test.m (1) Specimen ID; (2) Test IDs; (3)

Sampling rate, and (4) Truncation

Variables

(1) Loaded dataset; (2) Test

IDs; (3) Time; (4) Time win-

dow, and (5) Calibration time

window

plot phase I.m (1) Specimen ID; (2) Sensor ID;

(3) Title; (4) Test IDs; (5) Figure

ID; (6) Time; (7) Time window;

(8) Calibration time window; (9)

Dataset; (10) Sampling rate; (11)

Situation, and (12) Legend cell

(1) Time history plots (rela-

tive and absolute motions); (2)

PSD plots, and (3) STFT plots

plot phase II.m (1) Specimen ID; (2) Impact in-

tensity; (3) Time; (4) Acceleration,

and (6) Fundamental frequencies;

(1) further truncated time his-

tory, and (2) corresponding

PSD plot

plot stat.m (1) Specimen ID, and (2) Impact

force vector

Statistic plot for hammer

forces from a collection of

tests
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5.4.3 Data processing inputs, outputs and their definitions

The modular code includes a number of inputs and outputs that may not be self-

explanatory; therefore, their names, code representations and descriptions are pre-

sented below. The names in quotation are is the variable names as used in the

modular code.

The identification (ID) strings are part of the inputs and given as follows:

Specimen ID string “specimenID str”: For the modular code to work for all spec-

imens, this string is added as an input to run the files in a way that is tailored

for each of the specimens using the switch command. Specimen IDs are GC,

MW, TW and TJ, which represent Prestressed concrete girder (Girder C), ma-

sonry wall, timber wall and timber joints, respectively.

Test ID “testID”: With many datasets named distinctly for each specimens, the

test ID variable is created in the main file (main.m) as a vector of strings

that match the name of each of the datasets to be processed for data loading

purpose. Test ID is a vector that contains all the IDs for the dataset to be

analyzed. Each specimen has a defined test ID vector. The test ID templates

and meanings for each character given in Tables 16, 17,18 and 19, for TW, GC,

MW and TJ, respectively.

Sensor ID “sensorID”: As an input in the plotting file, this is a vector variable

that includes the sensor IDs for all the sensors that would be involved in a

particular data loading.

Situation “situation”: This is a scalar variable utilized to classify the different gov-

erning equations used to calculate relative acceleration. For example situa-

tion 1 in the plot phase I.m file refers to the Girder C governing in-plane

acceleration.
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Other input and output items are as follows:

Datasets: These are the selected acceleration time histories analyzed by the mod-

ular code.

Sampling rate “fs”: This is a constant following the DAQ setting. All datasets in

the experimental investigation of this study are acquired using a sampling

rate of 10, 000Hz. This is used in the modular code to imply that the input

has a 10, 000 data points per second.

Maximum hammer force “hammer force vec”: This is used as an input for the

plot stat.m and it carries the maximum hammer forces for the individual

tests collectively as a vector.

Impact intensity switch “hit intensity switch”: This is a scalar used in the plot phase III.m

to switch between the two impact intensities.

Impact intensity “impact intensity”: This is a string input (i.e. “normal impact

and gentle impact”) used in automating the title generation for the plots gen-

erated by plot phase III.m.

Acceleration “accel”: This is the acceleration time history used as an input in the

plot phase III.m file.

Fundamental frequency “fn”: This is a fundamental frequency input variable used

in the plot phase III.m file which is an output of one test.m.

Output plots are as follows:

Acceleration time history plots: Acceleration time histories - full, truncated, and

further truncated are the outputs of Steps 1, 2, and 3 in Phase I respectively.

Phases II and III output further truncated acceleration time histories
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Power spectral density (PSD) plots: PSD plots are done by directly utilizing the

MATLAB® built-in function called “pwelch”. The PSD plots are generated

from Steps 1 and 3 of Phase I. The PSD plots are further used in Phase II

with interested peak values annotated to the dominating frequencies for the

a response. PSD plots are also used in phase III analysis in a similar manner

as in phase II.

Frequency (STFT) plots: The plots are done by directly utilizing an mfile devel-

oped by (Tang [2015]), the STFT plots were generated for each of the zoomed

plots to manifest areas of higher and lower energy levels using a multicol-

ored frequency distribution. The STFT plots are generated from Step 2 of

Phase I.

The following are for plotting input parameters:

Figure ID number “figID num”: This variable is used to automate the figure plot-

ting and saving.

Legend cell “legend cell”: This is a column cell that facilitates the automation of

figure saving and plotting with an adaptive legend block.

Title strings “title str & title str ”: Similar to the test ID strings, these two strings

are used to facilitate the automation of figure plotting and saving with the

proper figure title in the figure and file name, respectively. The focus is given

to the classification of IPB, OPB, and TOR.

Test ID strings “testID str & testID str ”: These two variables facilitate the au-

tomation of figure plotting and saving with the proper figure title in the fig-

ure and file name, respectively. The focus is given to answering the question

“which test is this figure from?”
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All time variables utilized are as follows:

Time “time”: The time variable is a crucial part of the data processing, as it occu-

pies the x-axis in all the acceleration history plots. This refers to the full time

history thus is defined based on the size of the dataset. It represents the exact

length of time that the dataset lasted during its acquisition.

Truncation variables “MRW 1, MRW 2 FVW 3 and FVW 4”: These are variables

that define the beginning and ending time of the major response and free vi-

bration windows that are required in Steps 2 and 3, respectively, under Phase

I analysis. Although the window span should vary from test to test, a unified

range is chosen for each specimen and used throughout the data processing

for a specific specimen as a roughly automated process and verified by the

author’s visual inspection.

Major and free vibration time windows “time window” and “time window new”:

These two serve as time-windows for the major response and free vibration

window that are required in Steps 2, and 3 under Phase I, respectively. .

Calibration time window “time window calibration”: This is a time window from

the initial part of every input whose voltage is used as zero-g calibration. The

acceleration within this time window is expected to be zero since there is no

excitation force applied yet.

5.4.4 Test nomenclature

Test data files were named in a manner that facilitates automation during their pro-

cessing. The test names were utilized during loading of each of the datasets. The

nomenclature used in processing and described in this section does not follow the

129



original nomenclature established during testing. Although the original names are

still maintained by the original files, the names are modified for easier processing.

Each of the files are named according the corresponding specimen ID (i.e., GC,

TW, etc.) as well as all the testing configuration in the form of numbers. This

ensured distinction between the test names and that no particular test has the same

name as a different test.

The timber wall specimen (TW) is the most complicated in terms of naming

and labelling. Thus, Table 16 presents its ID system as the most comprehensive

example. Similar tables for the remaining specimens can be found in Appendix

B.1.
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Table 16: Test IDs for Timber Wall (Test ID template = TWtest“a” “b” “c” “d”)

TWtest “a” “b” “c” “d”

Representation Condition ID Setup ID Impact ID Trial ID

Range 0 - 5 0 - 2 1 - 7 1 - 3

Number 0 0 1 1

Representation elastic no weight added location a first trial

Number 1 1 2 2

Representation pre-yield 4 feet of 50plf

section added

location b second trial

Number 2 2 3 3

Representation yield 8 feet of 50plf

section added

location c third trial

Number 3 4

Representation post yield location d

Number 4 5

Representation post yield 2 location e

Number 5 6

Representation ultimate location f

Number 7

Representation location g
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5.5 Other Analysis

5.5.1 Masonry out-of-plane responses under out-of-plane impacts

Section 5.3 presents the responses generated from test setup when in-plane re-

sponses were anticipated for the masonry wall specimen. In this section, repre-

sentative Phase II results of the wall after out-of-plane excitations are presented.

Specifically, results from impact locations e, f and g (illustrated in Figure 41) dur-

ing its elastic damage state. It is anticipated that impact locations e and f mainly

excite torsional motions while location g mainly excites out-of-plane bending. The

purpose of this analysis is to gain a better understanding of the out-of-plane bend-

ing and torsional behaviors of the wall when out of plane excitations are applied.

The results obtained in this section will be compared with the estimated modal

frequencies presented in Section 3.3.2. The results of one impact each at the three

impact locations, e, f, and g, are presented in Figures 52 to and 54.
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Figure 52: Phase II OPB and TOR results for the masonry wall when normal impact

was applied at impact location e, when torsion was anticipated
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Figure 53: Phase II OPB and TOR results for the masonry wall when normal impact

was applied at impact location f, when torsion was anticipated
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Figure 54: Phase II OPB and TOR results for the masonry wall when normal impact

was applied at impact location g, when out-of-plane bending was anticipated

The author anticipates the torsional response to be the dominant motion when

the excitation is applied on locations e and f. On the other hand, the out-of-plane

bending motion is anticipated to be dominant when the specimen was excited at

impact location g. The dominance is indicated by the highest peak on the PSD

plots. The out-of-plane bending and torsional fundamental frequencies have thus

been identified as 12.21 Hz and 41.50 Hz, respectively, from these three plots. Nei-

ther the out-of-plane bending nor the torsional fundamental frequencies conform

to their anticipated values of 2.34 Hz and 11.15 Hz, respectively. Further work

can start with using a more accurate estimation for torsional constant, J. The out-

of-plane bending and torsional fundamental frequencies observed in Section 5.3.3

– results of in-plane impacts – differ slightly from the results of the out-of-plane

impacts presented here.
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5.5.2 Comparison of force magnitudes between normal and gentle impacts ap-

plied on masonry wall specimen

As presented and discussed in Section 5.3, normal and gentle impacts are used by

the author to assess the feasibility of applying gentle taps in modal hammer tests as

a potential application in SHM. Since the excitations were applied manually, their

magnitudes varied at the different trials. In this section, the force magnitudes of the

normal and gentle impacts are presented quantitatively and compared. Figure 55

presents the magnitudes of the applied excitation force of both the normal and

gentle for the datasets studied.
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Figure 55: Comparison between normal and gentle impacts: force magnitudes for

normal impact shown in blue, and force magnitudes for normal impact shown in

blue, applied at the different damage states labeled from 1 to 5 representing elastic

to ultimate state.

As seen in Figure 55, the magnitudes of applied excitation forces vary through.

However, the differences in magnitudes between normal and gentle impacts is

visually distinguishable. The normal impact force magnitudes ranged from ap-

proximately 2700 lb f to about 3500 lb f with an average of 3105 lb f , while that of

the gentle impact ranged from approximately 900 lb f to about 1200 lb f with an

average of 1043 lb f .
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5.5.3 More details on PSD plots

Power spectral density (PSD) can be plotted using a number of ways. In this study,

a MATLAB® built-in function named pwelch is utilized in plotting all PSD plots

of the studied specimens. Pwelch is chosen for this study due to its popularity in

practice. In the default setting of pwelch, which is adopted throughout this study,

an entire dataset is divided into eight segments with 50% overlap, after which

the FFT results of all segments are averaged for PSD. This choice in DSP and the

available data length dictate the resolution of the PSD plot in this study.

For demonstration of how pwelch works and how the resolution could be im-

proved one dataset from the prestressed concrete girder’s tests is utilized in this

comparison. To begin with, the length of the free vibration window that was uti-

lized in processing the girder’s response is utilized. This length is 0.75 second.

Figure 56 presents the full and truncated frequency responses generated by the

default pwelch command. This plot indicates 11 data points between 0 and 50 Hz.

0 2000 4000 6000

Frequency (Hz)

-105

-100

-95

-90

-85

-80

-75

-70

-65

P
S

D
 (

dB
/H

z)

full

0 10 20 30 40 50

Frequency (Hz)

-100

-95

-90

-85

-80

-75

-70

-65

P
S

D
 (

dB
/H

z)

zoomed-in

Figure 56: Figure showing the pwelch frequency plots with a free vibration win-

dow length of 0.75s

With a sampling rate, fs of 10, 000 Hz, the length the data for Figure 56 is 7500

137



data points. The “readable frequencies” range from 0 to 5, 000 Hz which is half

of fs, the so-called “Nyquist frequency.” Since pwelch divides the entire length

into eight segments with 50% overlap, each segment has 1666 data points. This

number is rounded down from 7500
4.5 , and then zero padded to the closest 2n+1 for

FFT. For each of the segments, the default pwelch length is then 2n + 1. through a

DSP concept called “zero padding” when necessary. For this case, the maximum

possible n that will fit the segment length is 10, which gives the PSD (as used in

this study) a maximum length of 1025 data points to display from 0 to 5, 000 Hz.

Thus, for a window of 0 to 50 Hz, only 11 data points can be used.

In order to improve the PSD resolution still under the default pwelch, the data

length must then be extended. Given the involvement of zero padding, the in-

crement of data length and improvement of PSD resolution do not have a linear

relationship. For example, Figures 57 and 58 contrast two choices in data length:

0.92 and 0.923 second, between which the resolution is doubled. Future studies

can look into a user-defined setting of pwelch or other choices in plotting PSD.
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Figure 57: Figure showing the default pwelch PSD plots with a free vibration win-

dow length of 0.92s
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Figure 58: Figure showing the default pwelch PSD plots with a free vibration win-

dow length of 0.923s
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6 DISCUSSION

Although a few limitations of this study have been mentioned in the previous

chapters, a comprehensive list of limitations are presented in this chapter, in addi-

tion to recommendations for future work.

6.1 Limitations of this Study

The limitations in this study can be divided into three categories: instrumentation,

specimen and data analysis.

6.1.1 Instrumental limitations

The instrumental limitations are a major problem encountered during the experi-

mental investigation of this study. They are described as follows:

Sensor noise interference: During testing, the accelerometers captured electrical

noise, footsteps, vibration from other motorized lab equipment and any other

vibrations within a fairly close range. To mitigate this problem, the author

avoided conducting modal hammer tests during a busy time in the lab. Ad-

ditionally, once the data acquisition system was started for a particular test,

the author avoided stepping heavily on the floor.

Saturated accelerometers: 2g accelerometers were mostly used in this study due

to their higher resolution than other available modules. Their constraints,

however, where that they cannot measure acceleration outside of the ±2g

limit. Higher acceleration was encountered during the timber joint testing

when the responses exceeded the measurable limits of the accelerometer,

thus causing saturation. In order to avoid the saturation, the impact force
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intensity was manually reduced by the author. This reduction reduced re-

sulted in less acceleration induced to the specimen, thus, not exceeding the

accelerometer’s ±2g limit.

Equipment malfunction: Equipment constraints were encountered throughout the

experimentations in this study. Malfunctions encountered include wire pinch-

ing, occasional accelerometer irresponsiveness and DAQ channel malfunc-

tion. The wire pinch problem was experienced once and was caused by a

table leg that rested on the accelerometer wire. This pinch resulted in dense

high-frequency noise during data acquisition.

Modal hammer response drift: Throughout the experimental investigations, the

modal hammer response has indicated incremental drifts whose root cause

is yet to be determined.

Limited number of accelerometers, cable length, and capability of SCB-68: These

DAQ constraints limited the number of locations on the tested specimens

whose responses could be measured. Due to this limitation, the rotational

rigid body motion for the out-of-plane response of the girder and masonry

wall could not be measured and cannot be analyzed.

Manually-controlled excitation: The modal hammer excitation was applied using

human effort. The author strived to perfect the excitation magnitude and

direction, yet the human imperfections did not guarantee consistency.

6.1.2 Specimen limitations

Component testing: In this study, the masonry wall was tested as an isolated com-

ponent. In reality, it is part of a system including a slab and continuous walls.

The component nature might be different from a real-world nature of a typi-
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cal shear wall that is part of a building system. Paquette and Bruneau [2003]

studied a four sided masonry wall with continuous slabs for its seismic be-

havior and concluded that the continuous corners have negligible effect in

the walls lateral strength. However, in this study, where both in-plane and

out-of-plane motions are studied, the behavior of the wall is expected to

change given that it had continuous corners. This limitation applies to the

timber wall specimen, and may also apply to the prestressed concrete girder

and timber joint specimens.

6.1.3 Analysis limitations

Limitation of SDOF models: SDOF models are known for their effectiveness for

many practical applications and great popularity as the first approximation

of real-world structural dynamics. However, structures inherently have infi-

nite number of DOFs. Thus, the accuracy of SDOF models is not guaranteed

for application scenarios. There maybe potential limitations with some of the

assumptions made during the estimation of the fundamental frequencies of

the specimen presented in Section 3.3.2.

Linear analysis: Not all structures behave linearly. Prestressed concrete speci-

mens typically behave linearly as long as the section remains uncracked (Nawy

[2006]). Masonry and timber materials are known to behave inherently non-

linear Marotta et al. [2011]. Thus, linear analysis cannot offer a comprehen-

sive study on the masonry and timber specimens.
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6.2 Future Work

This study has laid a solid foundation for a number of future studies that can either

be built on or separate from this study. Similar to the layout of this study, the

future studies can be categorized into two parts: experimental investigation and

data processing, and are described as follows:

For experimental investigation:

• Structural free vibration testing should be conducted with a more compre-

hensive accelerometer layout if instrumentation allows it. This will allow

more detailed analyses to be conducted and MDOF models to be adopted.

• More robust acquisition systems that are highly sensitive but immune to

noise should be used for future experiments similar to this study. Wireless

sensors may be feasible to avoid wiring noise interference, pinches and ca-

ble length constraints, although the limitations of wireless sensors can be can

apply.

• A simple masonry and timber house should be tested to study the behavior

of the structures as part of a system. A bridge should also be tested in a

similar way to study the behavior of the girder as part of a system. Results

obtained from these studies should be compared with results from this study.

• Symmetrical girder specimens should be tested and analyzed in a similar

way and results obtained should be compared with results from this study.

For data processing:

• As it has been mentioned before, the scope of the data collected is too large
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for this study. With emphasis specified on SDOF modeling, the analysis in

this study is only focused on selected in-plane and out-of-plane impact loca-

tions. Other impact locations from the collected datasets should be studied

to generate a comprehensive analysis of the tested structural elements thus

validating the developed modular code. Other tested specimens tested but

not analyzed in this study are recommended for analysis in future studies.

• The modular code developed in this study should be expanded to analyze

other inconclusive observations in this study, such as: why beating occurred

on the normal impact and not the gentle impact, and why another frequency

is observed on the masonry wall’s response at the elastic and early stages of

damage but faded away after extensive damage has occurred.

• This study is only focused on linear analysis. Nonlinear analysis should be

conducted, especially for the masonry and timber specimens due to their

inherent nonlinear nature.
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7 CONCLUSION

The author has conducted free vibration tests on four types of common structural

elements and linear dynamics data analysis on two of the specimens. Motivated by

an increasing number of environmental events that accelerate structural deteriora-

tion, in conjunction with the need to make structures more resilient to these events,

this study strives to better understand some real world structural free vibration

responses. The tested structures include a retired prestressed concrete girder, a

masonry wall, a timber wall and a set of timber connection specimens. The author

has conducted modal hammer tests on the named structures with careful planning

for modeling purpose and a thorough execution taking into account challenging

practical constraints to generate a large amount of high quality datasets for this

study and future studies. In addition, a comprehensive linear SDOF analysis has

been conducted on two of the named specimens, the prestressed concrete girder

and the masonry wall, using a modular MATLAB code that has been generated

with general applications in mind.

The experimental investigation was conducted with a scope intended to accom-

modate a wide range of analysis. Specimens were tested for free vibration with the

use of a modal hammer to excite them and record their motions using accelerom-

eters. The specimens were excited at designated impact locations that are each

expected to have a certain effect to its behavior. The motions were recorded at

critical locations through mounted accelerometers. The tests were designed with

the goal of conducting linear SDOF analysis in this study and nonlinear analysis

in future studies.

Data processing, in this study, was facilitated by a modular code that was de-

veloped in this study. The modular code was largely based on proper digital sig-

nal processing (DSP) tools that enabled a sequential procedure that is divided into
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three phases. Phase I, which laid a foundation for the remaining two, was con-

ducted to extract meaningful results from a typical dataset with the use of two

windows: major response and free vibration windows. The free vibration window

was considered the core of the analysis and from it, the fundamental frequency

was extracted. Phase II used the free vibration window to extract the fundamental

frequency of in-plane bending and confirmed its consistency in all in-plane mea-

sured locations. In addition to this extraction, phase II checked to confirm that all

measured in-plane motions were in phase to verify the occurrence of first mode.

Phase II continued to analyze out-of-plane bending and torsion to check the pres-

ence of the fundamental frequency where, the confirmation of its absence would

imply a pure in-plane first mode. Phase III was mainly a contribution to SHM as

it mainly analyzed the changes in fundamental frequency through the different

damage states of a structure. From the three phases described, valid conclusions

were drawn for both the prestressed concrete girder and masonry wall specimens.

For both of the analyzed specimens, it was concluded that the obtained funda-

mental frequencies were not purely for in-plane bending. Instead, both of the spec-

imens’ first modes were a combination of in-plane bending, out-of-plane bending

and torsion. Both of the experimentally obtained fundamental frequencies were

less than the anticipated fundamental frequencies. With assumption that sidesway

would control the in the response of the masonry wall, the experimentally obtained

fundamental frequency of the masonry wall, however, was about 8% lower than

the anticipated value. The fundamental frequency of the masonry wall was ob-

served gradually decrease through the different damage states as expected.

For the sake of SHM, the author compared the results of the masonry wall spec-

imen arising from two levels of excitation impact forces: normal impact and gentle

impact. Gentle impact was averaged about a third of the normal impact’s force
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magnitude. The observed consistency in the results indicates that gentle impact is

a possible application in SHM.

Two interesting observations made were: (1) normal impact was observed to

cause beating for some of the masonry wall responses while gentle impact did not

create that effect, and (2) the masonry wall results indicated the existence of an-

other frequency which disappeared after the specimen has gone through extensive

damage. These two observations were inconclusive in this study.

With properly designed testing procedures, acquired data, analysis procedure

and modular code, this study provides opportunities for further testing and anal-

ysis to be continued for a long-term goal of more resilient civil infrastructure.
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8 APPENDICES

A EXPERIMENTAL INVESTIGATIONS OF MASONRY

WALL AND TIMBER JOINT SPECIMENS

A.1 Masonry Wall: Specimen Description

The masonry wall specimen was designed to mimic the portion of a masonry

building in between two door openings. The entire specimen consists of a rein-

forced concrete base, a 4 f t tall reinforced masonry wall section and a reinforced

concrete block section on top of the wall as shown in Figure 59.

Figure 59: Pictures of the masonry wall specimen

The 4 f t tall masonry portion of the wall is to represent a typical 8 f t wall;

and is built to half-scale due to lab head room constraint. The single wythe wall is

designed with 8 in wide hollowed concrete masonry units (CMU) and is reinforced

using three #4 bars. The concrete block at the top is designed to mimic the gravity

loads that bear on the wall in a real-world scenario.
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The free-hand sketch presented in Figure 60 gives the full dimensions of the

specimen. The specimen’s impact location and sensor layout (do be discussed in

Appendix A.2) are also illustrated on the sketch.

Figure 60: Free-hand sketch of the masonry wall specimen by the author (not to

scale)

A.2 Masonry Wall: Test Setup and Procedure

The masonry wall was tested in a similar manner as the timber wall for both static

and modal hammer tests.

The masonry wall underwent a series of static lateral loading in between its

modal hammer tests. The loading process was similar to the one conducted on the

timber wall specimen. Thus, the modal hammer tests was conducted at different
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damage states of the specimen. Figure 61 presents the lateral loading setup.

(a)

(b)
(c)

(d)

Figure 61: The masonry wall lateral test setup: (a) string potentiometer for measur-

ing deflection; (b) hydraulic loading piston for applying lateral force; (c) load cell

for measuring the applied lateral force, and (d) shear loading plate for transferring

the shear load to the specimen

Figures detailing the masonry wall’s impact locations and sensor layout can be

found in Section 5.3.1. Modal hammer impacts were applied at designated impact

locations. As shown in Figure 41, these impact locations were designed to produce

in-plane bending, out-of-plane bending and torsional responses for the specimen.

Similar to the procedure conducted on the prestressed concrete girder, the ma-

sonry wall was sanded at necessary locations using a grinding tool to ensure proper

application of excitation force and mounting of accelerometers.

To capture the in-plane, out-of-plane and torsional motions of the specimen,

six accelerometers were mounted on the specimen at different locations of interest.

The sensor layout for the masonry wall is given in Figure 42 and Table 13 presents

further details of each sensor’s measured motion. Together with the one chan-

nel reserved for the modal hammer reading, there was a total of seven channels
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making it possible to use the differential mode of the SCB-68 when there was one

malfunctioning channel.

A.3 Timber Joints: Specimen Descriptions

Designed and fabricated by Sugeng [2006] and Mai et al. [2008] to assess their non-

linear behaviors, the timber joint specimens are of two types: a T-shaped and a

frame model. Three T-shaped and two frame models were tested in this study.

All connected lumber arms are 12 in long. The timber joint specimen are made

of 2 × 4 Spruce Pine Fir lumber and are designed with varying connection types.

Figure 62 presents drawings of the connection details on all five specimens. Fig-

ure 62(a) shows the T-shaped specimen connected using L-plates (A21Z angle)

(Sugeng [2006]) on both the bottom and top connections. Figure 62(b) and (c) show

the specimens using mending plates (MP14) (Sugeng [2006]) on both connections,

and mending plates on the bottom connection and an L-plate at the top plate, re-

spectively. In addition to the connectors, all three T-shaped specimens used two

12D nails (Sugeng [2006]) at every connection. The two frame models only used

two 12D nails in its connections.

(a) (b) (c)

(e)(d)

Figure 62: Connection details for the five timber joint specimens tested
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A.4 Timber Joints: Test Setup and Procedure

As shown in Figures 63 and 64, the specimens were tested with an added mass at

the top; a steel block weighs 8.93 lb.

+g

+g

+g

+g

+g

Figure 63: Test configuration for a typical T-shaped timber joint specimen; all di-

mensions are in inches

+g

+g

+g

+g

+g

Figure 64: Test configuration for a frame timber joint specimen; all dimensions are

in inches

All five timber joint specimens were tested in the same manner. During testing,

each specimen was clamped to a semi-rigid table at Fears Structural Engineering

Laboratory at the University of Oklahoma and excited laterally at one location only
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- the top lumber. Excitation was applied using the small Dynapulse hammer de-

scribed in Section 4.2.1. Different hammer heads of varying hardness were used

during testing. Two unaxial ±2g range SD accelerometers were utilized in each

test; one mounted at the base and one at the top lumber of each specimen as high-

lighted in Figures 63 and 64. The base accelerometer was utilized to correct the

translational rigid body motion in data processing.
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B OTHER INFORMATION RELEVANT TO Chapter 5

B.1 Other Specimens’ Test Nomenclature

Table 17: Test IDs for Girder C specimens (Test ID template = GCtest “a” “b” “c”)

GCtest “a” “b” “c”

Representation Impact ID (long.) Impact ID (trans.) Date ID

Range 1 - 3 1 - 3 1 - 2

Number 1 1 1

Representation 0 center June 24th, 2015

Number 2 2 2

Representation 15feet north west offset June 25th, 2015

Number 3 3

Representation 15feet south east offset
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Table 18: Test IDs for Masonry Wall (Test ID template = MWtest “a” “b” “c” “d”)

MWtest “a” “b” “c” “d”

Representation Condition ID Impact ID Hit Force ID Trial ID

Range 0 - 4 1 - 7 1 - 2 1 - 3

Number 0 1 1 1

Representation elastic location 1 normal impact first trial

Number 1 2 2 2

Representation first crack location 2 gentle impact second trial

Number 2 3 3

Representation post crack location 3 third trial

Number 3 4

Representation post crack 2 location 4

Number 4 5

Representation ultimate location 5

Number 6

Representation location 6

Number 7

Representation location 7

160



Table 19: Test IDs explanation for tested Timber Joint specimens (Test ID template

= TJtest“a” “b” “c”) †see Figure 62

TJtest “a” “b” “c”

Representation Specimen ID† Hammer head ID Trial ID

Range 1 - 5 1 - 3 1 - 2

Number 1 1 1

Representation Specimen (a) aluminum head first trial

Number 2 2 2

Representation Specimen (b) rubber head second trial

Number 3 3

Representation Specimen (c) white head

Number 4

Representation Specimen (d)

Number 5

Representation Specimen (e)
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