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ABSTRACT

In spite of the considerable amount of research done 
in the field of linear programming, a method does not exist 
which can solve a linear programming problem, with some or 
all variables bounded from above, without resorting to the 
artificial variable techniques. This study proposes, a new 
primal-dual algorithm for the bounded variable problem. The 
combination of the existing primal and dual simplex methods 
is used in such a way that the problem does not have to 
start either primal or dual feasible.

As a natural extension to the algorithm, the problem 
of sensitivity and parametric analysis for bounded variables 
is presented. Since the upper bounding techniques are ex­
tensively used in branch and bound algorithms of integer 
programming, the parametric analysis is extended to cover 
certain special cases of integer programming.
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A PRIML-DUAL ALGORITHM FOR BOUNDED VARIABLES 
WITH EXTENSIONS TO PARAMETRIC ANALYSIS

CHAPTER I 

INTRODUCTION

I. Background 
In spite of the impressive progress in the area of 

linear programming, efforts have not provided an algorithm 
that can handle the general linear programming problem 

without resorting to artificial augmentations. To be spe­
cific, the general linear programming problem is defined as: 

maximize Xq = 0̂  X̂  + Ç2 X2 5 -̂ 1̂  0 , 
subject to

-1 1 : l + - 1 2 2^2^  —1 ’ ^  Q.)

Api : i + A22 ^ 2 ^ - 2  5 b 2 > 0 ,

A31 2 i
+ A3 2 2^2 “ ± 3^ 0 ,

5 ^ 2 ^ 0  ,

The elements of Xi and are subsets of those of X-] and
Xg; respectively. The sizes of the constant vectors b^, b̂ , 
and bg are given by m^, m2 , and m^, respectively. Also,
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the number of elements in X-] and X2 equal to n-] and nQ,
respectively. Letting the number of elements in X^ and X^ 
be n.| and ng, then by definition, n^^ n̂  and n^^ n^. For 
convenience, let m = m̂  + m^ + m^ and n = n̂  + ng. The 
constant vectors U-] and ^  represent the upper bounds on 
X^ and Xg, respectively.

The generality of the above problem is reflected by 
the fact that, in its present form, the problem does not 
readily possess a primal- or dual- feasible starting solu­
tion. Primal infeasibility is caused by the ( and ( = ) 

constraints. Dual infeasibility, on the other hand, is 
created by the fact that the variables X2 have positive coef­
ficients in the objective function, that is, Ç2 > 0. To 
complete the generality of the linear programming problem, 
the variables X^ and X^ are assumed to have finite upper 
bounds.

There are several methods which can be used to solve 
this problem. A straightforward method is to use Dantzig’s 
regular simplex method [3 ]. This, however, requires ex­
tensive augmentations with artificial variables in order to 

provide a starting basic solution. Obviously, this method 
will involve extensive additional computations.

There are two main methods which can handle this 
problem more efficiently than the regular simplex method. 
These are:
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1. Dantzig's primal simplex method for hounded 

variables (PSB), [5].

2. Wagner's dual simplex for bounded variables 
(DSB), [22].

The details of these two methods are given in Appendix A. 
Generally, the relative efficiency of the two methods stems 
from the fact that the upper bounding constraints are not 
considered explicitly in the calculations. Rather, the 
feasibility conditions of Dantzig's regular simplex method 
[3 ] and Lemke's regular dual simplex method [1 7 ] are modified 
so that the effect of upper bounding is considered only in 
an implicit sense. The main problems associated with the 
regular primal and dual methods are still present in both 
the PSB and DSB methods. Specifically, the PSB requires a 
starting primal feasible solution which can be secured for 
the above general problem only through artificial augmenta­
tion. Similarly, the DSB method necessitates the use of a 
starting dual-feasible solution, secured through a substi­
tution of artificial upper bounds for the unbounded variables 
with positive coefficients in the objective function.

It may be remarked that a third method due to Zionts 
[24] has recently been developed which claims to treat the 
linear programming problem without artificial augmentations. 
The details of this method, called the criss-cross method, are 
also given in Appendix A. However, it can be shown by a 
counter-example that the criss-cross method may lead to
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erroneous results. In addition, since no provisions are 
made by the criss-cross method to handle upper hounded 
variables, the method is not general in the sense specified 
above.

II. Objective of the Research 
The above discussion shows that the available 

methods have definite shortcomings in dealing with the gen­
eral problem defined above. The objective of this research 
is to remedy these shortcomings. Specifically, a new 
algorithm, which combines all the features of the above three 
"general" methods is developed so that no artificial augmen­
tations will be needed. In effect, the new algorithm will 
deal directly with the original problem so that no changes 
in the structure of the problem are needed.

Computational experience has'shown that the product 
(revised) form of the simplex method [h] is more efficient. 
Consequently, this research will show how the proposed al­
gorithm can be used with the product form calculations.

A natural extension of the new algorithm is to show 
how it can be used with sensitivity and parametric analysis. 
Since the upper bounding technique is employed extensively 
in the branch-and-bound algorithm of integer linear pro­
gramming, the application of the parametric analysis is 
illustrated by considering special cases of parametric 

integer programming.
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III. Organization of the Dissertation 

Following the introduction in Chapter I, this dis­
sertation is organized as follows: The new primal-dual
algorithm for linear programs with hounded variables is 
presented in Chapter II. Chapter III introduces the para­

metric analysis of the bounded variable problem. The appli­
cation of the parametric analysis to a class of integer 
programming problems is presented in Chapter IV.



CHAPTER II

A PRIMAL-DUAL ALGORITHM FOR LINEAR 
PROGRAMS WITH BOUNDED VARIABLES

Consider the maximization problem defined in 
Chapter I. Adding slack variables and using matrix nota­
tion, the problem can be represented as follows:

maximize x^ = (Ĉ  , Cg) 

subject to

/ A-] A-| 2 — — Q)

%

-&21 “-22 2. I. 0

/h\s
^32 - - -l\xll

ll>0 , :'i =1,2, ..

%

Note that the equality constraints

have been changed to

2L-] + Ag2 —2 —5 “ bg
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by adding the new variables These variables must vanish
at any feasible solution. This can be guaranteed by adding 
zero upper bounds on all variables in X5 , that is, the con­
straints

must be added to the problem. For ease of reference the 

variables X^ will be labelled "excess variables."
The problem can now be put in a more compact form, 
maximize Xq = Ç X

subject to

(A, 1) X = Eo

0«X;^U
where X represents all the variables (including the slack 
and excess variables). For the variables without finite 
upper bounds, the corresponding element in Ü is assumed 
equal to infinity.

I. The Primal-Dual Algorithm 
This algorithm uses a combination of both primal and 

dual simplex methods. Primal iterations are carried out 
while ignoring the primal infeasible constraints. If a 
variable can enter the solution as a result of a primal 
iteration, no attention is paid to the upper bound con­
straint. This is done in order to avoid the calculation and 
comparison of three different criteria as in the PSB method. 
If an entering variable has a finite upper bound but cannot 
be entered by the criterion of the regular primal simplex
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method, it is merely substituted at its upper bound.
Similarly, dual iterations are carried out, when necessary,

while ignoring dual infeasible constraints.
In the following discussion Zj -cj is used, as usual,

to denote the optimality indicator of the variable . Thus
in a maximization problem, if z- -c • is negative., x̂  be-J J J
comes a promising candidate to enter the solution. As in 
the regular simplex method, the variable having the most 
negative zj -cj is selected to enter the basis. These de­
tails are given below.

Step 1 : Criterion for a variable to enter via primal—
(a) If all zj -cj are nonnegative., go to Step 2; 

otherwise go to (b).
(b) Select the most negative zj - cj to enter the 

basis. If this variable can be entered (using 
the regular primal simplex feasibility criterion 
while neglecting primal infeasible and the upper 
bound constraints), complete the iteration and 
repeat Step 1; otherwise go to (c).

(c) Since the variable Xj cannot be entered via 
primal, check if Xj has a finite upper bound.
If such a bound exists, substitute

H

and go to Step 1; otherwise go to (d).
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(d) Since the primal iteration cannot be carried 

out, neglect the most negative zj - Cj for 

this iteration only, and check if any other 
Zj - Cj is nonpositive. If such zj - cj exists 
return to (b) ; otherwise go to Step

Step 2: Criterion for a variable to enter via dual—
(a) Check if the right hand side is nonnegative.

If it is nonnegative, go to Step 3; otherwise go 
to (b).

(b) Carry out the dual simplex iteration on the most 
negative element of the right hand side. If 

this is done, return to Step 2; if this cannot 
be done the solution is infeasible.

Step 3: Check for upper bounds for the basic variables--

(a) Check if the basic variables are within their
respective upper bounds. If this condition is 
satisfied the solution is optimum; otherwise 
substitute

for all variables which exceed their upper 
bounds and return to Step 2,

Step h: Procedure when primal iteration cannot be carried
out—

(a) Check if the right hand side has at least one ,
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negative element. If there is at least one 
negative element go to (b); otherwise go to 
(d).

(b) Carry out a dual simplex iteration on the most
negative element of the right hand side; while
ignoring the dual infeasible columns. If this 
can be done return to Step 1 ; otherwise go to
(c).

(c) Since the dual iteration cannot be carried out, 

ignore this most negative element for this 
iteration only, and return to (El).

(d) Check if any of the basic variables have a
finite upper bound. If such bounds exist then
substitute

Xj = Uj - Xj ,
for all basic variables with finite upper bounds 
and go to Step 1„ If all the basic variables 
have no finite upper bounds then either the 
solution is infeasible or unbounded.

The complete procedure is shown by a flowchart in Figure 1. 
Since the proposed algorithm uses both primal and dual 
simplex methods for bounded variables, it will be denoted by 
PDSB.
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START

yes

no

1(b)
Can X A 

'Corresponding 
to min - Cj 
'N. enter ? >«
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enter
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no a finite upper 

\  bound ?1(d)
Neglect 

i - Ci u L'_ 
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Figure 1u— Flowchart for the Primal-Dual Algorithm 
for Bounded Variables.
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Figure 1 — Continued.
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Figure 1.--Continued.



II. Theoretical Discussion 
The above discussion shows that the new algorithm 

combines the principles of the regular primal simplex, the 
regular dual simplex, the PSB and the DSB method. Thus the 
proofs of feasibility, optimality and finiteness can be de­
rived from these methods.

When the problem is at a stage such that neither 
primal nor dual iterations can be carried out and also all 
basic variables are unbounded [Step 4 (d)], then either the 
problem is infeasible or unbounded. This criterion is dif­
ferent from the criteria of the four methods mentioned 
above, but can be derived from Zionts' [24] criss cross 
method.

The following theorem explains the special char­
acteristics of the "excess variables."

Theorem 1. At any iteration, once an excess variable be­
comes nonbasic it can never be made basic at a later 
iteration.

Proof— From the criteria of the regular primal simplex 
method a variable Xj is a candidate to enter if, and only if,

Zj - C j < 0 .

If Xj, is such a candidate, then

Zr - 0 .
Since x^ is currently nonbasic, it has a zero value and is at 
zero upper bound. Therefore, it can be substituted by
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= Up - Xy = -Xp

This substitution will keep the tableau unchanged except for 
the excess variable column which will have opposite signs.
If - c^ denotes the new value of the coefficient cor­
responding to the excess variable in the objective row, then

z^ - c^^O.

Thus x^ is no longer a candidate to enter the basis. If at 
any subsequent iteration the quantity z^ - c^ becomes non­
positive, the same substitution will make it nonnegative. 
This completes the proof.

III. Numerical Examples
Two examples are presented in this section to il­

lustrate various steps of the proposed primal-dual algorithm 
for bounded variable problems.
Example I

maximize Xq = 2 x̂  - Xg + x^ 
subject to

^1 ^ ^ 2 " 2xg - 3

-x̂  + 2X2 " ^ 3 ^ 10

+ Xg :> 5

, 0 ^X2 ^  5 J O^Xg



Iteration 1

16

X:

-2 1 -1 0

XI, 1 1 -2 3

-1 2 -1 10

*6 -1 0 -1 -5

Variable enters, excess variable x^ leaves and its colnim 
is deleted [Step 1 (b)].

Iteration 2

X2 X:

3 -5 6

xi 1 -2 3

""5 3 -3 13

^6 1 -3 -2

Variable x^ cannot enter via primal nor can x^ leave via 
dual. Neither primal nor dual iteration can be carried out 
but basic variable x̂  has a finite upper bound. Hence x̂  is 
substituted at its upper bound [Step 4 (d)].



17
Iteration ^

Iteration ^

X 2 ^3

3 -5 6

I
^1

-1 2 1

3 -3 13

%6 1 -3 - 2

leaves [Step 1 (b)].

% 2
!

X i

1 / 2 V 2 17/2

^3 -1 / 2 1 / 2 1 / 2

3/2 3/2 2 9 / 2

^ 6 -1 / 2 3/2 -1 / 2

Dual feasible, carry out dual iteration Xp enters [Step 2 (b)]. 

Iteration

1 If 8

X3 -1 -1 1

""5 3 6 13

X2 - 2  -3 1

^ 0 = 8 . ■

^1 ~  ^2  ~  15 ^3  “  1 •
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Examnle II
maximize xq = 2 x̂ + X2 - ^3

subject to
Xi - ^ 2 ^ 3
-Xi + X2 + 2x3 = >+

, 0 ^ X 2< 2 , O^x-

Iteration 1
Xi X2 ^3

- 2 -1 1 0

xi. 1 -1 0 3

^5 -1 1 2 4.

Variable x-̂ enters, x̂ . leaves [Step 1 (b)'

Iteration 2
xî X2 ^3

2 -3 1 6

1 -1 0 3
Xj 1 0 2 7

Variable %2 cannot be entered via primal, but it has a 
finite upper bound. Substitute X2 = 2 - [Step 1 (c)]
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Iteration 1

%2 ^3

2 3 1 1 2

^1 1 1 0 5
XJ 1 0 2 7

All zj - cj are nonnegative, right hand side
nonnegative but the variable x^ has a finit
equal to zero. Substitite

^5 = -x^

[Step 3 (a)].

Iteration k
xq !

%2 3̂

2 3 1 1 2

^1 1 1 0 5

^5
-1 0 - 2 -7

Variable leaves the solution and x^ enters the solution 
[Step 2 (b)]. Since x^, the excess variable, becomes non- 
basic, x^ can be deleted.

Iteration ^

xq X2

3/2 3 17/2
x̂ 1 Ï" 5

^3 1 / 2 0 7/2
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Variable xg exceeds i'ts "upper bound. Replace Xo by

Xj = 3 - xj

[Step 3 (a)] and carry out dual simplex iteration [Step 2 
(b)].

Iteration 6

^3 X2

3 3 7
Xi 2 1 if

XI, - 2 0 1

Solution optimum, xq = 7*

%1 = %2 = 2 , %3 = 3.

IV. Matrix Notation for Bounded Variables 
Consider the general linear programming problem 

mentioned earlier (p. 1). At any iteration let Xg denote 
the vector of basic variables. Since the nonbasic variables 

may be at zero level or at their upper bounds, let X^ repre­
sent the nonbasic variables at zero level and let X^ repre­
sent the nonbasic variables at their upper bound. Partition 

the Ç vector by Cg, and corresponding to Xg, X^ and X^ 
respectively. Let B represent the basic matrix and let 

and Dy represent the matrices corresponding to Xg and X^ 
respectively. The problem can then be represented by



h ■-B

B

-^z

Making the substitution
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- %
/^0 \
Is
&

2 u = 2 u - 2 u

lo  \

\W
the tableau becomes

/l

0

- %

B

-C

Ëz

/ ^0 \
%

4
i x ; /

£o - £u Su

Thus, if at any iteration the basic variables Xg and the 

nonbasic variables X^ reaching their upper bounds are known, 
the entire tableau can be generated as follows.
1. The value of the objective function--

This value of the objective function is

Xn — C-D B- 1 Ë0 + GuiQ - kB ^ ^  Ü.U
2. The value of the right hand side—

This value of the right hand side is given by

r' (Pq - Su 2 u)
3. The value of the nonbasic coefficients zj - cj—

(a) If the nonbasic variable is at zero level, then

- Cj = r ’ Ej - <=j
where Pj denotes the column of coefficients of 

Xj from the constraints.
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(b) If the nonbasic variable is at its upper bound

then

Zj - Cj = Cj - Cg B-1 Pj 
h. The value of the coefficients of the nonbasic Xj at the 
current iteration for different constraints—

If denotes these coefficients, then
(a) If Xj is at zero level, then

= B-̂  Pj
(b) If Xj is at its upper bound, then

= -B-1 P.

Thus, it is clear that a knowledge of the basic 
variables and the variables that reach their upper bounds, 
is enough to generate the tableau. Hence, the proposed 
algorithm can be suitably modified to fit the product form.



CHAPTER III

PARAMETRIC ANALYSIS FOR LINEAR PROGRAMS 

WITH UPPER BOUNDS

Parametric programming is concerned with the study 
of variations in the optimum basic solution due to prede­
termined systematic changes in the different coefficients 
of a linear programming problem. The parametric linear 
programming problem can be defined generally as:

maximize xq = (Ç + OE)X 

subject to (A,I)X = Pq + 6Rq
X ^ 0

where E and R are given constant vectors and 0 is a real 
parameter.

The variation with 0 of the optimum solution to this 
problem has been studied by Gass and Saaty [9? 10] and 
Manne [l8 ]. The study is based on the fact that, (1) changes
in the objective function can only affect the optimality of
the problem (or the feasibility of its dual) and (2 ) changes 
in the right-hand side can only affect the feasibility of 
the problem (or the optimality of its dual). Thus, by 
checking these conditions systematically, the values of 0 at

23
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which the optimum basic solution changes can be determined. 
These values of 9 are usually referred to as characteristic 

values.. The parametric -.nalysis can also be extended to 
the variations in the elements of the matrix A as defined 
in the linear programming problem. The analysis in this 
case, however, is not as general as in the case of the ob­
jective coefficients and the right-hand side elements of the 
objective.

In this chapter, the parametric analysis is de­
veloped for the upper-bounded problem. Thus, in addition 
to the regular parametric problem, the analysis will include 
a parameterization of the upper bounds. This parametric 

variation can be represented by

o < x < n  + 9V 

where V is a known constant vector.

I. Parametric Analysis for 
Bounded Variables

In the regular linear programming problems, where 
the variables are not bounded from above, the analysis of 
the effect of changes in the Pq vector alone on the optimum 

solution can be carried out in an identical manner to the 
analysis.; where the changes are-made in the Ç vector, alone. 
This is possible because of the relationship between the 
primal and the dual problems. However, for the bounded 
variable problems the effect of upper bounds makes such 
analysis different. Furthermore, the variations in Pq are
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accompanied by the variations in the upper hounds U. The 
following four cases are discussed in this chapter.

1 . Variations in PQ and U vectors.
2. Variations in Ç vector.
3. Variations in the coefficients of nonbasic 

vectors Pj.
h. Simultaneous variations in Pq, U and Ç.

In all these cases it will be assumed that only one parameter 
0 is involved and that the parameter 9 varies continuously 

in a specified interval.

1 . Variations in Pq and U vectors

Consider the problem given by the following, 
maximize Xq = Ç X 

subject to

(A,I)X = Po + G:Q
O C X ^ U  + 9V

where ^  and V are known vectors of constants and 9>0.
With only minor modifications this analysis can be extended 
to the range of 9 from -oo to 0.

To start with, assume that an optimum solution 
exists for 9 = 0 .  Let Xg be the optimum basis. Then,

0 « X b  = B-1 (Pq -

For 9>0, the solution will remain optimum as long as 

0 « X  = r ' ’ [£o - + 8% ] < n B  + 8%



0 ‘ = min [r^ R - Vg].> 0
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Let
. p = P o - : n ^ 4 i  R = : o - % Y ^ .

Hence,

O ^ X b  = R~‘ (R + 8 R )^  %  + %

Let (B"1 P)^ and (B"1 R)^ denote the elements of (B“  ̂ P)

and (B~̂  R) respectively^ Then,

i) :' If 0 :| represents the value of 0 at which an upper 
will he exceeded, this will he given hy

■ [ 2 b  -  B-1 P]^

\ [ B ' 1  R -  Vb I i

If all [B“  ̂ R - Vg] 4̂̂ 0 , or if x. corresponding to all any

[B"l R _ Vg]^^ 0 does not have a finite upper hound 0̂  will 
have an infinite value «

11) If (B"1 R)j^<0 for at least one value of i, then

let

'  “ i “  I

This condition gives the value of 0 at which the nonnegativ­
ity constraint(s) will he violated.

Let Qq = 0, and let 0̂  denote the first character­
istic value of Gv If 0̂  is defined such that

0  ̂ = min (0 j , 0 ") 
then 0 -| will he given hy

®1 ~ ®0 0 -j
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In general, let 0. be the ith characteristic value,

Then,

where

®i+1 - î '̂ i+l

01+1 = min (01 +1 , 0 i+i)

The values of 0^^^ and gb+i can be represented by the follow­

ing,

rf. ■ - min
1̂ + 1 j

[U| - pi],

[(ÿr^ ÿ  - ilij

and

0 min i [(BÎ)-'I Rl]j< 0

where B^, P̂ , R^, U^, and Vi& represent the values of theB ""B
respective matrices immediately after the ith critical 
value. If at any stage 0 ^̂  ̂ is infinite, as shown by the 
calculations, the analysis is stopped and the current basic 
solution at that point will continue to remain basic there­
after. The analysis may also be stopped if the solution 
space becomes infeasible at some value of 0 .

A numerical example is now presented which illus­
trates the method.

Example 1

Solve the following parametric problem for 0^0.
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maximize Xq = ]x̂  + 5 ^ 2 + 2xg

subject to

X + Xo 2Xg ̂ '10 - 0

2x-| + 4%2 + 3%: ̂  16 + 20  

0^x^^4 + 8, 0<X2<3 + ®3 0<x^^3 - (1/4)8

Solution: At 0 = 0, the optimum solution can be obtained
using the new algorithm, and is given by

Xi
""5 ^3

1/2 7 /4 22

X4 -1 /2 -1 /4 5/4 4

X2 -1 /2 1/4 3 /4 2

% : u

0 1/4

E = 2 o - Du :u

P =

B"̂  R =
-2
0
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Thus

0 j = 0 0  , and 0 " = 2 <
Hence

~ 0 '] “ 2 -.
The alternative tableaus at 0 = 1 will be

x.| x^ ^3 x4 %5 ^3

1 / 2 7/4 2 8 1 1 3 2 8

XI, -1 / 2 -1/4 5/4 0 ^1 2 -1 / 2 5/2 6

X2 -1 / 2 1/4 3/4 2 X2 -1 1 / 2 -1 / 2 2

Note that in the alternate tableau becomes the basic 
variable but has been replaced by x^.

2 -1/2 '

8 

12 0

Thus,

(B') -1 _

3I -

-1 1 / 2

8 

20
6

=

0 A = = 3

12,

(6 , f) 

( 1 , 1 )

and

' - 1

2
-3

0 2 = =  2

Hencec 02 = min (3 , 2) = 2
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and

©2 — 0 -̂ + 0 2 — ^
At this characteristic value the alternative tableaus can 
be calculated and the analysis can be carried out beyond 
0 = Note that the analysis in any case will be stopped 
beyond 0 = 1 0  ̂ because the first constraint becomes in­
feasible.

2. Variations in C vector

Consider the following problem, 
maximize Xq = (Ç + 0E) X 

subject to

(A , I) X = Pq
Q.^X^U , 0>O

where E is a known vector of constants. As before, the 
problem is solved at 0 = 0 .

Let the optimum solution at 0 = 0 be given by

2 b = r'l (£o - Sj Hi) = p

Also,

- Cj - Cg B  ̂ Pj - Cj$eO j - 1 , 2 , m+n

This analysis differs from the analysis for linear programs 

without bounded variables in the following way. If the basis 
Xg contains a variable xj then the corresponding element of 
Cg is replaced by -Cj. Similarly, if the rth variable in 
the optimum tableau is x^ , then
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If the optimum solution at 0 = 0 remains optimum 
for 0>O, then

Hence

Thus, if

(Çb + % )  B"' Pj - (Cj + 0 8 j)^O

i) (Eg B“ 1 Pj - 6 j )> 0 for ail j, the optimum 

solution will remain optimum for ail values of 9.
ii) (Eg B"1 Pj - Oj) < 0  for at least one value 

j, there exists a characteristic value. If

3~1
0 1 = min I -(2b S" £j -21 - i I ------ r - “----  (IB r' £.1 - e i X O

then

 ̂ ' (ÏB B"'' Pj - 6j)

0  ̂ = 0Q + 0  ̂ where 0 Q = 0

Similar expressions can also he derived for the i+1^^ charac­
teristic value.

3. Variations in the coefficients of nonbasic vectors Pj

This analysis represents only a partial solution of 
an important problem in which the entire A matrix coef­
ficients of a linear programming problem with upper bounds 
are varied with a parameter 0. All the work done so far in 

the area of parametric programming is based on the fact that
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between two consecutive characteristic values of any prob­
lem, the B“  ̂ matrix does not change, and a change in the 

opti.mm solution with 0 can be calculated from this B 
matrix. However, when the A matrix varies with Q, the B 

matrix will also vary with 0 if it contains the elements of 
the A matrix, and no general formulas exist which directly 
give the value of Bri. Thus, by considering the changes in 

only the nonbasic vectors Pj, the B“  ̂ matrix will be pre­

served. Furthermore, such analysis will be carried out for 
only a limited range of Q. After calculating a character­
istic value of 0 , if it is found that a nonbasic Pj (which 

varies with Q) becomes basic, the problem thereafter lends 
itself poorly to a systematic analysis for the reason given 
above, and the analysis will be terminated.

The variations in nonbasic Pj can only affect the 
optimality of the problem if the variables of the problem 
are without upper bound constraints. However, for the prob­
lem with upper bounds, the feasibility of the problem may 

also be affected as shown below.

by

Let the variation in a nonbasic vector Pj be given

where

-j ’ ^2 j ) ••• 5 fmj)^

is a known vector of constants. Assume that the optimum 
solution for 0 = 0 has been calculated. The characteristic
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value of 0 depends on two different criteria as follows.

a) Optimality: For 0 > 0 , the solution will remain

optimum as long as

Ç-Q B-1 (Pj + 6Fj) - Cj>0.

From this, the characteristic value based on optimality only, 

can be calculated. Let

0 - = min [-ÇÇB B-1 Pj - Cj]
Ü

This value of 0-| will be compared with a value obtained from 

the feasibility criterion.
b) Feasibility: At 0 = 0, the optimum solution is

given by

O S S b = (£o - Sa

Since ^  consists of nonbasic vectors, for 0>O the solution 

will remain optimum as long as

0 <Xb = S'’ (So - Da "a - 8 :n

From the expression above a value 0" can be calculated so 
that

0 ^ = 0 ^ =  min (0 ], 0 ")

The method will be illustrated by a numerical example.

Example II
Re-solve Example I (page 27). with the following 

changes. Pg and.U.vectors do not vary but the nonbasic 
vectors Pj vary as follows.
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(l+0 )xi + X2 + (2 -8 )xg^ 10

(2+0 )xi + 4-X2 + [3-(l/2)0]xg^ 16

Solution: At 0 = 0, the optimum solution identical to the
previous example and is given by

Xi ^3

1 / 2 5 A 7/4 2 2

XL̂ -1 / 2 -^/k 5/4 4

X2 -1 / 2 1/4 3/4 2

From the optimum tableau,

' 1 -1 /̂ 'Çb b-i = (0,5) 1 =  (o,5A)
,0 1 A

Og V  (pJ , F; , £3) = (-5A,o,-5/8) 

0I = min J h Ê  , ZZil = 2 / 5[5/5- 5/81

-B-1 Eu 2u =
-3
-1

Thus

/-39\ 
21 \-10/

This shows that the upper bounds of the current Xg will not 
be exceeded for any value of 0 ; on the other hand, Xg may 
become negative at 0 " where

0 " = min IJ j = V 3
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Hence the characteristic value is given by

0 = min (0̂  , 0 ") = 2 / 5

The alternate tableaus at 0 = 2/5 are given by
x̂ ^5 ^3 X2 ^5 ^3
0 5 A 3/2 20 0 5/4- 3/2 20

%4 -^/5 -1/4- 9/10 14/5 %4 4/3 -7/12 -1 / 3 0 14/3
X2 -3 / 5 1/4 7 / 1 0 8/5 x] 5/3 -5 / 1 2 -7/6 7/3

Since the nonbasic vector , which varies with 9 has 
entered the basis, the analysis is stopped.
4-. Simultaneous variations in Pq, U and Ç

It has been shown so far, that the variations in Pq 
and U affect only the feasibility of the problem, that is, a 
variable may either become negative or exceed its upper 
bound. Similarly, the variations in Ç affects only the op­

timality of the problem. Hence, if Q-̂ represents the first 
characteristic value by varying only Pq and U, and if
represents the value by varying Ç only, the true character­
istic value is given by

0-j = min (0  ̂ , 0 -j )

Similar considerations can be used to calculate the suc­
ceeding characteristic values.

Example III

Calculate the first characteristic value and the new 
solution for Example I (page 27) if the objective function
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36

XQ = (3+0)x^ + (5-0)x2 + 2%2

Solution: The optimum tableau at 0 = 0 is identical to

that of Example I and is not reproduced here. From the same 
example 9.̂ , the characteristic value when only Pq and U are 
changed is equal to 2. Also,

—B ~ ? ^2^ Eg = (0 ; -1)

Eg B'̂  (A , I) - E = (3/2,0,-3A,0,-1A)

from which 0 can be calculated and is equal to 7/3» Thus,

0 | = min(2,7/3) = 2

The alternate tableaus at 0 = 2 are given by

Î
1̂ ^3

I
1̂ A A

7/2 3/)+ 1/^ 36 2 3 if 36

-1 / 2 -1/V 5/*+ 0 ""5 2 A -5 0

^ 2 -1 / 2 1/^ 3/V 2 Xp -1 0 2 2

In the next chapter the parametric analysis for 
certain integer programming problems will be presented.



CHAPTER IV

APPLICATION OF PARAMETRIC PROGRAMMING FOR 
BOUNDED VARIABLES TO A CLASS OF PARA­
METRIC INTEGER PROGRAMMING PROBLEMS

Integer programming is presently considered to be a 
fast moving field and many algorithms have been proposed to 
tackle this type of problem. There are four approaches 
capable of solving real problems to a varying degree of ef­
fectiveness. These approaches are:

1 . Cutting plane methods.
2. Primal methods.
3 . Branch and bound methods.
*+. Partial enumeration methods.

Of these, only branch and bound methods will be discussed, 
since they involve upper bound techniques. (See [1, 2, I6 ].)

Branch and bound methods involve setting up a 
"tree" of linear programming problems. In every branch 
either an upper or a lower bound on some variable is im­
posed while ignoring all integrality constraints. The 
solution is obtained when a feasible integer solution is 
encountered on some branch of the- tree, while the other

37
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branches have solutions of smaller magnitude (feasible or 

infeasible). Since consideration of any. branch involves a 
bounded variable linear programming problem (without integer 
constraints), such a problem can be tackled by the new 
algorithm presented in this dissertation.

A natural extension of the development in the previous 
two chapters would be to conduct the parametric analysis for 
the integer problems. This discussion will be primarily 
restricted to the branch and bound methods, since the new 
algorithm can be directly applied in these methods.

Previous work in this area is almost nonexistent, 
probably due to the fact that as yet, the methods for solving 
integer programming problems themselves are not that power­
ful. Jensen [1V] mentions this problem and states that the 
techniques for carrying out the sensitivity analysis of the 
integer problems probably will not exist until more efficient 
methods of solving integer models are discovered. He 
further states that in performing such analysis it may be 
necessary to rely on intuition and ingenuity rather than 
systematic procedure.

The difficulty involved in the analysis arises from 
the fact that the optimum integer solution may not coincide 
with an extreme point of the solution space. In order to use 

the regular linear programming methods, auxiliary integral 
valued upper and lower bound constraints must be used to 

force the optimum solution to be an extreme point of the
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new solution space. However, when the parametric analysis 
of such integer problems is considered, the parameter 0 

varies continuously, whereas the bounds on the auxiliary 
constraints take only discrete integral values. There­
fore, the new optimum integer point may not be an extreme 

point. The analysis presented here will only suggest some 
possibilities for a systematic analysis.

A. . Linear variations in Pq vector 
Let the problem be represented by 

maximize Xq = Ç X
subject to

(A , I) X = Pq + 9So
X > 0 5 X integer, 0>0.

Since this is a discrete programming problem, the para­
metric analysis for the regular linear programming problems 
does not apply here. This fact is best illustrated by a 
numerical example.

Example I

Solve the following parametric integer programming
problem.

maximize Xq = 7 x̂  + 9xg
subject to

-X + 3x2 <  6 + 5©

7%i + %2<G35 -  3©

, Xg^ 0; x.j , X2 integers; 0> 0
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Solution: The problem is first solved for. 0 = 0 ,  using the
branch and bound procedure;^‘"The optimum solution occurs in 
the branch

, and X2 < 3 *

Î !
X2

7 9 55

^3 1 -3 1

-7 -1 1+

If the same optimum solution holds for 0^0, it will 
be given by

X 1 Xr

7 9 55

^3 1 -3 1 + 58

-7 -1 4 - 38

From the above tableau, the first characteristic value 0̂  = 
h/3- The value of the objective function at this charac­
teristic value will still be equal to 5 5 *

The fallacy in the above solution is shown as fol­
lows. If this problem is re-solved for 0 = 2/5? it is 
found that the optimum integer solution is given by 

Xq = 6^ , x-| = 1+ 3 and Xg =
For 0 = V3j the optimum integer solution is 

Xq = 6 6 , x̂  = 3 , and Xg = 5 *
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It is clear from the above example that a new ap­

proach must be used. To explore any new method, a first 
step might be to analyze why the regular parametric linear 
programming method fails. This may shed some light on dis­
covering other possible approaches. Two prime reasons can 
be stated. They are:

i) The auxiliary upper and lower bound constraints 
hold only for a specific problem. Thus, if the value of Pq 
is changed these auxiliary constraints may fail to enclose 
the feasible integer valued points of the new problem.

ii) When the values of the basic variables change
at any value of 0 , the basis itself may not change, but the
new integer optimum point may not be on the convex hull.

With these facts in mind, the following analysis is presented.
The parametric integer programming problem may fall 

in one of the following two categories:

1 „ The parametric variation in Pq may be such that 
for all values of 0 under consideration, no new integer 
point is added to the solution space.

2. At some value of 0 under consideration, a new
integer point may enter the solution space.

Since the analysis is preliminary, no attempt has 
been made to determine how any given parametric integer 
programming problem can be put in one of the two categories 

above. However, if a problem falls in the first category; 
that is, if the variation in Pq does not include any new
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integer point in the solution space, it is possible to de­
termine the value of 0 up to''which the same optimum solution 

will hold, as shown below.
Consider a parametric integer programming problem in 

which the optimum solution for Q = 0 is known and is repre­
sented by X*. If X* denotes a feasible integer point, then

Ç X * > £  x '

For 0 > 0  if X* is still feasible, then it must also be op­
timum, since no new integer point entered the solution 
space. If for some value of 0> 0 the optimum point X* ceases 
to be optimum, then it must also be infeasible. Also, since 

the variation in 0 is continuous, for some value of 0 = 0^, X* 
must be on the boundary of the solution space. Initially for 

0 = 0,X* must be an extreme point of the solution space 
formed by the addition of the auxiliary constraints. If the 
auxiliary constraints are not affected while Pq changes, X* 
will continue to be an extreme point as long as it is 
feasible and hence optimum. If X* becomes infeasible, it 
will no longer be an extreme point. Therefore, the regular 
parametric linear programming analysis can be applied to 
calculate 0̂ . However, once 0̂  is determined the new opti­
mum solution must be calculated at 0̂  + (. The new solution 
cannot be obtained from the previous tableau directly, and 
the problem has to be re-solved. The value 0-] does not 
represent a characteristic value since the basic variables 
at 0 = 0 may still be basic for 0>@^. To distinguish this.
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the values of 0 where the optimum integer solution shifts 

from one integer point to another may be called a "critical 
value."

Example II
Calculate the first critical value for Example I 

(page 3 9 ) if the first constraint is changed to

-x̂  + 3%2^ 6 - 0 .
Solution: For this example the solution space does not add
a new integer point as 0 increases. The optimum solution for 
O < 0 < 0  ̂ will be given by

^2

7 9 55

^3 1 -3 1 - 0

X4 -7 -1 4 - 3G

From the tableau
0-1 = min (1 / 1 , 4/3) = 1 .

For 0>1, the optimum integer point will shift from x-| = 4 , 

and X2 = 3* However, the new optimum solution has to be 
calculated by branch and bound method by substituting 
0 = 1 + 6 .

This analysis shows that if many critical values of 
0 exist, the problem may become quite lengthy. Probably, a 
more useful purpose of this procedure would be to give an



idea of the range of 0 for which a given integer point re­
mains optimum.

If the integer programming problem is a pure integer 
problem with an all integer starting tableau , the following 

two procedures could be explored.
1 . Let the i^h constraint of the problem be given

by

î1 ^2 + ... â în+n ^ + n  = + Q r̂_

The optimum integer solution will change its value only when 
bi + Orj_ is an integer. Therefore, 0 must be a multiple of

1

l̂ il

Thus, the first value of Q which is likely to be a critical 
value is given by

Q = min

In Example 1 (page 3 9) the right hand side elements 
of the constraints are 6+59 and 35-39 respectively. There­
fore the following value of 0 will be checked in the given 
sequence.

9 = 1 / 5 ,  1/3, 2/^, 3/5, 2/3 , ...
As it turns out, the first critical value is 0 = 2/5.
Hence, the search for a new solution for 0 = 1/5 + 6 , and 
0 = 1 / 3  + ( will indicate that the solution has not changed. 
Note that at the first critical value of 0 the new right 
hand side is 8+59 and 3 3 4/5-39, which has a noninteger
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element. Thus further modifications are necessary before 
the procedure can continue.

2. When Pg varies with 0, a new integer point will 
enter the solution space at a certain value of 0 only when 
one of the constraint passes through this point. Hence, if 
a procedure can be deveJ ped which indicates that a con­
straint is passing through a new feasible integer point, this 
point can be checked for optimality.

B. Linear variations in Ç vector 
Similar difficulties exist when the changes in C 

vector are considered. If the convex polyhydron formed by 
the addition of auxiliary constraints has all integer ex­

treme points only, this analysis would present no problem. 
Unfortunately, the auxiliary constraints derived by the 

existing methods, both branch and bound and cutting plane, 
do not give rise to this polyhydron. Some work has been 
done in this respect by Gomory [12] and Hu [13], though not 
for the purpose of parametric analysis.



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS

I. Summary
This dissertation has presented a primal-dual 

algorithm for solving the general linear programming problem 
with upper bounds. By combining the rules of the existing 
primal and dual methods artificial augmentations are elimi­
nated. The product form of the algorithm is also developed. 

This should assist in improving its computational efficiency.
Parametric analysis for bounded variables has been 

developed for changes in the coefficients of the objective 
function, the right hand side elements, and the upper 
bounds o

The problem of parametric integer programming has 
been investigated as a natural extension of parametric pro­
gramming for upper-bounded variables. The investigation in 
this case is limited only to changes in the right-hand side 
elements of the problem. The analysis of the other cases 
gives rise to many difficulties which are created by the 
nonconvexity of the integer solution space.

46



II. Recommendations for further Research
The comparison presented in Table 1 at the end of 

this chapter (page 5 0 ) presents an overall view of the size 
of the problem for different methods, and illustrates the 
possible advantages of the new algorithm in terms of the 
number of variables and the number of constraints. How­
ever, further judgement cannot be made unless a comparison 
on the basis of solving some test problems is made. Wolfe's 
[2 3 ] studies, which compare different linear programming 
methods on the basis of iterations, operations, and passes, 
give no conclusive results. Similar results are likely to 
occur when PSB, DSB, and PDSB are compared. However, nothing 
can be said about this, before such tests are carried out. 
Furthermore, these tests may present some useful informa­
tion.

Usually, a primal-dual algorithm and parametric 
linear programming are considered to be equivalent. Kelly 
[1 5] states that the fact that the parametric programming 
algorithm and the primal-dual algorithm had different moti­
vations for their developments makes this equivalence of 
some interest. Therefore, the parametric analysis pre­
sented here was a natural extension of the new primal-dual 
algorithm. The development of the parametric analysis for 
the A matrix hinges on being able to calculate an inverse of 
B from the old value of the inverse.
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Some points not considered in the developments are 

as follows. In the discussion of the new algorithm, the 
problem of degeneracy and of variables which are unre­
stricted in sign was not considered. However, these prob­
lems can be handled in the same way as for the problems 
without upper bounds. In the parametric analysis the effect 
of variations by more than one parameter might produce some 
interesting results.

Dantzig [6] discusses the problem of artificial 
variables in the dual simplex method. This idea could be 
probably extended as follows. Given a regular linear pro­
gramming problem, add the slack and the artificial variables 
as in the regular primal simplex method [3]- Solve the 
problem by the primal simplex method with the following two 
modifications :'

i) Since the artificial variables can be con­
sidered as variables bounded from above and 
below by zero, they can be dropped out of the 
solution once they leave the basis.

ii) If the problem becomes dual feasible and the 

artificial variables are in the basis, carry 
out the dual iterations to remove them. 
Similarly when the primal iteration cannot be 
carried out try a dual iteration.

Complete details of this procedure can be developed on the 
similar lines to that of the new primal-dual algorithm.
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The analysis presented for the integer programming 

problems is by no means complete. It is hoped that it may 
give rise to some new results. However, further work needs 
to be done before any significant claims can be made.



TABLE 1
COMPARISON OF DIFFERENT ALGORITHMS FOR BOUNDED VARIABLES

Algorithm
Number of 
Variables

Number of 
Constraints

Number of
Artificial
Variables

Number of 
Implicit 

Upper Bound 
Constraints

Size of the 
Tableau 

Tucker’s 
Scheme [21]

Primal 
Algorithm 

PSB 
Dantzig [5]

m+n+mg+mg m mg+rn^ n-j +V.2 mX(n+m2+m^)

Dual 
Algorithm 

DSB 
Wagner [22]

m+n+m^ m+m^ n^ +ng (m+m^)x(n)

Proposed
Algorithm

PDSB
m+n m 0 n-] +n2+m^ mxn

'S
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APPENDIX A

DESCRIPTION OF EXISTING ALGORITHMS FOR 
BOUNDED VARIABLES AND ZIONTS'

CRISS-CROSS METHOD

I" Dantzig's Primal Simplex Algorithm 
for Bounded Variables (PSB) I 51

This algorithm Is almost like the simplex method 
except for a few modifications. The upper hound constraints 
are treated Impllcltely and the tableau consists of m con­

straints, The criterion for entering a variable Is Identi­
cal to the simplex criterion, but attention Is paid to the 
following three quantities

a) the upper bound of the entering variable
b) the level at which the new variable can enter by

the feasibility criterion Identical to the simplex method
c) the level at which the new variable can enter

without violating the upper bounds of other basic variables. 
Wagner [22] states that this procedure Is not simple and the 
criterion Is more involved conceptually and computationally.

Besides these disadvantages, artificial variables 
have to be used If an Initial feasible solution Is not

5̂
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available. In fact, this is a basic disadvantage with the 
simplex method itself,

II. Wagner's Dual Simplex Algorithm for 
Bounded Variables (PSB) [22l

In this algorithm each equality constraint is con­

verted into two inequality constraints so that the problem 
can be represented as follows :

maximize x« = Ç-] X-j + Ç2 ^2 0, Ç2 > 0

subject to X-j + 2̂ ^2^ ^  ’

where the elements of U-̂ and U2 have infinite value (or a 
very large positive value) corresponding to the variables 
which do not have upper bounds.

Before any iteration is carried out the following 
substitution is made in the problem,

X2 ~ -2 " -2
The upper bound constraints are treated implicitly and the 
substitution shown above makes the problem dual feasible.
The optimum solution can be obtained from the initial 
tableau by using a slightly modified dual simplex method.

Wagner [22] has stated a few minor drawbacks of the 
algorithm and states that these will be substantially out­
weighed by the relative simplicity of PSB over DSB. However, 
there are additional drawbacks described as follows:
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a) Every equality constraint must be converted 

into two inequalities a This can make the problem, and hence 
the number of iterations, large if many equality constraints 
are present.

b) Substitution of any unbounded variable by a 
large upper bound value (say M) makes the problem dual 
feasible but the right hand side becomes a function of this 
large value M.

Ill, Zionts’ Criss-Cross Method [24]
This method works on almost a similar set of rules 

compared to that of the proposed PDSB algorithm except for 
the following.

No provision is made for variables with upper 
bounds. Even if a problem contains no upper bounds the 
excess variables corresponding to the equality constraints 
are always treated as bounded variables in PDSB. No such 
special device is used in the criss-cross method. The 
criss-cross method can handle the unrestricted variables and 
a similar provision, although not incorporated at the 
present time, can be made in the PSDB method.

The criss-cross method also consists of switching 
back and forth from primal to dual iterations as necessity 
arises and the rules for terminating the procedure are also 
very similar to the PDSB method.
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Consider the following problem:

Max Xq = 2x̂ Xr

subject to

-̂ x-j + 5%2 - 13
~3x-] + 1+X2 — 11

- 2x2 ̂  2
x^^O 5 X2>0

The optimum solution to the problem is given by x^=3 and 
X2=5* Using Ziont's criss-cross method the solution is given 

by the following tableaus.

XI X2

-2 1 0

XL, 5 13

^5 -3 4 11

^6 1 -2 2

Variables x̂ . and x^ are arbitrary, x̂  enters, x^ leaves.
X, Xr

2 -3 4

^4 4 -3 21

""5 3 -2 17

^1 1 -2 2

No variable can enter from primal, no variable can leave via 
dual. Therefore, the solution is infeasible/unbounded.


