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ABSTRACT

Mathematical models are developed to examine the interfaces of horizontally-
layered beam systems. The application examined is that of concrete road overlays.
We are particularly interested in how the normal displacement of the beams is
affected by the shearing interface coefficient, Ks. We ignore any effect due to

friction.

The static two-beam model gives results which were validated by laboratory
data. We show that a unique solution exists and that this solution continuously
depends on the parameter K. We also formulate the problem for multilayered
systems. For the dynamic model, we show the existence of a unique soution to the
weak form of the problem. We then consider a numerical example of an inverse
problem in which we attempt to recover Kg using data generated from the forward
problem.

Both the static and dynamic models developed in this paper allow for cavi-
tation between the two beams. This in effect corrects the problem of one beam
penetrating the other and allows us to try to predict where the two beams may
acutally separate. Also, with the addition of the time-dependent model, we can

add a moving mass or rolling load.
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0. Introduction

There are many practical applications that involve horizontally layered media.
This paper develops a mathematical model which can be used to evaluate what
happens at the interfaces of such layers. In particular, we will focus our discussion
to that of concrete road overlays as we have data with which to compare our

results.[5]

The stability and maintenance of concrete road surfaces is an important topic
in our modern-day infrastructure. A current method of extending the life of a road
is to pour a new concrete block on top of the original concrete surface. Thus, it
makes sense to examine what happens at the interface of these two surfaces. In
this paper, we will develop simple mathematical models based on a linear theory

and the Timoshenko beam which are an extension of a previous model.[14]

The Timoshenko beam models developed here are based on energy consider-
ations assuming interfacial conditions and an elastic foundation. In addition, the
models will incorporate the idea that the two surfaces may separate. This could
be due to climate conditions or poor bonding. It is also important to note that
while concrete is a very complicated nonlinear material, we are assuming linear
elasticity conditions hold. This assumption is based on a laboratory experiment
which showed a linear stress-strain relationship for the cases of interest.[5](see fig.

1)

We are particularly interested in the relation between the interfacial stiffness
coefficient, K5, and normal displacement. In chapter 1, we develop the static
2-beam model and give a validation of the results based on laboratory data. We
show that a unique solution exists and this solution continuously depends on the

parameter Kg. For Kg = [7,2], we get a relative error of .1059 and for the
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optimal Kg we get a relative error of .0253. In addition, we look at where the
model predicts that separation of the beams may occur. We then give an extension
to multilayered systems.

Chapter 2 discusses the time-dependent 2-beam model. The main theorem
here is the existence of a unique solution to the weak form of the problem. We
then formulate a simplified inverse problem where we generate data using the
forward problem. In a numerical experiment, we generate a surface describing
the residuals between the predicted deformations and a given data set where the
predicted deformations are a function of the interfacial stiffness and we assume
Ks =[Kgs(1l), Kg(2)] This surface represents the error between model predic-
tions and experimental data. The time-dependent case is significant for developing

models to predict fatigue and degeneration properties under transient loads.
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1. Static Case

1.1 Basic Model

The mathematical model we will use for analysis is the Timoshenko beam
model.[13] A beam model is chosen in order to better approximate actual exper-
imental data and results. In particular, the Timoshenko beam model is chosen
because it is the simplest beam model which couples normal displacements with

shearing displacements.

Suppose the beam is represented by a domain
Q={(z,y,z) : 0<z<L, -k<y<k, —-h<z<h}

where h is small enough so that we may assume the stress o33 is incorporated in
the body force. Then, under the small deformation gradient assumption[Hunter],

we can write the stress-strain relationships as

E
011 = 7 e [e11 + pe2n]

E

Ong = —|lu€1; + €
29 1—p2 [# 11 22] (1-1)

o33 =0

o12 = Ge1a, 013 = Geys, 023 = Geag

where E is Young’s modulus, g is Poisson’s ratio, and G = Tf? is the shear

modulus. We denote the displacements in the z—, y—, and z— directions by the
functions U = U(z,y,z2), V = V(z,y,2), and W = W (z,y, z), respectively. The

strain-displacement relations are

W LU v LU oW
11—6:1:’612—2 Oy 9z BT 3 az+8—z)

2=y 2 =3l Ty W=

(1.2)
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The displacement assumptions associated with a Timoshenko beam are
U(z,y,z) = z4(z)
V(z,y,2) =0 (1.3)
W(z,y,2) = w(z).

We define the strain energy as

1 (L kR
V(U,V,W) = 5/ / / {o11€11 + O12€12 + 013€13 + T22€22 + 023623 } dzdydz
0 J-kJ-n
(1.4

and the Lagrangian by
L
LOV.W) = VOV = [ fe)W(e)de (1.4)
0

where the last integral represents the work done by body forces and applied forces.

Substituting the stress-strain relations (1.1), the strain-displacement relations
(1.2), and the displacement assumptions (1.3), the Lagrangian can be expressed

as

1 (P 4h%kE ,  2hkE > L
.C(U,V,W)—g‘/(; {3(1_#2)¢r+1+#(¢+w3) }dz—‘/o fwdz (1.6)

1.2 Two-Beam System

Suppose now, that there are two bodies that we view as beam 1 and beam
2. Beam 1 occupies the set Q; = [0, L] x [—k, k] x [0,2h;] and beam 2 occupies
the set Qo = [0, L] x [—k,k] x [-2h3,0]. We assign local coordinate systems 1
and 2 such that the relationships of the local coordinate systems to the global
coordinate system are £; = z, y1 = y,and z; = z — h; for coordinate system 1

and z2 = z, y2 = y,and zo = z + h; for coordinate system 2.(see fig. 2) The
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displacement functions for the ith beam are
Ui(z,y, z:) = zidi(z)
Vi(z,y,2:) =0
Wi(z, vy, z:) = wi(z).

As in (1.6), the strain energy for the ith beam is given by

A ) = — EREE o W )2 -
1/‘z(¢‘l-1(-‘d‘l-) - 9 3(1 _#3) 1.:+ 1+#z (¢l+ 1.::) } dm (l-l)

-~

1 /L { 4h3kE; ,  2h:kE;
0

The total potential energy of the system is the sum of the individual strain energies,
V=V +Vs

and the Lagrangian for the system is
L L
£0=V—/ fwld:z—/ fwgda:
0 0]

where we have assumed here that the displacements of the two beams are inde-
pendent.

Next, we impose interface conditions to relate the displacements of the two
beams. If we assume that the displacements at the interface of the two beams are

equal, we get
hi¢1(z) + hagpa(z) =0

and

wi(z) —wsa(z) = 0.
For linear theory, we use the integrals
1 [F 0
Va=3 A Ks(z)(h1¢1(z) + heda(z))” dz
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and

L
V., = %/0 Ky (z)(wi(z) —wa(z))? dz

where Ks and Ky are L* functions introduced as elastic coefficients at the in-

terface. The elastic interface between the beams is then modeled by

L
Vi=Ve+ V. = %/ [Ks(z)(h1¢1 + had2)? + Kn(z)(w1 — w2)?] dz.
0

We also assume that the beams are sitting on an elastic foundation. This is

modeled by

9

<

L
Vg = —/0 (Krs(z)$3 + Krn(z)w}) de.

Consider two types of forces acting on the beam system: the body forces and

the applied forces. The work due to gravity for the ith beam is given by
L pk phi
W; = / / / pigw; dz;dydz
0 —kJ —h;
and the work done by the body forces for the system is
L
Wp =W; + Wy = 4gk/ (p1h1w1 -+ pghg(ug) dz.
0
The work due to a static applied load, f,, is

L
V\/c,_=</0 fa(z)wi(z) dz.

Thus, the Lagrangian of the 2-beam system with an interface on an elastic

foundation is given by

L(¢1,w1,¢2,w2) =V1+ V2 +Vr+Vr - Wp —W,. (1.8)
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To simplify notation, we make the following assignments:

4h3kE;

Aps =

J

’—l
o000 @ooo

—

OO0 OO0

and

Arn =

o
o O o
o O o

= O O o

L0 0 O
In addition, the displacement vector is defined by

¢1

w1

¢2

w2



and the forcing vectors are defined by

0
4gkp1hy
0
4gkp2h2

Fg =

and

0

_ | f
Fo=|7%
0

Using the above notation, the Lagrangian (1.8) may be written as

L
Llw) = % / {(us + Eu)T A(us + £u) + uT(KsAs + KnAy + Krs Ars
0
(1.9)

L
+KFNAFN)u}d:c —/ (Fa +FB)T'u.d:c.
o

Remark: We want to develop a model which agrees with the experimental
results. In this paper, we ignore nonlinearities associated with contact forces and

friction.

1.3 Minimization Problem

Hamilton’s Principle says that the displacement assumed by the beam system
is the minimizer of the Lagrangian.[Meirovitch] The previous model{14] enforces
the interface condition by penalizing the relative displacements at the interface.
While this model seems to give good results, it is physically unrealistic in the
sense that the two beams may actually penetrate each other. In this section, we
avoid this penetration by restricting the relative normal displacements to allow for
separation of the two beams. We will formulate this minimization problem and

prove the existence of a unique solution.
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We define the following Hilbert spaces with their usual norms and inner prod-

ucts:

H = L*([0, L], R?),
vV = H([o, L]; RY),

Vo = {V : w1(0) = w1(L) =0},

and the bilinear formon V x V
1 L
a(u,v) = 5/ {(uz+Ew)T A(ve + Ev)
0]
+uTl(KsAs + KnAnx + KenApn + KrsAps)v dz.

Using this notation and denoting the inner product on H by <, >, the Lagrangian

can be written as

L(u) = a(u,u)— < Fyu > (1.10)

where FF = F, + F'z.
Lemma 1.1 Let Kgs, Kn, Krn, and Krs > 0. The bilinear form a(u,v) is
an inner product on Vj.

Proof: We only need to show that a(u,u) = 0 implies that « = 0. This follows

from [14] that there exists a positive constant xg such that

a(u,u) > rollul}- (1.11)

To enforce that the relative displacement is positive, we define the set
P={ueV:wi(z) —ws(z) >0 for any z € [0, L]}.

Lemma 1.2: P is a closed convex cone in Vj.

10



Proof: Letu € P. Thenu®? =[¢; w1 @2 wa]suchthatw;(z)—ws(z) > 0.
Let o > 0. Then au” = [a¢: aw; aps aws]and aw;—aws = a(w; —ws) > 0.
Thus au € P and P is a cone.

Suppose v is another element of Pand vT =€, 71 & 7). Let0 < a < 1.

Then
agy + (1 — a)b1
_ _ |aw1+(1—a)m
cwt(—ejv= t(1-a) | €F
aws + (1 —a)n
since

(aw1 + (L —a)m) — (ews + (1 —a)p2) = a(wr —w2) + (1 —a)(m —n2) 2 0.

Hence, P is convex.

Let {u(*)} be a sequence in P that converges to an element »(®) in V. We

need to show that (%) is in P. Since u{*¥) € P for all k, we have
wgk)(z) —wz(,k)(z:) > 0 for any z € [0, L].

Since V imbeds in the space of continuous functions[4], we have pointwise con-

vergence or

w®(z) — wO(z) for each z € [0, L].
This implies that wgk)(:z:) — wgo)(z) and wék)(:c) — wéo)(x). Since
(@ —wlz) >0  forall k>0,

the limit
. k k 0]
lim (@ - wf?)(e) = @7 - w{”)(2) > 0.
Thus, u(®) € P and P is closed proving the lemma.

11



We pose the minimization problem: Find ug € P such that
L(ug) = minimum £L(v) for any v € P. (MP)

Theorem 1.1: There exists a unique solution to the above mimization problem.

Proof: First, we show that L£(v) is bounded below for any v € P. Recall

(1.11) a(v,v) > kollv]||3, for some kg > 0 and the Lagrangian (1.10)
L(v) =a(v,v)— < F,v >.
Also,
< Fo ><|[Flolle < Mol < Mollv-

Thus,
L(v) > o[} — M||vllv-

The right hand side is a parabola in ||v]|y which has a minimum when ||v||y = 2{;{) .

Hence, {£(v) : v € P} is bounded below and d = inf{L(v) : v € P} exists.

Also, note the parallelogram identity

— — 1 1
r (ul +u,2> ta (u1 u2’ U 'U,2> — §£(u1) + 5[_‘,('&2) (1.12)

2 2 2
holds for all u; and us in V.

Let {un} C P be a minimizing sequence. (i.e. L(u,) — d.) We show that

{un} is Cauchy. From (1.12)

Up + U, Up — Um Unp — Um 1 1

or

Up — Um Unp — Um 1 1 Un + Um
a ( 5 5 ) = §£(un) + §C(um) - L (———2—) .

12



Since P is convex, (un + um)/2 € P and L(%2%%=) > d. Thus,

a('u.n_um un—um> §%C(un)+%£(um)—d.

Un—Um

Since the right hand side converges to zero, we have aq (%=25%= ¥22%=) converges

to zero. Now,

Up — Um

2
Unp — Um Unp — Um
caoftogin tmotm)

0 < kg
v 2 2

Hence, ||[n —um||v converges to 0 and {u,} is Cauchy in Vy. {u,} Cauchy implies
that {u,} converges to some v € V. In fact u € P since P is closed. Also, L is
continuous and £(u,) converges to £L(u). Since the limit is unique, £(u) = d and
we have existence.

For uniqueness, suppose ug,v € P are both solutions to the minimization

problem. Then L(ug) = £L(v) = d. (1.12) implies

2 2 72

<

’ <uo -i-v) +a<u° v %o —v) = %ﬁ(uo)-}-%ﬁ(v) =d.

ug — v

2 !
<a(“°‘” '“0_”) =d-— (2 Yy<d—d=0.

0 < #o = 2 ' 9 )

Hence, ||ug — v|| = 0 or v = up and ug is unique.

The associated variational problem can be stated as follows: Find ug € P
such that

a(ug,v —ug)— < Fyv—ug >>0 for any v € P. (VP)

It is easy to show that the minimization and variational problems are equiva-

lent.[see Luenberger, p. 178]
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Suppose now that the displacement ug is a function of Kg, the elastic coef-
ficient at the interface. Since Kg € L*°, we can approximate Ks in the L? sense
by step functions. Thus, it suffices to look at Ks as a vector in R® such that Kg

lies in a bounded set.

Theorem 1.2: The mapping Ks — ug(Ks) is continuous from R® into P. (That

is we assume Kg are bounded and piecewise constant.)

First, we need to prove some claims.
Claim 1: Fix v € P. Then Ks — L(v; Ks) is continuous. We assume K is
piecewise constant.

Proof: The proof of claim 1 is straight-forward and is omitted.

Claim 2: {ug(Ks) : Ks bounded in R"} is bounded in V. That is, we assume

K are bounded and piecewise constant.

Proof: From Claim 1, for a fixed v € P, Kg — L(v; Kg) is continuous. Also,
L is linear in Kg. Thus, assuming K5 are bounded, the map Ks — L(v; Ks) is

bounded. Recall that ug(Ks) satisfies the minimization problem
L{uo(Ks); Ks) = min L(v; Ks) < £(0; Ks) =0
since 0 € P. This implies that
a(ug(Ks),uo(Ks); Ks)— < F,ug(Ks) >< 0.
From the coercivity condition (1.11) we get
rolluo(Ks)ly — Mlluo(Ks)llv < a(uo(Ks), uo(Ks); Ks)— < F,uo(Ks) >< 0.
In order for |juo(Ks)|[(xollzo(Ks)|| — M) < 0, we need
luo(Es)l| < -
Ko

14



Hence, {ug(Ks) : Ks bounded in R"} is bounded in V.

Claim 3: If K¢ — K in R"® with Kg bounded then

ug(Ks) —= ug(K) in V.

Proof. From claim 2, {uo(Ks) : Ks bounded in R®} is a bounded set in
Vo. Since Vp is a Hilbert space and reflexive, {ug(Ks) : Ks bounded in R"} is

relatively weakly compact. Thus, there is a subsequence Kg, such that
uO(KSi) —

for some u in Vp. In fact, u € P since P is closed, convex and hence weakly closed.

Let v € P be arbitrary. Then L(v; Ks,) > L(uo(K3s,); Ks,) or
a(v,v; Kg,)— < F,v >> a(uo(Ks; ), uo(Ks,); Ks,)— < F,uo(Ks;) > .

Taking the limit inferior of both sides, we get from weak lower semicontinuity of
L
a(v,v; K)— < F,v > > liminfla(ug(Ks; ),ve(Ks,); Ks.)— < Fyug(Ks,) >]

>a(u,u; K)— < Fu >

Thus, L(v; K) > L(u; K) for any v in P and

L(u; K) = Erélgll('v;K).

But we've shown the solution to this minimization problem is unique. Hence,
u = up(K) and ug(Ks,) — uo(K). It is easy to show that in fact,
‘uO(Ks) l) uo(K)

15



Claim 4: If Ks —» K in R® where K5 is bounded and piecewise constant then
a{uo(Ks),uo(K); Ks) — a(uo(K),uo(K); K)-

Proof: Consider
la(uo(Ks), uo(K); Ks) — a(uo(K), uo(K); K)|
< la(uo(Ks), uo(K);: Ks) — a(uo(Ks), ua(K); K)|
+ |a(us(Ks), uo(K); K) — a(uo(K), uo(K); K)|.
Since a(u,v; K) is an inner product on Vp and by claim 3 ug(Ks) = uo(K) in Vo,
we have that
a(uo(Ks),v; K) — a(uo(K),v; K) for any v € Vo.
Since ug(K) € W, a(uo(Ks),uo(K); K) — a(uo(K),uo(K); K). Hence,

|a(uo(K's), wo(K); K) — a(uo(K), uo(K); K)| — 0.

Now,

la(uo(Ks), uo(K); Ks) — a(uo(Ks), uo(K); K)

Z / T(KY — KD) Asup(K) dz
1 ; : i
<33 XY — KO / fuo(Ks)T Asuo(K)| de
1
< 51Ks - Klloo / fuo (K 5)T Asuo(K)| de.

Taking the limit as Kg goes to K, we get
L L
[ uo(Es) T Asuo(K)lde — [ huo(K)T Asuo(K)| da
0

16



and [|Ks — K{[co — 0. Hence,
la(uo(Ks), uo(K); Ks) — a(uo(Ks), uo(K); K)| — 0.

and claim 4 is proved.
Proof of Theorem 1.2: Suppose Ks — K in R". We need to show that

ug(Ks) — uo(K) strongly in V. Consider
a(uo(Ks),uo(K); Ks) = a(uo(Ks), wo(K)—uo(Ks); Ks)+a(uo(Ks); uo(Ks); Ks)
and recall the variational condition

a(ug,v —ug)— < Fv —ug >>0 for any v € P.

By claim 3, ug(Ks) — uo(K) in Vp. Since P is closed and convex, P is weakly

closed and ug(K) € P. Thus,
a(uo(Ks),uo(K) —-UQ(Ks);KS)— < F,uo(K) —’U.o(Ks) >> 0

and we have
a(uo(Ks),uo(Ks); Ks) < [a(uo(Ks), uo(K) —uo(Ks); Ks)
— < Flug(K) — uo(Ks) >] +a(uo(Ks),uo(Ks), Ks)
= a(uo(Ks);uo(K); Ks)— < F,uo(K) —uo(Ks) > .
Taking limits, we get
a(uo(K), uo(K); K) <lim a(uo(Ks), uo(Ks); Ks)
<lim a(uo(Ks), uo(Ks); Ks)
< Jm (a(uo(Ks), uo(K); Ks)— < Fyuo(K) — uo(Ks) >)

= a(uo(K),uw(K); K) — 0

17



by claim 4. Therefore, a(uo(Ks),uo(Ks); Ks) = a(uo(K),uo(K); K). But
a(uo(K), uo(K); K) = |lua(K)l-

Thus, we have

llo(Ks)llve — llwo(K)llve-

This implies since Vj is a Hilbert Space that |[ug(Ks) — wo(K)|[v; — O or that

ug(Ks) = uo(K) in V5. Thus, the mapping Ks — ug(Ks) is continuous.

1.4 Numerical Model and Validation

We want to test the above model against experimental data obtained in the
laboratory. In particular, we want to compare normal displacements of beam 1
with the displacement observed on a concrete sample in the laboratory. For this
purpose we ignore any foundation terms and assume the ends of the beam are

fixed.

We need to write the discrete version of the Lagrangian (1.9) and the mini-
mization problem (MP). We approximate ug by piecewise linear elements as fol-

lows: We partition [0, L] into N subintervals of width L/N. Let

c'=[c1 ca ... cyn+1))and
z) 0 0 O
_ |0 b= 0 o0
B=)=1 09 "0 8z o0
0o 0 0 b
where B(z) is a 4 x 4(N + 1) matrix with b(z) = [bi(z) b2(z) ... byt1(z)]

and b;(z) is the piecewise linear element which is 1 at z; = %i and 0 at all other

partition points. Then

uM(z) = B(=z)c

18



is an approximation of ug. Define the matrices

L
Ga= / (B, + EBYT A(B: + £B) dz,
6]

L
G5=/(; Ks(z)B(z:)TAgB(:z:)da:,

and

L
GN=/ KNB(:B)TANB(z:)d:B.
0

Also, define the vectors

L
]-'a=/ F,B(z)dz
0

and

L
FB =/ FgB(z)dz.
0

Our goal is to examine what is happening at the interface between the two beams.
Thus, we assume that the shear interface coefficient, Kg, is a function of z, the
location along the length of the beam. For this analysis we assume that Kg(z) is
plecewise constant with p pieces where p is a factor of N. Let G = G4+ Gs + Gn

and F = F, + FB. Then the Lagrangian becomes

L(c) = %QTGQ — Fe

From Hamilton’s principle, the displacement of the beam system occurs at
the minimum of the Lagrangian. For the discrete case, the minimization problem

(MP) becomes: Find ¢, € R*N+1) such that B(z)c, € P and

L(cp) = min{L(e) : B(z)c € P} (MPN)
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where we are now minimizing the Lagrangian over a finite dimensional subset of
P. The following theorem shows that in fact the solutions to the discrete problem

converge to the solution of (MP).
Theorem 1.3 Let u) = B(z)c, be the unique solution to (MPN). Then as

N — =,

uév — ug in Vg
where ug € P is the solution to the original minimization problem(MP).
Proof : Define the set
N+1 N+1
pY = {3(3)9 2 Y bi(@)ensiri— Y bi(z)esvany+i > 0} .
i=1

=1

Then PN C P for all N. Since u{’ is the solution to (MPN) and 0 € P¥ for all N
L) = min{L(v): ve P’} <.
Also, from (1.11), we have
rollug Iy — Mllwg' llv < L(ud') = a(uf, v )— < Fuf ><0.

For this to hold, we need [|u{’|lv < M/xg for all N which says that {ul} are
bounded in V. But this implies that {uév } is weak compact. Thus, there exists a
subsequence such that u}’ =% u € P.

Let v € P and let v¥ be its piecewise linear approximation. Then vV — v
and L(v") — L(v) as N — oco. Since vV € P¥, we have that L(vV) > L(ud).

From weak lower semicontinuity of £, we get

L(v) = lim L(vV) > lim L(u) > L(u)
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and u solves (MP). But the solution to (MP) is unique, hence u = ug and the

theorem is proved.

If we were to ignore the cone condition, the minimum of L(c) is achieved
when DL(c) = 0 which happens when G¢ = F7T. Suppose u” = B¢ is not in P.
Then we change the coefficients c¢; to get a new point Bé which is in P where ¢
is determined by comparing the discrete coefficients corresponding to wi(z) and
w2 (z) and adjusting them so that we are still in the cone. In other words, if w; (z) =
SN enriv1b: and wa(z) = 0 eywp1)ibi, and entrai — csvi1)4e < 0, we
let é3(N+1)+i = cN+1+:- Thus ¢ is just modified from ¢ so that we remain in the

cone. We then use Newton’s method to find the minimum, ¢,.

For the numerical model, we use data from the laboratory experiment for the

3 inch overlay. The length of the beam is
L =37
and the loads were applied along the length of the beam at
z=1L/3 and z=2L/3.

The observed displacements were

0
—.0014
wqg = | —.00245
—.0017

0

at locations

zq = [0, 9.25, 185, 27.75, 37].
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We want to see how well our model fits with the experimental data. For the
graph in fig. 3, we assume N = 10 subintervals of length L/10 and we choose the

shear interface coefficient to consist of p = 2 pieces

_J7 0Lz L)/2
KS“{z fL/2<z<L.

Consider the fit-to-data functional
Ny
J(Ks) = Z(wl(wd(i)) — wy(2))?
=1

where Ny are the number of data points. In order to write this in matrix form, let

wi(z4(1))

wi(za(Ng))
where C : R*(N+1) _; RNe 5 defined by

b(za(1))

C=|p 0 0

b(za(Na))

Then the fit-to-data functional can be written as
J(Ks) = ||Ce(Ks) — wall?.

The relative error of our model is calculated by

RE = M
l[wall
and for the above data
RE = .1059.
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These are as good as the original model with two pieces. Consider the relative
displacements of the two beams.(see figs. 4 and 5) In fig. 4 for the previous model,
beam 1 actually penetrates beam 2 which is not physically possible. In fig. 5, for

the present case where the two beams can separate, there is no such difficulty.
We can improve on these results as we let K5 consist of more than two pieces.
For the graph in figure 6, we assume N = 10 and

Ks=[133 95 .85 0 32 066 0 0 0.3 6.9]

which was the optimal vector for the previous case.[14] In this case, we get a

relative error of

RE = .0253.

If we look at the relative displacements of the two beams(see fig. 7), the model
predicts that the beams separate between z = 11 and =z = 26. Note we are not as

concerned about the endpoints as they are assumed to be fixed.
1.5 Existence of Lagrange Multipliers
Recall the minimization problem:
Find ug € P such that L(ug) = %igﬁ(v).

Let ' =[0 1 0 -—1]. Then the above minimization problem can be rewritten

as

Find ug € P such that L(ug) = min{L(v) : -Tv <0, v € W }.

In other words, we want to find the minimum of the Lagrangian (1.10) subject to
the inequality constraint ws(z) — wi(z) < 0. Note that £ : V5 — R is Gateaux

differentiable and —T' : Vg — Vp is also Gateaux differentiable where
Vo = {w € H'([0,L]; R) : w(0) = w(L) = 0}.
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Clearly the Gateaux differentials of £ and —I' are linear in their increments. Define
P={weVy:w(z)>0a.e}

Lemma 1.3: P is a positive cone with nonempty interior.
Proof. If w; > wy then wy —wy € Pand Pisa positive cone.

Since H'([0, L]; R) imbeds in C([0, L]; R), it suffices to show that
Po={f€C(0,L): f(z) > 0}

has nonempty interior. Let g € Py such that g(z) > Oon [0,L] and let § =
min_gpo,z} [g(z)| > 0. We show that the ball centered at g of radius %, denoted by
B(g; £), is contained in Py.

But this

o,
.

Let f € B(g;§)- Then ||f — gl| = max.¢p,z; |1f(z) — g(z)| <
implies that |f(z) — g(z)| < % for any z € [0, L]. Thus,

Fe) € (g(z) ~ 3.9(2) +3)  forany = € [0,L]

and f(z) > 0 for any z € [0, L]. But this says that f € Py. Hence, the interior of

Py 1s nonempty and the lemma is proved.

Let ug be the unique solution to the minimization problem.
Lemma 1.4: ug is a regular point of the inequality —I'v < 0.
Proof : We need to show that
(7) — Ty <0 and
(22) There exists h € Vp such that — I'ug + §[—I'(ug; k)] < 0.
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By definition, if ug € P, then —I'ug < 0. For (ii)

S[~T(uo; b)) = lim ~[~T(uo + ah) — (~T'(uo))]

1 + aly ¢1
.1 wy T an wi

= — 0 -1 0 1 —J/0 -1 0 1
a—0 a [ ] P2 + a2 [ ] @2
w2 + a2 wo

. 1
= lim —[—(w1 + am) + (w2 + ana) + w1 — ws]

a—0 ¢
= lim a(ﬂz —m)

a—0 [e'4
=T — M1 = —I'h.
Choose h € Vg such that —T'ug+(—Ch) < 0 or 72 — 71 > w2 —w; and (ii) is proved.

Thus, ug is a regular point of the inequality —I'v < 0.

Theorem 1.4: There is a Lagrange multiplier, A € (Vo)“, where A > 0 such

that L(v; A) = L(u) + A(—T'u) is stationary at ug i.e.
6L(ug;R) =0 for all A € V.

Also, A(—T'ug) =0.

Proof. This follows from Lemma 1.3, 1.4 and the Kuhn-Tucker Theorem.

1.6 M-Beam System

Many applications may involve more than two layers. For example, we could
apply the techniques used in this paper to extend the current seismic models to
include shearing. Thus, it makes sense to look at 2 model for such multi-layered
media.

Suppose that we have M Timoshenko beams lying on top of one another. If
we let
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and let beam 1 occupy the set D x [0, 2h;], beam 2 occupy the set D x [2hy,2h; +
2h,], etc. then the ith beam occupies the set D x [Z;_:_ll 2h;, __J;-=1 2h;].(see fig.

9) We define the local coordinates for beam 1 as
1=z, y1 =Y, and z; =z — hy

and for the ith beam, we have
i—1
T; =2, Yi =Y, a.ndz,-:z—[Zth-i-hi] when 2 <: < M.
i=1
For each beam, we assume the following displacements:
Ui(z,y, zi) = zid:i(z)
Vi(z,y,2z:) =0
Wiz, vy, z:) = wi(z).

As in the two-beam case, we can write the strain energy for the ith beam as
1 L ko oph
Vi = 5 / / / {0'11611 + 012€12 + 013€13 + O22€22 + 0'23623}dz,-dyd:c
0 J—kJ—h,
and simplifying with a; and ; defined as in the 2 beam system we get
1 L
Vi= 5/ {aid?, + Bi(¢i + wiz)* }dz.
0
The strain energy for the M-beam system is then given by

M
V= Z Vi(U;, Vi, W5).
=1
We need to relate the displacements between adjacent beams. For M beams we

have 2(M-1) interface conditions and coefficients. We model the elastic properties
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of the interfaces by

1 M-1

L
Vr= 5/0 { ; Ks.(z)(hidi(z) + hiv1dir1(z))?

M-1
+ 3 K (o)wern (o) —wr(e))? b da.

i=1
As before, we assume that the beams are sitting on an elastic foundation. This is

modeled by

1 L 2 2
Vi = §/ (Krs(z)éi + Krn(z)wi) dez.
0

We still assume that there are both body forces and applied forces acting on

the beam system. The work due to body forces is given by
L M
Wpg =/ 4gk§:pihiwi(:c)d:c

0 ;=1

and the work due to applied static forces is given by

L
W, :/ fawnrr(z) dz.
0

Thus, the Lagrangian for the M-beam system with interface and foundation terms
is

L=V+Vr+Vr—-Wpg—W,.

For simplification, define the matrices

(25) 0 0 0
0 A 0 0
AM‘: . . .. . ,
0 ... 0 am O
0 oo 0 Bum
0 O
Bo = [1 0]’
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(Eg 0 ... O
gM = 9 EO : ’
0
L 0 0 Ep
- 0 07
AFN = 0 )
L 0 0]
and _ -
0
0 .
Aps = 0
|0 ... 0 J
For the interface conditions, let Ag, be the 2M x 2M matrix such that for 1 <
i< M-1
As, (2t — 1,2i — 1) = k?
Asi(.?i - 1,2+ 1) = hihi+1
As (21 +1,2t — 1) = hihip1
Asi (2 + 1,20 + 1) = kI,
and let
M-—1
Gs = Z Ks (z)As,.
=1

Similarly, let Ay, be the 2M x 2M matrix such that for 1 <:< M —1
An,(26,2) =1

An (24,2 +2) = ~1
An (26 +2,2i) = —1

AN (2 +2,2i+2) =1

and
M-1

Gy =Y Kn(z)An,.

=1
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We define the displacement vector by

[ &1 T

wy

b2

wa

.

LWL

The vectors associated with the body forces and applied forces for M beams are

defined by

- 0 -

4gkp1hy
0

Fg 4gkpahs

0
| 4gkparhoar d

0

F,=|:
0

fa

Using this notation, the Lagrangian for the M beams on a foundation with elastic

interfaces and a static applied force becomes
1 L
Lpr(u) = —2—/ {(u: + Epmu)T Apr(uz + Epru) +uT (Gs + Gn
0

L
+ KrnArn + KFsAps)u} dz — / (Fg + F.)udz.
0

We formulate the minimization problem for the M-beam system. Define the

following Hilbert spaces with their usual norms and inner products

H = L*([0, L], R*M),
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V = H'([0, L; R*™™),
Vo ={V :w;i(0) =wi(L) =0 1<i< M},
and the bilinear form on V x V' by

1 L
a(u,v) = 5/0‘ {(uz + $Mu)TAM(vz + Emv)

+4T(Gs + Gn + KrnArn + KrsArs)vdz.

Define the setsfor 1 <1< M
P, ={u € Vs : wit1(z) — wi(z) > 0}

where each set P; is a closed convex cone in Vp. Then

M
P=P
=1

is also a closed convex cone in Vj.

The minimization problem for the M-beam system is :
Find ug € P such that Lyr(ug) = min{Lp(v) : v € P}.

The following theorem follows from the two beam case.

Theorem 1.5: There exists a unique solution to the above minimization

problem.
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Figure 8: M-Beam Orientation
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2. Dynamic Model

2.1 Two-Beam System
In this section we develop models of time-dependent 2-beam systems. The
models will include structural damping and elastic interface conditions. As in the
static case, we model the road and its overlay as two Timoshenko beams with the
displacement for the ith beam in the z-, y- and z-directions defined by
Ui(zv Y, 2z, t) = Zi¢i(1!, t)
Vi(z,y,2:,t) =0 (2.1)
Wi(z,y, z:i,t) = wi(z, t).
For the dynamic model, we introduce a kinetic energy term. The kinetic

energy for the ith beam is

1 L sk phe
72=§/0 /k/h_pi(Ui+V}§+Wi2t) dz; dy dz

where p; is the density of the ith beam. Substituting for U, V, and W and

performing the integrations, we obtain

1 [ /4aRrdk
Ti=g [ o (Bhon v anit) o (22)
0

as an expression of the kinetic energy for the ith beam. The total kinetic energy

of the system is then given by 7 = 71 + 72. In order to simplify the notation, let

4h3kp;
a; = —1'3-—p— and bi = 4hikpi
and define
az 0 0 O
o & 0 o
M= 0 0 a O
0 0 0 b



Then the total kinetic energy can be written as

L
T = % f uf Mu, dz (2.3)
0

where u = u(z,t) is the displacement vector as defined in Chapter 1.

The potential energy, V, of the 2 beam system is obtained by
V=W +Va+Vi+Vr+G—-Wg—-W, (2.4)

where Vi, Vs, Vr, and Wpg are defined as for the static case.

W, = j(‘)L fo(z,t)wi(z,t) dz is the work due to applied forces where the applied

forces are now assumed to be functions of time as well as location. For the inter-

facial conditions

L
_ %/0 Ks(z)(hid1 + hads)? da

is the shear component at the interface and

L
= %/0 KEn(z)[(wy — wa)_]2dz

is a modeling term that reflects the elastic properties at the interface and ensures
we stay in the cone P as defined for the static case. fweset '={0 1 0 -1],
then
1 L
G =G(u) = 5/ Kn[(Tu)_]? d. (2.5)
0

From (1.9) we can express the potential energy by

1 L
-1 / {(we + €0)T Aluz + €u) + w7 (Ks(2)As + KrsArs
0

. (2.6)
+ KFNAFN)’U.} de — / (Fg + F.)Tudz +G.
0
The Lagrangian is defined by £ = [ Y(T —V)dt or
tr
C=/ [T —(Vi+Va+Vr+Vr+G —Wp —W,)] di. (2.7)
(o}
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Substituting (2.3), (2.6), and (2.5), we can write the Lagrangian as

ty L
C(u) = / / [%{u;‘r/\/lut — (e + Eu)T A(uz + Eu) —uT (Ks(z)As
0 0 <
1
+ KrsArs + KFNAFN)u} — gK’N[(Fu)_]2 + (Fg + F,)Tu| dz dt.

Let H, V, and V; denote the Hilbert spaces defined in Chapter 1. We define a

bilinear form on V x V by
1 L
a(u,v) = 5 / {(ux -{-E,'u)TA('v;r + Ev) -{-uT(KgAg-{—KpgAFs + KenApn)v}dz.
< Jo
(2.8)

As in the static case, if Ks, Krg, Krny > 0, we can find kg > 0 such that

a(u,u) > rollully- (2.9)

According to Hamilton’s Principle, the displacement occurs at a critical point

of the Lagrangian. Thus, calculating the variation of the Lagrangian, we obtain
s
5L = / (6T — §V) dt
0

= /(;t!/OL [—(a,l P16:601 + brwigdw + a2da1dPa + bawarrdws)
+ (10122001 + B1(P1 + wiz)z0w1 + a2 Pazz0¢2 + B2(P2 + waz)zdwa)
= (861 + 0121661 + Ba(62 + wr2)62 + Ks(has + haga)hadén

+ Ks(h1¢1 + hapa)hadds + Krsoadds + Kpnwabws

+ %KN[(F'U)_] <TII‘\—Z| - 1> dwy — %KN[(FU)—] (IF_UI- - 1) 5“’2>

+ (4gkpi1hidwy + 4gkpahsdws + fau(z,t)dw: )] dz dt.

The minimum occurs when § £ = 0 or when each of the coefficients of the variations

001, dwi, d¢3, dwy are equal to zero. This gives the following system of differential
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equations:

a1é16t — a10122 + P1(d1 +wiz) + Kshior + Kshihogs =0

1 . Tu
brwise —,31(¢1 + w1x)x + EKN[(Fu)_] (lr_’ul - 1) = 4gkpi1h; + fa(x, t)
asPase — aadazr + Ba(ba + waz) + Kshids + Kshihads + Krséa =0

1 Tu
bawasr — Ba(pa + waz)z + Krnwa — EKN[(FU)—] (l—le- - 1) = 4gkpshs

Lemma 2.1:

310w (s - 1) = —(Tu)_

Proof: This follows from

Tuw . _[-2 ifTu<0
Tul "~ l0 ifTu>o0.

Using matrix notation and Lemma 2.1, we can rewrite the initial value prob-

lem as

Muy — Auz + Eu)r + ETAE(u + ETu) + (KsAs + KrsArs + Ken Ay )u

— KNTT(Tw)_ = F (2.10)
u(z,0) =0
u¢(z,0) =0

where F' = F, + Fg.

Remark 1: These equations may also be obtained using conservation of energy. If
we express the total energy at time t as the sum of the kinetic and the potential
energy, then conservation of energy states that the total energy is a constant

function of time.
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Remark 2: To incorporate the strong damping properties of the concrete structures

of interest we include a structural damping term to obtain the weak form of the

initial value problem: Find u € L2?(0,¢s; Vo) such that for any ¢ € Vg
L L
/ 0T Mug dz + a(p,us) + a(p,u) —/ EnoTIT[(Tu)_]dz =< ¢, F > (2.11)
0 0
for almost all ¢ € [0,¢f] with initial conditions
u(z,0) =0 and ue(z,0) =0

where we have added a term, a(y,u:), for structural damping of the concrete
beams.
Theorem 2.1: There exists a unique solution to the weak formulation of the

initial value problem.

Proof: We use the Galerkin Technique. Suppose u = u® = B(z)c(t) where

¥ 0 0 0
_ 10 % 0 0
B = 0 0 ¢ 0’
0 00 o
Y = [¥1 %2 ... ¥n], and ¥; are independent functions in HY0,L;R). In

(2.11), set ¢ = B and u = u" to get
L L
[/ BT MB dz:il cit + l:f BT(KsAs + KrsArps + KrpnArnN)B d:c] Ct
0 0

AL L
+ / (B:r: + EB)TA(B,: + EB) dm] ct + [/ (Bz + EB)TA(B:: + EB) dz:] c
0 0

.y L
+ / (BTKsAs+ KpsArs + Kpny Arpn)B dz:| c— [ / KnBT I‘T[(I‘Bc)_]dz}
0 0
L
= / BTF dz. (2.12)
0
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Let
L
Go = / BT MB dz,
0

L
Ga = / (B: + EB)T A(B. + £B) dz,
0
L
Gs =/ BTKsAsBdz,
0
L
Gr = / BT (KrpsArs + KenApn)B dz,
0
L
H(c) = / KnBTTT|(T'Bc)-] dz,
4]

L
E=/ BT(F, + Fg) da,
0

and

GZGA-{-Gs-I-GF.

Then (2.12) can be rewritten as
Gocit + Ger + Ge—H(e) — E=0

and as a first-order system as

I 0 c| o 0 —I|}|e¢ + 0 1oyt _1to
0 Go] |et], G G Ct —H(c) F|{ 0]
Since (§)- = Z(|¢| — €), it is clear that the negative part of a Lipschitz
continuous function is Lipschitz. Also note that H(c) is Lipschitz since it is a
composition of Lipschitz functions. Thus from the theory of differential equations,

there exists a unique solution to the initial value problem

Gocit + Gey + Ge— H(e) — F =0 c(0) =0, c¢(0) =0.
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Using a Gronwall argument, we develop a priori estimates for the system.

From equation (2.10), multiply by u! and integrate over [0, L] to get
L
/ {ufMuu —ulA(uz + Eu)z + uTETAE(u + ETu,) +ul (KsAs + KrsArs
0
TrT T —
+ KpenArn)u — Knu, 7 [(Tu)-] —u; (FB + Fa)} dz = 0.
With u = v, rewrite this as
d f1 % o 2 £ T
7132 (ut Mu, + Kn|[(Tu) ] ) dz + a(u,u) p = (Fg + F,) usdz
0 0

and

£ L
%{/ u;f.‘\/tut + KN[(F'IL)_]2> de + 2a(u,u)} = 2/ (FB + Fa)Tut dz
° 0
L L
= / (FB + Fa')T'/M_l(FB +Fa.) dz +/ u’tra’\/{'ut dz.
° 0

Set
L
E(u) = é/(; (u] Mu; + Kn[(Tu)-]?) dz + a(u, u)

which is positive provided Ks, Kn, Krs, and Krx are positive. Then we get
d 1t Ty -1 1 (% p
—FE(u) < - (F + Fp)" M~ (Fg + F,)dz + = u; Muydz
dt 2 Jo 2 Jo
1 L
< 5/ (Fg + Fa)T MY (F5 + F.) dz + E(u).
0}

We can rewrite this as
d e—t L
E(e_tE(u)) S —2'—/0 (FB + FQ)T."\/I_I(FB +Fa)d$

Integrating from 0 to t, we get

e

t _—s L
e *E(u)(t) < E(x)(0) +‘/c; 3 /; (Fg + F.)TM™Y(Fg + F,)dz ds
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or

t
e

—s L
E(u)(t) < eE(u)(0) + € /0 5 /0 (Fg + F.)TM™Y(Fp + F,) dz ds.

We notice that the right hand side of this inequality is independent of N.

Thus, for a fixed ¢t and every N
E(uN) <k

where « is independent of N. From the definition of E(u) and the above inequality

it is easy to see that

u" is bounded in L2(0, tf; Vo)

and

u{ and ul are bounded in L2(0,%s; H).

Thus, there are subsequences such that
uy — u; weakly in L2(0,t5; H) (2.13)

and

uy — us weakly in L*(0,t; H). (2.14)
Define the set
Y= {‘U € Lz(oatf;Vo),vt € L2(O,tf;H)}.

Since Vo C H C H and Vj imbeds compactly in H, we know that the map

Y — L*(0,t5; H)
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is compact.[Temam)] Since u® € L?(0,5; Vo) and u¥ € L?(0,ts; H), then v € )

and there exists a subsequence that converges strongly in L2(0,ts; H), i.e. u¥V — u.

In fact, since uY = u, in L2(0,t5; H),

N, u weakly in L2(0,tf;Vg).

Let {b;}2, be a basis in V and let a € C§°(0,ts). Then from (2.11) we have

/0 t'{ / {67 Mul] — KnbTTT((Tu?) 1} dz

(2.15)
+a(b;,ul) + a(b;,u?)— < b;, F >}adt =0

Suppose u¥ = win L2(0,t5; Vo). From (2.13) and (2.14), we know that v -2 v

in L?(0,t5; H) and u¥ — u, in L?(0,t5; H). Thus, as N — =, a(b;,ul) —

a(b;,us) and a(b;,u?) — a(b;,u). Also,

tf L ty L
/ / b Mull dz p adt = — / / b MulN dz } oy dt.
0 0 0 0

We need to show that [(Tu®)_] — [(Tz)-]. Recall that the negative part of a

function can be written as ({)— = i(]EI —§) and

iy ty
/ / (T« | — [Tu|)? dz dt < / / N _Tru)?dzdt — 0.

Taking the limit of (2.15) as N — oc we get
ty L
/ { / {bg‘Muu — KnbT r’-”[(ru)_]} de
0 0
+a(b;, ue) +a(bi,u)— < b;, F >}a dt =0

for any a € C§°(0,tf).

Since {b;}$2, spans Vp and a € C§°(0,tf), we have for any ¢ € Vj
L
/ {pT Muy — KthTI‘T[(I‘u)_]} dz + a(p,u:) + a(p,u)— < ¢, F >=0.
0
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Thus, u is a solution of the weak version of the initial value problem and we have
existence.
For uniqueness, suppose u and % are weak solutions of the problem (2.11).

Then for any ¢ € Vp, u satisfies
L
/ {goT/\/iuu — KngTI"T[(I"u.)_]} dz + a(p,u:) + a(p,u)— < p,F >=0
0
and % satisfies
L
/ {goT,\/lﬁﬁ - KNcpTPT[(I‘ﬁ)_]} dz + a(p,4:) + a(p,2)— < v, F >=0.
0

Subtracting we get

L
/ {soTJw(u &) — Ky TT([(T)_] — [(rﬁ)_n} de
0
+a(p,(u —a):) + a(p,u—u) =0

for any ¢ € V5. Let w = v — 4 and choose p = w, € L2(O,tf; Vo) to get
L
/ {wf Mwy — KEnwITT([(Tu)_] - (Tz)-])} dz + a(w:, we) + a(we, w) = 0.
C

We can rewrite this as

d1l

L
3 {/0 th/\/iwt dz + a(w,w)} + a(w;, wy)

L
- /0 EnwITT([(Cu)-] - [(T@)-]) dz

or

L
;—t{/o wl Mw, dz + a('w,w)} + 2a(we, we)
L
=2 [ Kn(Cw)T(C)-] - (T8)_]) do
4]
< 2 KwlliTlllfwel ml(Tw)-) — (C&))]
< Slhwellys + KN I2ITIZ(Pw)-) — ((F) )|
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which holds for any § > 0. Also, from (2.9) there is kg > 0 such that

2a(ws, we) > 2rg w3

Thus, we get

d L
% {/ wl Mw, dz -i-a(w,w)} + (2K0 — 8)||wel|3
0 (2.16)

< ZIENPITIPI((T) =) — (T2) )|

where we choose § such that 2xq — § > 0.
For the right-hand side, recall that the negative part of a function can be

written as (£)— = 3(|¢| —€) and consider

(M1

1(T)-) = (T2)-)l

1

{ /0 (Cw)-] — [(Ta)])? dm}
L

1 ; ) 2
=3 {/0 [(JTu] — |Ta]) — (Tu — Ta))? d:z:}
< 5 {lliPul = [P@l]| + iTw ~ Ta}

Also,
0 < (ITw| - [Ta])® < [Tw — Tzl

Hence

L 3
I[Tu| — [Palf| = { [0 (ITu| — Pa)? dm}

1

< {/OL(I‘u —T'a)? d:z:}2 = ||T'u — T'z||

and we have that

1((Tw)-) = ((C%)-)|I* < |Tu —Ta||* = [|Tw|. (2.18)
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It follows from (2.16) and (2.17) that

5

IE NPT Tw]f®.

S| =

d L
= {/ wl Mw, dz +a(w,w)} + (2k0 — 8)[[well} <
0
Since 2kg — é > 0, we get

L
g_t. {/0 w;r./‘/('wtd:c-{-a(w,w)} < EIIKNIFIIFH‘*HWII%

Recall that a(u,u) > ollu||? > rollu|l% and let K(¢) = fOL wl Mw,dz + a(w, w).

Thus, we have

A
IA
aH
A
&
E
IA
3
N
2
€&
&
..l_

L
/ w?./\/(wt d:z:) = /K
0
d
£

where £ > 0 is a constant. The solution to K < &K is
0 < K <K(0)e** =0.

Hence, X = 0 which implies that a(w,w) = 0. But this implies that w = 0 or

u = © and we have uniqueness.

2.2 Estimation Problem

To formulate the inverse problem, it is convenient to make additional simpli-
fying assumptions. In particular, let

— oot }_ ul Mu, — c. T c T
L(u) —/(; A [2{ : Mug — (uz + Eu)” A(uz + Eu) — Ks(z)u” Asu 0.18)

— KnuTAyu} — (F + F,,)u_J dz dt

where we have ignored any foundation terms and replaced the cone condition by

a term that forces the two beams together with Ax defined as in Chapter 1.
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The weak formulation of the minimization problem can be written as: Find

u € L?(0,ty, Vo) such that

L
/ {07 Muse + (02 + E0)T A(us + €u) + 0T (KsAs + KnAn)u
0

(2.19)
— T (Fp + Fo)}dz =0
for any ¢ € V5. Note that we are ignoring damping here.
Let u(z,t) = B(z)c(t) where
£ 0 0 0
0 £ 0 O
B = 0 0 £ 0O

0O 0 0 ¢
with £ =4, ¢» ... £€n41] and ¢; are hat functions. In (2.19), set ¢ = B to
get

L L
{/ BT MB dz] cer + [/ (B: + EBYT A(B. + £B) da:] c
0 0
L L
+ [/ BT(KsAs+ KnAn)B de c— [/ BT(Fg + F.) d:z:] =0.
0 0
Let
L
Go =/ BT MB dz,
0
L
Ga= / (B. + £€B)T A(B. + £B)dz,
0
L
Gs = / BTKsAsB dz,
0
L
Gn = / BTKnAyB dz,
0

and

F(t) = /OL BT(Fp + F,) dz.
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We need to solve

GoLC 4 Ge = F(t) (2.20)
0 4e2 T ==

where

GZG(Ks) =Gas+Gs+Gn.

We approximate
d?c 1
-5 = Tang G-l — 26+ ¢
= = (Bo)? (ci—1 ¢ + Cit1)

and
Cit+1+ 2¢; + ci1
- 4

where ¢; = ¢(t;) the value of c at time ¢;. Substituting these into (2.20) and letting
F, = F(t:) we get

_1 1
Go [(At)z (ci-1 —2c: + Ci+1)J +G [Z(Ci-u + 2¢; + Ci—1)} =F,

or

At)? t)? t)?
(Go + ( 4) G) ci—1+2 (—-Go + (A4) G) c; + (G’o + (A4) G’) Cit1 = (At)2Ei

which holds for 1 < i < N; — 1. Define

A = (G’o + (AI)Q G) and A; =2 (—Go + (A)? G> .

4
We get the following system of equations:
co = ¢g
c1 — co = (At)e(0)

Arcg + Asey + Ajca = (At)2E1 (2.21)

Ajen, + A2en, -1 + AjenN,—2 = (At)2ENt_1-
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Define

co
C1
c=| ¢ s
CN,
- I -
-I I
- Ay A A
G: A]_ A2 A]_ ?
L Ay A, A;l
and
co
(At’)ct(O)
F: (At)zE.l
(At)*Fy, 4

Using this notation, the system of equations (2.21) can be written

G(Ks)é(Ks) = F. (2.22

—

We define the fit-to-data functional by

tf Nd B . 2
J(Ks) = /0 S (M BOe(Ks,8) —wf?) dt
=1

where a:fii) are the observation points; Ny is the number of observation points; II,,

is the projection of u onto w;; B(Y) = B(:z:&i)), and wii) = wl(zg)) 1s the observed

data. Define C : R — RNahy

leB(l)

leB(2)
C= )
I, B(N‘)

o1



and the observation vector

w(l)(t)

)
2(8) = wy” ' (t)

wi (t)

Thus the fit-to-data functional may be written as
tr
J(Ks) = / [Ce(t) — z(t)]T[Ce(t) — =(t)] dt. (2.23)
0

We use the trapezoidal method to write the discrete version of the fit-to-data

functional.
J(Ks) = SH{[Ce(0) ~ (O)]7[Ce(0) — =(0)] +2(Ce(tr) — =(t )T [Ce(ts) — =(t1)]
+ .o+ 2[Ce(tn 1) = 2(tn, —1)]T[Ce(tn, —1) — z(t N, -1)]

+ [Ce(tn,) — =(tw. ) [Celtn,) — =(¢n.)]}

or rewriting we get

At~ . - -
J(Ks) = o [ME(Ks) — z|" M[M&(Ks) — 2]
where
C
- C
M = ,
C
I
27
M = ,
27
I
and
z(0)
. z(t1)
Zz = .
z(Ny)
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The fit-to data functional was plotted in Matlab assuming K's to be piecewise
constant with two pieces using a time increment A¢ = .2 and 20 time steps. It
was assumed that the K g values fell between .01 and 6.76. In addition, we assume
that the applied force depends on both time and the location along the length of
the beam. In particular, we assume that f, = fsin(nt) occuring at z = L/3 and
z = 2L/3. Since there is no actual data for this case, data was generated using
the forward model to see if we could retrieve a given Ks =[Kg(1) Ks(2)]-

For this purpose, the values were chosen to be Kg(1) = 1 and Kg(2) = 5. Fig.
9 shows the contour plot of J(Ks(1), Ks(2)). Notice the minimum falls within a
trough. We can look at the individual matrix entries to see that the minimum is

1.985 x 10~7 which occurs at
Ks(1) = .76 and Ks(2) = 5.26

which are close to the desired values.
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Ks(2)

[¢]]

Contour Plot of Fit-to-data Functional

AN NN

Figure 9: Contour Plot of Fit-to-Data Functional
Note: The minimum occurs at Ks=[.76 5.26]
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Conclusion

In this paper, we have developed mathematical models to examine the inter-
faces of layered beam systems. The particular application examined was that of
concrete road overlays. We were particularly interested in how normal displace-
ment of the beams was affected by the shearing interface coefficient, Ks. We

ignored any effect due to friction.

For the static two-beam case, we observed that for Ks = [7 2], we got
reasonably good correspondence to laboratory data with a relative error of .1059.
We are able to improve on these results as we refine the vector Kg and for the
optimal case we got a relative error of .0253. For the time-dependent case, we
incorporated a structural damping term in the model. We then considered the
inverse problem to verify that we could recover a given Ks using data generated

from the forward problem.

Both the static and dynamic models developed in this paper allowed for sep-
aration of the two beams. This in effect corrected the problem of one beam
penetrating the other and allows us to try to predict where the two beams may
acutally separate. Also, with the addition of the time-dependent model, we can
now add a moving mass or rolling load which more closely approximate real world

applications.
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Appendix

This appendix contains the Matlab programs and functions used to generate
the graphs in this paper. Ovrlay2 is the numerical model for the static two-beam
problem. Ovrlyte0 is the estimation problem for the dynamic case. zdata is the

forward problem for the dynamic case which generates the data used in Ovrlyte0.
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sovrlay2: timoshenko beam with two layers.

:The purpose of this program is to minimize the Lagrangian
:for 2 Timoshenko peams. In order tco minimize when the 2
ibeams can separate, put cone=l.

*x

clear
cone=1l;
pen=1.0e+03;
XKn=1.0e+03;

force=1400;

£i=1;

£2=1;

tbeam and material parameters
grav=32;

hi=%8/2;

h2=3/2;

k=6;

L=37;

Ei1=3.63;

z2=2.9;

mul=0.14;
mu2=0.12;
rhol=141/(::“3)
rho2=150/(12"3
iDisplacement aata
Nd=5;

wd {1}=0;
wd(2)=-0.0014;
wd (3)=-0.00245;
wd (4)=-.0017;
wd (5)=0;
wd=wd;
xd(1)=0
xd(2)=9.25;
xd (3)=186.5;

xd (4)=27.75;
xd (5)=37;

N=10;

zThe Ks vector is of dimension M. It penalizes the interface
tcondition on each of the N subintervals in the beam.

% set basic matrices for piecewise linear basis functions

gO=eye (n):;
gl=zeros(n}:
g2=eye (n);
g0(l,1)=2;
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g0 (n,n)=2;
gl(l,1)=-0C.5;
gi(n,n)=0.5;
for i=2:n-1
gO0(i,i)=4:;
g2(i,i)=2;

end

for i=l:n-1
g0 (i,i+1)=1;
¢g0({i+-1,1)=1;
gl(i,i+1)=-0.5;
gl{i+1,31)=0.5;
g2 (i, i+1y=-1;
g2{i+l,i}=-1;

end

gO0=hs/6*g0;

g2=1/hs*g2;

alphal=(4*k~ni~3*E1l) /{3~ {1-mul"2)};
alpha2=(4*k*h2"3*E2)/(3*(1-mu2"2)) ;
betal=2*xzxhl*El/ (l+mul) ;
beta2=2<k*h2*¥E2/ (1+mu2);

x

GA={alphal*g2+betal*gl betal*gl' zeros(n)
betali-gl betal*g2 zeros(n)
zeros (n) zeros (n)
zeros(n} zeros(n) beta2*gl

*penalizes displacement at x=0 and x=L

for i=1:4

for j=1:m

bL(i,3j)=0:
b0 (i,]}=0;

end

end

e0=I0 0 0 O
010090
coccCce¢e
0 00 1};

bL(2,2*n)=1;
bL(3,3*n)=1;
bL(4,4*n)=1;
b0(1,1)=1;

b0 (2,n+1)=1;
b0(3,2*n+1)=1;
b0 (4,3*n+1)=1;
BL=bL'*eO*bL;
BO=b0'*e(l*b0:;

(N

A0
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aipha2*g2+beta2~g0

zeros{n)
zeros(n)
beta2~*gl
beta2~g2

The is the stiffness matrix and the boundary condition.
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Bdry=B0+BL;
G=GA+pen*Bdry:

N

Interface conditions

L3

o

BS=zeros (4) :
BN=zeros (4):
BS (1 l)=h'“2,
BS(L,3 *h2;
BS (3, -)—nZ*h*,
BS (3,3)=h2"2;
BN(2,2)=1;
BN(2,4)=-1;
BN (4,2)=-1;
BN(4,4)=1;

"

matrix that describes the penalization over the interfzace
between the beams

s=ela (L(S, N, M) ;

I=kro n((n*BN,gO):kron(BS,Gs);

o=[0 4*k*grav*rhol*hl 0 4~k*grav*rho2*h2l:

3
:boayO(Z,n+j)—l,

fbodyC (4,3*n+j)=1;
end

fbody0(2,n+1}=0.5;
£fbody0(2,2*n)=0.5;
fbody0(4,3*n+1)=0.5;
£body0(4,4*n)=
fbodyO=hs~*fbody0;
fbody=fb* fbody0;

i=i:4
for j=l:m
apldO (i, j)=0;

£apld0(2,j+n)=f1*b(L/3, -1, N+1,L) +£2*b(2*L/3,j-1,N+1,L) ;
end
fa=[0 2*k*force 0 0];
fapld=fa*fapld0;
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f=fbody+fapld:;
f=1_.0e-06*f;
c=-G\ft';

sign=0;
if cone==1

i
z

*Test to see if soluticn is in the cone.
z

fo

-c{3*n+1i)<C
(n+i);

end

plet(xd,wl,xd,wd, '~")

title{'wl,wd, in cone before minimizing')
pause

se Newton's Method to minimize Lagrangian.
sign>0
for 3=1:20

[EINTTTR I
tH &

oM

gradL=G'*c-£';
grad2L=G"':;
lagr(j)=.5~c'*G*c-f*c;

o

c=c-inv(grad2L)} ~gradL;
c=-c;
if cone==1