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CHAPTER I
INTRODUCTION

The analysis of structures for vibration and buckling often
requires the solution of eigenvalue problems. Eigenvalue problems
derived from continuous systems are often impossible to solve exactly,
and all but the simplest problems require approximate methods to be
employed. One of the most frequently used is the Rayleigh-Ritz method.
In the Rayleigh-Ritz method the solution is represented by a linear
combination of functions which satisfy the geometric boundary condi-

tions of the system.
n
w, = E a..é, . (1.1)

In Eq. (1.1) W, ave the dependent variables, usually deflections,ai.
are undetermined coefficients, and ¢j are assumed functions, usually
a complete set of linearly independent functions. The Rayleigh-Ritz

analysis results in an eigenvalue problem of the form

[(Klx = AM]x . (1.2)

The size of K and M is dependent on the number of terms used in the
series (1.1). The more terms used in the series the more accurate
will be the approximate solution to the eigenvalue problem.
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The standard mcthod of using the Rayleigh-Ritz analysis is
to solve Eq. (1.2) several times adding terms to the series (1.1)
each time until the addition of terms to the series (1.1) does not
significantly affect the eigenvalues of interest from Eq. (1.2). This
often involves solution of large eigenvalue problems which in turn re-
quires large amounts of computer storage and time.

This research provides a method of selecting the terms in
series (1.1) which significantly affect each eigenvalue of interest.
Prior to applying the method, the general function, ¢, must be chosen
for Eq. (1.1), and at least one term, ¢j, that most closely approxi-
mates the mode of each eigenvalue of interest must be chosen. The
method described here will then select the other terms in the series
(1.1) which are significant to each eigenvalue of interest. This
will necessarily reduce the size of the eigenvalue problem (1.2) re-
quired for obtaining accurate answers. The method will reduce the
computer storage and computation time required. It should generate
more confidence in the answers obtained because the effect of many of
the terms omitted from the series (1.1) will be approximately known.

This research was originally directed toward the use of a
Taylor series expansion of the eigenvalues as an aid to solving eigen-
value problems. The Taylor's series was an expansion of the eigen-
values as functions of the off-diagonal elements of the K and M
matrices in Eq. (1.2). This investigation led to the discovery that
the Taylor's series expansion of the eigenvalues could be used to

select terms for the Rayleigh-Ritz analysis.
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The method presented here uses explicit expressions for the
derivatives of eigenvalues and eigenvectors with respect to elements
of the K and M matrices in Eq. (1.2). The first derivative expressions,
as will be discussed in Chapter II, have been derived and used else-
where, but this is the first publication known to the author which de-
rives and uses expressions for the second derivatives of the eigen-
values with respect to elements of the K and M matrices.

In Chapter II a discussion of the Taylor's series is presented
and the equations for the derivatives are obtained. In Chapter III
the Rayleigh-Ritz analysis is explained and the new approach for so-
lution is formulated. The method is applied to various problems and
the results are discussed in Chapter IV. Chapter V contains the con-

cluding remarks about this research.



CHAPTER II

TAYLOR SERIES APPROXIMATION FOR EIGENVALUES
AND EIGENVECTORS
In the design of structures, the dynamic analysis often in-

volves solution of the algebraic eigenvalue problem:

[Klx = x[M]x . (2.1)

The K and M matrices are n by n in size, often symmetric. The ele-
ments of the K and M matrices are functions of the design parameters
of the structure.

Many times a structural system is analytically formulated,
the eigenvalue problem, (2.1), is solved, then modifications are made
to the system. Solution of (2.1) can be formidable, so it would be
advantageous to be able to calculate some of the important natural
frequencies of a modified structural system without completely solving
Eq. (2.1) again. Perhaps many different changes in the structural
system are possibie and it is desirable to determine which change is
optimum relative to the natural frequencies of the system. Solving
Eq. (2.1) many times trying different combinations of the possible
changes may be very time consuming and expensive.

Much work has been done over the past few years in determining
the natural frequencies of modified structural systems from the eigen-
values of the original structural system without completely solving

4
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the eigenvalue problem again. Local modifications of finite magni-
tude of a system such as the addition of a concentrated mass or linear
spring have been solved successfully with the computation reduced com-
pared to reworking the entire eigenvalue problem. For discussions and
examples of this see Ref. [1,2,3].

If small changes are made in the parameters of the structure,
an approximation tu the ith eigenvalue of the modified structure may
be obtained by a Taylor expansion of the ith eigenvalue

1 B(Ai)o B(Xi)o
A= U-i)o 1T [W (8py) + a—%— (bp,) + ...]

32(3;) 32(x3)
1 1’0 2 o 2
+ 37 == p)  + —= (e + ...
2! 2 1 2 2
. apl ap2
32(x1)
0
+2W (Ale(Ap2J+ R L (2.2)
1772
where Py Py, .. aTE design parameters of the structure and (A,) is
o

the ith eigenvalue of the unmodified system. The same type of expan-
sion could be used to approximate the new eigenvectors of a modified
structure.

The vital step in effecting an expansion of this type is the
calculation of the derivatives of the eigenvalues and eigenvectors
with respect to the design parameters of the structure.

Explicit expressions for the first derivatives of the eigen-
values and eigenvectors have been known for a number of years. In

1947 Coulson and Longuet-Higgins [4] used the derivatives in molecular
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orbital theory, as did Brown and Bassett [5] in 1958. In 1952
Wittrick [6] presented the expression for the first derivative of an
eigenvalue and demonstrated how it could be used in buckling and vi-
bration problems. Recently several authors have used the first de-
rivatives of eigenvalues and eigenvectors with respect to design para-
meters in "dynamic optimization" procedures. Zarghamee [7] used the
expression for the first derivative of a frequency in a method to
maximize the lowest frequency of a structural system of given weight
varying only the stiffnesses. The derivative of frequency expression
was used by Rubin [8,9] in an iteration type procedure for dynamic
optimization of a complex structure. The optimization was for least
weight while satisfying specific frequency requirements. Fox and
Kapoor [10,11] have also used these expressions in a structural opti-
mization procedure which designs for minimum weight while satisfying
dynamic stress, displacement, and natural frequency restraints.

McCalley [12] used differential expressions for changes in
eigenvalues and eigenvectors in an error analysis for eigenvalue pro-
blems. In a treatment of eigenvalue problems with statistical proper-
ties, Collins and Thomson [13] used the first partial derivative of
eigenvalues and eigenvectors with respect to elements of the stiffness
and mass matrices.

Two authors, Bellman [14] and Wilkinson [15] have discussed
perturbations of eigenvalues and eigenvectors for the standard algebraic

eigenvalue problem

PIx = A[I]x . (2.3)



The perturbations in the eigenvalues and eigenvectors were due to per-
turbations in the D matrix. The derivatives which we have discussed
previously can be obtained from this perturbation theory.

Rogers [16] presented the derivative of an eigenvalue and an
eigenvector for a very general system including matrices not symmetric,
real, or hermitian.

In the publications previously mentioned, only the first de-
rivatives of the eigenvalues and eigenvectors were used. In the pro-
cedures applying iteration techniques, the derivatives were used to
predict the sign, positive or negative, and the relative magnitude of
the changes in eigenvalues due to changes in various parameters of
the system. This information gave an indication of what changes in
the paréﬁeters would be most desirasle. After making the changes to
the parameters the new eigenvalues were calculated, not necessarily
using the derivative expressions. However, in some of the procedures
the first two terms of the Taylor series, Eq. (2.2), were used to
calculate a final eigenvalue.

An infinite Taylor series is accurate over a certain interval
of the independent variable, but this interval is not known in the
expansion of eigenvalues discussed here. A truncated Taylor series
is strictly accurate only for infinitesimal changes in the parameters,
so if finite changes are considered in an expansion of eigenvalues,
the final eigenvalue will be in error by some amount. As far as the
author knows there is no simple method to determine the magnitude of

the errors. Fox and Kapoor [10]} do tabulate the errors for a special



case in which they calculated eigenvalues by using the derivatives,
but this information cannot be used to determine the error for other
problems.

In the original stages of this research it was hypothesized
that if the derivatives of the eigenvalues with respect to design
parameters could be calculated, a recuTsion relation might be found
for the terms in the Taylor series (2.2). A general term might be
found for the series and the values of Ap for which the series con-
verged might be shown. Possibly a remainder could be calculated after
the series was truncated. Substantiation of this hypothesis was not
successful, but the work toward this substantiation led to the use of
derivatives of eigenvalues and eigenvectors in chosing terms for a
Rayleigh-Ritz analysis.

Calculafion of the derivatives in the manner of previous de-
rivations, for instance {10] becomes tremendously complex after the
first derivative. The following method of obtaining the derivatives,
which simplifies the algebra, was used. The design variables were
simply to be the elements of the stiffness and mass matrices. Since
the eigenvectors of an original problem are known, and the modal
matrix may be used to diagonalize the original K and M matrices, the
problem was formulated as follows. The original eigenvalue problem

is:



kv kl

k! kt

11712

21722

A
kln

] 1] 1 1
[ M11M2 mlr] X1
1722 - X3
b - < )
1) 1
m m [
L nl nn_ \ xrl

The proposed changes to be made to the K

=

]
Akz1

AKY =

After the original eigenvalue problem (2.4) has been solved, the
modal matrix may be used for a coordinate transformation.

agonalizes the original K' and M' matrices and changes the values of

' '
Akll AklZ ..

'
Ak22 -

. Akln

the 4K' and AM' matrices.

vectors,

.

The modal matrix is the matrix of eigen-

, and AM' =

(X] = [xyx%5 ... x]

and M matrices are:

r 1 1 1

Am11 Am12 v Amln
t 1 -

Am21 Am22 -

Am! - Am!
nl nn

This di-

(2.9)

(2.5)

(2.6)
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The coordinate transformation is made

K = X)TK[X)
M) = (x) T [x)
[0K] = [X]7{aK'][X] @2.7)
(M) = [x)"[a ) [x]

We now have the original problem in a new form.

T ] s \
K 0 0 X Py 0 0 W X
0 kzz 0 X, 0 Mg 0 x2
0 k55 O }' a0 0 om0 *'L=0
...... X,
N K (%) L° RN
(2.8)
with changes
Akll Ak12 Akln
Bkyp ko
[\K = - -
L Bk Bkon
; A (2.9)
Aml1 Amlz Amln
bmyy  BMp
M= |- -
L bm_, om o
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We seek the eigenvalues for the problem
[K+2K]x - A[M+&M]x = O

Equation (2.8) is an eigenvalue problem with n eigenvalues

k k k
Op ==, 0 =2 ) =B
¢

™y 2% My n’ o m__

The eigenvectors for Eq. (2.8) will be, if made M-orthonormal

r m]_ 0 ( 0
1
0
0 1 .
v~ |2 IR
X = 2T ' Xp =1 -
0 0 — -
1
S =,

The approximation to the ith eigenvalue of the modified problem,

(2.10), will be

)‘i(kll’klz" "kln""mll’le" ..mln,...) =

3(0) 300y
0y * 11—, [—1—° (k. )+ ——O (Bkp) + oo

)+
8k11 11 aklz

30) 30 1 az(xiJo )
el G T el CLUPY ] * ‘2_'[ T (8ky,)

1 12

204) 4 20:4) 4 2 3204,
2 (Ak 10k, L) + ...+ ——— (8m,,) + 22—
aku k12 11 12 amu 11 amllam

32(A1)
(&m_ ) (6m ) + ... 2——— (&m,,)(2k. ) + ] +
11 12 aku 1 11 11

(2.10)

(2.11)

(2.12)

Eq.

2
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aa(xi)o

1
= [—=
3k

3!

3 -
+ 3 (Akll) R L (2.13)

11

Now the derivatives of the eigenvalues with respect to the

elements of the K and M matrices must be calculated.

Derivatives of Eigenvalues

The derivatives of the eigenvalues in which we are interested
will be those from Eq. (2.8) in which the K and M matrices are di-
agonal. These derivatives are obtained as follows, see [10]. If xi

and X; are a corresponding eigenvalue and eigenvector
[l(]J_(_i - >\i[M]§_i =0 . (2.14)
PR . T .
Premultiplication by X; gives

T T _
)_(_:.L[l(]lc_i - )\ixi[M]ii =0 . (2.15)

Differentiation with respect to krs gives

T
X s X 3,
=i T, 3K T =i i T
=i 1 Ty,
T AL e ERE AU I el e L
Is Ts Is
e T oM Try N -1
Ty ae o Mg -y G x - KM =0
IS TS s

The first and third terms in Eq. (2.16) are equal as are the fifth
and seventh terms because K and M are symmetric. These terms com-

bine to give T
X

!
2 K Mlx,
Irs
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which is cqual to zero by Eq. (2.14). The sixth term in Eq. (2.16)

is zero. This leaves

T, 3K i T _
Kby - oMy =0 (2.17)
s Ts

Since the eigenvectcrs have been taken as M-orthonormal

T -
)_c_i[M]xi =1 . (2.18)
Therefore,
9A.
i T, 9K
= (x.) [ (x. 2.19
(o = &)obw 1) (2.19)

Now to evaluate this further, (xi)o is a vector with all terms zero

except the ith term, see Eq. (2.12). The term krs is any term in

the K matrix, so [aiK ] will have all terms zero except the terms
TS

(r,s) and (s,r), which will be 1.0. This leads to

~

a(xi)o 1
— = (X X = a—p—
akrs ( si)o( ri)o Girsis my; (2.20)

(xsi)o is the sth term of the eigenvector (fi)o. This means that

3y, . 3\,
Ey- =0, T#1i Tope =0, T#s (2.21)
and
3(x)
0 1
*, Cm. (2.22)
ii ii

Equation (2.21) can be substantiated physically. In the series

(2.13) any derivative containing an odd power of an off-diagonal
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parameter must be zero. This is true because a change of coordinates
will change the sign of several off diagonal elements Aki. and Amij.
If the derivatives containing odd powers of bm, . or Akij were not
zero, the terms containing these derivatives would change sign with
a coordinate change. This means that the eigenvalues would change
values with a change in coordinates which cbviously cannot be correct.

In the same manner

3(x ) 3(x1) 3
o _ . o _ (2.23)
T =0, r#i - =0, T#s
T TS
30) A
T e (2.24)

11

To get the second derivative of the eigenvalue with respect

to krs’ differentiate Eq. (2.17) again.

T
3x, 2 32,
= 9K 3<K T
25 Gy ¢ 50K - x; Mx; -
s 3k_ 2 3k
Trs s
T
A 9X. A
i "= i T, M _
2o m, My &l % 0 (2.23)
Ts TS TS Ts

The second and fifth terms of Eq. (2.25) are zero.

T 2 T
2 | X 1x. - e xT[M]x -2 iﬁ M]x, =0 (2.26)
3k__‘ok_ =i 2 ithH 3k__ 3k 51 )
rs 1S akrs TS TS
Applying Eq. (2.18),
g By oo
= Ix. - - .
3k_ 2 ’ akrs [akrsJii ’ akrs akrs [M]Ei ° (227

TS
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The derivatives of the eigenvectors with respect to krs and m_  are

shown in the next section. Substituting the derivative of the eigen-

vector with respect to krs into Eq. (2.27) and further evaluating as

was done for Eq. (2.19) results in

a2(xi)o 28, ;
= s, S T
- 2 =
ok_ meplgs [ () -0 ]
20y
3 (Al)o )
Bz
In the same way
. 2
o-(Ai)o ZGSi(Ai)O

PR (R R eI I

20q),  20M),

2 2
mg; ()

The mixed second partial derivatives are found to be zero

az(xi)o

3k__dk
TS uv

320
am_ _am___
TS uv
3% (s
( 1)o

oAk T
TS TS

'
o

aZ(Ai)o

1
MK

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

28)

29)

30)

34)
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Following the same procedure higher derivatives can be

evaluated but will not be needed here.

Derivatives of Eigenve

ctors

Since the eigenvectors form a complete set of vectors any

derivatives of the eigenvector can be represented by a linear com-

bination of the eigenvectors, as in [7,10]

Differentiating Eq. (2.14) with respect to krs'

3A.
i

N

oX.

3K a--xi M =1
- { - — - —
3% Klge - e 0% - gl 1%y - MM = 0
Ts Ts Ts Ts Is

The fourth term in Eq. (2.37) is zero.

9X. 3K axi

-1
iM]ak T [ak T3k
IS

M]-}Si

Substituting Eq. (2.36) into Eq. (2.38)

n
[K-)\iM].Z biji(j = [ - —=——M]x.
j=1 Ts s

Premultiplying both sides by fi

T

j=1

n n
X (K] I b % - *i-’{[M].Z bi3%5 = - Kl 1%
j=1 s

M]x.

-1

(2.

(2.

(2.

(2.

40)
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This simplifies to

BX
= - 2.
O3’k " ik[akrs s M (
Ny
&([akrs T Mlx;
blk = Y. = N > k # 1 . (2'
i Tk
Now differentiating Eq. (2.18) with respect to krs gives
T %% T oM
zfi[M] T Y [ak ]_i =0 . (2.
TS
Substituting Eq. (2.36) into (2.43)
x;[M b. 2
;4] Z 3% = (
b T M 2
ii Ei[ ]Zi =0 .
Therefore b.. =0 . (2
ii
Equation (2.36) can now be written as
T, 9K 9%
3X. n —J[ak T 3K M]Ei
—1 = Z s X (2
akrs 551 (ki Aj) =j
41
Further evaluation gives the result
B(xn)
T— N @.
]
3 (Xpi) §_ 6.
o _ ™m si .
K = m#Fio. (2.

TS (Qs)y - (Ap)y) myr Mnss

41)

42)

43)

.44)

45)

.46)

.47)

48)

49)
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In the same manner the derivative of the eigenvectors with

respect to m . can be obtained.

iy ) Sir Sis (2.50)
5m - 3/2 ST

TS 2(mii)
:}(Xmi) As 8 )
—t = L T S mEi. (2.51)
Mg 0s), - Or) Imrr /nss

Higher derivatives of the eigenvectors can also be obtained, but
are not needed here.

The explicit expressions for the second derivatives of the
eigenvalues with respect to elements of the K and M matrix have been
derived here for the special case of a diagonal K and M matrix. In
this special case the second derivatives are needed because the first
derivatives are zero. In the next chapter the derivatives, Equations
(2.28), (2.30), and (2.51) are used in the method of selecting terms

for a Rayleigh-Ritz analysis.



CHAPTER III

FORMULATION OF METHOD TO CHOOSE TERMS FOR

RAYLEIGH-RITZ ANALYSIS

As noted in the introduction, the Rayleigh-Ritz method is an
approximate method often used in solving eigenvalue problems for
structural systems. Strictly, it is a general procedure used for
solving various types of variational problems, see [17,18], but here

the interest is in eigenvalue problems for structural systems.

Rayleigh-Ritz Analysis
For the Rayleigh-Ritz method the assumed deflection solution
is represented by a linear combination of functions which satisfy

the geometric boundary conditions of the system.

n
W, = ) a6, (3.1)

where Wy is the deflection, aij are undetermined coefficients, and
¢j are the assumed functions.

Rayleigh's Principle states that a conservative system vi-
brating about an equilibrium pesition has a stationary value of fre-
quency in the neighborhood of a natural mode. In the neighborhood

19
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of the fundamental mode, the stationary value is a minimum. Rayleigh's

quotient may be expressed in the form, see [19],

A =RW) = = (3.2)

where A = w2, V is the maximum potential energy of the system in

max
free vibration, and T* is the maximum kinetic energy of the system

in free vibration divided by w?. Vmax and T* are functions of the
spatial coordinates of the system. In the Rayleigh-Ritz method, the
series Eq. (3.1) is substituted into Eq. (3.2) making Eq. (3.2) a
function of the unknown coefficients, aij' Since Rayleigh's quotient
always yields an upper bound on the fundamental frequency of the
system, it is desirable to have a minimum of Rayleigh's quotient.
The essence of the Rayleigh-Ritz method is to secure a minimum of
the Rayleigh quotient with respect to the undetermined coefficients.
Therefore to secure this minimum the partial derivatives of Eq. (3.2)
are taken with respect to the undetermined coefficients. These

partial derivatives are set equal to zero.

(LDt

AN L . -
E N n=1,2,3,.... (3.3)
v

max.
3( T ) . avmax aT* 3

3 _T 3 -V —:0 (-’ 4)
an a.,n max aan

EAY
max aT*
3oy - A 35; =0, n=1,2,3,... . (3.6)
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Equation (3.6) is a set of n equations which can be represented in
matrix form as

[K'la' = A(M']a’ . (3.7)
This is a standard eigenvalue problem. The solution of this problem
will yield approximations to the natural frequencies of the system and
the modes of the system in terms of the assumed functions ¢j. If ¢j
is a complete set of functions, the solution of Eq. (3.7) will be an
exact solution of the eigenvectors and eigenvalues of the system, pro-
vided an infinite number of terms could be taken in the series Eq. (3.1).
However, Eq. (3.1) must be truncated. The more accurately the functions,
Qj’ define the natural modes of the system, the fewer the number of
terms needed in (3.1) to get accurate values for the eigenvalues. In
fact, if an exact mode is chosen for ¢j, only one term will be nceded to
yield the eigenvalue for that mode. Since the natural modes arc normal-
ly not known, the more terms included in (3.1) the more accurate will be
the natural frequencies obtained, but the eigenvalue problem (3.7) will
become larger.

The usual way to apply the Rayleigh-Ritz method is to solve the
problem using a certain number of terms in the series, Eq. (3.1), then
repeat the solution, adding another term to the series until the eigen-
values of interest show a relatively small change when another term is
added to the series. The number of terms which can be included in the
series is usually limited by either computer storage or computer time
required to solve the eigenvalue problem. When the procedure of adding
terms to the series is stopped, in effect the eigenvalue problem, Eq.
(3.7), is truncated. There is no information about the effect of the
terms omitted from the series. There has been no judicious selection

of the terms in the series.
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Many terms included may have little effect on the eigenvalues in
question, and important terms may have been omitted.

A method which does employ some selection of terms has been
presented by Kukudzhanov [20]. This method has the following steps:
(1) solution of all possible 2 by 2 eigenvalue problems, (2) select-
ion of the 2 by 2 problem which gives the lowest frequency, (3) then
solution of all possible 3 by 3 problems which result from adding a
term to the chosen 2 by 2 problem, (4) a repetition of this procedure
of building the size of the eigenvalue problem one term at a time un-
til a satisfactory solution is obtained. This method selects terms,
but many eigenvalue problems must be solved, although the size of
these eigenvalue problems will probably bc smaller than with the

standard approach.

New Method for Selecting Terms
for Rayleigh-Ritz Analysis

A method is presented here which selects significant terms in
series (3.1) to be used in solving the Rayleigh-Ritz problem. Before
using this method, the general function, ¢, must be chosen for Eq. (3.1).
The K and M matrices are then calculated for n terms in the assumed
series. For each eigenvalue of interest, one term which most closely
approximates the mode of interest must be selected, for a total of m
terms. This method then selects the terms which are significant to
the eigenvalues of interest. The terms are selected by using the
partial derivatives of the eigenvalues with respect to the elements

of the K and M matrices of Eq. (3.7). An eigenvalue problem of size
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m is then solved for each eigenvalue of interest. m is an arbitrary
nunber depending on the problem, but m will likely be much smaller
than n. Information is calculated about the approximate cffect of
the n-m terms omitted from the eigenvalue problem. A detailed ox-
planation of the method now follows.

A problem, (3.7) is formulated with n terms. From these n terms,
m terms are selected as those temms representing the best approxima-
tion to the eigenvalues to be calculated. The eigenvalue problem for
them is then partitioned as shown. The m by m submatrices in the upper

left hand corners of K and M contain the m best approximation terms.

BRI ! vw [ 1 t 1 l v-

kllkIZ . klm"" kln a, mllmIZ"'mlm""mln al

k21522 - my1M22 : -

- - : - i .

al .1 . 1 ] <

Kig - ki J a m' m }... a { (3.8)
N P S N Bl Sl ﬂ

-z - | -

- - - | -

-1 1 al ] 1

knl - AP knn a, {mnl . .. E"‘mnn a

If the eigenvalue problem is solved for m terms, eigenvalues and

eigenvectors are obtained:

()‘l)m, (AZ)m’ teey (Am)m) @1)111’ @Z)m: LR (ém)m .

Now it is desirable to know the effect of adding terms m+l through n
to the eigenvalues in question. As noted in the last chapter, an ap-

proximation to this may be obtained by a Taylor expansion about the
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eigenvalue in the m by m problem.

504) 3(xy)
/] = ()i)m + ! . L ki(m*-l) + n n mi(m+l) *
i (mel) T (m+1)
li(/]') 3(r1)
m m
.k — mj .. 3.9
* "ki(m+2) 1(m+2) * cmi(m+2) ™ (m+2) b (5-9)
32(55) 52031)
1 Ymoo 2 i m ) 2
* 3 [;;E““‘ (kl(m+1)) + 8m{1F*1w (ml(m+1)) SO £ N
L(m+1) o

The coordinates in Eq. (3.8) can be changed using the modal matrix
for the m terms for which the eigenvalue problem was solved. The

modal matrix will be

a1; 3 e alm% 0 0
31 %2 o
3351 %3 T
h aml am2 amm; 0 0 19
0 0 01 0
- - -0 1

The transformation of coordinates is

17K T A]
(1T ] [A]

(K]

(3.11)
M]

The eigenvalue problem is now the same as Eq. (3.8) except for a

transformation of coordinates.

[K]a = A[M]a (3.12)



This can be put into the form

[m . [/,'ri]:] a= [m . [/.:@ a (3.13)
or
.-' = r | A
kj, 0 0 l\ 0 3, o0 e 0 3,
0 k22 ] 3, 0 LIPERRE | 2,
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Equations (3.14) and (3.15) are in exactly the same form as Egs.
(2.8) and (2.9). The derivatives in Chapter II have been obtained
for this type of matrix Eq. (3.14), with changes (3.15). Using the
fact that the first partial derivatives and mixed second partial

derivatives are zero, Egs. (2.23) and (2.32) to (2.34), the new eigenvalues

can be approximated by the Taylor series.

32004) 32(33)
T (Xl)m : 2i‘ [akz = 1(m+1))7 ok2 - 1(m*2))2
1(m+1) i (me2)?
32(25) 32(x1)
n 2 'm 2
. )T+ (m. . ) (5.16)
3kin m m o 1(n+1)
R W )2 00 2 ]
i(n+2) i’ "
ami(m+2) Bmin2

As pointed out in Chapter II, this truncated equation is accurate
only for very small changes in the design parameters. If the signi-
ficant. terms are included in the original m by m problem the terms
left are insignificant and Eq. (3.16) should give a good estimate of
the ith eigenvalue for the n by n problem. When all significant
terms have not been included in the m by m problem, an excellent in-
dication of the terms which are significant to the 3 th eigenvalue

are given by the individual terms from Eq. (3.16)



32(x1) 32(2y)

m 2 1 2 -

e U R e R (5.17)
is

where s is any of the terms m+l through n. The individual terms
Eq. (3.17) do not necessarily give a good estimate of the actual
change caused to the ith eigenvalue when the sth term is added to
the eigenvalue problem, it only gives an excellent indication of the
relative significance of the terms m+l through n on the ith eigen-
value. When all significant terms have been included in the m by m
problem, the terms (3.17) do give a good estimate of the actual
change.

The prime objective of this method is to determine from the
K and M matrices of an n by n problem the terms which are signifi-
cant in calculating the ith eigenvalue. For any Rayleigh-Ritz pro-
blem of size n by n, the ith eigenvalue, Ai being one of the lowest
eigenvalues, can be calculated accurately by solving only an m by m
eigenvalue problem. As was noted before one of the most significant
terms for each of the low frequencies of interest must be included
in the original m by m problem. This is not & unreasonable limita-
tion since the geometry of the structure will almost always provide
insight for this choice.

Rayleigh's quotient can also be used to give a good approxi-
mation of the ith eigenvalue of the problem defined by Eqs. (3.14)

and (3.15). For Eq. (3.14) the ith eigenvalue has the value
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Now using the derivatives of the eigenvectors with respect to elements
of the K and M matrices, Eqs. (2.50) and (2.51), the eigenvector 3;

can be approximated including all the terms from m+] to n.

1 B(Qi)m ) Q(Qi)m
. = . + — | —— . +-—-—m_ +
g (éi)m 1! [aki(m+1) i(m+l) ami(m+1) i(m+1)
3(az) 3(aj)
-B-k—-l—‘m—~k. +m§_Lm‘ 2 "'...]+..
i(m+2) 1(m+2) i(m+2) 1(m2)

(5.19)

If the significant terms are included in the m by m problem, Eq.
(3.10) should give a better approximation of the eigenvector,

2;. Rayleigh's quotients using the new eigenvector should give

h

a better approximation to the it eigenvalue.
al [K]g,
A o= =L (3.20)

i T
2; Mg
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When all the significant terms have been included in the mby m pro-
blem, Ai and (Ai)m from Eq. (3-16 and Ai from Eq. (3.20) should
converge to the same value. Let us now restate the method step by

step.

Step by Step Procedure of New Method

An eigenvalue problem is to be solved by the Rayleigh-Ritz
method. Taking n terms in the series (3.1), elements have been

calculated for the K and M matrix in Eq. (3.7).
[K']a' = x[M']a' . (3.7)

Step 1. For each of the eigenvalues of interest, choose at least
one term in the series (3.1) which most closely represents the mode
of interest. The geometry of the structure will be important in
determining which terms to include. Experience has shown that the
terms which have the lowest values of kii/mii from Eq. (3.7) are
often the most significant terms in the lower frequencies. If
there is any doubt, the terms with the lowest values of kii/mii
should be included.

Step 2. The terms which have been selected in Step 1 make up an
eigenvalue problem of size m by m. This problem should be solved,
providing m eigenvalues and eigenvectors.

Step 3. A coordinate transformation is now effected using the m
eigenvectors from Step 2, see Egs. (3.10) and (3.11). The problem

can now be visualized as

[{K]+[AK]] 3=x[fM]+[AM]] a . (5.13)
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Step 4. A new approximation for the ith eigenvalue can be calculated

using the Taylor series (3.16) rearranged here

32(21) 32(21)
1 m 2 m 2
o = (X)) + = [—— (k. gy = @)
i i’y 2t ak%(m+1) i(m+1) ami(m+1) i(m+1)
201, 20y
¥ E%'[a ixl)m (ki(m+7))2 * i EXI)m (m'(m+2))2]+ o
) aki(m+2) - ami(m+2) !

(3.21)

A new approximation to the ith eigenvalue can also be calculated
using expressions (3.19) and (3.20). The ith eigenvaluc in these
equations refers to the eigenvalue associated with the ith term in
the problem (3.13). Most likely the lowest eigenvalue is of inter-
est. Let us assume that the lowest eigenvalue is associated with
the it term, i.e., after the coordinate transformation kii/mii is
the smallest of these possible terms from (3.13). If ki from Eq.
(3.21), Ai from Eq. (3.20), and (Ai)m from Eq. (3.21) are nearly
equal, then Ai will be nearly as accurate as if the n by n eigen-
value problem had been solved. An evaluation of "nearly equal" and
"nearly as accurate as' from the previous sentence will be made in
the next chapter.

1f the ki‘s from Eqs. (3.20) and (3.21) are not reasonably
equal, then there are terms which are significant to the ith eigen-
value which have not been included in the m by m problem.
Step 5. The significant terms are indicated by the individual terms
in Eq. (3.21). The r most significant of these terms chould be

chosen and added to the m by m eigenvalue problem. The procedure
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outlined here should be repeated starting with Step 2. The new pro-
blem in Step 2 will be of size (m+r) by (m+r). r is, of course, of
arbitrary size. The procedure should be repeated from Step 2 until
an accurate value of )i is obtained.

The procedure should be carried out from Step 4 for each
eigenvalue of interest.

Completion of this method will yield the eigenvalues of in-
terest calculated to nearly the same accuracy as the n by n problem
by solving only a few (m+r)by(m+r) eigenvalue problems, where (m+r)<n.
The relative magnitudes of m+r and n depend upon the problem and the
accuracy desired.

The step by step procedure has been computer programmed. An
explanation and listing of the program is in the Appendix. The step
by step procedure listed here is not necessarily rigid. The basic
idea is to use the individual terms in Eq. (3.21) to indicate whicﬂ
significant terms have been left of the problem for the eigenvalues
of interest. Many different procedures could be used and may have
been, but the procedure listed here and programmed seemed to be a
good general procedure. The next chapter will present some applica-

tions of this method.



CHAPTER IV
APPLICATIONS OF THE METHOD

An evaluation and investigation of this technique has been

conducted and some of the results are presented here.

Beam with Simple End Supports and
Elastic Interior Supports

The first problem is as shown in Fig. 4-1, a beam on simple
end supports with elastic interior supports. This problem is
typical of problems which might be solved by a Rayleigh-Ritz analy-
sis. Some problems of this type are solved in Ref. [21]. If w is
the deflection of the beam in the y direction, the expression for

potential energy of the beam is

_H

v 3 a2 2
max 2

Eh%ax + kw1 #wn)’
o 9X

vk (g2, gy (222 @.1)

tiax 3x

For the kinetic energy of the beanm

32
*=%pAJ wadx . (4.2)
o

For the modal function a sine series was assumed
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Figure 4-1- Beam with Simple End Supports and 2 Elastic Interior
Supports.



n .
W = ): a; sin 57 . (4.3)
j=1

Non-dimensionalizing the equations of motion for this beam gives

the frequency parameter or eigenvalue as

2 4
WepAL
B . (4.4)

X =
The spring stiffness parameters to be varied are

23k d tky
T ET

The Rayleigh-Ritz analysis presents the eigenvalue problem

[Kla - A[M]a =0 (4.5)
with
o _ K3 .. onm . omn . 2nT . 2mm
]\nm' T [sin 3 sin 3+ sin == sin 3]
kel 1,3 nn mn 2nm 2mm
* T (3) nm[cos =5 €0s T + cos =5~ cos T] (4.6)
n#m
_3 .m4  ked . oonm . o 2n7@
o =3 )+ g [sin® 5+ sin? S

ktﬂ‘ ™, 2 nt 2
—_ (= 2 20
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For this problem the mass matrix is diagonal

Mnm =0, n#Emn

Mnn =3/2 . (4.8)

The first case run for this problem was relatively simple

with no torsional spring and very stiff displacement springs.

23k
T ° 10000
(4.9)
Wy .
El

The first 50 terms were included in the series (4.3) and the low-
est 3 eigenvalues were of interest. To initially include the
most significant term for each of the lowest 3 eigenvaiues, terms
1, 2, 3 and 6 were chosen. The results of this 4 by 4 problem
are shown in Table 4-1. This completes steps 1 and 2 in the pro-
cedure.

A coordinate change was made using the modal matrix, step
3. The second order changes as shown in Eq. (3.21) were then
calculated to determine the relative effects of the remaining 46
terms on the lowest 4 eigenvalues. Since 4 terms were chosen in
the first step, the eigenvalues must be determined for all 4 of
these because it was not known which of these 4 terms were most
significant for the lowest 3 eigenvalues. These effects are shown
in Table 4-2. The addition of all these effects for each eigen-

value to the value from Table 4-1 gives a new ap;roximation to
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Table 4-1. Eigenvalues and Eigenvectors from Problem of 4
Terms - 1, 2, 3 and 6
Beam with Simple End Supports and 2 Elastic In-
terior Supports.
2k
23k t
TG 10000 , I 0
Number Eigenvalue
1 97.41
2 1558.54
3 10001.12
4 10019.23
Eigenvector Components
Term
Number 1 2 ° 4
1 0.15x1075 | -0.22x10"5 1.00 0.63x10712
2 0.58x1073 | -0.15x10"5 | -0.12x10-10 1.00
3 1.00 0.59x1078 | -0.15x107% | -0.58x1073
4 -0.59x1078 1.00 0.22x107% | 0.15x1073




Table 4-2. Calculated Second Order Changes in Lowest 4 Eigenvalues
Due to Remaining 46 Terms.
Beam with Simple End Supports and 2 Elastic Iaterior
Supports.
2k
L3k t
57 10000. , S 0.0
Predicted Change in Eigenvalue
Term
Added Lowest 2nd Lowest 3rd Lowest 4th Lowest
Eigenvalue Eigenvalue Eigenvalue Eigenvalue
*
4 - -346500.
5 -133300. -
7 -34650. -
8 - -20380.
9 - -
10 - -8329.
11 -5680. -
12 ° ~ - -
! '
13 = = -2912. -
14 ® x - -2165.
o o
15 — —_ - -
16 ] g - -1269.
17 ® “ -996. .
w 0
18 5 a - -
~ -~
19 - - -638. -
-~ -
20 < < - -520.
21 - -
22 - =355,
23 -297. -
24 - -
25 -213. -

Table 4-2 (continued)




Table 4-2 (continued)

Term
Added

Predicted Change in Eigenvalue

Lowest
Eigenvalue

2nd Lowest
Eigenvalue

3rd Lowest
Eigenvalue

4th Lowest
Eigenvalue

[N
N = O

w
w

All less than 1.0 x 10‘10

| S

A1l less than 1.0 x 10-7

-118.

-90.

-55.

-44.

-17.

~-14.

-182.

-135.

-22.

-18.

*Blank spaces have values less than 1.0 x 10-8.
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each of the 4 lowest eigenvalues, see Eq. (3.21). These new esti-
mates are shown in Table 4-3.

The first order changes, due to the remaining 46 terms, are
calculated for the eigenvectors of the 4 lowest eigenvalues, see
Eq. (3.19). The modified eigenvectors are used in Rayleigh's
quotient, Eq. (3.20), to calculate a new approximation to the lowest
4 eigenvalues. These estimates are also in Table 4-3. This com-
pletes step 4 in the procedure.

The results in Table 4-2 and 4-3 need to be discussed now.
For the lowest 2 eigenvalues the 3 estimates from Table 4-3 are
exactly the same, and the changes from Table 4-2 are very small.
This was to be expected, at least for the lowest eigenvalue bexause
of our knowledge about the physical aspects of the problem. The
eigenvalues designated 3Td and 4th Jowest have certainly not been
approximated very closely as can be seen in Table 4-3. Step 5 in
the procedure is the selection of the terms which are significant
to each eigenvalue of interest. The terms are selected as the
largest terms from the second order changes in Table 4-2.

Including the initial 4 terms, a total of 6 terms were
chosen to determine a better value for the lowest 4 eigenvalues.
Terms in the original 4 terms which were insignificant were omitted
from the 6 by 6 problem. Six terms were chosen for each of the 4
eigenvalues. Solutions to these 6 by 6 problems with the new ap-
proximations from the Taylor series, and from Rayleigh's quotient

are shown in Table 4-4.
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Table 4~3. Lowest 4 Eigenvalues with New Estimates for 4 by 4
Problem.

Beam with Simple End Supports and 2 Elastic Interior

Supports.
3 .
jL—}(-ILOOOO M\—t-OO
EI ~ T EI =~ °°
Eigenvalue Eigenvalue with Rayleigh's
from Second Order Ap- Quotient for
4 by 4 proximations for New Eigenvector
Problem Remaining 46 Terms Approximation
Lowest
Eigenvalue 97.41 97.41 97.41
2nd Lowest
Eigenvalue 1559. 1559. 1559.
3rd Lowest
Eigenvalue 10001. -169000. 15900.
4th Lowest - .
Eigenvalue 10019. -370100. 11650.




Lowest 4 Eigenvalues with New Estimates for 0 by 6 Problems.

Table 4-4,
Beam with Simple End Supports and 2 Elastic Interior Supports.
ek
23k t
S 10000. , St 0.0
Eigenvalue Eigenvalue with Second Rayleigh's Maximum* Correct
from Order Approximations Quotient Difference Answer
6 by 6 for for of Value From
Problem Remaining Terms New in Columns 50 by 50
Eigenvector 1,2, or 3 Problem
Approximations in % of
Column 1
Lowest
Eigenvalue 97.41 97.41 97.41 0 97.41
2nd Lowest
[5
Eigenvalue 166.8 158.6 165.8 4.9 158.9
3rd Lowest
Eigenvalue 338.1 334.9 336.0 1.0 334.4
4th Lowest
Eigenvalue 1559. 1559. 1559. 0 1559.
(maximum value -~ minimum value) x 100.

*From the values in Columns 1, 2, and 3,

(value in Column 1)

18
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The approximations for the lowest 3 eigenvalues have con-
verged, which means that the significant terms of the 50 have becn
included in the eigenvalue problem solved for cach eigenvalue of
interest. The eigenvalue which was originally thought to be the
second lowest eigenvalue, Table 4-1, is found to be the fourth
largest or even higher, Table 4-4. This was precisely the reason
it was noted earlier that all four terms originally chosen must
be made to converge.

This was a fairly simple problem in that it did not take
many terms to calculate accurate eigenvalues, and most of these

were in the first few terms. A slightly more difficult problem is

now solved for the same beam with different spring constants.

Ekt
= 2000. , I 200.

)
EI

Fifty terms were included in the series, and initially the first
five terms in the series were chosen. The results of this pro-
blem are shown in Tables 4-5 through 4-9. For each eigenvalue of
interest a 10 by 10 problem, Tdle 4-8 and finally a 13 by 13 problem,
Table 4-9, was solved. The terms for these 10 by 10 and 13 by 13
problems were selected as the largest values for the second order

changes in Table 4-6.



Table 4-5. Eigenvalues and Eigenvectors for Problem of First
5 Terms.
Beam with Simple End Supports and 2 Elastic Interior
Supports.
5 2k
Lk, _t_
BT S 2000. , BT C 200.
Number Eigenvalue
1 263.3
2 1364.
3 2768.
4 4425,
5 6351.
Eigenvector Components
Term
Number 1 2 o 4 5
-0.271 |-0.146x10"5| -0.474 |-0.320x107° 0.8375
2 .181x1075 -0.556 {0.158x10"5 0.831 |-0.266x1075
3 -0.738 0.547x10~6 0.662 0.115x1073 0.136
4 .353x1075 0.831 |0.196x10°° 0.556 | 0.158x107°
5 0.618 {-0.310x10~° 0.581 -0.284x10"5 0.529
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Table 4-6. Calculated Sccond Order Changes in lLowest 3
Eigenvalues Due to Remaining 45 Terms
Beam with Simple End Supports and 2 Elastic
Interior Supports.
% = 2000. , R:—It = 200.
Tern Predicted Change in Eigenvalue
Added Lowest 2nd Lowest 3rd Lowest
Eigenvalue Eigenvalue Eigenvalue,
6 -* -1085. -
7 -0.527 - -2544.
8 - -778. -
9 -2.67 - -976.
10 - -263. -
11 -4.47 - -86.9
12 - -708. -
13 -0.019 - -677.
14 - -335. -
15 -1.84 - -630.
16 - -163. -
17 -1.65 - -88.0
18 - -477. -
19 -0.087 - -296.
20 - -175. -
21 -1.26 - -425.
22 - -102. -
23 -0.795 - -67.5
24 - -329. -
25 -0.096 - -161.
Table 4-6 Continued



Table 4-6 (continued)

45

Predicted Change in Eigenvalue

Term
Added Lowest 2nd Lowest 3rd Lowest
Eigenvalue Eigenvalue Eigenvalue
26 - -105. -
27 -0.883 - -298.
28 - -68.8 -
29 -0.454 - -50.7
30 - -235. -
31 -0.086 - -100.
32 - -69.6 -
33 -0.644 - -217.
34 - -49.1 -
35 -0.289 - -38.7
36 - -175. -
37 -0.074 - -67.9
38 - -49.3 -
39 -0.486 - -164.
40 - -36.6 -
41 -0.199 - -30.3
42 - -134. -
43 -0.062 - -48.9
44 - -36.6 -
45 -0.378 - -127.
46 - -28.3 -
47 -0.144 - -24.3
48 - -106. -
49 -0.052 - -36.8
50 - -28.3 -
*Blank spaces have values less than 1.0x1676
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Table 4-7. LlLowest 3 Eigenvalues with New Estimates for 5 by 5
Problem.
Beam with Simple End Supports and 2 Elastic Interior
Supports.
5 Lk
&__ = __E = 200
T 2000. , & 200
Eigenvalue Eigenvalue with Rayleigh's Quotient
from Second Order for New
5by 5 Approximations Eigenvector
Problem for Terms Approximation
6 through 50
. couest 263.3 246.2 286.9
igenvalue
2nd Lowest | 364 g -4172. 16530.
Eigenvalue
Srd Lowest | 5q4 -4385. 15000.

Eigenvalue




47

Table 4-8. Lowest 3 Eigenvalue with New Estimates for 10 by 10
Problem.
Beam with Simple End Supports and 2 Elastic Interior
Supports.
2k
23k t
T 2000. , TS 200.
Eigenvalue Eigenvalue Rayleigh's Maximum*
from with Quotient Difference
10 by 10 Second Order for New of Values
Problem Approximations | Eigenvector in Columns
from Remaining | Approximation | 1, 2, or 3
40 Terms in % of
Column 1
Lowest | )57 251.2 234.0 1.5
Eigenvalue
2nd Lowest)  ,5q 231.5 241.5 4.2
Eigenvalue
Srd Lowest| g5 g 539.5 529.2 12.6
Eigenvalue

*From the values in column 1,2,and 3,

(maximum value-minimum value)

(value in column 1)

x 100.



Table 4-9. Lowest 3 Eigenvalues with New Estimates for 13 by 13 Problem.
Beam with Simple End Supports and 2 Elastic Interior Supports.
Lk
o 3k
[
G 2000. , i 200.
Eigenvalue Eigenvalue Rayleigh's Eigenvalue Maximum
from with Quotient from Di fference*
13 by 13 Second Order for New Solution of values in
Problem Approximations Eigenvector of Columns
for Remaining | Approximations 50 by 50 1, 2, or 3 in
37 Terms Problem % of Column 1
Lowest
Eigenvalue 233.1 230.9 232.4 230.6 1.0
Znd Lowest 235.5 231.3 234.7 231.2 1.8
Eigenvalue
3rd Lowest 480.5 467.3 469.7 464 .4 2.7
Eigenvalue

*From the values in Columns 1, 2, and 3,

{maximum value-minimum value)

(value in Column 1)

100,

8h
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To give an indication of how the approximations to the
eigenvalues converge, the lowest and 2nd lowest eigenvalues were
calculated adding one term at a time to the eigenvalue problem
solved. After zach solution the estimated changes for each of
the terms remaining in the 50 term series was calculated. Also
after each solution a new estimate of the eigenvector was calcu-
lated and the eigenvalue was again approximated using Rayleigh's
quoticnt. This information is shown in Tables 4-10 and 4-11.
The initial eigenvalues were obtained by using the first 5 terms
in the series. From this information and other problems worked,
the maximum difference of the 3 approximations calculated gives
a good indication of how close the approximations are to the actual
solutions from the n by n problem.

A problem is now shown which requires more initial

terms to be chosen and requires more terms in the eigenvalues
to be solved.

The problem is a beam with simple end supports and 5 equally-
spaced elastic interior supports, the same as the supports in Fig.
4-1. For the modal function a sine series was used

igT" . (4.10)

=
n
It e~
[}
7}
=
=]

The spring stiffness parameters used were

2k
23k _ t
+T = 2000. 5T = 200.



Table 4-10. Calculation of Lowest Eigenvalue by Adding One Term
at a Time to the Eigenvalue Problem Solved.

Beam with Simple End Supports and 2 Elastic Interior

Supports.
2k
23k _ t
T ° 2000., O 200.

) = [ )

=3 E + 0 = Kol Cmo =]

5} %} 0 E L] o3 ~i 0

— — 1O o () E = =3 0~ o <o

n o Ke) -G O E & =7 b~ o = [l > |
£ m om + [Se} = 9] ) -O = <
- n - 3 D O O New D (] o = >0
(ST~ =% 53] 8| W JEogptal =] e .o (%] oz 3} =1
= ° Ec (8} 0 f=d » T S = O+ —
0o T Q Qo O O~ ] Q0T T o wn3 o= =] |0
> 3 v 3 > >E 3 = = - T eSs3 ol Quws 3 =[O X
O~ — T —— 0 ~ N e ~ = O — 3 U~ auv Q£ O 5
o © eI~} T O ~= ] ] Qo & %} I = E3aO O~
-0 > < > >N .o >T E > [ I — D> 0 S - o] 110
Q = = =~} [o} (=3 ] s 0 E & & 8 s EQ = helle]

258 | ER|855 88| &% 1585 | 223 2. |

ST | O | MR o Bt [ om @ 0 O st [ ICTIRN °

Z W | | ms O me W < << = Om &}
> %200 263.53| 246.2 |286.9 15.5 14.2
6 11 | 256.21| 243.9 {270.5 | -4.47 -7.12 10.4 11.1

7 9 | 244.94| 234.8 |253.5 | -2.61 -11.27 7.7 6.2

8 15 | 240.80 [ 232.6 |244.8 | -1.97 -4.14 5.1 4.0

9 17 | 238.94 | 232.3 {241.2 | -1.52 -1.86 3.7 3.6
10 21 | 236.83| 231.6 {237.2 | -1.36 -2.11 2.4 2.7
11 27 | 235.54 231.2 {235.0 | -0.96 -1.29 1.8 2.2
12 23 | 234.72 | 231.2 |233.9 | -0.73 -0.82 1.5 1.8
13 33 | 233.87| 231.0 |232.8 | -0.70 -0.85 1.2 1.4
14 39 |[233.254 230.9 |232.1 | -0.53 -0.62 1.1 1.2
15 29 |232.80 | 230.9 [231.8 |-0.42 -0.45 0.8 0.9
16 45 | 232.34 230.9 |231.4 |-0.41 -0.46 0.6 0.8
17 35 {232.051 230.8 [231.2 (~0.27 -0.29 0.6 0.6
18 41 |[231.851 230.8 |231.1 |-0.19 -0.20 0.5 0.5
19 19 | 231.64| 230.8 | 230.9 |-0.18 -0.19 0.4 0.4

Correct value for 50 terms = 230.62.
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Table 4-11. Calculation of Second Lowest Eigenvalue by Adding One
Term at a Time to the Eigenvalue Problem Solved.

Beam with Simple End Supports and 2 Elastic Interior

Supports.
2k
L3k t
=7 = 2000. , 7 = 200.
- =4 m Q
=4 £ 7] = o o Y o
- O 5] = E o 30 -
= — 10 N o o g = E o - ]
n o~ 2 13 - 00 E & = ~ o = QU Oe° >0
E S [=] o E bedhall © 0 =1 5] %) -0 =]
= > un [ ~ O " Y o3 S ST O SN T Q oo W=
o g E = Ca Gl = Saaa o] “w o fogal L ©0.0 Q bl -Ral ol
=00 ) <] (&) o] = T | e sl o> 0
00— | T O 00 0 E - -~ o wn o w3 O3] A ™ME| H O
Gd o D 03 =N S0 ¢ = - T I D~ K R awn S| Rl ™=
oo T~ -, — e — = O~ 2 0l UO=aw oo =| ofv
- T < < A o o) o = < = E3COIO|O X
- Dol < > -] > e > em S > L — > Bl S o0 1]+
09 = =3 ST 0 (-] Ec = g ce E © M| =
2 > EQ Q> o O - - O e 3 0.~ > m 10
[ - B0 ey~ o0 & =N ¥ T + T o] ~N Ll L&
3 0 Q -t «~ O o €3 Y el 0 o=t T [ ] G A =3
zwn o W v wE o m el 0 <m< Z O~ O
s |17 136412 4172, | 16530.
8 6,8,101 265.11| 235.5 | 314.2 29.7 14.7
] 12 251.11| 232.6 | 271.4) -5.88 |-14.00 15.5 8.7
10 14 246.83 | 232.5 | 259.7| -3.24 -4.28 11.1 6.8
11 18 | 242.01{ 231.7 | 247.5| -2.90 -4.82 6.5 4.7
12 24 239.51| 231.5 | 241.5| -1.80 -2.50 4.2 3.6
13 20 238.03| 231.5{ 238.9| -1.28 -1.48 3.1 3.0
14 30 236.54 1 231.4 | 236.2 | -1.19 -1.49 2.2 2.3
15 36 235.541 231.3 | 234.7 | -0.85 -1.00 1.8 1.9
16 26 234.81| 231.3 | 233.9| -0.67 -0.73 1.5 1.6
17 42 234.10| 231.3 1} 233.0| -0.63 -0.71 1.2 1.3
18 48 233.56{ 231.3 | 232.5| -0.49 -0.54 1.0 1.0
19 32 233.13f 231.3 | 232.2| -0.41 -0.43 0.8 0.9

Correct answer for 50 terms = 231.17.
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The first 50 terms were used in the series and the lowest 3 eigen-
values were of interest. The first 6 terms were initially chosen
to include the most significant term in the first 3 eigenvalues.
The solution for the original 6 by 6 eigenvalue problem is shown
in Table 4-12. These original 6 eigenvalues converged after 17
terms were selected for each. These answers are shown in Table
4-13. The answers are a result of the solution of six 17 by 17
eigenvalues problems. Although this is quite a few terms and
requires the solution of 6 eigenvalue, the storage required is
much less than for the 50 by 50 problem and the computation

time is also less.



Table 4-12. Eigenvalues and Eigenvectors from Problem of First 6 Terms.
Beam with Simple End Supports and 5 Elastic Interior Supports.
2k
23k t
5T = 2000. , T = 200.
Number Eigenvalue

1 2002,

2 2010.

3 2262.

4 2531.

5 3068.

6 3598,

Eigenvector Components
Term 1 2 3 4 5 6
Number

1 0.938 -0.925x10°" 0.298 -0.440x107" 0.175 -0.297x10~"4
2 0.102x10-3 0.870 0.284x107" 0.413 0.168x10°" 0.270
3 -0.340 0.499x10°5 0.890 -0.668x107° 0.305 0.227x1076
4 -0,455x10"6 | -0.484 -0,405x10™5 0.823 -0.283x1075 0.298
5 -0.0646 -0.138x1075 | -0.345 -0.352x10"°% 0.936 1 0.154x10-5
6 0.827x10°%| -0.0992 0.346x10°6 -0.390 -0.943x1079 0.916




Table 4-13. Lowest 6 Eigenvalues with New Estimates for 17 by 17 Problem.
Beam with Simple End Supports and 5 Elastic interior Supports
2k
23k _ . t
N 2000., T S 200.
Eisenvalue Eigenvalue with Rayleigh's Eigenvalue Maximum*
gfrom Second Order Quotient from Difference
17 by 17 Approximations for New Solution of | of Values in
Proglem for Remaining Eigenvector S0 by S0 Columns 1,
Terms Approximation Problem 2, or 3 in
% of Column 1
Lobowest
Eigenvalue 237.4 236.6 236.5 236.1 0.4
2nd Lovest 238.0 236.6 236.7 236.2 0.6
Eigenvalue
3rd Lowest 435.2 434.5 434.6 434.1 0.2
Eigenvalue
ath Lowest 473.6 468.4 478.8 465.1 1.2
Eigenvalue
Sth Lowest 542.5 516.5 528.3 513.9 a.s
Eigenvalue
6th Lowest 573.5 560.6 559.8 554.7 2.4

Eigenvalue

¥s
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Discretely Stiffened Cylindrical Shell

The problem that was the motivation for seeking a method
to choose terms for a Rayleigh-Ritz analysis was that of free vi-
bration of discretely stiffened cylindrical shells with arbitrary
end conditions, see [24]. This reference develops an analysis to
determine the free vibrational characteristics of a thin uniform
cylindrical shell with arbitrary end conditions with an arbitrary
number of ring and stringer stiffemers. A Rayleigh-Ritz analysis
is used to obtain approximate solutions. Kinetic energy and po-
tential energy expressions were derived for the cylinder, stringers,
and rings in terms of the displacement of the middle surface of
the cylinder. A finite series was assumed for the deflection
shapes and the eigenvalue problem was formulated similarly to
those explained previously in this dissertation.

In this problem there were 3 displacement variables. Longi-
tudinal and circumferential mode shapes had to be assumed. Unsym-
metrical stringer combinations made antisymmetric mode shapes
necessary. The resulting eigenvalue problem became large with
only a few assumed terms. Because of the large eigenvalue pro-
blems needed to obtain good approximations to the eigenvalues of
interest, much time and effort was expended in trying to solve
the eigenvalue problems. Accurate answers were obtained in many
cases only after 60 by 60 eigenvalue problems were solved. The
difficulties in obtaining accurate answers are discussed in Ref.

{25], page 61.
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To solve the 60 by 60 eigenvalue problems, three 60 by 60
double precision matrices were necessary. Using the method of
selecting terms, the 60 by 60 K and M matrices were needed in
single precision only, and three double precision matrices of
only 15 by 15 or less were needed. Therefore the core storage
required using the method of selecting terms was less than half of
the standard method. The sizesof the eigenvalue problems using
the double precision routine were much smaller, which means that
computation time was reduced considerably.

An example is now shown of a typical solution using the
new method. The case is for a freely supported cylindrical shell
with 13 equally spaced rings. The natural frequencies of interest
are for a circumferential wave number of 10. The lcwest radial
frequency in this mode is desired. The 60by €0 K and M matrices
were calculated and the new method was applied. The most signi-
ficant term in the lowest frequency was known to be the 41, 42, or
43 term. The solution to this 3 by 3 problem is in Table 4-14.
The estimated effect of the remaining 57 terms on the 3 lowest
eigenvalues is shown in Table 4-15. In Table 4-16 the new approxi-
mations for the eigenvalues are given. The approximations are not
adequate. Significant terms were selected from Table 4-15, and a
10 by 10 procblem was worked for each of the 3 lowest eigenvalues.
The lowest eigenvalues have converged at this point. It is seen
from Table 4-17 that using the new method a 10 by 10 eigenvalue

pivDlewm gave au app:oximate answer to the lowest eigenvalue which
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Table 4-14.

Circumferential Wave Number = 10

Eigenvalues and Eigenvectors from Pro-
blem of 3 Terms, 41, 42, and 43.

Freely Supported Cylindrical Shell with
13 Equally Spaced Ring Stiffeners.

Number Eigenvalue
1 2.882
2 2.891
3 2.910
Eigenvector Components
Term 2
Numbs 41 42 43
1 0.9987 -0.0455 -0.025¢
2 0.0419 0.9907 -0.1292
3 0.0306 0.1280 0.9913
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Table 4-15. Calculated Second Order Changes in Lowest 3 Eigen-
. values Due to the 57 Remaining Terms.
Freely Supported Cylindrical Shell with 13 Equally
Spaced Ring Stiffeners.
Circumferential Wave Number = 10
Predicted Change in Eigenvalue
Term
Added 2nd 3rd
Lowest Lowest Lowest
1 -0.782x10"3 -0.138x10°3 -0.735x10°6
2 -0.124x107% -0.587x1072 -0.978x10°%
3 -0.798x10-3 -0.213x1073 -0.0125
4 0 0 e
¥ v v
20 0 0 0
21 -0.951 -0.167x1072 -0.892x10°3
22 -0.196x10-2 -0.928 -0.0154
23 -0.583x10-3 -0.0155 -0.913
%9 negligible negligible negligible
29
30 -0.149x10"3 -0.397x1072 -0.233
31 -0.467x10°3 -0.221 -0.367x10-2
32 -0.212 -0.374x10-3 -0.199x10°3
33 -0.200 -0.352x10-3 -0.188x1073
34 -0.392x10-3 -0.185 -0.308x10-2
35 -0.111x10"3 -0.297x10-2 -0.174
36 . - - -
db negligible negligible negligible

Table 4-15 Continued




Tahle 4-15 (Cont'd.)
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Predicted Change in Eigenvalue

Term

MECL towest Lovest Lovest
44 -0.267x107% -0.341x1073 -0.298x1072
45 -0.274x10"4 -0.313x10-3 -0.209x10"2
46 -0.272x10"% -0.300x10-3 -0.181x10-2
47 -0.271x10~% -0.293x10"3 -0.168x10"2
48 -0.269x10"% -0.288x1073 -0.160x102
49 -0.268x10-*% -0.284x1073 -0.155x10-2
50 -0.140 -0.370 -0.214
51 -0.0375 17.09 -0.261
Y] 14.71 -0.0216 -0.730x1072
53 12.97 -0.0282 -0.0223
54 -0.0225 -0.116x1072 -0.231
55 582x1072 -0.165 -10.94
56 £6x1074 -0.266x1073 -0.139x1072
57 .33x10" -6.264x1073 -0.137x1072
58 -0.251x10"* -0.261x1073 -0.136x10-2
55 -0.249xi074 -0.258x10"3 -0.134x10-2
60 -0.246x107% -0.256x1073 -0.133x1072
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Table 4-16. Lowest 3 LEigenvalues with New Estimates for 3 by 3
Problem.
Freely Supported Cylindrical Shell with 13 Equally
Spaced Ring Stiffeners.
Circumferential Wave Number = 10
Eigenvalue Eigenvalue with Rayleigh's Quotient
from Second Order for New
3by 3 Approximations Eigenvectors
Problem from Remaining Approximation
57 Terms
Lowest
Eigenvalue 2.88 -26.2 4.30
2nd Lowest 2.89 -27.8 4.24
Eigenvalue
Std Lowest 2.91 -31.3 4.11

Eigenvalue




Table 4-17. Lowest 3 Eigenvalues with New Estimates for 10 by 10 Problem.
Freely Supported Cylindrical Shell with 13 Equally Spaced
Ring Stiffeners.
Circumferential Wave Number = 10
Eigenvalue Eigenvalue Rayleigh's Maximum* Correct
from with Quotient Difference answer
10 by 10 2nd Order for New of values from
Problem Approximations Eigenvector | in Columns 60 by 60
from Remaining } Approximations| 1,2, and 3 problem
40 Terms in % of
Column 1
£y oowest 0.2888 0.2846 0.2846 1.5 0.2840
Eigenvalue
2nd Lowest
Eigenvalue 0.3044 0.2887 0.2885 5.2 0.2854
3rd Lowest
Eigenvalue 0.3230 0.2956 0.2960 8.4 0.2911

*0f the values in Colurns 1, 2, and 3,

(value in Column 1)

(maximum value-minimum value) x 100.

19
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is nearly as accurate as that from the 60 by 60 eigenvalue problem
solved previously. In an analysis like this where many eigenvalue °
problems need to be solved, this new method should help reduce

computer storage needed and computation costs.



CHAPTER V

CONCLUDING STATEMENTS

A method has been described here which can select terms
to be used in a Rayleigh-Ritz analysis of an eigenvalue problem.
The method uses explicit expressions for derivatives of the eigen-
values with respect to elements of the K and M matrices. Deriva-
tions of these expressions have been presented, the method has been
described, and some applications have been shown.

The method has been programmed for a commuter, and the
documentation for this computer program is in the Appendix. The
documentation is written so that the program can be used, directly
as documented, in solving Rayleigh-Ritz eigenvalue problems. Ia
the applications only the eigenvalues have been dicusssed, but the
eigenvectors of these Rayleigh-Ritz problem can also be calculated
as explained in the Appendix.

From the applications presented in Chapter IV it can be
seen that use of this method can significantly reduce the computer
storage and computation time needed for some Rayleigh-Ritz eigen-
value problems. The method will be most useful in helping solve
problems in which the lower eigenvalues can be approximated by

63
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only a few terms in the series, but it is not known which terms
arc significant. This type of problem cannot necessarily be
identified before solution, and sometimes the method might not
provide a savings.

This method can possibly be improved, and some of these
possibilities are worth mentioning. A prerequisite for using the
method is some knowledge about the most significant term for each
eigenvalue of interest. This is a limitation, which if removed,
would make the method useful to more problems.

The approximations made by the Taylor series and Rayleigh's
quotient may be either greater or less than the actual eigenvalue.
Only the Rayleigh quotient approximation to the lowest eigeanvalue
is known to be an upper bound. It would be advantageous to be able
to establish whether all the approximations are upper or lower

bounds.
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APPENDIX A

COMPUTER PROGRAM DOCUMENTATION

In this appendix the computer programs used for the appli-
cations in Chapter IV are detailed. Using this documentation, one
should be able to use the programs as they are listed here in
solving a Rayleigh-Ritz problem.

The computer programs are written in G-level Fortran IV,
and were run on a IBM System 360, Model 50 computer. The main pro-
gram and 2 subroutines are

Program AUTOEIG
Subroutine EIGN 2
Subroutine DEIGEN

A flow chart for the main program is shown in Fig. A-1,

and a brief explanation of the main program and 2 subroutines

follows.
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Program AUTOEIG

The main program reads the input data, follows the routine
shown in the flow diagram, Fig. A-1, and prints out the necessary
information. Each time an eigenvalue problem is to be solved this
program calls EIGN2.

The applications in Chapter IV discussed only the eigen-
values, but this computer program will also calculate the eigen-
vectors if necessary. Another sipgle precision array of size n by
n is needed in the program. The eigenvectors are determined just
as in a Jacobi rotation method. Each time a transformation of co-
ordinates is made, the eigenvector matrix is post-multiplied by
the transformation matrix. To use the eigenvector calculation part
of program AUTOEIG remove the C in the first column of all state-

ments with VEC in columns 73-75.

Subroutine EIGN2

This subroutine computes the matrix

0] = [ L-”

where

M = i)’

and transforms [D] into compressed storage mode, see [22]. The
method used to compute [D] is shown in Ref. [23], page 295 or in
Ref. [15], page 229. This subroutine calls DEIGEN to solve for

the eigenvalues and eigenvectors of [D].
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Subroutine DEIGEN
This subroutine is from the IBM Scientific Subroutine
Package [22]. It solves eigenvalue problems of the type
[Plx - A[Il1x=0

by the Jacobi method. -



Loop 1, completed NOEI times

70

{ Start }

|
Read Input
Data

A

L § Y

Solve Eigenvalue
problem for m
chosen teruss,

Call EIGN2 Call
DEIGEN

) \

V

\

Calculate estimated
eigenvalue due to
remaining terms

)

Loop 2

Change
Coordinates Completed
NOEI times

Calculate estimated
cigenvalue using

Rayleigh's Quotient data

j e Y

Choose significant
terms for reworking END
eigenvalue problem [

A

Print Output

Loop 1 completed first,

then Loop 2

Figure A-1. Flow Diagram of AUTOEIG.




(72]

N

M

NLOE

NOEI

IFP
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Input for Program AUTOEIG

Format (16I5) N,M,NLOE,NOEI,IFP

Total number of terms in assumed series; size of input

K and M matrices.

Number of terms in initial problem worked. At least one
of most significant terms for each eigenvalue of interest.
Number of terms in each eigenvalue problem solved after
significant terms are selected.

Number of eigenvaiue problems of size NLOE solved, see
Fig. A-1. Most likely same as M.

Indicator; if IFP = 0 normal printout occurs; if IFP>0

extra information is printed, see program listing.

FORMAT (1615) LO1(M)

LO1(M) = Number of each M term chosen for initial problem.

S(N,N)

EM(N,N)

FORMAT(5E16.8) S(N,N), EM(N,N).

Input K matrix.

Input M matrix.
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PROGRAM AUTODETIG
DIUILT PRITISION SP(20,20) ,FMO(20420) sFVEC(20+20)sEVAL(20)
DIMENSIIN S(50,50) s FM{50,50) OK2(S0),DKI(S0),LN(5,20)
FITMENSTINON CO(20427) 4CM{20,20),VEC(50),A(50)

DIMENSTION _21(20)

DIMENSION ERR(50)

DIMFNSION X(50,50),CVEC(A)

FORMAT(1HD s IS, *EIGENVALUS =',E16.8)
FOPMAT (1HO + * SFCOND ORNER CHANGFS ARF ')

FORMAT (10E12.4)

FORMAT(1615)

FORMAT(10E1?.5)

FORMAT (1HD s *NEW APPQOXIMATION =%y E16.8)
SORMAT(1HO W' RAYLEIGH QUAOTIENT APPROX [MATION =*,F16.8)
FORMAT (1HO» *SIGNIFICANT TERMS ARE ')

SORMAT(1HO,* TERMS FOR FIGENVALUE PROBLEM ARF)
FNRMAT( tHO)

FORMATY (1 HL)

FORMAT (SIS +6F165)

FORMAT (1 HO +S5X,y [S¢E16e8)

SORMAT( IHOL'NEW EIGENVECTOR APPROX TIMAT INN? )
FORMAT(1DXs 1343Xs526e16+=2063)

FORMAT(1HO s 11X s1HNs 10X 1 IHFIGENVALUES,* RELATIVE ERROGR*/)

FORMAT(1HO, *SP MATRIX?')
FORMATY (1 HO o *EMP MATRIX *)
SEIRMAT(1IHO,*EIGENVECTOR! ,15)
FORMAT(1HO, *CANRNRECT EIGENVECTORS?')
FORMAT (/7 3X1I1HFEFIGENVFCTOR, 1 3)
RTAD(1s11INMNLOS 4 NOEL 4IFD
READ(1,11)(LO1I(T)s1=1,M)

MT = M

KKK
NNDT
NO?2

W
R2Zow=m
hr

e N

VEC

(4
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BELE*6E*BE (dal) sl
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(I*r)s = (M*1}ds
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Iwet=x 0v ©d

(L1°€)311UM
CIMSI=SHS(AHSIAAIOT)(ITCE)ILIUM
(91 ¢'E)54laM

(B1°€) 31 18M

3NNT ANOD

S3ADIBAIVAW o3 UNV dS$  dN 13S

W=(2l'E )s1L1EM
(214 )31L1UM
S(else)d1lum
cs*001%c¢sS(d=l)al
(81 *E)311uM

o°tl = (1*1)})Xx

00 = (f*1)X
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a1

WRTTE(3,102) (T sEVAL(T) 4FRR(IT) 4I=1,MT)

NN 4 [=t,M1

WRITE(3,901)1

WRITEF(3, 19)(FVEC(JeT)oJ=14MT)
WRITTZ(3.17)

CHANGE COORDINATES

RTSET SP AND EMP MATRICES

DO 44 K=1,M1

L = LO(KKKK)

DO 44 I=1,MI

J = LO(KKK,I1)
SP(TeK) = S(JyL)

EMP(T1+K) = EM(J,L)
P = 00
PM = 00

DD 42 I=1,N

DO 48 NK=1.M1

NKN = LD(KKK4NK)
IF{(NXD~-1)48,50,48

CONT INUE

onN 41 JO =1 +ME

J = LNIXKK,JD)

NO 49 KN = M7

KA = LOD(KKK,KN)

P = P & EVFC(KNsJN)I%XS{(1.KA)
PM = PM ¢ EVEC(KN,JD)*EM( I ,KA)
CONT INUE

DK2(J0O) = P

DK3(JN) = PM

PM = Q.0

P = 0.0

CONT INUE

VL



AN AN NADDOADAD AN

nn

45
S0
a2

312
313

314

315

370

23

DO A4S J0=1.MT

J = LD(KKKs JD)
S(J.T) = DK2(II)
EM(JeT) = DK3I(JD)
S(T.4) = SCJI,1)
EM(TeJd) = EM{Js1T)
CONTINUE

CDONTY INUE

ZIGENVECTOR CALCULATIONS

DO 315 JA =1.N
DO 313 L=1,MT

LA = LO(KKK,.L)
DK2(LA}) = 0.0
DO 312 MK =1 ,M1
LOD = LO(KKK,sMK)

OK2(LA) = X(JAJLODIRXEVECI(MK,L ) +DK2 (L A)
CONTINUE

DN 314 LXK =1,M1

LA = LO(KKKJLK)

XC(JA,LA) = DK2(LA)

CONT YNUE

D0 370 1=1+NOEI

CYTT(TY = { N(KKK,T)

DIAGONAL IZE SP AND EMP MATRICES

DO 23 I=1,M1

DO 23 J=1,M1

COCtsJd) = 0,0

CM(TsJ) = 0.0

DD 23 K=1,M1

CM{T4J) = CM(TeJ) + EVFCIK,T)IREMP(K,J)
CO{Ted) = CN(T,4U) & EVECIK,I)I®*SP{K.J)
NO 24 I=t.M1

DO 24 J=1 M1

VEC
VEC
VEC
yEC
VEC
VEC
VvVEC
VEC
VEC
VEC
VEC
VEC
VEC
VEC

SL



s NaNe!

EMP{(IesJ) = 0N,0

SP(T,J) = 0.0

NO 24 K=14MI1

EMP{T14J) = EMO(T,J) + CM(T,XK)I®EVFC(K.J)
24 SP(I ,J) = SO(I1.J) + CN(T ,K)XFVEC(K,J)

DN 25 K=14,MI1

L = LO{KKK,.K)

NN 25 [=1.M1

J = LD(KKK,T)

S(Jel.} = SO(T,K)
26 EM(JeL) = EMP(1,.K)

WRITF(3,17)

KOK = KKK

CALCU_ATE CHANGFS IN EIGENVALUFS

IF(NOP) 201,200,201

201 KKK = 0
202 KKX = KKK+1
200 CONTINUE

MU = KKK

KU = LO1 (M)

ELAM = EVAL(MU)

NN 30 I=1+N

DO 36 J=1,M1T

Jn = LnN1ty)

IS(1=-J0) 36.:35,36
36 CONT INUF

DK2( 1) = (S(KUsTI)I¥XG(KUs [)+FEVAL(MU)REVAL(MU) ®EM(KU T ) *ZM(KUsT1))/
L(EM(KUSKUIXEM( T 4 IIR(EVALIMU)I=(S(TI.TI)/EM(T1,1))))
GO T0 30

35 DK2(I) = 0.0

30 FLAM = ELAM ¢+ DK2(1)
WRITE(3,17)
WRITE(3,8) KKK,FEVAL (MU)
WRITE(3,9)

9L
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WRITE(3,10)(NK2(J)ysJd=1,.N)
WRITF(3,13) FLAM

US ING PAYLFIGH'S JUOTIFRNT

KA = <KXK
KU = LO1(KA)
DD 97 J=1,N
DD 93 JO=1,MT1
KO = LOt (J4n)
IF(KO=J)93¢94,93
93 CONT INUE
GO TN 96
94 VEC(J) = 0.0
GN TN 97
96 VEC(J) = (S(KJIyJI-FEVALIKAIR*EM(KU+JII)I/Z({EVALIKA)=(S(JyS)/7EM(IsJ)))
LEEM{Ss JIR(EMIKUKII®ED .5))
97 CONTINUE
VECIKU) = 1e0/(EM(KU,KI))%%0.5)
{F(IFP) A3,82,83
33 WRITE(3,21)
WRITE(3,10)Y(VEC(I),1=1,N)
52 CONTINUE
DO 91 I=1,N
B(1) = 0.0
DO 91 J=1,N
91 B(I1) = A(I) + VEC(JUI®S(JS.1)
FNUM = 040
PO 98 [=1,N
98 FNUM = ENUM + B(I)®VEC(1)
DO 95 I=1,N

B(1) = 0,0
D0 95 J=1,.N o

35 B(I) = B8(I) + VEC(J)I®EM(I, )
DNOM = 0.0

DO 99 I=1eN
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85
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38
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34

31

DNIM INDOM + B(I)*VFC(1T)
FLAM ENUMZDNOM
WRITE(3,17)

WRITE(3,14) FLAM

IF(ND2) 203,855,203
IFI(NOET-KKK) 202,204,202
KKK = KOK

GO ¥N 8”0

CHONSZ TERMS SIOR REWORKING FETGFNVALUF

CONTINUE
WRITE(3,15)
DO 87 J=1 KKK

LO(KKKJ4) = LOLC(Y)
EVEC(J+KKK) = 0.020
NU = KKK

DN B6 I=1,MI

VAL = DABS(EVEC(I,KA))
IF(VAL-0.01)86,86,88
NU = NU + 1
LOCKKK4NY) = LO1 (1)
CONT INUS

PER = NPER

MOD = NU+1

DO 32 K=MOP.NLD

GU=S = ABS(DK2(1))

NOGU = 1

DO 31 [=2,N
IF(GUES—-ARS(DK2( 1)) )34, 31,31
GUES = AAS(OK2(I))

NOGU = I

CONT INUE
LOCKKK,K) = NOGU
DX2(NIGU) = 0.0

WRITE(3+20)L0O(KKKsK),y GUES

PROFJLEM

8L
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32

76

77

78

75
30

Aa

399

950

CONT INUE
IS (NOP) 75,7675
IF(NOETI=NDT) 77,78,77
KKK = KKK+1

NOT = NOT +1

GO TO 200

KKK = 0

NOPe = 1

M1 = NLO

CONTINUF

CONT INUE

KKK = KKK#1

DO 84 K=1,NLO

LO1 (K) = LO(KKK,.K)
IF(NOST-KKK) 999,100,100
CONY INUVE

WRITE(3,18)
WRITE(34143)

D0 950 [=1,NDET
WRITE(3.,142)1

LAM = CVEC(I)
WRITE(3,10)(X(JeLAM) 9J=13N)
CONT INUE

END

VEC
VEC
VEC
VEC
vEC
VEC
VEC
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SUBRNUTINSG EFIGN?2(A,93,CsFVAL sNyNFRR,FRA)
DAURLFE PRECISION A(20420)sA(20,20)eC(20420)FVAL(20),SUM
NIMINSION Tanr(t)

TRTANGULARIZF R

NERR =0

17(RB(141)LF,0.MN0) GO TO 990
Cl1+1)=NSORT(A(1.1))

DO 1 I=2,.N
C(loe1)=8B(T,1)/7C(1,41)

DO 2 J=2.N

DO 2 I=1,N

IF(I-J)3,4,5

C(T,44)=0.D0

GO TO 2

KK=J~1

SUM =0.D0

DD 6 K=1,KK
SUM=SUM+C(JsK) k&2
IT(B(JeJ)eLTeSUM) GO TN 991
C(I1,9)=NSART(R(JeJ)I-SUM)

GO YO 2

KK=J~-1

SUM=0.D0

DO 7 K=1,,KK
SUM=SUMHC( T KI*C(J,K)
IF(C(JsJ)eFQ,0eNDO) GO TO 902
ClTeU)=(A(T4I)-SUM) /C(JeJ)
CONT INUF

INVERT THE TRIANGJLAR MATRIX
DN 11 I=1sN

DO 11 JU=1.N
ISF(T—-J)12.13,14

08
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16
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22

39

R{(1,J)=0.00

GNn TO 11

A(Jed)=1.00/C(Ie )

GO TDO t1

KL=J+1

KU=1-1

IF(KU-KL)I1IS,16.,16
R(T4J)==C(T,J)*3(J,I)/ C(t. 1)
GO TO 11

SUM=0.DO

DN 17 K=Kl +KU
SUM=SUMHFC( T +K) 2B (K, J)
Bl(I14J)==(Cl1,4J)%B(JeJ)+SUM)Y/C(TI,1)
CONT INUE

COMPUTF THF NEW DYNAMIC MATRIX

DO 21 I=14,N

DO 21 J=1,N

C(1,J)=0.D0

DN 21 K=1,N

ClT o J)=C T sJ)+R (I KI)I®A(KLJ)
DD 22 T=1.N

DO 22 J=1,N

A(l +J)=0.D0

on 22 K=1eN
A(T+J)=A(T,I)4C(T,K)I*T(J,K)

CONVFRY TN VECTOR STDRAGF MNDE 1
K=0
t=1
DO 41 J=1,N
DD 4t I=1,J

K=K+1
IF(K-20)41,41,40

18
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40

41

aa

a7

a8

23

24

K=1
L=L+1
AlK,L)Y=A(T,J)

SOLVE FOR FIGFNVALYFS AND EIGENVECTNIS NF A

CALL DFIGEN(A,CosNsOsNRyERR)
DO 44 YI=1,N
TI=1%(T-1)/2 +1
IC=14(TI-1)720
IR=TI~-20%((11-1)/20)
NA = N-I+1

EVAL(NA) = A(IR,IC)
1J=0

DO 47 J=1,N

DO 47 I=1,N

[J=1J0+1
1IC=14(1V-1)/20
IR=T1J~20%((FTJ-1)/720D)
A(1,J0)=Cl(IR,IC)

DO 48 [I=1.N

DO A8 J=1,N
ClIsJ)=A(1,0)

8

COM2UTE EIGENVECTNDRS OF ORIGINAL PROBLEM

00 24 YI=1,,N
DN 24 J=1,N
A(1,J)=0aD0
DO 24 K=t (N
A(TAJI)I=A(T,0)4B(K,T1)1*C(K,J)

NORMAL TZE ETIGENVECTORS

DO 26 J=1.N
SUM=0.D0
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ETGENOO1L

© 0 008 0000000 s 000000t ecesssenccsesvsssevsssesncsecsncncencccseassosese ETITGENOO?

SUBROUTINF DEIGFN

PURPNSE
COMPUTF = IGINVALUES AND EIGENVFCTORS GF A REAL SYMMETRIC

MATRIX

USAGSE
CALL DFIGEN{ARsN.MV)

DESCRIPTIAON 0OF DARAMETERS
A —- ORIGINA_ MATRIX (SYMMETRIC), DESTROYED IN COMFRUTATION.
RESULTANT EIGENVALUES ARE DEVELOPEO IN OIAGONAL OF
MATRIX A IN DESCENDING OIDER,
R — RESULYANTY MATRIX OF FIGENVECTORS (STORED COLUMNWISF,
IN SAME SEQUENCE AS FIGENVALUES)
N — ORDER OF MATRICES A AND R

MV- INPUT CODE
0 CAMBUTE S IGENVALUES AND FIGFNVECTORS
1 COMPUTE EIGENVALUES ONLY (R NEED NOT BE
DIMENSIONED BUT MUST STILL APPEAR IN CALL ING
SEFQUENCE)

REMARKS
ORIGINAL MATRIX A MUST BE QFAL SYMMETRIC (STORAGE MNDDE=1)
MATRIX A CANNOT BE IN THE SAME LOCATION AS MATRIX R

SUBRDUTINFS AN) FUNCTION SUBPRNDGRAMS REQUIRED
NONE

METHOD
DTAGNNAL I ZAT TON METHND ORIGINATEND BY JACORI AND ADAPTED

ETGENOOR
FIGFNOOAa
ETGFNOOS
EIGFNOO6
EIGENOO7?
EIGENOOR
EI1GENO0O0O9
FIGENO1O0
EIGENO11
EIGENO1L12
EIGENO13
EIGENOL4
EIGENO1S
EIGENOD16
FEIGENO17
EIGENOLB
EIGENO19
EIGENO20
EIGENO21
EIGENO22
ETIGENO23
ETIGENO24
ET1GENO02S
EIGENO26
E TGENO27
EIGENO2A
FIGENO0?29
E 1GENO30
EIGENO31}
EIGENO032
FIGENO33
EIGENO34a

RY VON NZIUMANN FOR LARGFE COMPUTERS AS FOUND IN *MATHEMATICALE IGENO3S

METHODS FDOR DIGITAL COMPUTERS*y EDITED BY A. RALSTON AND

EIGENO036

v8
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10

HeSe WILF, JNOHN WILZY AND SONS, NEW YORK, 1962+ CHAPTER 7 EIGENO 7

FIGENO3RA
09 0 09080000 0e00000 000 0ecsssacosscnssoscscecesosssssesnscccrscscscsscscssosvsescsesl IGENO3O
ETGENOAD
SURROUTINE NETGEN(A R NsMV4,NR,FRR)
DIMENSIONA(1L) JR( 1) .ERR( L)
FIGENOAZJ

6000 00000000000 000000000c00cccssosossonacsscccscsssssoocncecsescncecssccst-IGENDAAS

IF A DOUBRLE PRECISION VERSION OF THIS RJOUTINE IS NDESIQFND, THE SIGFNOAh

C IN COLUMN t SHOULD BE REMOVFED FROM THE ODOODURLE PRECISION EIGENOA7
STATEMENT WHICH FOLLOWS. EIGENOAR
EIGENOA49

DOUBLE PRECISTINN AsR¢sANDRMe ANRMX s THR s Xe Y3 SINX s STNX2 4,COSX, EIGENOSO
1 COSX2,SINCS EIGENOSI
EIGENO0S52

THE C MUST ALSN BE RFMODVED FROM DNUJALE PRECISIIN STATEMINTS EIGENOS3
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS EIGENOSA
ROUT INE. EIGENOSS
EIGENOS6

THE DOURLE °23FCISION VERSION OF THIS SUBROUTINE MUST ALSO EIGENOS7?

CONTAIN DOUBLE PRECISION FORYRAN FUNCTIONS. SAT IN STATEMENTSEIGENOSS
40¢ 68, 75+ AND 78 MUST RE CHANGED TO DSQRT. ABS IN STATEMENT EIGENO0S9

62 MUST BE CHANGED TN DARS. EIGENOGO
EIGENO0G61
...........’...............'..............'..U..."..l....‘....m-mmzomm
EIGENO63

GFNERATE IDENTITY MATRIX ETIGENONGY
EIGENOG6S

IF(MV-1) 10+25410 EIGENOG66
IQ=-N EIGENOG6T
DO 20 J=t,N ETGENOGH
10O=1Q+N EIGENO069
DO 20 I=1.N FIGENO70
TJ=TQ+T EIGENOTI

R(IJI=0.D4+00 FIGENOT72

S8
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15
20

25

30

40

as
50
55

60

62
65

I5(1-J) 20415420
R(TJ)I=1D+00
CNONT TNUE

COMPUTE INITTA_. AND FINAL NORMS (ANNRM AND ANOAMX)

ANNRIM=0.D+4+00

DO 35 I=1.N

NN 35 J=T+N

IF(T1—-J) 30, 35430
IA=T¢(JU%J-D)/2
ANNRM=ANORM+A{TAIXA(TA)

CONT INUE

IF(ANORM) 1654165+,40
ANORM=1.414D+00%NSQRT ( ANORM)
ANRMX=ANORMX1,0D-12

INIYIALIZE INDICATORS AND COMPUTE THRESHOLD, THR

NR=0

IND=0

THR=ANQORM
THR=THR/FLOAT(N)
L=1

M=L +1

COMPUTE SIN AND COS

MO={(MEW-M) /2

La=(L*L-L)/2

LM=L +M0

IF(DABS(A(LMII—-THR) 130+65,65
IND=1

NR=NR4+ 1

LL=L¢LQ

MM=M+MQ

EIGENOT73
ETGENOTA
SIGENO7S
FIGFNOT6
FIGENO77
FIGENO78
EIGENO79
FIGFNOBA8O
EIGENOBI

EIGENNA2
FIGENORZ
EFIGENOBS
EIGENOAS
FIGENOB6
EIGENOAT7
ETIGENOSA
EIGENOB9
EIGENO9O
ETGENO91

EIGFNO0O92
EIGENO93
EIGEN094
EIGENO9S
EIGENO096
EIGENO97
ETGENO98
EIGENO0O99
EITGENIOO
EIGENIO1
ETGEN102
EIGEN103
EIGEN104

EIGENL105
EIGEN106

98
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68

70
75

78

a0
a5

90
95
100
105
110

115
120

125

X=0eSD+00%(ALLL)-A(MM))
Y=-A(_M)/DSARTIA(_M) ®A(LM)+X%X)

IF(X) 70475475

Y==-Y

SINX=Y/DSQRT (2 ¢ D+00%( 1 e N+DO0+{DSQART(1eND+00-Y*Y))))
STNX2=STNX*STNX

CNSX=DSART{(1.0ND+00-SINX2)

COSX2=C0OSX*COSX

SINCS =SINX*COSX

ROTATE L AND M COLUMNS

TLG@=N*(L-1)

TMO=N%*{u¥-1)

DO 125 [=1.N

10=(1%Y-1)/2

IF(I-L) 80,115,8R0

IF(I-M) 85,115,490

IM=14+M0

GO TO 95

IM=M+T1Q

IF(I-L) 100,105,105
IL=1+LQ

GO TO 110

TIL=L+7Q

X=A( IL)®*COSX-A(IM)XSINX
ACTIMI=SA(TIL ) *S INX+A( IM)XCOSX
ACTL)=X

IF(MV-1) 12041254120
JLR=ILQ+I

IMR=TMQ+1I
X=R{ILR)I*COSX-R({ IUR ) &SINX
R(IMR) =R(TLR)&®SINX4R(IMR) *CDOSX
ROILR)=X

CONT INUE
X=2eD+00%XA(LM)XSINCS

FIGFN107
EIGEN10OS8
FIGEN1N9
FIGENII1O0
EIGFENt 11
EIGENIL12
EIGENIL3
FEIGENL14
EIGENIL1S
SIGENLLS
EIGENLL17
EIGEN11B
EIGEN119
EIGEN120
EIGEN} 21
EIGEN122
EIGEN123
EIGEN124
EIGEN12S
EIGEN126
FIGEN127
ETGEN128
EIGEN129
EIGEN1 30
EIGEN131
EIGEN132
FIGEN133
:IGEN134
EIGENI1 35
EIGEN136
EIGEN137
EIGEN138
EIGEN139
EIGENL1A40
FIGEN11A1
FIGENL1A2Z2

L8
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NNNO DY

anon

nn o

(2B aNse}

130
1395

rt40
145

150
155

160

165

Y=A(LL)*®COSX2+A(MM)XSTNX2-X
X=A(LL)®SINX2+A(MM) XCOSX2+X
A(LMI=C(AILLI-A(MM) IS INCSH+A(LM)I*(COSX2-SINX?)
ACLL =Y

A(MN) =X

TESTS FAR COMP_ETION
TESYT 0R M = LAST COLUMN

I¥(M--N) 135,140,135
M=\V+1
GO TO 60

TEST FOR L = SECOND FROM LAST COLUMN

IF(L~(N—-1)) 145,150,145
L=t +1

GO0 YD SS

IF{(IND—-1) 160+,155,160
IND=0

GO YO0 So

COMPARE THRESHILO WITH FINAL NORM
IF{THR-ANRMX) 165,165.45
SORT EIGENVALUES AND EIGFNVECTORS

1Q=-N

DO 18E {=1sN
1= 1Q+N
LL=T+(I%xI-1)/2
JO=N*(1-2)

DO 18S J=1+N
Jo=JQ+N
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170

175

180
185

St

53
52
54

AM= I+ (IXI~-D) /2
IF(A(LL)I-A(MM)) 170,185,185
X=A(LL)

ACLL) =A(MM)

A(MUM)=X

IF(MV—1) 175,185,175

DO 180 K=1,N

ILR=T1Q+K

IMR=J0+K

X=R(ILR)

R(ILRY=R(IMR)

R{IMR)=X

CONT INUE

COMPUTE FRROR IN ZIGENVALUES

DD S4 I=1,N

ERR(1I)=0.0

DD 54 J=1eN

IFCI—-J) 51,54,51

CALL LOC(Iof,oIT sNeNs1l)

CALL LDC(JeJeJJeNeNy1)

CALL LOC(ToJsTJeNeNot)
DEM=DARAS ((A(TTII-A(JJI))I*A(TIL))
IF(DEM) 52 :53+52
DEM=2,0%A(1J)

ERR(IDI=ERR(II+2.0%*(A(TIJ ) ) *%2/0EM

CONTINUE
RETURN
END
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