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ABSTRACT

The principal component method of factor analysis is a 
specific probabilistic procedure and permits the construction of 
tests of significance for testing whether or not factor loadings 
differ significantly from zero. In addition, the method permits 
one to test for the number of common factors for a set of random 
variables.

Thus, if X., i = 1,2,...,p, are p random variables which 
can be expressed as linear combinations of g, g ^ p ,  common factors 
and p error factors, then a principal component model representing 
these variables is

(I) x^ = ( < — Jf..u. 1 + ŝ , (i = l,2,...,p; j = l,2,...,g).

The symbols f^. represent factor loadings, u. represent common fac­
tor scores, and s- represent error scores or^residuals.

The problem of determining the statistical significance 
of the factors associated with the correlation matrix of a set of 
random variables was solved by Bartlett in 1950. The test sug­
gested by Bartlett involves a mathematical consideration of the 
eigenvalues of the characteristic eguation of the correlation matrix.

Existing literature reveals that some methods of factor 
analysis, for example Lawley's method of maximum likelihood and 
Whittle’s method of least sguares, work well when the common factor 
scores are taken from populations that are not normal. Further, 
the literature indicates that while the chi sguare test of complete­
ness associated with Lawley’s method of maximum likelihood is 
insensitive to the population from which the common factor scores 
were taken, the corresponding chi sguare test of Bartlett, used in 
principal component analysis for testing when a component analysis 
is complete, has not been subjected to a satisfactory test of 
robustness.

The specific problem investigated in this study may be 
stated as follows: when the method of principal component analysis
is used to estimate factor loadings, what are some effects on 
Bartlett’s test of significance when the common factor scores are 
taken from a population whose distribution diverges from a normal 
population. The non-normal populations from which common factor 
scores were taken for the present study were: 1) the positive half
of a normal distribution with zero mean and unit variance, 2) a chi 
sguare distribution with three degrees of freedom, and 3) a t-dis- 
tribution with five degrees of freedom.

Although the results of this study, based on computer 
generated number populations are necessarily limited, they do 
strongly indicate that when the method of principal analysis is 
used, Bartlett’s test of significance is relatively insensitive to 
departure from normality of the distribution of the common factor 
scores for large numbers of observations.
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AN EMPIRICAL INVESTIGATION OF SOME EFFECTS OF NON-NORMALITY 

ON BARTLETT'S TEST OF SIGNIFICANCE IN 

PRINCIPAL COMPONENT ANALYSIS

CHAPTER I 

INTRODUCTION AND PROBLEM

Factor analysis has become the generic term for a variety 

of procedures developed to examine whether the joint variation of 

p observable random variables can be described approximately in 

terms of the joint variation of a fewer number, say q, gwtp, of 

hypothetical variables called (principal) common factors (Cooley 

and Lohnes, 1962, p. 151). The procedure to be used in this study 

is called principal component analysis. Regardless of the method 

of analysis of the observable random variables, one problem is 

encountered in the analysis. The problem is when to stop factor­

ing. While there are tests to determine when to stop factoring, 

the tests usually assume that the observable random variables are 

measurements taken from populations whose distributions are normal­

ly distributed. Bartlett's test is used in principal component 

analysis to determine when to stop factoring. This study reports 

results of an investigation of several factor analyses of random

1
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variables whose distributions are not normal.

Background for the Study

Principal component analysis. The general factor analysis 

model, according to Hemmerle (1957, pp. 19^-147), may be denoted by

(I) X = u + Ff + Ss,

where X, u, and s are column vectors with p components, f is a 

column vector with k, k'^p, components, F is a p x k matrix of 

constants, and S is a p x p matrix of constants. The components 

of f are called factors and the components of F are called factor 

loadings. The matrix X is a p-dimensional observable random vari­

able so standardized that each of its components has unit variance 

and zero mean. The restrictions imposed on the model given in (I) 

are:

a) the vector s is distributed independently of the vector 

f, and both have multivariate normal distributions;

b) E(s) = E(f) =0; and

c) the individual components of the vector f and of the 

vector s are distributed independently of each other. That is, 

E(ss^) = and E(ff^) = 1^, where I-^ and are k x k and p x p 

identity matrices, respectively. The symbols s^ and f^ denote the 

transpose of s and f, respectively.

A special case of the model given in (I) was developed 

by Hotelling in 1933. The method associated with the model, called 

principal component analysis, is described by Hemmerle (1967, pp. 

140-14-1) in the following way: given a set of random variables



1 = l,2,...,p, with the purpose of determining a normalized

linear combination, ~'^^^il^i’ these variables, where
2 i  ̂ ^

y  1 and u^ has maximum variance; further determining a sec­

ond normalized linear combination, u^ = X .. of the variables,
2 1 where/ .f._ = 1 and u. has maximum variance and is uncorrelated

with the first, u^, (i.e. covfu^/Ug) = 0); still further deter­

mining a third normalized linear combination with maximum vari­

ance that is uncorrelated with the first two, and so on, it fol­

lows that if the f^^'s can be determined, then the original set 

of variables can be reduced to a smaller set, u^, i = 1,2,..., 

g, q<p, for further analysis. In the present study only those 

q normalized linear combinations with large variances were studied 

and related to the original data, the variables x^, 1 = l,2,...,p, 

not being studied independently. The variables u^, i = l,2,...,q, 

are called principal components, u^, is called the first principal 

component, u^ is called the second principal component, and so on 

up to the qth principal component u^.

Chakravarti, Laha, and Roy (1967, p. 4-35) point out that 

if the principal components, u^, i = 1,2,...,q, are interpreted 

as the common factors of the variables x^, i = l,2,...,p, then one 

can write

(II) X. =̂ f̂. .u. + s.,1 j ij 3 1
where the f^^'s are factor loadings. This, however, is somewhat

different from the model given in (I) in that the components of

s are not in general mutually uncorrelated.

In the context of model (II), principal component analysis
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is strictly a mathematical operation designed to accomplish a max­

imization of

(III) var. = / ,f̂  , (i = l,2,...,p and j = l,2,,..,q), under the
] iL ij

conditions

(IV) r^^ f f^ ; (j,k = 1,2,... ,p),

where r = r and r is called the communality of x . The 
Jk kj jj j

conditions in (IV) imply that the correlations between the vari­

ables Xj and X, can be approximated in the manner described, where

the correlation coefficient is r. . This method assumes that theJk
residuals, ŝ , i = l,2,...,p, are zero.

The method of Lagrange multipliers is used to maximize the 

functions given in (III). Cooley and Lohnes (1962, p. 158) show 

that this method leads to a determination of the factor loadings 

in principal component analysis. The factor loadings are derived 

by considering the matrix equation

(V) (R - t J)v^ = 0, i = 1,2,... ,p,

where I is an identity matrix, £ is a zero vector, and R is the

correlation matrix of the variables x^, i = l,2,...,p. There are

p nontrivial solutions of (V) in terms of v^, and each v. has

components that are the factor loadings for converting the p scores

of the variables x. to one of the new uncorrelated factor scores.a
The symbol t. is a constant for each value of i.

If v^ = £, then v^ is a trivial solution of (V). Cooley 

and Lohnes (1962, p. 158) state that the nontrivial solutions are 

found by considering the determinantal equation

(VI) / R - tl / = 0,
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where / R - tl / denotes the determinant of the matrix R - tl 

and t is a constant. The determinantal eguation given in (VI) 

is called the characteristic eguation of R. For a given root of 

the characteristic eguation of R, the corresponding vector v^ can 

be obtained by substituting t̂ , the given root, in (V).

Cooley and Lohnes (1962, p. 159) state that when the 

vectors v., j = l,2,.,.,p, are normalized Ti.e. if vt = (v ,
^ V  2 -1 ^ ^V-., ..., V .), then/ ,v = , the variance of each set of
PJ i

factors is t̂ . The vector v^ produces the factor scores of max­

imum variance, the variance being the value of the largest root 

t^. When principal component analysis is used, the normalized 

vectors v^ can serve as the factor loadings, at least when numer­

ical values of one have been placed along the diagonal of R.

Bartlett's test of significance. One major character­

istic possessed by the principal component method of analysis not 

present in some of the other procedures in factor analysis is that 

it is a specific probabilistic procedure and permits the construc­

tion of tests of significance for testing whether or not factor 

loadings differ significantly from zero (Solomon, 1960, p. 312). 

The method also permits one to test for the number of factors 

common to a set of random variables.

The problem of determining the statistical significance 

of the factors associated with the correlation matrix was solved 

by Bartlett (1950) by considering the significance of the roots 

t^ associated with the characteristic eguation of the correlation 

matrix. According to Bartlett (1950, pp. 77-78), the test of



significance can be described in the following way: let t^, i = 1,

be the p roots, in descending order, of the determinantal 

equation given in (VI), If r is the total number of observations 

of the random variables given in (II), let n ='r - 1, n being the 

total number of degrees of freedom associated with the orginial ob­

servations. Bartlett (1950, p. 78) states that the entire corre­

lation structure can be tested for significance by calculating the 

quantity

(VII) = - [ju - (1/6) (2p + s f ]  logg /R/,

with %p(p - 1) degrees of freedom. If, after the extraction of 

the largest roots of the characteristic equation of R corresponding 

to the first factors removed, it is required to test for the signif­

icance of the factors remaining, the test statistic given in (VII)

takes the form 
2

(VIII) T  = - P n  - (1/6) (2p + 5) - (2/3)k l  log R . with / e p-k
%p'(p' - 1) degrees of freedom, after k roots, t ,̂ t^,..., t̂ ,̂ 

have been determined, where p' = p - k and

(IX) = /R/

The test statistics given in (VII) and (VIII) will be referred to 

as Bartlett's test of significance.

Bartlett (1951, p. 1) warns that after one or more signif­

icant components have been eliminated it is safer to take as the 

number of degrees of freedom

%(p - k - l)(p - k + 2) instead of %(p - k) (p - k - 1) as given in
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in (VIII) above. The new value for the number of degrees of free­

dom would increase the estimate given in (VIII) above.

An example of a principal component analysis involving 

four tests and twenty observations of each test score was presented 

by Thomson (1951, pp. 124-126). In the final analysis, the first 

and the third eigenvalues of the correlation matrix were found 

significant while the second one was not significant. The example 

is mentioned here to point out that Bartlett's test of significance

is valid only if the roots already removed are significant. As

soon as one encounters a non-significant factor, the later factors 

are also non-significant. The last factor encountered in a compo­

nent analysis is not dealt with. Bartlett (1950, p. 80) states.

Merely the correlation structure of the variables
is being investigated in its relation to variance.
For this reason no significance can ever be attached 
to the last root, for it would be equivalent to 
asking for the correlation structure of a single 
variable.

Review of the Literature

Effects of non-normality. Cattell (1952, p. 80) says 

that the discussion of the significance of real factor variance 

left in a correlation matrix after extraction of so many factors 

may well terminate with the general question of significance for 

any single (rotated or unrotated) factor. However, all of the 

tests of significance, for this problem and the related problem of 

when to stop factoring, require the assumption that the scores on 

the variables are normally distributed, althou^ no such assunption 

is made for the computation of Pearson’s product moment r or :
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for the essential processes of factor analysis itself.

Ferguson (1966) comments on the effects of non-normality 

on the computation of the Pearson product moment correlation co­

efficient in a discussion of the assumptions underlying this 

statistic. He says.

In calculating the correlation coefficient it 
need not be assumed that the distribution of the 
two variables is normal. Correlations can be 
computed for rectangular and other types of 
distributions. If the two variables have dif­
ferent shapes, however, this circumstance will 
impose constraints upon the correlation co­
efficient.

An investigation of some effects of non-normality on a 

particular statistic may well commence with a question of the ef­

fects of non-normality on the component statistics involved in the 

computation of the statistic in question. The three basic statistics 

involved in principal component analysis are 1) Pearson's correlation 

coefficient, 2) mean, and 3) variance.

Norton (1952), in an empirical investigation of some 

effects of non-normality on F-distributions, found that unless the 

departure from normality is very extreme, the departure will prob­

ably have no appreciable effect on the validity of the F-test. 

Scheffe (1959, p. 337) shows that in making inferences about means, 

the effects of violation of the normality assumption are slight.

He also shows that in making inferences about variances, the effects 

of violation of the normality assumption are dangerous. The findings 

reported by Scheffe were in agreement with those reported by Norton.

With reference to Lawley's method of maximum likelihood
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for estimating factor loadings, Thomson (1951, p. 127) points out 

that it is assumed that both test scores and the factors, of which 

they are linear combinations, are normally distributed throughout 

the population of persons to be tested. He concludes, however, 

that although the assumption of normality has been a subject of some 

criticism, in practical situations it would seem that departure from 

strict normality is not serious.

Tests of significance. In factor analysis, there are two 

related problems regarding tests of significance, both of which 

assume a knowledge of confidence limits. The first problem is con­

cerned with confidence limits for different loadings in a factor 

matrix used to determine whether or not a loading is significantly 

different from zero. The second problem is when to stop factoring 

(Henrysson, 1960, p. 137). Several methods have been suggested as 

approximate solutions for each one of these problems. However, 

the second problem was the one considered in this study.

Cattell (1952, pp. 296-304-) and Thomson (1938, pp. 120- 

126) discuss some of the earlier methods of determining when to 

stop factoring. Hosier (1939) concluded that of the five plans he 

investigated, the "best" was to seek an indication that the stan­

dard deviations of residuals after the last factor was extracted 

had become less than the standard error of the mean correlation 

in the original correlation matrix. Even this method was found to 

be unsatisfactory in some respects.

Thurston (1938) describes a criterion developed by 

Ledyard Tucker for deciding when to stop factoring. In this method.
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the sums of the absolute values of the resulting residuals, including 

the elements of the diagonal used just before and just after the 

extraction of a factor, must be less than (p - l)/(p + 1), where p 

is the number of tests or variables. Cattell (1952) points out that 

with this method it is possible to get false results, but that the 

empiricism of the test leads to some intuitive validity which makes 

it the most useful of the really quick tests.

Reyburn and Taylor (1939) introduced an alternate criterion 

to determine when to stop factoring. They advocated dividing the 

standard errors of each of the original correlation coefficients 

into the corresponding residual correlation coefficient. This was 

to be followed by plotting the distribution of these quotients and 

assuming that if the resulting distribution departs significantly 

from normality, more factors are still to be factored or extracted.

A criticism of this method has been that one does not know how much 

departure from normality is required for significance.

Coombs (1941, pp. 267-277), assuming that the columns of 

a residual matrix are distributed according to the binomial distri­

bution (a + b)^/2^, where a represents a positive entry in the 

residual matrix and b represents a negative entry in the residual 

matrix, suggests counting the number of negative signs left in the 

residual matrix after every attempt has been made to reduce the 

number of negative signs in the residual matrix. Cattell (1952) 

points out that this method of testing leads to the extraction of 

too few factors.

Holzinger and Harman (1941) mention a test due to Swine-
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ford. Swineford suggests correlating the original correlation co­

efficients with the corresponding residual coefficients. If no 

significant relationship remains, then extraction is considered to 

be complete,. Holzinger and Harman point out that not much re­

search has been done on the effectiveness of this method.

A major criticism of the above methods is that not enough 

attention is given to the number of observations used in the analy­

sis. McNemar (1942) developed such a criterion suggesting than one 

extract factors until the standard error of the residual correlation 

coefficients is less than 1/ where N is the sample size. In

' McNemar's test the standard error of the residual correlation co­

efficients is 0"^(1 - M^) , where is the standard deviation of 

the residuals after s factors have been extracted and M^ is the mean 

communality for the s factors extracted.

Saunders’ (1952) criterion for deciding when to stop 

factoring is developed from the same logical foundations as is the 

criterion proposed by McNemar. Saunders’ method takes into account 

not only the number of observations, the reliabilities of the tests, 

and the number of variables, but also the number of factors extract­

ed. Saunders’ method has been applied to artificial data and has 

been found to give reasonably good results, but ones which are not 

' always exact. Saunders also proposes a test of significance for 

any rotated or unrotated factor. This test, according to Saunders

(1952), takes the form of a chi square test as follows: 

.(X) ^  = N(n - l)/2n (̂/i'i)
where a^, i = 1,2,___,k, are factor loadings, u^, i = 1,2,___ ,k.
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are measures of uniqueness, n is the number of variables, and N is 

the number of observations. The chi square variable above is 

assumed to have (n - k + 1) degrees of freedom, where k is the 

number of factors extracted.

Lawley (1940) introduced a criterion to be used for test­

ing the significance of common factors when the method of maximum 

likelihood is used to estimate factor loadings. Harman (1960) 

commented on the statistic used by Lawley for factor analysis and 

the statistic used by Bartlett for principal component analysis.

He says.

In making a comparison and distinction between 
component analysis and factor analysis, Bartlett 
(22, p. 81) notes that the total  ̂corresponding 
to the significance of the unreduced correlation 
matrix is necessarily the same, and only because of 
the difference between factors extracted in the two 
analyses does the analysis of the total 2 into 
its respective components differ p. 382

Lawley's test of significance is fundamentally equivalent to the 

test given by Bartlett (1950), only Bartlett's test was given de­

tailed consideration in this study.

There is no unique test of significance for deciding 

when to.stop factoring. The procedure for determining when a factor 

analysis is complete depends upon the method of estimating factor 

loadings and the types of inferences to be drawn. Burt (1952) 

asserts that when principal component analysis is used to estimate 

the factor loadings, Bartlett's test is by far the best test of 

significance for deciding when a factor is significant. When the 

method of estimating factor loadings is that of maximum likelihood,
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Lawley’s method of maximum likelihood is the method to be employed 

to test the significance of factors (Henrysson, 1960, p. 137).

Whittle (1952) developed a method of estimating factor 

loadings using the method of least squares, and states that his 

method of estimating factor loadings is applicable even when the 

factor analytic model does not assume residuals and when the factor 

scores are not normally distributed (1952, pp. 223-225). Henrysson 

(1960, p. 138) has noted that this method leads to principal com­

ponent solutions. The only requirement needed to estimate factor 

loadings using Whittle's method is that the factor scores, in­

cluding the unique factor scores, are uncorrelated. If the researcher 

is sure that the factor scores are not normally distributed, Whittle’s 

method may be the most reliable method of estimating factor loadings.

Experimental studies in factor analysis. From 1950 until 

1960 there were several studies in factor analysis that began their 

analyses with a known factor structure. The observation scores 

used in these studies were usually taken from Wold (194-8). These 

studies can be divided into two general groups: 1) studies in fac­

tor analysis concerned with the effectiveness of methods of esti­

mating factor loadings and 2) studies in factor analysis concerned 

with some effects of violation of the normality assumption. The 

present study is one of the latter type.

Henrysson (1950, pp. 159-165) conducted an analysis of 

artificially constructed samples using Lawley’s method of maximum 

likelihood. Henrysson’s object was to see if Lawley’s test of 

significance, formulated to be used with large samples, worked with
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samples of 200 observations. Beginning with a known factor structure 

of nine variables with one common factor, Henrysson obtained results 

which were in good agreement with theory. From analyses of twelve 

samples, Henrysson concluded that all 9 x 9  covariance matrices 

could be expressed in terms of one significant factor only, with 

nine specific factors. This conclusion accorded with the predeter­

mined conditions in the artifically constructed samples.

Wold (1953, pp. 43-64) studied the effectiveness of 

Whittle's method of least squares for estimating factor loadings.

The experiments conducted by Wold proceeded in two steps: 1) the

construction of artificial samples in accordance with the theory 

developed by Whittle (1952) and 2) the estimation of the factor 

structure on the basis of the artificial samples constructed. Wold 

considered two general types of problems for analysis by the theory 

developed by Whittle. When the different variables have residuals 

of equal variances. Wold suggests an analysis of the covariance 

matrix. He asserts that the correlation matrix should be the 

object for analysis if the residual variances are proportional to 

the variances of the variables to be factor analyzed. The results 

of Wold's experiments, in which he attempted to estimate normalized 

loadings, supported Whittle's theory. In conclusion. Wold points 

out that the estimation procedure in factor analysis will not give 

valid results unless the sample size is so large (or the variances 

of the residuals so small) that the estimated eigenvalues or roots 

of the characteristic equation of the correlation matrix, correspond 

to the order of the true eigenvalues. Moreover, Wold supports his



15

his assertion by reporting an experiment that failed to give valid 

results because of this circumstance.

Wold (1953), using artificial samples, found that when the 

common factor scores were taken from the positive half of a normal 

distribution and when the residuals were based on independent ran­

dom samples from a normal distribution, Whittle's method of least 

squares worked quite well and gave acceptable figures for loadings 

and for individual factor values. The findings of Wold helped to 

confirm the conjecture that Whittle's method is more general than 

either the model proposed by Lawley or the principal component model 

proposed by Hotelling in that Whittle's theory is distribution free 

and does not assume the normality assumption stated earlier in this 

study.

Lawley and Swanson (1954, pp. 75-79) investigated the 

effectiveness of the method of maximum likelihood for estimating 

factor loadings and the associated chi square test of significance 

in an investigation which was similar in design to that of Henrysson. 

They proceeded from an artificial construction of four hundred sets 

of observations, divided into sub-samples of fifty observations 

each. There were seven variables for analysis. This study was more 

general than the one by Henrysson in that two common factors, in­

stead of one, were introduced into the known factor structure.

Each one of the eight subsamples, except one, gave support that the 

known factor structure indeed had two common factors. In the one 

instance where support was not given, it was noticed that there was 

a significantly hi^ correlation between two of the variables for
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analysis in the residual matrix. On the whole, Lawley and Swanson 

concluded that the results obtained in their study were in reasonable 

agreement with the theory of estimating factor loadings by the 

method of maximum likelihood,

Lawley (194-0) presented three methods of estimating factor 

loadings by the method of maximum likelihood. In a theoretical 

exposition by Anderson and Rubin (1956, pp. 130-145) it was shown 

that Lawley's method I works well even when the assumption of 

normality on the common factor scores is violated.

Fuller and Hemmerle (1966, pp. 225-266) investigated the 

robustness of the maximum likelihood estimation of the number of 

common factors necessary in factor analysis. In a comprehensive 

study based on two hundred observations, they found that the maximum 

likelihood method was insensitive to the common factors being non- 

normally distributed. Their investigation was similar to the study 

by Lawley and Swanson (1954) in that it was based on simulated pop­

ulations. Starting with two common factors and five specific fac­

tors, Fuller and Hemmerle (1966) investigated the effectiveness of 

Lawley’s estimate of the number of common factors by considering 

factor scores drawn from the following populations: Student's t-

distribution, normal distribution, uniform distribution, and bimodal 

distribution. The method of analysis used in this study was Lawley's 

maximum likelihood method and the method of simulating populations 

was the method of Monte Carlo, wherein a game of chance technique 

is applied to solve certain problems. In the Monte Carlo method 

random sampling is applied to determine a solution to simulation
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problems rather than solving the problem analytically or by another 

method (Martin, 1967, p. 31).

Need for the Study and Statement of the Problem

Advances in computer programming have facilitated estimation 

of factor loadings regardless of the method used for estimation, in­

cluding principal component analysis which has become one of the 

popular methods for estimating factor loadings when using the com­

puter.

Still, Burt (1952, p. 109) points out that a weakness 

inherent in most methods of factor analysis is the absence of any 

agreed upon procedure for testing significance of the factors dis­

covered. A perusal of most standard textbooks and articles on fac­

tor analysis will reveal that tests of significance are either 

ignored or not considered in detail.

Since a researcher is not always in a position to test 

whether or not the population from which factor scores are taken 

is normally distributed, the implication of violating a normality 

requirement underlying a test of individual factor significance 

takes on considerable importance for factor analysts.

In regards to the extent that the normality assumption 

on the factor scores can be violated, Henrysson (1960, pp. 133-134) 

says,

... it has not yet been determined how strict­
ly the requirement of normality must be satisfied in 
order for the test of significance to function 
satisfactorily. It should also be pointed out that 
the assumption of normality is necessary only for 
the test of significance but not for the principal 
component solution itself.
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Harman (1960, pp. 382-383) states that while some latitude 

might be allowed, a variable which is known not to be normally dis­

tributed should not be included in a factor analysis. Further, he 

notes that in the mathematical development leading to the large 

sample chi square test of significance the variables are assumed 

to have multivariate normal distributions. Should the chi square 

test of significance not be sensitive to the type of population 

from which the factor scores are taken, then non-normal variables 

can be present without invalidating the test of significance.

While research has been conducted relative to the valid­

ity of some methods of testing factor significance, (for example, 

Whittle’s method and Lawley’s method of maximum likelihood) the 

same type of robustness research is needed for the method of princi­

pal component analysis and its associated test of significance.

The present study is designed to test the effectiveness 

of the method of principal component analysis and its associated 

test of significance when the common factor scores are not taken 

from normal distributions. Findings in the present study will add 

support or doubt to the effectiveness of this method of analysis.

If no support is given in this area, then further questions can be 

raised about the effectiveness of Bartlett's test of significance 

when the common factor scores are not normally distributed.

The specific problem investigated in this study may be 

stated as follows : when the method of principal component analysis

is used to estimate factor loadings, what are some effects on 

Bartlett’s test of significance when the common factor scores are



19

taken from populations whose distributions diverge from normal 

populations? The null form of the hypotheses to be studied in 

this investigation are stated in Chapter II of this study, entitled 

method.



CHAPTER II 

METHOD

Overview of the Methodology 

In researching the question of the effects of non­

normality on Bartlett’s test for factor significance, twelve 

experiments were conducted in which the shapes of the artifi­

cially constructed number populations were systematically varied. 

Following this, samples from the respective populations, having 

known shapes and factor structures, were subjected to the prin­

cipal component method of factor analysis. The results of these 

analyses were obtained using Bartlett’s criterion, the null form 

of the experimental hypotheses being that Bartlett’s test would 

yield results which did not differ significantly from the pre­

determined factor structure of the number populations. A detailed 

statement of the procedure follows.

Description of the Experiment 

Each experiment involved one hundred observations of each 

variable studied in the experiment. The twelve experiments were 

all carried out in essentially five major steps. The symbol N will 

be referred to in the rest of this study as the number of observa­

tions in each experiment and is equal to one hundred.

20
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After obtaining one hundred observations of each variable 

to be studied in a given experiment, a correlation matrix was 

found for the variables. The dimensions of the correlation matrix 

was 5 x 5 ,  7 x 7 ,  or 9 x 9  in case the number of variables were 

five, seven, or nine respectively. In addition to finding the 

correlation matrix, the means and standard deviations of the vari­

ables were also found. The correlation coefficients, means, and 

standard deviations were found by using subroutine Corre 

(System/360 Scientific Subroutine Package, 1968, pp. 32-33).

The second step in each experiment was to find the eigen­

values or latent roots and the corresponding eigen vectors of the 

correlation matrix. The method used to find the eigenvalues was 

the diagonalization procedure originated by Jacobi and adapted by 

Von Neumann for large computers (Ralston and Wilf, 1962, pp. 2M-5- 

279; System/360 Scientific Subroutine Package, 1968, pp. 164-166). 

This procedure is applicable only to symmetric matrices with real 

components. Since Bartlett’s test of significance depends primarily 

on the eigenvalues in order to test for the significance of a factor, 

only eigenvalues were needed for the essential purposes of this 

study. However, additional information was obtained from the 

structure of the samples investigated in order to allow for a closer 

analysis of the theoretical structure of the variables and for future 

research.

Kaiser (1959) suggested that the number of common factors 

should be equal to the number of eigenvalues greater than one. He 

found this number to run from a sixth to a third of the total number
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of variables. Kaiser stated that this was applicable only when 

the communalities of the variables were equal to one. Using the 

suggestion of Kaiser, only those eigenvalues were retained that 

were greater than one. These were selected using subroutine Trace 

(System/360 Scientific Subroutine Package, 1968, p. 55). Trace 

was also used to find the cumulative percentage of eigenvalues 

greater than one. This terminated the third part of the experi­

mentation.

The fourth step of each experiment involved finding the 

factor loadings. The loadings were found by multiplying the 

elements of each normalized eigen vector by the square root of the 

corresponding eigenvalue. The resulting loadings were elements 

of the unrotated factor matrix. This part of the computation was 

achieved by using subroutine Load (System/360 Scientific Sub­

routine Package, 1968, p. 56).

The final major step of each experiment was to find the 

rotated factor matrix. The method used for rotation was the varimax 

method, originated by Kaiser (1959, pp. 4-13-M-20) , and accomplished 

in this study by use of subroutine Varmx (System/360 Scientific 

Subroutine Package, 1968, pp. 56-57). If a _  is used to denote 

the ith loading on the jth factor, then a^j is normalized by divid­

ing a^j by the square root of the communelity of the ith variable. 

Normalized loadings were obtained by this method. When the result­

ing structure consisted of p variables and q factors, an orthogonal 

rotation was performed on the p x q factor matrix such that the 

variance of the squared normalized loadings was a maximum. That is.
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such that

(I) Ç  Cay/h^)]

is a maximum. The symbol h^ in (I) above is the communality of 

the ith variable.

Following the above five steps the null hypotheses of 

each experiment were tested at the 0.01 level of significance.

Theoretical Description of the Number Populations

Suppose that z^., i = 1,2, and 3, are independent normal 

random variables with zero means and unit variances and that e^^, 

i = 1, 2, ..., 9, are normal random variables with zero means and 

variances equal to one such that they are not mutually uncorre­

lated. Let the variables x^^, i = 1,2, ..., 9, be defined in the

following way:

x^ 2  = 0.98489z22+ 0.17321e^^

X,, = 0.98995Z + 0.1LHî 2e12 12 12

x,„ = 0.99499Z +0.10000e,13 13 13

^14 0.57446z^^+0.50000z^2+0.64031z^g+0.10000e^y

x^g = 0.80000z^^+0.43589z^2+0.40000z^g+0.10000e^^

Xĵ g = 0.50000z^^+0.60827z^2+0.60000z^3+0.14142e^g

x^y = 0.70000zj^j^+0.60000zj_2+0.37417zj^3+0.10000ej^y
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x,Q = 0.42426z,,+0.90000Zt„+ 0.10000e,„xo 11 I d  18

Xĵ g = 0.59161z^^+ 0.80000z^g+0.10000e^g

Then the random variables x^^, i = 1,2,...,9, may be thought of as 

normally distributed variables depending on three common factors 

zjĵ , i = 1,2, and 3, and upon residuals which are not mutually 

uncorrelated. Let the variables Xg^, i = 1,2,...,7, be defined 

in the following way:

^21 ^11

^22 ■ ^12

^23 ^ 0.73485z^^+0.67082z^2+0.10000e^^

X2H = 0.65574z^^+0.74162z^2+0.14142e^g

Xgg = 0.59161zii-0.80000z^2-0.10000e^y

^26 - ^18

Xgy = 0.74833zj^j^-0.65574zjL2+0.10000ej^g

Then the random variables Xg^, i = 1,2,...,7, may be thought of 

as normally distributed random variables depending on the two 

common factors and z^g upon residuals which are not mutu­

ally uncorrelated. Let the random variables x^., i = 1,2,...,5, 

be defined as follows :

= 0.99499z^^+0.10000e^^

Xg2  = 0.99499z^^+0.1 0 0 0 0 6 ^ 2
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x__ = 0.98489zTT+0.17321e^33 11 33

= 0.98995z^^+0.14142eg^

X3 5  =-0.98995zĵ ĵ +0.1i+142e23

Then the random variables Xg^, i = 1,2,..,,5, may be thought of 

as normally distributed random variables depending on one common 

factor ẑ 2  and upon residuals which are not mutually uncorrelated. 

The factor loadings for all of the above theoretical structures 

were chosen such that the communality of each varialbe was approxi­

mately one since this is a basic assumption for principal compo­

nent analysis.

Construction of the Numerical Samples 

Generation of uniform random variables on the unit inter­

val. The populations described above were generated by the power 

residue method of generating uniform random numbers on the unit 

interval. Hamming (1962, pp. 384-388) states that this is the 

most commonly used method on a binary machine or computer and that 

the routine for generating uniform random numbers is as follows :

Let yg and t be given initially. If the machine is a k-digit 

binary machine, define recursively y^^^^IS ty^ (modulo the word 

length of the machine), where n ranges over the set of non-negative 

integers. The symbolic notation in number theory x ̂  a (modulo m) 

means that the integer x - a is divisible by m. From this iteration 

process one multiplication per number was performed and the lower 

order digits of the product were taken as the next number in the
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iteration. The consideration encountered in the construction of 

the samples in this phase of the study was what to choose for t 

and Vg. Hamming (1962, p. 385) shows that in order to take full 

advantage of the machine capacity and to assure a long period for

the repeating sequence ^  ŷ "j. , y^ and t should be odd numbers

and in addition y^ must be relatively prime to the word length of 

the machine. Subroutine Randu from (System/360 Scientific Sub­

routine Package, 1968, p. 77) simulates uniform random numbers 

according to the above description. Using Subroutine Randu, the

uniform random numbers were simulated for this study. It is sug­

gested that the initial value of t should be of the form 8p+3, 

where p is an integer. The value of t chosen for this study was

65539 (IBM Data Processing Techniques, 1959, p. 5).

The calculation of uniform random numbers is done by 

fixed point integer arithmetic, and division by the word length 

of the computer, retaining only the remainder, is implied by the 

(modulo the word length of the computer) reduction. In order to 

convert the retained remainder to a point on the unit interval an 

additional division by the word length of the computer is required. 

The modulus for the present study was chosen to be the word size 

of the computer for two reasons: reduction mod m, where m is the

word size of the computer, involves only keeping the lower order 

bits and conversion to the unit interval involves merely assigning 

the binary point to the left of the number; therefore both divisions 

are avoided.



27

Generation of other random variables. A version of the 

central limit theorem asserts that the sum of identically distri­

buted independent random variables X^, . ., X^, is approxi­

mately distributed as a normal distribution with expectation kE(X^) 

and variance kV(X^), where E(X^) and V(X^) denote the expectation 

and variance respectively of either of the random variables X., 

i = l,2,...,k (Lehman and Bailey, 1968, pp. 226-229). Lehman and 

Bailey also point out that by the central limit theorem, if Y is 

a random variable with expectation m and variance s, then the random 

variable Z = (Y - m)/ \ / ' s is approximately normally distributed 

with expectation equal to zero and variance equal to one.

Populations having distributions with zero means and 

unit variances were constructed in the following way: since a

uniformly distributed random variable on the unit interval has 

expectation equal to 0.5 and variance equal to 1/12, if Y is the 

sum of k identically distributed independent uniform random vari­

ables on the unit interval, then the expectation of Y is 0.5k and 

the variance of Y is k/12. Therefore, the random variable Z =

(Y - 0.5k)/ ^  k/12 is approximately normally distributed with

E(Z) = 0  and V(Z) = 1.0. Elements from the population of the 

random variable Z were generated by first generating k uniformly 

distributed random variables on the unit interval as described 

above. According to Lehman and Bailey (1968, p. 227) k = 12 is 

large enough for a good approximation to the normally distributed 

random variable Z. However, in the investigation considered here. 

Subroutine Gauss was refined with k = 48 for a better approximation
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of elements from the population of Z. Subroutine Gauss is a computer 

subroutine that generates normally distributed random numbers accord­

ing to the procedure described above with k = 12. In the case where 

k = 48, then Z = 0.5(Y - 0.5k) = %(Y - 24).

In order to generate random numbers from the population 

N(p,0,l), a random variable distributed as the population of N(0,1) 

was generated first. From the population N(0,1) samples were sel­

ected according to the rule that for each element from the population 

of N(0,1) the absolute value of this element was taken to be a mem­

ber of the population of N(p,0,l).

Wold (1953, pp. 43-44) points out that the population 

N(p,0,l) obtained from N(0,1) has mean equal to \ j 2 =  0.798 

and standard deviation equal to ^  - 2)/tX = 0.603. In

order to convert the population N(p,0,l) to a population with zero 

mean and unit variance, each member of N(p,0,l) was multiplied by 

1/0.603. This gave rise to a population with unit variance and 

mean equal to 1.3234. Then each member of the derived population 

was decreased by 1.3234. This did not change the variance but it 

gave rise to a population with zero mean. The final population 

would be considered to diverge from normality because the population 

is not symmetrical. Althou^ the standardized population obtained 

here is no longer distributed as N(p,0,l), the same terminology will 

be used to designate this distribtuion.

Two other types of populations of random numbers were 

simulated for this study. One type of random numbers were taken 

from a population approximately distributed as chi square random
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variable with three degrees of freedom and the other population was 

approximately distributed as t-distribution with five degrees of 

freedom. These populations were generated to investigate whether 

Bartlett’s test was sensitive to skewness and the kurtosis of a 

distribution that is not normal, A chi square distribution with 

three degrees of freedom is considerably skewed and a t-distribution 

with five degrees of freedom has kurtosis greater than zero. These 

distributions were then considered to diverge from a normal distri­

bution since the kurtosis for a normal distribution is zero and a 

normal distribution is not skewed.

In general if Z., i = l,2,...,k, are k samples of random
2numbers with unit standard normal distributions, then X = >  , Z _

i=l i
is distributed as a chi square random variable with k degrees of 

freedom. A random variable distributed as a chi square distribution 

with three degrees of freedom was generated by first simulating 

three unit standard normal random variables by the method described 

for generating a population distributed normally with zero mean and 

unit variance. Taking the sum of the squares of these unit standard 

normal random variables gave a chi square distribution with three 

degrees of freedom.

The first three moments of a chi square distribution with 

k degrees of freedom are k, 2k, and 8k (Kendall and Stuart, 1958, 

p. 370). If the rth moment of a distribution is denoted by û , then 

the first three moments of a chi square distribution with three 

degrees of freedom are three, six, and twenty four, and the measure 

of skewness sk = u^ / u^ is then approximately 1.633.
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After the chi square distribution was generated, the 

numbers were then scaled so that the variance of the skewed pop­

ulation was unity and its mean was zero. The variance of a chi 

square distribution is not changed if each chi square value is 

increased by the same constant value or decreased by the same 

constant value. Each chi square value was multiplied by C =

1/ 6~ yielding a population with mean equal to 3/ 6 and

variance equal to one. The constant A = -3/ \ f  5 was then added 

to each chi square value, yielding a skewed population with zero 

mean and unit variance. The skewness sk remains invariant under 

a multiplicative or additive transformation, so sk is still approxi­

mately 1.633. Although the standardized distribution obtained 

here is no longer distributed as a chi square distribution with 

three degrees of freedom, the same terminology will be used to 

designate this distribution.

Lehman and Bailey (1968, p. 228) state that if Z is a

unit standard normal random variable and X is a chi square vari-n
able with n degrees of freedom, then the random variable T = Z/

'/ (X̂  / n) is distributed approximately as a t-distribution with 

n degrees of freedom. Kendall and Stuart (1958, p. 375) point out 

that the moments u^ of a t-distribution are known only for r ^ n .

In order to be able to determine the kurtosis of the distribution, 

a t-distribution with five degrees of freedom was considered for 

investigation. The distribution was generated by generating a chi 

square distribution with five degrees of freedom by the procedure 

described above and also by generating a unit standard normal
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distribution. Taking the quotient of the unit standard normal ran­

dom variable with the square root of the chi square variable with 

five degrees of freedom divided by its number of degrees of freedom 

gave a distribution distributed approximately as a t-distribution 

with five degrees of freedom.

The moments u of a t-distribution with n degrees of r
freedom exist only when r</ n, and are zero when r is odd and

(II) Ug^ = n^ p  ~ » for 2r^ n and where

2r is a positive integer. The kurtosis measure ku = (û /̂û ) - 3 

is then 6.0. The distribution is then leptokurtic since ku ̂  3. 

Scheffe (1959, pp. 331-339) points out that the skewness and the 

kurtosis of a population remain invariant under a multiplicative 

or an additive transformation.

After the t-distribution was generated, the numbers were 

then scaled so that the variance of the leptokurtic population was 

unity and its mean was zero. Each value of the distribution was 

multiplied by C = ^  3/5, yielding a population with zero mean and

unit variance. The kurtosis was unchanged and therefore remained 

6.0. Although the standardized distribution obtained here is no

longer distributed as a chi distribution with five degrees of free­

dom, the same terminology will be used to designate this distri­

bution .

In order to generate the random variables e^^, i = 1,2,

..., 9, which are not mutually uncorrelated, a method used by
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Fieller, Lewis, and Pearson (1955, pp. vii - viii) was used. The

method used may be described briefly in the following way: if in

a finite sample of the random variable ê ^̂  which is a unit standard

normal random variable, one denotes the jth member of the sample

by e^., let x . denote the jth member of a sample taken from the li 0 j
population of a unit standard normal random variable, and let 

denote the jth member of the ith random rearrangement of the set 

of x^j's, then the jth member ê . may be defined as

CII) (ii = + si 1 - 4
Fieller, Lewis, and Pearson (1955, p. xii) state that the pair of

generated values given by the sample values ê  and ê  can be re-It Is
garded as being taken from a bivarate normal distribution with

correlation r^r .t s
A refinement of subroutine Gauss was used to generate 

a sample of the random variables e^^, i = 1, 2, ..., 9. This was 

achieved by generating a unit standard normal random variable and 

from this population a sample was taken representing the x^^ scores. 

A random rearrangement of this sample was obtained using random 

permutations taken from Moses and Oakford (1963, pp. 93-120).

There was nine rearrangements of the set of x^j's generated. Using 

the set of x^j's and the sets of rearrangements of these values,

(III) of this chapter was used to generate the random variables 

, 1 —' 1, 2, . ., 9.

The two essential requirements for generating random num­

bers for the above populations were met by using the power residue
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method. These requirements are that first, the values of a uni­

formly distributed random variable distributed on the unit interval 

be uniformly distributed over the interval regardless of the number 

of values computed; and secondly, that successive values of the 

random variable be independent. It is pointed out in (IBM Data 

Processing Techniques, Random Number Generation and Testing, 1959, 

p. 7) that the above requirements are met by the power residue method 

of generating random numbers.

A factor analysis usually commences with the covariance 

matrix of the underlying variables. With the scaling described 

above all factor scores were taken from populations having zero 

means and unit variances. In this case the covariance matrix and 

the correlation matrix of the underlying variables are equal and 

the correlation matrix is the appropriate matrix for analysis.

Statistical Tests and Null Hypotheses 

Chakravarti, Laha, and Roy (1967, p. M-36) give a formu­

lation of the hypothesis usually tested in principal component 

analysis by Bartlett's test of significance. The hypothesis may

be stated as follows: if t,, t„, ..., t , are all of the eigenvalues1 2  p
of the correlation matrix of a ^-variate normal population such

that t^^. t^^l.. then it is not necessary to extract more

than k factors if t ^  t, ,, but t,,^ = t . „ =  ... = t . Severalk k+1 k+1 k+2 p
formulations of this hypothesis were tested with the populations 

described earlier. One should note that equality of the latter p - k 

eigenvalues means that the eigenvalues are equal in magnitude.



Experiment I .  In experiment I the factor scores were 

taken from a population that was normally distributed with zero 

mean and unit variance. The variables that were factor analyzed 

were x^^, i = l ,  2, 9. After finding the eigenvalues for

the correlation matrix of these variables, Bartlett's test of signif­

icance was applied to test the following null hypotheses;

- IN. The variables x^^, i = 1, 2, ..., 9, do not

have one common factor.

Hq - 2N. The variables x^., i = 1, 2, ..., 9, do not

have two common factors.

Hq - 3N. The variables x^^, i = 1, 2, ..., 9, do not

have three common factors.

Experiment II. In experiment II the factor scores were 

taken from a population that was distributed as the upper half of 

a unit standard normal population. The variables analyzed were 

the same, as in experiment I. Bartlett's test was used to test the 

following null hypotheses:

- IN . The variables x,,, i =1, 2, ..., 9, do not 0 0 li
have one common factor.

H_ - 2N . The variables x , i = 1, 2, ..., 9, do notO p  li
have two common factors.

H - 3N . The variables x , i = 1, 2, ..., 9, do notO p  li
have three common factors.

Experiment III. In experiment III the population from 

which the common factor scores were taken was distributed approxi­

mately as a chi square distribution with three degrees of freedom.
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A factor analysis was performed on the variables i = 1, 2,

9, and Bartlett’s test was used to test the following null 

hypotheses:

Hqi - ICs. The variables i = 1, 2, 9, do not

have one common factor.

- 2Cs. The variables x^^, i = 1, 2, 9, do not

have two common factors.

H , - BCs. The variables x , i = 1, 2, .... 9, do not 01 li
have three common factors.

Experiment IV. Experiment IV was a factor analysis of the 

variables x^^, i = 1, 2, ..., 9, where the common factor scores 

were taken from a population that was distributed approximately as 

a t-distribution with five degrees of freedom. The following null 

hypotheses were tested with Bartlett’s test:

H - IT. The variables x , i = 1, 2, 9, do not01 li
have one common factor.

- 2T. The variables x , i « 1, 2, ..., 9, do not 01 li
have two common factors.

Hoi “ variables x^^, i = 1, 2, 9, do not

have three common factors.

Experiment V. In experiment V an investigation was begun

of the random variables x^., i = 1, 2, ..., 7. A factor analysis

was made of these variables, where the common factor scores were 

taken from a population that was approximately distributed as a 

normal distribution with zero mean and unit variance. The follow­

ing null hypotheses were tested using Bartlett’s test:
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H - IN. The variables x , 1 = 1 ,  2,  , 7, do not
02 21

have one common factor.

H  ̂- 2N. The variables x , 1 = 1 ,  2, do not02 21
have two common factors.

Experiment VI. Experiment VI was a factor analysis of 

the variables 1 = 1 ,  2, ..., 7, where the common factor scores

were taken from a population that was distributed approximately as 

the positive half of a unit standard normal population. Bartlett’s 

test of significance was applied to test the following null hypo­

theses:

Hq2  - INp. The variables Xg^, 1 = 1 ,  2, ..., 7, do not

have one common factor.

Hq2  - 2Np. The variables 1 = 1 ,  2, ..., 7, do not

have two common factors.

Experiment VII. An Investigation was made In experiment 

VII of the variables 1 = 1 ,  2, ..., 7, where the common factor 

scores were, taken from a population that was distributed as a chi 

square distribution with three degrees of freedom. The null hypo­

theses tested In experiment VII were as follows:

Hgg - ICs. The variables x^^, 1 = 1 ,  2, ..., 7, do not

have one common factor.

- 2Cs. The variables x^^, 1 = 1 ,  2, ..., 7, do not

have two common factors.

Experiment VIII. The final Investigation of the variables 

Xg^, 1 = 1, 2, ..., 7, was carried out In experiment VIII. In this 

experiment the variables were considered to have factor scores
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taken from a population that was distributed approximately as a 

t-distribution with five degrees of freedom. The following null 

hypotheses were tested:

Hq2  - IT. The variables i = 1, 2, 7, do not

have one common factor.

H . - 2T. The variables x , i = 1, 2, ..., 7, do not02 2i
have two common factors.

Experiment IX. Experiment IX was a factor analysis of

the variables x^^, i = 1, 2, ..., 5, where the common factor scores

were taken from a unit standard normal population. The following 

null hypothesis was tested:

- IN. The variables x^^, i = 1, 2, ..., 5, do not 

have one common factor.

Experiment X. Experiment X was a factor analysis of the 

random variables considered in experiment IX, where the common 

factor scores were taken from a population that was approximately 

distributed as the positive half of a normal distribution with zero 

mean and unit variance. The following null hypothesis was tested:

- INp. The variables x^^, i = 1, 2, ..., 5, do not

have one common factor.

Experiment XI. An investigation was made in experiment 

XI of the variables x^^, i = 1, 2, ..., 5, where the common factor 

scores were taken from a population that was distributed approxi­

mately as a chi square distribution with three degrees of freedom.

The null hypothesis tested in this experiment was:

- ICs. The variables x^^, i = 1, 2, ..., 5, do not
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have one common factor.

Experiment XII. The final experiment of the present 

study was a factor analysis of the variables x^^, i = 1, 2,

5, where the common factor scores were taken from a population that 

was distributed approximately as a t-distribution with five degrees 

of freedom. The following null hypothesis was tested using Bartlett's 

test of significance:

H - IT. The variables x , i = 1, 2, ..., 5, do not 03 3i
have one common factor.

The twenty four null hypotheses listed above were tested 

at the 0.01 level of significance. In the cases where a factor was 

found not to be significant in a given experiment, no comment was 

made for any factor extracted after the insignificant factor.



CHAPTER III 

RESULTS

For each of the null hypotheses tested in which the Bart­

lett’s chi square test was used, a two-tailed test was used. The 

number of degrees of freedom for the chi square value was taken to 

be as Bartlett suggested, that is, %(p - k - 1)(p - k + 1 ) ,  where 

p is the number of variables and k is the number of factors that 

have been extracted (1951, p. 1). The criterion value for all of 

the tables involving the chi square test of Bartlett was set at 

the 0.01 level of significance. The chi square valifes used most 

often in this study are given in Table 1 for reference. Therefore, 

a null hypothesis was rejected when the chi square test resulted in 

a value greater than the value given in Table 1, which shows criti-* 

oal chi square values for the 0.01 level with the appropriate degrees 

of freedom, i.e., p (probability of chance occurrence) less than 

0.01.
The critical values in Table 1 were taken from Owen (1962, 

p. 51). In the majority of the cases reported in this study, signif­

icance was obtained when the number of degrees of freedom was taken 

from Bartlett (1950, p. 78) or Bartlett (1951, p. 1).

Table 26 and Table 27, found at the end of this chapter, 

contain the means and standard deviations respectively for experiments

39



40

Table 1

Chi-Square Values for the 0.01 Level of Significance*

D.F. Chi-square value

5 16.750

9 23.589

10 25.188

14 31.319

20 39.997

21 41.401

27 49.645

35 60.275

36 61.581

*Chi-Square values given above are for a two-tailed test
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I - XII. In Table 28, also found at the end of this chapter, are 

found the eigenvalues for the correlation matrices for the vari­

ables investigated in experiments I - XII.

Experiment I

In experiment I a principal component analysis was made 

of the variables x^^, i = 1, 2, ..., 9, where the common factor 

scores were taken from N(0,1). The means and standard deviations 

of these variables were found to be approximately zero and one 

respectively. The upper triangular portion of the correlation 

matrix for these variables is given in Table 2.

In null hypothesis H^-IN it is stated that the variables

x^^, i = 1, 2, ..., 9, based on a normal population, do not have

one common factor. With k = 0, Table 3 shows a chi square value 

that is statistically significant. Therefore, the null hypothesis 

is rejected at the 0.01 level of significance. This conclusion is 

in agreement with what is known to be theoretically true.

In null hypothesis Hq-2N it is stated that the variables

Xj^, i = 1, 2, ..., 9, based on a normal population, do not have

two common factors. Table 3, with k = 1, shows a chi square value

that is statistically significant. The conclusion was to reject 

this null hypothesis. This is in agreement with the theoretical 

structure of the variables investigated in experiment I.

With k = 2 the null hypothesis Hg-3N was tested. The 

null hypothesis states that the variables x^^, i = 1, 2, ..., 9, 

based on a normal population, do not have three common factors.



Table 2
Correlation Matrix for the Variables in Experiment I

1.0000 0.0474 0.0118 0.6108 0.8310 0.5555 0.7149 0.3943 0.6178
1.0000 -0.1620 0.3725 0.3135 0.5159 0.5183 0.8852 -0.1826

1.0000 0.5892 0.3461 0.5232 0.3004 -0.1364 0.7801
1.0000 0.9326 0.9753 0.9386 0.6249 0.8295

1.0000 0.9104
1.0000

0.9653
0.9501
1.0000

0.6646
0.7238
0.8039
1.0000

0.7764
0.7347
0.6661
0.1199
1.0000

no
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Table 3

Chi Square Analysis of Common Factors in Experiment I

k D.F. Coef(k) l°Se(*p_k) Chi Square P

0 35 -(95.1659) -(25.4611) 2423.0317 4  0.01

1 35 -(94.4992) -(19.8333) 1874.2319) <0.01

2 27 -(93.8325) -(14.9970) 1407.2026 <0.01

3 20 -(93.1658) -( 0.6180) 57.5798 <0.01

4 14 -(92.4991) -( 0.1388) 12.8420 >  0.01

Table 3 shows a chi square value that is significant at the 0.01

level of significance. Therefore, the null hypothesis was rejected. 

This was in agreement with what was known to be theoretically true.

Experiment II

A principal component analysis was made of the variables 

^li’ i " 2, ..., 9, where the common factor scores were taken

from N(p,0,l). The means and standard deviations of these vari­

ables were found to be zero and one respectively. The upper 

triangular portion of the correlation matrix of these variables 

is given in Table 4.

The null hypothesis H^-lNp states that the variables 

x^^, i = 1, 2, ..., 9, based on a population distributed as the 

positive half of a normal population with zero mean and unit 

variance, do not have one common factor. With k = 0, Table 5 shows 

a chi square value that is in the rejection region. Therefore,



Table W-

Correlation Matrix for the Variables in Experiment II

1.0000 -0.0380 0.2223 0.6631 0.8342 0.6014 0.7385 0.3966 0.7001
1.0000 -0.0956 0.4144 0.3526 0.5401 0.5299 0.8892 -0.1088

1.0000 0.6739 0.5080 0.6197 0.4422 0.0097 0.8403
1.0000 0.9535 0.9795 0.9531 0.6765 0.8474

1.0000 0.9301
1.0000

0.9733
0.9565
1.0000

0.6932
0.7571
0.8166
1.0000

0.8206
0.7669
9.7197
0.2139
1.0000

-p
-p
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Table 5

Chi Square Analysis of Common Factors in Experiment II

k D.F. Coef(k) l°8e(Rp-k) Chi Square P

0 36 -(95.1659) -(26.5169) 2523.50%9 <  0.01

1 35 -(94^4992) -(20.0851) 1898.025% <  0.01

2 37 -(93.8325) -(lL̂ .71L+2) 1380.6702 <  0.01

3 20 -(93.1658) -( 0.757%) 70.5596 <  0.01

1+ 11+ -(92.1+991) -( 0.1%70) 13.5981 ^ 0.01

the null hypothesis was rejected.

In null hypothesis H^-2Np it is stated that the variables 

x̂ ĵ j i = 1, 2, 9, based on a population distributed as the

positive half of a unit standard normal population, do not have two 

common factors. Table 5 shows a chi square value that is statis­

tically significant. The null hypothesis was rejected at the 0.01 

level of significance.

Experiment III 

In experiment III a principal component analysis was 

made of the variables x^^, i = 1, 2, ..., 9, where the common factor 

scores were taken from a chi square distribution with three degrees 

of freedom (a non-symmetric and skewed population). The means and 

standard deviations of these variables were found to be approximately 

zero and one respectively. The upper triangular portion of the 

correlation matrix of the variables is given in Table 6.



Table 6
Correlation Matrix for the Variables in Experiment III

1.0000 0.0301+ -0.1678 0.1+769 0.7661 0,9260 0,6609 0,9382 0.5071
1.0000 0.1000 0.6001+ 0.1+982 0,6962 0,6580 0,9000 0.0851

1.0000 0,6005 0.3179 0,5672 0,3050 -0,0007 0.7506
1.0000 0.9188 0.9816 0,9366 0,7300 0.8337

1.0000 0,8950
1,0000

0,9733
0,9359
1,0000

0,7629
0.7883
0.8698
1.0000

0.7793
0.7619
0.6972
0.2775
1.0000

fCD
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The null hypothesis H^^-lCs states that the variables 

i = 1, 2, , 9, based on a chi square distribution with

three degrees of freedom, do not have one common factor. With 

k = 0, Table 7 shows a chi square value that is statistically

Table 7

Chi Square Analysis of Common Factors in Experiment III

k D.F. Coef (k) Chi Square P

0 36 -(95.1659) -(26.3122) 2504.0278 ^  0.01

1 35 -(94.4992) -(19.5044) 1843.1553 ^  0.01

2 27 -(93.8325) -(15.7694) 1479.6812 <  0.01

3 20 -(93.1658) -( 0.8843)1 82.3863 <  0.01 •

4 14 -(92.4991) -( 0.1200) 11,0988 ,>0.01

significant at the 0.01 level of significance. Therefore, the null 

hypothesis was rejected.

In null hypothesis Ĥ ĵ -SCs it is stated that the vari­

ables x^^, i = 1, 2, __, 9, based on a chi square distribution

with three degrees of freedom, do not have three common factors. 

With k = 2, Table 7 shows a chi square value that is significant 

at the 0.01 level of significance. The conclusion was to reject 

the null hypothesis.

Experiment IV

A principal component analysis was made of the variables 

Xii, i = 1, 2, ..., 9, where the common factor scores were taken
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from a leptokurtic population. The means and standard

deviations of these variables were found to be approximately equal 

to zero and one respectively. The upper triangular portion of the 

correlation matrix of these variables is given in Table 8.

The null hypothesis H^^-IT states that the variables 

Xj^, i = 1, 2, 9, based on a t-distribution with five degrees

of freedom, do not have one common factor. With k = 0, Table 9 

shows a chi square value that is statistically significant. The 

conclusion was to reject the null hypothesis at the 0.01 level of 

significance.

The null hypothesis H^^-2T states that the variables 

x^^, i = 1, 2, ..., 9, based on a t-distribution with five degrees

of freedom, do not have two common factors. With k = 1, Table 9

shows a chi square value that is large enough to reject this null 

hypothesis at the 0.01 level of significance.

In null hypothesis H -3T it is stated that the variables01
x^^, i = 1, 2, ..., 9, based on a t-distribution with five degrees

of freedom, do not have three common factors. With k = 2, Table

9 shows a chi square value that is statistically significant. 

Therefore, the null hypothesis was rejected at the 0.01 level of 

significance.

Experiment V

In experiment V a principal component analysis was made 

of the variables Xg^, i = 1, 2, ..., 7, where the common factor 

scores were taken from N(0,1). The means and standard deviations



Table 8
Correlation Matrix for the Variables in Experiment IV

1.0000 -0.0973 -0.1130 0.6358 0.8531 0.5692 0.7775 0.5109 0.6866

1.0000 0.07m 0.9207 0.2928 0.5571 0.9360 0.7915 -0.0999

1.0000 0.5287 0.2556 • 0.5095 0.2696 -0.0022 0.6302
1.0000 0.9338 0.9776 0.9511 0.7517 0.8731

1.0000 0.9009

1.0000

0.9821
0.9901

1.0000

0.7699
0.8181

0.8501
1.0000

0.8938
0.7910

0.7902
0.3828

1.0000
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Table 9

Chi Square Analysis of Common Factors in Experiment IV

k D.F, Coef(k) l°Se(Bp_k) Chi Square P

0 36 -(95.1659) -(26.0958) 2483.4280 <  0.01

1 35 -(94.9492) -(20.6911) 1955,2966 <  0.01

2 27 -(93.8325) -(16.3806) 1537.0281 < 0 . 0 1

3 20 -(93.1658) -( 0.6713) 62.5467 <  0.01

11 -(92.4991) -( 0.1294) 11.9702 >0.01

of these variables were found to be approximately equal to zero and 

one respectively. The upper triangular portion of the correlation 

matrix of these variables is given in Table 10.

Table 10

Correlation Matrix for the Variables in Experiment V

1.0000 -0.0474 0.7345 0.6689 0.6298 0.3943 0.7677

1.0000 0.6180 0.6977 -0,7950 0.8852 -0.6669

1.0000 0,9839 -0.0331 0.9000 0.1518

1.0000 -0.1374 0.9365 0.0519

1.0000 -0.4435 0.9734

1.0000 -0.2687

1.0000

In null hypothesis H -IN it is stated that the variables
02
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i = 1, 2, — , 7, based on a unit standard normal population, 

do not have one common factor. With k = 0, Table 11 shows a chi

Table 11

Chi Square Analysis of Common Factors in Experiment V

k D.F. Coef(k) Chi Square P

0 21 -(95.8327) -(20.8619) 1999.2527 ^0.01

1 20 -(95.1660) -(18.2134) 1733.2939 <  0.01

2 m -(9%.4993) -( 0.4577) 43.2537 ^  0.01

3 9 -(93.8326) -( 0.0905) 8.4925 ^0.01

square value that is statistically significant. The conclusion was 

to reject this null hypothesis at the 0.01 level of significance.

In null hypothesis H 2N it is stated that the variables02
Xg^, i = 1, 2, ..., 7, based on a unit standard normal population, 

do not have two common factors. With k = 1, Table 11 shows a chi 

square value that is in the rejection region. Therefore, the null 

hypothesis was rejected.

Experiment VI

In experiment VI a principal component analysis was made 

of the variables Xg^, i = 1, 2, ..., 7, where the common factor 

scores were taken from N(p,0,l). The means and standard deviations 

of these variables were found to be approximately equal to zero and 

one respectively. The upper triangular portion of the correlation 

matrix of these variables is given in Table 12.
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Table 12

Correlation Matrix for the Variables in Experiment VI

0.61+54 0.6069 0.3966 0.7570

0.7266 -0.8066 0.8892 -0.6719

0.9840 -0.0928 0.9142 0.1058

1.0000 -0.1970 0.9472 0.0042

1.0000 -0.4673 0.9707

1.0000 -0.2816

1.0000

In null hypothesis H^^-INP it is stated that the vari­

ables Xg^, i = 1, 2, 7, based on a population distributed as

the positive half of a unit standard normal population, do not 

have one common factor. With k = 0, Table 13 shows a chi square

Table 13

Chi Square Analysis of Common Factors in Experiment VI

k D.F. Coef(k) Chi Square P

0 21 -(95.8327) -(20.9959) 1999.2527 4,0.01

1 20 -(95.1660) -(18.1941) 1731.4600 4  0.01

2 14 -(94.4993) -( 0.4519) 42.7062 4 ,0.01

3 9 -(93.8326) -( 0.0731) 6.8580 >0.01

value that is statistically significant. The null hypothesis was 

rejected at the 0.01 level of significance.
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In null hypothesis it is stated that the vari­

ables x^., i = l ,  2, 7, based on a population distributed as

the positive half of a unit standard normal population, do not 

have two common factors. With k = 1, the chi square value found 

in Table 13 is statistically significant. Therefore, the null 

hypothesis was rejected at the 0.01 level of significance.

Experiment VII 

In experiment VII a principal component analysis was 

made of the variables x^., i = 1, 2, 7, where the common fac­

tor scores were taken from a chi square distribution with three 

degrees of freedom. The means and standard deviations of these 

variables were found to be equal approximately to zero and one 

respectively. The upper triangular portion of the correlation 

matrix of these variables is given in Table 14-.

Table 14

Correlation Matrix for the Variables in Experiment VII

1.0000 0.7291 0.5718 0.5523 0.4382 0.7306

0.6848 0.7500 -0.8060 0.9000 -0.6507

1.0000 0.9861 -0.1380 0.9238 0.0882

1.0000 -0.2288 0.9511 -0.0009

1.0000 -0,4864

1.0000

0.9648

-0.2762

1.0000



In null hypothesis H „-lCs it is stated that the vari-02
ables i = 1, 2, 7, based on a chi square distribution

with three degrees of freedom, do not have one common factor.

With k = 0, Table 15 shows a chi square value that is statistically

Table 15

Chi Square Analysis of Common Factors in Experiment VII

k D.F. Coef(k) Chi Square P

0 21 -(95.8327) -(20.0838) 1924.6816 ^  0.01

1 20 -(95.1660) -(16.7294) 1592.0728 ^  0.01

2 14- -(94-.4993) -( 0.4996) 47.2119 <  0.01

3 9 -(93.8326) -( 0.0565) 5.3007 ^0.01

significant at the 0.01 level of significance. The conclusion

was to reject the null hypothesis.

In null hypothesis H -2Cs it is stated that the vari-
02

ables Xg^, i = 1, 2, ..., 7, do not have two common factors. Table 

15, with k = 1, shows a chi square value that is statistically 

significant at the 0.01 level of significance. Therefore, the null 

hypothesis was rejected at the 0.01 level of significance.

Experiment VIII 

A principal component analysis was made of the variables 

Xg^, i = 1, 2, ..., 7, where the common factor scores were taken 

from a letpokurtic distribution. The means and standard

deviations of these variables were found to be approximately equal
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to zero and one respectively. The upper triangular portion of the 

correlation matrix of the variables is given in Table 16,

Table 16

Correlation Matrix for the Variables in Experiment VIII

1.0000 -0.0973 0.8204 0.7572 0.7275 0.5109 0.8462

1.0000 0.4660 0.5642 -0.7433 0.7915 -0.6039

1.0000 0.9847 0.2309 0.8994 0.4080

1.0000 0.1189 0.9388 0.3047

1.0000 -0.1972 0.9747

1.0000 -0.0098

1.0000

In null hypothesis it is stated that the variables

^ 2 i  5 ^ 1) 3̂ •• ., 7, do not have one common factor. With k = 0,

the chi square value in Table 17 is large enough to support the

Table 17

Chi Square Analysis of Common Factors in Experiment VIII

k D.F. Coef(k) Chi Square P

0 21 -(95.8327) -(21.3959) 2050.4241 ^  0.01

1 20 -(95.1660) -(18.3177) 1743.2178 ^0.01

2 14 -(94.4993) -( 0.4887) 46.1862 ^  0.01

3 9 -(93.8326) -( 0.0684) 6.4187 ^0.01
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conclusion to reject this null hypothesis at the 0.01 level of 

significance.

In null hypothesis it is stated that the variables

X2 £, i = 1, 2, ..., 7, do not have two common factors. With k = 1, 

Table 17 shows a chi square value that is statistically significant. 

Therefore, the null hypothesis was rejected at the 0.01 level of 

significance.

Experiment IX

In experiment IX a principal component analysis was made 

of the variables x^^, i = 1, 2, ..., 5, where the common factor 

scores were taken from N(0,1). The means and standard deviations 

of these variables were found to be approximately equal to zero 

and one respectively. The upper triangular portion of the corre­

lation matrix of these variables is given in Table 18.

Table 18

Correlation Matrix for the Variables in Experiment IX

1.0000 -0.9872 0.9901 0.9905 -0.9813

1.0000 -0.9785 -0.9841 0.9937

1.0000 0.9819 -0.9697

1.0000 -0.9788

1.0000

In null hypothesis Hg^-IN it is stated that the variables 

Xg., i = 1, 2, ..., 5, do not have one common factor. With k = 0,
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Table 19 shows a chi square value that is statistically significant

Table 19

Chi Square Analysis of Common Factors in Experiment IX

k D.F. Coef(k) Chi Square P

0 10 -(96.4-995) -(16.06M) 1550.2512 K  0.01

at the 0.01 level of significance. Therefore, the null hypothesis 

was rejected.

Experiment X

In experiment X a principal component analysis was made

of the variables x , i = 1, 2, ..., 5, where the common factor3i
scores were taken from N(p,0,l). The means and standard deviations 

were found to be approximately equal to zero and one respectively. 

The upper triangular portion of the correlation matrix of these 

variables is given in Table 20.

Table 20

Correlation Matrix for the Variables in Experiment X

1.0000 0.9871 0.9912 0.9905 -0.9812

1.0000 -0.9802 -0.9841 0.9937

1.0000 0.9832 -0.9716

1.0000 -0.9788

1.0000
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In null hypothesis H -INP it is stated that the vari-
03

ables , i = 1, 2, 5, do not have one common factor. With3i
k = 0, Table 21 shows a chi square value that is statistically 

significant. Therefore, the null hypothesis was rejected at the 

0.01 level of significance.

Table 21

Chi Square Analysis of Common Factors in Experiment X

k D.F. Coef(k) l°Se(Kp_k) Chi Square P

0 10 -(96.4995) -(16.1886) 1562.1899 4^0.01

Experiment XI

A principal component analysis was made of the variables

Xg^, i = 1, 2, __, 5, where the common factor scores were taken

from a chi square distribution with three degrees of freedom. The 

means and standard deviations of these variables were found to be 

equal approximately to zero and one respectively. The upper 

triangular portion of the correlation matrix of these variables 

is given in Table 22.

The null hypothesis H^^-lCs states that the variables 

Xg^, i = 1, 2, ..., 5, do not have one common factor. With k = 0, 

Table 23 shows a chi square value that is statistically significant. 

Therefore, the conclusion was to reject the null hypothesis at the 

0.01 level of significance.
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Table 22

Correlation Matrix for the Variables in Experiment XI

1.0000 -0.9870 0.9902 0.9902 -0.9808

1.0000 -0.9785 -0.9837 0.9937

1.0000 0.9819 -0.9697

1.0000 -0.9780

1.0000

Table 23

Chi Square Analysis of Common Factors in Experiment XI

k D.F. Coef(k) Chi Square P

0 10 -(96.9495) -(19.7069) 1919.2073 ^  0.01

Experiment XII 

In experiment XII a principal component analysis was 

made of the variables x^^, i = 1, 2, ..., 5, where the common fac­

tor scores were taken from t^g^. The means and standard deviations 

of the variables x^^, i = 1, 2, ..., 5, were found to be approxi­

mately equal to zero and one respectively. The upper triangular 

portion of the correlation matrix of these variables is given in 

Table 2̂ .

In null hypothesis H -IT it is stated that the vari-03
ables Xgi, i = 1, 2, ..., 5, do not have one common factor. With
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Table 24

Correlation Matrix for the Variables in Experiment XII

1.0000 -0.9922 0.9938 0.9940 -0.9885

1.0000 -0.9867 -0.9903 0.9962

1.0000 0.9887 -0.9812

1.0000 -0.9869

1.0000

k = 0, Table 25 shows a chi square value that is statistically 

significant. Therefore, the conclusion was to reject this null 

hypothesis at the 0.01 level of significance.

Table 25

Chi Square Analysis of Common Factors in Experiment XII

k D.F. Coef(k) Chi Square P

0 10 -(96.4995) -(15.8255) 1527.1533 ^  0.01



Table 26
Means for the Variables in Experiments I-XII

Experiment Means

%1 %2 %3 %4 %5 %6 %7 %8 %9

1 -0.0901+ -0.0601 -0.1177 -0.1514 -0.1399 -0.1486 -0.1371 -0.0855 -0.1450
2 0.0186 -0.0495 -0.1108 -0.0779 -0.0438 -0.0825 -0.0505 -0.0288 -0.0738

3 -0.1487 -0.0316 0.0858 -0.0400 -0.0929 -0.0379 -0.0847 -0.0846 -0.0163
M- 0.0708 -0.1062 -0.0877 -0.0613 -0.0172 -0.0770 -0.0391 -0.0579 -0.0240

5 -0.0904 -0.0601 -0.1010 -0.1004 -0.0029 -0.0855 -0.0327

6 0.0186 -0.0495 -0.0124 -0.0198 0.0540 -0.0288 0.0431
7 -0.1487 -0.0316 -0.1252 -0.1178 -0.0610 -0.0846 -0.0959

8 0.0708 -0.1062 -0.0119 -0.0276 0.1312 -0.0579 0.1203

9 -0.0878 0.0774 -0.0903 -0.0889 0.0760
10 0.0223 -0.0328 0.0187 0.0207 -0.0336

11 -0.1468 0.1363 -0.1486 -0.1476 0.1346
12 0.0750 -0.0855 0.0709 0.0731 -0.0860

CTl(-■



Table 27
Standard Deviations for the Variables in Experiments I-XII

Experiment Standard Deviations

X
1

X
2

X
3

X
4 X5 X 6 X7 X8 X9

1 1.01114 0.9660 0.9474 0.9116 0.9523 0.9132 0.9246 0.9524 0.9729

2 1.0317 1.0232 0.9243 1.0207 1.0448 1.0025 1.0178 1.0098 1.0614
3 0.8418 0.9947 1.0845 1.0417 0.9581 1.0634 0.9768 0.9706 1.0243

1.0025 1.1054 1.0324 0.9675 0.9635 0.9564 0.9675 1.0612 1.0124
5 1.0414 0.9660 0.9649 0.9822 1.0498 0.9524 1.0485
6 1.0317 1.0232 1.0054 1.0042 1.0510 1.0098 1.0521

7 0.8418 0.9947 0.9236 0.9401 0.9280 0.9706 0.8909
8 1.0025 1.1054 0.9950 0.9849 1.1264 1.0612 1.1104

9 1.0357 1.0189 1.0330 1.0313 1.0208

10 1.0313 1.0266 1.0656 1.0316 1.0222

11 0.8442 0.8648 0.8639 0.8497 0.8824

12 0.9999 0-9933 1.0047 1.0028 0.9999

cnru



Table 28
Eigenvalues of Correlation Matrices in Experiments I-XII

Experiment Eigenvalues

tl ^2 ^3 ^9 t5 ^6 t7 ^9

1 5.8237 2.0767 1.0369 0.0216 0.0119 0.0091 0.0073 0.0072 0.0059
2 6.19-67 1.9935 0.8591 0-0207 0.0099 0.0077 0.0062 0.0060 0.0050

3 6.2853 1.5982 1.0581 0.0233 0.0097 0.0079 0.0065 0.0061 0.0052
14- 5.7270 2.0935 1.1735 0.0201 0.0098 0.0078 0.0069 0.0069 0.0050

5 3.9280 3.0209 0.0199 0.0105 0.0080 0.0077 0.0058

6 9.0166 2.9332 0.0191 0.0099 0.0078 0.0079 0.0059

7 9.3110 2.6278 0.0293 0.0119 0.0095 0.0088 0.0072

8 9.1685 2.7897 0.0183 0.0088 0.0076 0.0066 0.0055
9 9.9393 0.0379 0.0169 0.0065 0.0053

10 9.9366 0.0360 0.0158 0.0063 0.0053
11 9.9076 0.0522 0.0236 0.0095 0.0072

12 9.0303 0.0397 0.0173 0.0070 0.0057

CD
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CHAPTER IV

DISCUSSION

According to Kaiser (1959), in principal component 

analysis, the number of common factors needed for a complete fac­

tor analysis is equal to the number of eigenvalues of the corre­

lation matrix that are greater than or equal to one. The results 

of this study support that assumption. In each experiment, except 

experiment II, Table 28 shows that the number of eigenvalues greater 

than or equal to one is equal to the number of common factors as­

sumed initially in the given experiment.

In each experiment, except those in which one common 

factor was assumed, Bartlett's test of significance showed that 

there was one significant common factor more than was assumed ini­

tially. That is, in those cases where two and three common factors 

were assumed to exist among the variables, Bartlett's test showed 

the presence of exactly three and four common factors respectively. 

Since it was assumed initially in each experiment that each vari­

able had an error factor or a residual present and since the per­

centage of variance explained by the additional factor was small, 

the additional factor may be assumed to be due to error. In those 

experiments for which one common factor was assumed, correlation 

coefficients among the variables were extremely high. No correlation

61̂
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coefficient was less than 0.9.

Delimitations of the Study 

The empirical investigation reported in the present study 

were limited in the following ways:

1) Only artificial samples were used. Measurements were 

random variâtes simulated on an IBM 360 computer.

2) The number of common factors for a set of observable 

random variables was limited to one, two, or three common factors.

3) The study was concerned with statistical significance 

and not with practical significance.

4-) The populations from which the common factor scores 

were taken were limited to one of the following types:

a) A t-distribution with five degrees of freedom

b) The population that is distributed as the positive 

half of a unit standard normal distribution

c) A chi square distribution with three degrees 

of freedom

d) A normal distribution with zero mean and unit 

variance

5) Only Bartlett's test of significance was used to test 

for the significance of the number of factors.

6) The procedure for computation of factor loadings was 

limited to the method of principal component analysis.

Suggestions for Further Research 

With the above list of delimitations, it is clear that
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this investigation holds no final answers to the question of how 

robust Bartlett's test of significance is in principal component 

analysis. More research is needed for cases where the number of 

observations is less than one hundred and for the cases where the 

number of observations is greater than one hundred. The study by 

Fuller and Hemmerle (1966) may hold some of the answers for the 

latter case. In that experiment, they showed that Lawley's chi 

square test, when used to test whether or not a factor analysis 

is complete in maximum likelihood factor analysis, was insensitive 

to the type of population from which common factor scores were 

taken. The number of observations in their study was two hundred.

One of the initial assumptions of the method of principal 

component analysis is that the communality of the variables is a 

numerical value of one, or at least that numerical values of one 

are used along the diagonal of the correlation matrix of the vari­

ables that are to be factor analyzed. Although this assumption 

was made in the present study, further research is needed in cases 

where the communality of each variable is not approximately one, 

since in most practical situations this is not the case.

Bartlett (1950) points out that his justification for 

testing the significance of factors in principal component analysis 

is not as complete as one would desire. The justification would be 

more realistic, according to Bartlett, if the researcher were 

considering the analysis of test scores known to have true equal 

variances, but standardized to unity only for the mean variance.

In this case Bartlett's test could be given more justification.
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but would involve a variation in the number of degrees of freedom. 

Bartlett further notes that pending a more detailed investigation, 

some doubt remains as to whether or not the reduction in degrees 

of freedom that ensues from the individual standardization of the 

tests is automatically felt in the residual factor components (an 

assumption implicit in the proposed test), or is mainly absorbed 

by the larger roots of the characteristic equation of the corre­

lation matrix.

The chi square analyses reported here showed significance 

of the factors extracted to be unquestionable for the first one or 

two factors extracted. It was for the factors later extracted 

that significance was not as positive. It appears that research on 

later-extracted factors, based on chi square distributions would 

provide some further data on Bartlett's test in addition to that 

presented in the present investigation. If sampling distributions 

for the Bartlett chi square statistic were obtained for the cases 

where the factor scores were normally distributed, distributed as 

the positive half of a unit standard normal distribution, distributed 

as a chi distribution with three degrees of freedom, and distributed 

as a t-distribution with five degrees of freedom, then one could 

use some statistical test to determine whether or not the sampling 

distributions were taken from the same population. The Kruskal and 

Wallis multi-sample test for identical populations would be an appro­

priate test.

The investigation reported here was concerned, in each of 

the cases where one, two, and three common factors were assumed
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initially, with only one theoretical model. Another apparent 

limitation of the present study is that stronger inferences could 

be made if models were varied. This was one of the important 

features of the study by Fuller and Hemmerle (1965).

With regard to the number of observations needed to make 

inferences about the significance of the factors extracted in a 

factor analysis, Burt (1952) points out that previous investigations 

in factor analysis suggest that generally speaking, when the number 

of variables is from ten to twenty, at least twenty observations 

are needed to establish one factor, fifty observations are needed 

to establish two factors, one hundred observations are needed to 

establish three factors, and between two hundred and four hundred 

observations are needed to establish four factors. Burt further 

suggests that it is not usually wise to try to extract more than 

four factors with any single battery of tests or in any single 

research. Ultimately, research on the robustness of Bartlett's 

test must include an estimate of the number of observations needed 

to establish the number of observations needed to establish any 

number of factors. Research in this area is needed.

Finally, no mention is made in any of the articles in the 

literature reported in this study of any tests made on artificial 

data to see if the variables are linear combinations of the factors. 

This is an essential assumption on the model for factor analysis in 

general and principal component analysis in particular. Research 

is needed to determine whether or not the failure of Bartlett's 

test of significance being sensitive to the population from which
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the common factor scores are taken is due to the variables not 

being linear combinations of the common factors.

The above mentioned areas of needed research in the area 

of tests of significance are merely a few of the ones mentioned in 

the literature. Tests of significance in factor analysis are quite 

nebulous and no general agreement seems to exist as to how one 

should establish the significance of a factor extracted in a given 

analysis.

Implications for Theory and Practice 

Theoretically, in Bartlett’s test of significance, the 

statistics given in (VII) and (VIII) of chapter one are approximately 

distributed as a chi square variable, if the number of observations 

is large. Bartlett (1950, pp. 82-83) proves this assertion on the 

basis of the factor scores and hence the variables being distributed 

normally. The results of this study point out that the test derived 

by Bartlett may not be distribution free and may depend, without 

exception, on the normality assumption.

The researcher is not always able to determine whether 

the variables, common factors, or specific factors come from popu­

lations that are normally distributed. The research reported here 

and in similar related research give evidence that the researcher 

should not make inferences using Bartlett’s test of significance 

unless he is sure that the normality assumption is sufficiently 

satisfied. Therefore, practically speaking the test derived by 

Bartlett should be used with caution.
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Solomon (1960, p. 310) states that the structure of the 

model for principal component analysis is the same as the general 

factor analysis model except that, at least at first, one does not 

distinguish between common and specific factors. The assumption in 

a model proposed by Henrysson (1950, p. 125) for example, is the 

existence of error factors caused by errors of measurements. There­

fore, no inferences should be made about the presence of specific 

factors on the basis of Bartlett's test and the method of principal 

component analysis. Such inferences should be made on the basis 

of other information inherent in the data for analysis.



CHAPTER V 

SUMMARY AND CONCLUSIONS

The basis of factor analysis is that if two random vari­

ables or activities involve a common factor or element, then there 

will be a correlation between them. If one gives two psychological 

tests, for example, to a group of people, then the correlation be­

tween these tests will be a function of the extent to which the 

tests are calling on common abilities (Adcock, 1954-, p. 19).

The principal component model assumes, among other 

assumptions given earlier, that the populations from which the 

common factor scores are taken are normally distributed. This 

implies that the random variables or activities possessing these 

common factors are also normally distributed.

Bartlett’s test of significance is formulated to indi­

cate the significance of the factors not yet extracted. Since only 

the correlation structure of the variables is being investigated in 

its relation to variance, no significance can ever be attached to 

the factor corresponding to the smallest eigenvalue of the corre­

lation matrix of the variables, for this would be equivalent to 

asking for the correlation structure of a single variable (Bartlett, 

1950, p 80).

The experiments performed in the present study were

71
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designed to study some effects on Bartlett's test of significance 

when the common factor scores were not taken from populations 

that were normally distributed. The populations considered were 

1) a t-distribtuion with five degrees of freedom (t^g^), 2) a chi 

square distribution with three degrees of freedom ( , and 3)

a population distributed as the positive half of a unit standard 

normal variable (N(p,0,l)). The populations were artificially 

simulated on an IBM 360 computer using concepts of power residues.

The number of observations for each experiment was one hundred,

the number of variables was five, seven, or nine, and the dimensions

of the correlation matrices investigated were 5 x 5, 7 x 7, and 9 x 9 .

There were three models considered for analysis. In one 

model there were five random variables, where one common factor 

was assumed to exist among the variables. A second model involved 

seven random variables, where t\ « ! 0 common factors were assumed to 

exist among the variables. The third model considered consisted 

of nine random variables, where three common factors were assumed 

to exist among the variables. For each variable, in a given model, 

the existence of an error factor was assumed initially. Bartlett’s 

test of significance was used to test the significance of factors 

extracted in the following cases:

1) the common factor scores were taken from N(0,1)

2) the common factor scores were taken from t̂ ^^

3) the common factor scores were taken from N(p,0,l)

M-) the common factor scores were taken from a chi square

distribution with three degrees of freedom.
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The error factors in each experiment were assumed to be taken from 

N(0,1).

Conclusions

Although the results of this study are necessarily limited, 

they do strongly indicate that when the method of principal compon­

ent analysis is used, Bartlett's test of significance is relatively 

insensitive to departure from normality of the distribution of the 

common factor scores for large numbers of observations.

The results of the present study point out that the number 

of common factors in principal component analysis is approximately 

equal to the number of eigenvalues of the correlation matrix of the 

variables that are factor analyzed. This approximation of the 

number of common factors is a good initial guess of the number of 

common factors. Further inferences about the number of common fac­

tors can be made with Bartlett’s test of significance if the re­

searcher is sure that the variables are normally distributed.
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Definition of Terms
Bartlett's Test of Significance. The chi square statistics 

given in (VII) and (VIII) of Chapter I.

Common Factor. À factor involved in more than one variable 

of a given set of variables (Harman, 1950, p. 12).

Common Factor Score. A numerical value taken on by a 

common factor.

Communality. The total variance of a variable due to 

factors which the variable has in common with other variables in 

a set of variables (Cattell, 1952, p. 4-23).

Corre. A computer scientific subroutine that computes 

means, standard deviations, sums of cross-products of deviations 

from means, and Pearson product moment correlation coefficients. 

(System/360 Scientific Subroutine Package, 1968, p. 164-).

Eigen. A computer scientific subroutine that computes 

the eigenvalues and eigen vectors of a real symmetric matrix 

(System/360 Scientific Subroutine Package, 1968, p. 164).

Factor. A hypothetical construct (Harman, 1960, p. 12).

Gauss. A computer scientific subroutine that computes 

a normally distributed random number with a given variance and a 

given mean (System/360 Scientific Subroutine Package, 1968, p. 77).

Load. A computer scientific subroutine that computes a 

factor matrix (loadings) from eigenvalues and associated eigen 

vectors (System/360 Scientific Subroutine Package, 1958, p. 56).

Principal Component Analysis. A method of factor analy­

sis used to reduce the dimensionality of a problem in terms of the
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number of variables to be analyzed. Also a method of factor analy­

sis used to classify the initial variables of a problem into sets 

such that variables within a given set have certain characteristics

in common (Hemmerle, 1967, p. IM-O) .

Random Variable. A symbol X standing for any of a range

of number events, each having a probability p(X) (Hays, 1964-,

p. 109) .

Randu. A computer scientific subroutine that computes 

a uniformly distributed random number between zero and one (System/ 

360 Scientific Subroutine Package, 1968, p. 77).

Residual. A factor common to a variable due to error 

(Henrysson, 1950, p. 125).

Specific Factor. A factor involved in a single variable 

of a given set of variables (Harman, 1960, p. 12).

Trace. A computer scientific subroutine that computes 

the cumulative percentage of eigenvalues greater than or equal to 

a constant (System/360 Scientific Subroutine Package, 1968, p. 55).

Unit Standard Normal Random Variable. A random variable 

whose range of values are taken from a normal population with zero 

mean and unit variance.

Varmx. A computer scientific subroutine that performs 

orthogonal rotations on a factor matrix (System/360 Scientific 

Subroutine Package, 1968, p. 56).

Meaning of Symbols

N(u,v). A population that is normally distributed with
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mean u and variance v.
. A population that is distributed as a t-distribution 

with n degrees of freedom.

N(p,u,v). A population that is distributed as the positive 

half of N(u,v).

K. The number of factors extracted.

Coef(k). The coefficient of log^fR^ given in (VIII) 

of Chapter I.

E(X). The expected value of a random variable X.

V(X). The variance of a random variable V.

Xj_. The ith variable considered in a given experiment.

t£. The ith eigenvalue of a set of eigenvalues of a

correlation matrix, where the eigenvalues have been arranged in 

descending order.

sk. The measure of the skewness of a distribution,

ku. The measure of the kurtosis of a distribution.

i n  + k ) = (1.3.5... (n - 1)) { W / 2 ^

In + l)/2^ = (1.3.5.... (n - 1))

r  (to = f r r
. A population that is distributed as a chi

(n)
square distribution with n degrees of freedom.

. Summation as i ranges from 1 to p.
i
 ̂ ?. Summation as j ranges from 1 to q. 
j

. The sequence y^, y^, y^,...
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WHERE K = 48

VOoo

//FACTO JOB ED010301»POLLAR0*MSGLEVEL=l
// FXFC FORTGCLG*PARM*FORT=*BCD*
//FORT.SYSIN DD *

SUBROUTINE JOYCEdX ,S »AM*V)
C THIS SUBROUTINE IS A REFINEMENT OF GAUSS

A = 0*0 
DO 50 I =1*48 
CALL RANDUtIX»IY*Y)
IX = lY 

50 A = A + Y
b a y = A - 24.0 
V = (BAY/2.C)*S + AM
r e t u r n
END
SUBROUTINE DATA(M*D)
DIMENSION D(l)

54 FORMAT(12F6.0)
C READ AN OBSERVATION FROM INPUT DEVICE

READ(5*54) (D(II*I=1*M>
RETURN
END
DIMENSION BB(9)*D(9)*S(9)*T(9)*XBAR(9)*R(45)*V(81)*TV(51)* 

1RH0(9)»FACT(9).CHI(4)*RPK(4)*NDF(4)*NNDF(4)*BETA(4)*TAU(9)*
C ADD THESE DIMENSION CARDS FOR N = 100

2TMAIN(100),INDEX(100)»E(100*9)*PM(100*9)*X(100*9)»XX(100*7). 
3XXX(100*5)*C0EF(4)*ANN(100)*USER(100)*A(100)
DIMENSION ALPHA(4)
DIMENSION SFACT(5)*TEMP(5)

C PROJECT NORMAL
C RESEARCH IN FACTOR ANALYSIS
C STATEMENT OF THE PROBLEM IS AS FOLLOWS.C WHAT ARE SOME EFFECTS OF NON-NORMALITY ON BARTLETT'S TEST OF
C SIGNIFICANCE WHEN COMMON FACTOR SCORES ARE NOT NORMAL INC PRINCIPAL COMPONENT ANALYSISC . PERMUTATION 1 FROM OAGE 93 BLOCK 1 MOSES AND OAKFORD TABLES

JOYCE
JOYCE
JOYCE
JOYCE
JOYCE
JOYCE
JOYCE
JOYCE
JOYCE
JOYCE
JOYCE
DATA
DATA
DATA
DATA
DATA
DATA
DATA
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO



oo

c PERMUTATION 2 FROM PAGE 93 BLOCK 7
C PERMUTATION 3 FROM PAGE 95 BLOCK 1
C PERMUTATION 4 FROM PAGE 97 BLOCK 1
C PERMUTATION 5 FROM PAGE 97 BL0CK7
C PERMUTATION 6 FROM PAGE 99 BLOCK 8
C PERMUTATION 7 FROM PAGE 98 BLOCK 8
C PERMUTATION 8 FROM PAGE 98 BLOCK 1
C PERMUTATION 9 FROM PAGE 99 BLOCK
C BEGIN GENERATION OF FACTOR SCORES
C GENERATE SPECIFIC FACTOR SCORES
C NS3 IS t h e i n p u t IX FOR GAUSSC NS2 IS THE NO. OF COMMON FACTORS
C NSl IS THE NO. OF VAR IABLES-SAME

MOSES AND OAKFORD TABLES 
MOSES AND OAKFORD TABLES 
MOSES AND OAKFORD TABLES 
MOSES AND OAKFORD TABLES 
MOSES AND o a k f o r d  TABLES 
MOSES AND o a k f o r d  TABLES 
MOSES AND OAKFORD TABLES 

8 MOSES AND OAKFORD TABLES

1075
10761077
1078
1175
1176 
1178
971
972

1177

FORMAT(IH 
FORMAT(IH 
FORMAT(IH 
FORMAT{IH 
FORMAT(IH 
FORMAT(IH 
FORMAT (IH 
FORMAT(lOH 
FORMAT(IH 
FORMAT(IH

AS M
* 'ACCEPT AT UREF 0.05 LEVEL * * 13 »E20.8)
» 'REJECT a t UREF 0.05 LEVEL» *I3*E20.8)
» 'ACCEPT AT UREF 0.01 LEVEL•» 13 .E20.8)
. 'REJECT AT UREF 0.01 LEVEL** 13*E20.8)
.'ACCEPT AT REF 0.05 LEVEL'» 13 *E20.8) 
.'REJECT AT REF 0.05 LEVEL•* 13 *E20.8) 
.'REJECT AT REF 0.01 LEVEL » » 13.E20.8) 
AAAAAAAAA #E20.10*413)
, ' ITER = ', 13)
.'ACCEPT AT REF 0.01 l e v e l * *I3*E20.8)

200

NS3 = 65537 
IX =NS3 
SX=1.0 
AM=0.0 
N=100
DO 200 ID=1#N
CALL JOYCF(IX.SX.AM.VX)
TMAIN(ID) = VX
CONTINUE
RHOd) = 0.8
RH0(2) =0.75
RH0(3) =0.54

FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO



COGO

RHO(4) =0.39 FACTO
RHO(5) =0.65 FACTO
RHO(6) = 0.7 FACTO
RHO(7) = 0.5 FACTO
RH0(8) = 0.4 FACTO
RH0(9) =0.49 FACTOc MM IS THE INITIAL VALUE OF M FACTO
MM=9 FACTO
DO 206 J=1.MM FACTO

202 READ{5.201) (INOEX(L)» L=1.N) FACTO
no 205 I=1*N FACTO201 F0RMAT(10I5) FACTO
JF=INDFX(I) FACTO
PM(I.J) = TMAINtJF) FACTO
E(I»J) = RHO(J )*TMAIN(I)+SORT(1.0 - RHO(J )**2)*PM(I *J ) FACTO

205 CONTINUE FACTO
206 c o n t i n u e FACTOC GENFRATF c o m m o n  FACTOR SCORES 

IX = 65537
FACTO

INDIA = 4 FACTO
DO 9031 NIX = 1,INDIA FACTO
IFfNiX - 1) 109.8212*8220 FACTO

8220 IF(NIX - 2) 109*8214*8221 FACTO
8221 IFINIX - 3) 109*8216*8222 FACTO
8222 IF(NIX - 4) 109.8218*109 FACTO8212 SX = 1.0 FACTO

DO 8210 IP = 1*N FACTO
NS2 = 3 FACTO
DO 211 1=1*NS2 FACTO
CALL JOYCE!IX*SX*AM*VX) FACTO
FACT!I)=VX FACTO

211 c o n t i n u e FACTO
X ! IP *1)=0.98489*FACT!1) +0.17321*E!IP*1) FACTO
X!IP.2)=0.98995*FACT!2) + 0.14142*E! IP*2) FACTO
X!IP»3)=0.99499*FACT!3) + 0.10000*E! IP*3) FACTO
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8501 WRITE(6,1075) NDFT*CHIO FACTOGO TO 8505 FACTO8502 WRITF(6*1076) NDFT,CHIO FACTO8505 IFfCHIO - 58,619) 8503,8503,8504 FACTO8503 WRITE(6,1077) NDFt,CHIO FACTO60 TO 8506 FACTO8504 WRITE(6*1078) NDFT,CHIO FACTO8506 GO TO 8888 FACTOC BEGIN FACTO FACTOC BEGIN FACTO FACTO71 FORMAT(A4,A2,I5,I2,F6.0) FACTOC PRINT MEANS FACTO34 WRITE(6,35) (XBARIJ),J=1,M) FACTO35 F0RMAT(//6H MEANS/(3E20,8)) FACTOC PRINT STANDARD DEVIATIONS FACTOWRITE(6*43) (S(J),J=1,M) FACTO43 FORMAT(//20H STANDARD DEVIATIONS/{3E20.B )) FACTOWRITE(6,45) FACTO45 FORMAT (//25H CORRELATION COEFFICIENTS) FACTODO 120 1=1,M FACTODO 110 J=1,M FACTO203 IF (I-J) 102,104,104 FACTO102 L=I+(J*J-J)/2 FACTOGO TO 110 FACTO104 L=J+(1*1-1)/2 FACTO110 D(J)=R(L) FACTO992 FORMAT!12,9F8.5) FACTO120 WRITE(6,50) I ,(D(J),J=1,M) FACTO50 F0RMAT(//4H ROW,13/(11F12•5)) FACTOMV=0 FACTOCALL EIGEN(R,V,M,MV) FACTOC BEGIN TESTS OF NULL HYPOTHESES FACTOc BEGIN TESTS OF NULL HYPOTHESES FACTODO 1029 1=1,M FACTOL = I + (1*1 - I)/2 FACTO
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TAU(I) = R(L)
1029 CONTINUE 

DETR=1.0 
DO 1091 1=1»M 
DETR=TAU(I)*DETR

1091 CONTINUE 
WRITE(6»990)DETR*<TAU(I)*I=1*M)

990 FORMAT(4E20.10/4E20#10/4E20.10)
TSUM=0.0 
DO 1092 1=1,M 
TSUM=TSUM + TAU(I)

1092 CONTINUE
DO 1094 I=1*NSM2 BETA(I) = 0.0 
ALPHA!I) = 1.0

1094 CONTINUE
DO 1093 K=1,NSM2 

C NSM2 = NS2 + 1
DO 1095 J = 1,K 
BETA(K) = BETA(K) + TAU(J)
ALPHA(K) = ALPHA(K) * TAU(J)

1095 CONTINUE
g a m m a  = DETR / ALPHA(K)
DELTA = M - BETA(K)
NEXPN = M - K
RPK(K) = GAMMA*(NEXPN/DELTA)**NEXPN

1093 CONTINUE
C RPK(I) = R( P - I)

CHID = -((N-1.0)-t0.1667)*(2.0*M + 5.0))*ALOG(DETR)
NDFT = 0.5*M*(M-1)
WRITE(7,971) CHIO,NDFT,NIX,NUM,ITER 
DO 1098 I=1,NSM2
COEF(I) =( (N-1.0) - (0.1667)*(2.0*M + 5.0)-(0.6667)*{I))
CHI (I) = -COFF{ DIALOG (RPK( I ) )
NDF(I) = (0.5)*(M-I)*(M-(I+1.0))

FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO



o\

NNDF(I) = (0.5)*(M - (1+1*0))*(M-I+2.0) FACTO
WRITE(7,971) CHI{I)*NNDF(I)»NIX,NUM»TTER FACTO

C IF THE FOLLOWING CARD IS REMOVED RPK(I)‘S ARE PRINTED AS OUTPUT FACTO
RPK(I) = ALOG(RPK(D) FACTO

1098 CONTINUE FACTO
983 FORMAT(24H CHI(I)»NNDF{I)» I=1»NSM2) FACTO
991 FORMAT(E20.10,I3) FACTO
982 FORMAT(16H RPK(I)♦I=1♦NSM2) FACTO
981 FORMAT!17H COEF(I)♦I=1»NSM2) FACTO

CON=1.0 FACTO
CALL TRACE(M»R»CON*K»D) FACTO

C PRINT FIGFN VALUES FACTO
DO 130 1=1,K FACTO
L=I+(1*1-1)/2 FACTO

130 S(I)=R(L) FACTO
WRITE (6,91) ( S(J),J=1,K) FACTO

91 F0RMAT(///12H EIGENVALUES/(10E14.9)) FACTO
C PRINT CUMULATIVE PERCENTAGE OF EIGEN VALUES FACTO

WRITE(6,92) ( D(J),J=1,K) FACTO
92 FORMAT(//37H CUMULATIVE PERCENTSGE OF EIGENVALUES/(10F12.5>) FACTO

C PRINT EIGENVECTORS FACTO
WRITE(6,93) FACTO

93 FORMAT(13H EIGENVECTORS) FACTO
L=0 FACTO
DO 150 J=1,K FACTO
DO 140 1=1,M FACTO
L=L+1 FACTO

140 D(I)=V(L) FACTO
150 WRITE(6,94) J, (D(I),I=1,M) FACTO
94 F0RMAT(//7H VECTOR,I3/(10F12.5)) FACTO

CALL LOAD(M,K,R,V) FACTO
C PRINT FACTOR MATRIX FACTO

WRITE(6,95)K FACTO
95 FORMAT(///16H FACTOR MATRIX (,I3,9H FACTORS)) FACTO

DO 180 1=1,M FACTO
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2019 IF(I-l) 2020
2020 IF {1-2) 202
2021 IF( I - 3 ) 
3081 IF(INT-15) 1
2082 IF(CHICI) -
2083 WRITE(6*1075 

GO TO 5991
2084 WRITE(6*1076 
5991 IF(CHI(I) -
2773 WRITE(6,1077 

GO 10 2271
2774 WRITF(6*107R 
2771 GO TO 2040 
3091 IF(INT-10 )
2092 IF(CHI(I) -
2093 WRITF(6»1075 

GO TO 2781
2094 WRITE(6»1076 
2781 IF(CHI(I)-23
2073 WRITF(6»1077 

GO TO 2071
2074 WRITE(6»1078 
2071 GO TO 2040 
3555 I FdNT - 6)
3002 IF(CHI(I)-12
3003 WRITE(6*1075 

GO TO 3454
3004 WRITE(6*1076 
3454 IF(CHI{I)-16 
2473 WRITE(6»1077

GO TO 2471 
2475 WRITE(6»1078 
2471 GO TO 2040 
4000 DO 3050 1=1, 

INT=NDF(I)

,3081,2020 
1 ,3091,2021
109.3555.109
09.2082.109
24,996) 2083,2083,2084 
) NDF(I),CHI(I)
) NDF(I),CHI(I)
30,578) 2773 ,2773,2774
) NDF(I),CHI(I)
) NDF(I),CHI(I)
109,2092,109 

18,307) 2093,2093,2094 
) NDF(I),CHI(I)
) NDF(I),CHIlI)
,209) 2073,2073,2074 
) NDF(I),CHI(I)
) NDF(I),CHI(I)
109.3002.109
,592) 3003,3003,3004 
) NDF(I),CHI(I)
) NDF{I),CHI(I)
,812) 2473,2473,2475 
) NDF(I),CHI(I)
) NDF(I),CHI(I)
NSM2

FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
FACTO



3049 GO TO 3019 FACTO3040 CONTINUE FACTO3050 CONTINUE FACTO3051 GO TO 701 FACTO3019 IF(I-l) 3020,4081*3020 FACTO3020 IF(I-2) 3021,4091*3021 FACTO3021 IF(I-3) 3022,4111*3022 FACTO3022 IF(I-4) 109*4011,109 FACTO4081 IF(INT-28) 109,3082,109 FACTO3082 IF(CHKI) - 41.337) 3083*3083,3084 FACTO3083 WRITE(6,1075) NDF(I)*CHI(I) FACTOGO TO 3333 FACTO3084 WRITE(6,1076) NDF(I)*CHI(I) FACTO3333 IFfCHI(n-48.278) 3073,3073*3074 FACTO3073 WRITE(6*1077) NDF(I),CHI(I) FACTOGO TO 3071 FACTO3074 WRITE(6,1078) NDF(I)*CHI(I) FACTO3071 GO TO 3040 FACTO4091 IF(INT-21) 109*3092,109 FACTO3092 IFICHKI) - 32.671) 3093*3093*3094 FACTO3093 WRITE(6*1075) NDF(I),CHI(I) FACTO
GO TO 5555 FACTO3094 WRITE(6*1076) NDF(I)*CHI(I) FACTO5555 IF(CH1(I)-38,932) 6073*6073*6074 FACTO

6073 WRITE(6*1077) NDF(I)*CHI(!) FACTOGO TO 5071 FACTO6074 WRITE(6*107B) NDF(I)*CHI(I) FACTO5071 GO TO 3040 FACTO4111 IF(INT-15) 109*4002*109 FACTO4002 IF(CHI(1) - 24.996) 4003*4003*4004 FACTO4003 WRITE(6,1075 ) NDF(I)*CHI(I) FACTO
GO TO 5081 FACTO4004 WRITE(6,1C76) NDF(I)*CHI(I) FACTO5081 IF(CHI(I) - 30.578) 5 083,5083*5084 FACTO5083 WRITE(6,10T?) NDF(I),CHI(I) FACTO



CMO

GO TO 5091
WRITE(6»1078) NDF(I)*CHI(I)
GO TO 3040
IF(INT-IO) 109,6002,109
IF(CHI(n-18,307) 6083*6083,6084
WRITF(6,1075) NDF(I)*CHI(I)
GO TO 7072
WRITE(6,1076) NDF(I),CHI(I) 
IF(CHI(I) - 23.209) 7073,7073,7074 
WRITE(6,1077) NDF(I)*CHI(I)
GO TO 8081
WRITE(6,1078 ) NDF(I)*CHI(I)
GO TO 3040
c o n t i n u e
c o n t i n u e
c o n t i n u e
WRITE(6»10001)
FORMAT(110)
c o n t i n u e
END

5084 
5091 
4011 
6002
6083
6084
7072
7073
7074 
8081 
8888 
9000 
9031

10001 
109

/*
//GO.SYSIN DD *

IX
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13 46 36 1 100 74 30 4 22 942 30 28 59 4 76 44 87 58 1397 27 23 47 98 72 33 94 21 145 55 3 35 39 38 6 6 84 70 69
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FACTO
FACTO
FACTO
FACTO
FACTO
FACTO
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FACTO
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FACTO
FACTO
FACTO
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FACTO
FACTO
FACTO
FACTO
FACTO
FACTO



81 24 34 46 77 99 86 96 7 91
2 50 5 17 10 92 57 95 52 3249 85 40 14 79 29 19 65 60 8389 88 37 48 90 12 8 6 62 2045 25 11 22 56 80 9 26 93 3678 51 82 15 61 63 54 100 68 31

64 53 67 41 74 16 18 73 43 71
39 10 34 46 84 5 47 85 70 4
76 11 74 66 19 100 13 48 62 7257 44 94 90 77 38 80 60 36 54
31 2 21 53 92 17 15 67 25 8371 41 56 42 26 37 27 86 18 1465 75 28 61 59 8 43 89 73 5596 68 82 79 50 51 87 29 64 9558 69 91 35 7 45 9 22 20 3032 81 33 52 99 88 24 63 40 61 23 98 97 3 93 78 12 49 1694 12 99 73 79 30 25 4 6 5556 64 74 78 95 13 28 62 1 2470 57 47 7 9 26 3 1 82 10 45
41 15 71 27 40 39 85 34 49 6165 87 67 72 88 29 18 54 8 6360 48 84 58 66 96 97 22 77 5236 2 14 23 6 8 91 69 32 50 333 92 81 86 5 83 75 93 46 90
20 21 17 11 19 80 44 51 100 8976 59 35 42 98 37 38 53 16 43
63 78 20 16 97 7 71 46 13 5754 5 11 85 45 33 44 37 61 1053 42 32 100 88 69 55 25 64 9318 52 9 95 24 90 98 68 31 666 60 28 15 29 75 40 38 47 7943 14 92 81 2 41 19 89 59 8330 12 67 51 87 27 49 48 74 9172 56 21 6 99 62 65 77 70 58



35 76 1 50 36 34 73 17 86 2282 94 26 80 4 84 23 96 3 3921 41 74 99 67 89 47 62 98 5219 55 95 2 7 29 90 17 59 5653 24 87 12 97 68 42 94 48 2860 3 92 66 88 23 38 78 84 3526 81 37 82 77 25 91 54 44 6113 27 40 49 20 36 75 80 33 5872 5 83 73 79 50 39 30 85 6569 14 1 8 10 15 9 76 6 5751 45 70 93 32 100 18 63 86 3171 64 11 96 16 4 43 34 22 4614 95 60 73 2 22 77 45 42 2125 87 10 68 47 40 13 56 51 3626 18 86 3 17 65 67 20 91 4433 50 9 1 7 57 52 96 30 354 76 90 62 37 28 99 70 55 3411 46 84 83 89 6 79 8 48 7138 66 32 97 53 88 100 98 43 6992 74 19 82 78 31 23 93 41 7227 54 94 5 63 49 61 59 85 1524 80 81 12 29 64 75 39 16 5836 63 78 18 26 68 24 1 96 498 25 91 82 27 43 37 42 28 1995 55 87 6 6 61 65 67 88 16 4714 41 23 89 62 92 94 21 79 4439 3 93 72 31 56 69 76 48 907 13 50 60 74 12 70 35 80 4946 54 22 5 77 32 81 73 34 3352 51 75 57 29 99 4 5 100 20 7138 10 17 58 9 8 59 6 92 5315 40 86 85 83 30 64 11 2 845 9 34 74 53 59 29 38 65 6193 20 88 19 78 33 87 14 60 4140 24 52 43 81 92 58 15 99 22



tr\o

35 76 1 50 36 34 73 17 86 2254 44 84 90 47 73 50 28 97 4910 25 98 95 23 77 69 67 66 3568 4 39 72 57 31 76 70 64 5186 42 94 56 27 8 69 26 82 6285 100 1 30 6 36 21 11 2 1612 91 96 71 37 45 18 79 3 487 46 80 17 75 55 13 83 63 32FACTO 00100050001*0 
FACTO 00100070001,0 
FACTO 00100090001,0 
FACTO 00100050001,0 
FACTO 00100070001,0 
FACTO 00100090001,0 
FACTO 00100050001,0 
f a c t o  00100070001,0 
FACTO 00100090001,0 
FACTO 00100050001,0 
FACTO 00100070001,0 
FACTO 00100090001,0 
/ *


