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SPECTRAL THEORY FOR SINGULAR LINEAR SYSTEMS

OF HAMILTONIAN DIFFERENTIAL EQUATIONS

1. Introduction. In 1910 Weyl [11] inaugurated the modern theory 

of singular self-adjoint differential operators, considering, in par

ticular, second order differential operators with real coefficients.

Since then his results have been generalized by various authors to the 

case of arbitrary even order self-adjoint differential equations with 

real coefficients. Also, in 1954 Coddington [2] treated the case of 

an arbitrary n-th order self-adjoint differential equation with complex 

coefficients. He obtained the Parseval eqpality and spectral expansion 

associated with the singular case directly, through the consideration 

of such a problem as a limiting case of corresponding self-adjoint two- 

point boundary value problems on compact subintervals of the reals.

Using the same general concept, Coddington and Levinson [3] derived a 

Green's function, which in turn enabled them to obtain the spectral 

matrix for a singular problem involving a linear homogeneous n-th order 

differential operator, and then proceeded to derive the Parseval equality 

and spectral expansions.

Recently Brauer [1] treated similar problems which involve a defi

nitely self-adjoint vector differential operator, of the sort that has 

been treated by Reid [6] and others. He obtained the Green's matrix 

and spectral matrix through the use of the speptral theorem and the
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2
theory of direct integrals.

In the spirit of variational methods and principles, Reid [7,8] 

developed the general theory of self-adjoint two-point boundary value 

problems associated with a formally self-adjoint Hamiltpnian vector dif

ferential operator defined on a given compact subinterval of the reals. 

The main purpose of the present paper is to employ the general method of 

Coddington and Levinson [3; Chapter 10, Sections 4,5] to derive the 

Green's matrix, spectral matrix, the Parseval equality, and spectral 

expansion for a singular linear Hamiltonian vector differential system 

which includes as special instances the Euler vector differential equa

tion and a system that is equivalent to a self-adjoint 2n-th order 

scalar differential equation.

In Section 4 the existence and the properties of a Green's matrix 

are treated. In Section 5 there is obtained the spectral matrix, and 

finally, the Parseval equality and the expansion theorems are derived 

in Section 6.

Matrix notation is used throughout; in particular, matrices of one 

column are called vectors, and for a vector y = (y^), (i = l,-**,n), the

7? T | y . . We denote by E and 0 the n x n ^i=l '̂ i' n nnorm |y| is given by 

identity and zero matrices, respectively, and when there is no ambiguity 

as to dimensions, we use merely the symbols E and 0. The conjugate 

transpose of a matrix M is designated by M*. If A is an Hermitian 

matrix, then the symbol A > 0 (A k 0) signifies that A is positive (non

negative) definite; in general, A > B (A > B) signifies that A apd B are 

Hermitian matrices of the same dimension and such that A- B is positive 

(non-negative) definite.



3
A vector function is called locally absolutely continuous on an 

open interval I of the reals when it is absolutely continuous on each 

compact sub-interval of I, and a matrix function is called continuous, 

differentiable, integrable, of bounded variation, locally absolutely con

tinuous, etc., when each element of the matrix possesses the specified 

property. If M(t) = [M^^(t)] denotes an n x  m matrix function, then we

define M(t)dt = [ M^j(t)dt] and M ’(t) = [M|^(t)]. For a given interval

J of the real line, the symbols C™, ^ and :̂  are used to denote the

class of n-dimensional vector functions y(t) on J which are respectively 

m times continuously differentiable, (Lebesgue) integrable, and (Lebesgue) 

measurable with |y(t)|^ integrable on J. If M(t,s) is a matrix function 

of two variables t and s, then, for brevity, we use the symbols M^^’^^(t,s) 

and M^^’̂ ^(t,s) to designate the partial derivative of M with respect to 

t and s, respectively. If M 5 , N = (j = l,**-,n;

k = l,**’,m), are n x m matrices, for typographical simplicity the 

symbol (M;N) will denote the 2n x m matrix with

\ + i  k ~ ^ik’ ~ l,'"',n; k = l,-*-,m). In particular, if u = (u^) 

and V = (v^) are n-dimensional vectors then (u;v) denotes the 

2n-dimensional vector y = (y^) such that y^ = u^ and y^^^ = v^,

(i = 1,•••,n).

2. Hamiltonian vector differential system. We are concerned with 

a Hamiltonian vector differential system of the type

L^[u,v](t) s -v'(t) + C(t)u(t) - A*(t)v(t) = 0,
(2.1) t £ I,

LgEu.vjCt) = u'(t) - A(t)u(t) - B(t)v(t) = 0 ,

where I = (c,d) is a given open interval of reals such that (2.1) is



singular both at c and d, while u(t) and v(t) are n-dimensional complex

valued vector functions, and the coefficients A(t), B(t), and C(t) are 

given n X n complex-valued matrix functions.

By definition a solution of (2.1) is a pair of n-dimensional vector 

functions u(t) and v(t) belonging to C^(l), and satisfying (2.1) for 

t € I. Throughout this paper we assume the following hypothesis.

(H^) ^  I the matrix functions A(t), B(t), and C(t) are continuous,

A(t) and B(t) are continuously differentiable, and B(t), C(t) are 

Hermitian. Moreover, the system (2.1) is identically normal in the sense 

that if (u(t);v(t)) = (0;v(t)) is a solution of (2.1) on any non

degenerate sub-interval of I, then v(t) = 0 on that interval.

The system (2.1) may be expressed as a single 2n-dimensional vector 

differential equation

(2.2) ^[y](t) 5 ^y'(t) + cA(t)y(t) = 0, t e I,

where

y(t) = (u(t);v(t)), cA(t) =

As (̂  = - and cA(t) = t^(t), the differential operator X  is identi

cal with its formal Lagrange adjoint

^^[y](t) = - Ç *y’(t) + cA?(t)y(t) = 0, t € I.

If y(t) and z(t) are of class [^^(I), then the Lagrange identity in 

integral form is given by

’ C(t) -A*(t)"
Q. =

~0 -E ' n
-A(t) -B(t)

9 r E 0H "

(2.3) (XlyJ»z)dt - (y, XlzJ)dt = z*(t)Ç.y(t)
t=b
t=a

where J = [a,b] is an arbitrary compact subinterval of I. In particular.
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if we set y(t) = (u^(t);v^(t)), z(t) = (u^Ct);v2(t)), and y, z are such 

that L2[u^,v^](t) = 0, (i = 1,2), on I, then relation (2.3) yields the 

equation
t=b

(2.4) J (L^Iu^.Vj^J ,u^)dt - J (Ui.LjIUj.v^ndt = t=a

Following Reid [7,8], if I = (c,d) is a given open interval then we 

denote by J5[I] the set of n-dimensional vector functions u(t) which are 

locally absolutely continuous on I and such that L2 [u,v](t) = 0 on I for 

some v(t) G J^(I). Similarly, we denote by Ag[I] the set of all 

u(t) 6 J5[I] such that u(t) has a compact support on I. If u^ e ,

(i = 1,2), with corresponding v^ which are of class C^(I), then from (2.4)

we have

(L^[u^,v^],U2)dt = (u^,Lj^[u2,V2])dt.

A 2n X 2n matrix function Y(t) is called a fundamental matrix for

(2.2) if the 2n column vector functions of Y(t) are linearly independent 

solutions of (2.2) on I.

3. Preliminary results. Let 6 = [a,b] be an arbitrary, but fixed, 

compact subinterval of I = (c,d), and let K(t) be a non-identically 

vanishing n x n matrix function defined on I which is continuous and 

Hermitian.

We now consider the two-point self-adjoint boundary value problem

(a) L.[u,v|X](X) = L-[u,v](t) - XK(t)u(t) = 0, L_[u,v](t) = 0, t € 6,

(b) oA(g[u,v] = M^u(a) + M2v(a) + M^u (b) + M^v(b) = 0,

involving the characteristic parameter A, where each coefficient matrix 

M^, (i = 1,2,3,4), is of dimension 2n x  n and the 2n x  4n matrix
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cAg = Mg Mg M^] has rank 2n. Corresponding to (2.2), system (7^) 

may be expressed in terms of the 2n-dimensional vector function y(t) = 

(u(t);v(t)) as

(a) 2[y|A](t) 5 :t[yj(t) - A%<t)y(t) = 0, t 6 6,
(3.1).

(b) <^g[y] = c^[u,v] = 0,

where %(t) is the 2n x  2n matrix function defined by 1{(t) =

diag{K(t),0}.

Since we are dealing with self-adjoint boundary problems, the 

boundary condition c/ig[y] = 0 must satisfy the self-adjointness condition; 

that is, if y and z belong to [^^(d) then

(^&[y],z)dt = (y,^[z])dt
6 ■‘S

whenever J\g [y] = 0 and cA/g[z] = 0. It is to be noted that in view of

(2.3) the above relation is satisfied if and only if

z*(b)^y(b) - z*(a)^y(a) = 0 whenever c/1g[y] = 0 and cH^[z] = 0.

Throughout our discussion in this paper we assume also the follow

ing hypothesis.

(Hg) The n X n Hermitian matrix function K(t) in non-negative 

definite on I, and not all X are proper values for (I6 g).

Following Reid [8; Sec. VII.10], for u^(t) €. ^^(J), (i = 1,2), 

where J is a compact subinterval of I, we define an Hermitian functional 

^  on f^(J) X  f^(J) by

(K(t)u^(t),Ug(t))dt;

In view of hypothesis (Hg) we have the Cauchy-Schwarz inequality 

| K g [ u ^ , U g ] < Kj[u^]Kj[Ug]. The non-negative square root of Kj[u] is



called the K-norm of u(t) over J, and, for brevity, is denoted by ||u||̂ , 

or merely by |u| when there is no ambiguity.

For later reference we make the following observations as to (^-a):

(i) if the matrix function B(t) is non-singular on 6, then the 

system (S^-a) is a canonical representation of the n-dimensional Euler 

vector differential equation

(3.1') (R(t)u'(t)+Q(t)u(t))' - (Q*(t)u'(t)+P(t)u(t)) = XK(t)u(t), t e  6,

in terms of the canonical variables u(t) and v(t) = R(t)u'(t) + Q(t)u(t),
—  1 —1 * —1 where R = B  , Q = - B  A, P = C + A B  A, and K is non-singular;

(ii) the system (Zgg-a) also contains as a special instance a system

which is equivalent to a self-adjoint 2n-th order scalar differential

equation

C - l ) " [ r  ( t ) u [ * ] ( t ) ] [ * ]  +  ( - l ) * " l [ r  ( t ) u [ " ^ l ] ( t ) ] [ " " l ]  +  .•• +n n—i.
(3.1")

r^(t)u(t) = Xk(t)u(t), t €  5,

with real coefficients, r (t) ^ 0 and k(t) f 0 for t € 6. In this casem
the corresponding n x  n matrix functions A(t), B(t), C(t), and K(t) are 

given by A^ ^^^(t) =1, (i = l,**>,n-l), A^j(t) = 0 otherwise; B(t) =

diag{0^_j^,[rjj(t)]“^}; C(t) = diag{r^(t) ,r̂ (̂t), • • • ,r^_^(t)};

K(t) = diag(k(t)

Thus, the self-adjoint system (S^) includes as special instances 

the corresponding two-point self-adjoint boundary problems of these two 

important cases.

Concerning the basic properties of the proper values, proper vector 

functions, and the Green's matrix associated with the self-adjoint 

boundary value problem (®^), we state two theorems, whose proofs may be
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found in Reid [8; Theorems IV.5.1, VII.10.1].

THEOREM 3.1. For a self-adjoint system (8^) satisfying hypotheses 

(H^) and (Hg) all proper values are real, and the set of the proper

values is at most denumerably infinite with no finite limit point. If

(uu(t);v^(t)), (i = 1,2), are two proper vector functions of (18̂ ) corre

sponding to distinct proper values (i = 1,2), then they are 

R^-orthogonal in the sense that [Uĵ ,Ug] = 0. Moreover, if A is a 

proper value of index m(A), then the linear vector space of solutions of 

06g) for this value A has £  basis (u^(t);v^(t)) which i s ,̂ ^-orthonormal 

in the sense that Kp[u,,u,] = 6^,, (i,j = l,'"',m(A)).--------------- - 1 J ij
It is to be noted that the last conclusion of the above theorem is

implied by hypothesis (Hg), since if y(t) = (u(t);v(t)) is a proper solu

tion of (0g) for a proper value A we have 0 :< Kg[u], and the equality 

sign would hold if and only if K(t)u(t) = 0 for t a.e. on <S, in which 

case all values of A would be proper value of @^). In particular, if 

y(t) = (u(t);v(t)) is a proper solution of (0^) for a proper value A then 

u(t)  ̂0 on 6 = [a,b], so that the boundary value problem (6^) is normal.

THEOREM 3.2. If_ (B^) satisfies hypotheses (H^) and (Hg), 6 = [a,b], 

and A ^  not ^  proper value of (0^), then there exists a unique 2n x  2n 

matrix function .^(t,s,A), called the Green's matrix, such that for 

arbitrary f^(t) € j[g^(6) the 2n-dimensional vector function y(t) 

defined by

y(t) = i^(t,s,A)f (s)ds
6

is the unique solution of the boundary problem

I%y|A](t) = fg(t), cMg[y] = 0.

Moreover, the Green's matrix ,^(t,s,A) possesses the following properties.
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(i) On each of the triangular regions

(3.2) = {(t,s)€6 X 6 I a < s < t < h and A^ = {(t,s)e6 x S |a < t < s < b } ,

(a) the matrix ^(t,s,X) Is continuous In (t,s);

(h) the partial derivative ÿ (t,s,X) exists, and is con

tinuous in (t,s); moreover, ;^(t,s,X) satisfies the differential equation

:f[#(',8,X)|X](t) = 0;

(c) as a function of the complex number X the matrix ,'(t,s,X) 

is regular at each point which is not a proper value ; in particular, 

j^(t,s,X) ^  holomorphic in the half-planes Im X > 0 and Im X < 0;

(d) X ^  not 2  proper value, then

(3.3) ;^(t,s,X) = [^(s,t,X)]*;

(e) if (s ,s ) e 6 X 6, then ^(t,s,X) has the finite limits   Q Q —— —  ~ -----------------------

(3.4) Çj(s^,s^,X) = lim ^(t,s,X), as (t,s) -»■ (s^,s^), (t,s) e A y

(j = 1,2);

moreover, these two limits satisfy the relation

(3.5) ÿ^(s^,s^,X) - 2^(SQ,SQ,X) = (J*;

(ii) on each of the triangular regions {(t,s)€<S x g | a < s < t < b }  

and {(t,s)€6 x 6 | a < t < s < b}, a s £  function of t, the matrix tf(t,s,X) 

satisfies the boundary condition; that is, cMg[3̂ (',s,X)] = 0.

It is to be noted that relations (i-b) and (i-d) imply that the 

matrix ^^^'^^(t,s,X) exists, and is continuous in (t,s) on each of the 

triangular regions Â  ̂and A^.

In the sequel a partitioned matrix form of <^(t,s,X) will be used 

frequently, and to this end we set

(3.6) ^(t,s,X) =
G^^(t,s,X) G22(C,s,X)

= [G^j(t,s,X)], (i,j=l,2),
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where each is an n x  n matrix function. In particular, conclusion 

(i-d) of the above theorem is equivalent to the relations

G^j(t,s,X) = [Gj^(s,t,X)]*, (i,j = 1,2).

If fg(t) in Theorem 3.2 is a particular vector function of the form

f (t) = (f(t);0), where f(t) ;̂ (<S), then the following results areo n
immediate.

COROLLARY. If Im X ^ 0, then for an arbitrary f(t) e f^(5) the 

2n-dimensional vector function (u(t);v(t)) = (u^^^(t);u^^^(t)) defined

G ^  (t,s,A)f(s)ds, (i = 1,2),
6

is the solution of the differential system

(a) L^[u,vlX](t) = f(t), LgEu/vjCt) = 0, t £ 6,

(b) cMg[u,v] = 0.

In connection with Theorem 3.2 the reader is referred to Reid [8; 

Theorem VII.8.2] for additional properties of the matrix functions 

Gii(t,s,X), (i = 1,2). In the following, whenever it is desired to 

emphasize the dependence on 6 £f ^(t,s,X), we write ^(t,s,X;6).

We shall now establish the following result which is basic to our 

discussion in this section.

LEMMA 3.3. ^ g ( t ) €  ^^(5), then for Im X ^ 0 the solution

(u(t);v(t)) of the differential system

(a) L.[u,v|X](t) = K(t)g(t), L„[u,v](t) =0 ,  t £ 5,
(3.7) ;

(b) cMg[u,v] = 0,

satisfies the inequality

(3.8) l|u||̂  £ |lm Xr^llgl)^.
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Suppose that (u(t);v(t)) is the solution of (3.7). Since the problem 

dg^) is self-adjoint, it follows that

(3.9) (L [u,v],u)dt - (u,L.[u,v])dt = 0,
6

"14(t,s)f (s)ds is 
6 °

and using the first relation of (3.7-a) in (3.9) we obtain the result

Im X ^g[u] + Im Kg[g,u] = 0. Now applying the Cauchy-Schwarz inequality

to ^[g,uj, and using the fact that Kg[u] > 0, we obtain (3.8).

If Y(t) is a 2n x  2n fundamental matrix for (2.2), then for

f (t) = (f(t);0) with f(t) £ ^^(1) a solution of $^y](t) = f (t), o n  o
t e. I, can be obtained by the method of variation of parameters. That is,

there exists a 2n x  2n matrix function %(t,s) such that the

2n-dimensional vector function y(t) defined by y(t) = 

a solution of ^[y](t) = f^(t) on each compact subinterval 6 of I; in 

fact, this result holds for ‘H(t,s) defined as

(3.10) %l(t,s) = I Y(t)Y"^(s)(J.*sgn(t-s).

We observe that this matrix °M(t,s) possesses the following properties.

(i) On each of the triangular regions = {(t,s) € I x I | s < t)

and A„ = {(t,s) 6 I x I ( t < s} we have that:
—  z  —  —  —

(a) the matrix function ^(t,s) is continuous in (t,s); moreover, 

g) and *wf^'^^(c,s) exist, and are continuous in (t,s);

(b) as a function of t the matrix function l^(t,s) = [H (t,s)], 

(i,j = 1,2), satisfies the differential equation !f[14(«,s)](t) = 0; 

that is,

(3.11) L.[H^j(.,s),H2j(.,s)](t) = 0, (i,j = 1,2);

(c) if (s ,s ) £ I X I, then the limits (s_,s_), (j = 1,2),—  o O   ' —  — —  J o o
in the sense of (3.4), have finite values, and they satisfy the relation
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(3.12) 'Wi(So'So) - = 4*'

(ii) If 6 = [a,b] C l  and (s ,s ) € 6 x g, then the matrix function 

^it,s,X) = ^(t,s,A) - 14(t,s) has finite limit values ^^(s^,s^,X),

(j = 1,2), in the sense of (3.4), and they satisfy the relation

" 0"

(iii) The partial derivative (t,s,X) exists and is continuous

on {(t,s) G g X g |t ^ s} X A, where A i£ a, subset of the complex plane 

which does not intersect the real-axis.

In view of (ii), if ^(s^,s^,X) is defined to be equal to 

J^(s^,s^,X) then J(t,s,X) is defined and continuous on 6 x  g x A.

4. Green's matrix. We shall introduce an additional hypothesis

which will be assumed in this section and hereafter.

(Hg) £f X denotes the set of real-valued scalar functions y (t) of

class C^’̂ (I), then there exists £  linear homogeneous operator M[y] on X

into the class of n x n matrix functions on I such that if u(t), v(t)

are n-dimensional vector functions of class C^(I ) on a subinterval I  -------------------------------------------n o --------------------o
of I which satisfy Lg[u,v](t) = 0 on I^ then;

(i) there exist n-dimensional vector functions q(t) = 

q(t|u,v;y) £ C^(I^), z(t) = z(t|u,v;y) £ C^^I^) such that 

y(t) = M[y](t)u(t), z(t) are solutions of the differential equations

L^[y,z](t) = K(t)q(t), Lg[y,z](t) =0, t £ I^;

(ii) |(K(t)[u(t)-y(t)],u(t)-y(t))| < 11-y (t) 14  (K(t)u(t),u(t)) |, t&I^;

(iii) a non-degenerate subinterval of I such that y (t) = 1

on J, then M[y](t) = E and z(t|u,v;y) = v(t) on J,; if J„ is a
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non-degenerate subinterval of I such that y(t) = 0 on J^, then M[p](t) = 0,

z(t|u,v;y) 5 0 and q(t|u,v;y) = 0 on

The above hypothesis looks unduly restrictive, but it will be 

demonstrated that the two important instances of (ïb̂ ) given in Section 3 

do indeed satisfy the above hypothesis. First we establish the following 

result.

LEMMA 4.1. Suppose that [a,b] is a compact subinterval of I, and 

S ^  £  set of k points of [a,b]. ^  on [a,b] - S the n-dimensional vector

functions u(t), v(t) are bounded, of class C^, and satisfy LgEu/vICt) = 0,

then there exist sequences of functions y^(t), z^(t) belonging to C^[a,b] 

such that

L_[y ,z ] (t) = 0, t fc [a,b] ; y (t) = 0 for t e S  = SU{a}U{b}; z m HI ID —  o
b (K(t) [y (t)-u(t)], y (t) - u(t))dt ->■ 0 as m ID ma ^

Let J be a set of at most k+ 2 non-overlapping open intervals cover-ID
ing S^ = SU{a}U{b}, and such that the sum of the lengths of these inter

vals is less than 1/m. Let y (t) be a real-valued scalar function ofID
class C^"(I) such that y (t) = 1 on [a,b] - J , y (t) = 0 in a neighbor-m m m
hood of each point of S^, while 0 < y^^t) < 1 for t 6 I. Then in view

of hypothesis (H^-i) there exist n-dimensional vector functions

z (t) = z(t|u,v;y ) e on [a,b], and n x n matrix functions M[y ] (t) m m n m
such that L-[y ,z ] (t) =0, (m = 1,2,“ *), on [a,b] where / m m
y (t) = M[y ](t)u(t). Since y (t) = 0 in the neighborhood of each point m m  m
of S , it follows from (Hl-iii) that y (t) = 0 for t ë 8 .O / ID O

In view of (H^-ii) and the fact that y^^t) = 1 on [a,b] - J^, it 

follows that
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rb

(K(t)[y (t) - u(t)],y (t) - u(t))dt m ma

(l-y (t))^(K(t)u(t),u(t))dt < (K(t)u(t),u(t))dt.

Since the functions K and u are bounded on [a,b], the right-hand member 

of the above relation tends to zero as m ^ thus establishing the con

clusion of the lemma.

We shall now demonstrate that the two important cases stated in 

Section 3 satisfy the above hypothesis.

Example 1. Suppose that the matrix functions B(t) and K(t) are non

singular on I; that is, (l6̂ -a) represents (3.1'). For u(t), v(t)

n-dimensional vector functions of class such that LgCu/vjCt) = 0

on 6, let y(t) be a scalar function of X which is of class and

such that 0 < y(t) < 1 on I. Define an operator M on y to be

M(t) = M[y](t) = y(t)E^. Then (Mu)' - A(Mu) = B(B ̂ ' u  + Mv), which is

equivalent to L2[y,z](t) = 0, where y(t) = M(t)u(t) and z(t) =

B~^(t)M'(t)u(t) + M(t)v(t) e C^X&). Since K(t) is non-singular, (H^-i) 

holds for these vector functions y(t), z(t), and q(t) = K(t) ^L^[y,z](t). 

Conclusion (H^-iii) is quite obvious. Employing the relations 

M(t)u(t) = y(t)u(t) and 0 < y(t) < 1, property (H^-ii) follows readily.

Example 2. Suppose ClB̂ -a) is equivalent to the 2n-th order differen

tial equation (3.1"), with the corresponding coefficient matrix functions 

A(t), B(t), C(t), and K(t) given in the statement following relation (3.1"). 

Let u(t) = (u^(t)), v(t) = (v^(t)), (i = 1,2,•••,n), be as in (H^), and 

y(t) be as in Example 1. Now we define the operator M to be the n x  n 

matrix function M[y](t) whose i-th row is given by

... ^ 0 ••• 0, (i = 1,2,'-',n),
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Q

where r s is the binomial coefficient r !/[s!(r-s) ! ].

With y(t) = M(t)u(t), the first n-1 components of y'(t) - A(t)y(t) 

are ail zero, and for arbitrary vector function z(t) = (z^(t)) the 

first n-1 components of B(t)z(t) are all zero, so that the condition 

y'(t) - A(t)y(t) = B(t)z(t) determines z^(t) uniquely as [r^(t)] ,

where y^(t) is the n-th component of y'(t) - A(t)y(t). Also in terms 

of the components the vector equation L^[y,z](t) = K(t)q(t) reduces to

-z^ + r^y^ = k(t)q^(t),

-2' - 2j + - 0,

(4.1)

- V 2 + V 2 V l  ' “•

and it follows that the last n-1 of these equations determine ẑ _jĵ (t), 

z^_2(t), " , z^(t) uniquely. Finally, since k(t) ^ 0 for t é I, the

first equation of (4.1) specifies q^(t) uniquely. Condition (H^-ii)
* 2.. follows readily from the relations (y-u) K(t)(y-u) = (p-1) u^k(t)u^ =

(p-l)^u*Ku, and conclusion (H^-iii) is obvious from the definition of

y(t).

Let Y(t) = (U(t);V(t)) be a fundamental matrix for ÿ[y](t) - 0 on 

I, where U and V are n x  2n matrix functions. Then from relation

(3.10) we have that

X[ ‘̂ (* ,s)] (t) = X[Y] (t)$(t,s) = 0 ,  t 5̂ s,

where $(t,s) is the 2n x 2n matrix function given by

$(t,s) = I Y ^(s)Ç*sgn(t-s).

Equivalently, we may write
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LjU,V](t)$(t,s) = 0,
^ t e l .

LgEU/V] (t)$(t,s) = 0,

If y(t) e X, then hypothesis (H^) implies that there exists an 

n X  n matrix function M(t) = M[y](t), and n =< 2n matrix functions 

V^(t) e C^, Q(t) e C on I which satisfy the system of n x  2n matrix dif

ferential equations

(4.1') Lj^[MU,V^](t) = K(t)Q(t), LgCMn.V^jCt) = 0 on I.

Moreover, in view of (H^-iii) we have that if y(t) = 1 on a non-degenerate 

subinterval of I then K(t)Q(t) = 0 on and if y(t) s 0 on a non

degenerate subinterval 3^ of I then K(t)Q(t) = 0 on From (4.1') we

also obtain the relations

L^[MU,V^] (t)'l>(t,s) = K(t)Q(t)$(t,s),

L2[MU,V^](t)$(t,s) = 0, t ^ s.

If we set $(t,s) = [^^(t.s) where each 4y(t,s),

(j = 1,2), is a 2n x  n matrix function, then the above system is equiva

lent to the system of n >< n matrix differential equations

(4.2)
(a) Lj^[Nj^^(-,s),N2j(‘,s)](t) = K(t)Q^ (t,s),

(b) L2[Ny(*,s),N2j(*,s)](t) = 0, (j = 1,2),

where and are n x n matrix functions defined by

N^j(t,s) = M(t)U(t)$j(t,s),

(4.3) N2j(t,8) " V^(t)$j(t,s),

Qj(t,s) = Q(t)*j(t,s), (j = 1,2).

It is to be remarked that if y(t) = 1 on an open interval of I 

then the n x n matrix functions are such that
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N^j(t,s) = H^j(t,s) for (t,s) e X  I, t ^ s,

where H^^(t,s), (i,j = 1,2), are the n x  n partition matrix functions of

1W(t,s) in (3.10). Moreover, if 6. then in view of the limit

relations (3.10) satisfied by °Ŵ (t,s) we have that the functions N^^(t,s)

have limits N.. ,(s ,s ) and N.. »(s ,s ) in the sense of (3.4), and X j I Jl O O X j ) z o o

= «2j \ ’

In particular, ^^^.^(8^,8^) = 2^®o’®o^’ ~ 1,2), and if N^^(s,s) is

defined as equal to N^^_^(s,s) then N^^(t,s) is continuous in (t,s) on

X  Also, if y(t) = 0 on a non-degenerate subinterval of I

then N..(t,s) = 0 for t £ J„, (i,j = 1,2).

As to the differentiability properties, it is now clear from the 

expression of $(t,s) and hypothesis (H^) that each N^^(t,s), (i,j = 1,2), 

has continuous partial derivatives with respect to t and s on the region 

D(I) = {(t,s) € I X  I I t f s}, while each Qj(t,s), (j = 1,2), has a 

continuous partial derivative with respect to s on D(I).

We are ready to prove now a result that is basic for our considera

tion. First, we introduce some notations. Let A be a set which

possesses the following property.

A ^  non-empty compact set in the complex

(4.4) 1-plane which is symmetric with respect to the

real-axis, and does not intersect the real-axis.

If d is an arbitrary subinterval of I, then we define D(d) and by

(a) D(d) = {(t,s) d X  d I t ^ s},
(4.5)

(b) Ü = D(d) X  A.



18
It is to be remarked that 0 is symmetric in the sense that if (t,s,X)" 0, 

then (s,t,A) e When the dependence of 0 on d and A is desired, we 

write Q(d,A).

It is emphasized here that the notations A, D(d), and fl(djA) 

described above will be used subsequently in our discussion in the remain

ing of this section as well as in the next section. In particular, the 

symbol A reserved for an arbitrary set with the property listed in

(4.4).

THEOREM 4.1. Suppose that (8^) satisfies hypotheses (H^), (H^),

(H^), and let d^ = [a^,b^] ^  arbitrary given non-degenerate compact

subinterval of I and e = e (d^) > 0 â value such that the closed interval 

dg = [a^-E, b^+e] contained in I. Let 6 ^  gi arbitrary compact sub

interval of I such that dg C 6, and for £  given non-real complex number 

\ denote by #i(t,s,l;6) = [j^g^(t,s,X;6)], (o,t = l,**’,2n), the Green's 

matrix for the self-adjoint problem (8g). Moreover, let A ^  ̂  compact 

subset of the complex plane possessing the property (4.4). Then there 

exists â bound x = x(d^,A) > 0 such that for all (t,s,X) e J2(dĵ ,A) we 

have |j^g^(t,s,X;6)| < k , (o,t = 1,•••,2n), independent of 6.
Choose an open interval d such that d, C d C d L  and theo i o z

closure of d^ is properly contained in the interior of d^. Let p(t) be 

a real-valued function of class C^^(I) such that y(t) = 1 for t e d^, 

y(t).= 0 for t outside d^. Since the matrix function '^(t.s) = [H^j(t)], 

(i,j = 1,2), defined in (3.10) satisfies the equation X[°W(*»s)](t) = 0 

on D(I), there exist n x n matrix functions M[y](t), N2j(C,s), and 

Qj(t,s), (j = 1,2), which satisfy on D(I) the system of n >< n matrix 

differential equations



(4.7)
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(a) L2 [N^j(',s),N2j(',s)](t) = 0,

(b) (•,s),N2j (•,s)](t) = K(t)Qj(t,s), (j = 1,2),

where and are given in (4.3). In particular, it is to be noted

that K(t)Q, (t,s) 5 0 for t 6. d .
J o

Define the 2n x  2n matrix function Yt(t,s) as

(4.8) %(t,s) = [N^j(t,s)], (i,j = 1,2).

From the definition of y(t) and condition (H^-iii) the matrix functions

N,,(t,s) and Q (t,s), (j = 1,2), vanish for t outside d_. Also, we 
i j  J ^

observe that the matrix function 7t(t,s) possesses the following proper

ties:

(i) )l(t,s) is defined and continuous in (t,s) on

D(I) = {(t,s) e x  X I I t f s);

(4.9) (ii) ■3ï(t,s) = °f4(t,s) for (t,s) € d^ x  I, t ^ s;

%(t,s) = 0 for (t,s) 6 (I-d^) X I;

(iii) 7t(t,s) has continuous partial derivatives with 

respect to t and s on D(I).

Let 2V'(t,s,X;6) be the 2n x  2n matrix function defined by

(4.10) ^(t,s,X;6) = ^(t,s,X;6) - K(t,s) for (t,s,X) 6 6 x d^ >< A.

It is to be emphasized that in the consideration of the matrix func

tion 0V(t,s,X;6) defined by (4.10) the interval 5 is always required to 

satisfy the condition specified in the statement of Theorem 4.1. In 

particular, the matrix function )ft.(t,s) is defined by ‘V(t,s) of (3.10) 

and the transformation matrix M[y] which is identically zero on I- d2» so 

that Yï(t,s) = 0 for t 6. I-d^, and is independent of the compact inter

val Ô which contains d2* Also, in view of (3.5) and (3.12) the matrix
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function ‘jV has limits ^  and in the sense of (3.4) and “)4^(s,s,A;ô) =

1A^(s,s,X;ô). Consequently, if we define ')V(s,s,A;ô) to be equal to 

'^(s,s,A;6) then 9V(t,s,A;6) is a continuous function of (t,s,A) on 

6 X d^ X  A . Throughout the following discussion it will be understood 

that 2V(t,s,A;5) has been so defined.

For each s C d^ the matrix 3V(t,s,A;6) has a continuous partial 

derivative relative to t on 6 if t f s; furthermore, it satisfies the 

boundary condition cMg (',8 ,A ; 6)] = 0 and the matrix differential equa

tion

(4.11) £[‘̂ (-,s,A;5)|A](t) = - :[%?(.,s)| A] (t) if t ^ s,

and hence from Theorem 3.2 we have the relation

(4.12) %V(t,s,A;6) = - ^(t,r,A;6)^C[#f',s)|A] (r)dr.
 ̂6

It is to be remarked that the integral in (4.12) remains unchanged 

when 6 is replaced by d^, since the matrix functions N^^(t,s) vanish for 

t outside d g C  6.

Upon setting ^V(t,s,A;6) = (t,s,A;6)], (i,j = 1,2), where each

is an n x  n partition matrix, in terms of the notations given by

(3.6) and (4.8) the relation (4.12) is equivalent to the following four 

equations

(4.13) W^j(t,s,A;6) 5 G^^(t,s,A;6) - N^j(t,s)

^ G^^(t,r,A;6)L^[N^j(*,s),N2j ('»s)|A](r)dr,

which in view of (4.7-b) can be written as

(4.14) (t,s,A;5) = - Gii(t,r,A;6)K(r)Rj(r,s,A)dr, (i,j = 1,2),

for (t,s,A) e 6 X  d^ X  A. It may be verified readily that in (4.14)



21
the n X  n matrix functions

(4.15) By (t,8,1) 5 Qj(t,s) - XNy(t,s), (j = 1,2),

have the following properties:

(i) K(t)R^(t,s,A) is continuous in (t,s,A) on 6 x x A,

while K(t)R2(t,s,A) ls_ continuous on {(t,s) £ 6 x d^ | t ^ s) x A; more

over. if (s^,s^) e X d^, then with R(t,s,A,j) = K(t)R^(t,s,A) the 

limits R^(s^,s^.A;i). (i = 1,2), exist in the sense of (3.4), are finite, 

and satisfy the relation

(4.16)j &i(So'So'A:j) " & 2(8o,8^,A;j) = -AGgjKXs^), (j = 1,2);

(ii) on the set {(t,s) & 6 x  d^ | t ^ s) x A, the matrix func

tions Rj(t,s,A) have continuous partial derivatives Rj^'^^(t,s,A) with 

respect to s; moreover, R^^’̂ ^(t,s,A), (j = 1,2), are continuous and 

bounded functions of (t,s,A) on {(t,s) e 6 x d^ | t ^ s} x A;

(iii) R.(t,s,A) =0, (j = 1,2), for (t,s,A) S (I-d_) x I x A.3 ^
Relation (4.16)^ and property (ii) follow readily from (4.15) and 

from the fact that if s £ d^ then for t sufficiently close to s we have 

that t also belongs to d^. Indeed, if (t,s) £ d^ x d^ and t ^ s, then 

N^j(t,s) = H^j(t,s), (i,j = 1,2), and hence N2j](t) = 0. Con

sequently, from (4.2-a) and (4.15) we obtain the relations

(4.17) - AK(t)H^j(t,s) = K(t)Rj(t,s,A), for (t,s) e d^ % d^, t ^ s,

and j = 1,2.

It is then clear that (4.16)^ follows from the above relation and (3.10). 

In view of the continuity property of , condition (i) also follows 

from (3.10) and (4.17). Property (iii) follows readily from the remark 

following relation (4.8).
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It is easy to see that the two pairs (U;V) = (j = 1,2),

in (4.14) are respectively the solutions of the matrix differential systems

L^[U,v|x](t) = -K(t)R (t , s ,X),  (j = 1,2) ,

L^[U,V](t) =0, t è 6,

GMg[U,V] = 0.

Consequently, we can apply Lemma 3.3 to each corresponding column vector 

of and . To this end, let Ç be an arbitrary n-dimensional constant 

vector belonging to the unit ball = {ç||ç| < 1}. Then it follows from 

Lemma 3.3 that

(4.18) ||Wy(.,s,A;6)c||̂  < | Im A r^||R^ (. ,s,A)ç||^^.

Applying the triangular inequality to we obtain from

(4.18) the relation

(4.19) ||G^j(.,s,A;6)5||g < ||Ny (• ,s)ç||^^ + |lm A T^H r  ̂(. ,s,A)Ç ||̂ .̂

It is clear that for j = 1,2 the first and the second terms of the

right-hand side in the above relation (4.19) are respectively continuous 

in (s,5) on d^ x b ,̂ and in (s,A,S) on d^ x  A x  B^. Consequently, 

for (s,A) ê d^ X A there exists a constant k(d^. A) such that

(4.20) llG^^(.,s,A;ô)ç||g < k(d^,A), (j = 1,2),

for (s,A) g d^ X A uniformly for Ç & B^, and independent of 6. In par

ticular, upon choosing Ç equal to the unit vectors g = (6^^),

(i,k = l,***,n), we have that as a function of t the K^-norm of each

column vector of G^^(t,s,A;6) is bounded uniformly for (s,A) t d̂  ̂ x A,

independent of 6 .

We recall that the W^^ = G^^ - and , (i,j = 1,2), appearing in 

relation (4.13) are n x  n matrix functions. Let G^^ and N^j,
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(a,g = denote the scalar elements in the a-th row and g-th

3 3column of and , respectively; similarly, let and ,

(g = l,2,**‘,n), denote the g-th column vectors of G^^ and , respec

tively. As G^^(t,r,X;6) = [G^^(r,t,X;6)]*, relation (4.14) is equivalent 

to

(4.21) G*G(t,8,l;6) = N°G(t,s) - [R*(.,s,X), g“ .(.,t,X;Ô)],

which, in view of the Cauchy-Schwarz inequality, implies that

|G"*(t,s,X;6)| ^ |N“^(t,s)l + ||G“^(.,t,X;6)|yiR^(.,s,X)l|^^,

(i,j = 1,2; a,g = l,2,***,n). We shall estimate the right-hand members 

in the above relation. Each N^^(t,s) is clearly bounded for (t,s) e D(d^),

and for (t,X) &  d^ )< A the ^-norm of G^^ over 6 is bounded by (4.20).

Moreover, for (s,X) e d^ x A the K-norm of R^ over is also bounded 

in view of the properties listed above for the matrix function R^. 

Therefore, there exists a constant k = c(d^,A) such that for 

(t,s,X) & 0(d^,A) we have

|G^j(t,s,X;6)| < K, (i,j = 1,2; a,g = l,"'',n),

independent of 6. This completes the proof of the theorem.

THEOREM 4.2. Under the hypothesis of Theorem 4.1 the family of

2n X 2n matrix functions !5'V(t,s,X;6) 5 ^(t,s,X;ô) - %,(t,s) is equi-

continuous on each compact domain d^ x d^ x  A.

As noted in the paragraph following (4.10), the matrix function

‘W(t,s,X;6) is continuous in (t,s,X) on d^ x  d^ x  A. From the

integral expression (4.14) it follows that for (t,s,X) 6 6 x d^ x A,

and t ^ s, the partial derivative with respect to s of W.,(t,s,X;6) isij
given by
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(t,s,X;6) = G^^(t,s,X;ô)K(s) [Rj (s'*’,s,X) - R^(s“ ,s,X)]

Gii(t,r,X;6)K(r)Rj°’^^(r,s,X)dr.

Using (4.16)j, the above relation may be written as

(t,s,X;6) = -X62^G^^(t,s,X;6)K(s)
(4.22) ■ |-Q 21

G..(t,r,X;6)K(r)Rj ’ ^(r,s,X)dr.
Jfi iJ - J

We shall proceed to show that each element of (t,s,X;6) in

(4.22) is bounded on 0 = ^(d^j 4) = {(t,s) €. d^ x d^ |t # s) x A, 

independent of 6. In view of Theorem 4.1 the first term of the right- 

hand member in (4.22) is bounded on Next, in view of property (ii)

for (4.15), it is easy to see that the matrix functions (r,s,X)

appearing in the integrand in (4.22) are such that ||r [^’̂ ^ (• ,s,X)ç|| ,J "2
(j = 1,2), are continuous functions of (s,X,Ç) on d^ x  A x B^. Conse

quently, to relation (4.22) we can apply arguments similar to these used 

to show the boundedness of W^^, and conclude that the matrix functions 

(t>s,X;6) are bounded on 0, independent of 6.

From relation (4.22) it also follows that the matrix 9N^^'^^(t,s,X;6)

has finite limits 3Vj^'^^(s ,s ,X;6) and 3V^^*^^(s ,s ,X;6) in the sense1 o o z o o
of (3.4), which are bounded for (s,X) €. x  h.

From the symmetry properties of ?J(t,s,X;6) and 0 it also follows 

that the matrix function (t,s,X;6) possesses similar properties.

Consequently, we have that 2^(t,s,X;6) is Lipschitzian in (t,s) on 

d^ X d^, uniformly for X e A. Now for fixed (t,s) g d^ x d^ the matrix 

function ^V(t,s,X;6) is a holomorphic function of X on A, and in view of 

Theorem 4.1 this matrix function is bounded on d^ x d^ >< A, independent 

of 6. With the aid of the Cauchy integral formula for the derivative of
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a holomorphic function it then follows that the partial derivative matrix 

function ‘̂ ^(t,s,A;6) is also bounded on d^ x  d^ x  A, independent of 6. 

Combining these results, it then follows that the family of matrix func

tions 3V(t,s,l;6) satisfies on d^ >< d^ >< A a Lipschitz condition in 

(t,s,A) with Lipschitz constant independent of 6, so that the family 

^(t,s,X;6) is equicontinuous on d^ x d^ x  A. This completes the proof 

of the theorem.

Now let d^^, (k = 1,2,-**)» be a non-decreasing sequence of compact 

subintervals converging to I, and a corresponding non-decreasing 

sequence of compact sets which with the property listed in (4.4) converges 

to C^, the complex plane with the real-axis deleted. Corresponding to 

^1 ~ '̂ Ik exist intervals = d^^, = d^^ satisfying the condi

tions specified in the proof of Theorem 4.1, and a corresponding matrix 

function yC(t,s) = )%^(t,s) satisfying the conditions (4.9); in particular, 

Y(^(t,s) is independent of the choice of intervals 6 dg^v For each 

positive integer k we have that for 6 o  d^^ the set of matrix functions 

‘iM(t,s,X;6) = ^(t,s,X;ô) = %^t,s,X;6) - %^(t,s) is equicontinuous on

d^^ X  d^^ X  A^; moreover, )Ü^(t,s) = ®W(t,s) on D(d^^) =

{ (t,s) & >< d^^ |t f s}.

Now suppose that {6̂ ^ is a non-decreasing sequence of compact inter

vals converging to I as h + ». In view of the Ascoli theorem there is a

subsequence {6^^} of {6̂ }̂ with d^^ c 6̂ ^, (m = 1,2,"'"), and such that

^^(t,s,X;6̂ ^) = 3 (t,s,X;6̂ ^) - J(^(t,s) converges uniformly on 

d^^ X  d^^ X  A^. Moreover, since 2f|[̂ (t,s) = ^W(t,s) on D(d^^), we have 

that the sequence {^ ( t , s , X } converges uniformly on ^(d^^,A^). Simi

larly, there is a subsequence {6^^} of {6^^} with d^^ C  6^^, (m = 1,2,"""), 

and j^^(t,s,X;6̂ ^) = |)(t,s,X;6^2) " 3^(t,s) converges uniformly on
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d^2 ^  ^12 ^  ^2’ (t,s) = 14(t,s) on D(d^2) the sequence

converges uniformly on îî(d^2»^2^‘ ^PPly^iig a diagonal- 
ization process, one obtains a subsequence {6̂ } of {6^̂} such that for 

k = 1,2, ••• the sequence 3Yj^(t,s,l;6^) = ,^(t,s,A;ô^) - lf^(t,s)

converges uniformly on d^^ x  d^^ x  A^, and correspondingly the 

sequence -^(t,s,A;5^) converges uniformly on

Consequently, we have proved the following theorem.

THEOREM 4.3. Suppose that the hypotheses of Theorem 4.1 are satis

fied and {5^} ^  â  non-decreasing sequence of compact subintervals con

verging to I. Then there exists â  subsequence {6̂ }̂ o^ {6^^ such that the 

corresponding sequence of Green's matrices {^ (t,s,A ; 6̂ )} converges on 

0(1,C^) = {(t,s,A) I t € I, s £ I, t # s; A € C^} to a limit matrix

(t,s,A). Moreover, if d and A are respectively an arbitrary compact

subinterval of I, and â  compact set of the complex plane with the proper

ties listed in (4.4), then the convergence of {^(t,s,A;ô )} is uniform

on 0(d,A).

In view of the uniform convergence of { (t,s,A;6̂ )} on an arbitrary 

set 0 (d,A), we have that on 0(1,C^) the limit matrix function ^^t,s,A) 

is continuous in (t,s,A), and holomorphic in A for fixed (t,s), moreover, 

the symmetry property of |î(t,s,A;ô^) for all m implies that

(4.23) #(t,s,A) = [^(s,t,A)]* on 0(1,C^).

Let ^^(I;K) be the Hilbert space consisting of all n-dimensional 

vector functions u(t) which are defined and measurable on I, and such that

K[u] = (K(t)u(t),u(t))dt < “ .
I

If u^(t), (i = 1,2), are vector functions of f^(I;K), then we define 

inner product correspondingly as



27
(K(t)u,(t),u,(t))dt. 

I J- ^
The K-norm of u over I is denoted merely by j|u|(.

THEOREM 4.4. Suppose that hypotheses (H^), (Hg), and (Hg) are satis

fied, and for À e let ^(t,s,X) = (t,s,X)], (i,j = 1,2), be the

limit of a convergent sequence { (t,s,X;6^)} of Green's matrix functions 

as in Theorem 4.3. Then 3(t,s,X) possesses the following properties.

(i) and | t ( t . s . X )  are continuous functions of

(t,s,X) on n(I,C^) = {(t,s,X) e x  X I X  I t ^ s};

(ii) the sequences ^ ( t , s , X ; 6̂ ) and ^^^'^^(t,s,X;ô^) converge 

uniformly on every bounded subregion Ofd^^A) 0(1,C^) ^ ( t , s , X )

and ^^^'^^(t,s,X), respectively;

(iii) as a function of t, the matrix |j(t,s,X) satisfies the dif

ferential equation ^[i^(*,s,X)|x](t) = 0 if t s;

(iv) for each fixed (t,X) &  I x each row vector of the n x  n 

matrix functions G^^(t,s,X), (1 = 1,2), as £  function of s, belongs to

î„a;K);

(v) if (s ,s ) € I X I ,  then the limits A j (s ,s ,X), (j = 1,2),—  o o — —  ■ ■ o o
in the sense of (3.4) exist, and are finite; moreover;

*
'l(*o'*o,X) - BzfSo'So'X) = 9- ;

(vi) if f (t) = (f(t);0), f € £^(I;K), then the 2n-dimensionalo n
vector function y(t) defined by

y(t) = ^(t,s,X)‘K(s)f^(s)ds

satisfies the differential equation ff[y|x](t) = *%(t)f^(t) on^I; more

over, if y(t) = (u^(t);u2 (t)), then
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(4.24) llû i < |lm Xr^||f||.

Let the compact subintervals d^, and 6 be as described in the 

beginning of the proof of Theorem 4.1, and let A be a set with property

(4.4). We consider the relation (4.14) for (t,s,X) € d^ x  d^ x  A.

Upon taking 6̂  = 6 and letting 6̂  ^ I, in view of the uniform convergence 

of ÿ(t,s,X;ô^) on 0(d^,A) to a limit matrix 2f(t,s,X) which is continuous 

and bounded, it follows that

(4.25) W..(t,s,X) = -J G -(t,r,X)K(r)R (r,s,X)dr,
"  J

where the n x  n matrix functions

(4.26) W^j(t,s,X) = G^^(t,s,A) - H^^(t,s), (i,j = 1,2),

are continuous in (t,s,X) on d^ x  x A. It is easy to see that the 

integral in (4.25) possesses a continuous partial derivative with 

respect to s for (t,s,A) 6 0 =  0(d^,A), and hence W^^(t,s,A) has the 

same property. Indeed, on 0(d^,A) we have that

(4.27) wjj'l](t,s,A) = - A62jG^^(t,8,A)K(s)

G..(t,r,A)K(r)Rf°’^^(r,s,A)dr.

In view of the continuity on 0(d^,A) of G^^(t,s,A) and property (ii) 

of the partial derivative matrix functions (r,s,A), it follows

from (4.27) that (t,s,A) is continuous in (t,s,A) on 0(d^,A).

From property (i-a) of the matrix function 1:((t,s) as stated following 

relation (3.10), the matrices Iîjj’^^(t,s) are also continuous in (t,s) 

on D(d^). Consequently, from relation (4.26) and (4.27) it follows that 

each matrix function (t,s,A) exists and is a continuous function of

(t,s,A) on 0(d^,A). Also, we have the relation
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(4.28) G^°’^^(t,s,A) = (t,s,A), on fi(d^,A).

Since fi(d^,A) is arbitrary, conclusion (i) then follows from the symmetry 

properties of ^(t,s,A) and that of 0.

To prove conclusion (ii), we return to relation (4.22) with 6̂  = 6 

and (t,s,A) £ 0(d^,A); that is,

(4.29) w[j'l](t,s,A;6̂ ) = - A02^G^^(t,s,A;6̂ )K(s)

G . (t,r,A;6 )K(r)Rp’̂  ̂(r,s,A)dr,^2 11 m j

where

(t,s,A;6̂ ) = G ^ j ( t , s , A ; 6̂ ) - H j ° ’^^(t,s) on 0(d^,A).

Let (t,s,A) be an arbitrary, but fixed, point of 0(d^,A) such that, with 

dg = [Sgib^] we have ag < t < s < bg. We write the integral expression in

(4.29) as the sum of the integrals over the intervals = [a2»t),

J2 = (t,s), = (8,b2,]. Then in view of the continuity property of K(t),

the property (ii) following relation (4.16)^, and the uniform convergence 

of G^j(t,s,A;5^) on 0(d^,A) to G^^(t,s,A), it follows that each integral

G.-(t,r,A;6 )K(r)R[^’^^(r,s,A)dr converges uniformly to

Gii(t,r,A)K(r)Rj^’^^(r,s,A)dr, (k = 1,2,3). Consequently, each right-
k

hand member in (4.29) converges uniformly on fi(d^,A) to the corresponding 

right-hand member in (4.27). Therefore, the left-hand member in (4.29) 

converges under the same condition to the left-hand member in (4.27), 

which from the symmetry properties of ^(t,s,A;6^), b(t,s,A), and

proves conclusion (ii) for all (t,s,A) £ 0(d^,A) with a2 < t < s < bg.

The case in which a^ = t or s = b2, or both = t and s = b2» or 

s < t can be treated similarly.
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In view of conclusion (i-b) of Theorem 3.2, for 6^ = ô the matrix

function J[)(t,s,X;6^) satisfies the differential equation

^>SjX;6^)I X](t) = 0 on n = 0(d^,A), (m = 1,2,-*-)-

Upon letting 6^ ^ I in the above relation, with the aid of conclusion

(ii) we then obtain «f[^(t,s,X)|x](t) = 0 on fi. Since 0 is arbitrary,

conclusion (iii) follows.

To prove■conclusion (iv), we take 6 = 6, and let S ^ I in relationm m
(4.20). It is then clear that as a function of t the JK-norm of each 

column vector of G^(t,s,X) over I is bounded uniformly for (s,X)e d^% A. 

Since dĵ  and A are arbitrary, the conclusion follows from the symmetry 

properties of |î(t,s,X) and 0.

Conclusion (v) follows directly from relations (3.12) and (4.26).

Finally, let f^(t) = (f(t);0) with f £ dC^(I;K). Then the

2n-dimensional vector function y(t) as defined in the theorem is meaning

ful, for the integral is equivalent to the condition that the

n-dimensional vector functions u^(t) defined by y(t) = (u^^(t);u2 (t)) 

satisfy the equations

G-t (t,s,X)K(s)f(s)ds, (i =1,2),(4.30)^ u^(t) =
I

which, in view of conclusion (v), are well-defined. Moreover, it follows 

readily with the aid of conclusion (v) that we have

^[1,01y'(t) = [^(t,t-,x) - îi(t,t+,x)]^(t)f^(t) + &i^'"J(t,8,x)l%(s)f^(s)d8

* ^[1,0](t,s,X)‘K,(s)f (s)ds.

and with the aid of conclusion (iii) it follows that y(t) satisfies the 

differential equation. Finally, to establish (4.24) we define a vector
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function g(t) by

[f(t), for t e 6, 
g(t) = <

I 0 , for t £. 1-6.

Application of (3.8) to (4.30)^ then yields the relation

IIuJig < |lm X|-l|f|g.

Since f € £,^(I;K) we have ||f||g < ||f||, and consequently

IIû llg < |lm a | 1̂1 fII, so that also u^e.X^(I;K) and ||û || < |lm a | |̂|f|.

This completes the proof of the theorem.

Let J5(f) denote the set of all 2n-dimensional vector functions

y(t) » (u(t);v(t)) which are locally absolutely continuous on I, and such

that u(t) e. . In particular, it follows from relation (4.24) that

the 2n-dimensional vector function y(t) given in (vi) of Theorem 4.4 

belongs to (£) .

In order to prove the uniqueness of the limit matrix ^(t,s,A) we 

introduce the following hypothesis.

(Hg) There exists £  non-real complex number A^ such that 

][[y] (t) + A^‘K(t)y(t) = 0, t 6 I, has no non-trivial solution of class

THEOREM 4.5. Under hypotheses (H^), (i = 1,2,3), and (Hj for any 

complex number A belonging to the equation f[y|A](t) = 0, t €. I, has 

no non-trivial solution of class <̂ (f) ; that is,

(4.31) i[y|A](t) = 0, t e  I, y e M ) ,

is an incompatible system.

Suppose that hypothesis (H^) holds for a complex number A^ with 

Im Ag > 0, and let A be any complex number such that
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(4.32)

in particular, this implies that Im X > 0. Now suppose that there exists 

a 2n-dimensional vector function z(t) = (z^(t);z2 (t)) € which is

such that y = z(t) is a non-trivial solution of (4.31) for a complex X 

satisfying (4.32). We shall show that z(t) = 0 on I. Set

(4.33) w(t) = z(t) - (X -Ao)yo(c);

where y (t) = ^ ^ (t,s,X^)'K(s)z(s)ds. As z(t)e J3(£), in view of con-o
elusion (vi) of Theorem 4.4 we have that y^(t) € J$C£)» and from (4.33) 

we conclude that w(t) 6 ^ ( ^ ) . Since y^(t) is a solution of 

X[y|X^](t) = ‘7{(t)z(t) on I, it follows from the hypothesis on z(t) 

that ^[w|X^](t) = 0. As hypotheses (H^) implies that w(t) = 0 on I, the 

relation (4.33) is reduced to

z(t) = (X- Xg) 2J(t,s,X^) %(s)z(s)ds.

which is equivalent to the two equations

z^(t) = (X- X^) G^^(t,s,X^)K(s)Zj^(s)ds,. (i = 1,2).

From conclusion (vi) of Theorem 4.4 for z(t) = (z^(t);z2(t)), and rela

tion (4.32), it follows that

llzjl < |X-X^| |lm X^|-l llẑ ll < ||ẑ ||.

But this is impossible, since the normality condition for the system and

the fact that z(t) is a non-trivial solution of (4.31) imply that

z^(t) 2 0 on I, and consequently, that ||ẑ || > 0. Therefore, we conclude 

that z(t) = 0 on I, thus completing the proof of the result that (4.31) 

is incompatible whenever X satisfies (4.32). If X is such that Im X < 0 

and |X - (-Xg)| = |x + X^| < |lm X^|, then by a similar argument it
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follows that the system (4.31) is incompatible for this value of X.

That is, we have established that if hypothesis (H^) holds for a non-

real complex then hypothesis (H^) also holds for any complex number,

necessarily non-real, satisfying |X - X^j < |lm X^| or |X - (-X^)} =

IX + X I < IIm X I.' o' ' o'
If y is any complex number with Im y ^ 0, then after a finite number

of iterations of the above argument, y will eventually fall in a domain 

Iy-XI < IIm X 1 or |y + X| < |Im X| for some X for which hypothesis (H^) 

holds, which in turn implies that (H^) also holds for y.

THEOREM 4.6. If hypotheses (H^), (i = 1,2,3), and (H^) are satisfied, 

then there is £  unique 2n x 2n matrix function Jl(t,s,X) satisfying the 

properties of Theorem 4.4. ^  particular, if 6 denotes £  general non

degenerate compact subinterval of I, and 06^) i£ an associated self-

adjoint boundary value problem (3.1)^ involving a fixed, but arbitrary, 

set of two-point boundary conditions at the end-points of 6 then for X 

non-real the family of Green's matrix functions |j(t,s,X;6) converges 

to |}(t,s,X) ££ S tends monotonically to I, and the convergence is 

uniform in (t,s,X) on each region 0(d,A) of the form

{(t,s,X)cd X d A |t ^ s}, where d ^  an arbitrary compact subinter

val of I and A ^  an arbitrary set possessing the property listed in

(4.4).

Suppose there are two matrix functions ^^^)(t,s,X), (j = 1,2), each 

of which satisfies the properties of Theorem 4.4. Then in view of con

clusion (v) of Theorem 4.4 the 2n x 2n matrix function Y(t,s,X) = 

^(^)(t,s,X) - ^^^)(t,8,X) is a continuous function of (t,s) in I x  i

upon defining this matrix function in a suitable fashion along the line 

t = s, and from conclusion (iii) of the theorem we have that
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" s,X) IX] (t) = 0 for t (c,s) and t : (s,d) with I = (c,d), so

that as a function of t the matrix T(t,s,X) is locally absolutely con

tinuous on I. Moreover, from conclusions (i) and (iv) of Theorem 4.4, 

as a function of t each column vector of Y^j(t,s,X), (j = 1,2), where 

Y(t,s,X) = [Tjj(t,s,X)], (i,j = 1,2), belongs to ^(I;K). Consequently, 

as a function of t each column vector of Y(t,s,X) belongs to 0(^).

But the incompatible system (4.31) implies that V(t,s,X) = 0 for t e l  

and (s,X) € I x  C^. Therefore, j&^^^(t,8,X) = ^^^^(t,s,X) on 0(1,C^).

Corresponding to a non-decreasing sequence {6^^ of compact subinter

vals converging to I as h ->■ », let ll^^^(t,s,X) be a Green's matrix which 

is determined as in Theorem 4.3 and which possesses the properties of 

Theorem 4.4. If it is not true that the Green's matrix function

(t,s,X;6) tends to %^^^(t,s,X) on 0(1,C^) = {(t,s) £ I x i|t ^ s) % C^ 

as 6 -> I, then there exists a point (tg,Sg,X^) of 0(1,C^) such that 

^(t^,s^,X^;6) does not tend to (t^»s^,X^) as 6 -> I. By a suitable

argument it follows that there exist a 2n x  2n constant matrix L with 

elements in the extended real number system such that L f ^^o’®o’̂ o^

and a sequence {6^} of compact intervals tending monotonically to I as 

h and such that |i(t^,s^,X^;6^) tends to L as h + ». By the preced

ing, there exists a subsequence {6^} of {6^^ such that ^(t,s,X;6^) tends
(2)to a limit matrix function (t,s,X) on 0(1,C^) as m ->• «> which

possesses the properties of Theorem 4.4. As (t^,s^,X^) f
(2)(t ,8 ,X ), we thus have a contradiction to the uniqueness property o o o

of the limit matrix, hence completing the proof of the theorem.

Under the conditions of Theorem 4.6 the uniquely determined 2n x  2n 

matrix function ^(t,s,X) is called the Green's matrix for the incompatible 

system (4.31).
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5. The existence of a spectral matrix. In this section we are con

cerned again with the self-adjoint problem C8g)» or equivalently (3.1)^. 

Hypotheses (H^), (1 = 1,2,3), and (Hg) are all assumed In this section.

First we employ the following theorem, which permits us to replace 

the self-adjoint boundary condition cM^[u,v] = 0 In (3^) by an alternate 

form. The reader Is referred to Reid [8; Sec. VII.8] for a proof of this 

result.

THEOREM 5.1. If hypotheses (H^>, (1 = 1,2,3), and (H^) hold, and If 

6 = [a,b] ia ^  compact subinterval of I, then_a necessary and sufficient 

condition for ^  differential system (26̂ ) to self-adjoint Is that there 

exist a, 2n x  2n Hermltlan matrix Q  = Q  \lB̂  ] and £  linear subspace 
h ° $ l!8̂ 3 of the 2n-dlmenslonal Euclidean space over the complex 

field such that the 2n-dlmenslonal vectors u = (u(a);u(b)),

V = (v(a);v(b)) satisfy the boundary conditions OS^-b) ^  and only If

G 6 # , Q& + D$ &

where D Is the 2n x  2n matrix defined W  D = dlag{-E ,E }, and

denotes the orthogonal complement of ^ In

Since the system (îB̂ ) treated In Section 3 Is self-adjoint. In view 

of the above theorem we may present this system as

(a) L.[u,v|X](t) = 0, L„[u,v](t) =0, t £ 6,
(5.1)r /  0

(b) u e A, Qu + OG 6 O '

We denote by

(5.2) {Xj(5);yj(t;6) = (Uj(t;6);Vj(t;6))}, (j = 1,2,***)»

the sequence of the proper values and corresponding proper vector func

tions for (5.1)g, as described In Theorem 3.1.



36
In this section and hereafter the following additional hypothesis 

is assumed throughout.

(H^) The n X  n matrix function B(t) non-negative definite 

Hermitian on I.

A consequence of the above hypothesis is the following result, which 

appears in Reid [8; Theorem VII.11.1].

THEOREM 5.2. If hypothesis (H^), (i = 1,2,3,4), and (H^) hold for 

a_ given compact subinterval 6 of I then the proper values (<S),

(j => 1,2,""'), for (5.1)g may be ordered as a sequence A^(6) < AgCd) < ••• 

with the corresponding proper solutions (u(t);v(t)) = ( u y ( t ; 6 ) ; V j ( t ; ô ) )  

such that ; (a) [u^(*;6),u^(•;6)] = (i,j = 1,2,-**); (b) the

set of proper values A^ (6) ^  bounded below, and Aj(6) -*• » j

We denote by J3[8g] the space of all n-dimensional vector functions 

n(t) € K[6] such that 'n = (n(a);n(b)) e , where ^[6] is defined in

the paragraph following the relation (2.4) in Section 2. The space 

ISfôg] is clearly a linear space; moreover, it is an inner product space 

with inner product [n,Ç] and norm

Inllg = .

We denote by B(6;K) the completion of this space, so that X$(5;K) is 

a Hilbert space.

Concerning the Parseval equality, we state the following theorem.

A proof appears in Theorem VII.11.3 of Reid [8].

THEOREM 5.3. ^ n ( t ) ,  Ç(t) are vector functions in R[l6g] then

(5*3) " ̂ j=»l '

(5.4) Kjl'l.el - ïj=l C ^ C j j t n l .
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where Cp,[n] denotes the j-th Fourier coefficient of n defined by ----  o j ------------------------------------------

(K(t)n(t), u.(t;6))dt, (j = 1,2,''").
6 J

THEOREM 5.4. j[f ri(t), Ç(t) are vector functions in ^(6;K), then 

the relations (5.3) and (5.4) hold.

If n e JS(6;K), then for e > 0 there exists an e such that

(5.5) &g[n- tIq ] < e/4.

Let r^“\t) = Cgj [n^luj (t). Then in view of the inequality

Kg[n + Ç] < 2 % [ n ]  + ^ [ g ] } ,  we have

(5.6) £ - 2 { £ j h - n J  +£j[6„-rf>l>.

From Theorem 5.3 we have that for a sufficiently large m the term

K„[n is less than e/4, so that for such an m it follows from^0 o o
relation (5.6) that

(5.7) < e.

Set w^“ ^(t) = n(t) - [n]Uj (t;6), (m = 1,2,'''). Since the Bessel

inequality for the ̂ -orthonormal sequence {uj(6)} implies <

Kg[n-r^“ ^], and^^[w^“ ]̂ = ̂ g[n] - Ini 1̂ » it then follows that

JKg[w^^] 0 as m which proves (5.3) for n e P(6;K).

In the usual fashion the sesquilinear representation (5.4) follows

from the quadratic relation (5.3).

In the proof of Theorem 5.4, we have actually established the fol

lowing result.

COROLLARY. 1^  ̂ ijg. ̂  compact sub interval of I and n(t) is an 

n-dimensional vector function belonging to <0(6;K), then

(5.7’) n(t) = Cgj[n]Uj(t;6),
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where the series converges in the norm of J5(ô;K).

In what follows, for typographical simplification we write the 

proper vector functions for (g^) as

(5.8) (uj^^(t;6);Uj^)(t;6)) = (û  (t;6) ;Vj (t;6)), (j = 1,2,*“ )-

For X not a proper value of the problem (5.1)^ let ^(t,s,X;6) » 

(t,s,X;6)], (i,j = 1,2), be the corresponding Green's matrix. Then 

clearly (u;v) = (uj^^(t;6);uj^)(t;6)), (j = 1,2,***)» are solutions of 

the differential system

L^[u,v|x](T) = (Xj-X)K(t)Uj(t;6), bgEu/vlCt) = 0, t £ 6,

Û  fc i>, Q &  +  D v  e  ^  .
Consequently, for g = 1,2 we have the relation

(Xj-X)"l u(*)(t;5) G.. (t,s,X;6)K(s)uf^^(s;6)ds, t €. 6,g 81 j

and hence for 8 = 1,2 and j = 1,2,••• we have

(5.9) (Xj-X)-l[u(*)(t;6)]* [u(l)(s;6)]*K(s)Gig(s,t,X;6)ds.

We now establish a result which is basic in what follows.

THEOREM 5.5. Suppose that hypotheses (H^), (i = 1,2,3,4), and (Hg) 

hold, and 6 = [a,b] ^  £  compact subinterval of I, while X ^  £  complex 

number which is not a proper value for (5.1)^. ^  |j(t,s,X;6) =

[G^j(t,s,X;6)], (i,J « 1,2), the corresponding 2n x  2n Green's matrix 

for (5.1)g, then as £  function of t each column vector of G^^(t,s,X;6),

(j = 1,2), belongs to £5(6 ;K).

In view of Theorem VII.8.2 in Reid [8], as a function of t each 

column vector of Gj^j^(t,s,X;6) belongs to and hence belongs to

ÏS(6;K). Therefore, it suffices to show the similar result for
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Gi2 (t,s,X;6). Let Ç be any n-dlmenslonal constant vector, and s a point 

of 6 " [a,b]. Then from conclusion (i-b) of Theorem 3.2 we have that 

as a function of t the n-dimensional vector functions 6^2 and 

G22(t,s,X;6)Ç are of class on [a,b] - {s>, and

L2 [Gi2(* ,s,X;6)Ç, G22(* »s,X;6)Ç] (t) = 0, for t £  [a,b] ^ {s}.

Consequently, in view of Lemma 4.1, for each fixed s é 5 we have that

there exist sequences {y (t,s,X)} and {z (t,s,X)} which, as a function ofm m
t, belong to C^[a,b] and are such that

(a) L_[y (.,s,X),z .(',8,X)](t) = 0, for t e. [a,b]; z m m
(5.10) (b) y^(t,s,X) = 0 for t e = {s}U{a}U{b}, (m = 1,2,**«);

(c) ^[y^(',s,X) - G^2(',s,X;5)S] + 0 as m »

Relations (5.10-a,b) imply that as @ function of t each y^(t,s,X) 

belongs to £[£^], and in turn relation (5.10-c) implies that as a func

tion of t the vector G22(t*8,X;6)g belongs to S^(S;K). Since g is 

arbitrary, it follows, in particular, that as a function of t each column 

vector of G22(t,s,X;6) belongs to I5(6;K).

THEOREM 5.6. Under the hypothesis of Theorem 5.5, ^  the sequences 

of proper values and proper vector functions for (5.1)^ are denoted by

(5.2) together with (5.8), then for (t,s) 6 6 x 6  and çt»3 = 1,2 we have 

that

[G^g(r,t,X;6)]*K(r)G^g(r,s,X;6)dr

-2 _(o),...\,..(B)|Xj(6) - x|-2 u(")(t;6)[u(*)(s;6)]*.

Let Ç be an grbitrary constant n-dimensional vqptor. Then, in view 

of Theorem 5.5, as a function of t the vector function Gj^^(t,s,X)Ç belongs 

to £(6;K). Relation (5.11) then follows readily from Theorem 5.4
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together with relation (5,9).

The four matrix equations in (5.11) can be expressed as a 2n x 2n 

matrix relation

5l*(r,t,A;fi)'X.(r) (f,s,A;6)dr
(5.12) ^ 0 *= Ij=i |Aj(4) - ̂ 1 yj(t;5)yj(«}<!>).

If and Ag are complex numbers which are not proper values of (5.1)^, 

then (see, for example, Prob. IV.3:1 in Reid [8]) we have the well- 

known identity

3%(t,s,A2;6) - &(t,s,A^;6) = (Ag-A^)  ̂ |j (t,r,A^;6) K  (r) lÛ (r,s,A2;<S)dr.

Upon setting A2 = A and A^ = A, where A is a non^real complex number, and 

using the symmetry property of Î3(t,s,A;6), we obtain the relation

B*
6

(5.13) Q(t,s,A;g) = 21 Im A 

where

li*(r,t,A;6)‘?((r) ji (r,s,A;6)dr,

Q(t,s,A;6) = ^(t,s,A;6) - ^(t,s,I;6).

In view of property (i-e) of the Green's matrix it follows that Q(t,s,A;6) 

possesses limits Qj(s^,s^,A;6), (j = 1,2), in the sense of (3.4), and 

if Q(Sg,s^,A;6) is defined as Qj^(s^.,s^,A;6) then Q.(t,s,A;6) is continu

ous in (t,s,A) on 6 X (S >< C^. Throughout the following discussion it 

will be assumed that Q(t,8,A;<S) has been so defined. If we set

(5.14) %Kt,8,A;6) = Q(t,s,A;6),
icthen conclusion (i-d) of Theorem 3.2 implies %  (t,s,A;S) = (%(s,t,A;6), 

and it follows from relations (5.12) - (5.14) that

(5.15) %(t,s,A;6) = Im A |Aj(6) - A y ^ ( t ; d ) y * ( s ; 6 ) .
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Let Y(t,X) be a 2n X 2n fundamental matrix for [y|X](t) = 0 on 

I such that Y(t^,X) = ^  for some t^ç (a,b), where 6 = [a,b]. Bach 

proper vector function y^(t;6) may be expressed as yj(t;6) =

Y(t,Xj)pj(6), (j = 1,2,"'"), for some 2n-dimensional constant vector 

Pj(6) which depends on 6 as well as on Y(t,A), and thus using this rela

tion and it follows from (5.15) that

(5.16) (^*'R(t^,t^,X;6) Im X lT^^|Xj(6) - X|"2pj(5)p*(6).

We shall now express the right-hand member of (5.16) in terms of a 

Stieltjes integral. To this end, we introduce a 2n x  2n matrix function 

p(p;6) defined on -» < u < «> as

{-%;< ).(:)<. ; < 0-
(5.16') p(y;6) =

From this definitl a it is clear that p(y;6) has the following properties: 

(i) ^  A = (y,v], and y < v, then

Ap(6) H p(v;6) - p(y;6) = I^<x^(6)<v Pj(G)Pj(4);

(ii) i^ X £  proper value, then

p(X;6) = p(X’̂ ;5) = p(X~;6) + Ix.(6)=X Pj(^)pj(G),

while if X not ^  proper value then p ^  continuous at X. 

Moreover, p(y;6) is a step function which is discontinuous 

at each proper value;

(iii) p(0;6) = 0;

(iv) p(y;6) is Hermitian;
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(v) Ap(ô) non-negatlve definite Hermitian if A = (p,v] and 

p < v;

(vi) the total variation of p(p;d) = [p^j^(y;5)], (j ,]c = 1»2, • • • ,2n), 

is finite on every bounded A-interval.

Property (vi) follows from the fact that each diagonal element 

Pjj(y;6) is a non-decreasing step function, and hence it is of bounded 

variation on each bounded A-interval, while for j k the Cauchy-Schwarz 

inequality implies

|APjk(a)|2 < Apjj(6)Ap^^^6).

The 2n x 2n matrix function p(p;6) is called a spectral matrix for 

the self-adjoint problem (5.1)^. In terms of this spectral matrix, rela

tion (5.16) now may be written as

(5.18) T(t^,X;6) = Im 1 |p - l| ^dp(p;6).

where the 2n x  2n matrix T(t ,A;6) is given byo

(5.19) T(t^,X;6) 5 Q. lR(t^,t^,X;6)^^.

Let d be an arbitrary compact subinterval of I containing the point t^, 

and A an arbitrary compact subset of with the properties in (4.4).

Let { il (t,s,X;6^)} be a sequence of Green's matrix functions which con

verges uniformly on 0(d,A) to a limit matrix &(t,s,X) as determined in 

Theorem 4.3. Then the corresponding matrices Q(t,s,X;6^), (m = 1,2,'"'), 

and Q(t,s,X) = %|(t,s,X) - î)(t,s,X) are continuous functions of 

(t,s,X) on d X d X  A. Consequently, the sequence Q.(tQ,tQ,X;6^) 

converges to Q.(t^,t^,X) as m •> », and hence the matrix sequence

T(t ,X;6 ) defined in (5.19) converges to o m

T(to»X) - y. 2R(tg,tg,X)^^,
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where lR(t^,t^,X) = Sl(t^»t^,A).

THEOREM 5.7. Suppose that hypotheses (H^), (i = 1,2,3,4), and (Hg)

hold, and { (t,s,X;6^)} ^  £  convergent sequence of Green's matrices as

established in Theorem 4.3. Let p(y;6_) = [pj,.(y;<S_)], (j ,k = l,'"',2n), ---------------      m JK m
be a spectral matrix for the problem (iGr ) possessing the properties

°m
(i) - (vi) of (5.17). Then there exists £  2n x  2n matrix function 

p(y) = [Pjj^(y)] defined on (-00,00), and such that;

(a) p(0) = 0;

(b) p(y) is Hermitian;

(c) Ap = p(v) - p(y) is non-negative definite Hermitian if

A = (y,v] and y < v, and £  subsequence of (p(y;5^)} which 

converges ^  p (y) on (-00,00).

If y^, y^ are points of continuity of p(y), then

1 f^2(i) - lim^^Q+ T(t^,o+ie)da = p(y2) - P (y^) •
%1

Relation (5.18) for X = i and 6 = 6^ implies that

(y^ + l)“^dp(y;5 ).

Consequently, if a is any positive real number then we have the matrix 

relation

T(t^,i,6J >m
o y ,

(y +1) ^ ( u ; ^  ). 
-0 ®

Since T(t ,i,6 ) converges to T(t ,i), there exists a constant Hermitian 0 m 0
matrix A such that

^ 9 —1(y +1)” dp(y;6^) < A, (m = 1,2,-''; 0 < a < ~).
-0
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In particular,

fO
(5.20) dp(u;5 ) < (a^ + l)A, (m » Q < a < “),

which shows that the sequence { p ( p ; 6 ^ ) }  of spectral matrices is uniformly 

of bounded variation on every compact subinterval of (-<»,<»). From (5.20) 

it follows that

p ( o ; 5  )  -  p ( - o ; 6  )  < ( a ^  + l)A for 0 < a  < » ,  m m

and, in view of the condition p(-a;5^) < 0 for such o the above relation 

implies that

(5.21) |p(p;6^)| < (y^+l)A, (m = 1,2,***; y & (-“,“)),

where

{p ( y ; 6  ) for y  > 0, .

- p ( y ; 6 ^ )  for y  < 0.

Applying Helly's selection theorem, (see, for example, Coddington and 

Levinson [3; p. 233]), to (5.21) one obtains the existence of a conver

gent subsequence of { p ( y ; 6 ^ ) >  and limit matrix function p ( y )  possessing 

properties (a), (b), and (c).

To prove conclusion (i), we consider the case that ]î  / yg, for if 

y^ = yg then the conclusions hold trivially. We assume that y^ < y2

and let 6 = 6  in (5.18), where the sequence {6 } is such that the m m
corresponding sequence ( p ( y ; 6 ^ ) }  converges to p ( y )  for y  €  ( - 00 , 00) .  Since 

the set { p ( y ; 6 ^ ) }  is uniformly of bounded variation on every finite sub- 

interval of (-»,“), from the generalized Osgood theorem, (see, for 

example, Hildebrandt [4; p. 98]), it follows that

T(t^,X) = Im X |y - X|“^dp (y).
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If a and e are real variables with e > 0, then upon setting A = a + is 

in the above equation and integrating over with respect to a, we

obtain

where

(5.21')

H(p^,P2»e) =
^2 

^1 '

e [ ( p - o ) ^  +  e ^ ]  ^ d p ( y ) d c j .

H(p^,P2»e) =
'#2 T(tg,o +ie)da.

For m > 0 let

IJto,o+le) i
fm

-m

Then {I } is a monotone non-decreasing Hermitian matrix sequence with the m
limit matrix T(t^,a + i£). Hence, from the monotone convergence theorem it

follows that 

(5.22) - llm^
fU2

T (t ,o + ie)do. m o

(5.23)

On the other hand,

fP2

Ml
T (t ,a +ie)da = m o

"M2 rm
E[(p-o)^ +  £^] ^dp(p)da

^1 -m

m M2 o 9 —1
£[(m-o ) + £ ] dadp(p)

m

-m
[ t a n ” ^ ( P 2 - p ) / e  -  t a n ” ^ ( p ^ - p ) / E ] d p ( p ) .

Consequently, from (5.22) and (5.23) we have the relation

(5.24) H(p^,P2,e) = [tan”^(P2-p)/e - tan ^(pj^-p)/£]dp(p).

Let e be a positive number such that e < (M2"Mi)/3, and express the
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Integral In (5.24) as the sum of the integrals over = (-»,p^-e),

Jg = [y^-e,y^+e), = [y^+e.yg-e), = [yg-e.yg+e), and = [yg+e,»).

If for brevity we set f(y,e) = tan ^Xyg-w)/^ - tan ^(yj^-y)/e, then:

(a) it follows readily from (5.23) that there exists an > 0 

such that for 0 < e < the scalar function f(y,e) converges

monotonically on U  to zero as e ->• 0, and hence in view of the

monotone convergence theorem we have that 

e 0;

(b) on Jg U the inequality |f(y,e)| < n implies the matrix ine

quality

T  , , T  f  (y»e)dp (y) ^ 0 asJ1 U J 5

-iTK(e) 2 ,, f(y,e)dp(y) < nc(e),J2 U

where K(e) = [pf^g+e) - pfyg-e)] + [p(y^+e) - p(y^-e)];

(c) on the interval the function f(y,e) ->• ïï as e -»■ 0, and hence 

f(y,e)dp(y) -> n[p(y2 -e) - p(y^+e)].

Consequently, in view of the continuity property of p(y) at y^, y^ 

and the arbitrariness of e, it follows from the above (a), (b), and (c) 

that

lim^^ Q H(y^,y2,e) = tt[p (y^) - P (ŷ )̂ ],

which, in view of (5.21'), is equivalent to relation (i).

For a 2n. X 2n matrix p as established in Theorem 5.7 we denote by 

the Hilbert space (p ) consisting of all 2n-dimensional vector 

functions w(X) defined on (-»,«) which are p-measurable, and aye such 

that

P[w] 5 (dp(X)w(A),w(A))dA = w (A)dp(A)w(A) < “.
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If w(X) and z(X) are elements of then the inner product of w and z, 

denoted by^[w,z], is defined in the natural way by

P[w,z] = z*(X)dp(X)w(X).

It is clear that we have the Cauchy-Shhwarz inequality

|P[w,z]|^ < |;[w] j;[z].

If J is a subinterval of (-»,«>), then, corresponding to the notation 

used for the Hermitian functional^, we denote by,Pj[w] the associated

functional j w*(X)dp(X)w(X)

6. The Parseval equality and expansion theorem. In this section we 

assume all the previous hypotheses (H^), (i = 1,2,3,4), together with 

(Hg). Moreover, as in Section 5, if 6 = [a,b] is a non-degenerate com

pact subinterval of I we denote by

Uj(6);yj(t;6) = (u^(t;6);v^(t;6))}, (j = 1,2,'""),

a set of the proper values and the corresponding proper vector functions 

for (5.1)g satisfying the conditions of Theorem 5.2. Moreover, let 

Y(t,X) = (U(t,X); V(t,X)) be a fundamental matrix for ^[y|x](t) = 0 on 

I such that Y(tg,X) = Ç. for some t^ € (a,b), where U(t,X) and V(t,X) 

are n >< 2n matrix functions. Then corresponding to Theorem 5.3 we have 

the following result.

THEOREM 6.1. Let n(t) ^  ̂  n-dimensional vector function defined 

on I such that n(t) €. for t £ 6 and n(t) = 0 for t outside 6. Then

there exists an element w(X|n) 6  ^  which depends on n(t) such that

(6.1) K[n] = w*(x|n)dp(x)w(x|n) = P[w(x|n)],

where p(X) is a 2n x 2n matrix function determined in Theorem 5.7, and
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w(X|n) is given by

( 6 . 2 )  w ( a | ti)  =

It is to be noted that the Integral in (6.2) exists in the ordinary 

sense, since n(t) vanishes outside 6.

Let n(t) be an n-dimensional vector function as described in the 

theorem. Applying relation (5.3) to n(t), we obtain the equation

(K(t)n(t),u.(t;6))dt 
I J

(K(t)n(t),u.(t;6))dt.
J

From the relation y^(t;6) = Y(t,Xj)pj(6), (j = 1,2,"'"), it follows that 

Uj(t;6) = U(t,Xj)Pj(6). Then, employing the spectral matrix defined by 

(5.16'), the above equation can be expressed as

(K(t)n(t),U(t,X ))dt} 
I ^

(K(t)U(t,Xj),n(t))dt}pj(6)p*(6){
I

w*(X|ri)dp(X;0)w(X|n).

It is to be noted that the left-hand member K.[n] is independent of 

each compact interval containing 6. Now let {6^} be a sequence of 

compact intervals converging monotonically to I, and such that the 

corresponding sequence {p(X;6^)} converges to a limit matrix p(X) as 

determined in Theorem 5.7. Then, in particular, the above relation holds

for such 6̂ ; that is.

(6.3) = w*(X|n)dp(y;6^)w(X|n), (m = 1,2,''').

Moreover, in view of relation (5.20), the set {p(X;6^)> is uniformly of 

bounded variation on every compact X-interval of (-«,*). Also, for fixed

n it follows readily that w(x|n) = (K(t)n(t),U(t,X))dt is continuous
I

in X on (-“,“). Relation (6.1) then follows upon letting 6^ -»■ I in (6.3),
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and applying the generalized Osgood theorem (see, for example, Hildebrandt) 

[4, p. 98]). Since K[n] “ Kg [n] = Kg[n] whenever 6^ 3  6, relation (6.1) 

implies that w(x|n) e

Denote by %)(I;K) the space consisting of all n-dimensional vector 

functions n(t) which are defined and measurable on I, and such that:

(i) K[n] H (K(t)n(t),n(t))dt < »;
I

(ii) if d is any compact subinterval of I, then the restriction 

of n(t) on d belong to Æ5(d;K).

We shall now extend the result of Theorem 6.1 to the space <B(I;K). 

THEOREM 6.2. If n(t) 6 K(I;K), then

(6.4) ^[n] = £[w(X|n)],

where w(X | n) ^ determined by n(t), and given by

(6.5) w(X|n)

The integral in (6.5) converges in the norm of that is,

(K(t)n(t),U(t,X))dt.
I

(6.6) JP[w(x|n) - (K(t)n(t),u(t,x))dt] 0
d(m)

^  m ^ where (d(m)} ^  £  sequence of intervals converging monotonically

to I a£ m -»■ ». Correspondingly, if n(t) and Ç(t) belong to fc(I;K) then

(6.7) K [ n , q  =X[w(X|q),w(X|0].

The proof given here is a standard one. Following Coddington and

Levinson [3; pp. 236-7], we first prove relation (6.4) for n(t) € ^^(I;K),

where 33 (I;K) consists of those n(t) € JtS(I,*K) for which n(t) = 0 outside o
some compact subinterval of X. If n(t) fc J5^(I;K), and 6 is a compact 

subinterval of I such that n(t) = 0  outside 6, then clearly n(t)e C(6;K). 

Consequently, there exists a sequence of elements n^(t) e 33 [i6̂ ] such that
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K.[n-n ] ->■ 0 as m Next, application of (6.1) to n - n yields the'̂ 0 in in IX
conclusion that

(K(t)[nCt) - n„(t)], U.(t,A))dt. 
6 ® 1

(6.8)

Since (n^} is a Cauchy sequence in #(I;K), it follows from (6.8) that 

the sequence {w(xlrijjj)} is also Cauchy in Therefore, there exists a

unique 2n-dimensional vector function w(X) e such that

(6.9) P[w(X|n ) - w(X)] 0 as mvm HI

On the other hand, if we denote by w^(x|n) and U^(.t,X),

(i “ 1,2,'"',2n), the i-th element of w(x|n) and 1-th column vector of 

U(t,X), respectively, then from (6.5) we have for i = l,2,-**,2n the 

equation

w^ ( x | ti)  -  Wj, ( x | n ^ )  =

Consequently, for each fixed X £ (-»,“) it follows that

(6.10) Iŵ (xln) - w^(x|n^)|^ < ̂ ^[Ti-nji^[u^(-,x)] ^ 0

as m »; that is w(x|ri^) converges pointwise to w(X|n) as m ->• “ . From 

a well-known result of integration theory (see, for example, Rudin [10; 

Theorem 3.12, p. 67]) the relations (6.9) and (6.10) then imply that 

w(X) = w(XIn) a.e. in "U. Since the convergence in the mean implies the 

convergence of the norm, it follows that

= lim^^«K[w(x|nJ] = P[w(X|n)],

which proves relation (6.4) for all n(t) £- P (I;K).o ,

Let {d(m)> be a,sequence of intervals as described in the theorem.

If n(t) 6 P(I;K), then we define n ( t )  s ^d(m)
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characteristic function of d(m), and

(K(t)n(*)(t), U(t,X))dt
I

(K(t)n(t), U(t,X))dt.
d(m)

For n > m it then follows that

w(x|n^^^) - w(x|n^™^) = (K(t)n(t), u(t,x))dt,
J d ( n , m )

where for brevity we set d(n,m) = d(n) - d(m). Consequently,

P[w(X - w(x|n^™^] = and since the right-hand member

tends to 0 as m, n ^ the corresponding sequence {w(X|n^™^)} tends in

the norm of to an element w(X) of as m Therefore,

lim ^ P[w(XIn ̂ ™^)] exists and is finite. Moreover, in view of (6.11)JQ ->■ OQ WV *
we have the equation

-d(m)^^^ = P[w(x|q^“^>], (m = 1,2,...),

and (6.4) results upon letting m ■> «>. From the relation

^[w(xln) - w(x|n^“ ^)] = w*(x|n^ *))dp(x)w(x|n^ ™̂ )

= £-d

where -dCm) = I-d(m), end (t) = h(r)x_^, y  we obtein (6.6) upon

letting m Finally, relation (6.7) follows from (6.4).

Corresponding to the Corollary to Theorem 5.4 we have the following 

result.

THEOREM 6.3. U  n(t) £ R(I;K) then
»00

(6.12) n(t) = U(t,X)dp(X)w(x|n),

where the integral converges,in the norm of <^(I;K); that is, if we
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denote by [m] the closed Interval , then

For n(t) 6 R(I;K) we define

U(t,X)dp(A)w(x|n)] 0 as m ->■
[m]

(6.13) n_(t) s
[tn]

U(t,X)dp (x)w(x|n).

If and r\̂ belong to I5(I;K), then from (6.7) we have

(6.14) = P[w(x|nj^),w(x|n2)]«

Now let y(t) e 33(I;K) be such that y(t) = 0 outside a compact subinterval 

6 of I. Using (6.13), it then follows that

= f (K(t)n^(t),y(t))dt 
 ̂0

y*(t)K(t){f U(t,X)dp(X)w(XIn)}dt 
6  ̂[m]

= P[mj[w(A|n),w(X|y)].

On the other hand, for n(t) G K(I;K) the application of (6.14) implies 

that
Kg[n,y] = P^[w(x|n),w(x|y)],

and hence

[m] hj .w(X Iy)],

where -[m] = (-»,») - [-m,m]. Upon applying the Cauchy-Schwarz inequality 

we obtain the relation

(6.15) |Kg[n-Ti^,y]|^ < [w(xly)]Q

< P[*(x|y)]Q 

= ^tyïQ»

where Q “ [w(X ]n) ]. In particular, let y(t) be defined as
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n(t) - n„(t), If t e 6,m

0, if t i  6.,

Since follows from (6.15) that

and as the right-hand member is independent of $ we have the relation 

The right-hand member tends to zero as m -»■ «>, thus completing the proof.
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