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CONTRIBUTIONS T0 THE THEORY OF

TCHEBYCHEFF APPROXIMATIONS
CHAPTER I
INTRODUCTION

One of the fundamental problems in numerical analysis is the approxi-
mation of a continuous real valued function f on an interval of real
numbers [c,d]. This problem has been extensively studied using a wide
variety of norms to measure the closeness of the approximation. Under
suitable hypotheses for f, theorems such as Taylor's theorem and the
Weierstrass approximation theorem provide m;tivation for considering
polynomials as approximating function;.

With the advent of the modern high speed computer, polynomial
;pproximatipn has become increasingly more important as a basic tool for
approximating functions which are difficult to evaluate. The reason is
that, in addition to the rich theory of polynomial approximation using
various norms, polynomials can be efficiently and accurately evaluated
by computers provided the degree of the polynomial is not too large.
Hence it is natural to consider the problem of approximating £ by
polynomials of degree less than or equal to n. Instead of evaluating a

function on a computer, the best that can be done in many cases is to

evaluate an approximation of the function. Thus the approximate'values
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are used instead of the actual functional values. It is then necessary to
know the maximum error of the approximation.
The choice of the norm of approximation is virtually dictated to be

the uniform norm, jf(x) || = max |£(x)|, by practical considerations of
cs<x<d

efficiency and accuracy. For example, it is not unusual to evaluate an
approximation a hundred thousand times within a short period of time on a
modern computer, with the additional requirement that each evaluation have
an error of not more than +¢ for each x € [c,d]. Hence approximations
must be of the lowest possible degree which meet the error reﬁuirement.
The practical motivation is strong to consider the classical problem
of best polynomial approximation which is to find and characterize a
polynomial P: in the class, 'Tn, of polynomials of degree less than or
equal to n such that
inf( max |[£(x) - P(x)|) = max [£(x) - Pz(x)[.
Peﬁh c<xsd csx<d
The Weierstrass approximation theorem insures that {P:} -+ £ uniformly on
[c,d] as n = <. However, the convergence can be very slow. The follow-
ing theorem of Bernstein shows just how slow this convergence can be.
if {an} is any monotone decreasing nonnegative sequence such that
a, * 0 as n > « then there exists a continuous function £ on [c,d] such
that

*
max If(x) - Pn(x)l = 0.
c<x<d

Chapter II gives a brief introduction to theory of varisolvent func-~
tions. The results presented in Chapters III and IV constitute the

author's contribution to the problem of computing good approximations to
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a real valued function f in situations where f lacks derivatives on [c,d]
or where £ is otherwise diffiCult.to approximate by polynomials of low
degree. Methods of obtaining approximations involving a low number of
parameters are developed which provide closer uniform norm approximations
of large classes of functions than are possible using polynomials of the
same degree.

Either the absence of derivatives of f or a wide domain may prevent
polynomials from giving satisfactory approximations of sufficiently low
degree, as may a number of other conditioms.

In the case where the domain of f is very wide, the difficulty may
be overcome by breaking the domain into several small intervals and
approximating f on each subinterval separately. In the case where £
lacks derivatives, it follows from Bernstein's theorem that the conver-
gence of the polynomials Pz may be quite slow - too slow, in many cases,
for practical computational use.

A second approach to obtaining "good" approximations of "low degree"
is to enlarge the class of approximating functions. The motivation for
this is to include approximating functions which more closely imitate £,
than do polynomials, in the neighborhood of points where f has no deriva-
tive. For example, one might choose those approximating functiomns which
can be evaluated with a finite number of additions, multiplications, and
divisions. In this case the approximating functions are rational func-
tions and the problem of best rational approximation has been extensively
studied. Certain severe computational problems can occur, Rice [12],
chapter 9, when practical application of the results of best rational

approximation is attempted.
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Chapters III and IV deal with two classes of nonlinear approximating
functions which are useful in sitations where f lacks derivatives on [c,d].
The class of approximating functions considered in Chapter III was
motivated by extending the class of approximating functions to those
functions which may be evaluated by finitely many additions or multipli-
cations and a single square root. Such approximations would be of the
form P(x,YR(x)) where P is a polynomial in two variables and R is a
polynomial in one variable. Here, as in the case of rational approxima-
tion, the approximating functions depend nonlinearly on the parameters
which determine themn.

More explicitly, these approximations can be written as functions of
the form

§ .xJ WV/Z a o .

i— _
These can be more conveniently written as functions of the form
P () + Q(x)VRy (x)
k

I rgxl. Itis
1=0

L m
= 1 - i
where P, (x) = ‘Z PiXTs Q,x) = .Z 9% and R, (x) =
i=0 i=0
shown in Chapter III that this class of approximating functions does not
admit a Tchebycheff type of theory, but that a subclass of these functionms
does admit such a theory.
m
1
Chapter 4 considers approximating functions of the form Z a; —
=1 (x+t.)
i
where ays***,a, are real numbers and ty,ee ety are real numbers such that

x+ty # 0 on [c,d] for i = 1,°--,m. It is shown that to obtain an exist-

ence theorem, the above class of approximating functiers must be expanded



to functions of the form

Kk mi+l

—1

a" - L ]
+J (x-i-ti)J

i=1l j=1

These approximating functions are, of course, rational functions. The
methods used to analyze this subclass are different from those for gemeral
rational functions and the subclass may prove more useful in numerical
application.

F(a,x) will denote a real valued approximating function defined on
an interval of real numbers [c,d] where a = (al,~-~,an) is the n tuple of
parameters whichk determines the approximating function. In general F(a,x)
will depend nonlinearly on the parameters a.

The problem under consideration is, for a given real valued function
f, continuous on [c,d], and a given set of parameters P, find, if possible,

a* € P such that

(1.1) inf (max |F(a,x) -£f(x)|) = max IF(a*,x)-f(x)|.
a e P csxcd csxsd

F(a*,x) satisfying (1.1) is called a best approximation to f(x) on [c,d].
When the interval of approximation is understood we say that F(a*,x) is a
best approximation to f(x).

The notation [[£(x)| will be used to denote the uniform norm

l£Gll = max [£G0 .

c<xsd
In the study of best approximation theory three major problem areas
must be considered.
First, of course, is the theoretical existence of a best approxima-
tion. Many times this entails modifications to the class of permissible

approximations to insure the existence of a best approximant.
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Second, results which characterize a best approximation must be
obtained. For example, if the class of approximating functions admits a
Tchebycheff type theory, the characterization is that F(a*,x) is a best
approximation to f(x) if and only if F(a*,x) ~ f(x) alternates a certain
number of times. Such results are essential in developing algorithms for
approximating best approximatiomns.

Third, the problem of existence of best approximations on finite
subsets must be studied. Surprisingly, best approximations may fail to
exist on finite subsets of [c,d] even when best approximations are known
to exist on [c¢,d]. Without existence of best approximations on finite
subsets of [c,d], numerical approximation of an existent best approxima-

tion may be very difficult or even impossible.



CHAPTER II
VARISOLVENT FUNCTIONS

A mathematical research technique which is sometimes used is to consider
known results very carefully, and then discover the essential hypotheses
used in obtaining the results. Then one studies abstract objects satisfy-
ing these hypotheses to obtain additional results, insight, and possibly,
limits of the theory based on these hypotheses.

Rice [5,7,10] as well as the original investigators, Motzkin [4],
and Tornheim [13] used this technique on the problem of Tchebycheff
approximation with success. Rice's work resulted in what is known as
varisolvent approximating functions. However, there are few known classes
of varisolvent functions. Among these are weighted rational functionms,
rational trigonometric functions, and exponential functionms.

The remainder of this chapter provides a brief introduction to the
theory of varisolvent functions to facilitate reading of the remaining
chapters.

. The problem of Tchebycheff approximation is considered in the follow-
ing setting. Let f be a real valued function defined on an interval of
real numbers [c,d] and P be a set of parameters. Let {F(a,x) | a e P} be
a class of real valued approximating functions defined on [c,d].

Problem. Find a* € P such that
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(2.1) inf |F(a,x) - £(x)|| = |F(a*,x) - £&x)].
aepP

F(a*,x) satisfying (2.1) is a best approximation to f on [c,d].

The error £(x) — F(a,x) is said to alternate m times on a set S if

there are at least m+1 points

Xp S Xy S S X%

in S such that

£(x.) - F(a,x,) = + ()T max |£(x) - F(a,%)]
1 1 xeSsS

for i =1,2,*,m+1. Such a point set {x,,000,x } is called a critical

1’ 7ol

point set or an extremal point set.

Tchebycheff approximation is the study of classes of approximating
functions F(a,x) for which a best approximation F(a*,x) to £ on [c,d] is
characterized by £(x) - F(a*,x) alternating a certain number of times on
[e,d].

The following definitions are used in defining varisolvent functionms.
The first definition involves the meaning of continuity of F(a,x). The
parameters a € P are n-tuples of real numbers which could be regarded as
being in n dimensional Euclidean space and hence the norm for P would be
the Euclidean norm. However, when it comes to relating “F(al,x)-F(az,x)H
to the closeness of a; to a, in P it is more convenient to use a norm N
for P which is induced by another norm. This will be explained in more
detail later.

Let P be a given parameter space. F(a,x), defined on P x [c,d], is
continuous at (ao,xo) € P > [¢,d] if for € > 0 there is a 6§ > 0 such

that if (a,x) € P x [e,d] and N(ao-a) + Ixo-x, < § then



IF(ao,xo) - F(a,x)]| < e.
The next definition generalizes the idea of a Tchebycheff set.

F(a,x) has property Z of degree g;gg_a* € P if for a # a*, F(a*,x) - F(a,x)

has at most m-1 zeros on [c¢,d]. .
The next definition considers interpolating with the functions

F(a,x) in neighborhoods of F(a*,x). F(a,x) is locally solvent of degree

E_gg_a* e P if given a set S = {x, < ++° < xig-g[c,d} and ¢ > 0 there is

1

a § > 0 which depends on a*, €, and S such that if {yl,~-°,ym} is a set

of m real numbers such that
*
- <
IF(a ’Xi) yll 8
for 1 = 1,+--,m then there is a solution a € P of

F(a,xi) =y i=1,""",m

i’
and

HF(a,x) - F(a*,x)" < g,

F(a,x) is varisolvent of degree m at a* e P if F(a,x) is both locally

solvent and satisfies property Z of common degree m at a* e p. F(a,x) is
varisolvent on P if it is varisolvent at each a € P. The degree of
varisolvency of F(a,x) at a € P will be denoted by m(a).

Rice [5,7,10] studied the problem of Tchebycheff approximation under
the framework of the above definitions. He obtained the following
results.

A. If {fj(x)} is a uniformly bounded sequence of functions, each
continuous on [c,d] and having property Z of common degree, then {fj(x)}
has a pointwise convergent subsequence.

In the following results we assume that £(x) % F(a,x) on [c,d] for

each a ¢ P.
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B. If F(a,x) is varisolvent of degree m(a), then F(a*,x) is a best
approximation to £(x) on [c,d] if and only if f(x) - F(a*,x) alternates
at least m(a*) times on [c,d].

C. If £ is continuous on [c,d] and F(a,x) is varisolvent, then the
best approximation F(a*,x) to f(x) on [c,d] is unique.

D. If F(a,x) is varisolvent and F(a*,x) is the best approximation
to £(x) on [c,d], then there exists a subset S of m(a*) + 1 points in
[c,d] such that F(a*,x) is the best approximation to f on S and S is the
subset which maximizes |f(x) - F(a*,x)l among all subsets of m(a*) + 1
points in [e¢,d].

The proofs of results B, C, and D closely resemble the proofs of the
corresponding theorems when the approximating functions are linear
combinations of Tchebycheff sets.

The result D is a generalization of the theorem on which the
de la Vallée Poussin algorithm for calculating best approximations is
based. The generalization of the de la Vallée Poussin algorithm is
rather difficult for several reasons which will be discussed in a later
chapter.

For the following result E, the norm N for the parameter space P is
defined as an induced norm. The closeness of F(al,x) to F(az,x) is

measured by ﬂF(al,x) - F(az,x)ﬂ = max {F(al,x) - F(az,x)l. To relate
c<xsd

the closeness of F(al,x) to F(az,x) to the closeness of a; to a, in P it

is natural to define a norm N on P as the norm induced by the metric

topology defined on P by requiring that an open e-sphere about a, € P =
{a e P‘ IF(a,x) ~ Flag,x) | < €l.

Hence N(a;-a,) < ¢ if and only if
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|F(ay,%) - F(a,,x) || < .
1 2

F = {F(a,x) | a € P} is closed under pointwise convergence if

;fm F(ag,x) = g(x) for each x € [c¢,d] and lF(ai,x)l < M for eéch x e [c,d]
w
2nd i=1,2,--+ implies there exists aj € P such that g(x) = F(ag,x).

E. If F(a,x) is continuous and P is arcwise connected and F is
closed under pointwise convergence then it is necessary and sufficient
for F(a™,x) to be a best approximation to f£(x) on [c,d] if £(x) - F(a*,x)
alternates at least m(a*) times on [c,d] if and only if F(a,x) is
varisolvent of degree m(a™).

Result E characterizes varisolvent functions and gives a partial

answer to the extent of a Tchebycheff type of theory of approximation for

nonlinear approximating functions F(a,x).



CHAPTER III
APPROXIMATION BY F(a,x) = VPk(x)
Existence Theorem

In choosing a class of approximating functions for a particular
numerical applicgtion, special considera;ion must be given to the question
of the existence of a best approximation. Since the parameter space P is
usually defined indirectly by the form of the.approximating function,
the parameter space for some classes of approximating functions ﬁay not
be compact. It follows that in such cases best approximations may not
exist for certain functions f. This is illustrated by the class of
approximating functions considered in'Chapter IV. The selection of the
form of the approximating function F(a,x) must insure thét the associated
parameter space P has no missing limit points. However, a general proof
of existence may not be sufficient to guarantee existence from a éomputa—
tional point of view. For example, most computational schemes require
computing best approximations on finite subsets of [c,d] and best
approximations may not exist on finite subsets even though a best approxi-
mation exists on [c,d].

The following theorem gives sufficient conditions for the existence
of a best approximation F(a*,x) to f(x) on [c,d]. 1In the following
remarks we suppose that f is continuous on [c,d].

12
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THEOREM 3.1: If (i) F(a,x) is continuous on [c,d], (ii1) F(a,x) satisfies

property Z of degree m(a), (iii) {F(a,x) | a € P} is closed under point-
wise convergence, (iv) m(a) is bounded on P, then there exists a* ¢ P such
that F(a*,x) is a best approximation to f£(x) on [c,d].
PROOF: Let al ¢ P. Then ﬂF(al,x) - £x)] < = Let
Pl = {aep||F@a,x)-£x)] < [F@al,x) -£@|]}. It is clear that Pl # ¢

1

* . .
and that the search for a” may be restricted to P~. There exists M < =

such that IF(a,x)l <M for each a € P! and x « [c,d]. To see this, notice

that for each a € P1 max |F(a,x) -£(x)| = |Fa,x) -£&x)] < "F(al,x)-f(x)”.
c<xs<d
However, max |[F(a,x)- £(x)| > lF(a,x)-f(x), > |F(a,x)] - |£(x)| for each
csxs<d

x e [c,d]. Hence |F(a,x)]| s ”F(al,x)-f(x)H + [f(x)] for each x € [c,d].
Since f is continuous on [c,d] it follows that lF(a,x)] < Mon [c,d] for

each a ¢ PL. Let vy = inf ”F(a,x)-—f(x)”. It is clear that
aeP

y ¢ HF(al,x)-f(x)” and that vy = ianf ”F(a,x)-—f(x)”. There exists
aeP_1
{a;} ¢ Pl such that

1lim HF(ai,x)-f(x)” =Y.

i+
Since m(a) is bounded on P, it is bounded on Pl, i.e., there exists J such
that m(a) ¢ J for each a ¢ Pl. It follows from the definition of property
Z that for each a € P1, F(a,x) satisfies property Z of degree J. By result
A of Chapter II {F(ai,x)} has a convergent subsequence, i.e., there exists

g(x) and {F(aik,x)} such that lim F(aik,x) = g(x) for each x e [c,d].

ko

Since {F(a,x) | a € P} is closed under pointwise convergence, there is

a* € P such that g(x) = F(a¥,x). Finally,

Y = lim llF(aik,x) - | = [FE* - £@ ],

k>
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i.e., F(a*,x) is a best approximation to £(x) on [c,d].
Selection of F(a,x) = VPk(x)

This section deals with the problem’ of Tchebycheff approximation by
functions of the form

(3.1) F(a,x) = Pz(x) + Qp(x) YRy (%) where

2 . m k .
.2 pixl, Q,(x) = .Z qixi, and Ry (x) = ‘Z rixl. Let
i=0 i=0 i=0

Py (x)
(i41) + m+1) + (k+1) < n and Rk(x) > 0 for each x € [¢,d].

LEMMA 3.1: F(a,x) has at most max{2%,2m+k} zeros on [c,d].

PROOF: Let z be a zero of F(a,x). Then Pi(z) - Qé(z)Rk(z) = 0. Hence z
is a zero of a polynomial of degree at most max{22,2m+k} and the lemma
follows. '

If approximation by the functions F(a,x) of the form (3.1) is to
admit a Tchebycheff type theory, i.e., if F(a,x) is varisolvent, then the
degree of local solvency and the degree of property Z must be the same.
Meinardus [3] has shown that when F(a,x) has continuous partial deriva-
tives with respect to the parameters a = (al,---,an), the degree of local

solvency, m(a), of.F(a,x) is equal to the dimension, d(a), of the linear

space consisting of linear combinations of the functions

{BF(a,x) 3F§a=x2>.

aal da

Lemma 3.2 establishes that F(a,x) of the form (3.1) does not satisfy

property Z of degree d(a) and hence F(a,x) is not varisolvent and approxi-
mation by F(a,x) does not admit a Tchebycheff type theory.

LEMMA 3.2: F(a,x) of the form (3.1) does not satisfy property Z of deéree

d(a).



15

PROOF: Let n ='4. Then there are three cases for F(a,x):

1) F(a,x) = p, PyX + mof;g

2) F(a,x) = P, t (m‘__)+m1:'c)/170
3) F(a,x) = P, t m,YT, +ryx. .

In case 1) d(a) = 2, in case 2) d(a) = 2, and in case 3) d(a) = 4. For
F(a,x) to satisfy property Z of degree d(a) one must show that for each
parameter a € P, F(a,x)-F(b,x) has at most d(2) - 1 zeros on [c,d] for
each b € P. The property is global in the sense that b is allowed to
range throughout the entire parameter space P. Suppose a is chosen from

case 1) and b is chosen from case 3), i.e., F(a,x) = py + Pl(x)-bmo/;g and
fbi-flx. By Lemma 3.1 F(a,x) - F(b,x) has at
most 2 zeros, but d(a) - 1 = 1 in this case. Hence F(a,x) does not
satisfy property z of degree d(a). We should remark that the bound
furnished by Lemma 3.1 is the sharpest possible bound as it is easy to
construct examples where this bound i; attained. TFor example, consider
F(a,x) = x - Yx on [0,1]. By Lemma 3.1 F(a,x) has at most 2 zeros on
[0,1]. These zeros are x = 0 and x = 1.

Lemma 3.2 raises the question; caﬁ F(a,x) be modified in some way,
compatible with the goals of Chapter I, so that F(a,x) is varisolvent?
Consider the subclass of functions of the form

(3.2) F(a,x) = Qp(x)VR, (x)  where R (x) 20

on [c,d] and (m+1) + (k+1) < n.
Lemma 3.3 establishes that F(a,x) of the form (3.2) does not satisfy
property Z of degree d(a) and hence F(a,x) is not varisolvent and approxi-

mation by F(a,x) does not admit a Tchebycheff type theory.
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LEMMA 3.3: F(a,x) of the form (3.2) does not satisfy property Z of degree

d(a).

PROOF: Let n = 3. Then there are two cases for F(a,x):

1) F(a,x) = (my+myx)Vr
2) F(a,x) = mofro-Prlx .

In case 1) d(a) = 2 and in case 2) d(a) = 3. Let a be chosen from case 1)
and b be chosen from case 2). Then F(a,x) -~ F(b,x) =
Gmo+-mlx)/;;'— ﬁo/?zfigz;; By Lemma 3.1 F(a,x) - F(b,x) has at most 2
zeros, but d(a) ~ 1 = 1. Hence F(a,x) does not satisfy property Z of
degree d4(a).

The negative results of Lemmas 3.2 and 3.3 leave the subclass of
approximating functions of the form F(a,x) = /5;?§$ to be considered. It

is established in the next section that these approximating functions do

admit a Tchebycheff type theory.
Approximation by F(a,x) = VPk(x) on [c,d]

Let

(3.3) F(a,x) = v’Pk(x = '/ao+ a1x+--~+akxk where

Pk(x) > 0 on [c,d]. It is clear that F(a,x) > 0 on [c,d] for each
parameter a so we make the assumption that f(x) > 0 on [c,d]. In agree~

ment with earlier notation let k + 1 < n. The degree of F(a,x), m(a), is

defined to be m(a) = n.

LEMMA 3.4: F(a,x) of the form (3.3) satisfies property Z of degree m(a)

on [c,d].

PROOF: F(a,x)-F(b,x) = /a°+o..+ .athk - /i:o+---+bkxk. Let 2z be a

zero of F(a,x) -~ F(b,x). Then /%04----+»akzk = /%°-+---4-bkzk , Or
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aoi----+-akzk - (bo-+----+bkzk) = 0. Hence z is a zero of a polynomial
of degree at most k. But k £ n-1 = m(a) ~ 1 and the result follows.

Theorem 3.2 gives existence of a best approximation F(a*,x) of the
form (3.3).

THEOREM 3.2: There exists a best approximation F(a*,x) of the form (3.3)

to £(x) on [c,d].

PROOF: The only hypothesis of theorem 3.1 that needs argument is that
{F(a,x)|F(a,x) is of the form (3.3)} is closed under pointwise convergence.
Let F(a;,x) be a uniformly bounded sequence comverging pointwise to g (x)

on [c,d]. Then Fz(ai,x) is a sequence of polynomials of degree < k con-
verging pointwise to gz(x) on [c,d]. Let Fz(ai,x) = aio4---~4-aikxk.

Since F(aj,x) is uniformly bounded and hence Fz(ai,x) is uniformly bounded,

the coefficients a.

jo» " "»2ik are bounded sequences. Suppose this assertion

is not true. Then there exists an integer j,, 0 < j, < k, suﬁh that
{ai,jo} is not bounded. Let x € [c,d]. If Fz(ai,xo) is not bounded,

then Fz(ai,x) is not uniformly bounded which is a contradiction. If
Fz(ai,xo) is a bounded sequence of real numbers, say {a;}, then it follows
that Fz(ai,xo) -ay = 0 for i = 1,2,°°+. Since 31,0 is unbounded, there
exists an integer i, such that aiOajo # 0. This is a contradiction since
F2(aio,xo) - aio is a nontrivial linear combination of the linearly
independent functions {1,x,+°-, X} evaluated at x = X,. Hence {aij}’

j = 0,°++,k are bounded sequences. It follows from the Bolzano-Weierstrass
theorem that there exists a subsequence {air,j} such that {air,j} > a5

j=0,-*-,k, as r > » Then for each x e [c,d], g2(x) = lim Fz(ai,x) =

ire=

ce e k - PR, k - oo k
1im(aio+ +a4X ) = lim(a, _+ --!-ai x*) = lim a; o+ + 1im a; X =

1,0
i+ ro o r T+ r r+o r

aooi---‘4-aokxk. Hence g(x) is the square root of the polynomial
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aoo+--°'4-aokxk which is nonnegative an [c¢,d], i.e., there is a parameter
a, such that g(x) = F(ay,x) on [c,d].

A special subclass of varisolvent functions, namely, unisolvent
functions (Motzkin [4]), is obtained when the degree of varisolvency of
"F(a,x) is constant for a € P. Although we have not proved local solvency
yet, we suspect, in view of the definition of the degree of F(a,x) of the
form (3.3), that F(a,x) is unisolvent. This will be shown to be the case

in Theorem 3.3.

F(a,x) is said to be solvent of depree j on [c,d] if given a set

{xl,"°,xj} of distinct points in [c,d] and a set of real numbers
{yl,"‘,yj} there is a unique parameter b € P such that

F(b,xy) = V3 for i=1,--+,3.
Solvency is a generalization of the interpolation problem using the func-
tions F(a,x).

F(a,x) is said to be unisolvent of degree j on [c,d] if F(a,x) is

solvent of degree j on [c,d] and F(a,x} satisfies property Z of degree j
on [c,d] for each a € P.

THEOREM 3.3: F(a,x) of the form (3.3) is solvent of degree n.

PROOF: Let {x;,°**,x,} be n distinct points in [c,d] and {yj,~**,y,} be
n nonnegative real numbers. Then Fz(b,xi) = y%, i=1l,*+,nis a linear
system. The coefficient matrix of this system is the well known
Vandermonde matrix which has a nonzero determinant when Xqys°® 5X, are

distinct. Hence, there is a unique parameter b such that

F(b,x;) = v, 1= 1,2,°¢+,n.

It follows that F(a,x) of the form (3.3) is a unisolvent (hence

varisolvent) function. Hence the uniqueness and characterization results
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B, C, and D of Chapter II hold for F(a,x).

Approximation on Finite Subsets of [c,d]

The remainder of this chapter is concerned with the problem of approxi-
'mating a function f on finite subsets of [c,d]. Result D of Chapter II
characterizes the approximation problem on finite point sets but says
nothing about the existence of best approximations om finite points sets.
This difficult question must be handled individually for each class of
approximating functions F(a,x).

Existence of best approximations by wvarisolvent approximating func-

tions on finite subsets of [c,d] can be established by showing that given

a subset of m(a) + 1 points, {xl,---,xm(a>.+l} with x; < =es < X(a) +1,

in [e¢,d], where m(a) is the degree of varisolvency, there is a parameter

a and a real number d satisfying the equations

(3.4) Fla,x;) - £(x;) = (DY,  1=1,"-,m@+1.

Solving the nonlinear system (3.4) for a varisolvent family of func-
tions F(a,x) is at best a difficult problem. It requires that one know,
on an a priori basis, the degree of varisolvency at the solution of the
system (3.4) in addition to the difficulties of solving a nonlinear system
of equations. For unisolvent approximation the problem is simplified
because the degree of varisolvency is constant as the parameter ‘a ranges
throughout P and is usually known in advance.

For F(a,x) of the form (3.3) best approximatioms may not exist on
finite subsets. For example, if S = {xl,---,xk4_2} is a set of k+2
distinct points in [c,d] enumerated so that Xy < vee < X 40 and f is

zero on two consecutive points of S, then clearly £ does not have a best
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approximation of the form (3.3) on S. This is because a solution F(a,x)
of (3.4) would require that F(a,x) be less than zero at one of the two
points which is impossible. However, it is not sufficient to require that
f never be zero on consecutive points of: S to insure the existence of
-best approximations on finite point sets. This is established in the
example following Theorem 3.4. The problem of finding sufficient condi-
tions which will insure the existence of best approximations by F(a,x) of
the form (3.3) on finite subsets of [c,d] is, at the present, unsolved.

The following theorem provides a valuable computational test which
may be applied without solving the systeg (3.4), to determine whether a
best approximation F(a,x) of the form (3.3) exists on finite sets having
k+ 2 points.

For F(a,x) of the form (3.3), the system (3.4) becomes

(3.5)  Vagtapm teostapn - £0x) = (DN, 1 =1, k42,

Theorem 3.4 deals with the system obtained from (3.5) by transposing the
term f(x;) and squaring (3.5).

THEOREM 3.4: Let S = {xl,°'°,xk4_2} be a subset of distinct points
enumerated so that Xy <X, and suppose that f is not zero at

each point of S. Then there exists a unique solution to the system

(3.6) a_tax +eectaxt = (Fx)+ (DIM2, 1= 1,00 ,k42.
: o "1 i i > >0

PROOF: Consider the first k+1 equations of the system (3.6).

(3.7) a +a.;x.+°**+a xk = (f(x,) + (-l)i—ld)2 i=1,*",k+1.
: o ‘11 k*; i ’ »° "7

Suppose there is a real number d such that the system (3.7) has a solution.

Solving (3.7) is an interpolation problem which is solvable under the



2]
assumption that X35°" "Xy 4 are distinct. Let
(=xp) e Gomxg ) (=% ) oor (Xxpy)

zi(x) = .
Grgmrydees Goymxgg) Oeymxgpg) e (g7

li(x) is the i-th LaGrange interpolating function. Then P(x) =

(f(xl)4'd)2ll(x)*"°-*-(f(x l)kd)22k+l(x) is the polynomial which

) T
interpolates (f(x1)+-d)2, LTI (f(xk+l)+-(-l)kd)2 at the points Xj,***,X ;.
A unique solution to the system (3.7) exists if there is a unique real
number d such that

y + (DR L,

(3.8) P( )= (&

*k+2 k+2

Equation (3.8) is a quadratic in d. The coefficient of d2 is

(3.9) El(xk-kz) + lz(xk+ 2) + o+ zk+l(xk+2) - 1. The coefficient of
d is

k k .
208 0o )2y Gy yp) = £0ep) L (g p) oo e+ CLTE Gy )y g (i) + CLTE G )
The constant term is

£2G00) 2y iy ) +E2 (R Lo p) + 00  £2 Gy OB Gipg) = £ p)e I

is clear that for k 2 1

Ql(x) + lz(x) + oee + 2k+1(x)

is a polynomial of degree at most k which has the value 1 at the distinct

points xy,°**,X Hence, this polynomial has value 1 for each x and in

k+1°

particular it is 1 at X

+2 and this pr&%es that the coefficient of dz,

given by (3.9), is zero. Consider
Q) = £0x))0 () = £Gry)tp () + oo + (1) E (g g My ) + (C1FEGrpy )

q is a polynomial of degree at most k having values (—l)i-lf(xi) +

(—l)kf(xk+2) at the points x4y for i = 1,-++,ktl. There are two cases to
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consider. Case 1, k even. Case 2, k odd. In case 1 it follows that
0 < (—l)kf (xl:+2) + (-l)kf (xk+l) and that q is increasing for x > Xp4q.
Hence q(xk_*_z) > 0, and the coefficient of d, 2q(x}47), is nonzero. In
case 2 it follows that 0 2 (—l)kf (xk+2) + (—l)kf (ka) and that q is
decreasing for x > X, ,7. Hence q(xk+2) < 0 and again the coefficient of
d, 2q(xk+2), is nonzero. It should be noted that; the above argument holds
when and only when q is not identically ze.ro which occurs when and only
when f(x7),+°,f (Xk+2) are not all zero. This proves the existence of
a unique solution to the system (3.6).

The solution of (3.6), given by Theorem 3.4, is the solution of the

system

(3.5) Yo tagm;tee- tapme - £(xg) = (DTN, 1= 1,00 k42,

whenever f(x;) + (—l)i—ld >0 fori=1,"**,k+2. Eence, Theorem 3.4
gives the existence of a best approximation on S = {xj,*** ,xk+2} whenever

the solution of (3.6) satisfies
(3.10) £x5) + (DY Yaz 0, i=1,-00 k42,

The following example shows that even when f(xi) >0 for i = 1,++°,kt2,
the solution of (3.6) may not be a solution of (3.5) and hence best approxi-
mations may fail to exist even when f(xi) >0 for i=1,"*-,k+2. Let
k=2, s=1{1,2,3,4}, £(1) =1, £(2) = 1, £(3) = 2, and £(4) = 10. A
simple calculation shows that d = -% and hence £(1)+d < 0 and

f(3)+d < 0. This shows that there does not exist a best approximation

2 on S.

to f of the form /ao+a1x +ayx
Let S = {x1,°°',xk+2}. Theorem 3.4 provides an easy computational
test to determine whether the system (3.5) has a solution, and hence,

whether a best approximation to f exists on S. Compute
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(3.11) d = —(fz(xl)zl(&+z)+ +f2(xk}-1)£}d-]_(xld-2)— fz(xld-Z))

2(£Gxp)0y () + voe+ CLREGY 8 o Gyyp) + (-1 % (xy49))

Then verify whether f(x;)+ (-l)i"ld >0, i=1,-++,k+2, d is the ratio of
two interpolating polynomials evaluated at Xyt This can be efficiently
evaluated using differences.

The following algorithm determines the best approximation of the
form (3.3) on subsets S = {xl,”-,xm} where m > k+2 under the hypothesis
that a best approximation exists on each subset of S having k+2 points.
1f st € S is a subset having k+2 points denote the d obtained by solving
the system (3.5) by dsl.
ALGORITHM 3.1: Let S = {x3,°-*,x;} ¢ [c,d] and m > k+2. Compute

*
max ldSll =d.

s! has k + 2 points

The best approximation on a subset s* of s having k +2 points such that
lds*‘ = d* is the best approximation on S. |

The validity of Algorithm 3.1 follows directly from result D of
Chapter II. Given a set S having m>k+ 2 points, Algorithm 3.1 requires
computing ds]_ for (1: 2) subsets Sl having k+2 points which is generally
not practical when m is large.

The following algorithm for determining best approximations on finite
subsets having more than k+2 points is more tractable.

ALGORITEM 3.2: Let S = {x,°°*,x} clc,d] and m > k+2. Let F(a,,%)

be an initial approximation satisfying the conditions

(o]

kt+l
I: 1) F(ay,x)-£f(x) assumes extreme values dg,-dg, vee (-1) dk+2
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1
at k + 2 points in S, say xl, xk+2 where xj < < ’Hd-z
and di all have the same sign for i = 1,°*+,k+2,
2) There is at least one j, 1 £ j < k+2 such that

Idol = max |F(a,,x) - £(x)]. :
x €S

Then 1) Let j = 1.

2) Determine the approximation F(aj,x) and dj such that

(3.12)  Flag,xd) = £6d) + (DF ey for 1= 1,0 k42,
3) If max IF(a .X) - f(x)] ld.l, then F(a.,x) is the best
xX€S J - J

approximation to £ on S and the algorithm is terminated. Otherwise

. . j j+ 3+ 5
determine k+ 2 points {xi-'-l,--',xfd_;} c s, xi e s xi-’:_%, such
that F(a:-l ,xg:*-l) f(xJ+1) + (—l)i—ldJ for i = 1,°*°,k+2 and

i

b
min ld | 2 la.].
1d<k+2 J

4, Let j=3j+1 and go to step 2).

The following theorem establishes the convergence of Algorithm 3.2.
THEOREM 3.5: Let f be defined on [¢,d] and § = {xl,"-,xm}, m2 k+2
and S ¢ [c,d]. If F(ay,x) is an initial approximation satisfying the
conditions I, then Algorithm 3.2 will determine F(as,x), the best
approximation to f on S.

PROOF: We may assume dg >0 for i = 1,°**,k+2. Let my = min ac.
1<isktd

If max |F(a,,x) - £(x)| < m, then all the df are equal for i = 1,*-,k+2
X €S

and F(ay,x) = F(ag,x), the best approximation. Otherwise the k + 2
numbers d?_"“ dk+2 are not all equal. The next step in the algorithm is

the determination of F(aj,x) and d; by solving the k + 2 equations
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F(al,xi) = f(x}.) +(—l)i-1dl fori=1,*"",k+2. dl > m,. Assume d; < m,.

1

1
Then F(ao,xi) - F(al,x:.L

) = (1Y@ -dp), 1= 1,000,k 42, But a9-d; 2 0

for i = 1,°~+,k+2. It follows that F(ao,x) -F(al,x) has at least k + 1
zeros. By Lemma 3.4 this is impossible unless ap = aj in which case
F(ag,x) = F(aj,x) and this is a contradiction since we have assumed the

numbers, d;?_, i=121,-,k+2, are not all equal. If max IF(al,x)—f(x)l < dg
xeS

then F(aj,x) = F(ag,x), the best approximation to f on S, by result D of

Chapter II. Otherwise, the next step in the algorithm is the determina-

1

- 2 ® o0
tion of a subset {xl, i»

’x12<+2} ¢ S such that F(al,xi) = f(xg) + (-l)i"ld

i=1,°*",k+2, with m; = min d% > dl. The next step in the algorithm is

1<igkt+2
the determination of F(az,x) and d, by solving the system

F(ay,x0) = £G2) + 1)1 ldy, 1= 1,07 ,k+2.

Since not all the numbers di, i=1,"-*,k+2, are equal it follows, as
before, that d2 > my. Continuing this procedure we must have, for some
jo 2 1, that max lF(ajo,x) -£(x)] < djo’ and hence F(ajo,x) = F(as,x),
the best approximation on S, since if this were not so then there would
exist an infinite monotone increasing sequence mg < dj £ my < dp £ e
This is a contradiction since there exists only (k$2) subsets of s having
k +2 points, and hence there exist only finitely many numbers dj‘

Theorem 3.5 is valid, of course, only when best approximations exist
on each of the finite subsets of S having k+2 points which is encountered
by Algorithm 3.2. The subsets of S having k+ 2 points which are encountered
by Algorithm 3.2 depend on f and the initial approximation F(ay,x). There

is no known way to predict om an a priori basis which subsets of k+2
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points will be encountered. A sufficient condition for the convergence
of Algorithm 3.2, but stronger than really needed, is that best approxima-
tions exist on each subset of S having k+2 points.

When computing F(as,x), it is not known in advance whether each of
the systems (3.12) have solutions. In view of the monotonicity of {dj},
Algorithm 3.2 can be employed without a priori knowledge of the existence
of the solutions of the systems (3.12) since the numbers dj can always
be calculated as in Theorem 3.4 without actually solving the systems (3.12).
If it should happen for some j; that f(xgl) + (—l)i-ldjl is not greater
than or equal to zero for i = 1,-+*,k+ 2, then the best approximation on

{xil,...,xiiz} does not exist. Since mi?;]F(aS,x)-f(x)l > |a
x

jl!’ it
follows that the best approximation to f on § does not exist and the
algorithm would be terminated. Hence Algorithm 3.2 not only computes the
best approximation, F(as,x), to f on S when it exists, but also success-
fully detects the cases when F(as,x), the best approximation to f on S,
does not exist!

Theorem 3.5 provides the basis for a practical computational procedure
(practical on large scale digital computers) for the approximation of
F(a*,x), the best approximation to £(x) on [c,d].

Let £ be continuous on [c,d]. Let {Si} be a sequence of finite
subsets of [c,d] such that S1 ¢ S2 Ceee S G0 C [c,d] and suppose
that S; contains at least k+2 points. It is convenient to regard the
sets S; as partitions of [c,d] and the condition that S; g_Si+1 for each
i then reduces to the requirement that §;.4 be a refinement of S; for each

i. Define the norm of S;, denoted by ”Si”’ in the usual manner as the

length of the longest subinterval in the partition Si' In addition,
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suppose that ”Si” + 0 as i .

Given an initial approximation F(ao,x) satisfying the conditions I
on Sy, determine, by Algorithm 3.2, the best approximation, F(asl,x), to
£(x) on §;. WNext, using F(aSl,x) as an initial approximation on §,,
~ determine, by Algorithm 3.2, the best approximation, F(asz,x), to £(x) on
So. Continuing in this manner, generate a sequence {F(asi,x)} of best
approximations to f(x) on S;. We wish to analyze the behavior of this
sequence as i > «,

S.
Let Dkl(f) = max [F(as_,x)-f(x)l and Dk(f) = max [F(a*,x)-f(x)[
X € Si 1 ) c<x<d

where F(a*,x) is the best approximation to f(x) on [c,d]. It is clear

that

IA

Dpl(£) € DRA(E) € “** < Dy(H).

Hence max ]F(as.,x)l < Dii(f) + max |£(x)| D (£) + max [£(x)]. This
X €8; . c<x<d csx<d

IN

means that {F(asi,x)} is uniformly bounded on S; if f is continuous on
[e,d], which is assumed. Then {F(asi;x)} is uniformly bounded on any
subset of k + 1 points of S; and hence it follows from Theorem 3.3 that
{F(asi,x)} is uniformly bounded on [c,d].

The following lemmas are helpful in the analysis of the convergence
of {F(asi,x)}.
LEMMA 3.5: F(a,x) of the form (3.3) has a continuous derivative on
[c,d], if F(a,c) > 0 and F(a,d) > O.
PROOF: F(a,x) = /§£?§j'where Pp(x) 2 0 on [c,d]. By the hypothesis,
the zeros of F(a,x) are in (c,d). Let x5 € (c,d) be such that Pi.(x,) = 0.

Then x, is a zero of even multiplicity, say 2i, of Pk(x).
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F'(z,x) = Pi(x) . Hence F'(a,x) = (x-xo)zi—le_Zi(x)
2/F, () 20e-x ) 1VR 55 GO

(x-xo)i-le_Zi(X)

2VR 55 (%)

where Qj and Rj are poelynomials of degree at most j.

Hence each zero of the denominator of F'(a,x) can be removed and it fol-
lows that F'(a,x) is continuous on [c,d].
LEMMA 3.6: Let F(a,x) be of the form (3.3) and suppose that

max F(a,x) < M and min F(a,x) 2 m > 0. Then

csx<d c<xsd ]
max |F'(a,x)]| < K’ .
c<x<d (d-c)m

PROOF: [F'(a,x)| = lPi(x)l . Since VPi(x) < M it follows that

2 1o s . y 2.2

Pk(x) < M®, By Markov's inequality max lPk(x)] < 2k™" . For each
csx<d (d-c)
x € [e,d], |F'(a,x)]| < 2k2M2 < kZMZ . Hence
(d-c)27/Py (x) (d-c)m
242

max |[F'(a,x)| < kM .
c<x<d (d~c)m

The following theorem details the behavior of the sequence {F(asi,x)}.
THEOREM 3.6: 1If the sequence of best approximations {F(asi,x)}, as
previously defined, are uniformly bounded below by m > 0, then
<:S_:n)a{;é:d]k"(aSi,x) -£(x)] < Dy (f) + g5 where €5 >0 as i » =,

PROOF: Let M; = max F(ag,,x) and my = min F(ag,,x). It was previously
c<x<d 1 csx<d

shown that there is M < = such that M; < M for i = 1,2,°°+. Llet

S; = {xl’ji’...’xji’ji} where j; is the number of points in S;. Let
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X, € [c,d]. Then there is an integer r such that x, e [xr,jiaxr+l,ji]°

. e ]
By the mean value theorem there exists U (xrsJi,xr+l,ji) such that
- . = - !
F(asi,xo) F(aSi’xI,Ji) (xo xr,ji)F (asi,U). Hence
| <l llmax | |« sy
|F(ag.,x.) - Flag.,xy s )| <[Is;[-max |F'(ag ,x)| < [Is.[|—"— <
1 O 1 ’Jl 1 CS_XSd i 1 (d_c)mi

KoM

. |Is;l = c-lIs;ll. Finally, since F(asi,x) - £(x) is continuous on

(d-c)m
[c,d], there exists x; € [c,d] such that
max ]F(as.,x)-f(x)l = |F(as.,xi) - f(xi)l.
c<xsd 1 1

We can find an integer r such that

].

%3 € Bopog %3,

Hence max |[F(ag ,x)~ f(x)| <
c<xzd i

lF(asi’Xi)'F(aSi,xr’ji)l + lF(asi,X )y - f(xr,ji)l + If(xr’ji)-—f(xi)l <

s

C'"Si" + Dk(f)i-wf(”Si”) = Dk(f) + e; vhere g; = mf(ﬂsi”) + C”Si” and wg

is the modulus of continuity of f on [c,d]. Clearly g~ 0 as i » =,
The next theorem establishes the uniform convergence of {F(asi,x)}

to the best approximation, F(a*,x), for £(x) on [ec,d].

THEOREM 3.7: If {am} is a sequence of parameters such that

max |F(am,x) -fx)] < D) (f) + €p for m = 1,2,°** where ey 0 as m + =,
csxsd

then F(a*,x), the best approximation to £(x) on [c,d], is the uniform
limit of {F(ay,x)} on [c,d] as m > =,

PROOF: We first note that {F(ap,x)} is uniformly bounded on [c,d].
|F(ap,x)| = |F(ag,x) -£&x) + £&x)] < [Flagx)-£@&)] + |[£&)] <

Dk(f) + gn + maxdlf(x)l < M for each x € [¢,d] and m = 1,2,°+-. Let
cEx<
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{xl,"',xk+1} be k+1 distinct points in [c,d]. For i fixed, {F(ay,x;)}

is a bounded sequence of nonnegative real numbers. Hence it has a
convergent subsequence {F(amr,xi)} such that F(amr,xi) + B; as r + = for

i=1,°+,k+1. It follows that By 20 for i = 1,--+,k+1. Also
]g_ as r > = for i-= l,“',k-;-cfil:i Fz(amr,xi) is a polynomial,
Pmr(x), of degree at most k. Let P(x) = Z B;?: 25 (x) where

i=1

F*(ap_»%;) + B

2(x) = (x=x7) v (x—xg_7) (x-x547) o (x-xp47) . The subsequence

Gryxg) oo Gegmxg) (ry=xg47) =00 (Rymxpyy)
{Pmr(x)} converges uniformly to P(x) on [c,d] since Pmr(x) - P(x) =

kil 5 kil 2
igl (B, (x5) = B2; G- So [By ()= PG < y ler(xi)’BEI 2, ] <

i=1
kt1 2| N
Z [P, (x:)~B5||M where ¥~ = max |%,(x)|. Hence
. mr 1 1 p R
i=1 cgxgd
l<ic<ktl

kil o\ x
max [P (x)-P(x)l < Z IP (x.)-—B.l M~. However for each i,
oy il W m i i
c<x<d i=1 r

IPmr(xi) - Bi[ - 0 as r - ». Hence {Pmr (x)} converges uniformly to P(x)
on [c,d]. Since Pmr(x) > 0 on [c,d] it follows that P(x) > 0 on [c,d].
Finally {F(amr,x)} converges uniformly to /P(x) on [c,d]. Since P is a
polynomizl of degree < k we write F(a*,x) = /P(x). F(a*,x) is a best

approximation to £(x) on [c,d]. To see this note that
IF(amr,x) - £(x)] < D (£) + m, for r = 1,2,***. Eence

|F(a*,x) ~£(x)| < D (£) for each x € [c,d] and max |F(2*,x)- £(x)| < Dy (£).
c<xsd
On the other hand Dy (f) < max |F(a*,x) - £(x)| so that
cs<x<d

max lF(a*,x) -f(x)] = Dy (f). Since best approximations by F(a,x) are
cs<x<d

unique it follows that F(a*,x) is the best approximation to f(x) on

[c,d].
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We next show that P (x;) -~ Bg asm~+ > for i = 1,**",k+1. Assume
that this assertion is not true. Then there exists ip, 1 £ i, < k+1,
such that Pm(xio)2*9 Bi . So there must exist one subsequence {Pmr(xio)}

0
such that

2
]Pmr(xio)-Biol >a> 0.

2 2
# BS .
o )

Thus we can find a subsequence {P, (x; )} - B: As before we can
i "o

find a subsequence of {ij(x)}, say {Pms(x)}, such that Pms(xi) > Biz as

k+1
s+ fori=1,"**,k+1. Let Q(x) = Z B:Z zi(x). We notice that Q is
i=1

a polynomial of degree at most k. As before we may show that {Pms(x)}
converges uniformly to Q(x) on [c,d] and that F(b,x) = JETEY is a best
approximation to f(x) on [c,d]. This is a contradiction since F(a*,xio) =
Bi, # Bio = F(b,xio). Hence {Pj(x;)} converées to Bi asm+ », It
follows, as before, that {P,(x)} converges uniformly to P(x) on [c,d] as
m -+ « and hence {F(ap,x)} converges uniformly as m + « to /Px) = F(a*,x),
the best approximation to £(x) on [c,d].

Theorems 3.6 and 3.7 establish the convergence of {F(asi,x)} to the
best approximation F(a*,x). Sufficient conditions for these results to
be applied in a practical way are that best approximations exist on each
subset S; and {F(asi,x)} is uniformly bounded below away from zero. It
is not known, at present, what the consequences, from a computational
point of view, of nonexistence of best approximations on finite subsets
are. Extensive numerical experimentation is needed to gain additional
insight on this problem. It seems, however, that the above two hypotheses
are related.

In Theorem 3.6, the rate of convergence is seen to depend on ”Siﬂ.
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The quantity e; of Theorem 3.6 is smallest when S; is chosen to be a set
of equally spaced points in [c¢,d] for each i. This is recommended when
numerical computation of F(a*,x) is attempted.

In order to employ this computational procedure, an initial approxi-
mation F(a,,x) satisfying the conditions I on Sy must be determined.
F(ao,x) could be easily determined if it were possible to choose explicitly,
on an a priori basis, a subset of k + 2 points {xl,~--,xk_+2} close enough -
to an extremal point set {xi,-",x;+2} on which the best approximation
F(a*,x) alternates k + 1 times. F(agy,x) would then be determined as the
solution of F(a,,x;) - £(x;) = (—l)i—ld, i=1,-++,k+2. In general, such
a selection is not possible.

It is sometimes possible to choose F(a,,x) as F(aso,x), the best
approximation to f£(x) on S, for special choices of S, in two different
ways. The first method involves choosing S, to be a subset of m > k+2
equally spaced points in [c,d] vhere m is not very much larger than k+2.
It is then computationally feasible to eﬁéloy Algorithm 3.1 to determine
F(aso,x), the best approximation to f(x) on S,. If S; contains points
sufficiently close to the extremal point set for F(aso,x) on Sy then
F(aso,x) will satisfy conditions I on S; and may be used to start the
computational procedure which generates {F(asi,x)}.

The second method is to choose S = {xl,"-,xk+2} where the choice
of x; will be explained below. Once the points x; are chosen, F(ag,x) =
F(aso,x) is determined as the solution of F(ay,x3) - £(x3) = (—l)i_ld,
i=1,""",k+2. To explain the choice of the points xj, assume, without
loss of generality, that [ec,d] = [-1,1]. Suppose that £(x) = /5;;1?;7

where Py, is a polynomial of degree at most k+1. Then [Fz(a,x)— fz(x)[
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is an approximation of |F(a,x) ~ £(x)| which is reasonable when
|F(a,x)+ £(x)| is near 1. Then fz(x) = bk+lTk+l(x) + eoe 4 b Ty (x)
where Tk(x) is the Tchebycheff polynomial, T, (x) = cos(k arc cos x).
Consider F2(a,x) = by Ty (x) + == + b T, (x). le(a,x)-fz(x)l =

b1 Ty | = Ibpir ! | T ] < ,bk+ll’ Moreover, at the k+ 2 points

e

X; = COs

4 = 0,-+-,kt], F2(a,x;) = £2(x5) = by Ty (x5) = Dby

iz,
This means that Fz(a,xi) is the polynomial of best approximation to fz(x).
More generally, if f is not a linear combination of a finite number of
Tchebycheff polynomials, say fz(x) = boTo(X) + blTl(x) + ++-, the

partial sum P(x) = boTy(x) + <+« + kak(x) is not, in general, the
polynomial of best approximation of degree at most k to'fz(x). However,
if the coefficients bk+1’ bk+2, «+« are reasonably small, P(x) may be a
good approximation of the best approximation, and hence the choice of

So = {xil x; = cos %i& , 1 = 0,°+,k+1} may furnish F(a,,x) = F(aso,x)

as a reasonable initial approximation.



CHAPTER IV

APPROXTMATION BY A SUBFAMILY

OF RATIONAL FUNCTIONS

This chapter considers approximation by a subfamily of rational
functions. More precisely, the approximating functions are members of
the class

m
1) F= L] ap—Ifxte; 40 »dl, ag, ty bers}.
( ) izlal (x+ti)lx i # 0 on [c,d], aj, tj real num ers}

Members of F will be denoted by F(a,x) where a denotes the 2m tuple of
parameters (a1,***,apsti>-**>ty). Assume that the total number of
parameters determining F(a,x) is less than or equal to n. If a;j = 0 for
some i then tj can be chosen arbitrarily and in such cases we choose tj
to be distinct from any of the other parameter values.

The practical motivation for considering approximation by the above
class is that the épproximating functions are combinations of functions
that more closely imitate the lack of derivatives of the function which
is being approximated than do polynomials. It is a well known fact that
the maximum error of the polynomial of best anproximation to f on [c,d]

< n-1 is greater than or equél to the maximum error of the

of degree
best rational approximation to f on [c,d] having at most n parameters, so
that, in general, rational approximation produces smaller error than

polynomial approximation. The class F is studied because of this and

34
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because the approximating functions are tractable from a numerical point
of view. Evaluating F(a,x) € # is similar to evaluating a polynomial.

The class of approximating functions (4.1) does not have best
approximations for certain continuous fupctions because the class is not
.closed. To see this consider the following example. Let f(x) =
lx-—%l on [0,1]. Let m = 1. It is clear that there are sequences
{F(ai,x)} such that {F(ai,x)} converges pointwise to the constant function
% on [0,1]. If the above class of functions are varisolvent then the
degree of F(a,x) will be the number of nonzero parameters which is two in
this case. It follows that the best appfoximation must alternate at least
two times on [0,1] so that the constant function % is the best approxima-
tion. Clearly, however, % is not a member of the class &.

To remedy this situation the class of admissible approximations must
be enlarged so that it includes such missing limit points to ensure the

existence of best approximations.

Clearly, the nonzero constant functions are missing as pointwise

limits of functions of the form F(a,x) = ;%E . More generally, if m > 1,
# contains the function
(4.2) F(a,x) = 1 1 1 1

(c,-t,)  Gee)  (tj-t,) )

. . 1 . . X
if tl # t2. Since perw has a derivative with respect to t, any sequence

{F(ai,x)} of the form (4.2) with parameters ty t; such that {t;} -ty as
i » « will have the function - ———l;—i- as a pointwise limit on [c,d].
(xtt,)

These derivatives must be included in the class of approximating functioms.

Similarly, # contains the 1,2,°°+,(m~1) divided differences of and

1
(x+t)

hence the class of approximating functions must include the
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1,2,-++,(m-1) derivatives of —%& with respect to t, as they are the
x+t

pointwise limits of sequences of functions in 3

The derivatives of c i (except for a constant multiple) are the
XTt
functions 1 1 -++, This provides the motivation to extend

)2 7 (o)

the class of admissible approximating functions to the class

. k Byt 1 k
Fr =17 7} a5 -——-——Tlti_e Ty 3y real numbers, ) m;+1 < m}
i=1 j=1 Gett, )J i=1

where T is a set of real numbers such that x + t # 0 for x € [c¢,d] and

t € T. F(a,x) will denote members of ;?* where a is the at most 2m tuple
of parameters (all,‘°',alml+1,"',akl,"',akmk+l,t1,'°',tk).
THEOREM 4,1: If T is compact then éf* is closed under pointwise canver-

gence.

PROOF: Let {F(ar,x)} be a uniformly bounded sequence in 15* converging
1( m.;-!-l

P = ¥ 5 (x) 1

pointwise to g(x) on [c,d]. Let F(ar,x) = Z Z E -—-—?-3—7 .
4=1 3=l N et

1

Since the functions {’ -
(X‘*'ti)J

li = 1,***,k, J = 1,---,mi+%} are linearly

independent for distinct t;, it follows, as in the proof of Theorem 3.2,
that

{ag)} i=1,700,k, § =1, ,m 1

are bounded sequences of real numbers. This, together with the compact-

ness of T, implies the existence of a subsequence of parameters ars such

that ag frs) - cf°)
i i

i 3

T s .
js) -+ ai(g’), is=1,-7+,k, j =1,°++,m+1 and ¢t

i=1,++-,k as s ~ », Hence for each x € [c,d], g(x) = lim F(a,,x) =
r>o

k mi+1 k mi+l (0 )
lim F(a, ,x) = Z Z lim a(rs) 1 = 1
S> o S

. - = a = —F.
i=l j=1 $7*° 13 (x+1lim ti(r$>)3 i=1 j=1 13 (x+ti(°))3

. 8§*+®
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This shows that g(x) = F(a,,x) which finishes the proof.

k
The degree, m(a), of F(a,x) is defined by m(a) = m + E (mii-l).

: i=1
Note that m{a) < 2m.
THEOREM 4.2: F(a,x) € 4" has property,Z of degree m(a).
_ PROOF: Let a # a~. Then F(a,x) ~ F(a*,x) =
) ajs —L - a:. ___l;_f . This difference is a
i=1 j=1 eg)d =1 3=1 M (erel)

rational function. After adding the terms in F(a,x) =~ F(a*,x) it is

seen that the degree of the numerator is

k* k . k
] @D+ J @) ~l<sn+ ] @#l) -1=mn@) -1
i=1 i=1 =1 *

and hence the numerator has at most m(a) - 1 zeros on [e¢,d]. It follows
that F(a,x) - F(a*,x) has at most m(a) — 1 zeros on [c,d].

COROLLARY 4.1: Let f be continuous on [c,d]. Then there exists a best

approximation F(a*,x) € 3* to £(x) on [c,d].
PROOF: Theorems 4.1 and 4.2 insure tﬁat the hypothesis of Theorem 3.1 is
satisfied and the Corollary follows.

The next theorem establishes that F(a,x) is locally solvent of degree
m(a).
THEOREM 4.3: F(a*,x) e‘f* is locally solvent of degree m(a*) on [c,d]
for each parameter a*.
PROOF: Let xq < xp < *°* < Xn(a¥) be m(a*) points in [c,d] and € > O be

given. Consider the system

(4.3) F(a,xl) = F(a*,xz) +yg, 2= 1, ,m(a%).

To show that F(a*,x) is locally solvent of degree n(a®) we must show that
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2 2 1
there is a § > 0 such that if (yl +oeee + ym(a*))2 < § (4.3) has a unique
solution F(a,x) with

(4.4) “F(a,x) - F(a*,x)" < g.

If (4.3) has a solution satisfying (4.4)" then it is unique. To see this
'suppose that F(a,x) and F(b,x) are solutions of (4.3) satisfying (4.4)

and a2 # b. Then F(a,xg) - F(b,xz) =0, £ =1, --,m(a*). Since e is
arbitrarily small and ||F(a,x) - F(a*,x)| < €, it fcllows that m(a) = n(a*).
However, F(a,x) satisfies property Z of degree m(a) and F(a,x) - F(b,x)

has at least m(a) zeros and hence a = b which is a contradiction. Let

k‘q' m%.-i-l k* m:’i-i-l
_ L 1 * _ * 1
F(al,x) =) 1 ajj —5 5 and F(a',x) = ) ajy — 7 -
i=1 j=1 (x+ti)J i=1 j=1 (x-*-ti)J

Suppose that {F(al,x)} is a sequence converging to a solution of (4.3)
satisfying (4.4). Then it is clear that some {ti} > t: as 2 -+ » for each
i. Since tz are distinct, there are at least k¥ parameters t. in the
solution of (4.3) satisfying (4.4). There is a notational problem in
writing an expression for the solution F(a,x) of (4.3) making an

association of the parameters of F(a*,x) with the parameters of F(a,x).

k*
Let F(a,x) = Z Fi(a,x) + R(a,x) where each t; in Fi(a,x) satisfies
i=1
t, > t: as € > 0 and R(a,x) = ) ) aj; ———l——r and the coefficients

3
i=Kk*41 §=1 (x+ti)J

aij +>0as e€~>0 for i= k*+l,--~,k, js= 1,--°,mi+l. Consider the

expressions
m§+1
* 1
(4.5) F, (2,%) - ) .

ai. —;_—.
j=1 (x+ti)J

. . c e % ‘
Since each ti in Fi(a,x) satisfies ti -+ ti as € + 0 any one of them may
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be used in the expression (4.5) so that (4.5) becomes

mi+l 1 m;?_+1 * 1
(4 - 6) Z aij —'—-3' - Z a ij "‘_—*_3‘ .
ji=1 (x+ti) j=1 (x+ti)

% .
and mi+l > mi+l for the same reasoning used to establish that there are

at least k¥ parameters t. in the solution of (4.3). Rewrite (4.6) as

*
*
(4.7) 2 aij _—];_J - aij '———1';—3 + ajj S -
j=1 (xtt,) (xtt.) j-ﬂn"i‘+2 (x+tg)
1 _ 1 ie-t®

By Taylor's theorem + o(ti—tz) vhere

3 %] %\ j+1
Ge+t;)”  (xtt)) (x+t])
o(z) denotes a continuous function such that o(z) * 0 as lz| > 0.

Hence (4.7) becomes

m+l s(t —t%
T 1 jle;-ty) x 1
4.8 | ] ay 3 NS R L N
j=1 (x+t7) (xt+t) (x+t.)
1 L 1
myt+l J : —t*
© 4+ 7 a. 1* - (J)(ti,:_i) + o(t.—-t¥).
j=mz+2 Bl @) (x—*-tz)'] o
After rewriting, (4.8) becomes
*.
m§+1 mtl @) (et
“oy b Gymaip—as - 1o ——5y
j=1 Gete)) j=1 (xtt))
m*+1 . L * m,+1 . Lk
; . (J)(ti ti) i 1 (J)(ti ti)

- 12 (a,. -a’,) —————F—+ Z a

ij ij *,j+1 j+1
Gete ) sene2 )

.. %
13 (xt+t;) (x+t:

*
+ -t7).
ofe;=t;)

* * .
p. = - . .= -t 2
Let SalJ a aij and 6t1 t::L tl . Then there are mi+ unknowns in

ij
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(4.9), namely the da §t;, and ajj- Hence the system (4.3), which can

ij»

be written as

*
K* mytl
, * 1 *
(“-10) Z F.(a,x ) - z a., ———=| + R(a,x,) = Yos & = 1,---,m(a"),
i '3 ij %] 2 L
i=1 =1 ()
K k .
has | (@42 + ] (@A) + k-¥ =n(a*) unknowns. The k- K*
i=1 i=K*+1

parameters ti in R(a,x) can be chosen arbitrarily, but distinct from the
parameters é; Rice [12] showed that if X, Y are n-dimensional vectors, Q
a nonsingular n X< n matrix, and o(X) is a continuous vector valued

norm, then there exists § > 0 which depends on Q such that if "Y" < $

function such that [[oX)|| + 0 as |X] + 0 where

| denotes the Euclidean

there is a solution to

(4.11) X =Y+ Xo((X).

When the expression (4.9) is substituted in (4.10) the system (4.3), after

rearranging terms, is of the form (4.11). Since F(a*,x) has at most

k*

2 (m:-Fl) - 1 zeros on [c,d] it follows that the matrix Q is nonsingular.
i=1
Hence for § sufficiently small the system (4.3) has a solution satisfying

(4.4).

COROLLARY 4.2: Results B, C, and D of Chapter II hold for F(a,x).

The problem of best approximation on finite subsets of [c,d] is
considered next. Result D characterizes‘best approximations on finite
subsets of [c,d], provided these best approximations exist. Suppose
S = {xl,~--,x£} C {c,d] where & 2 2m + 1. A sufficient condition for
existence of a best approximation F(ag,x) to £(x) on S is that for any

subset



41

S={Z }Q_S,

1°° "2 %n(a)+1

< eea < t & i o io o
24 z(m(a)+1 here exists a unique solution to the system

(4.12) Fla,z,) - £(z,) = 0¥, i=1,-+-,m@) + 1.

The problem of solving the nonlinear system (4.12) is one of considerable
theoretical and computational difficulty. Aside from the difficulties of
solving the system (4.12) is the problem that the degree, m(ag), of the
best approximation F(as,x) to £(x) is not known in advance. Moreover,
even if m(ag) were known in advance there would still be the additional
problem of determining the exact form of the best approximation F(ag,x).
These problems must be dealt with before computational procedures similar
to those in Chapter III for determining the best approximation F(ag,x)
can be developed.

A more promising approach is to consider the problem of detefmining
the best approximation F(a*,x) to £(x) on [c,d] as a programming problem
where one of the methods of descent might be applied. This could also
be done for the problem of determining the best approximation F(ag,x) to

f(x) on S = {x 1.

1277 0%y
For example, consider the graph of the function ||F(a,x)- £(x)]| = d
as a ranges throughout the parameter space. The problem is to find the

parameter a* which minimizes d. Let
B = {(2,d) | [F(a,x)- £ ]| < d}.

Since it is assumed that the number of parameters which determine F(a,x)
is less than or equal to n we may regard B as a subset of (ntl) dimensional
Euclidean space En+1' It is clear that when F(a,x) depends linearly on the

. %
parameters a that B is a convex subset of En*l' However, F(a,x) € #
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does not depend linearly on the parameters a so that, in general, B is
not convex. Hence a descent scheme for determining the "lowest point" in
B may converge to a point which is not the absolute minimum.

In general terms the method of descent is as follows. Given an
esFimate (ai,di) of the minimum point (a*,d*) in B, determine a direction
which is down and then go in that direction a certain distance to obtain

a new estimate (a d‘+l) for which di+ < di' There are various well

i+1° 74 1

known methods for determining a direction and how far to go in a given
direction. The problem of lack of convexity may be overcome by choosing
a good enough initial estimate. The methods suggested in Chapter III for
this apply in this situation also.

The method of descent is suggested here because the problem of
solving nonlinear systems of unknown dimension is circumvented and
because the descent procedures are less sensitive to changes in the form
of F(a,x).

More work is needed on the problem of computing the best approxima-
tion F(a*,x) to f(x) on [c,d] and this is a problem which will benefit
considerably from practical numerical experimentation.

The difficulty in dealing with F(a,x) on finite subsets comes from
the nonlinearity of F(a,x) in the parameters ty,***,ty. From a practical

point of view, the numerical analyst may be able to make a reasonable

selection of the parameters tj,+-*,ty and the integers ml,'~-,mk,such

k

that z mi+l < m, based on knowledge of the function f which is being
i=1

approximated. Thus we are led to consider the subclass of 3%

b = Z z 333 ___L__.|aij real numbers) and ti>t"t,ty are fixed

i=1 j=1 (et
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real numbers such that x+t; #0, x e [c,d}, 1 = 1,°+,k and my,°~*,m
are fixed integers such that E my+1 < m. F(a,x) will denote members of
i=1

4 where a is the at most m tuple of parameters

(11,° 23m + 107 o3 ’akmk-i-l)'
The class J is more tractable than <§* because F(a,x) e ﬁ depends
linearly on the parameters a.

k
Define the degree, m(a), of F(a,x) e J to be m(a) = z mii-l.
121
Notice that m(a) is constant as a ranges throughout the parameter space P.

THEOREM 4.4: F(a,x) € J has property Z of degree m(a).

PROOF: Let a # a. Then F(a,x) - F(a*,x) =
m.+1l ms+1 m.+1 -
k M1 1 k i * 1 ) k i x 1
45— 2y —t— = 1 @357255)——3
i=1 j=1 (x-l—ti)J i=1 j=1 (x+ti)3 i=1 j=1 (x+ti)3

After adding the terms in F(a,x) - F(a*,x) it is seen that the degree of
k

the numerator is z (mi+l) - 1 =m(a) - 1 and hence the numerator has at
i=1l

%
most m(a) - 1 zeros on [c,d]. It follows that F(a,x) ~ F(a ,x) has at
most m(a) - 1 zeros on [c,d].
THEOREM 4.5: -ﬁ is closed under pointwise convergence.

PROOF: Let {F(a,,x)} be a uniformly bounded sequence in ‘h converging

k mi+l

pointwise to g(x) on [c,d]. Let F(ar,x) = Z Z a§¥) —31 . since
171 =1 M (ere))d

the functions {___LL___i i=1,"**,k, j= 1,---,mi+1} are linearly

(X+ti)j
independent for distinct t;, it follows, as in the proof of Theorem 3.2,

that {a§§)} i=1,""",k, j = l,"',mi+1 are bounded sequences of real

numbers. This implies the existence of a subsequence of parameters arg

(rs) (o) . .
such that aijS > aij s 1= 1,00k, j = l,~'°,mi+1 as s ~ o, Hence for

each x e [¢,d],



g(x) = lim F(a,,x) = lim F(ap_,x) = Z Z 1im ag¥s) ___JL__T =
r+wo g+ -5 i=l j=1 s+ (X‘*‘ti>3
k mi-l-l

o such

Z Z ag?) -——iL—-T . This shows that there is a parameter a
i=1 =1 M (xtr;)]
that g(x) = F(ao,x) on [c,d] which finidhes the proof.

COROLLARY 4.3: Let f be continuous on [c,d].

Then there exists a best approximation F(a*,x) € m to £(x) on [c,d].
PROOF: Theorems 4.4 and 4.5 insure that the hypothesis of Theorem 3.1 is
satisfied and the corollary follows.

Since m(a) is constant for each parameter a, F(a,x) € § is unisolvent.
This is established in the following theorem.
THEOREM 4.6: F(a,x) € & is solvent of degree m(a).
PROOF: Let {xl"."xm(a)} be m(a) distinct points in [c,d] and

{y15°**s¥p(a)} be m(@) real numbers. The system

(4.13) F(a,xi) =ys, 1= 1,°°+,m(a)

is a linear system in the parameters a;j. Writing (4.13) in matrix form

we obtain
1 s l .o 1 .o l _1 a T y
At B G ar) ——=r || * 1
a
. . :.Lrﬂl'*'l
(4. 1[&) e . : =
. . 3k1
1 1 1 e 1 .
) m,+L mEFL|| _*
Cp@*t)  Cat 1T Gagttd Omegy T am "n (@)
L. - - -
Since {-——EL—-— i=1,"*",k, j = l,°--,mf+l} are linearly independent and

(ett ;)]

x1,°°°,xm(a) are distinct, it follows that the coefficient matrix of (4.14)

is nonsingular.

Hence the system (4.13) has a unique solution and this

-
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finishes the proof.

Theorems 4.4 and 4.6 show that F(a,x) ¢ ﬁ is unisolvent (hence
varisolvent) of degree m(a). Hence the results B, C, and D of Chapter II
hold for F(a,x) € 3.

The remainder of this chapter deals with the problem of best approxi-
mation on finite subsets of [c,d] by F(a,x) € 3.

THEOREM &4.7: If S is any finite subset of [c,d] having at least m(a) +1
points, then there exists a best approximation F(as,x) I3 ﬁ to £ on S.
PROOF: Let U = {x1,°",xm(a)+1} be an arbitrary subset of S having

m(a) +1 points and suppose that the points in U are enumerated so that

< < ee e

m(a)+1” Consider the systenm

(4.15) Fa,x) - £(x;) = (D71, 1= 1, ,m(@)+1.

The system (4.15) is linear in the parameters a and d. The coefficient

matrix of the system 4.15 is

1 se ® 1 l
(4.16) . ) ]
1 1 m(a)
_— .. (-1)
mk+1
| *n(a)+1*t1 (4 (a)+17 B

The matrix (4.16) is nonsingular. To see this, note that the first m(a)
columns of (4.16) are linearly independent and the last column of (4.16)
is independent of the first m(a) columns since F(a,x) satisfies property
Z of degree m(a) and hence can change sign at most m(a)-1 times. Hence
there exists a unique parameter ay and a unique real number dy satisfying

the system (4.15). By result D of Chapter II F(ay,x) is the best



46

approximation to £ on U. Since U is an arbitrary subset of S having
m(a) +1 points, it follows from result D of Chapter II that the best
approximation, F(ag,x), to f on S exists.
It follows from Theorem 4.7 that best approximations on subsets of
{c,d] having m(a) +1 points always exist. lence if S = {xl,"-,xz},
£ > m(a) +1, the best approximation, F(ag,x), to f on S may be determined
by computing F(ay,x) and dyj;, the best approximation to £ on U, for each
U ¢ S such that U has m(a) +1 points and choosing ag = apx where U™ is
such that dU* = max dy .
Ucs
U has m(a)+1 points
Algorithm 3.2 may be modified to determine the best approximation
F(as,x) € 33 to £ on S as follows.

ALGORITIX! 4.1: Let S = {xl,-",xl} C [c,d] and & > m(a) +1. Let F(agy,x)

be an initial approximation satisfying the conditioms

m(a) .o

d*m(a.)+l

I: 1) F(ao,x) - f(x) assumes extreme values d‘i,—dg,--- , (1)

. . S
at m(al+1 points in S, say xl, ’xm(a)+l’ where

xl < eee < xl and d9 all have the same sign for

1 m(a)+l i
i=1,---,m(a)+1.
2) There is at least one j, 1 < j < m(a)+1, such that Idgl =

max |F(a,,x) - £(x)].
X€ES

Then 1) Let j = 1.
2) Determine the approximation F(aj,x) and dj such that

F(aj,xg) - f(xg_) = (--l)i_]'d:i for 1i=1,***,m(a)+1

3) If max lF(a-,x) -£&)| < Id.l, then F(a.,x) is the best
xe S 3 ] J
approximation to £ on S and the algorithm is terminated. Otherwise,



. . i S Jtl jtl e j+1
determine m(a) +1 points {xl , ’km(a)+l} €S, x; < < xm(a)+1’

‘+ . CO -
such that F(aj,xi l) - f(xg+l) = (-1)* ldi for i = 1,-*-,m(a) +1 and

min lad| ldjl.

l<ism(a)+l

v

4) Let j

j+1 and go to step 2).
THEOREM 4.8: Let f be defined on [c,d] and § = {x,***,x}, £ 2 m(a)+1,
be a subset of [c,d]. If F(a,,x) is an initial approximation satisfying
the conditions I, then Algorithm 4.1 will determine the best approximation
F(ag,x) € J to £ on s.
PROOF: Since F(a,x) satisfies property Z of degree m(a) the proof is the
same as the proof of Theorem 3.5.

Theorem 4.8 provides the basis for a computational procedure which
will approximate F(a*,x) € ih the best approximation to f(x) on [c,d].
Let S; be a sequence of partitions of [c,d] such that Si+l is a refine-
ment of Sy for i = 1,2,°°* and]lsi” + 0 as i > =, Determine the sequence
of best approximations F(asi,x) to £(x) on S; using Algorithm 4.1.

Let Dg,(f) = max ]F(as,,x)-f(x)] and D(f) = max ]F(a*,x) - £(x)]
- X E Si 1 c<xgd

where F(a*,x) is the best approximation to f£(x) on [c,d]. It follows, as
in Chapter III, that {F(asi,x)} is uniformly bounded on [c,d].

The next lemma is helpful in establishing the convergence of
{F(aSiQX)}.

LEMMA 4.1: Let F(a,x) € B and suppose that max |F(a,x)| < M. Then
c<x<d

there exists a constant y which does not depend on F(a,x) such that

max |F'(a,x)| < yM.

c<x<d

PROOF: Let F(a,x) ¢ JI. Then F(a,x) = Eﬁfl where
Q(x)
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mj+l mpt+l

Q(x) = (x+ty) e (x+ty) Let m; = min lQ(x)| and

c<xgd

m, = max |lQ(x)|. Suppose max |F(a,x)| < M. Since
c<x<d csxsd

max |P(x)|

csxsd < max [F(a,x)|, it follows that max |P(x)]| < moM. Hence,

oy c<x<d c<x<d

by Markov's inequality we have

|F' (a,x)] = [Q&x)P' (x) - P(x)Q" (x) lolP' x) | + [PG)lQ' ()] .
<
Q2 (x) Q2 (x)

my 2 @@-D%mped  + w2 @@ omy  2en2(m(a))? + (m(2)-1)?)
= M=
(d-c)m% (d-c)mi

A

v*M for each x e [c,d]. Then max |F'(a,x)l v*M and vy does not depend

c<x<d

on F(a,x).
THEOREM 4.9: If {F(ag,,x)} is the sequence of best approximations to f
—_ i

on S;, as previously defined, then

max |F(ag.,x) —£(x)| < D(f) + e; where
i i
csxs<d
€ * 0 as i » =.
PROOF: Let M; = max |F(ag,,x)|. Since {F(ag,,x)} is uniformly bounded
c<x<d * 1
on [c,d], there exists M < = such that Mi <M fori=1,2,--¢, Let
S: = {xy . ,°*°,x. . } where j. is the number of points in S.. Let
i Lig” "85, Ji P i

1.

X, € [c,d]. Then there is an integer r such that X, € [xr,ji’xr+l

»J3

By the mean value theorem there exists U € (xr,ji’xr+l,j ) such that

F(asi,xo) - F(asi,x ) = (x ~x j.)F'(as.,U). Hence
i i

r,j. o r
le ’

lF(aSi’xo)"F(aSi’xr,ji)l < ”Si”' max ]F'(asi,x)l < ”Si YM; < M-y'”si]L

cg<x<d
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Finally, since F(asi,x)-f(x) is continuous on [c,d], there exists
x; € [c,d] such that

F ,X) -~ £(x)| = {Fag.,x{) - £(x;)|.
e [Fasy )~ £GI| = [Fasgomp) - £

We can find an integer r such that
X € [xr’ji,xr+1,ji].

Hence max |F(ag ,x)-£f(x)| <
c<xsd *

|Fasysxs) - Flaggong 3 )+ [Flasyomy 5.0 - £ 5 0 + [£0 5 0= £Gp)] <

M'Y’”si” + D(f) + wf(”SiH) = D(f) + g5 vhere € = M'Y°[

sill + we Clis; )
and we is the modulus of continuity of £ om [c,d]. Clearly e > 0 as i » =.
The next theorem establishes the uniform convergence of {F(ag_,x)}
i

to the best approximation, F(a*,x), to £(x) on [c,d].

THEOREM 4.10: If {F(aj,x)} is a sequence in 23 such that

max IF(ai,x)-f(x)l < D(f) + gy for i = 1,2,--- where g; * 0 as i+ =,
c<x<d

then F(a*,x), the best approximation to f(x) on [c,d], is the uniform
limit of {F(a;,x)} on [c,d] as i + =,
PROOF: It follows, as in the proof of Theorem 3.7, that {F(ai,x)} is
uniformly bounded on [c,d]. Let {xl,-",xm(a)} be m(a) distinct points
in [c¢,d]. For j fixed, {F(ai,xj)} is a bounded sequence of real numbers.
Hence there exists a convergent subsequence {F(air,x)} such that
F(air,xj) > Bj asr + » for j = 1,*--,m(a). By Theorem 4.6 there exists
a unique parameter a, such that F(ao,xj) = Bj for j = 1,°*-,m(a). The
subsequence F(air,x) converges uniformly to F(a,,x). Let € > 0 be given.

Since F(a,x) is varisolvent there exists & > 0 such that if

IF(ao’Xj)—F(air’xj)l < 6, j = 1,00.’m<a).
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There is a solution of

(4.17) F(a,xj) = F(air,xj), j=1,"+,m(a)
and
(4.18) max |F(a,x) — F(ao,x)l < e.

csx<d '

However, the unique solution of (4.17) is given by the parameter a = aj -
Hence if € > 0 is given then there is an integer R such that r > R
implies [F(ag,x3) - F(air,xj)[ <&, j=1,°+,m(a). By (4.18)

max lF(ai 4 X) — F(ao,x)] < g for r > R and this proves the uniform

c<x<d r .

convergence of F(air,x) to F(ay,x) on [c,d]. Ve next show that F(ay,x)
is a best approximation to f(x) on [c,d]. To see this note that

max ]F(air,x)-f(x)| < D(f) + e5_ for r=1,2,---. Hence

c<x<d r

max lF(ao,x)-f(x)l < D(f). On the other hand D(f) £ max IF(ao,x)- £(x)|
c<x<d csxs<d

so that max lF(ao,x)-f(x)] = D(f). Since best approximations are

c<x<d N

unique, F(a ,x) = F(a",x) for each x € [c,d].

F(ai,xj) - Bj as i > = for j = 1,°*-,m(a). Assume that this
assertion is not true. Then there exists j,, 1 < jo < m(a), such that
F(ai,xjo)—><a»Bjo. So there must exist one subsequence {F(air,x)} such
that

lF(air’xjo) - Bjol >a> 0.
. *
Thus there exists a subsequence {F(ais,xjo)} > Bjo # Bjo‘ As before

there exists a subsequence of {F(ais,x)}, say {F(ain,x)}, such that

F(ain,xj) -+ B? as n~+ o for j =1,---,m(a). Let F(o,x) be the solution

of

. .
B., j = 15'.°:m(a)-

F(a,xj) i

It follows, as before, that {F(ain,x)} converges uniformly to F(b,x) on

[c,d] and that F(b,x) is a best approximation to f£(x) on [c,d]. This is
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o . % o *
a contradiction since F(a ’on) = BJo # Bjo F(b,xjo). Hence
F(ai,xj) - Bj as i » » for j = 1,*--,m(a). It follows, as before, that

{F(ai,x)} converges uniformly to F(a*,x) on [c,d] as i + o.
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