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CHAPTER I 

Crystal Lattice

This work is primarily concerned with the calculation of the 

energy band structure of lithium, sodium, silicon and lithium fluoride 

using the method of tight binding and with an extension of the method 

of tight binding to the calculation of the electronic structure of 

impurities. We will first consider the crystalline structure of 

each of these four solids.

The lithium and sodium atoms form body-centered cubic structures. 

The body-centered cubic lattice can be constructed by putting an atom 

at each of the four corners of a cube and putting an atom at the center 

of the cube. This cube repeats itself all over the crystal. A mathe­

matical description of the location of the atoms in a body-centered 

cubic crystal can be made by defining the primitive translation vector.

R = » n a + n a + n a  , (1.1)
n 1 1 2 2 3 3

where n , n and n are integers,
1 2 3

= T “ (-1, 1, 1) 
*0

a^ = —  (1, -1, 1) 
■> a
a = 7 ^ (1, 1, -1)
3



and a is the lattice constant. By picking different values of n ,
0 1

n , and n , a different value of the primitive translation vector R 
2 3 "

will be generated which will give the location of another atom in the

crystal. If all combinations of n , n , and n are used, the entire1 2  3
crystal will be mapped out. It is convenient to imagine that we have 

divided the crystal into many small sections which repeat themselves

as we move from point to point in the crystal. The parallelepiped
->■ ->■

defined by the vectors a^, a ^ , and a^ is one way of defining the 

primitive unit cell. If we have a function which is periodic through­

out the crystal, we can obtain all of the information about this 

function by specifying its value inside the parallelepiped since we 

know that the function repeats itself for the same relative point in 

all other parallelepipeds in the crystal. An alternative choice of 

the primitive unit cell would be the Wigner-Seitz cell which is pictured 

in Fig. 1. It is generally used because it shows the rotational 

symmetry of the crystal.

Since the crystaline lattice has a periodic structure, it is 

many times useful to expand periodic functions (such as the crystal 

potential) in a Fourier expansion. If we have a periodic function

f(r), it can be expanded in a Fourier series as
_> ^  

iK -r
f(r) = I e , (1.2)

V ->■
where a^ is the Fourier coefficient. The vector is defined such 

that

Ky-R^ = 2piT , (1.3)



I) Wlgner Seitz cell for body-centered cubic lattice

II) Brillouin zone for body-centered cubic lattice

Figure 1. Unit cells for body-centered cubic crystals



where p is an Integer which is dependent on and R^. Just as the

R vectors were defined in terms of the vectors a , a , and a the
n 1 2  3

K,, vector can be defined in terms of the vectors b , b , and b ;
^ 1 2  3

K = r a b  + m b  + m b  , (1.4)
V 1.1 2 2 3 3

- > - - ) ■  y
where m , m , and m are integers. The vectors b , b , and b can

1 2  3 1 2  3
be defined in terms of a , a , and a as

1 2  3

b = C[a X a ]
1 2 3

fa = C[a X a ] (1.5)
2 3 1

b = C[a X a ]
3 1 2

“V -V
where C = 2%/{a ' [a x a ]}. The three dimensional space defined

by b , b , and b is known as reciprocal space. If we were to con-
1 2 3

Struct a Wigner-Seitz unit cell in this reciprocal space, it would

have the shape shown in Fig. 1 for a body-centered cubic structure.

The volume enclosed within this reciprocal space Wigner-Seitz cell is

known as the first Brillouin zone, although many times the word first

is dropped and it is called the Brillouin zone.

The silicon and lithium fluoride crystals can be constructed

from two interpenetrating sublattices of face-centered cubic (f.c.c.)

structure. Each lattice site of one sublattice is separated from the

corresponding member of the other sublattice by a non-primitive trans-

lation T(T ^ R^ for any n) directed along the body diagonal of the
->■

face centered cube of the first sublattice. The magnitude of T is



vT a /4 for the case of silicon and /Ï a 'II for the case of lithium0 0

fluoride, where a and a ' are the lattice constants of silicon and0 0

lithium fluoride respectively.

The face-centered cubic lattice can be constructed by placing 

atoms at each of the comers of a cube and by also placing atoms at 

the midpoint of each of the faces of the cube. This cube repeats it­

self all over the crystal. The location of the atoms in the crystal 

can be described mathematically by defining the vector in terms of

a , a , and a as was done in Eq. (1.1). However, for the case of a
1 2  3

face-centered cubic lattice the vectors a , a , and a are defined as
1 2 3

a.
= Y ~  (1, 1, 0)

■> a
a = 7 ^ (1, 0, 1)

2
-> ^0
a = ~2 ( 0 , 1 , 1 )  .
3

The Wigner-Seitz cell can then be constructed as before and one
->■ ->■

finds that it has the shape shown in Fig. 2. The vectors b , b , and
1 2->■

b can now be evaluated by using Eq. (1.5) and the Brillouin zone con-
3

structed for the face-centered cubic lattice. It has the form shown 

in Fig. 2.

Now that we have a physical and mathematical description of the 

crystal lattice for the b.c.c. (body-centered cubic) and f.c.c. (face- 

centered cubic) structures, we are ready to formulate the band-structure 

problem.



I) Wigner seitz cell for face-centered cubic lattice

Z

II) Brillouin zone for face-centered cubic lattice

Figure 2. Unit cells for face-centered cubic crystals



CHAPTER II 

Band-Structure Formulation

A brief description of the band-structure formulation is con­

tained in the following chapter. For a more complete description see 

one of the publications listed under Ref. 1, 2 or 3.

Several approximations are generally made in the band-structure 

formulation in order to reduce the calculation of the electronic states 

in a crystal into a manageable form for solution on the computer. The 

first approximation is to assume that the nuclei are held fixed in the 

positions characteristic of a perfect crystal at absolute zero tem­

perature and only consider the wavefunctions and energy levels of the 

electrons moving about these nuclei. Under this approximation the N- 

electron crystal Hamiltonian will have the form of

z .H = I ( 2~) - I I 7) + I I (. _. (2.1)
i i n  i jjti

where the i summation is over all of the electrons, the j summation 

is over all electrons in the crystal except for the i'th electron, 

r^ is a vector from the origin to the i'th electron, the n summation 

is over all of the nuclei in the crystal, R^ is a vector from the 

origin to the n'th nucleus, z^ is the charge on the n'th nucleus and 

the units of measure are atomic units. Under these approximations the
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will become a function. Our one electron Hamiltonian can then be 

written as
H - - , (2.5)

where we have used the notation V (r) to imply that V (r) is thecrys ■' crys
effect upon the electron due to the rest of the crystal. The one- 

electron Hartree-Fock equation can be carried to self consistency by 

using the crystal wave function ip which is obtained from the first 

calculation to generate a new potential V^^y^Cr), performing a second 

calculation using this new potential and generating a new set of 

crystal wave functions tp’, The alternate calculation of the wave 

function and the crystal potential can then be continued until there 

is little change in the crystal potential between successive calcula­

tions. However, one must have a starting potential for the initial 

calculation. Two different types of starting potentials will be used 

in this work: the muffin-tin potential and the overlapping atomic

potential. The muffin-tin approximation consists of imagining that the 

Wigner-Seitz cell (which was described in chapter I) has been divided 

into two regions by a sphere which is centered about the atom. Within 

this inscribed sphere the spherically averaged crystal potential is used 

and outside of the inscribed sphere a constant value is used for the poten­

tial. Although this type of potential was chosen primarily for the simpli­

fication which it gives to certain methods of band structure calculation, 

there is some justification for using it for metals. Since the metal is 

a good conductor, one might expect the electrons to behave somewhat like 

free particles and not to be tightly bound to any one of the nuclei.
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Putting the constant potential in the region outside of the inscribed 

sphere insures that the electrons behave as free particles in this 

region. The good agreement of the results using this potential with 

experiment bears out the adequacy of this model for application to 

metals. However, since the techniques which we used to perform band- 

structure calculations were not limited as to the choice of crystal 

potential, it seemed more physical to use a different type of potential 

for non-metals. For the non-metals we used the overlapping atomic 

potential model. This consists of approximating the crystal potential 

as a superposition of atomic potentials centered about each of the 

atomic sites in the crystal.

Assuming that we have chosen one of the two methods outlined 

above for calculating the crystal potential we must now decide on a 

one-electron crystal wave function to use in our calculation. Since 

the periodicity of the crystal and, therefore, the crystal Hamiltonian 

of the Hartree-Fock Slater equations has such a profound effect on the 

one-electron crystal wave function, it is instructive to examine this 

symmetry. The symmetry of a crystal can be defined by specifying the

three primitive translational vectors a , a , and a and by defining
1 2  3

the vector which from Eq. (1.1) is:

R = n a + n a + n a  , 
n 1 1 2 2 3 3

->■
where n , n , n are integers. The vector R for some value of n , 

1 2  3 " 1
n and n will take the radius vector r to any other equivalent point 
2 3

in the crystal. By equivalent point in the crystal we mean that the
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Hamiltonian

H(r) = H(r + R ) . (2.6)n

If we were to define the translational operator so that operating
-V -'r

on the general function f(r) gives f(r +  R^)

T^f(r) = f(r + R^) ,

we would see that there are two important properties to this transla­

tional operator. The first property is that it commutes with the 

Hamiltonian. This can be proven by the following equation

T H(r) ip(h = H(r + R ) T *(r) = H(r) T ip(h • n n n n

The second property is due to the fact that successive translations 

can be carried out in any order. It says that the T^ operator commutes 

with itself, i.e.

- £(r + R + R ,) - T '£(r + R ) n n' n n

However, there is a theorem in quantum mechanics which states that if 

more than one operator commutes with the Hamiltonian and they all 

commute with each other, that we can simultaneously diagonalize the 

Hamiltonian and the operators. Thus, we can set up solutions to
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Schrodinger's equation which diagonalize all of these operators; that 

is, solutions such that when we increase the radius vector by

n a + n a  + n a  we multiply the solution by a constant.
1 1 2 2 3 3

Since the original and the transformed wave functions must both

be normalized, the absolute value of this constant must be unity. We

can, therefore, find a real vector k such that the constant by which

the wave function is multiplied when we make the translation a is
1

exp(ik*a); if we make the translation a the constant is exp (Lk*a); and 
1 4. 2 2

for the translation a the constant is exp (Lk*a). Then if we make the

translation R , we multiply the wave function by the factor exp(ik-R ).n ^n^
In this case if the wave function is ^(r) then the quantity ^(r)e

must be unchanged when we make the translation R^ or must be a periodic

function of r repeating its value in each unit cell. We then have the 

result

ij;ĵ (r) = u(r) exp (ik-r) , (2.7)

-> ->■ 
where u(r) is a periodic function of r such that

u(r + R ) = u(r) . n

This requirement on the functional form of the wave function is known 

as the Bloch theorem. Another important consequence of the Bloch 

theorem is that there are no matrix elements connecting the wave 

functions (i|̂ ĵ (r)) with different values of k. The proof of this is a 

direct consequence of the fact that the Hamiltonian and translational 

operators commute. We see, therefore, that our infinite secular equa­

tion has been reduced into block structure (a single block for each
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-y
distinct value of k).

The development of each of the different methods which are used 

in band-structure calculations is essentially the same up to this 

point. The methods differ, however. In the choice of the periodic 

function u(r). The method of tight binding (or the method of linear 

combinations of atomic orbitals) consists of approximating the one- 

electron crystal wave function as a superposition of atomic wave func­

tions situated about each of the atomic sites. The crystal wave 

function then has the form of

V
where the summation over implies a summation over all of the atomic

sites in the crystal, and the é „ is the free atomic wave function ofn&m
the atoms which make up the crystal. In order to satisfy the Bloch

theorem, however + ->■
ik-RVa = eV

Therefore, the Bloch sum functions which we use in the method of tight 

binding are

-V -J. i k . R

V
-y

where N is the number of atoms in the crystal, n (k) is a normaliza-n£m
tion constant. We use the notation b „ (&,r) to denote that this is an&m
Bloch function constructed from atomic wave functions of the form é ,^n£ra
and that k is a good quantum number (the secular equation has block 

structure as a function of k) specifying the translational symmetry of
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the one-electron wave function.

The use of these Bloch sum functions has been called the method

of tight binding because it was previously thought that the construction

of the crystal wave function from linear combinations of atomic orbitals

could only be used when the crystal electrons were tightly bound to

their respective nuclei. However, it has been recently shown in a pre-
4

vioiis calculation on lithium and will be verified by our results on 

the lithium and sodium crystals that the method of tight binding even 

works for metalic crystals for which the electrons cannot be considered 

to be tightly bound to their nuclei. This point will be discussed 

further in chapters III and VI.

Another way of constructing the crystal wave function is to
-4"

expand u(r) in a Fourier series. Since u(r) is a periodic function, 

a Fourier expansion can be determined which is also periodic and will 

adequately represent u(r). That is to say that the Fourier expansion

u(r) = I F(k^) exp (l\-r) (2.10)

can adequately represent u(r) if enough terras are included in the 

expansion. This expansion is known as the plane wave expansion of the 

crystal wave function. The total wave function is:

i|»̂ (r) » Z v(k + K^) exp {i(k + K^) "r} , (2.11)

where the k vector gives the translational symmetry and the coefficient 

v(k + K^) is determined from the solution to the secular equation.
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There are, however, problems involved in making band structure 

calculations using this type of crystal wave function. They are con­

cerned with the determination of where to truncate this infinite Fourier 

expansion. Since the size of the secular equation goes up linearly with 

the number of terms (plane waves) in the Fourier expansion, the addition 

of many terms makes the diagonalization of the secular equation increas­

ingly more difficult. Metals can be expected to be the best case for an 

expansion of this sort. They are good conductors and their electrons 

can be expected to behave as free particles. Therefore, a free particle 

(plane wave) expansion should represent the crystal wave function 

adequately. It has been found, however, that even for a metalic crystal 

the number of plane waves required is prohibitively large. The dif­

ficulty seems to be that in the region near the nuclei of the atoms the 

crystal wave functions oscillate so rapidly that many plane waves are 

required to represent them. Several techniques have been used to 

improve the plane wave expansion in this region. (Notably the Augmented 

Plane-Wave and the Orthogonalized-Plane-Wave methods). However, one 

method of solution for the crystal problem might be to use combinations 

of Bloch functions and plane waves to describe the crystal wave function. 

This technique has been investigated for the case of silicon and it was 

found that though many plane waves were required to represent the 

crystal wave function, the number of terms was small enough to make 

band-structure calculations using this technique practical. Another 

difficulty involved in the plane wave expansion technique is in deciding 

when convergence has been obtained. There is no physical justification
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for truncating the Fourier expansion at any particular point. The 

only test for convergence is to do the same calculation with more 

terms.

Now that we have decided upon the Hamiltonian and the basis 

functions we are ready to calculate the matrix elements. Since most 

of the results which are presented in the following chapters involve 

band-structure calculations which were made using the Bloch function 

basis set, we will present a detailed description of the calculation 

of the matrix elements which involve this basis set.

The Bloch functions are used as basis for the secular equation

- : s.am, ' “ 'I»

The matrix elements are composed of the overlap, kinetic energy and 

potential integrals ;

-V f *  -> ->■ -> ->
Si j(k) = Jb^ (k,r) bj(k,r) di

, ik-R
= [n^Ck) n,(k)]"4% e V

V ■>

' ' -jb_, (k,r) (- %v2) bj(k,r) dr

, Î.R^  „ Vik-R
= [n̂ Ck) n (k)] E e <*i(0) I- (Ey)> ,

 ̂ V ^

V (k) = b *(k,r) V (r) b (k,r) dii>J J X ciyt» J

. [n^Ck) Oj(k)] e <*jCO) |Vcrysl*j(*v)> '
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The overlap and kinetic energy integrals occur frequently in

molecular physics and many efficient methods have been devised to cal-
4culate them. Following a procedure developed by Lafon and Lin the 

potential integral is evaluated by first expanding the crystal potential 

in a Fourier series,

VgrygCr) = ^ V(K^) cos (K^-r^) , (2.14)

-> -V ->• -y
where r^ = r-c and c is the coordinate system for the Fourier expansion. 

The potential integral between a wave function <})̂ centered about the 

point A and a wave function (j)̂ centered about B would be

<*i(A) |Vcrys(^c)l*j(B)> = ^ V(K^) <*^(A)|cos(K^-r^)|^(B)>,(2.15)

It was shown by Lafon and Lin that if the atomic Hartree-Fock functions 

(j)̂ were expressed in terms of Slater-type orbitals (e , i.e.

-a r -a r
<J) (r) = a e  ̂ + a e  ̂ ,
IS 1 2

then the multicenter integrals for the overlap, kinetic and potential

could be reduced to a single numerical integration. The form of the
4

numerical integrals was tabulated in their paper for all combinations 

of the la, 2s and 2p Slater-type orbitals. The form of the numerical 

integrals for the 3s, 3p, and 3d Slater-type orbitals (3s(r^e 

3p^(xre , 3d (xye and 3d o (x^e are found in Appendix I.X xy X
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It has recently been shown^ that if the atomic Hartree-Fock

functions were constructed in terms of Gaussian type orbitals 
—ctr̂(e ) instead of the Slater-type orbitals, that the numerical inte­

gration is no longer necessary as all of the integrals appearing in 

the energy matrix can be expressed analytically. This point will be 

investigated in Chapter VI.

Now that we have the necessary tools for doing a band structure 

calculation we are ready to apply these techniques to the crystals of 

sodium, silicon, lithium and lithium fluoride.



CHAPTER III

Band Structure of Sodium

The crystal potential was constructed for sodium using the 

muffin-tin model which was described in chapter 11. Since the crystal 

is periodic, the potential can be expanded in a Fourier series as

''cry/') ■ : \•' V V
->■

where the potential is expanded about the coordinate system A so that 

r^ = r^. Using the standard methods of Fourier analysis we obtained

=  1/Ü
"4" *> *>

V (r) cos(K *r.)dT , (3.2)
■'unit " *
cell

where Ü is the volume of the Wigner-Seitz cell and the integration is 

to be over this volume. The volume of the Wigner-Seitz cell for a body-

centered cubic crystal of sodium is a^/2 where a is the lattice con-0 0
stant.

As we said in chapter 11, the muffin-tin potential consists of 

using a spherical average of the crystal potential within an inscribed 

sphere about each of the lattice sites and using a constant value 

between the inscribed spheres.

19
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We, therefore, approximate the crystal potential as

V (r) = l/(r) , inside the inscribed sphere,crys
V , between the inscribed sphere and the

boundary of the Wigner-Seitz cell, 

where l/(r) is a spherical average of the crystal potential. If we 

write

t/(r) = (/’(r) +  V , (3.3)

then the crystal potential can be split into two parts.

l/’(r) = l/(r) - V , inside inscribed sphere,

0 , outside of inscribed sphere

and

V - constant over the entire crystal.

Since the constant V will contribute only to the first Fourier coef­

ficient (K = —  (0,0,0)), we know that:
*0

(3.4)

V
0*(r.) cos(K *r.) dt 

unit * '' *
cell

1/n l/'(r.) cos(K *r ) dt ,
inscribed
sphere

and

= 1/" y'(r.) dT + V. (3.5)
V Jinscribed

sphere
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However, before we can evaluate the integrals necessary for the 

Fourier expansion we must choose the potential to use within the

inscribed sphere, the value of the lattice constant (a ) and the value
0

of V to use outside of the inscribed sphere. We used the Prokofjew^ 

potential within the inscribed sphere and used a lattice constant of 

a^ = 8.0426 so that a direct comparison could be made with the composite 

wave work done by Schlosser and Marcus.^ The average value of the 

Prokofjew potential in the region between the inscribed sphere and the 

boundary of the Wigner-Seitz cell was used as V. In order to simplify 

the calculation of this average value (V), we replaced the cell boundary 

by the boundary of a sphere of equivalent volume to the Wigner-Seitz 

cell. We obtained a value of V = -0.2686 from this calculation. A 

comparison of the Fourier coefficients which we obtained by the evalua- 

of Eqs. (3.5) with the ones obtained by Schlosser and Marcus can be 

found in Table 1.

We curve fit the tabulated Hartree-Fock wave functions of Fock
g

and Petrashen using Slater-type orbitals for the Is, 2s, 2p, 3s, 3p 

states. The results were:

= 7.1801 S + 12.6244 S + 0.038007 r S ,
la 1 2 3

4» = -1.115789 S + 5.7947 S - 6.4714 r S23 1 2  3

, -1.47257 r S - 0.011826 r^ S + 0.00158 r^ S ,
4 5 6

(j) = -0.2416 S + 1.04212 S -1.19055 r S
1 2 3

-0.285416 r S + 0.0750607 r2 S + 0.034495 r2 S ,
4 5 6



22 

TABLE 1

Comparison of the Fourier coefficients of the Muffin- 

tin Prokofjew crystal potential of sodium with the 

calculation by Schlosser and Marcus, (potential in a.u.)

0_________________
Present work Schlosser and Marcus

0, 0. 0 -0.47031578 -0.47031599

1, 1. 0 -0.12250513 -0.12390902

2, 0, 0 -0.08424625 -0.08309317

2, 1, 1 -0.06563751 -0.06487826

2, 2, 0 -0.05578553 -0.05578832

3, 1, 0 -0.04950802 -0.04989783

2, 2, 2 -0.04459968 -0.04498674

3, 2, 1^' -0.04028545 -0.04467628

4, 0, 0 -0.03639228 -0.03634278

3, 3, 0 -0.03293990 -0.03273291

4, 1, 1 -0.03293990 -0.03273291

4, 2. 0 -0.02996401 -0.02970388

3, 3. 2 -0.02745908 -0.02723443

4, 2, 2 -0.02537612 -0.02523942

4. 3, 1 -0.02364001 -0.02360569

5, 1. 0 -0.02364001 -0.02360569

5, 2, 1 -0.02088968 -0.02099840

4, 4, 0 -0.01974441 -0.01987185

4, 3, 3 -0.01869423 -0.01880754

5, 3, 0 -0.01869423 -0.01880754
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TABLE 1 Continued 

a. A larger discrepancy was found between the two sets of Fourier
2TTcoefficients for K = — (3, 2, 1). We felt that our value was correct
%

since it gave a smooth curve for V(K^) as a function of the magnitude

of |kJ .
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b =x(7.1376 S - 5.2863 S + 0.14702 S 
2Px 1 2  3

+ 4.44333 S + 14.0496 S ) ,
4 7

) =x(-l.85643 S +  2.0223 S + 0.72637 S
3Px 1 2  3

- 0.56913 S + 0.026238 r S + 0.014757 r S
4 5 6

- 2.37233 S + 0.019099 r S ) , (3.6)
7 8

where

= exp(- p^r)

and p to p are respectively 13.1474, 9.71542, 3.90983, 2.60387,
1 8

1.25944, 0.75485, 5.49636, 0.541733. We determined the atomic wave 

function of the 3d state by the Hartree-Fock-Slater method and curve

fit the radial part of it using linear combinations of S , S , S , and
5 6 7

S . Using this radial function we generated the five 3d functions
8

corresponding to the symmetries xy, yz, zx, x^-yZ, rZ-3z2. The coef­

ficients were:

‘I’Sd = xy(0.071688 S - 0.075850 S
^  5 6

+  0.091190 S + 0.052076 S ) . (3.7)
7 8

We then constructed the Bloch functions:

b ^ ( k ,  r) = {H fi_^(k)} £ e
V ->■ -4"

knp(k- ■ it" i ®
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-> ->

bgjCk, r) = {Nn^^Ck)} * I e - R^) . C3.8)

We used this set of 14 basis functions b^^, bg^, b^^, b^^ , b^^ , b^^

"3Px' bspy' bsp,' b3d,y' bsdy,' bsd,,/ "3d (,,_ ,,2 ) t °
set up the secular equation and solved it for several different values

of k. The results are contained in Table 2 along with a comparison 

of the results of Schlosser and Marcus.^ The agreement can be seen 

to be quite good (within 0.01 a.u.) except at the p point (k = [0 ,0 ,0 ]) 

where the tight binding value is 0.015 a.u. above that of Schlosser and 

Marcus. For k = 0 the crystal wave function for this energy is made 

up of only Bloch sums of s type symmetry atomic orbitals. Therefore, 

since the only s type symmetry functions in our secular equation were 

Bloch sums of Is, 2s, 3s atomic orbitals, we have only two degrees of 

freedom in performing the linear variation calculation. The lack of 

sufficient flexibility in the trial function may be responsible for 

the discrepancy of 0.015 a.u. at the F point. To pursue this point, we 

generated a Bloch sum from an s-type atomic function composed of Slater- 

type orbitals with the same weighting as in the Hartree-Fock-Slater 3d 

wave function, i.e.,

$ = r^CO.071688 Sg - 0.075850 Sg + 0.091190 S 7 +  0.052076 Sg)
(3.9)

and included this Bloch sum along with the ls-2s-3s basis to recalculate 

the r point energy. This gives -0.2974 a.u. which is only 0.0064 a.u. 

higher than the Schlosser and Marcus value. Th.e good agreement between
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TABLE 2

Comparison of the energy band structure of sodium 

Using the method of tight binding and the method of

composite waves (energy in atomic units).

a k /2tt0 X
Tight Binding 
without 3d

Tight Binding 
with 3d

Composite 
waves^

[0 ,0 ,0 ] -0.2886 -0.2886 -0.3038

[1 ,0 ,0 ]

0.2 -0.2805 -0.2829 -0.2908

0.5 -0.2127 -0.2133 -0.2240

0.8 -0.0951 -0.0992 -0.1052

0.9 -0.0401 -0.0534 -0.0561

1.0 -0.0033 His -0.0097 Hi2 -0.0099

[1 ,1 ,0 ] El
0.1 -0.2867 -0.2884 -0.29 73

0.3 -0.2337 -0.2354 -0.2461

0.5 -0.1474 -0.1474 -0.1472

[1 ,1 ,1 ] ^1

0.1 -0.2833 -0.2866 -0.2941

0.3 -0.2063 -0.2074 -0.2178

0.5 -0.0754 -0.0775 -0.0773

See Ref. 7.



27

the two methods indicates that the method of tight binding gives an 

adequate representation of the crystal wave function even for a metal 

for which the electrons are not tightly bound to their respective 

nuclei. It might be instructive to investigate the crystal wave 

function to see why the method of tight binding can give such good 

results. The crystal wave function for the P point k = [0,0,0] is 

plotted in Fig. 3. This figure shows that the crystal wave function 

is flat over a large portion of the graph. If we have one free sodium 

atom, the wave function tends to decrease exponentially. Apparently 

if one adds together the exponential decay of each of these wave 

functions at the proper sites, then they will overlap with each other 

in a manner to give a flat charge distribution. The free electron has 

a completely flat charge distribution so one can see that the crystal 

wave function constructed by the method of tight binding automatically 

has free electron characteristics. This is the reason why it can give 

good values for the energy band structure of metals.

We have repeated the tight-binding calculation using only the 

Is, 2s, 2p, 3s, 3p Bloch functions in the secular equations. The 

effect of removing the 3d Bloch functions from the secular equation

is also given in Table 2. The effects of the 3d orbitals are most
“>■ 2ttnoticeable near the H point, k = — [1,0,0]. The A band curve 

terminates at which has the symmetry of d-type orbitals. If the 

3d Bloch sums were omitted from the basis set, it is no longer possible 

to produce a crystal wave function of symmetry, thus the A^ line 

joins to (p-type symmetry) at the H point. Aside from the H point



Figure 3. Crystal wavefunction and Bloch Sums at the T point of sodium along the [100] line of the 
crystal. The solid line is the crystal wavefunction, and the 3s and 4s Bloch sums are 
presented by uniform dashes and long-short dashes respectively
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the conduction band energies calculated by the Is, 2s, 2p, 3s, 3p 

basis set do not differ significantly from those using the more 

extended set.

Another point which needs to be cleared up is the question of 

convergence. That is to say, can we expect the Bloch functions for 

the atomic states up to n = 3 to give the secular equation enough 

variational freedom to give good values for the energy bands. To 

investigate this point we plotted a Bloch function which was constructed 

from a 4s sodium atomic orbital. The graph in Fig. 3 shows the 4s Bloch 

function plotted in comparison with the 3s Bloch function for k=[0,0,0]. 

The normalized Bloch function is found to be virtually identical to 

the 3s function at all points except the region near the sodium nuclei. 

This region is represented adequately by the inclusion of the Is and 

2s Bloch functions. This shows that the inclusion of the 4s orbital 

in the basis set would not introduce any more variational freedom and 

would leave the energy practically unchanged.

Since the method of tight binding gives quantitative energy bands 

for the metals, it can be expected to give even better results for a 

non-conductor. We have, therefore, extended the method to the case of 

the silicon crystal.



CHAPTER IV 

Band Structure of Silicon

The silicon lattice can be thought of as being constructed 

from two interpenetrating sublattices of face-centered cubic (fee) 

structure which we will designate as sublattices 1 and 2. Each 

lattice site of the second sublattice is separated from the corres- 

ponding member of the first by a non-primitive translation T directed 

along the body diagonal of the face-centered cube of the first sub­

lattice and of magnitude /3 a^/4 where a^ is the lattice constant of 

the sublattice. We will place the origin of our coordinate system 

at a point midway between these sublattices and with axes parallel to 

the edges of the face-centered cubes. The Wigner-Seitz cell situated 

about this origin has a volume =(l/4)a^and contains two atoms at 

locations given by

^  a^ (1,1,1) = -tg (4.1)

for sublattices 1 and 2 respectively. The atoms in the adjacent cells 

are given by ± % T respectively. The overlapping atomic potential
9

model was used as the starting potential in this particular calcula­

tion.

30
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Since the crystal has a periodic structure, the potential can 

be represented as a Fourier expansion. This Fourier expansion will 

only contain cosine terms since the crystal potential of silicon is 

invariant under inversion about the origin of our coordinate system.

We then have:

The crystal potential could also be expressed as a superposition 

of functions l/(r) centered about the atomic sites of the crystal, i.e..

(4.3)
l/[-r + (R + t„ ) ]} .

It is convenient to introduce the free atom charge density p(r) which 

is obtained from the Hartree-Fock-Roothan calculations of Clementi^^ 

for the (ls)^(2s)^(2p)G(3s)^(3p)^ ground state of silicon by the 

relation

4np(r) - 2[R^g(r)]2+ 2[R2g(r)]2 + StRg (r)]2

(4.4)
+ 2 [R3g(r)]^ + 2 [R3p(r)]^- ,

where the R (r) are the radial parts of the solution to the self con- n&m
sistent field calculation. We can decompose l/(r) into the part due to

the coulomb interaction of the nucleus and the electrons plus the
1/3exchange contribution which is approximated by -3/2 [3p(r)/n] in
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Hartree atomic units. The Fourier coefficients then become

V (K ) = -8ttK ^ cos(K *t,) {Z-K ^ ( 4rrp(r) sin(K r)dr crys V V v 1 v i v
0

(4.5)
+ K V (■|)r [3p(r)/ir]^^^ sin(K^r) dr},

where Z is the atomic number. To facilitate the above integration, we
1/3curve fit 4irrp(r) and(3/2)r[3p(r)/ it] by a non-linear least square 

process. The analytic form which we obtained for these two functions 

from this curve fit is contained in Appendix II. The value of a^ for

this calculation was chosen to be a = 10.26 a.u. in order to facilitate0
comparison with the calculation of Bassani and Yoshimine^^ by the method 

of orthogonalized plane waves, [OPW]. A comparison of our Fourier coef­

ficients with those of Bassani and Yoshimine can be found in Table 3.

We used the analytic Slater-type orbital functions generated by 

Clementi^^ for the Is, 2s, 3s, 2p^, 2p^, 2p^, 3p^, 3p^, 3p^ states of 

the silicon atom to construct the Bloch functions. We also curve fit

the atomic wave function of the 3d state which had been calculated by
12the Hartree-Fock-Slater method and generated the five 3d functions 

xy, yz, zx, xf-yZ, r^-3z2. The coefficients were:

= xy{ 0.818899 exp(- 4.08524 r)
xy

+ 0.374280 expC- 7.81297 r) 

+ 0.208879 exp(- 1.09340 r)

+ 0.197731 exp(- 1.86255 r)}

(4.6)
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The 14 Bloch sums corresponding to Is, 2s, 3s, 2p^, 2p^, 2p^, 3p^, 3p^,

3Pz' 3dxy, 3dyg, 3d^^, Sd^^g.yZ)' 3d^^2 _ 3z2 ) can then be constructed 

for each of the two sublattices making a total of 28 basis functions 

in all. However, we found that secular equation was real and was much 

easier to diagonalize for the r point if we formed the following 

"bonding" and "antibonding" combinations:

b (k,r) = I (a,A) [N n^(k)]"^a ,A a

Z [exp(ik'{R +t })* (r-R -t, ) (4.7)V V 1 a V i

+ A exp(ik'{R +t })# (r-R-t )] ,V) ^ a V)

where 

A= ± 1

n=ls,2s,3s,2px,2py,2p2,3p̂ 3̂py,3p2,3d̂ y,3dy2,3d2x,3d(x2_y2),3d(̂ 2_222)

1 for a = n s , nd
I(a,l) = il(a,-l)

i for a = np
X

and fi^(k) are the normalization constants. The I(a,A) are chosen soa '
that the matrix elements will be real. The matrix elements corresponding

to the overlap, kinetic and potential energy can then be calculated and 

the secular equation solved for the band structure. It is instructive 

to examine the effect that the inclusion of the Bloch sums of the 3d 

states has upon the silicon band structure. Bloch sums of the Is, 2s, 

2 p , 3s, and 3p atomic orbitals can be considered to be a "minimal set"
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TABLE 3

Comparison of the Fourier coefficients for 

the overlapping atomic crystal potential 

of silicon with the calculation by Bassani 

and Y o s h i m i n e . ( P o t e n t i a l  in a.u.)

■ r  k,)
0

Present
work

Bassani and 
Yoshimine

0, 0, 0 -1.0000 -1.000

1, 1, 1 -0.3635 -0.363

2, 2, 0 -0.1901 -0.190

3, 1, 1 -0.1532 -0.153

4, 0, 0 -0.1187 -0.118

3, 3, 1 -0.1055 -0.105

4, 2, 2 -0.0896 -0.089
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for a tight-binding calculation since this many basis function are

required to represent the different symmetries of the crystal wave
“>■

function for different values of the k vector. The inclusion of the 

3d state might be expected to change the energies some however, since 

the energy spacing between a 3p and 3d atomic state is small. The 

effect of the inclusion of the 3d states is presented in Table 4.

The results of the diagonalization of the secular equation which 

includes the 3d states are presented in Fig. 4 along with a plot of 

the results obtained by Bassani and Y o s h i m i n e . A s  can be seen, the 

tight-binding results lie considerably below those of the OPW calcu­

lation. Since the tight-binding scheme is a strict application of 

linear variation of parameters, we judge the tight-binding calcula­

tions to be considerably more accurate than the OPW calculation of 

Bassani and Yoshimine using some 90 basis functions. (The OPW method 

is a variation of the Fourier expansion (Plane Wave) technique which 

was described in chapter II).

The results from our tight-binding calculation for the relative 

positions of and were in disagreement with all the previous 

theoretical calculations. It was thought that a very accurate "OPW 

like" calculation might shed some light on the reasons for this 

discrepancy.



36

TABLE 4

Comparison of the energy band structure of 

silicon calculated without the 3d atomic states 

being included in the secular equation and with 

the inclusion of the 3d states (Energy in a.u.)

with 3d without 3d

[0 , 0, 0]

Fj - 0.829 - 0.829

- 0.325 - 0.325

- 0.414 - 0.400

r - 0.294 - 0.281
15

[.2 , 0 , 0]

A ^ d ) 0.823 - 0.823

AgCl) - 0.454 - 0.443

A^(2) - 0.288 - 0.285

4^(2) - 0.304 - 0.290

Ag(l) - 0.430 - 0.419

Ag(2) - 0.271 - 0.251

[.5, 0, 0]

Aj(l) - 0.793 - 0.793

A^(l) - 0.547 - 0.541

A '(2) - 0.266 - 0.231

Ai(2) - 0.334 - 0.313
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TABLE 4 Continued
with 3d without 3d

AgCl) - 0.469 - 0.464

Ag(2) - 0.192 - 0.151

[.7, 0, 0]

A^(l) - 0.760 - 0.758

A^(l) - 0.608 - 0.604

A '(2) - 0.304 - 0.243

A^(2) - 0.346 - 0.318

A j d )  - 0 . 489 - 0.483

Ag(2) - 0.127 - 0.081

[1, 0 , 0]
XjCl) - 0.692 - 0.689

- 0.501 - 0.495

Xi(2) - 0.342 - 0.294

_ - 0.048 - 0.030
*3

[.4,.4, 0]

Zl(l) - 0.785 - 0.784

EgCl) - 0.574 - 0.569

%l(2) - 0.498 - 0.492

Eg - 0.441 - 0.432

2:3 (2) - 0.291 - 0.277

2^ - 0.245 - 0.220
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TABLE 4 Continued

with 3d without 3d

2^(3) - 0.238 - 0.183

E3O )  T 0.184 - 0.123

[.75,.75,0]

Zj(l) - 0.709 - 0.708

E (1) - 0.671 - 0.668

2,(2) - 0.536 - 0.531

2 - 0.488 - 0.482

2 (2) - 0.328 - 0.283

2 , - 0.126 - 0.086

2 (3) - 0.233 - 0.171

2g(3) - 0.108 - 0.059

[.2,.2, .2]
A^ d )  - 0.812 - 0.812

Al(2) - 0.517 - 0.511

AgCl) - 0.432 - 0.422

A;(3) - 0.323 - 0.314

Aj(4) - 0.203 - 0.179

Ag(2) - 0.268 - 0.245

[.5, .5, .5]

L^(l) - 0.757 - 0.757

L^(l) - 0.643 - 0.636
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TABLE 4 Continued

with 3d without 3d

- 0.453 - 0.445

L^(2) - 0.346 - 0.330

L^(2) - 0.040 - 0.002

- 0.257 - 0.203



Figure 4. Energy band structure of silicon with overlapping atomic potential. The solid curves were
calculated using the method of tight binding with the ls-to-3d basis s e t . The dashed curves 
are the OPW results of Ref. 11.
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CHAPTER V

Silicon by Orthogonalized Plane Waves 

We performed an orthogonalized plane wave calculation for the
~y

r point (k=*[0 ,0 ,0 ]) of silicon which was very similar in form to the 

OPW calculation of Bassani and Y o s h i m i n e . H o w e v e r ,  several approxi­

mations which are generally used in an OPW calculation were not made 

in this work due to the fact that we could use some of the matrix 

elements from our previous tight-binding calculation. The difference 

between the OPW technique and the method of tight binding is in the 

choice of the u(r) in Eq. (2.7). In chapter II it was stated that the 

truncated Fourier (plane wave) expansion provided a very adequate 

representation of the crystal wave function except in the region near 

the nuclei of the atoms which make up the crystal. The OPW technique 

is based on the assumption that the fast oscillation of the crystal 

wave function near the nuclei of the crystal is due to the fact that 

the crystal wave function must be orthogonal to the crystal core state 

levels (fully occupied levels). If one were to orthogonalize the plane 

waves to the Bloch sum functions which correspond to the crystal core 

states, one might be able to obtain faster convergence in the plane wave 

expansion. However, one does not have the Bloch sum functions for the 

crystal core states until after one has done the tight-binding calcula­

tion since the eigenvectors from the tight-binding secular equation

41
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give the proper mixing between the Bloch sums of the atomic core state

functions and those of the valence state to give the crystal core state

function. The approximation that is generally made is that the atomic

core state wave function is not changed very much when the atoms come

together to form the crystal. Therefore, Bloch sums of atomic wave

functions are used to approximate the crystal core state wave function.

The basis functions for the OPW band structure calculation for

silicon can then be formed as

^  i(k+K )'r ^  ^
T.(k,r) - (NO) 4 e " - E B(h,o,A) b .(k,r) , (5.1)

ot,A

where the b ,(k,r) are those Bloch sum functions defined in Eq. (4.7),a»A
the a summation is over b. , b„„ , , b , , b_ . , b„ . , the AIs, A 2s,A 2p^,,A 2Py,A Zp^.A
summation is over A = ±1, h determines which plane wave we are working 

with and n is the volume of the Wigner-Seitz cell. The g(h,a,A) are 

determined by the conditions that

I Y^*(k,r) b^ ^ (k,r) di = 0 (5.2)

for a = Is, 2s, 2p^, 2p^, 2p^, A ■ ± 1. The terms in Eq. (5.2) involve

integrals between plane waves and Bloch functions as well as Integrals 

between one Bloch function and another Bloch function. The integrals 

between the plane wave and the Bloch function are handled in a rigorous 

fashion. However, the integrals between two Bloch functions involve 

the multicenter integrals between atomic wave functions centered about 

two different lattice sites. Since the core state atomic wave functions 

can be expected not to extend very far out into the crystal, there is
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some justification for neglecting all of the multicenter integrals in 

Eq. (5.2) and for only retaining the integrals when the atomic wave 

functions are centered about the same lattice site. This approxima­

tion is generally made in an OPW calculation. However, since we had 

these multicenter integrals from our previous tight-binding calcula­

tion, it was not necessary for us to make this approximation. We used 

these basis functions to set up the matrix elements for the overlap 

and Hamiltonian matrices. These matrix elements have the form

j = (NO)-1 exp f-i(k+K^ ) • r} exp{i(k+K^ ) * r} dt

- (NO)"^ z e(h ,a,A)*
a,A

-y
^(k,r) exp {i(k+Kj^ ) • r}d?

(5.3)
—

- (NO)  ̂Z e(h ,a',A') exp {-i(k+K, ) • r}b , ,(k,r)d?
o',A'  ̂ a ,A

+  Z Z e (h, ,a,A)3(h.,a',A') b .(k,r) b , *,(k,r) dx 
a,A a',A' ^ ^ ^

and

j = (NO) -1 exp {-i(k+I^ ) • r } ^  exp {i(k+K^ ) • r} dx

-  (No) E 8 (h ,a,A) | b *  (k,r) V e x p  {i(k+K. ) • r} dx
a,A ^ 3

(5.4)
-  (No) Z 6 (h.,a’,A’) [ exp {-i(k.+IC ) • r } ^ / b  , , (k,r)dx

a',A' J i a ,A

+ Z Z 3(h ,u,A) e(h ,a’,A’) b* ( k , r ) ^  b , ,,(k,r) dx , 
o,A o',A'  ̂ ",A o ,A
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where y  is the one electron Hamiltonian. By substituting in for the 

Bloch functions of the core states and using the definition of 

3 (h^,a,A) and g(hj,a',A*), these equations can be further reduced 

to ; (Details of this are worked out in Appendix III).

S, 4 = r “ I*(a,A) [î2fi^(k)]"^E g(h ,a,A)*i,j a a»A 1
i j (5.5)

-y-
[exp(iK^ *t^) + A e xp(iK^ -tg)] *^(r) exp {i(k+K^ ) • r} dx

and

j = (Nfi) ^ I exp {-i(k+Kj^ ) • r} ̂ e x p  {i(k+K^ ) • r} dx

.,A ‘
ik't- i k ’t^ .

[e (j, (r-t.) +  Ae (j> (r-t,)] dta . i a ^

j

exp {-i(k+K, ) • r > y
j

(5.6)
- I(a',A*) [nO^,(k)] 6 (h.,a'>A') exp {-i(k+K ) • r} V

“ o',A' J i \

ik*t. ^  ^  ik-t, ^  ^
[e (() '(r-t.) +  Ae f '(r-t,)] dx a i o /

+Z E 6 (h ,o ,A ) 8 (h, o'A') 
a,A o ’a' ^ J'

*

Several approximations are made on the Hamiltonian matrix element 

(Eq. (5.6)) in many OPW calculations. The first approximation is 

to neglect the multicenter Integrals Involved in the fourth term of 

Eq. (5.6). The justification for this is the same as that used for
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neglecting the multicenter nature of the integrals from Eq. (5.2) in 

that the core state atomic wave functions cannot be expected to extend 

very far out into the crystal. The second approximation is to say that 

in the region near the nuclei of the atoms which make up the crystal, 

the crystal Hamiltonian is nearly equal to the atomic Hamiltonian and, 

therefore, if <j)̂ is the solution to an atomic Hartree-Fock calculation,

7 / atomic (5-7)

we have that

^ c r y a  *o = \  « . «

The approximation of Eq. (5.8) is even worse if the core state functions 

are solutions to a variational Hartree-Fock calculation instead of a 

direct solution to the Hartree-Fock equation for then we can only say 

that

I atomic ♦o'*" “ "o

instead of Eq, (5.7). This approximation greatly simplifies the 

Hamiltonian matrix for it means that the second and third terms in 

Eq. (5.6) can be written as a constant multiplying the overlap between 

a plane wave and an atomic function and the fourth term can be written 

as a constant multiplying the overlap between two atomic wave functions. 

It was thought, however, that this approximation might not be justified 

for band structure calculation. In order to test this approximation 

we performed two calculations of the r point (k = [0 ,0 ,0 ]) energy



46

levels for the case where 6 has been obtained by the variationala
Hartree-Fock-Roothan procedure, (as was done by Bassani and Yoshimine). 

In the first calculation we rigorously computed the matrix elements 

except that we made the approximation that the crystal Hamiltonian 

could be replaced by the atomic Hamiltonian for the core state atomic 

wave functions and compared this result with that of a completely 

rigorous calculation of the matrix elements. The energies for various 

numbers of basis functions can be found in Table 5. The large difference 

between the F point eigenvalues calculated with and without this approxi­

mation is indicative of the fact that the approximation 4:̂  ̂ =

^  atom ‘f’ot justified. This is thought to be part of the reason

behind the discrepancy between the tight-binding results and the 

results of Bassani and Yoshimine for silicon. We also tested the 

effect of orthogonalizing the Bloch sums of the atomic core states 

instead of the crystal core states by putting the atomic core states 

back into the secular equation. The linear variational theorem 

guarantees that when this is done that the energies obtained will be 

upper bounds on the energy of the bands in the crystal while if we just 

orthogonalize to the atomic core states, we cannot be sure that the 

energies which we calculate are above the energy bands of the crystal.

The effect of augmenting the secular equation by putting in the core 

states can be seen in Table 6 .

As can be expected, the energy levels rise when the secular 

equation is augmented (since previously there was no lower bound on 

the energy); however, the effect is rather small for the case of silicon,
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TABLE 5

Comparison of the r point energies

with the approximation that 1=/ * =
' crys^a

^ a t o m  without this approximation.

113 OPW 
with approx

113 OPW 
no approx

609 OPW* 
with approx

609 OPW* 
no approx

'l - 0.768 - 0.837 - 0.815 - 0.856

r'
25

- 0.358 - 0.448

■■is - 0.257 - 0.323

'’2 - 0.160 - 0.292 - 0.250 - 0.340

•k
The plane waves are symmetrized in practice so that the largest 

matrix which must be diagonalized is a 45 x 45.
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TABLE 6

Effect of putting the crystal 

core states into the secular 

equation.

113 OPW 113 OPW 
+  Atomic core

609 OPW 609 OPW 
+  Atomic core

^1 - 0.837 - 0.836 - 0.856 - 0.853

^25 - 0.448 - 0.442 - 0.457

^15 - 0.323 - 0.319 - 0.335

^2 - 0.292 - 0.292 - 0.340 - 0.339
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so this seems to be a good approximation for this particular crystal. 

It is worth noting that the augmentation of the secular equation is 

formally equivalent to including Bloch sums of atomic core states and 

plane waves in the secular equation without bothering to orthogonalize 

these plane waves to the Bloch sums of the atomic core states. This 

might be a good technique for calculating the excited energies in the 

crystal bands.

The answer to the question of why the relative positions of 

and had not been predicted previously by plane wave type techniques 

becomes apparent when one looks at Fig. 5. This figure gives a plot 

of the r point energies using various numbers of plane wave basis 

functions plus the Bloch sums of the atomic core state functions in 

the secular equation. The F^ energy level converges very slowly as 

a function of the number of basis functions. If one had performed 

the calculation with 113 or less orthogonalized plane waves (as had 

been done in the past), one would get the F^ energy level to be above 

the F^g energy level. However, when one includes more OPW's the F^ 

level continues to go down until at 609 OPW's the F point energy levels 

agree well with the tight-binding results for silicon (plotted on the 

right for comparison).

We have, therefore, shown that the tight-binding results for

silicon are correct. The ordering of F^ and F^^ predicted by tight

binding has also been recently confirmed independently by another
13orthogonalized plane wave calculation done by Stukel and Euwema.
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Figure 5. Convergence of the Fg Fis and Fz& energy levels of silicon versus the 
number of OPW’s. The’tight binding results are presented on the right 
for comparison.



CHAPTER VI

Lithium Tight-Binding Calculation Using Gaussians

We stated in chapter II that if the atomic wave functions were 

expressed in terms of Gaussian-type orbitals (instead of the Slater- 

type orbitals), the single numerical integration which was present in 

the Slater-type orbtial calculation could be evaluated analytically.

If we started out with atomic functions which had been constructed from 

Gaussian type orbtials, for example,

 ̂ » (6.1)

then no numerical integration would be necessary, as all of the integrals 

could be evaluated analytically. We decided to perform a tight-binding 

calculation for the band structure of a lithium crystal and conçare our 

results with the tight-binding calculation of Lafon and Lin.^ Since 

lithium is a conductor, it can be expected to be one of the worst cases 

to test the applicability of the method of tight-binding. Therefore, we 

can expect that if the Gaussian-type orbital basis set works well for 

lithium, that it will work as well, or better for other crystals.

Since atomic lithium has electrons in its shells up to n=2, we 

would expect to need Bloch sums of atomic functions for the Is, 2s, 2p 

states of lithium. The Is and 2s atomic wave functions were obtained 

from the Gaussian Hartree-Fock orbitals of Huzinaga^^ (nine terms) which

are of the form

J w^ exp(-a^r^) . (6.2)

51
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The 2p atomic wave functions were obtained by an analytic fit of the 

numerical Hartree-Fock functions as

♦, - •• - -  ' '2̂px = Zgj exp (-o^r ) , (6.3)

where the are 0.0229434, 0.0764918, 0.444620, 1.15685, 3.15789, 

9.35329, and 31.9415 and the associated are 0.00628524, 0.0322162, 

0.0632252, -0.0278234, 0.107313, -0.0635848, and 0.118988, respectively. 

In the analytic fit most of the Gaussian parameters were chosen to 

be the same as the parameters for the Is and 2s wave functions in order 

to simplify the tight-binding computation; however, two new parameters 

were introduced in order to give the fit more variational freedom in 

approximating the tail of the wave function. If we represent the 

Gaussians in the following manner,

G*(a,r) = e"“’̂^

p 2 (6-4)
G *(a,r) = xe'or ,

the potential integral between a wave function centered about the point 

A and a wave function centered about B (Eq. (2.15)) can be reduced to 

sums over Gaussian integrals of the form

<G®(a^, r-A)]v(r)|G®(o2 . r-B)>

(6.5)

= Z V(K^) I exp (-d^r^^ - cos 'r̂ ) d% ,
V

^  ->• 
where r is measured from the origin of the Fourier expansion, r.from C A
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the point A, and from the point B. From Eq. (14) of Ref. 4 we have 

that

2 2 +  exp (-s^r^ - s^rg ) cos (K^'r^) dr

= [n/Cs^+Sg)]^^^ exp [-s^Sg (6 .6)

-y -»

where

cos (K^'^gg) exp [-(1/4)k^ /(s^+S2)] ,

Df = (ot^^ +  ^ ~ x,y,z

->• •>
^ * ^CD '

By replacing by and Sg by Ug in this equation we have

<Gf(o^,r-A) I cos(K^Tç) | G^(a2 »r-B)>
(6.7)

[n/Xa^+ag)]^^^ exp [-(a^ag r^g +(l/4)K^^)/(o^+a2 )]cos (K^-r^g).

The differentiation technique described in Ref. 4 was used to obtain the 

p-type Gaussian integrals. Expressions for the kinetic-energy and 

potential-energy integrals involving s- and p-type Gaussians are given 

in Appendix IV. The overlap Integrals may be obtained from the potential- 

energy integrals by setting = 0 .

Using the same Fourier coefficients of the potential as were 

employed by Lafon and Lin, we calculated the energy band structure of 

lithium with this scheme of Gaussian orbitals for two different values
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of lattice constants, 6.5183 and 6,65 a.u. The calculation of all the 

necessary integrals and the solution of the secular equations for the 

two different lattice constants required approximately two minutes each 

on the Univac 1108 computer. The results which are summarized in 

Table 7 show excellent agreement with the previous work using Slater- 

type orbitals. A plot of the T point crystal wave function shown in 

Fig. 6 is very similar to the plot for sodium shown in Fig. 3. Between 

the neighboring atoms along the [1 ,0 ,0 ] direction, the crystal wave 

function is essentially flat over more than half of the region* As in 

the case of sodium the atomic wave functions centered at each site 

overlap with each other in such a manner that the crystal wave functions 

exhibit the characteristics expected of free particles and the valence 

electrons of the crystal are no longer "tightly bound" to the individual 

atoms. The ability of the method of tight binding to represent a "free 

particle type" crystal wave function is further b o m  out by the good 

agreement of the band structure calculated by the method of tight bind­

ing with that obtained by the Green’s function method, the composite
4

wave method, and a method of modified plane waves.
2When becomes much greater than 1000/a^ (a^ being the

lattice constant), the convergence of the Fourier summation in Eq. (6.5) 

becomes rather slow. The converence of this summation is dictated 

primarily by the factor

V(K) exp [-K^^Y4(a^ + Og)] .

When becomes large, the exponential term cannot be expected to

make the terms in the series small enough that the infinite fourier
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TABLE 7

Comparison of the energies (in rydbergs) of the con­

duction band of lithium calculated by the tight- 

binding method using Slater orbitals (Ref. 4) and 

using Gaussian orbitals, for lattice constant

a = 6.5183 a.u. and a = 6.65 a.u. o o

Energy (a^=6.5183) Energy (a^=»6.65)
Gaussian Slater Gaussian Slater

[1 0 0 ] [1 0 0]

0.0 -0.674 -0.672 0.0000 -0.675 -0.674

0.2 -0.645 -0.643 0.2500 -0.631 -0.629

0.5 -0.496 -0.494 0.5000 -0.502 -0.500

0 . 8 -0.225 -0.223 0,6250 -0.407 -0.407

0.9 -0.106 -0.106 0.7500 -0.291 -0.290

1.0 -0.039 -0.044 1.0000 -0.059 -0.065

[1 1 0 ]

0.1 -0.660 -0.657 0.2500 -0.588 -0.587

0.3 -0.548 -0.545 0.3750 -0.487 -0.485

0.5 -0.395 -0.393 0.5000 -0.400 -0.399

[1 1 1 ]

0.1 -0.652 -0.650 0.1250 -0.642 -0.641

0.2 -6.589 -0.587 0.2500 -0.547 -0.545

0.3 -0.487 -0.485 0.3125 -0.477 -0.478

0.4 -0.348 -0.346 0.3750 -0.393 -0.395

0.5 -0.175 -0.177 0.5000 -0.189 -0.190
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expansion can be truncated to several hundred terms in a finite series. 

The Fourier coefficient (V (K^)) also dies off very slowly primarily 

due to the singularity of the crystal potential which varies like 

-z/|r-R^| about each nucleus. By using a Ewald-type^^ expansion we 

have removed these singularities from the Fourier series expansion and 

calculated their contribution to the potential integral by a direct 

space integration and have greatly improved the convergence of the 

Fourier expansion. In this procedure we divide the crystal potential 

into two parts,

’ cry.''’ ■ ’l'') + "cry.'') - • (6 -8)

where V^(r) behaves like -z/|r-R^| about each nucleus. The precise 

form of V^(r) is to some extent arbitrary and will be specified later. 

Since - V^(r)] is a relatively smooth function of r, it can

be expanded in a Fourier series which converges with much fewer terms 

vis. ,

<G(oi,r - A) I V(î) - V^(r) | 6 (0 %, r-B)>

-> ->■ C6.9)
= Z a^<G(uj^,r - A) | cos (K^«r) | GCog, r - B)

On the other hand V^(r) which is responsible for the high frequency 

Fourier components is now expanded in direct space as a superposition 

of functions V centered at each site,

<G(a^, r - A) I V^(r) | GCog, r - B)
^ (6.10) 

= Z <G(a,, r - A) | [/(r - R ) | G(o_ r - B)> ,
p P *
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The only restriction on l/(r) Is that it reproduce -z/r near the origin.

We are free to choose the form of 1/ for the region away from the origin 

in such a way as to facilitate the calculation. By making l/(r) negli­

gibly small before r becomes as large as the distance to the next- 

nearest neighbor, one can improve the convergence of the above summation, 

for the case of large to the extent that only one or two terms are

needed. A possible choice of W(r) which would satisfy the above con­

dition is

V(r) = -(z/r) (1+yr^) exp (-Yr^) , (6.11)

where y = 2.5. This choice was used in the present problem because 

of its simplicity and ease of calculation. Thus for the case of A=B 

Eq. (6.10) can be well approximated by

<G(o^,r-A) I V^(r) | 0 (0^,r-A)

(6.12)
- <G(a^, r-A) | i'(r-A) | G(u^, r-A) >.

When A and B refer to two different sites the only nonnegligible integrals 

of for > 30 occur when >>o^ or The approximations

used are

< 3(ctĵ , r-A) I V^(r) | G(a^, r-B)>

=<G(a^,r-A) | V (r-A) | G(a2 »r-B)>, for (6.13)

=<G(a^,r-A) 1 V (r-B) | G(u2 ,r-B)>, for .
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Using these three expressions (Eq. (6.12) and Eq. (6.13)) we can 

easily evaluate the potential-energy integrals involving very short 

range Gaussians. In this particular calculation we used Eq. (6.12) to 

evaluate the single-center integrals (A=B) of V^(r) whenever > 30.

For such cases the multicenter integrals (A 4 B) are entirely negligible 

with the possible exception of > 2 (or Og > 2). The multicenter 

integrals for these high-low combination pairs are handled by Eqs. (6.13). 

To examine the accuracy of Eq. (6.12) we have computed the contribution 

to the matrix element of from the V function centered at a nearest 

neighbor site of A. This turns out to be less than 10 of the value

given by Eq. (6.12) even for the case of + Og = 20. As a further 

test we evaluated the matrix element of <G (31.9415, r-A) | V(r)|G®(0.07663, 

r - B)>for r ^  = 5.645 a.u. using this Ewald-type expansion and obtained 

a value of -0.04298 for the matrix element. This agrees quite well with 

the value of -0.04294 which was obtained by carrying the Fourier expan­

sion to convergence.

Rather than confining ourselves to the wave functions of the free 

atom, we can use each of the Gaussians in Eqs. (6.2) and Eqs. (6.3) to 

form the Bloch functions, i.e.,

Bj(k,r) = [NOj(k)] ^ E exp (ik*R^) G(Oj,r-R^) . (6.14)

The crystal wave function can then be expanded by these single-Gaussian 

Bloch functions (Bj(k,r)), and the energy band obtained by solving the 

secular equation. One could reduce the size of the secular equation by 

adopting a procedure similar to that of "contraction" as suggested by
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Clement!, i.e., we replace the individual Gaussian in Eq. (6.14) with 

some suitable linear combinations of Gaussians. A convenient way to 

choose such linear combinations is to divide the Gaussians into several 

groups according to the magnitudes of their exponent parameters and to 

take the weighting coefficients from the atomic Hartree-Fock calculation. 

Thus we form

3 ng g
Xns.l- G C , .  r - R ^ ) , n . l , 2

Xns,2 ’<x - Î
* ns _s. '

Xas.3' (X - "4 G r - R)

3

X2p . r  - V  «j ' - V

X2P.2 - - V  -j!; 'j X -

(6.15)

%2p,3 ' ■ 3y G (oy, r - Ry) ,

where the are the Gaussian parameters arranged in ascending order.
Is 2s

ui^ andü)^ are their coefficients in the Is and 2s atomic wave 

functions as found in Ref. 14 and the and are from Eq. (6.3).

The band structure is then calculated using as the basis set the fifteen 

combined-Gaussian Bloch functions of the form

B'j(r,k) = [Nn'j(k)] Z exp (ik*R^)x'j(r-R^), (6.16)

corresponding to Is, 2s, 2p^, 2p^, 2p^. The results are in all cases
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TABLE 8

Comparison of the energies (in rydbergs) of the conduc­

tion band of lithium using the basis set composed of 11 

Gaussian exponent parameters described in Eqs. (6.15) and 

using a similar basis set but dropping four of the 

parameters, for a^ “ 6.5183 a.u.

_____________________Energy___________________
a^k/2ir 11-parameter set 7-parameter set

[100]

0.0 - 0.678 - 0.676

0.5 - 0.503 - 0.503

1.0 - 0.039 -0.039
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slightly lower than the corresponding ones in Table 7. This can be 

expected since this is a linear variational procedure and the intro­

duction of additional basis function always tends to suppress the cal­

culated energy levels and bring them closer to the exact eignevalues 

of the one electron crystal Hamiltonian. The results of a calculation 

which was performed using this baàls set are presented in Table 8 .

Since the wave functions of the indivitual lithium atoms over­

lap so strongly with each other, it is interesting to speculate as to 

how well one must reproduce the tail of the atomic wave function which 

extends beyond the next nearest-neighbor atoms in the tight-binding 

calculation. In other words, is it possible to drop some of the long- 

range Gaussians in Eqs. (6.15)? We also observed that near each 

nucleus the crystal wave function as shown in Fig. 6 does not vary as 

steeply as the Is orbital of a free atom, suggesting the possibility 

of eliminating the very short range components of x'* Following these 

ideas we have omitted the Gaussians with a = 921.271, 138.730, 0.028643 

and 0.0229434 in Eqs. (6.15) and recalculated the energy band structure. 

(When this is done x^g 3 becomes identical to X2g 3 and is, therefore, 

removed). The excellent agreement between the two sets of results in 

Table 8 indicates that the energy band structure is not affected by the 

removal of the Gaussians of very short and very long range, provided a 

linear variational method is used to readjust the mixing of the combined- 

Gaussian Bloch functions.

Another interesting calculation would be to solve the secular 

equation using the single-Gaussian Bloch functions which were defined



Figure 6. Crystal wavefunctlon and Bloch sums at the r point of lithium along the [100] line of the 
crystal. The solid curve is the crystal wavefunctlon, the long dashes are for the basis 
set composed of 11 Gaussian exponent parameters (Eqs. (6.15)). The short dashes are for 
the basis set composed of 7 exponent parameters.
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In Eq. (6.14) and see how much the increased variational freedom lowers

the energy levels. This was done for a few selected points in the

Brillouine zone for a^ = 6.65 and the results are presented in Table 9,

along with a comparison with the Greenes function results which were

obtained by Ham,^^ and APW results which were obtained using an identical
X8potential by Rudge. The agreement between the two methods is to within 

.002 Ry. indicating that tight binding can be expected to give results 

which are equally as good as any other technique for band structure cal­

culation for almost any type of crystaline structure. One type of 

crystal for which the method of tight binding is particularly well suited 

is the alkali-halides. Very little first principles work has been done 

on this type of crystal due to the fact that the plane wave type methods 

have not been able to obtain adequate representations for the crystal 

wave function. We, therefore, decided to perform a calculation of the 

band structure of lithium fluoride.
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TABLE 9

Comparison of Energies of the Band Edge

(a^ = 6.65)

GTAO CONTR-G Expanded-Gauss APW® Greenes ^ 
function

«15 - 0.059 - 0.059 - 0.061 - 0.062 - 0.061

»'l - 0.400 - 0.401 - 0.411 - 0.411 - 0.411

P 4 - 0.189 - 0.190 - 0.191 - 0.193 - 0.191

^ See Ref. 18

^ See Ref. 17



CHAPTER VII

Lithium Fluoride by the Method of Tight Binding

The lithium fluoride lattice is similar to the silicon lattice 

in that it can be thought of as being constructed from two interpene­

trating sublattices of face-centered cubic (fee) structure which we 

designate as sublattice 1 and 2. However for the. case of lithium 

fluoride,sublattice 1 is composed entirely of fluorine atoms while sub­

lattice 2 is composed entirely of lithium atoms. Each lattice site of 

the second sublattice is separated from the corresponding member of the 

first by a nonprimitive translation T directed along the body diagonal 

of the face-centered cube of the first sublattice and of magnitude

a /2 where a is the lattice constant of the sublattice. Since there o o
is inversion symmetry about the fluorine atoms (as well as the lithium 

atoms), we placed the otigin of our coordinate system on one of the 

fluoride atoms with axes parallel to the edges of the face-centered cubes.
3

The Wigner-Seitz cell situated about the origin has a volume 0 =(l/4)a^

and contains one fluorine atom and one lithium atom. All of the atoms in
-► -y

the crystal can be mapped out by a translation of the form + A^T where 

R^ is any symmetry translation corresponding to a face centered cubic 

crystal, the i in A^ refera to which sublattices we are interested in, and 

A^ = 0 and A^ = +1. Since the crystal potential is invariant under 

inversion about our origin (on a fluorine atom), it can be represented by 

the Fourier series

65
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Vcrys(=^ = : Vcrys(K^) ' (?'D

The crystal potential can also be expressed as a superposition of 

functions centered about the atmoic aites of the crystal (as was 

done for silicon). However, for the case of lithium fluroide the 

functions are different for the two different sublattices. If we 

define V^(r) to be the contribution to the crystal potential due to 

a fluorine atom in sublattice one and (/^(r) to be the contribution 

due to a lithium atom in sublattice two, we can express the crystal 

potential as,

Vg^g(r) = Z T)]}. (7.2)

Taking W^(r) and V^(r) to be spherically symmetric, the Fourier coef­

ficients of the potential are given by

l/^(r) cos (K^*r)dT + cos(K^'T)
(7.3) 

(/2 (r)cos(K^*r)dT }.

Our choice of the model for the potential is similar to the overlapping
9

atomic potential model (GAP) which was used for silicon. We again 

introduce the free-atom charge density for the fluorine atom and 

for the lithium atom. These functions are obtained from the radial 

part of the Hartree-Foch Roothan calculation by Clementi^^ for the
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(Is)^ (2s)^ (2p)^ state of fluorine and the (Is)^ (2s) state of lithium 

by the relations

4t t  p^(r)  = 2 [ R ^ ^ ( r ) ] ^  + 2[R*2g(r) ]^  + 5 [R*2p(r)]^

Li Li
4ir PgCr) . 2[R ^gCr)]^ + [R g^Cr)]:

(7.4)

We could then form an initial approximation to the crystal charge den- 

sity Pj,^g(r) by forming

^crys^^^ “ ^ + p2 [r-(Ry+T)]} • (7.5)

We then decompose V (r) into two parts; the part due to the coulombcrys
coulinteraction with the nucleus and with the other electrons V (r)^ crys

and the exchange contribution (r).crys

''crys* ■ ''^ryl <'> +

The Fourier coefficients can also be split up into.

->■ coul -»• exch +
''crys«v> - ''crys ® v >  + ''crys

The Fourier coefficient for the coulomb contribution becomes 

''c^s ^  ^  1 ' "l(')
V V O

(7.8)

+  cos (K -T)[z - r P2,(r) sin (K^r) dr]} .
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where z„ is the atomic number for fluorine and . is the atomic r Li
number for lithium. The necessary integrals for the coulomb crystal 

potential can be evaluated directly in terms of the Slater-type orbitals 

from the Hartree-Fock Roothan calculation by dementi. A more accurate 

way to handle exchange is to apply the Slater exchange approximation to 

the crystal charge density (instead of the atomic charge density which 

was done for silicon). This means that

exch - > 1 / 3
= - (3/2) 13 p^y;(r)/.] . (7.9)

19 6xcliFollowing a technique suggested by Lafon, ^crys then curve fit 

by a three dimensional curve fit program using spherical harmonics 

centered about each of the lattice sites. In other words

(r) = Z [f^(r - R^> + fg(r-{R^+T})] , (7.10)

where f^ is a function centered about the fluorine atom and f^ is a 

function centered about the lithium atom. We chose f^ and f^ to have

the form of

and

-6r ^ 4f\(r) = e E a.r (7.11)
i=0

f„(r) = e ^ ^ Z a' r ̂  . 
i=0

The values of 8 and a^ and 8 ' and a ’̂  which were obtained by our curve 

fit can be found in Tables 10 and 11.
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TABLE 10

Coefficients for f^(r)

S = 3.75012

- 11.0179 

+ 43.3233 

-109.103 

+ 74.7205 

+• 33.3935
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TABLE 11

Coefficients for fgCr)

3' = 2.00753

1 a ’
i

0 - 3.41696

1 - 0.01889

2 - 0.38340

3 + 1.31608

4 - 0.745599
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We can then evaluate (K ) as:crys V

‘I fl(r)
" o

(7.12)
-> ■>

+  C O S  ( K ^ ' T ) r f^Cr) sin (K^r) dr},

The Fourier components of the crystal potential are then obtained as a

sum of the coulomb contribution plus the exchange contribution. A few

of them are given in Table 12.

We used the analytic Gaussian-type orbital functions generated 
14by Huzinaga for the Is, 2s, 2p^, 2p^, 2p^ free atom states of fluorine 

to construct Bloch sums of fluorine wave functions about each of the 

sites in sublattice one. The five atomic functions used to form Bloch 

sums of lithium wave functions centered about each of the sites in sub­

lattice two are the same as those described in the previous chapter.

The Bloch sums then have the form:
-V

F \  1 F ^  +
^ " Æ  V ^

(7-13)
L, * * , lk-{R +T) L l  *  +  +

P
where à „ is the free atomic wave function for the n£.m state of ^ n£m j.

£
fluorine and (j> is the free atomic wave function for the n, £, m

state of lithium.

The 10 X 10 secular equation is then formed from the matrix 

elements of the overlap and Hamiltonian operators and is solved for
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TABLE 12

Fourier coefficients for the crystal 

potential of lithium fluoride.

2*/*o(kx'ky'kz)

0, 0, 0 - 1.0712256

1, 1, 1 - 0.1144801

2, 0, 0 - 0.2658392

2, 2, 0 - 0.1683456

3, 1, 1 - 0.0528263

2, 2, 2 - 0.1233327

4 , 0, 0 - 0.0974406

3, 3, 1 - 0.0360021

4, 2, 0 - 0.0806272

4, 2, 2 - 0.0688152

3, 3, 3 - 0.0273551
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various values of k. The results are presented in Fig. 7. The direct

band gap as determined by the difference between the and energy

levels is 15.1 e.v. This agrees quite well with the value of 13.6 e.v.
20which is obtained by experiment.

One may question the use of a superposition of free atom potentials 

as the starting potential in the tight-binding calculation instead of a 

superposition of lithium and fluorine ionic potentials. This point is 

currently under investigation as well as the investigation of the effect 

of including the Bloch sums of the d states in the variational calcula­

tion. The primary purpose of this calculation was to show that the method 

of tight binding is a versitile technique and is quite applicable to the 

alkali halide crystals.
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Figure 7. Energy band structure of a lithium fluoride crystal.



CHAPTER VIII

The LCAO Method as Applied to the Electronic States of Impurities

The versatility of the method of tight binding or LCAO method 

becomes even more apparent when it is applied to the calculation of the 

electronic states of impurities in crystaline solids. Since the basis 

set consists of linear combinations of atomic orbitals centered about 

each of the lattice sites in the crystal, the term in the summation 

which corresponds to the contribution from a particular atom in the per­

fect crystal can be suitably altered and one has the basis function for 

an impurity at the location of the atom.

Several calculations have been made on the electronic states of
21impurities using linear combinations of atomic orbitals. The diffi­

culty in evaluating the multicenter integrals, however, has necessi­

tated many approximations which have limited the applicability of the 

technique. Now that we have mastered the calculation of the multi­

center integrals, a more accurate calculation of the impurity states 

can be made, using a basis set of linear combinations of atomic orbitals.

The impurity problem is somewhat more difficult than a tight- 

binding band structure calculation. This is due to the fact that the 

introduction of the impurity destroys the translational symmetry of the 

crystal. The only symmetry which remains is the rotational symmetry 

about the impurity. The effect of this reduction in symmetry is that 

although we can say that our crystal wave function can be written as a
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sum of atomic wave functions centered about the different lattice sites,

■ R  %  ‘ V  ’

ik'R
we can no longer invoke, the Bloch theorem to tell us that a^ = e ^ . 

This means that the different values of a must be determined by 

solving the secular equation. This can make the secular equation for 

the impurity calculation somewhat larger than the band structure secular 

equation.

In order to test the applicability of this technique to the 

electronic states of impurities, we have performed a calculation of 

the ground state energy of a color center impurity, in a lithium fluoride 

crystal. The color center impurity for an alkali halide crystal con­

sists of an electron trapped in a halide vacancy. For this initial cal­

culation we will neglect the distortion of the crystal lattice due to 

the removal of the halide ion and will assume that any polarization of 

the neighboring electrons can be taken into account by carrying the 

variational calculation to self-consistency. Our approximation for the 

initial Hamiltonian will be the Hamiltonian of the perfect crystal 

minus the Hamiltonian due to a fluorine atom. The removal of this 

fluorine atom will automatically leave an extra electron to be trapped 

in the vacancy. When we center our coordinate system about the location 

of the color center, our one electron Hamiltonian, under these approxi­

mations, has the form of
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where (r) was defined in the lithium fluoride band structure formu­

lation. The coulomb potential for the fluoride atom (r) ist—atom
written in terms of the electron charge density and the nuclear charge 

Zp as

Pp(r')r' dr'

(8.3)

If we use the Slater approximation for exchange, we can say that

\ x c h  “ - [3/2] [3 {P^ryg(r) -Pp(r)}/n],l/3 (8.4)

~h
where p ^ ^ ^  (r) was defined in Eq. (7.5). Alternatively we could 

define a

M  ■ Vexch M  M  , (8.5)

where (r) is defined in Eq. (7.9). Then the Hamiltonian could

be written as

H - * 1  - *2
where

H, . - % ,2 +  CÎ) +  (Î)1 crys crys

and

“ 2 ■ W  - ''’exch

The first term in the Hamiltonian(H^)is the Hamiltonian of the perfect 

crystal and can be expanded in terms of a Fourier series as was done in
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the band structure calculation. The term is plotted in three

dimensions and is curve fitted using spherical harmonics centered about 

the impurity site. The results of this curve fit are presented in 

Table 13. If dementi's Slater-type orbitals^^ are used to construct 

the charge density, from Eq. (7.4) and can be expressed

as a summation over Slater-type orbitals,

^F-atom ^ (8-7)

where the value of a^ and m^ are determined by evaluating Eq. (8.3).

We will use linear combinations of the atomic orbitals of the 

neighboring atoms as our basis function in this variational calcula­

tion. In other words, we can approximate the wavf function of the 

trapped electron as

*T ' C a, (r - R„) (8.8)

The full rotational symmetry of the 0^ groups about the fluorine 

atom which occurred in the perfect crystal is maintained when the 

fluorine atom is removed. We, therefore, would expect the basis func­

tion of the trapped electron to transform according to some represen­

tation of the octahedral group. We can expect the ground state of the 

trapped electron to transform according to the identity representation 

so we set up our basis function to transform according to this repre­

sentation.
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TABLE 13

Analytic form of correction to the exchange 

potential for the color center in lithium fluoride. 

-> 4 m . “Y . r
Vlxch(r) - 9i r ®i=l

i 9i “ i ^i

1 - 2.75526 0 + 25.9016

2 - 8.24072 0 +  8.56059

3 - 8.81361 1 + 2.24929

4 +  0.466705 1 + 1.36362
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Since the electron is trapped at the vacancy site, we know 

that it cannot extend too far away from this site. We should then 

be able to represent the wave function of the ground state using 

symmetrized combinations of the atomic wave functions of the atoms 

which are near the vacancy site.

In this work we included in our variational calculation, 

linear combinations of the atomic wave functions of the six nearest 

neighbor lithium atoms plus the twelve atomic wave functions of the 

next nearest neighbor fluorine atoms. The symmetrized wave functions 

from the first layer (six nearest neighbors) have the form

*l,ls “ (^l,ls) ^^*18 *ls (^1 ,2) *ls(^l,3) *ls(^l,4)

Li ^  Li +
+  *ls(ri,5) + * l s ( ' l , 6)] *

u Li Li ^  Li ^ Li ^
*l,2s “ (^l,2s) [*2s (^1,1) *2s (^1,2) """ *2s(^l,3) ‘*’2s^’̂l,4̂

*l,2p “ ("l,2p) ^^*2px(ri,i) - *2px(fl,2) *2p,(^l,3) " *2p,(^l,4)

Li ^  L i  ^
*2p (^1,5) " *2p '

where

=1,1 - r - 2^ (1 . 0 , 0 )

^1,2 “ 0 )
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1,3 ^ ^ " 2" (O' O'

^ *0
^1,4 = r - 2- (O' O'

. . %  r.■1,5 = r - y :  (0, 1, 0)

- *0
=1,6 " r - 2" (O' ■^* °) '

The three wave functions from the second layer have the form

*2,ls " '[*2,ls(^^,l) ■'■ *2,ls(^2,2) ■*■ *2,ls(^2,3) ‘*’2,ls^’̂ 2,4^

■*■ ‘*’2,13^^^2 ,5^ ■*■ ‘*‘2 ,Is^’̂2 ,6^ ■’■ ‘*’2 .Is^’̂ 2,7^ '*’2 ,ls^^2 ,8^

■*■ ‘*’2,lŝ 2̂,9  ̂ *2̂ 19( 2̂,10) ■'■ *2,ls(̂ 2,ll) *2,19(̂ 2,12)] '

*2,2s “ (^2,2s) ^[*2,2s(^2,l) *2,2s(^2,2) ''' *2,2 9 (^2 ,3) *2,2s(^2,4)

■*■ *2,2s(^2,5) ■’■ *2,2s(’̂ 2,6) *2,2s(’̂ 2,?) *2,2s(^2,8)

■'■ *2,2s(^2,9) *2,29(^2,10)'+ *2,29(^2,11) + *2,23(^2,12)] ’

*2,2p “ (^2,2p ) ^[*2,2p^(^2,l) + *2,2py(̂ 2̂,l) + *2,2p^(̂ 2̂,2) " *2,2py(^^2,2)

■ *2,2p^(’̂2,3) + *2,2py(^2,3) ' *2,2p̂ (̂ 2̂,4) " *2,2py(^2,4)

+ *2\2pg(f2,5) + *2,2p^(’"2,5) " *2,2p^(’̂2,é) ’ *2,2p^(’"2,e)

+ *2^2p;(^2,7) ■ *2^2p^(^2,7) " *2,2p̂ (̂ 2̂,8) + *2,2p*(^2,8)



where

82

*2,2py(̂ 2,9) ‘̂2,2p̂ ’̂̂2,9̂  " '*’2,2Py^^^2,10^ '*’2,2p̂ ^̂ 2,10̂

“ *2,2p (^2 ,9 ) " *2,2p (^2 ,1 1) ■'■ *2,2p (=2 ,12) ■ ‘*’2,2p ^’̂ 2,13^^’

â -4- -4- ^
^ 2 , 1  “ r ■ Y "  (1» 1» 0) > rg 2 = r - j -  (1, -1, 0)

fg 3 = r - —  (-1 , 1 , 0 ) , = r - y  (-1 , - 1 , 0 )

^2,5 = ^ ^  (1» 0» 1) » fg.e ° f " 2^ °» -1)

■*■ %  ->- %rg y = r - —  (-1, 0, 1) , Tg g ■= r - y  (1, 0, -1)

->• -► ->■ ->
^2^9 = r - y  (0 , 1 , 1) , Tg r - y  (0 , -1, 1 )

^2 ,11“ ^ ~ ~  ’̂2 ,12“ ^ " 2" '

Now that we have set up the basis functions, we must solve for the 

matrix elements of the overlap and Hamiltonian operators in order to 

solve our secular equation.

H i y  X Sij I . 0 .

(8.10)

where

and

»ij “

Sij - <$i |$i> (8.11)

and i and j correspond to some combination of the lattice layer and the 

atomic wave function (for example, gg)- These matrix elements can be
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reduced down to sums of integrals of the following form (for the Is 

type Gaussians).

e ^ ^ e ^ ® d T  (8.12)

-a -o r 2
e ^ e ^ * dT  (8.13)

a n d

/ H, dT (8.14,

The first two integrals (Eqs. (8.12) and (8.13))have been evaluated in

the tight-binding band structure calculation so we will only concern 

ourselves with the evaluation of the third integral.

«2 = ' “ 1 .  - V'axch'r)

From the curve fit of V' . (r) and the analytic form of , weexch •' F-atom
see that can be expressed as a summation of Slater-type orbitals;

m  -8^r
H = E a r e . (8.16)

i ^

Then
2 . 2

““l^A ™i ~^i^C ■“2 ’̂B e rg e e d%

(8.17)

Suppose we consider the case where m^ = 0. (The rest of the cases can 

be obtained by differentiating Eq. (8.17) with respect to g^). Then we 

must evaluate the integral
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I = 1 e g ^ “2^B  ̂ (8.18)

r. = r - A A

rg = r - B

->■ ->■ ->• 
rc = r - C

- ) -

and C is the location of the impurity site. Using the property of

Gaussians which was used to evaluate the multicenter integrals in

the band structure calculation we see that

2 2 ^ 2) 2 
- “2'b V “2 “e e = e e , (8.19)

where r^ = r - D

and

V l  +  *2=1 
=1 ' «2  • ° =

- B - A

Then g

- ' ■ ^ ^ ’̂ A B>, - ( V » 2 > ' d “ -=i'c .
I = e e e dr

2
"^*l+*2  ̂ -({«i+aglrg^^)

= e e 2exp {-(a^+«2)(rg -2r^jj-r^)

d, .
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Let

e e

a = 2(d^ + dg) ^cD b = +  dg

00 2
r -br -(e +a) r_ -(g -a)r_

I = - C  j e (e ~  e ; dr^  ̂ (8.20)
o

This integral can be expressed in terms of the error function since

” 2 2 -(br +gr) 1 /- g
e dr = % jp- erfc ( - ^ )  .

^ 2/T

By differentiating this integral with respect to g and letting 

q = ^ —  and Y = e*̂  erfc (q) we have that:
2Æ"

I r +gr) ^ Idr = -  [% - qY] . (8.21)

Let

_£l h

" 2/r ^2 " 2/&
q 2 2

e ^ erfc(q^) , ^ 2 " ^  ® ^ erfc (q^) ,

and Eq. (8.20) becomes

^ “ C  J  [ qjïj - qjïjJ .
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The Integrals involving Gaussians of p type symmetry can be obtained 

in a manner similar to the differentiation technique which was used 

to obtain the p symmetry integrals in the band structure formulation.

Now that we have the necessary integrals formulated, we can 

evaluate the matrix elements and solve the 6 x 6  secular equation for 

the energy level of the ground state of the color center. When this 

was done we obtained a value of -0.58115 a.u.

This work has demonstrated that the calculation of the electronic 

states of impurities using linear combinations of atomic orbitals is 

computationally feasable. The technique can now be extended to the 

calculation of the excited states of the color center electron and 

direct comparison can be made with the experimentally determined tran­

sition energy between the ground state and the excited state. Further 

refinements such as the inclusion of the effects due to distortion of 

the lattice and polarization of the neighboring electrons can be 

incorporated by an extension of this scheme.



CHAPTER IX 

Conclusions

The method of tight binding has been shown to be a very useful 

technique in calculating the electronic states of crystaline solids.

It has proven to be a much more flexible method for band structure cal­

culations in that it is not limited as to the choice of potential and 

that it does not require the solution of a large secular equation. The 

fact that the multicenter integrals which make up the matrix elements 

in the secular equation are independent of k means that there is very 

little work involved in obtaining the energies for many values of k in 

the Brillouin zone over obtaining the energy for one value of k.

Another nice feature of tight binding is that the crystal wave functions 

are expressed in terms of the wave functions of the constituent atoms.

It is, therefore, possible to make direct correlation between the pro­

perties of the crystals and those of the free atoms on both quantitative 

and qualitative level. The method of tight binding has been shown to 

give energy band structure for several crystals which compare favorably 

with the results obtained using other methods of calculation, and has 

been shown to be more flexible than other technqiues by the fact that it 

gives good values for the energy band structure of lithium fluoride, a 

crystal for which the calculation of the energy band has proved difficult 

using any other technique. We can, therefore, conclude that for a 

general crystal that the method of tight binding can be used to obtain 

accurate values of the energy bands.
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The application of the method of tight binding to impurities, 

although only in the preliminary stages, has shown that there are no 

computational difficulties associated with using this technique.

The logical extension of the impurity calculation will be to calculate 

the energy level of the excited state of a color center electron in 

lithium fluoride and include the effects due to distortion of the 

crystal lattice and polarization of the neighboring electrons on both 

the ground state and excited state energy levels.
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Appendix I

The form of the multicenter integrals for the Slater type

orbitals of 3s (r^ e 3p (rxe , 3d (xye , 3dX xy
can be obtained by an appropriate differentiation of the I s , 2s and 

2p integrals reported by Lafon and Lin. The differentiation technique 

which is used in this work was also described in their paper. The 

potential integrals can be written in the form of

X g
<4f(A)|cos(K «r )|*^(B) = n j Y (u)(fg) { Z u ,(fg)

^ i 1 /g 1 n-o

exp {-(fg) *}{l+Ç^}cos [Ky*(r^ - u r ^ )  ]

n/2
}

where

+ (l-C^) sin [Ky*(r^g - u r ^ )  ]} du

f “ u(l - u) r ^ 2
(AI.l)

g = a ^ / u  +  Og^/Cl-u) + ,

"4"
& is a function of i only, r ^  is a vector from lattice site A  to

lattice site B, C is the coordinate system for the Fourier expansion,
■ -»■

and r^g is a vector from C to lattice site B. The superscript s in

'i' and (j) stands for unnormalized Slater-type orbitals. It was found

that for the potential integrals that there were only ten different
6 n/2types of polynomials of the form of Z u, (fg) i.e., ten different

n-o
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sets of In order to simplify the tabulation of the potential

integrals we express these ten different types of polynomials in 

Table AI“1 and only refer to the polynomial type in the tabulation 

of the potential integrals which is contained in Table AX-2.

The overlap integrals <^f(A)|$^(B)> can be obtained from the 

potential integrals of Eq. (AI-1) by setting = [0,0,0].

The kinetic energy integrals can be obtained by the same method 

of differentiation and have a form similar to the potential integrals,

<4f(A)|- h V^|<j)®(B)> = ÏÏ ? W [ n. (u) { I p1 1 J 1 n=o i,n

exp {-(fG)^} du ,

where

G = Og^/Cl-u) + a^^/u (AI.2)

Table AI-3 lists all of the coefficients appearing in this 

equation.
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TABLE AI-1

6 n/2
Different forms of the polynomial Z jj (fg)

n=o

Polynomial
type "i,0 *1,1 *1.2 *1,3 *1,4 *1,5 *1,6

I 3 3 1 0 0 0 0

II 12 12 5 1 0 0 0

III 15 15 6 1 0 0 0

IV 60 60 27 7 1 0 0

V 90 90 39 9 1 0 0

VI 105 105 45 10 1 0 0

VII 630 630 285 75 12 1 0

VIII 840 840 375 95 14 1 0

IX 945 945 420 105 15 1 0

X 10395 10395 4725 1260 210 21 1
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TABLE AI-2

Coefficients for <1'®(A) | cos(K^ *r^) | $^(B) >

1 l ’'i
Polynomial

Type ^i

3s Is 1 1 -3a a 
1 2

f2/u III +1

2 9 4*3* Âa?
1 2

f3/uf VI +1

3s 2s 1 7 -a ÂB^ 
1 f V u IV +1

2 9 -2a a^ÂB^ 1 2 f2 VI +1

3 9 +a Â P k  ̂1 f3/u VI +1

4 11 ■kx^a^AB^ 1 2 f3/u IX +1

3s 3s 1 9 -3a a ÂB^ 
1 2

f2 VII +1

2 11 +3a a ÂB^K? 1 2 ^ f3 IX +1

3 13 +a^a^AB^ 1 2 f3 X +1

3Px Is 1 5 -a AB AB^2 ^ f^/u I +1

2 7 +a^a AB AB„ 1 2 ^ f3/u2 III +1

3 7 f2 III -1

4 9 fS/u VI -1

3Px 2s 1 5 fZ/u II +1

2 7 f3/u III +1
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TABLE AI-2 - Continued

1 i
Polynomial 

^i Type ^i

3 7 +(K^),%B3 f2 V -1

4 9 f3 VI -1

5 9 +a2ct2ÂB3^^ 
1 2  ^

f 3/u VI +1

6 11 f3 IX -1

3Px 3s 1 7 -a Â B 3aB^ 
2 ^

f2 IV +1

2 9 + c ^Âb ’ÂB^k 2 f3 VI +1

3 9 -2a2a AB^AB 
1 2 ^

f 3/u VI +1

4 9 f3/(l-u) VII -1

5 11 f4/(l-u) IX -1

6 11 +a^o3AB3(AB ) 
1 2  X

f3 IX +1

7 il +2a2a (K )^Ab 5 
1 2  X

f3 IX -1

8 13 -a%a3(K1 2  ^ X f**/(l-u) X -1

2Px 3s 1 7 -3a a AB^S"1 2 X
f2 III +1

2 9 +3a a ̂ 3 ( J  )
1 2  V X f 3/(l-u) VI -1

3 9 +a a^AB^AB1 2 X fV(l-u) VI +1

4 11 -a a3(K ) AB^ 1 2 V X
f4/(l-u)2 IX -1
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TABLE AI-2 - Continued

4>® i 2 Polynomial 
^i Type ^i

3Px 2Px 1 5 +a ÂB 
2 X

f2 I +1

2 7 -a AB^ 
2

f2 III +1

3 7 -a^a AB AB^1 2  X
f3/u III +1

4 7 f2(2u-l) III -1

5 9 +a^a AB^ 
1 2

f 3/u VI +1

6 9 +a (K )2%B32 V X f3 VI +1

7 9 +a2a (K ) ÂB^ÂB2̂ 2 V X X (2u-l)f3/u VI -1

8 11 ~a^a (K )2ab31 2  ^ X f'+/u IX +1

3Px 3Px 1 5 + ÂB ÂB2X f2 II +1

2 7 - ÂB X V f3 III +1

3 7 - AB3 f2 V +1

4 7 -(K ) ÂB3ÂBV X X f2(2u-l) V —1

5 9 +  AB3k 2V f 3 VI +1

6 9 —0t^a^AB3AB2
1 2  X

f3 VI +1

7 9 +(K ) r 2 ^ 3 a bV X U X f3(2u-l) VI -1

8 9 + (ic )2a b 3V X f3 VIII +1
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TABLE AI-2 - Continued

. i %
Polynomial

Type ^i

9 11 -hx^ci^AB^ 1 2 f3 IX 4-1

10 11 -(Kv)xSSÂB3 IX 4-1

11 11 (2u-l) IX -1

12 13 -«;«2(Kv)5ÂÊP X 4-1

3Px 2py 1 5 40 ÂB ÂB^ÂB 2  ̂ y f I 4-1

2 7 -0(2 a ÂB ÂB_ÂB 1 2   ̂ y f V u III 4-1

3 7 -a ÂB? {[(K.) ^ÂB + III -1

3Px 3py

5

6

1

2

3

+a^a AB^ 
1 2

VI

(Kv)yA=x)v-

-1

(K^)yABjf3/ u

9 f3 VI 4-1

11 f?/u IX 4-1

5 4- ÂB n"»ÂBX y f" II 4-1

7 - ~E ÂB^ÂByX; III 4-1

7 - w {((Ky)xÂB + V -1
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TABLE AI-2 - Continued

i £ Polynomial 
^i Type ^i

4 9 _^2(^2a b 3 M  ÂB
1 2  ^ y

f3 VI +1

5 9 + Â P kV̂ {^XKv)xÂ»y+

(Ky'yÂâx'f:

VI -1

6 9 + ÂB3(Ky),(K,)y f3 VIII +1

7 11 +a^a^AB^ 
1 2 (((K«)*Âây+

(Ky)yÂâx)u-

(«^)yÂâ,](3

IX -1

8 11 - ÂB3(K,)x(Kv)yK2 f- IX +1

9 13 f - X +1

34*2 Is 1 5 +a a ÂB^/ÂB 1 2 ^
f3/u2 I +1

2 7 +a a AB^ 
1 2 fZ/u III +1

3 7 -a a AB1 2 f 3 / u : III +1

4 7 f3/u III -1

5 9 f3 VI +1

3d^2 2s 1 5 -a ÂbJ/ÂB 
1

f 3/u2 I +1

2 7 + 2 » l “  Â B ^ ( K ^ )  , f3/u III -1
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TABLE AI-2 - Continued

1 £ "i ^1
Polynomial

Type

3 7 +01 AB 1 f3/u2 III +1

4 7 +o ot^AB AB^ 1 2  ^ f^/u III +1

5 7 -a Â P  
1

/u III +1

6 9 -2a a ^ A p n "  (K )2 2 ’ V X f3 VI -1

7 9 fS VI +1

8 9 -a a^AB^ 
1 2

f V u VI +1

9 9 +a a^AB^ 
1 2 f2 VI +1

10 11 -a a^AB^(K1 2  V X fVCl-u) IX +1

3d^2 3s 1 7 -3a a ÂB
1 2 ^ f^/u III +1

2 9 f3 VI -1

3 9 +3a a AB^ 1 2 f V u VI +1

4 9 +a a ^AB^AB^ 
1 2  ^ f3 VI +1

5 9 -3a a AB^ 1 2 fZ VI +1

6 11 -4k\°^3ÀB3ÂBx(Kv)x fV(l-u) IX -1

7 11 fVCl-u) IX +1

8 11 -a a ^AB^ 
1 2 f3 IX +1

9 11 +a a ^ÂB^ 1 2 fV(l-u) IX +1

10 13 -Ol°2*ÂB3(Kv)2 fS/(l-u)2 X +1
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TABLE AI-2 - Continued

i £ Yi
Polynomial

Type

3d 2X 2Px 1 5 -a a AB^/AB 
1 2 ^ f3/u I +1

2 7 +2a a ÂB AB^(K1 2  X V X f3 III -1

3 7 +3a a AB AB^ 
1 2  ^ fVu III +1

4 7 f^/uf III -1

5 7 -a a AB^AB„ 1 2  ^
f2 III +1

6 9 -2»,“2'Âb 3<K„)« f3 VI -1

7 9 f'*/u VI +1

8 9 ÂB,(K^)2 fV(l-u) VI +1

9 9 fVu2 VI -1

10 9 f3/u VI -1

11 11 ■fa^c^ÏB3(K^)J f4 IX -1

34x2 3Px 1 5 +a ÂB^/ÂB 1 f3/u I +1

2 7 -2.|ÂB Ââf(Ky), f3 III -1

3 7 -3ci S
1 ^ f3/u III +1

4 7 -a a^AB AB^ 12 ^ f3 III +1

. 5 7 f4/u2 III -1

6 7 «  Âë^ÂB 
1 * f2 III +1
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t a b l e  AI-2 - Continued

i a fi
Polynomial  ̂

Type

7 9 f3 VI -1

8 9 +2a a^AB AB2(K ) 1 2  X V X f4/(l-u) VI -1

9 9 +2.^ÂB Â3,(K^)Z f4/u VI +1

10 9 -“ l“  “ x < V 5 fV(l-n) VI +1

11 9 +3a a^AB^AB 
1 2  ^

f3 VI +1

12 9 f4/u2 VI -1

13 9 -a )_1 2  X V ^ f4/u VI -1

14 9 -a a^AB^AB 
1 2 ^

f3/(l-u) VI +1

15 9 +=lÂB3(K^), f3/u VI -1

16 -2a a^AB^CK )1 2 v'x fV(l-u) IX -1

17 11 -2a a^ÂB^ÂB^CK )5 2 2 X V ^ f4 IX +1

18 11 +a a^AB ÂB (K )2 1 2  X V ^ f3/(l-u)2 IX +1

19 11 -aAB3(Ky)2 f4 IX -1

20 11 +a a ^ ^ 3 ( K  )
1 2  V X f4/u IX -1

21 11 -a a2'^5(K )
1 2 v^x f3 IX -1

22 13 +a a^AB^CK )3 
1 2  V X

f3/(l-u) X -1
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TABLE AI-2 - Continued

i £ ■
Polynomial

Type ^i

34x2 2py 1 5 -a a AB^AB /AB 1 2 X y /u I +1

2 7 f3 III -1

3 7 +a 01 AB AB
1 2 y

f3/u III +1

4 7 III -1

5 7 -a a AB^AB
1 2 y

f2 III +1

6 9 -2a^o^ÂBÂBjK^)^(K^ )yf"/U VI +1

7 9 +«,«,ÂÜ ÂBy(Ky)2 f^/(l-u) VI 4-1

8 9 f‘*/u2 VI -1

9 9 fS/u VI -1

10 11 +»,*2ÂB3(K^)2(K^)y IX -1

34x2 3py 1 5 -kt ÂB2][g
1 ^ y f V u I 4-1

2 7 f3 III -1

3 7 -a AB AB1 y f V u III 4-1

4 7 -a a^AB AB^AB 1 2  ^ y f3 III 4-1

5 7 +°,Â*x(Ky)y/Ââ f4/uf III -1

6 7 +a Â b 3 ^ f2 III 4-1
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TABLE AI-2 - Continued

i I Yi
Polynomial

Type ^i

7 9 +2o^a2ÂB ÂâxÂBy(K^), f^/(l-u) VI -1

8 9 +2o^ÂB Ââx(K^)x(K^)y fVu VI +1

9 9 fV(l-u) VI +1

10 9 +a
1 2 y

f3. VI +1

11 9 -a^ÂB(K^)y f^/uf VI -1

12 9 ÂB?(Ky)y fVu VI -1

13 9 -a a^AB^ÂB 
1 2 y fV(l-u) VI +1

14 9 fS/u VI -1

15 11 f'* IX +1

16 11 (K„)2 fS/(l-u)2 IX +1

17 11 f'* IX -1

18 11 + “ ,“JS^CK„)y fVu IX -1

19 11 f3 IX -1

20 13 fS/(l-u) X -1

3d,2 3dy, 1 5 +a a Â B ^  1& /ÂB 
1 2  y z f3 I +1

2 7 -2*l*2ABxAByAB2(Kv),/AB f^/Cl-u) III -1

3 7 - a a AB AB AB 
1 2  y z f3 III +1
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TABLE AI-2 - Continued

i a I'l Polynomial Ç 
Type

4 7 +*l*2ÂB2n(K^)y/ÂB f4/u III -1

5 7 f'+/u III -1

6 7 +a a AB AB AB
1 2  y 2 f3/(l-u) III +1

7 9 VI +1

8 9 VI +1

9 9 -',*2ÂByÂB,(Ky);/ÂB f5/(l-u)2 VI +1

10 9 f4/u VI -1

11 9 f*+/u VI -1

12 9 f5/u2 VI +1

13 9 f3 VI -1

14 9 (K^)^ f3 VI -1

15 11 +2« j«2*B AB,(Ky),(K^)y(KJ^f5/u IX -1

16 11 fV(l-u) IX -1

17 11 -o^c S  Âây(Kv)Z(K,), fS/(l-u) IX -1

18 11 f 5/u2 IX +1

19 f‘*/u IX +1

20 13 f3 X +1
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TABLE AI-2 - Continued

y® i £ I'i
Polynomial

Type

3d*2 3d,p 1 5 + a  « A b S b  /ÂB 
1 2 ^ y

f3 I +1

2 7 fV(l-u) III -1

3 7 -3a a AB AB AB1 2  y
f3 III +1

4 7 +<x^aSJ(K^)y/AB f't/u III -1

5 7 f4/u III -1

6 7 fa^a^AB AB fV(l-u) III +1

7 9 +2.|C/ÂB ÂBy(Ky), fV(l-u) VI -1

8 9 + 2 < . ^ e . 3 ' S X > x ( V y f4 VI +1

9 9 + 2 » / ^  “ x“ y « „ ) x ft VI +1

10 9 f5/(l-u)2 VI +1

11 9 “ x « v>y f V u VI -1

12 9 -O^c/ÂB ÂBy(Ky), f4/u VI -1

13 9 f 5/u2 VI +1

14 9 +a a A B % ^ ( K  ) 1 2  X V y
f3 VI -1

15 9 f3 VI -1

16 11 - 2 “ ,“ , ' ^ * « „ ) x « , ) y f** . IX +1

17 11 fS/u IX -1
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TABLE AI-2 - Continued

Ÿ® i & Yi
Polynomial

Type ^i

18 11 f5/(l-u) IX -1

19 11 Âây(Kv)x5 f5/(l.u) IX -1

20 11 + “ .“2“  « v > x « V > y fS/u^ IX +1

21 11 f‘*/u IX +1

22 13 +«l«,Â:3(Kv)3(K^)y f5 X +1

3d^2 3dy2 1 5 f3 I +1

2 7 -2°,*2ÂBxÂB^(Ku),/&B fV(l-u) III -1

3 7 -a 0 AB ÂB^ 1 2 y f3 III +1

4 7 -a a ÂB Â b J 
1 2 f3 III +1

5 7 f4/u III -1

6 7 +a a ÂB ÂB^ 1 2 y f3/(l-u) III +1

7 7 +a 0 ÂB Â I 5 1 2 * f 3/u III +1

8 9 +2a^a^ÂBÂB,(K^), f4/(l-u) VI -1

9 9 + 4 a ^ u ^ ^  ÂB,ÂBy(K^),(K^)y f4 VI +1

10 9 -o,»2ÂS?(Kv);/ÂB f5/(l-u)2 VI +1

11 ■ 9 + 0 a 1 2
f3 VI +1

12 9 -2a^a^ ^ Â B y ( K ^ ) y f V u VI -1
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TABLE AI-2 - Continued

f  1 £ Polynomial
Type ^i

13 9 -a a ^ 2 ( K  
1 2   ̂ V y f5/u2 VI +1

14 9 -a a AB^ 
1 2

f3/(l-u) VI +1

15 9 +2a a ÂB^ÂB (K ) 1 2  y V y f3 VI -1

16 9 -2a a ÂB^ÂB (K )2 2 X V X f3 VI -1

17 9 -a a AB^ 
1 2

f3/u VI +1

18 9 +a a AB^ 
1 2

f2 VI +1

19 11 f V u IX -1

20 11 f5/(l-u)2 IX +1

21 11 f5/(l-u) IX -1

22 11 f5/u2 IX +1

23 11 f4/u IX +1

24 11 f4/(l-u) IX +1

23 13 f5 X +1

3d, 2 3d,2 1 5 +a a Â b V Â B1 2 X f3 I +1

2 7 f4/(l-u) III -1

3 7 -6a a W  Ab 5 1 2  ^
f3 III +1

4 7 f4/u III -1
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TABLE AI-2 - Continued

4-® i Z
Polynomial

Type ^i

5 7 +a a AB AB^ 
1 2  X

f 3/(1-u) III +1

6 7 +a a AB AB^1 2  X f3/u III +1

7 9 +6a ot AB %B^(K 1 2  X V ^ f^/(l-u) VI -1

8 9 +4a a ^  AB2(K )21 2  X V X f** VI +1

9 9 -c a AB2(K )2/a b2 2 V X f3/(1-u)2 VI +1

10 9 +3a a AB^ 
1 2

f3 VI +1

11 9 -6a a AB,AB (K )1 2  X V X f4/u VI -1

12 9 -a a AB2(K )2/AB2 2 ^ V X f3/u2 VI +1

13 9 -a a AB^ 
1 2

f3/(l-u) VI +1

16 9 -a a AB2 
1 2

f 3/u VI +1

15 9 +a a AB^ 
1 2

f2 VI +1

16 11 -4a a AB^(K1 2  X IX +1

17 +2a a ÂB ÂB (K )31 2  X V X f 3/u IX -1

18 11 +a a AB (K )2 
1 2  X

f3/(l-u)2 IX +1

19 11 -2a a ÂB ÂB (K )31 2  X V X fV(l-u) IX -1

20 11 +a a AB (K )2
1 2  V X

f 3/u2 IX +1

21 11 -a a AB3(K )21 2  V X fV(l-u) IX +1
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TABLE AI-2 - Continued

i i Y±
Polynomial

Type ^i

22 11 f4/u IX +1

23 13 +a a AB3(K )*♦ 
1 2  V X

f5 X +1

3d Is xy 1 5 +a a AB^AB /AB1 2 X y f 3/u^ I +1

2 7 f 3/u III -1

3 7 f 3/u III -1

4 9 f3 VI +1

3d 2s xy 1 5 -a ÂB ÂB /ÂB 1 X y f 3/u^ I +1

2 7 +a ÂB ÂB (K )1 y V X
f 3/u III -1

3 7 +a oi^ÂB ÂB ÂB 1 2  X y
f 3/u III +1

4 7 +»i“  “ x(Ky)y f 3/u III -1

5 9 f3 VI -1

6 9 +  W:(Ky),(K«)y f3 VI +1

7 9 f3 VI -1

8 11 fV(l-u) IX +1

3d 3s xy 1 7 -3a a ÂB ÂB^'E'1 2  X y f 3/u III +1

2 9 +3a 0 ÂB^ÂB (K,)* 1 2 y V X f3 VI -1

3 9 +a a ^ Â B ^ ^ A B1 2  X y f3 VI +1
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TABLE AI-2 - Continued

1 a «1 Y±
Polynomial

Type

4 9 + 3 a ^ o n % B x ( K v ) y f3 VI -1

5 11 -o^o^ÂBSÂByCKy), fV(l-u) IX -1

6 11 +3*/2ÂB3(K^)x(K^)y fV(l-u) IX +1

7 11 fV(l-u) IX -1

8 13 - « / P ' ( V x ( \ ) y fS/(l-u)2 X +1

3d 2pxy *̂ x 1 5 -a a AB^AB /AB
1 2 ^ y

f 3/u I +1

2 7 +a a ÂB AB 1 2 y f 3/u III +1

3 7 ÂB,ÂBy(Ky), f3 III -1

4 7 fVu2 III -1

5 7 +*,=2*3 f3 III -1

6 9 -“ ,“2 * 5  *»y<Kv)x f4/u VI +1

7 9 -=l“2“ ''»„)y f3 VI -1

8 9 +*,=2*B ÂB^(K„)2«„)y fV(l-u) VI +1

9 9 - “,“2“  “ x < V x » y ) y fVu VI +1

10 11 +* i = 2 ^ ' * ^ ) x ( K y ) y f IX -I

3d 3p xy *̂ x 1 5 +a Â B ^  /ÂB 1  ̂ y f 3/u I +1

2 7 -a ÂB ÂB 1 y f 3/u III +1
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TABLE AI-2 - Continued

1 1 Tl
Polynomial

Type

3 7 f: III

4 7 -hx ÂB ÂB (K ) /ÂB% ' y V ^ fVu2 III

5 7 -ot ot^AB AB^AB
1 2   ̂ y

f3 III +1

6 7 f3 III

7 9 f4/u VI +1

8 9 +a ot^AB^AB
1 2 y

f3 VI +1

9 9 +cS3(K^)y f 3 VI

10 9 fV(l-u) VI

11 9 -0. Æ  ÂB^(K^),(K„)y fV(l-u) VI +1

12 9 f4/u VI

13 9 +f S  ÂB,(K„),(K„)y f't/u VI +1

14 9 f4/(l-u) VI

15 11 f4 IX +1

16 11 f+ IX

17 11 -“ l“2“ ^(K„)y fV(l-u) IX

18 11 f5/(l-u)2 IX +1

19 11 - Y p X ( K ^ ) . ( K y ) y f+ IX +1
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TABLE AI-2 - Continued

i a
H

Polynomial
Type ^i

20 13 fS/(l-u) X -1

1 5 -a a ÂB^ÂB ÂB /ÂB 
1 2 * y z f3/u I +1

2 7 + 0  a ÂB Â b " ^  (K )1 2  y z' v'x f3 III -1

3 7 - a ^ o S ^ Â Ï  (K^)^/ÂB f't/u^ III -1

4 7 +a a ÎB ÂB M  (K ) 1 2  X z V y
f3 III -1

5 9 - » i » 2 ^ ^ y ( \ ) x « , ) z f4/u VI +1

6 9 + “,“2“  “ Z » V > X » V V fV(l-u) VI +1

7 9 - a ^ a S Â B ^ ( K ^ ) y ( K ^ ) ^ f^/u VI 1

8 11 + « , » 2 ^ ' ( \ ) x * « ) y ( \ ) 2 f4 IX -1

1 5 +a ÂB^ÂB ^  /ÂB1 X y z f 3/u I +1

2 7 -»l“  “ y“ z < \ > x f3 III -1

3 7 •*” l ^ x “ y < \ > z / “ f V u 2 III -1

4 7 -a a^ÂB M ^ Â B  ÂB 1 2  ^ y z
f3 III +1

5 7 -“ 1“ f3 III -1

6 9 ■“ 1“  “ y ( V x « „ > 2 f't/u VI +1

7 9 +“ 1“^  “ y “ z « y > x fV(l-u) VI -1

8 9 “ z « V > X « „ ) y f^/(l-u) VI +1
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TABLE AI-2 - Continued

4'® i Z Yi
Polynomial

Type ^i

9 9 (K^)^ f4/u VI -1

10 9 +a^ÂBÂB^(K^)y(K^)^ f^/u VI +1

11 9 +a a^AB ÂB ÂB (K ) 
1 2  X z V y

f4/(l-u) VI -1

12 11 -et a2^3ÂB^(K ) (K ) 1 2  y V X V Z f4 IX +1

13 11 -a ÂB3(K ) (K )^(K ), 1 V X V y V z IX -1

14 11 fV(l-u)2 IX +1

15 11 IX +1

16 13 fS/(l-u) X -1

5 +a et ÂB^ÂB ÂB /ÂB 1 2 X y z f 3 I +1

2 7 -a a ÂB ÂB ÂB (K ) /ÂB1 2 y z V X fV(l-u) III -1

3 7 +a a Âb2ÂB (K ) /ÂB 2 2 ^ y V Z f4/u III -1

4 7 -ot a AB AB AB 1 2  y z
f3 III +1

5 7 + “ l“,“ x“ y f V u III -1

6 7 fV(l-u) III -1

7 9 “ x“ y » v > x » v ^ z f-t VI +1

8 9 + “ ,“2“  “ y “ . < ^ > x
fi* VI +1

9 9 ■ “ l“2™x™ ' z < ‘̂ >x(l^,)y/® f5/(l-u)2 VI +1

10 9 -a a AB AB (K ) 1 2  y V Z f V u VI -1
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TABLE AI-2 - Continued

f  1 z "i Yi
Polynomial

Type ^i

11 9 f 5/u2 VI +1

12 9 f4 VI +1

13 9 3  (K^)y f4/(l-u) VI -1

14 9 + a ^ c , n n , l B , ( K ^ ) x ( K ^ ) y f.4 VI +1

15 11 + a ^ o n Â B y ( K y ) % ( K j , fS/u IX -1

16 11 -a^o^AB ABx(Ky),(Ky)y(K^;,f5/(l-u) IX -1

17 11 - a ^ o n M , ( K y ) 5 ( K j y fV(l-u) IX -1

18 11 -»l«2ÂB3(K^)y(Kv), f4 IX +1

19 11 + = l * 2 À B Â B , ( K j , ( K ^ ) y ( Y fS/uz IX -1

20 13 +*\«2ÀB:(Kv)5(Kv)y(Kv), f5 X +1

3d 3d 1 xy xy 5 +a a AB^AB^/AB
1 2 * y

f3 I +1

2 7 -a a AB AB^
1 2 y

f3 III +1

3 7 f4/(l-u) III -1

4 7 f4/u III -1

5 7 -a a Â B Â B 2  
1 2  *

f3 III +1

6 7 +a^a^ÀB2ÂBy(Ky)y/ÂB f*t/u III -1

7 7 -«^a^ÂB2ÂBy(Ky)y/ÂB f4/(l-u) III -1
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TABLE AI-2 - Continued

1 £ l'i
Polynomial

Type ^i

8 9 +a a ÂB AB^(K,)2 1 2  y V X VI +1

9 9 f3 VI +1

10 9 3ây(Kv)y f4/u VI -1

11 9 « l “ 2“  ÂBy(Ky)y f‘+/(l-u) VI -1

12 9 f4/(l-u) VI -1

13 9 f+ VI +1

14 9 f5/(l-u)2 VI +1

15 9 f4/u VI -1

16 9 -»,»2ÂB,ÂBy(Ky),(Ky)y/ÂB f5/u2 VI +1

17 9 f4 VI +1

18 11 -»,»2ÂB3(Ky)2 f4 IX +1

19 11 « i “2“  Â B y « v > x » „ > y fS/u IX -1

20 11 -«l'zÂB ÂBy(Ky)2(K^^y f5/(l-u) IX -1

21 11 -a a AB3(K )2
1 2  y

f+ IX +1

22 11 )2 f5/(l-u) IX -1

23 11 +a^a^AB AB^(K^)__(K^)2 f5/u IX -1

24 13 f5 X +1



TABLE AI-3

Coefficients for 1 14>®(B)>

^ ‘ "l “l.O "i.l »i.2 '1.3 '1.4 '1.5 '1.6

3s Is 1 5 -3o a n  f^/u 9 9 2 -1 0 0 01 2

2 7 +a^a ÂB f^/u^ 45 45 15 0 -I 0 0
1 2

3s 2s 1 5 + 3 a ^ ^  f^/u 9 9 2 -1 0 0 0

2 7 -3o f2 45 45 15 0 -1 G G
1 2

3 7 - a ^  f3/u2 45 45 15 G -1 G G

4 9 +a3a2ÂP f^/u 315 315 120 15 -3 -1 0
1 2

3s 3s 1 7 -3a a Â P  f^ 180 180 75 15 0 -1 G
1 2

2 11 +a3„3^5 f3 2835 2835 1155 210 0 7 -1
1 2

3p^ Is 1 3 -a AB^/AB f^/u 5 5 - 1

o\



TABLE AI-3 - Continued

*' 1 1 "i ”l'“> “l.O *1.1 *1,2 *1.3 *1.. *1.5 *1.6

2 5 ÂB^/ÂB fS/u2 15 15 4 -1 0 0 01 2 X

3p^ 2e 1 3 +ÂB^/S^ fZ/u 5 5 -1 0 0 0 0

2 5 -a^ÂFÂB 15 15 4 -1 0 0 0
2 *

3 5 f3/u2 15 15 4 -1 0 0 0
1

4 7 f V u  75 75 27 2 -1 0 01 2 X

3p^ 3e 1 5 -a^ÂB^j^ 30 30 15 5 -1 0 0

2 7 -Zo^o ÂB^ÂB fS/u 75 75 27 2 -1 0 0
1 2 *

3 9 f3 525 525 210 35 -1 -1 01 2 ’'

2p^ 3s 1 5 -3o o ÂB^ÂB f2 15 15 4 -1 G 0 0«-X 1 2 ’'

2 7 +a o^ÂB^ÂB f3/(l-u) 75 75 27 2 -1 0 01 2 ’'



TABLE AI— 3 — Continued

n^(u) *1,0 *1,1 *1,2 *1,3 *1,4 *1,5 *1,6

3Px

3Px 2py

2
3

5

7

■Kx ÂF/AB 
2 *

—ot AB 2

-0^0 Â P/AB1 2 X

+a^o AB 1 2

4ÂB^/AB

-AB

-o ^o â F a B 
1 2 *

+o 2j, 2 ^
1 2

3 -hx AB^AB /AB

fZ

f2

fS/u

f3/u

fZ

fZ

f3

-oZa AB AB /AB f^/u
1 2 ^ y

15

21

75

14

21

15

21

75

14

21

-1

27

60 60 23

105 105 39

525 525 210

7 7 - 1

-1

-1

-1

35

-1

-1

3 -1

4 -1

-1

0 00

0 0
0 0

-1 0



TABLE AI-3 - Continued

0® i £ n^(u) Pi,0 Pi.l Pi,2 Pi,3 Pi,4 Pi,5 Pi,6

3Px 1 3 +ÂB ÂB /1bX y f2 14 14 7 -1 0 0 G

2 7 -«ZaZÂBjÂB ÂB 1 2 X y f3 105 105 39 4 -1 0 0

Is 1 3 +ot a ÂB^VAB^1 2 X f3/u2 7 7 -1 0 0 0 G

2 5 +a a AB1 2 f^/u 9 9 2 -1 0 0 G

3 5 -a a /AB
1 2

f3/u2 15 15 4 -1 0 ■ G G

2s 1 3 -a ÂB^/ÂB^ 
1 ^ f3/u2 7 7 -1 0 0 G G

2 5 -a ÂB 1 fZ/u 9 9 2 -1 0 G G

3 5 +a^/ÂB f 3/u^ 15 15 4 -1 0 G G

4 5 +a a^AB^/AB 1 2  ^ f3/u 21 21 6 -1 G G G

5 7 +a I 2 f2 45 45 15 0 -1 G G

6 7 -a a^AB 1 2 f3/u 75 75 27 2 -1 G G

VO



TABLE AL-3 - Continued

i Z n^(u) Pi,o »i,l »i,2 ^1,3 ^1,4 Pi.5 Pi.6

3s 1 5 -3a a AB^/AB 
1 2 ^

f3/u 21 21 6 -1 0 0 0

2 7 — 3a a AB^ 
1 2

f2 45 45 15 0 -1 0 0

3 7 +3a a AB
1 2

f3/u 75 75 27 2 -1 0 0

4 7 +a a ^ ^ Â B ^  
1 2  ^

f3 105 105 39 4 -1 0 0

5 9 +a a^AB^ 
1 2 f3/(l-u) 315 315 120 15 -3 -1 0

6 9 -a a^AB^ 
1 2

f3 525 525 210 35 -1 -1 0

2Px 1 3 -a a Âb 3/Âb 3 
1 2 *

f3/u 9 9 — 1 0 0 0 0

2 5 -a a AB AB
1 2  ^

f2 15 15 4 -1 0 0 0

3 5 +3a a ^  /ÂB 1 2 X f3/u 21 21 6 -1 0 0 0

3Px 1 3 +a ^ ^ / Â B ^  
1 ^

fS/u 9 9 -1 0 0 0 0

2 5 +a ÂB  ̂ 
1

f2 15 15 4 -1 0 0 0

3 5 -3a "^^/ÂB 1 ^
f3/u 21 21 6 -1 0 0 0

4 5 -a a2!^3/ÂB 1 2 X f3 27 27 8 -1 0 0 0



TABLE AI-3 - Continued

1 Z n^(u) P±,0 P±,2 Pi,3 Pi,4 »i,5 Pi,6

5 7 -a a^AB AB 
1 2  ^

fV(l-u) 75 75 27 2 -1 0 0

6 7 +3a a^AB AB 
1 2  ^

f3 105 105 39 4 -1 0 0

3d," 1 3 -a a ÂB^ÂB /ÂB^
1 2 * y

f3/u 9 9 -1 0 0 0 0

2 5 -a a AB AB
1 2 y

f2 15 15 4 -1 0 0 0

3 5 +a a AB /AB
1 2 y f3/u 21 21 6 -1 0 0 0

3d*: % 1 3 +a ^ ^ Â B  /Âb3 
1 X y f3/u 9 9 -1 0 0 0 0

2 5 +a ÂB ÂB
1 y

f2 15 15 4 -1 0 0 0

3 5 -a AB /AB
1 y fS/u 21 21 6 -1 0 0 0

4 5 -a a ^ M ^ Â B  /ÂB
1 2 ^ y f3 27 27 8 -1 0 0 0

5 7 -a a^AB AB1 2 y fV(l-u) 75 75 27 2 -1 G 0

6 7 +o a^AB AB f3 105 105 39 4 -1 0 0

Ni
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TABLE AI— 3 — Continued

i £ n^(u) ^1,0 ^1,1 *1,2 Pi,3 Pi,4 ^i,5 / i . 6

1 3 +a a AB^AB AB /AB^ 
1 2 ^ y z

11 11 -1 0 0 0 0

2 5 +a a AB AB /AB 
I 2 y z

f3/(l-u) 21 21 6 -1 0 0 0

3 5 -a a AB AB /AB 
1 2 y z

f3 27 27 8 -1 0 0 0

1 3 +a a A B ^  /AB^
1 2 ^ y

f3 11 11 -1 0 0 0 0

2 5 +a ot AB AB / AB 1 2 X y f3/(l-u) 21 21 6 -1 0 0 0

3 5 -3a a AB^AB /AB1 2  ̂ y f3 27 27 8 -1 0 0 0

3dx= 3 d / 1 3 +a a ÂB^ÂB^/ÂB^ 1 2 X y f3 11 11 -1 0 0 0 0

2 5 +a a AB^/AB1 2 y f3/(l-u) 21 21 6 -1 0 0 0

3 5 +a a AB^/AB 1 2 X f3/u 21 21 6 -1 0 0 0

4 5 -a o AB^/AB1 2 y
f3 27 27 8 -1 0 0 0

5 5 -a a AB^/AB 
1 2

f3 27 27 8 -1 0 0 0

6 7 +a a AB^ 
1 2 f2 45 45 15 0 -1 0 0

7 7 -a a AB 
1 2

f3/(l-u) 75 75 27 2 -1 0 0

to
to



TABLE AI-3 - Continued

f i n^(u) "1,0 "i,l *1,2 *1,3 *1,4 *1.5 *1,1

8 7 — a a AB 
1 2

f3/u 75 75 27 2 -1 0 0

9 7 +a a AB 
1 2

f3 105 105 39 4 -1 0 0

34*" 34x= 1 3 +a a ÂB V â B^1 2 X f3 11 11 -1 0 0 0 0

2 5 +a a AB^/AB1 2 X f3/(l-u) 21 21 6 -1 0 0 0

3 5 +a a AB^/AB1 2 X f3/u 21 21 6 -1 0 0 0

4 5 -6a a ÂB^/AB1 2 X f3 27 27 8 -1 0 0 0

5 7 +a a AB^ 
1 2

f2 45 45 15 0 -1 0 0

6 7 -a a AB
1 2

f3/(l-u) 75 75 27 2 -1 0 0

7 7 -a a AB 
1 2 f3/u 75 75 27 2 -1 0 0

8 7 +3a a AB1 2 f3 105 105 39 4 -1 0 0

34xy Is 1 3 +a a ÂBXÂB / Â P
1 2 X y

f 3/u2 7 7 -1 0 0 0 0

34xy 2$ 1 3 -a ÂB ÂB 1 X y f 3/u^ 7 7 -1 0 0 0 0

2 5 +a a^AB AB /AB1 2 X y f V u 21 21 6 -1 0 0 0

ts3W



TABLE AI-3 - Continued

1 £ "i n^(u) ^1,0 Pi,l Pi.2 Pi,3 *1,5 *i,'

3dxy 3s 1 5 —3a a AB AB /AB
1 2 ^ y

f3/u 21 21 6 -1 0 0 0

2 7 +a a^*Ss AB AB
1 2  ^ y

f3 105 105 39 4 -1 0 0

3dxy 2Px 1 3 —a a AB^AB /AB^
1 2 ^ y

f 3/u 9 9 -1 0 0 0 0

2 5 +a a AB /AB
1 2 y f3/u 21 21 6 -1 0 0 0

^^Xy 3Px 1 3 +a ̂ ^ Â B  /m^
1 ^ y f 3/u 9 9 -1 0 0 0 0

2 5 -a ÂB /ÂB
1 y f3/u 21 21 6 -1 0 0 0

3 5 -a a^ÂB^ÂB /ÂB 1 2 X y f3 27 27 8 -1 0 0 0

4 7 +a a^AB AB
1 2 y

f3 105 105 39 4 -1 0 0

3dxy 2Pz 1 3 -a a AB AB AB /AB^f^/u
1 2 ^ y z 9 9 -1 0 0 0 0

*̂^xy ^Pz 1 3 +a AB^AB AB /AB^ 1 X y z f 3/u 9 9 -1 0 0 0 0

2 5 -a a^AB^AB AB /AB f3
1 2 * y 2

27 27 8 -1 0 0 0

K>



TABLE AI—3 — Continued

'f® $® i £ ''i n^Cu) *1,0 *1,1 *1,2 *1,3 *1,4 *1,5 *1,6

34xz 1 3 +a a AB^AB AB /AB^ f3
1 2 X y z

11 11 -1 0 0 0 0

2 5 -a a AB AB /AB
1 2 y z

f3 27 27 8 -1 0 0 0

2‘̂ Xy ^*^xy 1 3 +a a1 2 X y f3 11 11 -1 0 0 0 0

2 5 -a a AB^/AB
1 2 y

f3 27 27 8 -1 0 0 0

3 5 -a a AB^/AB 1 2 X f3 27 27 8 -1 0 0 0

4 7 +a et. AB f3 105 105 39 4 -1 0 0

Mto
KJ\

1 2



Appendix II

Method of obtaining an analytic form for coulomb and exchange 

potential of silicon.

From Eq. (4.5) we have that

V
4irrp(r) sin (K^r) dr

o 1/3
+ I -2 r[3p (r)/TT] sin (K^r) dr}.

If we define

Q(r) = 4ïïr p(r)

and

E(r) = j  r[3p(r)/ïï]

(A2-1)

Then V (K ) can be expressed as crys V

00

''crys*v> ■ ■ 7 \  ‘ \  J
V o

00
(A2-2)

+  K E(r) sin (K^r) dr .

We then curve fit Q(r) and E(r) using a combination of a polynomial in 

r and an exponential. The curve fit expressions were:

3 K 4 . .
Q(r) = z 6,r exp (-n.r) +  z a. (r) r ^

i=l ^ j=l J

126
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and

2 K ' 4
E(r) = Z 6' r ^ exp (-n*.r) +  Z a'.(r) 

1=1 j=l J

The values of 6̂ ,̂ and n^ are contained in Table A2-1. The value 

of a j(r) depends on what the value of r is, and is tabulated for the 

different regions of r in Table A2-2. The values of 6'^, K'^ and n'^ 

are contained in Table A2-3 and the values of a ’j(r) for the different 

regions of r are contained in Table A2-4.
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TABLE A2-1

i 'i

+ 1.096164 X 10-11 20.54610

-28+ 2.503153 X 10 + 55.43703

+ 5 . 8 0 4 7 5 7 x 1 0 ' ^  +5.766948

+ 3.358661 

+  7.666828 

+ 1.488461



TABLE A2-2

from to a^(r) agCr) ag(r) *4 (2 )

r=0.00 r=0.03 0.. 0 +2.184522 X 10+^ *5.580415 X 10+5 +5.008750 X 10+^
0.03 0.06 +8.380707 X 10+1 +1.342638 X 10+"̂ -2.637692 X 10+5 +1.449976 X 10+^
0.Ô6 0.10 +3.328367 X 10+2 +9.490420 X 10+2 -5.287181 X 10+'' +2.480925 X 10+5
0.10 0.19 +6.014007 X 10+2 -7.339429 X 10+1 +3.307254 X 10+̂ ^ -5.104946 X 10+̂ ^
0.19 0.26 +3.726285 X 10+2 -3.785215 X 10+1 +1.460434 X 10+̂ ^ -1.895182 X 10+̂ ^
0.26 0.36 +7.810396 X 10+1 -3.634535 X 10+2 +1.302745 X 10+5 -1.652660 X 10+5

0.36 0.55 +7.227253 +4.196663 X 10+2 -1.078697 X 10+5 +7.493997 X 10+2

0.55 0.76 +1.130473 X 10+2 -2.471195 X 10+2 +1.595399 X 10+2 -2.065374 X 10+1
0.76 1.00 +1.337298 X 10+2 -3.412449 X 10+2 +3.005113 X 10+2 -9.031780 X 10+1
1.00 1.30 +7.318620 X 10+1 -1.610204 X 10+2 +1.212160 X 10+2 -3.070131 X 10+1
1.30 1.60 +2.089290 X 10+1 -3.782623 X 10+1 +2.430651 X 10+1 -5.249389
1.60 2.10 +1.452035 X 10~1 +2.178235 -1.090230 +1.330528 X 10~1
2.10 2.70 +1.950165 X 10~1 +2.064504 -1.215946 +1.819896 X 10-1
2.70 3.70 +4.347943 -2.599668 +5.344188 X 10-1 -3.747822 X 10-2
3.70 4.50 +3.708273 -2.125240 +4.184184 X 10-1 -2.815516 X 10-2



TABLE A2-2 - Continued

from to a^(r) 32 (r) ag(r) a^(r)

4.50 5.30 +2.210481 -1.118426 +1.925391 X 10-1 -1.124218 X 10-2

5.30 6.00 +1.248844 -5.672467 X 10-1 +8.715551 X 10-2 -4.521103 X 10-3

6.00 6.70 +6.819038 X 10~^ -2.818470 X 10-1 +3.923877 X 10-2 -1.838023 X 10-3

6.70 7.40 +3.603265 X lo'i -1.370177 X IQ-l +1.748807 X 10-2 -7.487612 X 10-4

7.40 8.10 +1.853165 X 10-1 -6.569126 X 10-2 +7.795212 X 10-3 -3.095580 X 10-4

8.10 8.70 +8.757885 X 10-2 -2.924858 X IQ-2 +3.264715 X 10-3 -1.217705 X 10-4

8.70 9.40 +3.348683 X 10-2 -1.055227 X IQ-2 +1.110237 X 10-3 -3.899716 X IQ-5

9.40 10.00 +9.236438 X 10-3 -2.744353 X 10“ 3 +2.721366 X 10-4 -9.005472 X 10-5

10.00 11.50 +8.263697 X 10-4 -2.217874 X 10-4 +1.9 84950 X 10-5 -5.923494 X 10-2

11.50 13.50 +1.694967 X 1 0 - 5 -3.937459 X 1Q-* +3.048176 X 10-2 -7.863266 X 1 0 - 9

13.50 0.0 0.0 0.0 0.0
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TABLE A2-3

i " i N ‘i

1 +  3.091138 X 10-2 +  2.471882 + 4.900283 X 10-1

2 + 5.187311 X 10-23 +  3.694527 x 10^^ + 3.858810



TABLE A2-4

from to a^(r) BgCr) ag(r) a^(r)

r=0.00 r=0.05 +3.120298 X 10-5 +1.779470 X 10+1 -1.604933 X 10+2 +5.884123 X 10+2

0.05 0.13 +4.525809 X 10-2 +1.540715 X 10+1 -1.163809 X 10+2 +3.004062 X 10+2

0.13 0.20 +5.875951 X 10-1 +3.343420 -2.584254 X 10+1 +7.091928 X 10+1

0.20 0.33 +1.187546 -7.230805 +3.487086 X 10+1 -4.334803 X 10+1

0.33 0.81 +3.192869 X 10-1 +6.983263 -1.009635 X 10+1 +4.338062

0.81 1.20 +1.218634 +1.325962 -3.061943 +1.381236

1.20 1.60 +4.620999 -8.025926 +5.473333 -1.206242

1.60 2.50 +3.969857 x 10-1 +1.401235 -4.518377 X 10-1 +3.952299 X 10-2

2.50 3.90 +1.390803 X 10-1 +9.128637 X 10-1 -3.178244 X 10"1 +2.978814 X 10-2

3.90 6.50 +1.693090 -3.124634 X IQ-l +6.767802 X 10-3 +9.229329 X 10-4

6.50 12.00 +2.126803 -5.366310 X io"i +4.528990 X 10-2 -1.278149 X 10-3

12.00 0.0 0.0 0.0 0.0

wNî



Appendix III 

Simplification of OPW matrix elements 

From Eq. (5.3) we see that the overlap matrix can be written as

j=(NO) ^ I exp {-i(k+K^ )*r} exp {i(k+K^ )*r} dr

b (k,r) exp {i(k+K. )*r}dT a,A hj
(A3.1)

-  (NJ2) Z 3(h ,a',A') f exp {-i(k+K. )*r} b , , (k,r) dx
o',A' J / i a ’A

+ Z  Z 3(h ,a,A)*e(h ,o',A') b* (k,r) b (k,r) dx . 
a,A o',A' ^ ■' o,A o',A'

From the equations which determine 3(h^,a,A) (Eq. (5.2)) we have that

j V* (k,r) b (k,r) dx = 0 
•’ i o',A' (A3.2)

or

-  (NO) ^ f exp{ -i(k+K. )'r} b Ck,r) dx
J \  o' ,A'

(A3.3)
* f * ->■ ->

+  Z S(h.,o,A) b (k,r) b (k,r) dx = 0.
o,A o,A o',A*

Summing this equation over o' and A ' and multiplying it by g(hj,a',A') 

does not change it. We therefore have

133
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-(NO) I B(h.,a',A') 
a',A' J

exp {-i(k+K^ ) t } b^, ^,(k,r) d T

(A3.4)

+ E E B(h ,a,A) B(h.,a',A’) | b (k,r) b , ,(k,r) dx = 0 .
a,A a',A' ^  ̂ J a ,A

The last two terms in E q , (A3.1), therefore cancel and we have

j = (Nn) ^ I exp {-l(k+K^ )*r} exp {i(k+K^ )"r} dx

-  (Nn) g(h ,a,A) I b (k,r) exp {i(k+K, )*r} dx .
a,A ^ J

(A3. 5)

The first term in Eq. (A3.5)

(Nn)-1 -1exp{-i(k+Kj^ ) • r}exp{i(k+K^ )*r}dx = (Nf2) jexp{i(K^ )*r}dx

where

0 i -c ->
. 0  If

The second term in Eq. (A3. 5) can be simplified after substituting for

b  ̂ (k,r) from Eq. (4.7).a,A
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A (k,r) exp {l(k+K^ ) • r} dx(NO)""^ e(h ,a,A)*
a,A

* 1 A ^ * ~ik* {R +t- }
= I (a,A) (k)]"zz e(h ,a,A) ( Ee

“ a,A V

(j)^(r-R^-t^) exp {l(k+K^ )«r} dx +A E^e

-> -v ->• 
-ikiR^+tg}

(A3.6)

OgCr-R^-tg) exp {l(k+K^ ) t } dx ) .

Make a change of variables in these two integrals.’ In the first integral

let r' = r-R -t, . In the second integral let r ' ’ = r-R -t„. We then V 1 V Z

have

(NO) T  g(h ,a,A)
a,A

^^k,r) exp {i(k+K^ )*r} dx

l"(a,A) N"^[S2fi^(k)]"^E 6(h, ,a,A)(E exp {i K. * ( R + t  '
“ a,A 1 ^ 1

-> -+
)}

*g(r') exp {i(k+K^ ) • r ' } d x' +A E^ exp {iK^ '(R^+ t^)}

I *Q<r'') exp {i(k+K^ )"r''} dx " )

(A3.7)

l*(a»A)N ^[S2fi\k)] '̂ z g(h^,a,A) ([s^iexp (iK^ *t^)
a, A j

+A exp (iK^ 'tg) y  (j)̂ (r) exp {i(k+K^ )'r) dx).

Since -y -»■
*R.. = 2mïï

j
where m  is an integer.
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Upon summing over v we get the final expression for the overlap matrix 

element.

. = %  t  - I (a,A) [on (k)] * E 3(h, ,ct,A) 
\ ’ \  “ a,A 1

(A3. 8)
-)■ -»

[exp (iK^ +A expCiK^ -t̂ ,)] j *^(r) exp {i(k+K^ )-r}dT

Now lets look at the Hamiltonian matrix. From Eq. (5.4) the 

Hamiltonian has the form

Ĥ  j  = (Nn)-1 exp {-i(k+K^ )-r} ^  exp {i(k+K^ ) t } dx

- (No) 6(h ,a,A) b (k,r) ̂  exp (i(k+IC ) t } dx 
o,A  ̂ j

(A3.9)
- (No) 3(h.,a',A’) exp {-i(k+K. ) * r } ^ b  , , (k,r) dx

a',A' J i "i G ,A

+E E 6(h ,a,A) 6(h.,o',A')
a,A o',A' ^

Since the Hamiltonian is a hermitian operator we can say that

b^ ^(k,r) ̂  exp {iCk+K^^ )*r} dx = j  exp {-i(k+K^ ) 'r}^b^ ^(k,r)dx.

(A3.10)

Substituting for b (k,r) we have(X 9 A
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I exp {-i(k+K^ )'r}2/(r) ^(k,r)dx = I(a,A)[NG^(k)]

ik.(R +t^) _  ^ _
[Z,e J exp {-i(k+K^ ) * r } ^ ( r )  ())^(r-R^-t^)dT (A3 .11)

+ A Z eV
ik'CR^+tg)

exp {-i(k+K^ ) t } (r-R^-tg) dtj

Substituting r'=r-R^ into both of the integrals and remembering that 

the periodicity of the crystal lattice requires that

-► ->•

and that

^ ( r ’ +  R ) = ^(r')

K. ' R = 2mir ,

Eq. (A3.il) becomes

exp {-i(k+K^ )*r) ^ ( r )  b^ ^(k,r)dx = I(a,A) [Nn^(k)J 

■+ -*■

[Z^ e exp {-i(k+K^ )*r'} }/(.r') *^(r'-t^) d?'.

-»■ - >  

ik* t.
+ A Z e V

-4-
exp {-i(k+Kj^ )-r'} ^(r') ,j,^(r'-t2)d ? '}

(A3.12)

After summing over v in Eq. (A3.11) and using Eq. (A3.12) to simplify 

the Hamiltonian matrix element we have
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= (NO)-1
^ -4-

exp {-i(k+K^ ) - r } ^ e x p  {l(k+K^ )*r}dT

- I(cx,A)’tîîfi^(k) ] * Z S(h.,a,A) j exp {-i(k+IC ) ‘t } ^
a,A J "j

->■-+■ -»■->•
ik’t- i k ‘t- -J.

[e *g,(r-Ci) + A e 0^(r-t2)] d? (A3.13)

"  . ' .A '  " j
exp {-i(k+Kj^ ) * r } ^

Ik" t. Ik'C,
[e  ̂ + A e  ̂ O^/Cr-Cg)] «It '

+Z E 6(h a.A)*6(h,,a’,A') f b* . ( k . r ) ^  b (k,r)di .
a,A a' ,A'   ̂  ̂ o' ,A'



Appendix IV

The integrals of k inetic  and potential energies are as follows: 

<G (̂a  ̂ T -A )l- iv “ lG^(a2 r-B)> = AAc(3-2XAb^) ^

<G '̂ (̂a, r-A)|-yV^|G^(a^ r-H)> = X^AfÆ(S-2AÂÎ^^)/a,

<cP̂(aĵ  r-A)|-lv^|G^^(a^ r-H)> -  X^Ac(|-7XÂH^^-XAB^+2XWÂB^)/a^a2 
' * /

<GP^(a, r-A)|-~V^|GP^(a, r-B)> = X^AcÂB^ÂB C2XÂB^-7)/a,a,
1 ,•»- »— 6 6 A» X y 1/ z

<G=Co.j_r-A)|cos(IC„-rc)|G''(cx2,il)" = Mç cos(Kyjgp) ^

<GP’‘ (a i_r-A )|cos(K ^-r)|G ^“2 , r ï ï >  “ i5c [(xS ^ /ap co s  CK„-^„)

- (5v)% ^ i''ïu -ic ü ’ 2̂C“r “2>] ,

<G’’''(ci^_r-A)|cos(K^-rp|GP*(o2_r-B)> . AéçCCX/Oja^)f^XÂB^

(X/üa^o^) (K̂ ) Jcos

<GP’‘ (a^_i;-A)|cos(KyTc)lnW(a2_r-B)> .  (X/o,^c.pW((lgig(^)^AB
y

- Cl-ü)CK^)yÂ\]sinCIÇ^-rcn)
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A = iKjiTi ,/(O j+ (t,'), A = r, = exp(-XAB^)

•)

and M  refers  to the x-component of tlio lin e  joining the points A and B.


