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A STUDY OF THE DYNAMIC ADSORPTION BEHAVIOR OF METHANE N-PENTANE 

N-HEXANE N-HEPTANE BINARY AND MULTICOMPONENT 

MIXTURES ON 03 GRADE SILICA GEL

CHAPTER I

INTRODUCTION TO AND STATEMENT OF THE PROBLEM

The application of static as well as dynamic adsorption concepts 

have been extensively analyzed and investigated in the past. Numerous 

authors, (Tl), (G3), (Rl), (H3), (Ml), (Al) have given detailed and 

complete mathematical presentations of the adsorption phenomenon, 

and its application to industrial processes.

Although explicit mathematical solutions involving adsorption 

mechanics have been derived for some time, a major portion of former 

research efforts have not been successfully applied to commercial 

operations. The lack of application of readily available analytical 

solutions to the dynamic adsorption process results, perhaps, from 

the complex nature of these modeling procedures. The lack of labora­

tory information necessary to convert mathematically stated concepts 

into practical engineering design criteria, has also impeded actual 

application of dynamic adsorption theory.

In the area of natural gas adsorption, attempts have been made to 

apply various theoretical solutions to hydrocarbon recovery by the 

dynamic adsorption process. The solutions of Klinkenburg (Kl), Rosen 

(Rl), Thomas (T2), Vermeulen and Hiester (V4), and Gleukauf and Coates 

(G2), among others, have been successfully applied to the recovery of
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the paraffin hydrocarbon family on granulated solids such as activated 

carbon, and silica gel. These applications are limited to binary adsorbates, 

The data presented by McLeod (M2) and Needham (Nl), as well as Day 

(Dl) indicated that recoveries of binary mixtures of methane with n-bu- 

tanes through n-hexanes could be predicted by direct application of 

various existing analytical solutions. These data are invaluable be­

cause they established a premise with which the academic mathematically 

oriented approach to the adsorption mechanics could be supported and 

applied to actual operations.

The efforts of McLeod (M2) and Needham (Nl) were especially useful 

in that they pointed ouc the particular techniques and solutions espe­

cially applicable to binary gas mixtures of n-pentane/methane and n- 

hexane/methane dynamically adsorbed on a granulated solid. The data 

presented previously, however, was but the first step towards a usable 

design criteria that could realistically predict the dynamic adsorp­

tion behavior of the numerous multicomponent mixtures of hydrocarbons 

found in actual field operations.

The purpose of this dissertation is to attempt to achieve a prac­

tical solution to the dynamic adsorption of multicomponent mixtures of:

1) methane - n-pentane - n-hexane, and 2) methane - n-pentane - n-hexane 

- n-heptane at 800 psig and 90°F on 03 grade Silica Gel. The dynamic 

studies were all conducted at the natural gas research laboratory 

located on the north campus of the University of Oklahoma.



CHAPTER II 

THE ADSORPTION PROCESS

Static Adsorption

The phenomenon exhibited by a solid in its affinity for fluid par­

ticles brought into contact with its surface area can be generalized

as the adsorption process. Although the mechanics of adsorption apply 

to both liquid-solid as well as gas-solid mass transfer, this presenta­

tion will deal strictly with gaseous mixtures of adsorbates and solid 

adsorbents.

The accepted terminology in the area of adsorption relates the 

level of any adsorbate concentration, in the gaseous phase to the 

concentration of the adsorbate on the adsorbent, q^, utilizing an 

appropriate isotherm. The isotherm, in effect, is the most applicable 

mathematical model best suited to relate constant temperature adsorbate 

concentrations in both solid and gaseous phases.

There are, perhaps, three main isotherms whose characteristic 

shapes govern virtually all natural gas to solid adsorption processes.

1) The Linear Isotherm - occurring when the adsorbate concentra­

tion of the adsorbent continues to increase linearly with the adsorbate 

gaseous concentration.

2) The Favorable Isotherm or the Langmuir or Freundlich Relation­

ships - occurring when relatively high concentrations of the adsorbate

3



are achieved on the adsorbent for low adsorbate gas concentrations.

This isotherm tends to achieve a maximum asymptotic component adsorbent 

concentration,

3) The Unfavorable Isotherm - occurring when the adsorbate solid 

concentration is very low for a wide range of gaseous compositions re­

sulting in poor recovery on the solid adsorbent.

Illustration II-l indicates the importance of the linear isotherm 

in the determination of the ability of any solid to adsorb a particular 

component. This relationship has gained wide acceptance in the predic­

tion of adsorbent concentrations because of its simplicity, yet overall 

applicability. This general trend can be classified as a Type I isotherm.

■u
£>£•H •H

Temperature - 
constant ,

Linear Isotherm 
Type I

U*

c = Adsorbate gaseous phase concentration

Illustration II-l

Although the representation in Illustration II-l is linear, i.e., the 

slope of the adsorbent-adsorbate concentration line is constant, this 

condition has historically been proven strictly true only in very dilute 

gaseous mixtures. Freundlich presented an empirical isotherm for static



adsorption equilibrium that related the adsorbate-adsorbent component 

concentrations with a correlating exponent, n, characteristic of the 

component in question:
n II-l

The value of n is very important in determining the nature of the 

Freundlich theory. For natural gas application, the isotherm seems well 

suited for general prediction of recovery concentrations, with a value 

of n less than but very close to 1.0. Illustration II-2 shows a graph 

of the Freundlich isotherm. In essence this isotherm can be considered 

a favorable isotherm, especially with n < 1.0 because of the increased 

adsorbent recovery for any equivalent adsorbate concentration.

Temperature - 
constant4J Langmuir or Freundlich 

Isotherm 
Type II

c = Adsorbate gaseous phase concentration

Illustration II-2

The Freundlich theory can be classified as the Type II isotherm in its 

application to natural gas adsorption.

The Langmuir isotherm is another favorable Type II isotherm that 

has found recent acceptance in the area of natural gas adsorption. This 

isotherm will be discussed in more detail in this chapter. Mathemati-



cally, the Langmuir theory states:

II-2

= the component adsorption equilibrium constantwhere: AU
q^° the theoretical ultimate adsorbent capacity 

for the adsorbate.

The efforts in this dissertation are directed towards the application 

of this isotherm to natural gas mixtures.

A third type of isotherm, Type III, which falls into the category 

of a non-favorable class is depicted in Illustration II-3. In this cas; 

the adsorbate concencration of the adsorbing solid is very low for any 

corresponding gaseous phase adsorbate concentration. In simple termi­

nology, to recover the same amount of any component from a gas mixture, 

a Type III isotherm would require more solid in contact with the gas 

than would Type II or Type I.

■u
•H

Temperature - 
constant Unfavorable Isotherm

Type III

cr

c = Adsorbate gaseous phase concentration
Illustration II-3
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Dynamic Adsorption

The dynamic adsorption process is unlike the static only in that 

the adsorbate is present in a carrier gas that is in motion over a 

granular solid. As with the static case, the dynamic adsorption process 

usually occurs at constant system pressure and temperature. It is intu­

itively reasonable to assume that the motion of the carrier gas should 

not affect the equilibrium between the gaseous and adsorbed component 

on the solid. Day (Dl) has presented data in support of this conclusion. 

The difference between the two procedures, i.e., static-dynamic lies in 

the following criteria:

1) The formation of a mass transfer zone in the dynamic case 

causes the adsorbate to distribute itself on the adsorbent in a 'tran­

sient' fashion, A position on the solid where the adsorbate concentra­

tion is zero is termed the leading edge of the zone. Where the solid 

concentration has reached its equilibrium level is denoted as the trail­

ing edge. That portion of the adsorbent below the leading edge is vir­

gin solid, whereas behind the trailing edge the bed or adsorbent is ex­

hausted. See Illustration II-4.

2) The adsorbate concentration in the gas phase remains constant 

in the dynamic process whereas in the static case, the gas phase concen­

tration continually decreases while the solid phase increases until 

equilibrium is achieved.

The overall equilibrium achieved on the solid adsorbent by either 

the static or dynamic system is the same, depending only on the pressure, 

temperature, and final adsorbate gas phase composition.



-Transfer Zone

Carrier
Gas

4J
•H
•H

Distance from bed inlet 

Illustration II-4

The important parameters that need to be considered in describing a 

dynamic system can be enumerated as follows:

1) The carrier gas composition.

") The adsorbenc equilibrium capacity for the adsorbate,

3) The system pressure and temperature.

4) The velocity of the carrier gas.

5) The length and cross sectional area of the adsorbing bed.

The carrier gas composition and resulting equilibrium concentration 

on the adsorbent are perhaps the most important of all the defining 

parameters influencing the mechanics of dynamic adsorption. Many re­

lationships involving both the Langmuir and Freundlich isotherms have 

been presented for various gases in a binary mixture. More recently, 

the work of McLeod (M2), Needham (Nl), Ashford (A2) , and Ennecking (El) 

have related binary equilibrium concentrations of hydrocarbons on acti­

vated carbon and silica gel. As yet, however, there is no general re­

lationship relating multicomponent hydrocarbon mixtures to their equi­

librium dynamic adsorption capacity. This study will seek to relate 

such hydrocarbon mixtures to their corresponding solid adsorption 

capacities.
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The pressure and temperature are, of course, critical in deter­

mining the behavior of fixed bed dynamic adsorption. In order to mini­

mize the inter-relationships between parameters, however, the studies 

that were conducted in support of this dissertation were all made at 

90°F and 800 psig. These values of temperature and pressure were felt 

to be the best representative values of field operations involving the 

adsorption process.

Gas velocities and bed characteristics were varied in order to 

include the affects on the transient behavior of the adsorption mechanism.

The Langmuir Theory and Its Application to Binary 
and Multicomponent Mixtures

Basically, the Langmuir isotherm describes the relationship between 

the adsorption of any component on a solid adsorbent, and the desorption 

of this component from the solid to the gas. At such a time when the 

two mechanisms are equal, equilibrium will have been achieved for the 

particular system. Stated mathematically:

■'ads = k ggg (6) II-3
where: 6 = that portion of the total possible solid surface

2area covered by the adsorbate - L

5° = the total area available -

= the partial pressure of the component in question
-2in the gas phase - FL 

^ADS ~ adsorption proportionality factor 

= the desorption factor.

In application of the isotherm to natural gas adsorption, it has been
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customary to redefine Equation II-3 into a more useful form by writing:

*̂ a " ^ADS^^pi

^  ^  n - 5
«° C

where: ^ADS ~ proportionality factor relating the partial
 ̂ 2-1 pressure of the gas to its composition - L F

q^/q^°= the ratio of the instantaneous component solid

concentration to the absolute maximum concentra­

tion.

Rewriting II-3 gives:

c (1 - "ads % _  _ II-6
' q j  "ADS, q j

Now, at such a time that the solid is fully saturated for any correspond­

ing gas composition, c^, the value of q^ will become q^, the equilibrium 

concentration. Thus:

q qO , 20 0̂0
CqkAD - — > ■ —  •

Where now the group of terms: redefined as k^^°,

the Adsorption Equilibrium Constant for the component at any pressure 

and temperature.

Solving II-7 for q^ gives:

, *‘aE "=0 1. . II_8

* %

Ifhen written in terms of the Langmuir Isothen, the c^ and c^ values are

written in mole percents.
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or:

—  = —  + [----   ] —  . II-90 , 0  o c
ĉo q=o o

Equation XI-9 is extremely useful for two reasons: first, it affords a

way in which to graphically represent adsorption data in order to obtain 

a "fit" for subsequent predictions, and second, the important parameters 

and q^°, the adsorption equilibrium constant, and the ultimate solid 

capacity can be obtained from the plot. This particular isotherm is 

discussed by Vermeulen (V2), Thomas (T2), and Heister and Vermeulen (H2), 

in theoretical adsorption rate equation developments. No data has yet 

been presented for dynamic natural gas adsorption to support the validity 

of II-9 for this particular application. Later chapters will discuss 

the determination and application of the values and q^° and their

relationship to dynamic adsorption.

Equation II-9 in its given form is good only for a binary mixture 

of an adsorbate and the carrier gas stream. In other terms, the param­

eters q^, c^, and k ^ °  are binary data values, and if the Langmuir iso­

therm is to be used to predict multicomponent mixtures, provisions must 

be made to redefine q^ as well as k ^ °  for the multicomponent cases. These 

provisions will be discussed in subsequent chapters.

Adsorption Mechanics 

In order to formulate the physical adsorption phenomenon into 

meaningful mathematical relationships the following criteria must be 

available:

1) A dynamic differential material balance, describing individual 

component behavior as a function of the rate and time of adsorption must
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be written to incorporate governing variables.

2) An expression must be written, that governs the transient equi­

librium achieved by the gaseous or solid adsorbate concentration in con­

tact with the opposite phase.

3) A basic assumption must be made concerning the mechanics in­

volved in the adsorption process.

4) Conditions must be set which govern whether the solutions to 

the equations arising from conditions 1) and 2) are transient solutions 

(i.e., a non-stable mass transfer zone, or steady state solutions, i.e., 

solutions that are independent of the distance covered by the adsorp­

tion front).

Illustration II-5 shows a differential element that represents the 

physical adsorption phenomenon. The rigorous derivation of the problem 

is given in Appendix C. The solution is similar to the energy exchange 

in heat transfer first treated by Schuuman (SI), and later by Furnas 

(FI).

V + ÛV

Gas
v) Flow

Illustration II-5

c^(V, V + Av)

The units of c^(V, v) are now written as M/L .

Expressed analytically the material balance (for a given time differ­

ential, A6) is:
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9 c 9 c 9 q
- < T ^ \  •  + Pb^T-T) ii-:°V

where: V = Total volume of soute or carrier gas passed through the
3element during a given time - L
3

V = Differential element volume - L 

$ = Packed bed porosity
3Pg = Packed bed density - M/L 

Equation 11-10 is sometimes written in terms of the bed length, h, and 

the time of adsorption, 9, as given by Klinkenburg (Kl) and discussed 

by Klotz (K3), and Needham (Nl). This transformation is done by noting

simply that:

and

—  A6 = AV II -l lA
S ' s

(A_Ah) = Av . II-llBD
Thus, 11-10 becomes:

9 c   ̂ 9 c p 9 q p
“ ^FlT^g ^B^9 0  ̂ AgG II-llC

II-llC then becomes:
9 c 9 c 9 q

Equations 11-12 or II-lO, with an appropriate rate equation, will define 

the solution for c = c (0, h), or c = c lV,v) as the conditions de-& & 3. â
scribe. Appendix C gives the complete derivations for the various rate 

equations assumed along with 11-12 and 11-10 for both transient and 

steady state phenomenon.

The Langmuir isotherm is again well suited to describe the instan­

taneous equilibrium achieved when the adsorbate concentration is increas­
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ing on the adsorbent during the transient phenomena of the adsorption 

cycle. The ensuing relationship is perhaps the most important factor 

in the determination of realistic solutions involving all variables. 

Returning to Equation II-8, and rewriting the relationship for any
•kconcentration q in equilibrium with a transient c :

, • ■ k '.j: .
■ ■ • V  ■.

Thus, dividing 11-13 by II-8 gives:

V. ,illVv .
" ° (1 + ■=a>

The factor: -----    is defined as the Equilibrium Parameter, r.
---------

From this relationship:

‘'AD° = o

Equation 11-14 then becomes:

* , q c /c
—  = ■ r  / /  v°— r ~  * 11-15q. r + (1-r) Cg/c^

Equation 11-15 relates the transient instantaneous equilibrium in the 

solid with the gas phase concentration. Further, the equation relates 

the relative gaseous concentration to the equilibrium concentration 

at the corresponding c^, q^, rather than the ultimate value, q^°, as 

in the isotherm relationship, II-9.

Hiester and Vermeulen (H2) have shown that another expression for 

r is:
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q.r = 1 ------ . 11-16o
q.

The development of this expression is given in Appendix B. This 

equation, along with 11-15, formulate the basic analytical expressions 

involving important adsorption parameters.

It is obvious from 11-16 that adsorption values of r must range 

between zero, (0), for very high concentrations of the adsorbate in 

the carrier gas, to one (1.0) for very dilute systems that correspond 

to the trace chromatograms. The value of r is critical to the solu­

tion of the analytical problem, and special solutions arise for values 

of r between zero and one, as well as at the end points (i.e., 1.0 and 

0) .

In actuality, the values of r can be greater than 1.0. This case, 

however, corresponds to that of elution kinetics discussed by Vermeulen 

(V4), and Thomas (Tl). This presentation will not deal with the elu­

tion equations involved in the desorption process.

For multicomponent applications. Equation 11-15, along with Equa­

tion 11-16 and the appropriate rate and material balance equation will 

serve as the necessary relationships to achieve a practical solution 

to the transient adsorption phenomena required before a system can 

be adequately defined.



CHAPTER III

ADSORPTION MECHANICS AND RATE EQUATIONS FOR BINARY 

AND MULTICOMPONENT MIXTURES

Basic Definitions

In any dynamic process, the assumption made concerning the adsorp­

tion mechanics drastically affects the solution of the basic mathemat­

ical relationships. Regardless of the rate equations incorporated 

into the solution, one of the following mechanisms controls the tran­

sient mass transfer:

1) Internal Solid Phase Diffusion

a) Occurring when the controlling resistance to the energy 

or mass transfer process is present on the solid phase 

at the solid-gas interface.

2) External Phase Diffusion

a) Occurring when the controlling resistance occurs at an 

imaginary gas "film" at the gas-solid interface.

3) External Reaction Kinetics

a) Occurring when the governing mass transfer mechanism is 

a net kinetic reaction between adsorption and desorption 

rates.

4) Combined Phases Diffusion

a) Occurring when the appropriate kinetic relationships are
16
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a linear combination of the reaction mechanics of 1) 

through 3)

5) Steady State Adsorption - Incorporating the Michaels (M3) 

type of mass transfer as in the analagous ion exchange described also 

by Vermeulen (V3).

The terminology utilized in adsorption relationships is common 

to virtually all equations, regardless of the assumptions involved. 

These terms are all defined in the nomenclature.

General Mathematical Models - The Material Balance Equation

As described in Chapter II the material balance, or continuity

equation expressed in differential form is:
3 c 3 c 3 q

“ 3̂ V \  " "3 V ^v‘ """ 3̂ V \  ' III-l

Many authors, including Klinkenburg (Kl), Rosen (Rl), Klotz (Kl), 

Thomas (T2), and others discuss the transformation of variables in 

Equation III-l. This transformation follows in an analagous form to 

the work done originally by Schuuman (51) in the heat transfer area, 

and later extended by Furnas (FI). These relationships are discussed 

in Appendix C. Vermeulen and Hiester, however, outline the general 

material balance as:

-(iz)zN = (3TzNT)z " 1:1-2

As discussed by Thomas (T2), and Goldstein (G3), Equation III-2 is of 

the generalized hyperbolic type of partial differential equations 

wherein a particular function f (Z, ZN) is assured such that:

df (Z, ZN) . dZ + d(ZN) III-3
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where: x - III-3A

y ■ # > Z N -

In addition:

df(E, ZN) = 0 .  III-3C

Equation III-2 is the nucleus of the mathematical model that 

yields a particular solution depending on the rate equation incorporated 

into the analysis.

Proportionate Pattern Results 

In cases where large adsorbent bed volumes are involved, i.e.,

N >> 1.0 the results of Devault (D2) and Wilson (Wl), yield:

X . . III-41 — r

Equation III-4 relates x to Z at a constant r. This equation 

holds true, however, only for the proportionate pattern case, i.e.:

f  ' f

or
É1 = ÈL .
ds dx

Unfortunately, this condition does not apply to most cases of hydro­

carbon dynamic adsorption, especially when N is moderately low.

Constant Pattern Diffusion: Binary Equations

As pointed out by Michaels (M2), and discussed by Vermeulen (V2), 

the constant pattern diffusion process presents a very powerful and 

useful tool in predicting adsorbate recoveries in dynamic systems.
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McLeod (M2) has utilized this approach in predicting binary methane - 

n-pentane and methane - n-hexane system.

At such a time that a bed is fully saturated at a volume, v$, a 

macroscopic material balance around the volume will yield:

c V = c v$ + q PqV. (c is in proper units). XII-5O O “ D o

This equation demands that the ratio of the dimensionless parameters 

be unity. Thus:

- 1'°' "1-6

When III-6 is incorporated into the material balance, there results:

X = y . Ill-7

External Phase Diffusion

Previous discussions concerning the external phase diffusion case 

have dealt with the general aspects of the particular solution. The 

rate equation for this assumption is as follows:

6̂ 9. o 6 *— â = a ° —  [c - c ] III-8d9 f P Pg a a •
*The transient equilibrium established between c and q isa a

represented by:

l-(l-r)q^/q_

Now for the case of a constant, r, and for constant pattern diffusion, 

i.e., y=x, Michaels (M2) first solved Equation III-8 with XII-9 to 

give:
X (1-x ) (1-x )+  in = ^^(z, - z^). xxx_io
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The solution III-IO is now a function of the column throughput 

parameter, 6, only.

Solid Phase Diffusion

This equation is both the general solution to the internal phase 

case, but represents the "steady state" solution that reflects the ini­

tial assumptions. McLeod (M2) has shown that the solid phase relation­

ships is perhaps the best suited mechanism available to describe steady- 

state hydrocarbon dynamic adsorption behavior. The rate equation for 

this case is:

■ V p° ("a* - “-a*

while the transient isotherm is:

^  = r + (I:rA./c, •

Along with the constant pattern assumption (y = x), these expressions 

integrate to give:

r X (1-x ) (1-x )
W  (1-X;) - 1 "  ' "p " z  -

This equation was found by McLeod (M2) to be the most representative 

of methane - n-pentane and methane - n-hexane systems. It is, in 

fact, the primary relationship used in this work. Previous work has, 

however, limited this relationship to binary systems.

The effluent concentration, x, is again a function of the column 

throughput parameter, 0, and is defined from a reference point Z^.

The asymptotic nature of x with increasing AZ as AZ =°, has his tor-
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ically named the solution the Solid Phase Asymptotic Solution.

Kinetic Reaction - Classical Solutions 

This solution follows more closely with the Langmuir theory in 

the definition of the rate equation. For this case, the relationship 

is:

*‘a d

It is this equation that serves as a basis for defining the 

dimensionless variables t, s, 0 and Z as pointed out by Vermeulen (VI), 

In addition. Equation III-14 reduces to: (see Appendix B)

= [x(l - y) - ry(l-x)], III-15

This general expression along with the material balance yields 

the general solution presented in its most complete form by H. C. 

Thomas (T2) as:

r
J  0

»rs
I (2/tT) dÇ o

X = -----------------------------   III-16
»*rs rsl-J e^"n^(2/tÇ) dç + e^^ J  e I^(2/rtT dC]1-

0 '  0 

In terms of N and NZ III-16 becomes:

X = ------------ n ------------------------- • in-17J(rN, ZN) + e(r-l)N(Z- )[i_j(N,rZN)]
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These equations hold for any value of N, r, or ZN, and are not governed 

by the limiting assumption of constant pattern mass transfer within 

the packed bed.

The "J" function corresponds to the general case of:

X
J(x,y) = 1 - I (2vÇ?) dç. III-18

- I

These solutions are very rigorous and complete. By their very 

nature, however, they do not easily lend themselves to workable design 

equations that would be readily usable in practical operations. In 

addition, the pertinent parameters in the equations, i.e., s, t, r 

cannot be defined unless previous laboratory data has predescribed 

the limits, nature, and application of the relationships. Since the 

historical application of III-16 and III-17 has been with binary 

mixtures, the applications are limited to that type of data. The 

next chapter will discuss the laboratory measurements involved in 

determining the proportionality factors required for use of the 

equations.

An interesting case of Equation III-17 occurs when the equilibrium 

parameter, r, is equal to 1.0. This corresponds to the linear iso­

therm, i.e.,
*

—  = —  (r = 1.0). III-19
âo o

This case was used by Needham (Nl) in his application of the 

Rosen (Rl) and Klinkenburg (K2) solutions of analagous heat transfer 

problems to binary mixtures of methane and n-pentane. The general 

solution to Equation III-14 with r = 1.0 is the general case solved
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first by Schuuman (81) and later extended by Furnas (FI): 

•s
= 1 - f  e-t 

J  0
dÇ . III-20

This case is very limited, however, since r = 1.0 is approximated only 

by very dilute solute concentrations. In addition, the assumption of 

a linear isotherm is somewhat of a limitation. This hindrance is not 

as severe in binary adsorption, as shown by Needham (Nl), but is more 

pronounced for multicomponent processes.

Combined Phases Reaction 

In many instances, it is advantageous to obtain a knowledge of 

the overall behavior of an adsorption system as an average between the 

solid and external cases. This particular solution is especially use­

ful when the 'film' resistances expressed by Equations III-8 and III-17 

are approximately the same order of magnitude. For this case Vermeulen 

(VI) has shown that adding the internal and external rate equations 

yields an expression for the resistance equivalent to:

R (combined) = ~ + - ^ ^ o  • III-21
f p o p p

The equation has been redefined as:

f P P P q. 'o

where: * *
y . - ^a> %  + ~

- rq^(% - c^)
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Vermeulen (VI) discusses the technique required to calculate values 

of b, by defining a mechanism parameter, i.e.:

Ç = ' . III-24
c.'s, - ■’a'

The author presents a graphical relationship for the calculation 

of b. For the mechanisms present in hydrocarbon adsorption, however, b 

is very nearly constant and between values of 2.0 and 1.0. McLeod 

reports a value of 1.20 for n-pentane methane mixtures at 90°F and 800 

psig while the corresponding n-hexane methane value is 1.43. These 

numbers were based on a constant value for the equilibrium parameter, 

r. This assumption is not true, and is only an average representation 

of the mechanics of the adsorption process.

Applications of the Rate Equations 

Fortunately much has been done in the area of natural gas dynamic 

adsorption towards the application of previously derived solutions. 

Needham (Nl), has 'fit' the Rosen (Rl) and Klinkenburg (K2) solutions 

to n-pentane-methane binary mixtures, and McLeod has applied the con­

stant pattern solutions of Michaels (M3) and Gluekauf and Coates (G2) 

to methane-n-pentane and me thane-n-hexane systems. Their work is 

most valuable, because they established the following criteria:

1) Solid phase particle diffusion was the controlling mechanism 

for both n-pentane and n-hexane as the adsorbate. Values reported by

both Needham (Nl) and McLeod (M2) indicate that the term k a ° is muchP P
smaller than the corresponding k^a^^ values for virtually all compo­

nent concentrations and gas flow rate ranges. The following table
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illustrates an example of the values for the correlating parameters 

taken from their work.

N-PENTANE-METHANE

McLeod 
3-8 mesh gel

Needham 
3-4 mesh gel

k a P P kf*p" co Q(SCF/hr) ^ i n  ^o Vg
.397 338 1.46 1583 .44 1.4 All

.576 338 2.04 1562 .70 2.0 Velocities

.272 680 .55 6688 .26 .55

2) The steady state solutions (i.e., constant pattern diffusion) 

can be utilized to adequately represent adsorption phenomena for hydro­

carbon binary mixtures at 800 psig and 90°F.

3) In Needham's (Nl) work the more rigorous solution was very 

close to the constant pattern case applied by McLeod, lending support 

to stipulation (2).

The purpose of the remainder of this work, therefore, will be to 

apply the solid phase diffusion equation to multicomponent systems.

In order to accomplish an adequate solution, however, the following 

re-evaluations are noted;

1) In the solution to binary mixtures the solid phase Equation 

III-17 applies in its present form. However, multicomponent mixtures 

require that provisions be included in the calculation of the relative 

effluent concentration, x, in order to account for the increased instan­

taneous equilibrium reached while one mass transfer is being displaced 

by another.
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2) Previous work done by McLeod (M2), considered only a constant 

value for r, the equilibrium parameter for methane - n-pentane and 

methane - n-hexane mixtures. These values were respectively: .667 

for n-pentane and .4 for n-hexane. While a constant value of r, in­

deed, simplifies the approach taken in "fitting" effluent curves to 

Equation III-13 the results are only an average representation of ac­

tual adsorption parameters. The existing binary analysis reported

by McLeod was re-evaluated for both the n-pentane and n-hexane cases 

in order to arrive at more meaningful values for the pertinent param­

eters ,

3) The work done by Needham, (Nl), considered only the linear 

isotherm i.e., d q /d c = const, with r = 1.0. The slope of the 

dynamic adsorption isotherm, however, can be more nearly represented 

by:

d ĉc ĉc
O O

where r is defined by the adsorbate in question. Subsequent chapters 

will show, however, that the value q^/c^r is a very slowly varying 

number over a good portion of the applicable range of c^. In fact, 

for multicomponent mixtures a simplifying assumption is made on the 

basis of III-25 in order to achieve a practical multicomponent solid 

phase asymptotic solution.

4) Previous authors have not reported a general isotherm that 

is applicable to dynamic systems. McLeod reports limits over which 

the Freundlich isotherm gives reasonable agreement with measured 

binary data. Moreover, a method of defining adsorbent component 

concentrations for multicomponent data is essential to the solution
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of multicomponent adsorption using the constant pattern approach. 

Subsequent chapters will discuss such an application.

5) Cases arise where the constant pattern diffusion case for any 

rate mechanism is indeed a non-applicable assumption. For predictions, 

therefore, employing the asymptotic solution, care must be taken to 

ascertain the nature of "current" adsorption parameters in relation 

to their 'steady-state' values. Provisions are also made in this study 

to derive transient data from constant pattern diffusion values.

Limitations

It is beyond the scope of this work to consider defining pertinent

parameters for the components lighter than n-pentane, or heavier than 

n-hexanes.

The effect of n-heptane concentrations on the adsorptive phenom­

enon relating to n-pentane and n-hexane, was studied in the three adsor­

bate runs made. However, no single n-heptane runs were made to define 

binary parameters for this component. It is felt that a description of 

the n-pentane and n-hexane results should represent an adequate start 

to aid in the application of laboratory information to field installa­

tions and design.

Likewise, the application of this data will be of an approximate 

nature when sizeable quantities of butanes are in process gases. For 

moderate to low butane concentrations, however, the effect of that compo­

nent on the adsorptive behavior of heavier components is minimal.



CHAPTER IV

BINARY AND MULTICOMPONENT ADSORPTION ISOTHERMS AND 

EQUATIONS FOR THE SOLID PHASE DIFFUSION CASE

Requirements for Defining the Problem Analytically

The general requirements for binary data applications of Equation

III-13s i.e.:
X (1-x ) (1 - X )

In -^-7:--^  - In 7-1---- ^  = N AZ III-131-r x^ (l-Xg) (1 - x^)

can be summarized as the following:

1) An available isotherm relating the known parameter, c^ to the 

resulting q^. This isotherm, in turn, defines r for the specific case,

r = 1 - o

2) Measured binary steady state data that can be related to III-13 

as outlined by McLeod (M2). The resulting parameters, i.e., k^a^^ and 

Np should serve as a basis for predicting further multicomponent values.

Hydrocarbon Adsorption Applications - The Langmuir 
Isotherm: Present and Previous Work

The Langmuir isotherm has been used to correlate dynamic adsorption 

values of c^ and q^ for both binary and multicomponent mixtures. The 

data reported by McLeod and Needham have been represented in the graphi­

cal format demanded by the isotherm (see Appendix A) i.e.:

28
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1 +    —  • lV-1
0̂0 0̂0 ^AD

Figures A-1 and A-2 represent the results of the plot for both n-pentane 

and n-hexane on 03 grade silica gel at 90°F and 800 psig.

As denoted by IV-1, the "apparent" intercept of the plot, i.e., 

l/q^° occurs when i/c^ = 0. This condition is, of course, impossible, 

since the maximum value n-pentane could achieve in any binary system 

of methane n-pentane must be less than 100.0%. However, at c^ = 100% 

the value of the term:

1 0 : 
' AD

0—1is seen to be quite small in comparison with the intercept q^ . In 

addition, the absolute values of 1/q for concentrations of either n- 

pentane or n-hexane above 99%, do not vary appreciably. The results of 

the plot therefore, can be taken as directly representative values for

both q ° and k. °.oo AD
The following parameters were found to be the most representative 

values for both and k^^° for the binary n-pentane and n-hexane iso­

therms :
k ° q °Component AD °°

N-Pentane .444 .333

N-Hexane .959 .408

It can be seen, therefore, that for any binary system defined by the

Langmuir isotherm r varies as:
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r = 1 + .444 c or

r = 1 - .333

for n-pentane, while for n-hexane:

1r = 1 + .959 c , or

r = 1 - .408

are seen to apply.

Day (Dl) and Needham (Nl) have reported maximum "monolayer" adsorp­

tion capacities wherein physical constants reported by Hirshfelder (H3) 

for n-pentane and n-hexane were used to compute the maximum equilibrium 

adsorption concentration achieved when the surface area available in a 

21A° pore size gel was completely covered with the adsorbate. This 

condition is denoted in Illustration IV-1.

N-Pentane

monolayer
adsorption

n-pentane molecule

10.5 21 A° 
Davison 03 

Grade 
Silica Gel

4.9A

Illustration IV-1

The values reported by both Day (D2) and Needham (Nl) for the per­

tinent adsorbates are reported as:
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Day Needham

Adsorbate q (Monolayer) Adsorbate q (Monolayer)

N-Butane .134 N-Pentane .136 - .145

These numbers are presented to point out an interesting fact. If, 

indeed, the monolayer calculations are correct, and the 'extensions' of 

the corresponding Langmuir isotherms to 1/K^° q^° c^ = 0 are correct, 

then it follows that the monolayer capacity is not the 'ultimate' gel 

capacity. It seems, therefore, that at high concentrations of the 

adsorbates, n-pentane and n-hexane, multiple layers of the adsorbed 

phase are formed within the pore structure of the adsorbent. Brunaer 

(B3), points out that localized 'cylindrical' orientation of the 

adsorbate molecules is not inherently assumed by a particular isotherm. 

Conversely, monolayer adsorption, as discussed by Day (Dl), results in 

the following stipulations:

1) No molecular interaction of the adsorbate

2) Constant heat of adsorption within each adsorption site.

On the basis of the presently calculated values of .333 lb/lb n- 

pentane and .408 lb/lb n-hexane the number of molecules needed within 

the internal surface area of a 21A° gel can be summarized as follows:

N-Pentane
2

ttDL = 800 —  (maximum surface area)gm

L = 11.38 X 10^^ A° length of single capillary of uniform

size.

Now with an absolute maximum adsorption capacity of .333 for n-pentane

.333 -3* ̂ 2 ~ 4.62 X 10 gm-moles/gm-gel
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the number of molecules per gram of gel would be;
— ? o o 204.62 X 10 X 6.02 X 10 = 27.85 x 10 molecules/gm-gel

Using the values reported by Hirshfelder for n-pentane, i.e., mo­

lecular diameter 4.9A°, molecular length 10A°, gives:
20

11.38 X 10---  _ 21,3g X 10^^ units of n-pentane/gm-gel10
The number, N, of molecules per n-pentane unit is:

20
N = = 24 molecules/unit

11.38 X 10 ^

Needham (Nl) has shown that two-layer perfectly oriented adsorp­

tion in the surface area of a 3-4 mesh gel would yield 13 molecules.

The above reasoning, therefore, suggests that in dynamic equilibrium, 

a strong molecular deformation or interaction occurs.

Needham (Nl) points out, that monolayer, highly oriented molec­

ular arrangement seems to predominate in dynamic adsorption. However, 

his dynamic data for n-pentane in methane was fit to an empirical 

Freundlich type isotherm for an adsorbate concentration range of 

.075-3.0 mole % n-pentane. Perhaps at higher adsorbate concentrations 

molecular interaction could predominate in the adsorption mechanics, 

causing a greater than the ideal packing density. In addition, Need­

ham's data was reported for a 21A° silica gel, whereas the present 

data was measured for a 22-23 A° gel.

McLeod (Ml), moreover, reports equilibrium parameters values of 

.667 and ,4 for n-pentane and n-hexane in methane. According to the 

definition of r:

r = 1 ----    ̂ (for n-pentane),
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= .333.o

For an 'average' value of q^, say .1, which corresponds to a 1.0 mole % 

pentane (in methane) gives a value of:

0̂° " *333 "30"

For MeLeod's data, taken under the same conditions as this work 

the value for the ultimate capacity, q°, seems more in agreement with 

the present number, .333.

Day (Dl) has reported static binary equilibrium data for both n- 

pentane and n-hexane in methane at pressures ranging from 100 psig to 

1000 psig. Beyond 1000 psig the adsorption capacity decreases for both 

adsorbates. His findings indicate that at pressures greater than 650 

psig and less than or equal to 1000 psig, the adsorption isotherms are 

virtually identical. This phenomenon suggests that silica gel pore 

volume 'fill-up' occurs at pressures slightly less than 600 psig for 

all concentration levels, remain at that equilibrium level and then 

desorption occurs when molecular interaction or deformation forces the 

adsorbate into the gas phase in order to compensate for the increased 

partial molar volumes of the component in that phase. The n-pentane 

and n-hexane data presented by Day has been replotted in the present 

units as 1/c^ vs. 1/q^ and the results are shown in Appendix A. For 

the case of the n-pentane data, there is good agreement between equil­

ibrium values at 685, and 1000 psig and 100°F and the present dynamic 

isotherm; expressed in Figure (A-3) as:

= 3.00 + 67.6 —  . (N-Pentane-Methane)q côo o
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The 'intercept' of the static data, however, indicate a somewhat 

higher value than the reported monolayer capacity for n-pentane, i.e., 

.136 lb/lb. For n-hexane, Day's data are reported along with the present

n-hexane dynamic isotherm, i.e.:

—  = 2.45 + 25.5 . (N-Hexane-Methane)
*̂00

Again, the data show remarkably good agreement taking into considera­

tion the fact that these values cover a range of +300 psig and 10°F 

(i.e., 700 to 1000 psig and 90 to 100°F).

All indications are, therefore, that at higher n-pentane and n-

hexane concentrations than normally encountered in naturally occurring 

hydrocarbon mixtures (i.e., >5.0 mole %), the adsorption is not nec­

essarily limited to that of the (highly oriented) monolayer. Indeed,

the practicality in the reported relationships for n-pentane and n-

hexane lies in the ability of the isotherm to reproduce (by calculation) 

previously measured data.

The Multicomponent Isotherm

The Langmuir approach has now been established as perhaps the best 

suited isotherm for binary hydrocarbon mixtures as it has correlated 

well with experimental data. A re-evaluation of the parameters of the 

isotherm are necessary, however, to predict multicomponent behavior 

from binary data. Expressed in its usual fashion, the Langmuir iso­

therm is again written parametrically:

k ° cAD o (c^ is in mole %). IV-2
1 + ’'a d ° %
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Now the effect of more than one adsorbate (excluding methane, whose 

equilibrium capacity is assumed to be negligible) in an adsorbing sys­

tem can be described by Illustration IV-2.
MWIII MW.II MW,

<U -H 4J W

Zone
II

Zone
III

Zone

u
Distance Down Adsorbent Bed

Gas
Velocity

Illustration IV-2
The phenomenon of chromatographic separation demands that the

adsorbate of highest molecular weight be predominantly attracted to the 

adsorbing media, while the lightest molecular weight component is least 

attracted to the adsorbent. The physical result of this mechanism, is 

that hydrocarbons of highest molecular weight emerge last from the out­

let of the adsorbent bed while the most volatile emerges first. Dur­

ing the adsorption process, however, an overall 'equilibrium' is 

achieved In the adsorbent medium between all adsorbate solid concentra­

tions and the corresponding gas phase concentrations. This adsorbent 

concentration must be lower than the corresponding binary level, be­

cause the particular adsorbate must share the adsorption area with the 

other "n" components.

This overall equilibrium is not achieved uniformly, however, 

while the adsorption process is in progress. In the leading edge of 

the lightest components' mass transfer zone, (Point A in Illustra­

tion IV-2), the adsorbate concentration is increasing normally in a 

transient fashion to its binary level, q . This level is represented
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by Point B where the gas phase adsorbate concentration has reached c^. 

The adsorbate in Zone II, however, cannot experience such binary equil­

ibrium concentrations because of the residual concentration of adsorbate 

I in the zone. In fact, when adsorbate I first occupied the gel at 

the inlet to the adsorbent bed, adsorbate II began physically "displac­

ing" or "desorbing" I while the former progressed over the gel already 

laden with adsorbate I. Component II continually displaces the binary 

levels of I until equilibrium is achieved as the conditions demand.

In a similar manner, component III or any "n" component likewise will 

displace II and I from the available adsorption sites until an overall 

dynamic equilibrium is achieved between "n" components for any concen­

tration levels, and a particular pressure and temperature. The dis­

placement of one component by the correspondingly higher molecular 

weight components is termed the "differential desorption" or simply 

the "desorption" of one component by another.

An interesting facet of the desorption mechanism is that the 

trailing edges of all but the heaviest components in a mixture of "n" 

adsorbates will have locally higher equilibrium adsorbate and adsorbent 

concentrations. This phenomenon arises because while the desorption 

mechanics are in progress, the adsorbate I, for example, desorbed by 

II, will enter the gas phase at a point B where the transient gas 

phase component concentration is already c^. Thus, the localized levels

of c increase as a function of the concentration level of adsorbateo
II, as well as the length of the bed. Illustration IV-3 denotes this 

point.
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Idealized Two Component System
Time Time 6 + A0

4J
Gas

O -H 
0 }  4-1  T3 rt FlowZone Zone Zone

II
Zone

4 -1

gCJCnJ otH U Distance down adsorbent bed(U
Illustration IV-3 

The cross-hatched areas illustrate the desorbed portion of the I

adsorbate, that is present in Zone I for a localized increase in c^

and respectively. For three component mixtures. Illustration IV-

4 indicates the corresponding description:

Three Component System
Time 0 + A6Time 00)4Jnj

« § o
M  4-1  T) f9 < H Flow
^ gH Üy cn5 or4 U
(S Distance down adsorbent bed

Illustration IV-4 
Thus the procedure follows until the final equilibrium values are

reached for all three components at the trailing edge of the last zone.

These values of q ', however, are less than the binary values of a by■*•00  ̂  ̂ *CO
an amount equal to the desorption:

1+1 IV-3

q«i I^q^i, i+l, i+2 IV-4

or in general terms
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Returning to IV-2 and rewriting the isotherm for any multicomponent

-thmixture involving the i component:

^AdI % i  

^ ^adI % i

IV-5

where the singly "primed" parameters indicate ternary or two adsorbate 

systems.

Likewise, the i^^ + 1 component has an isotherm:

4.i+l
o

^“i+1

^ADi+1 ^oi+1 

^ ^ADi+1 ‘̂ oi+l
IV-6

Now, it can be seen that a plot of either IV-5 or IV-6 would yield a

figure such as one shown by Illustration IV-5.

4-1•H Pressure and 
Temperature - Const.

6 • *H
Multicomponent
Isotherm

Binary Isotherm
cr

CO

•H

Reciprocal Mole Percent - 1/c .

Illustration IV-5

It is reasonable to assume that the value of k,^! or k can------  ADi ADi+1
be characterized as a constant depending on the concentration level of 

the "i" or "i+l" component, whichever happens to be the "key" component.
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As before, the pressure and temperature are assumed constant. Thus, for 

a system of n-pentane - methane to which n-hexane has been added, the value 

of = ,444 for n-pentane will decrease because of the decreased value

of The slope of the new isotherm will be:

For moderate composition levels of the second adsorbate, the value 

of the intercept, q^°, should be very nearly constant, as the mole per­

cents of the gaseous components are plotted as "reciprocal" values. Thus, 

for, say an "i+l" concentration of 50%, the absolute maximum "i" concen­

tration must be less than 50% (in a methane carrier). The reciprocals, 

however, i.e., 1/50 are sufficiently close to zero to give virtually the 

value of q for the adsorbate corresponding to the binary case.

Thus, returning to IV-5 and IV-6 and solving each by its correspond- 

ADi'ing value of k ' •

—  ^  = (--- ;-- -) (— ) IV-7
^ o c i  '^cox ^ A D i  *^°^i ' ' o i

^ ° ° i  ^ o i  *^°°i

1  9 c o i

= (— ) ( • .   ) .

Likewise:

c . q - q .01 0̂0 0̂01

9.1+1
’̂ ADi+l  ̂ o , ^

^oi+1 *̂“i+l *̂“i+l
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Dividing IV-7A and IV-7B by the corresponding binary values for

gives :

k ' a 'ADi ^“i
, o  , o  , 0  , X “i ’
ADi ADi % i  ^“i *̂“i

and
If * Q *ADi+1 ^=1+1

IV-8

k °  k °  c (a° - o ' )ADi+1 ADi+1 oi+1 '‘̂ «i+1 ^«i+l'^
= IV-8A

The value of a. or a.,, denotes the relative increase in slope of 1 1+1
the dynamic isotherm at any concentration of the alternate adsorbate. 

and have been calculated for n-pentane - n-hexane mixtures in methane.

The results are discussed more thoroughly in a subsequent chapter. How­

ever, the various levels of or correlate very readily with the

mole percent of the alternate adsorbate concentration.

For a multicomponent system of say methane, n-pentane, and n-hexane 

the level of n-pentane determines the value of (n-hexane) and the

concentration of n-hexane sets the value of k ^ ^  (n-pentane) . The multi- 

component isotherm for any one component is defined only at the level of 

the other adsorbate. A system therefore, of two or more adsorbates is 

defined by any one point on each adsorbate isotherm.

The foregoing analysis works also very well for mixtures of three 

adsorbates with methane as the carrier gas. For this particular multi- 

component case, (i.e., mixtures beyond ternary levels) the Equations

IV-8 and IV-8A for a. and a., become;1 i+n

a'. = -------- — --------  . IV-9

i < n
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where now;

= ratio of the adsorption equilibrium constants 

q^V = the equilibrium level of the adsorbate on the 

adsorbent in multicomponent mixtures lb/lb 

n = number of adsorbates 

Values of have been correlated successfully for a "pseudoternary" 

system of the particular component "i" and the sum of the mole percent 

of the remainder of the adsorbates. This procedure is again discussed 

in a subsequent chapter.

The value of q^°, as mentioned previously, is assumed to be constant 

at the measured binary level, i.e., where

- 0 . IV-10
1 o o
‘ADi *̂“i ^oi

The Solid Phase Constant Pattern Diffusion Equation 
for Multicomponent Mixtures

As already shown, the transient equilibrium achieved instantaneous­

ly between the solid-gas interface is expressed by the Langmuir type 

isotherm:

—  = — 7—  • IV-11q r + (1-r) c /c<=° a o

This equation, however, is valid for the range 0 ^  c^yc^ ^  1.0 where the 
*corresponding q^ /q^ for the solid phase is a function of a only. For

multicomponent simultaneous mass transfer, equilibrium values for c^
*

(and ) can reach levels greater than the input c^ level for the gas

phase. This phenomenon arises from the zone desorption of one component 

by another of higher molecular weight as previously shown. Consequently,
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*values of /q^ are likewise greater than 1.0, as the solid phase adsor­

bate concentration strives to reach a dynamic equilibrium during mass ex­

change with the gas phase. This phenomenon is indicated in the multi- 

component effluent concentrations in the laboratory collected data shown 

graphically in Appendix A.

It is convenient, to define a Relative Concentration Enhancement 

Factor, X, or an Equilibrium Enhancement Factor, that describes the final 

value of the effluent gas adsorbate concentration achieved as the mass 

transfer zones progress the length of the adsorbent bed, h. For any 

adsorbate in question, "i", this factor (X) can readily be seen to be a 

direct function of the following parameters:

1) The concentration of the displaced zone - c^^

2) The concentration of the displacing zone - c^^^^

3) The adsorption pressure and temperature, psig - °F

4) The length of the adsorbent bed - H^.

Of these parameters (1), (2), and (4) are, of course, the ones pertinent 

to this work and will be considered in the development of the solid phase 

diffusion model.

For a given equilibrium condition, at h = the adsorbent bed

length: *

%  (S.° - ÂDm

where the subscript "m" denotes the respective multicomponent values

for any adsorbate, replacing the "i" subscript for generalization.

Now, by the hypothesis made concerning X, at h = and c^ = f(c^),

the actual value of c at its maximum level will bea
X(c , H ) c , IV-13O 1 o
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where now H^) is the unknown enhancement factor for the equilibrium

concentration increase.

Previous analysis has shown that the slope of the dynamic isotherm

is;

^ = - ^ = f ( D , r ) .  IV-14dc c ro o

In addition, the values of q^/c^^ are seen to be approximately constant, 

as indicated by Figure A-6 in Appendix A.

In view of the above criteria, it is reasonable to assume, as an

estimate, that X for the gas phase applies also to the solid phase con­

centration. The approach is obviously not exactly true since:

=f(r), IV-14Ac r o

and values of q^ beyond q^ would have to be found by:

"Xc/AC
°

0

dq = ---  I dc • IV—14B^a c r I o

However, in order to simplify the ensuing relationships, a linear iso­

therm is applied at the higher concentrations, i.e., > c^: > q^. Needham 

(Nl) has indeed shown the applicability of such an approach.

Thus, with simplified terminology:

X = X (c , H„) o i

Where now the value of q /c for any adsorbate in a multicomponent mix-=m om
ture is equivalent to:
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^ADm ^ ^ ,_  = --- --------  = 1 + k • c
om om ADm om

and again the "m" subscript has replaced the "i" of previous developments

and denotes c /c > 1.0. a o
Returning to IV-12 and simplifying:

%  ^ADm

^ ^ADm
IV-17

Dividing IV-17 by IV-16: 
*q k. ' c 1 + k. ' c^a _ r ADm a i ,_____ADm om,

q ll + k ' c  ̂  ̂ k ' c ^^«m ADm a ADm om

q c /ca a om

IV-18

a r + (1-r ) c /c•“m  m m a om
IV-19

where now the multicomponent equilibrium parameter is given by:

(q. - EAq.)r = 1 . 0  . IV-20m o

Where the values of q^ - lAq^ are calculated from the multicomponent iso­

therm as discussed.

Equation IV-19 is identical with the binary development, except for

the values of c and qom “m
In the case where solid phase diffusion is controlling the adsorption 

process :

*The value of q^ now is replaced by IV-19. The resulting expression as 

given in Appendix C results in:
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dy (A-x) X (1-r )   _ _ in
d0 Xr + (1-r ) X m m

IV-2 2

This equation integrates to:

m 1 2  1

which is identical to the one derived by Gleukauf and Coates (G2) except 

for the value of X, which allows the instantaneous relative concentration 

levels of X to be greater than 1.0.

Equation IV-23 has been successfully applied to multicomponent mix­

tures of n-pentane, n-hexane - methane, and n-pentane, n-hexane, n-hep- 

tane - methane. The results are discussed in a subsequent chapter.

Values of the throughput parameter A0 are also discussed as the multicom­

ponent nature of the system requires a re-evaluation of the parameters 

defining A0. Even for the binary case, Equation IV-23, which reduces to 

III-13 is not completely rigorous.

As values of x^ approach X, (or 1.0), values of A0 become increas­

ingly large. In fact, x^ never achieves a value of X and becomes asymp­

totic with the X axis for infinitely large values of A0. For this rea­

son, values of x^ = .95 for the binary case usually denote the zone ex­

haustion while the value of x^ = .05 will correspond to A0 = 0.

In addition, IV-23 does not account for reductions in the value of 

X once Xg has achieved a stabilized value of X in multicomponent mix­

tures. A value of x^ =X-.05 will sufficiently define the multicomponent 

zone exhaustion, but no provisions are made in this work to allow for 

decreasing values of c^ beyond A6 for x^ > (X-.05).

The fact remains, however, that IV-23 or III-13 are extremely use-
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fui in predicting zone emergence times for particular tower and adsorp­

tion conditions, as well as effluent behavior for those values of time 

during which the zone is emerging from the tower (i.e., ^X-.05).

As will be shown in a subsequent chapter, IV-23 can be used to calculate 

values of A from input adsorption parameters.



CHAPTER V

APPLICATION OF THE CONSTANT PATTERN SOLID PHASE DIFFUSION 

THEORY AND EQUATIONS TO BINARY AND 

MULTICOMPONENT MIXTURES

The Michaels Approach - Steady State Adsorption

Before the development of any relationships pertaining to dynamic 

adsorption can be meaningful, a set of parameters must be defined for 

the steady state case.

Michaels (M3), has perhaps the most direct approach to the problem 

in his treatment of ion exchange theory. The ion-exchange theory is 

identical with constant pattern mass transfer phenomenon, and the ter­

minology used is most useful in describing dynamic performance charac­

teristics .

Michaels, likewise, described a mass transfer zone, wherein the 

solute adsorbate concentration was:

0 < c /c < 1.0 .—  a o —
As the zone progressed through the resin, at a constant velocity,

V^, with height, H^, the time at which the zone emerged from a bed of

volume v0, was 0„. Likewise, the time required for the zone to travel

the length of the bed and emerge, was 0^. Illustrations V-1 graphically

represent the Michaels system for the dynamic process, and during the

zone emergence times at the bed outlet. (0̂  >_ 0 >_ 8g)«
47
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H

1.0

c 9=6o
Zone Emergence

Zone Breakthrough

Distance Down Adsorbent Bed - Fc

.95
Maximum Adsorption 
While Zone is Trav­
ersing Bed/c

.05.

Time of Adsorption - min. 0 0

Illustrations V-1
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From this analysis Michaels defined various terms that are redefined 

herein for the mass transfer case:

8g = The effective zone breakthrough at bed outlet - min. 

defined as the time at which x = .05

The effective zone exhaustion time at bed outlet at which 

X = .95 - min.
®E = The

X  =

®F = The

«Z = The

«T = The

Qb = The

Qt = The

F = The

as :

F = The fractional capacity of the bed at 8̂  ^  8 <_ 0^, also defined

/ ■
(1 - c /c ) d9 a o

F = B
E B

V„° = The constant macroscopic rate of advance of the Michael’s Zm
type zone while in the tower - ft/min.

From these definitions, it is possible to derive important relationships 

that are useful in calculating steady state data from laboratory measured 

values. These equations are derived in Appendix E and are discussed in 

a subsequent chapter.

Before the Michaels type approach can be applied to the solid phase 

diffusion equation, in order to describe effluent behavior, a knowledge
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of the limiting conditions for the constant pattern mechanics must be 

achieved. For this reason, existing binary adsorption models were re­

evaluated in order to extend the adsorption theory to multicomponent 

behavior.

Criteria for the Constant Pattern

A critical part in the role of the constant pattern diffusion equa­

tion is the successful application of representative laboratory data for 

subsequent parametric analysis of the relationships. Thomas (Tl), Rosen 

(Rl) and others have, indeed, shown that certain criteria must be met 

before a dynamic system has achieved constant pattern mass exchange.

The general stipulations and mathematical requirements involved 

in the correct application of the diffusion equation apply in context

to both binary and multicomponent mixtures as well. The ensuing review,

therefore, is intended for both systems, while later sections of this 

chapter will deal with particular aspects of the separate dynamic sys­

tems .

As pointed out by Vermeulen (VI), the constant pattern diffusion 

case implies:

y = X V-1

or states that the rate of advance of the zone does not affect the shape

of the zone on the adsorbent bed.

Illustration V-2 illustrates a mass transfer zone for binary adsorp­

tion during transient conditions at 8 = 6^, and later at constant pattern 

conditions 0 =
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/c 0=6 10=9o

Distance Down Adsorbent Bed - Ft. 
Illustration V-2

While the zone is growing, i.e., dq^/dG f 0 @ h = o, the length of 

the mass transfer unit is variable with time. At such a time, however, 

when the zone is stable, a material balance around a differential bed 

element (i.e., in Illustration V-2) gives:

QA6 - HgAg*
D 4  ■— 1.0. V-2

The conditions that must be met in satisfying stabilization of the zone 

can be summarized analytically as:

=  0 V = Vg0 Ag$ V-3

Where V^ = velocity of the advancing zone - ft/min.

In addition, while the zone traverses a distance say, H^, (its own 

length) to a position denoted by the dashed line of Illustration V-2 @ 

6=02

V-4

Returning to the definitions of the throughput parameter, 6, and 

the column capacity parameter, Z: (for binary applications)

8 = kp*p°
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O V0I = k a D 77- . V-6P P Q

V-2 can be seen as the result of dividing V-5 by V-6:

Where: V = Q A9

v0= Ag .

The condition for Z = 1 in Equation V-7 is very important to the dynamic 

system in that at this particular arrangement of the pertinent parameters 

the material balance is satisfied. Thus, any particular tower volume v$, 

defined by a corresponding h value, distribution coefficient, D, and the

volume flow rate Q, will define the time at which the amount of adsorbate 

contained by the carrier gas is stoichimetrically equal to the component 

adsorbed by the solid dessicant at its equilibrium capacity:

Q6 - v0
\  1

Equation V-8 is extremely useful in describing and predicting real 

adsorption times from dimensionless parameters as it is a function of 

known tower and dynamic conditions. The parameters, of course, pertain 

to binary systems of one adsorbate in a carrier stream. V-8 holds true 

for any tower volume v4> and says nothing of the actual mechanics of the 

adsorption procedure.

There is a further criteria, however, that describes the conditions 

for stabilization. These conditions can be described by returning to 

Equation V-7 in terms of the parameters 0 and E.

G = ' v-7
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Thus :
k a

d 0 = [Q de - dh] ̂ V-9

and
k a °D

d l = -2_E—  dh. V-10

Replacing V-10 in V-9 gives;

- D f \ d h  q B) 4» - V " ] '  v-llB

Now V-11 is defined at a constant value of x (or c^) so that the partial 

derivative would be:

,38, 1 de
(3%)% D Ag $ dh " V-12

38 V do

' W l h  - D •

Now the term 4^ can be described as the rate of change of [he abso- dh
lute real time, 6, with the adsorbent bed distance, h, at constant c^:

4 =a = 0  = ^  V-14

or:

4r = - (3c /3h)8 / (3c /90) h V-15Qn. SL 8i

dh Vg

This value is therefore the reciprocal of the "zone velocity" or the 

rate of advance of the mass transfer mechanism, along c^ = const. Re­

turning to V-13;
90 V 1 ,
W x  ■ M  VÇ " D  '
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or solving for V^:

V
Vy = ----- ^ ------- . V-18

»[D (||)^ + 11

Thus, Vg is an inverse function of the partial derivative of the dimen- 

sionless parameters 0 and Z. as defined by V-18 is called the con- 

stant-pattern zone velocity V^^^.

McLeod (M2) has outlined a procedure by which the solid phase dif­

fusion equation may be applied to corrected laboratory data. The correc­

tions involve comparison of the generalized Thomas solution slopes of;

(dZ^e (Thomas) (8>>1.0)

to slopes calculated from effluent plots of x vs. AZ. The transient 

laboratory measured slopes, are thereby corrected to "steady-state" slopes 

by the appropriate conversion factor.

A procedure that accomplishes the same objective arises by establish­

ing the conditions for a constant zone velocity, i.e.:

(i#)x = I'O V-19

in Equation V-18. When this condition is met, constant pattern diffusion 

requirements are not in the tower, and the mass transfer zone proceeds 

at velocity, V^, until it has traversed the remaining adsorbent bed.

When V-19 is viewed in the light of the material balance in the tower 

for Z = 1.0,it can be surmized the values of Z are at first higher than 

corresponding values of 0 (for a constant x) until such a time that 

Z = 0 and then both Z = 1 and (9Z/30) = 1.0. Equation V-19 can be vi­

sualized by the following criteria:
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The material balance in differential form gives:

V-20

Equation V-14, rewritten in terms of 0 and Z gives:

° - <lf>I + O a  • v-21

Now:

By the hypothesis of V-19, and V-20:

= (ï0)E' v-23

or simply:

X = y.

Since the criteria for constant pattern diffusion, i.e., x = y, is 

satisfied, it follows that V-19 is, indeed, the correct analogy for V^ = 

const. Likewise, justification for the application of constant pattern 

mechanics arises from a constant zone velocity.

The generalized Thomas solution will yield the corresponding condi­

tions at which V-19 is satisfied. Analytically, the Thomas solution must 

be differentiated at a constant x, and solved for a value of (3E/90) = 
1.0. As the mathematical differentiation of this equation is quite in­

volved, a much more direct approach can be achieved by graphical differ­

entiation of the variables. Values of the variable (0/E - 1) reported 

by Hies ter (HI) have been plotted vs. the equilibrium parameter, r, for 

a constant x. From these plots, the values of 0, E , and r that satisfy 
constant pattern criteria can be readily determined.



56

This criteria has been carried out by a cross plot of the Thomas 

solution for the solid diffusion case. The relationships involving the 

parameters 0 and Z supplied by Hiester were represented at a constant x 

for a variable equilibrium parameter, r (see Figures A-20 and A-21). A 

subsequent chapter will discuss the results of the plot and the limits 

at which constant pattern diffusion actually occurs. In summary, how­

ever, the stabilized condition of the zone for a constant Z(Np) was 

found to be dependent on r only. It was observed that abnormally large 

values of Z and 0 were required for the condition Z = 0 and likewise 

(90/9Z) = 1.0. Although large Z were required for complete stabiliza­

tion, the slopes of the parametric plot were found to approach 1.0 

quite rapidly, achieving values of approximately 1.05 at values of Z 
less than half those required for complete stabilization. This criteria 

is very important in dynamic adsorption, as for all practical purposes 

the mass transfer zones can be considered stabilized for 90/9Z = 1.05. 

These values of Z at which the partial derivative is 1.05 is noted 

below:

00/3:)%..01 - o ° 5

z r
13 .4
20 .6
67 .8

160 .9
209 .95
269 .99

Under the conditions described, then the zone velocity equation results in:

V /$ 90
''z° = ïfe- ’ 1  005) V-23A
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which is the steady state zone velocity for any component adsorbing under

conditions described by v and D.g
From V-9 it can be noted that when the mass transfer coefficient, k a'P P

is not the binary, steady state value, the derivation for is altered.

For this condition:

k a'$
dG = k a' d8  dh + [0 - — ]d (k a') V-23BP P Vg Vg p p

and,

dZ = k a’ —  dh + d(k a ') V-23Cp p Vg Vg P P

f
Denoting, as before, (dS/dh) = l/V^, and 0 = 9 -  h$/v^:

90 ka' k a'$ ,d(ka')
(âh)x = - -5-2- + a --âg-4_ . v_23D

z g

Also:
91 D$ D ht d(k a')
W x  ' s s  —  +  V— d P -  •g g

So that the term (90/9Z)^ becomes;

V-23E

1 t , d(ln k a') 
  H 0   PV V dh

(— ) = — --- S-------------;---  . V-23F^9Z X Dt Dht d(ln k a')
—   ̂ P P
V V  dhg g

This expression may be solved for in terms of the remaining variables.

This solution represents the transient case for variable k a' as well asP P
the derivative (96/9Z)^ itself. Rewriting V-23F gives:

I t  d(ln k a') v , dln(k a')
VI ' -  " f ' x  + din K " 1 +z g
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Finally,

" ~30 dln(k a^) 30 v & V-23H
W x  » + 1 + dln^^" ® 1 - $h-]

Equation V-23H will reduce to the constant pattern equation when

k a ’ = k a ° and the derivative of the dimensionless parameters is iden- P P P P
tical with one. In cases, however, the value of k^a^ is very transient, 

and is a function of the absolute tower length, h. This phenomenon will 

be presented in more detail in Chapter VII in the discussion of the lab­

oratory data.

It is of interest in this chapter to define, nevertheless, for

cases when k a' is not constant. For this condition, the derivative of 
P P

the logarithm of k^a^ with the logarithm of the tower length is negative, 

while the bracketed term in the denominator of V-23H is also negative 

for moderate ranges of the gas velocity, as used in this study. The 

product:

dink a' 30 v 6
dlnh ^^3f^x ° 1 “ ih"^

is therefore positive and greater than one. Resulting values of are

therefore generally less than No attempt has been made in this

work to calculate the reduced values, as a function of the above

product; however, the theory was verified by calculation of the Michael's

zone velocities for the three adsorbate runs under strongly transient

conditions. These cases, as well as the criteria employed to utilize

the constant pattern results, will be discussed in a subsequent chapter.
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Real Time Evaluation - Binary Mixtures 

As with the case of Z = 1, the time required for the zone to emerge 

and proceed to a time corresponding with Z = 1.0 can be computed by ob­

serving V-8 and the general Equation IV-23 with A = 1.0.

0 = —  [Dv$ + v$]
M Q

V-24

The physical significance of this time is very important in helping de­

fine breakthrough times, 0 , as well as exhaustion times, 6 .

Illustration V-3 indicates the time, 0 , corresponding to Z = 1.
M

As can be seen by the plot, the corresponding value of x^(i.e., c^/c^

(3 Z = 1.0) occurs when the amount of effluent emerging from the tower

at times greater than 9^ is numerically equal to the amount that will

be adsorbed between that time and 0 = 0_.b

1.0
.95

/cp

.05

Time of Adsorption - 0 Min.
Illustration V-3

Thus at 0^, the 'areas' A and B are equivalent, as the total adsorbate 

in the effluent up to time 0^ is equal to the amount adsorbed by the 

dessicant. Expressed mathematically:

r. c /c do = a o
/

"E
(1 - c /c ) d0 

3. O
V-24A
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(8 ' = 8 ) .M
Another chapter will discuss the values of x for various adsorption con­

ditions. The value, x^, is an important parameter as it serves as a key 

relative concentration level effluent on which design criteria may be 

based.

In a similar manner, the zone breakthrough time can be represented

by:

- A8B(r,«p)- ''-25

WhereAG = The time required for the zone to reach 6 from breakthrough.B "M
A9g, however, is equivalent to:

1 Dv$ r X (1-x ) (1-x )
° Q " 1:7) <x" (1-x )) - OTTTy'' '-26p X ul X

where x = The effluent concentration at Z = 1.0 m
x^ = The appropriate adsorbate effluent concentration at zone 

emergence.

In order to avoid meaningless solutions to V-26 (or any arrangement of 

the diffusion model) at x = 0 a limiting value is generally chosen as 

the zone breakthrough concentration. This limiting value of x̂  is usu­

ally set at .05 while the analagous zone exhaustion time value of x^ 

is usually accepted as .95. With x^ = .05, V-26 simplifies to:

A8* = ^  [Dv$ AZ. (r,N )]. V-27B W Og p

Replacing in V-25 gives:

- 5  '2g (r,Np)| . V-28
B
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Now;
„ Dv0 + v4>

Q  •

So that 0„ results in:D

»B - T  ■ “ e. (r-Hp) + 3] • V-29B

By a similar analysis, the value for 0^, the zone exhaustion time for a 

binary mixture is:

«E = «M + “ e (r-Hp). ''-30

For this condition, A0 is:b

1 Dv$ r x^ (1-x ) (l-x_)
"°E ° Q - in ■ V-31

p m  Z m

Where:

%2 ~ "95.

Replacing this relationship in V-30 gives:

— "q—  ̂ [Dv$ AZg (r,Np)], V-32

eg = ? { d [1 + AZg (r,N^)] + ll. V-33
^ E

Equations V-33, V-29, and V-8, therefore describe the Michaels (M3)

parameters required for determining the three important times involved

during the effluent period of the adsorption process.

Values of AZ and AZ„ have been calculated for various r and N 
®B ®E P

values. A subsequent chapter will describe the correlations and their

application to binary adsorption more fully.
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Real Time Evaluations - Multlfcomponent Mixtures 

The material balance around the tower at the stoichimetric constant 

value for Z, i.e., Z = 1 for binary mixtures is not true in the case of 

multicomponent systems. For this case, the material balance yields:

Vo “ 9̂' + =0
Where: c^ = The appropriate units required to uphold the equality

AQjj = The amount of adsorbate contained in the portion of the

component mass transfer zone where c /c >1.0.a 0

Equation V-34 is written so as to recognize the fact that not all the

tower is experiencing q^* as the equilibrium value of the adsorbate on 

the adsorbent. AQ^ is the amount of that adsorbate, therefore, that one 

zone will displace from the zone immediately in front of it in the ad­

sorbent bed. For the case of more than two adsorbates, q ' will become' 0̂0

q^" and AQ^ then represents the amount of total adsorbate desorbed from 

the effluent bed by the remaining adsorbates.

Defining a multicomponent throughput parameter, Z^ as with the bi­

nary case:

Z = • V-35
™ D v$

Where:
I
D = The multicomponent column distribution coefficient.

V-35 indicates values of V that are less than or greater than V .m
The term AQ^^/p^q^’ Ag resulting from V-34 can be simplified and 

written as the desorption of any component per unit weight of adsorbate 

on the adsorbent bed.
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Thus : Z = 1 + Aq Lme “D V-35B

is the stoichiometric constant for multicomponent mixtures. of

course, is greater than 1.0 by the amount given in V-35A, the desorption 

concentration. V-35B can be related to its corresponding real time by:

%lm = Q . V-36

As before, the multicomponent breakthrough time 8 is equivalent to:Din

V" t <V V  V-37
Including the expression for A8 (r, A, N )Bm p

■ i  i r  i < ï ^ >  !■> C o  ’-38^ p m 1 mm 1

or:

®Bm + V*} - 3  {Dv$AZg (r^. A, N )} . V-39
^ Bm

Simplifying the expression gives:
t

V ^ ' 3  + 4 q , ' - 4 2  (r^,x, » ) + h .  V-40
Bm D

Where:

AZ„ (r , A, N ) = Denotes the differential throughput
^Bm m P

parameter to zone breakthrough for the 

multicomponent case, i.e., A > 1.0. 

Likewise, exhaustion times for any system involving multicomponent mix­

tures is expressed by:

«E» ' “k 3-''«En <V 3. V- ’-41
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Where; I
1 Dv$ r x„(A - X ) X - x„

'»Em = Q f—  <x (X - r > ) - 1” (jrrir->h.p m mm 2 mm

For the case of multicomponent systems the value of x^ can be 1.0. This 

value is permissible only because the increased zone instantaneous equi­

librium, at 6 > 8 , reflected by X, is greater than 1.0. In actual fit- 

ting of the multicomponent data, it was discovered that the times between 

values of x^ = 1.0 and x^ = .95 were very close, due to the 'steep' efflu­

ent curve during these times. For consistency, however, the data were 

analyzed for x^ = .95, as was done for the binary case:

' "Ei. = ^ ^  I®''» “ 9Em<V’ '• -'p>! "-43

Further simplification of V-43 yields:

«E. - f  + “ eim ( V  + h .  V-44

Equations V-40, V-36, and V-44 are the relationships desired that define 

the respective times and relative concentration ratios for multicomponent 

mixtures in the following manner:

Time xm

V V
=Bm

®Em -55

The parameters that are still undefined at this time for the multicompo­

nent case are values Aq X, and x . In order to evaluate these termsmm
it is necessary to resort to further dynamic adsorption relationships.
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Evaluation of the Desorption Concentration - Aq >D

The value of Aq^^, as previously defined applies only to a system of 

two or more components simultaneously adsorbing in a dynamic system. For 

this case the amount of each adsorbate adsorbed on the bed is given by 

q^^, where each component's particular isotherm yields the respective value 

of q^^; as defined previously.

The difference in the amount adsorbed in the multicomponent case and 

the 'ideal' binary case, for any component is then:

V-45

Now, Equation V-45 gives the total difference in the adsorbate adherred 

to the solid, but does not indicate what fraction of the decreased capac­

ity is actually contained in that portion of the zone where q^^ > q^^. 

Illustration V-4 indicates the manner in which the effluent concentration 

appears in a multicomponent system, as compared to a theoretical binary 

system.

/co
Multicomponent 

.05 A •Binarji

8=_(A) 86®Bm Em
Time of Adsorption - Min.

Illustration V-4
Due to the decreased adsorption sites available for any given component,

the value of G is less than the corresponding 0 . Likewise, 0 will Bin B bm
be less than 0^. The area "A" in Illustration V-4 denotes the difference
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in equilibrium capacity up to zone exhaustion, while the area "B" indi­

cates the additional adsorbate in the mass transfer zone due to increased 

gas phase concentrations (c^^ > in the desorption of zone "i" by

zone "i + 1". The value of A is noted in the Illustration as the maxi­

mum concentration achieved, i.e.:

X = (max) ^
% i

by the gas phase at the corresponding time 8̂ ^(A). The value of "A", 

therefore, is proportional to "B".

Now the amount of binary adsorption can be denoted by:

(8g) (I.R.) + (Gg - 8g) F (I.R.) = = Q?. V-46

Where:

I.R. = The component mass injection rate into the tower - 

lb/min.

G for the binary case can be found in the following manner. Referring B
to Illustration V-1:

- «Z
<=E ' «F + --vpr--

"t  - “z= (1 - F) 0, +  ---- - V-47AB Z o
Z

0 = (1 - F) —  + — ---- - V-48

V-49

Likewise, 0^ is:
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z

H + (l-F)H

The corresponding multicomponent terms are similarly: 

... -

Writing V-46 for both the binary and the multicomponent cases:

- FH H + (1-F) H H - FH
r ^ - ] (I.R.) + [(— --------   - ) - ( o )] F(I.R.) = V-54

^Z

v-33

simplification and subtraction of V-55 from V-54 gives:
H H

^ I.R. = . V-56
Z z

Where is not the actual difference denoted by V-45 because of AQ^

still within the bed at 0 = 6_ .hm
Since:

Equation V-56 gives:

(q.i - q.:)
Z Z
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Since all the parameters in V-58 are defined, AQ^, can be solved for 

directly in terms of the equilibrium concentrations, the component mass 

injection rate, and the zone velocities. Aq^^ readily follows from V-58 

for any component:

Evaluation of V-58 and V-59 will be discussed in a subsequent chapter 

covering the applications of the data.

Evaluation of the Equilibrium Enhancement Factor - X 

The solid phase diffusion Equation is defined by the parameters X 

and for any particular r. Even at values of x greater than 1.0, the 

shape of the effluent curve is governed by the number of transfer units 

contained in the bed, N^, and the equilibrium enhancement factor, X.

Equation V-59 defines the amount of any adsorbate contained within 

the desorbed portion of the effluent curve. This relationship gives no 

indication, however, of the shape of the effluent curve.

In order to achieve an expression for X, using the results of V-59 

it is necessary to make the following assumptions:

1) The desorbed portion of the effluent curve, i.e., 1.0 < x < X—  rn­
is symmetrical about a value, Z^(X), defined as the Z occurring when x =

X.

2) Desorption commences at a value of Z ^  equivalent to:

+ <i>x=.95 -̂60
Assumption (1) is depicted in Illustration V-5.
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/c0

AZ,'Em
Throughput Parameter-Z 

Illustration V-5
As with the binary asymptotic solution, the practical zone exhaustion 

time for any X in the multicomponent case was taken as X - .05. The the­

oretical solution was therefore defined only to that particular value. 

Area "A" in the Illustration is defined by the curve, while area "B" is 

assumed symmetrical about point Zg(X). This assumption is a reasonable 

one, since the maximum effluent concentration has been achieved and must 

decrease to its normal "inlet" level (1.0). This criteria is not strict­

ly true, however, as numerous laboratory studies have shown that the 

trailing edge of the desorption effluent is sometimes skewed with re­

spect to its maximum effluent value, X. For the purpose of achieving 

a practical solution to this specific portion of the adsorption cycle, 

however, the above assumption is justified. Data presented in a sub­

sequent chapter will substantiate the preceding stipulations.

Since V-59 defines the total adsorbate physically contained in 

areas "A" and "B" of Illustration V-5, the amount of the adsorbate con­

tained in area "A" is simply one half that of Equation V-58.

AQ,
= 2

D V-61
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The average concentration over the interval Z to Z (X) is:

/ZE(X)
X dZ

Z.

It has been found, however, that the value of is very close to a 

linear average of X and 1:

This condition arises, because of the linearity of the effluent concen­

tration curve at values of x around 1.0.

The value of ^ Z ^  equal to:

“ d = - ^Em>

1 r (A — l) A — x„= r in(x2'(Y : -y ) -
p m  2

V-63

Where:

1.0 < x„ < (A - .05).

In particular, the amount AQ^(A) can be defined as:

AQj^(A) = (I.R.) ( x^ - 1) Ae^. V-64

Where:

A8̂  = The real time associated with AZ^.

The value of A8̂  is calculated by:

“ d - “ d • V-S5A
P P
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Replacing V-65A, V-62A in V-64 gives:

N
AQĵ (A) = (I.R.) (-^) AZjj V-66

P P

Equation V-66 contains the unknown parameter, X, as well as AẐ ,̂ which 

is itself a function of A. The solution of V-66 is therefore accomplished 

by a trial-and-error routine. Values of AZ^ have been calculated for a 

range of input parameters, as will be discussed in a subsequent chapter. 

However, by assuming a value of A, finding AZ^, and then recalculating 

A by:

%  ^
S  %

A (calculated) must, of course, be equal to A (assumed) or the trial-and- 

error process repeated until a 'match' is attained. Rewriting V-67 in 

terms of V-59 and an expression for the mass injection rate, I.R.:

y c MW G
I.R. = 2.62 X 10“ ■ ™ = Ib/min. V-68

A = (%-^) (-— ---) (-4-^) + 1. V-67

or.

Where :

I.R. = .0181 MW . c . Q = Ib/min. (G = »6) V-68A1 01

MW^ = The molecular weight of the adsorbate lb/lb mole
2G = The inlet gas mass flow rate - lb/hr ft m

G = The specific gravity of the inlet gas (Air = 1.0)

Q - Gas flow rate -MMCFD

. 10-' " r + l.V-60
01 1 m p D

Equation V-69 is, of course, an approximation to the actual value of A ,
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whose precise calculation is more complex, and will not be developed 

here. In light of the assumptions simplifying the mechanics of the de­

sorption portion of the effluent curve, V-69 has proved to be a useful 

and valuable relationship in this work.

The actual time at which X occurs, (i.e. 8 (X)) is defined by:£

Where 6 is the zone exhaustion times at x = .95. As denoted by V-60: Em
rx 7

The partial derivative in V-71 can be found by differentiating the orig­

inal solid diffusion equation: assuming the binary case applies.

a?  ̂ (r + (1-r ) x)f = rp m

At X = .95 the total derivative in V-72 becomes the partial in V-71.

The slope given by V-72 is assumed to be constant at x = .95.

3Z 1 r + .95(l-r )  r_m____________ m
q .0475 (1-r ) p m^3x^x=.95 ~ N .0475(l-r )  ̂ ^

At values of say of 50, and r^ of .75 (taken as example values)

V-73 becomes:

‘ l ô f - k w i h ï  - -0832 .

With taken as 20.0, A0 is equal to:Q hm

A0_ = .0832 X 20 = 1.664 min.Em

This procedure has served only to indicate that for correct orders of
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magnitude for N , r, and the value of A0„ is usually small in com-p Q bm
parison to A6^ in Equation V-70. Thus, V-70 can be rewritten as:

With:

“ 3.  T  -  “ b  X  •

For cases in which the stipulations of V-74 are not true, as in multi- 

component mixtures where r^ > .95, the proper relationship is:

where again the "Z" terms are defined by a particular value of X, r and

N .P

Evaluation of the Stoichimetric Constant Effluent
Concentration - x  ________________ mm

As denoted by Illustration V-3, showing a typical binary case

effluent plot, the binary value of the effluent concentration at Z = 1

is X  . For the multicomponent case, however. Equation V-35B yields the m
value for Z at such a time, 6,, , when the total adsorbate contained in m Mm
the carrier gas to that time is equal to the amount in the adsorbent bed.

The only difference, in Z^ and Z^^ (multicomponent) is the term Aq^^.

Appendix A gives a plot indicating that x ^  is a function of X and r^

but not of N . Thus, for Z = 1 + Aq ', and X and q ' defined, the p me c°D
actual effluent relative concentration is defined. Values of x aremm
summarized as follows for X and r .m
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X = 1.4 1.3 1.2 1.1

X r X r X r X rmm m mm m mm m mm m

.457 .4 .469 .4 .484 .4 .508 .4

.447 .6 .457 .6 .471 .6 .494 .6

.441 .8 .449 .8 .462 .8 .481 .8

.438 .9 .446 .9 .458 .9 .476 .9

The definition, therefore, of the real times; 6_ , 6 , 0 , 0„ + A0 ,Bm mm Em Em Em
0g(X), define the following effluent relative concentration values, that 

are useful in establishing the effluent curve:

.05

.95

1.00
X

Bm
0Mm
®Em

Êm ®̂Em ®̂Em̂

/c mmo

+ A0Em.05

®Em®Bm
Time of Adsorption-0 

Illustration V-6



CHAPTER VI

LABORATORY EQUIPMENT AND EXPERIMENTAL PROCEDURE

Description of the System - Adsorption Cycle

This study was conducted at the Natural Gas Research Laboratory 

of the School of Petroleum and Geological Engineering of the University 

of Oklahoma. The installation was located at the North Campus of the

university.

The experimental equipment employed in the dynamic studies is 

shown schematically in Illustration Vl-1.

Dry gas supplied by the Oklahoma Natural Gas Company through a 2" 

entry line (PI) at 100 psig was compressed to 800 psig (1), (see Illus­

tration Vl-1), by a two stage 60 HP Chicago Pneumatic intercooled com­

pressor. An inlet low pressure surge and discharge high pressure surge 

combination (J) were installed to minimize pressure fluctuations in the 

lines, as well as to control gas flow rates by cycling high pressure 

gas back to the low pressure side. Power to the compressor was supplied 

by a 220 volt 3 phase electrical motor. After compression to a con­

stant system pressure of 800 psig a portion of the intercooled gas was 

routed through a 'fin-fan' happy air cooler (K) and a water counter 

flow heat exchange (L) in a sufficient quantity to give an overall ad­

sorption column (D) temperature of 90°F. The intercooled and

75
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after-cooled gas were joined at point (LI), and routed through an acti­

vated carbon "pre-adsorber" (0), in order to remove any substantial 

quantities of the adsorbate (n-C^, n-C^, or n-C^) contained in the car­

rier gas. The carrier gas analysis varied slightly as shown by Table

VI-1; although the system was generally between 85-90% methane. The 

lines connecting various components of the laboratory apparatus were 

1/2" 2000 psi test lines, insulated and wrapped with 1/2" magnesium 

fiber insulation.

The carrier stream emerged from the carbon beds practically void 

of any adsorbate quantities. Prior to tower inlet a small scrubber (Dl) 

containing steel mesh screen, was placed in the flow line to trap sus­

pended contaminants as well as any liquid accumulations.

The gas was then routed from the scrubber to the adsorbent bed (D) . 

This bed was actually two 8' towers constructed of 2.9" ID (3" nominal) 

3000 psi test pipe fitted with 3" flange connections at the top and 

3" - 1/2" swedge connections at the tower bases. The towers were 

covered with 3" magnesium fiber insulation connected by a 1/2" insulated 

line approximately 8' long. Thermocouple installations made of 1/8" x 

1 1/2" stainless steel wells were installed every 2 1/2' for a total of 

8 units. Bed temperatures (D2), were thus monitored by a Honeywell tem­

perature recorder (C). The sensing devices were wrapped iron-constantan 

probes inserted in the tower wells for continuous recording.

Gas exiting from the bed was routed to a Kimray downstream pressure 

regulator (G) that was located close enough to the tower to maintain the 

pressure at approximately 800 psig. Friction losses in the tower were 

neglected, as they were of no consequence within the pressure range of
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the studies.

A 2" meter run was installed downstream from the pressure controller 

(Gl), where 1/4" pressure taps sensed pressure differential recorded by a 

1.75 specific gravity merriam fluid. A high pressure differential manom­

eter was installed (G2), for conventional flow rate control.

While the system was being brought to the constant run conditions of 

800 psig and 90°F, the carrier gas was received by the inlet spherical 

surge tank (P), and recycled to the compressor. During the actual ad­

sorption cycle, when the carrier was laden with adsorbate concentrations, 

(as with during the regeneration cycle) the gas was blown to the atmo­

sphere via a 12', 1/2" venting column.

Liquid adsorbates, n-pentane, n-hexane, n-heptane, contained in 55 

gallon commercial grade liquid drums, were the principle adsorbate supplv. 

Multi-component adsorbate mixtures for given "pre-set" concentrations, 

were mixed in a high pressure liquid feed tank (E) in weight fractions 

corresponding to equivalent mole percents. The liquid feed tank was 

then pressured to 100 psig to insure complete liquefaction of the ad­

sorbate mixtures prior to injection into the carrier gas. Subsequent 

phase interchange between the adsorbates and the carrier gas was ne­

glected. A Wallace and Tiernan triplex hydrocarbon injection pump (E) 

was used to inject the liquid feed to the carrier gas. The injection 

point was at the carbon bed exit (01). The liquid feed injection line 

was 1/4" 2000 psig copper tubing, inserted in a 5/8" copper tubing line. 

The annular space 5/8" - 1/4" served as a "steam-jacket” to insure evap­

oration of the adsorbates once they entered the carrier gas. A steam 

generator (N), supplied the necessary energy to the line.
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Gas gravities were continuously recorded by a Kimray gas grav- 

itometer. This monitoring was installed, in order to obtain a represen­

tative specific gravity during the entire adsorption cycle. The gravity 

of the gas was instrumental in overall flow rate calculations.

Sampling and analysis of the gas was accomplished with a CEC (Con­

solidated Electrodynamics Corporation) 26-212 Process Chromatograph (A). 

The chromatograph analyzer (F) unit was located as close as possible to 

the tower outlet in order to minimize time lags in obtaining effluent 

samples. The detector in the analyzer unit was a twin wire thermal- 

conductivity 'block' type with a helium cooled reference wire on the 

side and the gas sample wire on the remaining side. Helium (FI), was 

also used to 'sweep' the effluent sample into the detector on the sample 

side. Nitrogen pressure (F2), was used to operate the pneumatic valves 

in the analyzer. The recording unit of the chromatograph (A), was re­

motely located and connected to a Honeywell .5-1.5 mv stripchart recorder 

(B). Automatic 3 minute cycle sampling cams operated a 12 channel re­

cording system from the recorder to analyzer. Differences in detector 

potentials, induced by dissimilar hydrocarbon thermal conductivities were 

transmitted as voltage peaks to the Honeywell recorder. A voltage vs. 

time history was thus recorded. As the voltages were proportional to 

the component concentration levels the recorded data represented the 

effluent concentration-time histograms.

Calibration of the peak 'heights' on the recorder for a particular 

component was achieved by analyzing a sample gas of known composition 

and recording relative pen deflections. Subsequent data were compared 

to the known sample 'peak' for composition determination.
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Regeneration and Cooling Cycle

Upon completion of an adsorption cycle, the adsorbate laden gel 

was stripped of its hydrocarbon components by passing the same carrier 

gas, free of any adsorbate, over the gel. Prior to entering the tower, 

however, the gas was heated to 600°F in a salt bath heater (M) . The hot 

regeneration gas then flowed over the bed at 800 psig. Sampling was con­

tinued during the regeneration process in order to substantiate the ad­

sorption mass accumulations by a tower material balance. The gas was 

cooled by the happy fin-fan cooler, and liquid condensate recovered in a 

high pressure separator. The cooled regeneration gas was vented to the 

atmosphere, to avoid any possible contamination of the supply gas con­

tained in the spherical surge tank. The Honeywell temperature recorder 

monitored the regeneration temperatures at all 8 thermocouple locations. 

At such a time that the sample monitoring indicated that the bed was 

void of any adsorbates, the regeneration gas was routed around the tower, 

and "cool" supply gas introduced to the bed. Subsequent cooling brought 

the bed temperature down to the adsorption level of 90°F for future runs.

Any residual concentrations of components lighter than n-pentane on 

the bed were ignored after the cooling gas had come to thermal as well 

as adsorption equilibrium with the gel. In view of the high concentra­

tion of methane and ethane in the supply gas, and the negligible adsorp­

tion equilibrium concentrations of these components, the assumption 

seemed well justified.

Adsorbent

The adsorbent employed for all the dynamic studies was supplied by 

the Davison Chemical Company, a division of the Grace Company of Balti-
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more, Maryland. The adsorbent was a 22A° 03 grade silica gel. Table

VI-2 summarizes the physical properties of the gel.

The two S' towers employed in the runs held approximately 30-35 lbs.
3of the gel. This corresponded to approximately 47-54 lb/ft packing den-

3sity for a 14' bed, which was higher than the 45 lb/ft reported by Davi-
3son. For all practical purposes 45 lb/ft is a reasonable number for 

overall application in future design procedures.
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TABLE VI-1

CARRIER GAS ANALYSIS VARIATION

iponent Mole % Component Mole %

.415 °2 .114

^2 5.348 ^2 4.416

CO2 .180 CO2 .229

"1 83.135 -1 83.545

9.379 9.886

s 1.399 s 1.653

.012 iC4 .013

"^4 .023 nC^ .020

.005 '"5
.004

nC3 .008 nC5 .006

^6 .030 S .008

S + .066 C74. .106

100.000 100.000



82

TABLE VI -2

PHYSICAL AND CHEMICAL PROPERTIES OF 

03 GRADE SILICA GEL

Typical Analysis - Dry Basis

Component Weight Percent

Silica as SiOg 99.71

Iron as FegO^ .03

Aluminum as AlgO^ .10

Titanium as TiO^ .09

Calcium as CaO .01

Sodium as NagO .02

Zirconium as ZrgO .01

Trace Elements .03

100.00

Total Volatile at 1750°F 5.0 to 6.5%

Specific Heat 0.22 BTU/lb/°F

True Density of Silica 137 Ibs/cu. ft.
(no porosity)

Thermal Conductivity 1 BTU/sq.ft./hr/°;

Reactivation Temperature Range 250 - 600°F

(350°F bed temperature is adequate for most uses)
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TABLE VI - 2

PROPERTIES OF SILICA GEL, GRADE 03

Sieve Analysis 

Mesh Size

3-4

4—6 

6-8
Fines (through 8 mesh)

Packed Bed Density - Ibs/cu. ft.

Solid Density - Ibs/cu. ft.

Total Volatile Percent at 1750°F (max.)

Surface Area (sq. meters/gm)
(precision + 25 m^/gm at 95% basis)

Pore Volume - cc/gm
(precision + .02 cc/gm)

Calculated Average Pore Size

Theoretical Porosity - %

Weight Fraction 

.189 

.454 

.318 

.037 

.998

45.0

75.0 

6.0
750-800

0.43

22 Angstrom Units 

40; (1 - ||)



M L

 (XI  01

Ll
iXK

/T7/77

c >
< >c> o  c> 
< >

T " “

c >

D2 ̂ M x h — cxj
r\i/̂

P2

/77
D Y N A M I C  A D S O R P T I O N  L A B O R A T O R Y  F L O W  C H A R T

œ

ILLUSTRATION VI-1



CHAPTER VII

DISCUSSION OF DATA - RESULTS FOR BINARY 

AND MULTICOMPONENT SYSTEMS

Binary Data - Results 

Dynamic Isotherms

The initial endeavor of this work was to establish workable dynamic 

isotherms for the two principle adsorbates in a methane carrier. The 

assumption that the carrier was 100% methane was, of course, invalidated 

by the fact that the supply gas to the laboratory was not of constant 

composition. Nevertheless, the carrier analysis was sufficiently close 

to a pure methane source to give practical binary isotherms.

Figures A-1 and A-2 show the results of plotting l/c^ vs. 1/q^ for 

all binary measurements. These runs represent the data reported by 

McLeod (M2), but reflect the Langmuir theoretical approach, i.e.:

—  = +     (— ) • VII-10 , 0 0  q q k,,̂  q cĉo ĉo AD °° o

The data represent a good correlation for the majority of the ex­

perimental runs. In addition, high pressure runs for both adsorbates 

are shown with the 800 psig 90°F data for comparison. These data are 

too limited, however, to draw any conclusions as to che validity of 

their application.

85
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The data of Day (D2) is represented in Figures A-3 and A-4. These 

values, representing 685 - 1000 psig and 100°F static measurements, sup­

port the validity of the 800 psig 90°F dynamic isotherm over the pressure 

range reported by that author. The two dynamic isotherms herein presented 

were used for the data comparison.

Laboratory Evaluation of the Constant Solid 
Pattern Phase Diffusion Equation

In his treatment of the dynamic binary data, McLeod (M2) was able to 

establish important criteria leading to substantial proof that the solid 

phase diffusion process was, indeed, the controlling mechanism in the ad­

sorption process. In support of McLeod's contention of the solid phase 

diffusion being the dominant mechanism in dynamic adsorption, Figure A-5 

presents the dynamic column adsorption efficiency calculated in the labo­

ratory by:

/ 8.
(1-x) d0

' = % - » ,

compared against purely theoretical results computed from the solid phase 

diffusion equation, i.e.:

L

AZ„ + AZ 
B E (1-x) d Z

F (Solid) = -------------------------- — ---  ' VII-2A
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The measured data correlate fairly well with theoretical constant 

pattern data, taking into consideration the variation of the carrier gas 

analysis, as well as the narrow range of deviation for F itself. Most 

values of F were grouped between .4 to .5. Figure A-32 is included in 

Appendix A to show the variation of F with r for both binary and multi- 

component mixtures. The data reported by McLeod, however, were evaluated 

using a constant r for n-pentane and n-hexane an assumption substantially 

invalidated due to the basic definition for r. Application of the pre­

viously reported binary data would, consequently, hinder the possible 

functional relationships between binary data and subsequent multicompo­

nent analyses.

It was decided, therefore, to analyze the previously collected 

binary data on the basis of a variable value for r, as defined by:

r = 1 - o

Following the procedure outlined by McLeod, a series of master 

curves were calculated using the solid phase constant pattern diffusion 

equation for values of r ranging between .4 and .9 9. The third parameter 

of the plots was the number of transfer units, Thus, for a constant

r value determined by the appropriate isotherm, the number of transfer 

units that best matched the laboratory test data would be the one that 

most closely reproduced the measured data curves. Figures A-57 through 

A-62 in Appendix A show the results of the theoretical effluent plots 

for the binary case. Each plot is defined by a constant equilibrium 

parameter, while varies from 50 to 5,
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The laboratory data used by McLeod were collected by a joint effort 

at the Natural Gas Laboratory at the University of Oklahoma. These ef­

fluent curves for n-pentane and n-hexane .are shown in Figures A-97 through 

A-145 in Appendix A. As shown by the plots, the gas velocities and inlet 

adsorbate concentrations were chosen in the following ranges for both ad­

sorbates:

Gas Velocity Adsorbate Concentration

10-45 ft/min .1 - 2.0 mole %

These values were chosen since they were most representative of 

actual values encountered in the field.

In order to calculate the number of transfer units, N^, for each run, 

the relative effluent vs. time plots were replotted on a relative effluent 

concentration throughput parameter scale. For the purpose of calculating 

the throughput parameters, the column distribution coefficient, D, the 

flow rate, Q, and the effective tower volume v$, were computed from labora­

tory data. These values are summarized in Tables A-1 and A-4 for n-pentane 

and Tables A-5 and A-8 for n-hexane. Values of AZ, the throughput parame­

ter, were computed by dividing the differential times, A6, commencing 

from X = .05, by the factor:

^  . VII-3

Since AZ = 0, x = .05, the plots were defined only for the effluent por­

tion of each run.

When the overall adsorption equilibrium adsorbent concentration was 

obtained, i.e.:
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(1-x) d0]

““  V A -----------

the corresponding value of r was calculated and the correct master curve

chosen for the fitting procedure. Figures A-166 through A-215 Appendix A

show the resulting plots for both adsorbates. The closest fitting values

of "N " are noted for each plot.P
Once the number of transfer units was obtained for each run, the

values of N were used to determine the overall mass transfer coefficients, P
k^a^°. These values were calculated by application of the defining equa­

tion for N :P
N = k a ° ^  • VII-5p p P Q

Figures A-17 and A-18 show the results of the calculations for k a °P P
for both n-pentane and n-hexane. These values were seen to be a func­

tion of the inlet adsorbate concentration, with the gas velocity as a 

third parameter. Although McLeod's (M2) values for are of the same

order of magnitude, he did not obtain a well-defined correlation for

k^a^ for either n-pentane nor n-hexane with c^. The reason, perhaps.o
P P
for this limited correlation was the application of the data with the

assumption that r was constant. In addition, McLeod reports an increas­

ing value for r for increasing adsorbate mole percents, whereas this re­

port indicates the opposite. The disagreement again arises because of 

the assumption of constant equilibrium parameters. In view of the limit­

ing rate at which the adsorbate may be physically adsorbed onto the sur­

face of the gel, and subsequently into the pore network, it seems rea­
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sonable that at larger values (for a given gas velocity) the mass 

transfer zone will be longer in order to accommodate more adsorbate. A 

longer zone, indicates a shorter number of transfer units contained with­

in the bed and thus a smaller k a ° for the same value of Dv$/Q.P P
Since the value of Dv<f/Q is very dependent on the gas velocity, (i.e.

V = Q/A„), the values for k a ° at a constant adsorbate mole percent, g B P P
and varying v^ should be dissimilar. This phenomenon was not reported 

in McLeod's correlation. For example, with decreased values for AZ, in­

curred by increased Q, values for k^a^^ likewise rise. This increase 

accounts for the fact that varies inversely with the gas velocity; 

however, the changes in are not of the same order of magnitude as

changes in the group, Dvp/Q.

Further relationships involving can be seen by analyzing the 

individual transfer height, HTU°, for each adsorbate. As shown by 

Heister and Vermeulen (H2), this parameter is:

V /$

P P

Thus, relating VII-6 to gives:

N = k a ° ^  VII-6A
p p P Q

HTU°
VII-6B

The column is therefore "factored" into a series of available mass trans­

fer areas according to VII—6.

Figures A-25 and A-26 show the variation of the n-pentane and n-hex- 

ane (HTU°) values. As shown by the plots, the heights vary inversely
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with r (directly with c^) and directly with v^, the gas velocity. The 

variation with v^, however, is not as pronounced as it is with r. This 

phenomenon accounts for the instances that occur when an increase in ad­

sorption gas velocity is accompanied by a decrease in the value of N^,

or an increase in k a ° due to the reduction of r.P P

Zone Stabilization 

Any application of the foregoing analysis, assumes steady state 

(i.e., constant pattern) diffusion, as previously described in Chapter V. 

The necessary and sufficient criteria for constant pattern diffusion is 

such that:

(||)^.l,0. VII-7

For the purpose of determining which runs were, indeed, constant 

pattern runs, and which were still experiencing transfer height "growth" 

with time, a plot of the Thomas Solution, Figure A-19, was employed to 

aid in determining the region of stability. As discussed in a previous 

chapter, the explicit differentiation of the Thomas Solution is quite 

involved. However, cross plot of the parameters S vs. 0 can be obtained 

readily from Figure A-19. These values are represented in Figures A-20 

and A-21, covering a range of equilibrium parameters from .4 to .99.

From a graphical differentiation of these plots, the value of Z (or 0) 

at which (9Z/30) was precisely 1.0 could be found. It was discovered 

that the values of Z were initially somewhat higher than corresponding 

values of 0. The derivative (3Z/30), was therefore greater than 1.0. 

Since 0 increases, as Z increases, the slope of the plot approaches 

unity, as demanded by the theory, at Z=0. The figures show, however,
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chat for the mass transfer zones to completely stabilize, extremely large 

values for the dimensionless variables are required. This phenomenon was 

especially true for high values of r (low adsorbate concentrations).

Conversely, at moderate values of r, (shown by the figures), the 

zones stabilize much more rapidly with respect to the dimensionless param­

eters. In fact, the derivative, (8Z/30), approaches a value close to 1.0 

very rapidly for all values of r. The corresponding values for "pseudo­

stabilized" conditions are vastly less than the completely stabilized 

parameters. This criteria is shown in the plots by a dashed line indi­

cating a slope (31/90) of 1.05. At this condition the zone is 95% sta­

bilized but continues to "grow", although the rate of growth has diminr 

ished. The large difference in the actual value of 1, at which 0 = E, 

and the value at which 3Z/30 - 1.05 indicates that the zone would prob­

ably never completely stabilize in most commercial towers. However, for 

application of collected experimental data, the point at which the zone 

is 95% stabilized seems a minimum practical condition at which "steady- 

state" can be assumed to occur. These values have been incorporated into 

this work and are again summarized herein:

91/30 = 1.05

r 1

o 4 13

.6 20

,8 67

.9 160

.95 209

.99 269
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These data reflect an effluent relative concentration of 0.01. From 

these values it is possible to construct a curve of the minimum column 

capacity parameter, E (or N^) vs. r. Figure A-22 indicates such a plot 

in which lines representing 90 and 85% stabilization are also shown. 

After fitting of the laboratory measurements determined corresponding 

values for N^, these were plotted on the figure to determine the region 

of stabilization of the zones.

As shown by the plot of the n-hexane and n-pentane data, most of 

the n-hexane data was "stabilized", whereas a major portion of the n- 

pentane data fell within the 85% limits. In view of the good correla­

tions obtained for the mass transfer coefficients for both adsorbates, 

however, the data was accepted as "stabilized" data. The scattering

of the points in Figure A-17 for k a indicates runs where N was notP P P
its precise stabilized value.

Another important feature of the stabilization limits is in the 

direct application to column design. Equation VII-5 may be rewritten to 

show:
0

%  = kpSp ® 4 -  ’ VII-'
g

thus
-, V

H ° = ( ) (-^)N (r). VII-8
k a D 0 P P

Where is the minimum distance, in feet, required for application of

VII-7 in a constant pattern system. Values of have been plotted in 

Figures A-49 through A-56 for values of r between .4 and .99. These 

plots are useful in that values of actually "demanded" by the adsorp­
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tion parameters can be compared to the length of the adsorbent bed 

available, and the applicability of the steady state data estab­

lished. In cases where:

Ht < h/ .

the zone can be expected to behave as a non-constant pattern zone.

For this particular case, design values of k a °, and likewise N wouldF P P
not be applicable. This particular occurrence applicable mainly to 

multicomponent systems, will be discussed later in the chapter. For 

cases where:

"t Î V

the zone can be expected to behave normally and steady-state data ap­

plied.

To further substantiate the contention that the n-pentane and n- 

hexane zones had been essentially stabilized for the experimental pro­

cedure, the zone velocities as calculated by:

«T = , VII-9+ F6„ ''Zm

and by

V  /$

f r o  = ?zcp°

were plotted in Figures A-11 and A-13. Tables A-3 and A-7 summarize the 

calculations. As Equation VII-10 is a special case of the general zone 

velocity equation for 8Z/80 = 1.0, agreement of the two steady state 

approaches should indicate near-stabilization. The figures show a good
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correlation between measured data and Equation VII-10 represented as:

Steady State +  ̂  1  . ^11-11
MHa.ti.on o ^ ^ c

Z g g

In addition to Figures A-11 and A-13, an independent expression for 

the zone velocity has been derived from purely mathematical concepts.

The derivation is shown in Appendix. D and is summarized herein:

Zone Velocity ^ ~ .
"Z° " Vg VgP^m. c, (2q_° _ q.)2

VII-12

Figures A-12 and A-14 show the plot of Equation VII-1 whose slope

is :
400 MW 

g g 1

and whose intercept is:

—  • VII-12BV g
Again the results are very good for the two adsorbates in question.

On the basis of the foregoing arguments, the binary data reported 

by McLeod, and herein re-evaluated, represent a good estimate of sta­

bilized conditions for the respective dynamic binary systems. These 

parameters are most useful in developing criteria for the design of 

multicomponent mixture parameters.

Design Parameters

For the binary case, i.e., X = 1.0, values of AZ. and AZ„ have
B E

been calculated and represented graphically. These differential through-
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put parameters represent the incremental values of:

r x^Cl-x^) (l-Xg)
■ p  1-r^ x^Cl-x^) (1-x^

determined from a real time corresponding to:

^  -  f  •

Figures A-33 and A-34 show the results for various r and N values. TheP
relationships corresponding to values for 0 and 0 have been developed

in Chapter V and are:

Gs = [1 -  "=83 + 3]

^  [D[l + AZ ] + 1], VII-16E Q 8%

In addition to these relationships, values for x^, the binary relative

effluent concentration, have been calculated and plotted in Figure A-31.

Multicomponent values are also shown in the figure, and will be discussed

later in the chapter. Determination of N , by calculating k a °P P P Q
therefore, determines the values for the three times 6^, 0^, 0^.

Multicomponent Data - Results for Two Adsorbate Analysis 
N-Pentane, and N-Hexane in Methane

The Multicomponent Isotherm for the Two Adsorbate Case 

As the binary data served to establish the basic criteria for dy­

namic adsorption design employing the solid phase diffusion equation, 

additional two adsorbate runs were made covering the same input condi­

tions. These runs are shown in Figures A-146 through A-157, where the 

relative effluent concentration, x, for n-pentane and n-hexane is shown
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on the same scale. The time, 0, of adsorption is the independent varia­

ble. Pertinent parameters for the runs are summarized on each sheet.

The primary step in the analysis, was to determine the shape of 

the isotherm for both n-pentane and n-hexane in methane, while both ad­

sorbates progressed simultaneously in the mechanics of the adsorption 

process. The equations discussed in Chapter IV present the necessary 

empirical criteria for establishing the effect of one component on 

another:

a. = ----------------    . VII-17
\ û i  ^hi^S^i "

Table A-9 summarizes the adsorption conditions for the two compo­

nent runs, while Table A-10 indicates the calculated equilibrium adsorp­

tion constant for each component. Figures A-7 and A-8 show a

graphical relationship between:

“ll'ADl ■ ■ VII-18

and the corresponding alternate adsorbate level that caused the 

In both plots, the indicated relationships agree well with the initial 

"binary" values of k ^ °  for both adsorbates, (i.e., .444 for n-pentane 

and .959 for n-hexane). This condition occurs when the alternate ad­

sorbate concentration is precisely zero. The apparent scatter in the 

relationships, can be partially explained by the fact that the carrier 

gas was not of the same total composition for each run.

An interesting point to consider is that the multicomponent iso­

therm for any adsorbate can be written in a similar fashion as the binary
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isotherm only for a constant concentration level of one of the adsorbates.

For example, if a particular n-pentane concentration were "c^^" then the

n-hexane adsorption equilibrium factor a would define k.^' • The iso-
^ ^ h x

therm for n-hexane, could then be described:

V  + -r- • • vii-19<1 ' 9 ? k  q » c
hx hx hx hx hx

Likewise, the n-pentane corresponding equation for a constant n-hexane 

level would be:

—  = +---- -----  (— ) . VII-2Û

P P P P P

When both n-pentane and n-hexane concentrations are fixed, Equations 

VII-19 and VII-20 are valid only at one point on each isotherm. The con­

centration of one adsorbate thus defines the 'slope' of the isotherm for 

the alternate adsorbate.

The procedure outlined above is admittedly not completely rigorous. 

The data supporting the multicomponent isotherm is an empirical correla­

tion between pertinent variables. Application of the presented relation­

ships, however, will yield relatively good mixture adsorbent concentra­

tions within the range of the data.

Laboratory Evaluation of the Multicomponent 
Solid Phase Diffusion Equation

Definition of the n-pentane and n-hexane isotherms for the multi- 

component equilibrium parameter for each adsorbate, i.e.:

=mi = 1 - VII-21
q»!
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where i represents either component. The newly obtained equilibrium 

parameter along with the equilibrium enhancement factor, X, and the 

column capability parameter for each component, are the parameters 

needed to define the multicomponent equation

r , X  (X -  X  ) (X -  X  )

General master curves, calculated from VII-22 with values of rm
from .4 to .99, and values of X from 1.4 to 1.05 were prepared graph­

ically and are shown in Figures A-63 through A-96. These figures serve 

as a basis for "fitting" of the multicomponent effluent data.

In addition to the general master curves, values of AZgg(r^, X, N^)

AZg^(r^, X, Np), AZ^ (as outlined in Chapter IV) were calculated and

plotted vs. N for a constant r . These curves are intended for break- p m
through time and zone exhaustion time calculations. They should be use­

ful in future tower design for multicomponent systems. These curves are 

presented in Figures A-35 through A-48.

The values of q 1 for each run in the two adsorbate case are sum- “1
marized in Table A-10 along with other important parameters. These equi­

librium values were calculated by:

'EM + ^^EM re2(x)
[ I (1-x) d e -  I X d e ]  VII-23

Ae,, EM EMq ^ . -------- -

where the second term of Equation VII-23 is negative since the additional 

adsorbate in the mass transfer zone represented by x > 1.0 is actually the
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desorbed amount of the adsorbate,8g^(X) is the actual total exhaustion 

time of each run.

Values of were calculated in a manner similar to the binary case.

The corresponding values of A0 (from 0 = 0^) were divided by:

; VII-24

where:

” ' c- m h ; T p •o i

The resulting values of AZ were plotted versus the corresponding effluent 

levels.

A current master curve, for the measured values of X and r , wasÏÏ1
compared against the plotted "run" curve, and the best value of chosen 

for that run. The resulting vs. AZ plots are shown in Figures A-214 

through A-225.

For n-pentane, or the adsorbate emerging first from the adsorbent 

bed, the effluent concentration ranged from x = 0 to x^ = X. For the 

displacing adsorbate, n-hexane, however, the value of x^ ranged only from 

0 to 1.0, as in the binary case. Since n-hexane was the "heaviest" ad­

sorbate present, there was no displacing component behind it to increase 

the zone and corresponding gaseous effluent concentrations greater than 

1.0. For n-hexane the binary master curves (Figures A-57 through A-62)

were used for the N evaluation.P
Table A-13 shows the overall results obtained for the two adsorbate 

fitting of the solid phase equation, and subsequent mass transfer (k^a^') 

determination. In addition. Table A-14 shows the evaluation of X as
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calculated from the iterative procedure outlined in Chapter V.

As indicated in Table A-13, the values of k a ' for the two adsor-P P
bate system do not necessarily agree with the correlation for the binary 

values for k^a^? The dissimilarity occurs because the length of the 

transient transfer unit, HTU^ as defined by:

V /$
HTU = HTU = — S   ̂ VII-25A

k a °D P P
is still experiencing growth within the bed. Corresponding values of 

Np will be large in order to account for the "apparent" number of trans­

fer units contained in the bed during the transient adsorption.

The interim transfer unit height, HTU^, has been correlated with a 

parametric group. This correlation will be discussed in this chapter 

after the presentation of the three adsorbate data.

Zone Stabilization for the Two Adsorbate 
System - Zone Velocities

The overall number of transfer units for n-pentane and n-hexane were 

compared to the zone stabilization plot, as with the binary case. Figure 

A-23 shows the results of the procedure, and indicates the increase in 

the transient nature of the two adsorbate runs. While most of the data 

fall within the 80% limits, a good portion of the data fall outside the 

area of stabilization. It was decided, nevertheless, to attempt to de­

scribe the multicomponent zone velocities, V^^as a function of v^, <f, 

and D'. As with the binary data, the two adsorbate zone velocity data 

were plotted versus the multicomponent column distribution coefficient,

D'. Figure A-15 shows the results of computing V^^' from the Michaels 

type approach, i.e.:
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^  '

and by the constant pattern equation;
V /$

''z ' - î V d ^-cp

The solid lines in Figure A-15 show the graphical plot of Equation 

VII-27, while the plotted data result from Equation VII-26. The data 

show a remarkable agreement, even though the partial derivative, (3Z/30), 

is greater than 1.0, for a portion of the data. These data indicate an 

insensitivity of the zone velocities to the column throughout parameter, 

once the zone is fairly well defined. Figure A-21A is included to show 

that for a value of x = .01, the column capacity parameter to column 

throughput parameter ratio, Z/0, is 1.0 at Z = 1000.0. The figure corre­

sponds to a value of r of 0.5 and was calculated from a plot of the 

Thomas solution presented by Hiester and Vermeulen (H2). This discussion 

indicates that while the zone will not completely stabilize until large 

values of are attained, the growth of the zone beyond moderate values 

of Np is very slow. For this reason, the constant pattern mechanics, 

i.e., X = y, can readily apply to certain multicomponent adsorption cases 

with a good degree of reliability.

Design Parameters - Two Adsorbate System 

Definition of the zone velocities for the two adsorbate case, allows 

the evaluation of AQ :
H H

AQo = - q.:) (ABpgHr) - t-lT"
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The value of Aq is then defined:

•

Likewise, the value of A can be evaluated from:

2 AQ (A) k a '

D p

where all terms have been previously defined. Evaluation of A defines 

the master curves to be used in defining the effluent times:

»Em ' ^  11 + - “ 6B 1- V  * ïï’> Vll-31

^ + II VII-32

■ ®Em 1- ^  “ "d I'm- V  * “ Em‘ ''H-^

The corresponding values of are defined by:

X 0m

"05 8%,

-95 ^Em
A

The value of x is given as a function of A and r in Figure A-31. mm m
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In "constructing" the effluent curve, a convenient way to determine

the shape of the relationship, is to require that the second derivative

of the effluent time plot be equal to zero at x = x :m mm

A  8^ - 0 « • VII-3690 Mm

With this procedure, the curve will have an "inflection" point at 8 ^

and X  that is characteristic of virtually all dynamic adsorption data.

The presentation of an example calculation will illustrate this curve 

plotting.

Multicomponent Data - Results for the Three
Adsorbate Analysis - N-Pentane, N-Hexane, N-Heptane

in Methane

The Multicomponent Isotherm for the Three 
Adsorbate Case

The effect of the component heavier than n-hexane on the binary 

Langmuir Isotherm, is much the same as with the two adsorbate case. For 

the three component analysis, the component factor:

k _ V
a. ' = ADi
i , o VII-37

‘‘ADi

is correlated with the sum of the remaining adsorbate concentrations.

The three adsorbate runs performed in the laboratory are summarized in

Table A-16. Pertinent adsorption parameters are also shown- Table A-17

shows the calculation of the adsorption equilibrium constant k ^ "  for
P

n-pentane and k " for n-hexane. Figures A-9 and A-10 show the plot of 
^ h x

the constants for each adsorbate.
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Again the data correlate well within the limits of the laboratory 

procedure. The binary constants for each adsorbate are shown, (at zero 

for the "alternate" adsorbate concentration) and these values fit well 

with the correlations.

The inherent assumption in the re-evaluation of the adsorption 

equilibrium constant is that the system is a "pseudobinary" mixture of the 

adsorbates in question, and the carrier, methane.

Laboratory Evaluation of the Multicomponent Solid 
Phase Diffusion Equation for the Three Adsorbate Case

Definition of the equilibrium adsorbent concentration, q^^ via the 

appropriate isotherm is the necessary parameter needed in evaluating r^. 

The procedure is the same as with the two component case. The assumption 

is that the asymptotic solution is defined as long as its parameters are 

themselves independently defined, regardless of the number of adsorbable 

components in the carrier gas.

Thus, calculations of q^V, and represent the variables

needed to define the effluent parameters. The real time and effluent 

concentrations follow exactly as with the two adsorbate system.

Table A-20 shows the data used in calculating the three component 

values for N^. Again, the three component effluents were plotted on a 

time scale (Figures A-158 through A-165), and the subsequent A0 values 

related to their corresponding AZ values by dividing each A9 by:

. VII-38Q

The D" value is the three adsorbate column distribution coefficient. The 

resulting x vs. AZ plots are shown in Figures 371 through 378 , with
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pertinent data for each run noted on each graph. The "master" curves used 

for the fitting procedure were Figures A-226 through A-233, as with the 

two adsorbate system.

Calculations for the values for AQ^, from which was obtained

are shown in Table A-21. Subsequent calculations for X for each run are 

also shown in Table A-21.

The agreement between the calculated Aq^^^ and X parameters with mea­

sured laboratory data are shown in the tables. While the comparisons are 

not exact, the calculated values are reasonably close to the measured data.

In the actual calculation of the effluent times, i.e.: 0_ , 6_ , etc.Bm Em
the values of q Aq " , are essential, but a change in the value of ~oot ' Di

AQ^Di from .05 to, say, .075 will not affect the calculated value of 0^^ 

or by the same magnitude. For example, assuming a value of Aq^^\

.05 with the following parameters:

r = .85m
X = 1.1 AZ._ (r , X, N ) = .36 (Figure A-37)OD m p
N =50 P
D" =75

v$ = .25 AZ. (r , X, N ) = .36 (Figure A-38)—  m p

yield the indicated values for AZ„„ (r , X, N ) and AZq_ (r , X , N ).oD m p o£i m p
Thus, calculations for the corresponding times give:

= 18.75 [1 + .063 - .36] = 13.18 minutes
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>Em ■ f  '1 + “ 1-M + “ be K- + 1!

= .25 [75 [1 + .05 + .36] + 1]

= 26.70 minutes

with Aq " equal to .075:°°Di

0„ = 18.75 X .728 = 13.65 minutesDin "— ■■■

and,

6„ = .25 X 108.8 = 27.1 minutes,hm '

The preceding example shows the importance in the determination of 

the respective AZ terms as opposed to the corresponding Aq^^^ terms. 

Generally, therefore, a good estimate of the value of Aq^g^ is sufficient 

to satisfy the material balance requirements.

Likewise, an evaluation of the À term does not affect the determina­

tion of a corresponding AZ to a marked degree, as long as a good estimate 

of X is achievable. An observation of Figures A-37 through A-42 will

show that for A = 1.3, N = 50, and r = .85; AZ„_ = .33. Similarly forp m 0B ■'
A = 1.1, AZam = .36. The binary value (A = 1.0) is AZ.„=.40. EvaluationO D  9d

of the adsorption terms, therefore, are more dependent on a reliable deter­

mination of q^^ rather than the subsequent desorption and multicomponent 

material balance parameters. This discussion shows the importance of 

the multicomponent isotherm in any real dynamic adsorption design.

Zone Stabilization for the Three Adsorbate 
System - Zone Velocities

As with the two adsorbate system, values of were plotted against

their corresponding values of r^, in an effort to determine the region of
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stabilization for each run. Figure A-24 shows the results in graphical 

form. While most of the n-hexane runs showed good stabilization, a good 

number of the n-pentane runs were "outside" the 85% limits determined 

from the slope of the Thomas solution. This criteria is also shown in 

the calculation of the Michaels zone velocities shown in Table A-19. The 

n-hexane values as calculated by:

H-
(Michaels) V_ " = -r . V v  - VII-39

®Bm + V z m

compare well with those calculated by the constant pattern equation:

(Constant Pattern)

■  % .

The values for n-pentane, however, show considerable deviation in 

some instances. Figure A-16 points out this deviation graphically, show­

ing the displacement of the measured data from the lines representing:

1 ^  + —  D" . VII-AlV„ " V V Zcp g g

In Chapter V, an expression was developed relating the transient zone 

velocity, V^’ (or V^") to the variables present in Equation VII-41, as 

well as those not shown:

V = — d    rr • vii-42
(#) + 1 +  d l n V  »f> »" + 1 -

This equation indicates that, although (30/31) is less than 1.0, the over­

all change in the denominator of VII-42 is such that it is somewhat larger 

than (D" + 1).



109

This fact is borne out by Figure A-30, which shows the constant 

pattern zone velocity calculated by VII-41, divided by the Michaels zone 

velocity, i.e.. Equation VII-39. The abcissa of Figure A-30 is the term: 

which is determined from known laboratory data and Figures A-49 

through A-56.

The curves represented by Figures A-49 through A-56, have been de­

fined as denoting the minimum bed length required to establish a 95% sta­

bilized zone for the equilibrium parameter in question. Thus, the multi- 

component value of the column distribution coefficient, D' or D" multi­

plied by the stabilized mass transfer coefficient, k a °, i.e.:/   p p
k a °D' or k a °D" ,P P P P ’

gives an indication of the bed length, required for stabilization as

calculated by:
oZ = k a D — —  VII-43P P Vg '

Where, as before, (9Z/90) = 1.0 at Z. D is either the two or three

adsorbate column distribution coefficient. The value of divided by

the available length, H^, is an indication of the stabilization of the 

transient mass transfer coefficients as well as the zone velocity. Thus 

for less than or equal to 1.0, V^^' (Michaels) = V^^^' (constant

pattern), while for greater than l.Q, the ratio ^Zcp'^^Zm'

greater than 1.0. Figure A-30 shows the close agreement mentioned for 

the n-hexane data in both two and three adsorbate measurements. While 

the n-pentane velocity ratios were very close to one in the two adsorbate 

case, the data show values greater than one in the three adsorbate case. 

Figure A-30 is an attempt to correct the constant pattern velocity back
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to its "laboratory" value for subsequent parametric calculations.

Transient Mass Transfer Coefficients 

The variation of the transfer unit height, HTU°, has been discussed 

in relation to constant pattern conditions. In effect, values of the 

HTU's are given in Figures A-25 and A-26 for n-pentane and n-hexane, as 

calculated by:

V  /$
HTU° = — 2---  ̂ VII-44

k a °D P P

If the effluents are measured at an interim value of v$ correspond­

ing to a non stable Z, then the overall value of k^a^' will be greater 

than by an amount inversely proportional to the height of the mass

transfer unit. Tables A-13 and A-20 indicate the rather large values of

k a ' (two adsorbate) and k a " (three adsorbate) obtained. The reduced P P P P
values of the column distribution coefficients, D' and D" explain in part

the increase in k a as lowering these parameters increases r , and sub- P P m
sequently shortens the length of the ultimate HTU* length.

Since values of k a ° are calculated by VII-44, transient values P P
likewise are calculated by:

V p' ■
Dividing k a ’ by k a P P P P

kp3p' ■ ( m r )  (§7) kySpO. VII-46
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where each HTU' can now be generalized as the Transient Transfer Unit 

Height, HTU^, corresponding to the two or three adsorbate system.

Unfortunately, values of HTU^ cannot be directly calculated as they 

are dependent on values of k^a^' themselves. In considering that the 

transient zone heights are related to a possible parametric group, the 

important variables to consider can be summarized as:

1) The velocity of the gas, v^/*

2) The adsorbate concentration,

3) The relative column height,

Thus, HTU^ can be written as:

KTU^ = f(v /*, c^, D'). VII-47

Removing the functional proportionality:

V c H
HTUL = a_ -S— 2— L VII-47A

^ T $ D' H^°
where:

= Dimensional constant relating HTU^ to the variables - min. 

The ratio H^°/ has been discussed, and applies in Equation VII-47A 

only for the limits:

> 1.0.

When = 1.0, the transfer run height should be equivalent to its

multicomponent constant pattern level as given by VII-45. For this case, 

the value of k^a^' is given by VII-46.

Figures A-28 and A-29 show the group contained in VII-47A named the 

Transient Column Parameter, plotted vs. calculated transient transfer zone 

heights. The values are summarized in Tables A-15 and A-22 for both two 

and three adsorbate runs. Figure A-27, shows the computed constant pattern
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values of HTU° as a function of the equilibrium parameter, r (or r^), 

and the gas velocity.

Within the limits of the recorded data, this correlation should 

adequately represent the transient growth of the zone. No attempt has 

been made to express VII-A7A in equational form, although the coordinates 

of Figures A-28 or A-29 indicate a logarithmic correlation for the data.

Further applications of the data, as supplied to practical calcula­

tions for binary and multicomponent adsorption will be presented in an 

example calculation involving all parameters herein discussed.



CHAPTER VIII

CONCLUSIONS

Application of the binary and multicomponent dynamic hydrocarbon 

adsorption design criteria, as presented in the preceding chapters, 

leads to a series of important conclusions pertaining to the applica­

tion of the theory.

1) The Langmuir Isotherm is well suited to represent dynamic ad­

sorption data. Although the binary data re-evaluated in this work were 

collected at 90°F and 800 psig, these data are essentially identical 

with static equilibrium data collected by Day (D2) at pressures of 685 

to 1000 psig. The adsorption process, therefore, is relatively insensi­

tive to pressure in the range: 650 ^  P ^  1000 (psia). The 800 psig,

90°F. binary isotherms proposed in this work for n-pentane and n-hexane 

should be applicable for conditions falling within these pressure limits. 

For most binary applications n-pentane and n-hexane obey the mechanics

of the constant pattern process. These conditions are generally met by 

normal parameters encountered in the field, i.e.: gas velocities of 

20-40 ft/min. and tower lengths of 15-25 ft.

2) As established by McLeod's work on binary mixtures, the solid 

phase asymptotic solution first derived by Gleukauf and Coates (G2) best 

represents the dynamic mechanics for steady state hydrocarbon adsorption.

113
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The re-evaluation of the binary mixtures in this work further confirms 

McLeod's findings.

3) The solid phase asymptotic solution can be extended to the 

multicomponent case, where relative effluent concentrations of the dis­

placed components reach equilibrium levels greater than '1.0'. Constant 

pattern mechanics are not necessarily obeyed, but transient parameters

can be obtained that render the theory applicable to non-stable conditions.

4) The rate of advance of the mass transfer zone is relatively in­

sensitive to column lengths, although the length of the transfer unit is 

directly proportional to the length of the adsorbent bed only while tran­

sient conditions are prevalent.



NOMENCLATURE

Definitions
2A = Cross sectional area of adsorbing bed - ft.

Sp = Surface area of the adsorbent available for adsorption per unit
2 3volume of bed - ft. /ft.

*c^ = Transient concentration in the gas phase in equilibrium with -
3mole% ; or M/L units when used in the material balance,

c^ = Final equilibrium concentration of the adsorbate in the gas phase

in equilibrium with q^ - mole%
*c = Instantaneous concentration of the adsorbate in the gas phase ina

equilibrium with the transient adsorbent concentration - mole%

(^) = Column distribution coefficient, equivalent to;

D Pg ^ ^
y  = (100) c MW P$ = 0 (f°r Z = 1)o i

G = Mass flow rate of the gas based on the absolute tower area -

lb/hr. ft.^

h = Distance down the adsorbing bed - ft.

= Proportionality factor, dependent on the adsorption mechanics 

assumed

kg = Rate coefficient for the external phase diffusion case - ft./min.

kp = Rate coefficient for the solid phase diffusion case - ft./min.
■ 115
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k a ° = Overall mass transfer coefficient for the binary solid phaseP P

f P

-1diffusion case - min.

k^a^' = Multicomponent mass transfer coefficient - dependent on total
-1adsorbates - min.

k^a ° = Overall mass transfer coefficient for the external phase dif­

fusion case - min. ^

k^a^' = Multicomponent equivalent of k^a^^ - min. ̂

k̂ ĵ  ̂ = Rate coefficient for the kinetic reaction case - ft/min.

k, . c = Mass transfer coefficient for the kinetic reaction case -kin o
ft/min.

k ^ °  = Binary adsorption equilibrium constant as defined by the Lang­

muir Isotherm - (mole%)  ̂

k^' = Adsorption equilibrium constant for multicomponent mixtures;

dependent on the number and character of the components.

MW^ = Molecular weight of component in question - lb/mole

N = Dimensionless column capacity parameter for the external phase£
diffusion case; number of transfer units 

Np = Dimensionless column capacity parameter for the solid phase

diffusion case. Also equivalent to the number of transfer 

units contained within tower volume, v 

N = Dimensionless column capacity parameter for the kinetic re­

action case. Also, number of transfer units for this case

P = System pressure - psia

q = Transient concentration of the adsorbate on the adsorbent

in equilibrium with c^ - Ib/lh or Ib/ft^.
*

q^ = Equilibrium concentration of the adsorbate on the adsorbent

directly opposite the corresponding gas phase - lb/lb; Ib/ft^.
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= Final binary equilibrium concentration on the adsorbent as a 

function of the adsorbate gas phase concentration level - lb/lb 

q^' = Equilibrium adsorbent concentration for the two adsorbate multi-

component case - lb/lb 

q^" = Equilibrium adsorbent concentration for the three adsorbate case

q^° = Ultimate theoretical capacity of the adsorbent for the adsorbate

at 100% concentration of the adsorbate in the gas phase - lb/lb 

Q = Gas flow rate, dependent on the system pressure and temperature,

and given by:
PT 1Q = .00974 Ag ^  - ft^/min

r = Binary equilibrium parameter

r^ = Multicomponent equilibrium parameter
3 2R = Ideal gas law constant - 10.72 lb. ft. /in. mole °F

s = Dimensionless distance defined by:

, v$
s - km q-

or

s = k iiim Vg

t = Dimensionless time as defined by:
k V-v$

T = System temperature - (“F + 460)
3

V  = Column absolute volume - ft.

v^ = Superficial velocity of the gas, based on the tower or adsorb­

ing bed area - ft./min.

V = Total volume of solute or carrier gas that has passed at a point,
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3h, in the tower - QA0 - ft.

= Binary steady state zone velocity - ft./min.

= Constant pattern zone velocity - ft./min.

= Michaels type zone velocity - ft./min.

Vg' = Two adsorbate zone velocity - ft./min.

V^" = Three adsorbate zone velocity - ft./min.

X = Ratio of the transient adsorbate gas phase concentration c^, to

the equilibrium concentration c - c /co a o
y = Ratio of the transient component adsorbent concentration q^, to

the equilibrium adsorbent capacity, q^ - q^/q^

Z = Throughput parameter, equivalent to

V - v<5Z = D V  $

Symbols
3 3$ = Adsorbent packed bed porosity - ft. /ft.

3
p = Adsorbent packed bed density - lb/ft.B
Z = NP P

4

:R =
9 = Absolute time of adsorption at any point, h - min.

0 = Column throughput parameters for the solid phase diffusion case
P

0 = N ZP P
0 = Column throughput parameter for the external phase diffusion caseE
OR = HgZ
a = Ratio of component adsorption equilibrium constants.
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TABLE A-1

ADSORPTION PARAMETERS 
N-PENTANE

V
g Q «T ®E «Z

RUN ft/min ft^/min ft min min ft
56 22.5 1.059 14.6 16.6 46.5 14.50
57 21.7 1.021 14.6 24.5 52.2 10.80
58 10.8 .511 14.6 42.5 72.8 7.69
59 11.2 .532 14.6 42.4 74.9 8.24
60 10.5 .494 14.6 53.0 93.0 8.14
61 10.8 .511 14.6 41.0 68.0 7.44
62 10.7 .509 14.6 47.8 85.0 8.40
63 11.1 .524 14.6 48.5 90.6 8.89
64 23.0 1.109 14.6 16.4 42.4 14.40
65 23.0 1.150 14.6 18.5 48.3 14.40
66 23.0 1.097 14.6 16.4 40.0 12.72
68 23.4 1.090 14.6 23.5 52.0 11.00
84 45.8 2.135 14.6 10.0 31.7 16.69
86 45.1 2.080 14.6 12.4 33.2 13.80
87 44.5 2.105 14.6 9.0 28.7 16.70
88 45.7 2.150 14.6 11.2 34.7 15.85
89 44.9 2.120 14.6 11.5 34.4 16.30
90 46.4 2.190 14.6 10.0 29.5 16.10

119 10.3 .484 7.5 32.7 59.8 4.48
120 10.4 .486 7.5 29.0 63.9 5.50
121 10.8 .508 7.5 35.2 70.0 5.04
122 18.9 .890 7.5 11.0 32.0 8.65
125 41.0 1.930 7.5 3.3 21.3 12.80
126 35.7 1.676 15.0 16.7 35.7 11.30
131 10.0 .476 15.0 59.7 97 7.20
132 20.2 .954 15.0 29.7 58.7 10.20
135 10.0 .466 13.8 60.0 113.6 8.84
193 47.2 2.125 14.1 1.5 35.0 -

194 46.9 2.210 14.1 1.0 17.5 _



TABLE A-2
EQUILIBRIUM CAPACITY - EQUILIBRIUM PARAMETER

N-PENTANE

P T co r
RUN psig °F mole % lb/lb

56 800 91.5 1.021 .101 .723
57 813 89.5 .511 .057 .830
58 813 91.5 1.459 .124 .630
59 800 93.0 1.693 .146 .564
60 835 90.7 .660 .069 .792
61 811 97.0 2.040 .158 .527
62 810 91.0 1.489 .140 .581
63 800 88.8 .561 .058 .833
64 800 95.8 1.519 .125 .638
65 800 92.0 1.143 .111 .664
66 810 92.0 1.550 .132 .603
68 805 91.0 .538 .064 .807
84 805 89.2 1.226 .138 .586
86 808 90.0 .378 .049 .855
87 803 90.5 1.622 .161 .519
88 810 89.0 .467 .060 .819
89 800 91.0 .990 .117 .648
90 795 90.0 1.603 .169 .885
119 805 90.0 1.113 .130 .610
120 800 87.0 .642 .579 .762
121 800 91.0 .937 .130 .609
122 800 90.0 1.022 .092 .713
125 800 90.0 1.031 .110 .670
126 800 92.0 .973 .110 .670
131 805 91.0 1.314 .131 .608
132 800 91.0 .874 .095 .715
133 400 92.0 .906 .128 -
134 400 92.2 .942 .128 -
153 398 90.0 1.444 .127 -
154 1200 90.5 1.092 1.061 -
155 1210 90.7 .947 .059 -
156 1210 91.8 .889 .049 -
193 800 91.4 .428 .036 .898
194 800 91.0 1.950 .098 .706
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TABLE A-3
COMPARISON OF MEASURED AND CALCULATED PARAMETERS

N-PENTANE

RUN min

MEASURED

®E F
min

Vz
ft/min

«B
min

CALCULATED

min
F

CONSTANT
PATTERN

^Zcp
ft/min

ZONE
VELOCITY

Vz
ft/min

56 16.6 46.5 .455 .484 20.2 46.9 .470 .441 .446
57 24.5 52.2 .467 .390 24.8 52.1 .483 .383 .408
58 42.5 72.8 .457 .254 41.1 75.8 .457 .250 .241
59 42.4 74.9 .468 .254 42.1 73.0 .445 .252 .246
60 53.0 93.0 .465 .204 52.4 96.4 .478 .195 .194
61 41.0 68.0 .441 .275 39.0 68.5 .441 .272 .275
62 47.8 85.0 .450 .226 48.7 82.5 .449 .224 .248
63 48.5 90.6 .494 .210 46.4 91.1 .482 .210 .198
64 16.4 42.4 .406 .540 15 5 40.6 .458 .535 .542
65 18.5 48.3 .416 .474 18.4 43.6 .461 .467 .475
66 16.4 40.0 .452 .540 16.7 54.5 .452 .531 .533
68 23.5 52.0 .504 .386 21.7 54.5 .480 .382 .350
84 10.0 31.7 .414 .770 9.9 30.1 .586 .761 .780
86 12.4 33.2 .460 .664 11.0 33.3 .485 .681 .664
87 9.0 28.7 .419 .846 9.5 24.4 .437 .890 .890
88 11.2 34.7 .445 .674 9.9 31.1 .482 .716 .661
89 11.5 34.4 .493 .712 11.8 28.0 .459 .759 .751
90 10.0 29.5 .396 .823 11.4 25.5 .435 .819 .876
119 32.7 59.8 .445 .166 33.1 58.9 .452 .164 .178
120 29.0 63.9 .500 .157 31.8 63.9 .474 .157 .164
121 35.2 70.0 .462 .144 36.0 69.0 .453 .145 .150
122 11.0 32.0 .466 .389 10.6 32.8 .467 .355 .392
125 3.3 21.3 .462 .712 3.4 18.8 .478 .710 .700
126 16.7 35.7 .462 .595 17.2 34.7 .478 .591 .620
131 59.7 97.0 .472 .193 59.0 97.4 .452 .193 .208
132 29.7 58.7 .439 .352 29.3 56.2 .468 .350 .385
135 60.0 113.6 .502 .164 57.0 114.0 .485 .162 .180
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TABLE A-4
MASS TRANSFER COEFFICIENT

N-PENTANE
CALCULATIONS

(D/Z) v$
3

Dv^ N HTU° k a °
Q P P P -1RUN ft min ft min

56 126.9 .2685 32.1 20.0 .730 .624
57 141.0 .2685 37.0 40.0 .365 1.080
58 107.0 .2685 56.1 21.0 .696 .374
59 110.0 .2685 55.5 18.0 .810 .561
60 134.0 .2685 72.9 41.0 .356 .561
61 98.1 .2685 51.4 16.0 .911 .311
62 118.5 .2685 62.4 21.0 .695 .337
63 131.5 .2685 67.4 41.0 .356 .609
64 106.5 .2685 25.8 13.0 1.120 .504
65 125.0 .2685 29.2 17.0 .859 .581
66 107.0 .2685 26.1 14.0 1.042 .536
68 152.1 .2685 37.5 34.0 .430 1.080
84 148.9 .2685 18.7 14.0 1.042 .774
86 164.0 .2685 20.3 40.0 .365 1.960
87 123.8 .2685 15.8 10.0 1.460 .633
88 158.1 .2685 19.7 29.0 .504 1.470
89 147.0 .2685 18.7 16.5 .884 .881
90 140.6 .2685 17.2 10.5 1.390 .610

119 156.0 .1368 44.0 22.0 .340 .500
120 164.5 .1368 46.2 33.0 .226 .715
121 186.0 .1368 50.0 19.0 .394 .380
122 132.1 .1368 20.3 15 .497 .740
125 143.0 .1368 10.1 10 .748 .990
126 149.5 .2750 24.5 21 .710 .885
131 130.1 .2750 75.2 26 .575 .345
132 143.1 .2750 41.3 29 .515 .700
135 151.5 .2535 82.6 47 .294 .566
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TABLE A-5

ADSORPTION PARAMETERS 
N-HEXANE

RUN
V
g

ft/min
Q

ft^/min
*T
ft

«B
min

«E
min

«Z
ft

52 24.6 .494 5.39 10.8 34 5.11

55 23.0 .463 5.39 9.2 34 8.00

69 24.4 1.130 14.60 55.7 83.3 5.96

70 24.5 1.110 14.60 43.5 67.3 6.64

71 10.5 .495 14.60 132.4 165.0 4.12

72 10.7 .519 14.60 8 6 . 2 106.5 3.07

73 11.2 .530 14.60 133.0 183.0 4.64

74 11.3 .543 14.60 100.6 130.6 3.78

76 21.2 1.021 14.60 34.2 58.6 8.30

77 19.9 .958 14.60 48.0 72.4 6.10

78 20.0 1.000 14.60 59.4 96.5 7.04

79 42.8 1.925 14.60 26.7 49.3 9.06

80 44.2 2.080 14.60 28.4 52.6 12.18

81 39.1 1.835 14.60 20.9 50.0 13.20

83 45.8 2.175 14.60 18.4 31.1 8.25

117 11.5 .539 3.58 20.5 37.8 2.14

118 10.5 .494 7.48 53.9 70.5 2.00

123 19.9 .936 7.48 52.8 32.0 3.68

124 43.7 2.020 7.48 12.5 28.0 6.10

129 41.0 1.935 14.95 34.6 51.8 5.98

130 10.8 .506 14.95 108.2 124.3 2.08

143 40.5 1.910 13.80 19.5 38.0 13.80
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TABLE A-6

EQUILIBRIUM CAPACITIES AND EQUILIBRIUM PARAMETERS
N-HEXANE

P T 9» r
RUN psig °F mole 7o lb/lb

52 801 90.0 .509 .127 .69

55 790 90.0 1.162 .222 .46

69 810 91.3 .495 .132 .68

70 808 89.0 .930 .188 .55

71 806 91.0 .610 .156 .63

72 805 90.2 1.200 .199 .51

73 802 91.0 .467 .131 .68

74 785 92.0 .996 .204 .50

76 815 93.0 1.357 .200 .51

77 820 88.0 .939 .179 .56

78 800 91.0 .479 .123 .70

79 800 91.0 .424 .105 .74

80 808 91.0 .367 .105 .74

81 800 88.0 .755 .152 .63

83 802 91.3 1.310 .208 .49

117 800 94.0 .853 .173 .57

118 805 93.0 .884 .171 .58

123 800 91.0 .589 .146 . 64

124 805 90.0 .684 .171 .58

129 800 93.0 .676 .180 .56

130 800 90.8 .925 .175 .57

143 800 91.2 .994 .184 .55



129
TABLE A-7

COMPARISON OF MEASURED AND CALCULATED PARAMETERS
N-HEXANE

RUN
«B

min

MEASURED

«E F
min

Vz
ft/min

CALCULATED

«B «E 
min min

CONSTANT
PATTERN

ZONE
VELOCITY

F VZcp 
ft/min

Vz
ft/min

52 10.8 34.0 .502 .261 10.4 33.9 .463 .259 .210

55 9.2 34.0 .310 .311 8.8 28.0 .427 .313 .322

69 55.7 83.3 .435 .215 55.6 81.6 .465 .214 .185

70 43.5 67.3 .367 .279 23.8 63.0 .444 .278 .260

71 132.4 165.0 .431 .099 127.0 160.0 .457 .101 .100

72 86.2 106.5 .505 .151 80.0 107.1 .437 .150 .155

73 133.0 183.0 .493 .093 134.5 174.0 .465 .093 .086

74 100.6 130.6 .513 .126 99.0 126.5 .437 .125 .126

76 34.2 58.6 .353 .341 33.0 53.4 .438 .335 .357

77 48.0 72.4 .432 .249 46.0 69.5 ,445 .249 .264

78 59.4 96.5 .478 .190 59.0 96.0 .466 .188 .190

79 26.7 49.3 .429 .405 26.8 49.6 .473 .395 .405

80 28.4 52.6 .423 .361 28.4 52.6 .473 .359 .333

81 20.9 50.0 .384 .456 19.8 43.1 .457 .452 .477

83 18.4 31.1 .331 .646 17.5 34.2 .435 .638 .646

117 20.5 37.8 .486 .124 20.4 39.8 .445 .121 .124

118 53.9 70.5 .454 .121 52.1 71.5 .450 .120 .130

123 52.8 32.0 .470 .177 32.0 53.4 .458 .176 .200

124 12.5 28.0 .425 .388 13.4 27.7 .451 .385 .388

129 34.6 51.8 .487 .348 35.4 51.1 .446 .345 .378

130 108.2 124.3 .492 .129 101.5 129.0 .447 .128 .129

143 19.5 38.0 .329 •
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TABLE A-8

MASS TRANSFER COEFFICIENT
N-HEXANE

CALCULATIONS

(D/Z) v$ Dv$ N HTU° k a °Q P P P
RUN - ft^ min - ft . -1min

52 237.0 .0421 21.6 13.0 .414 .600

55 183.1 .0421 16.6 7.0 .770 .421

69 283.0 .2680 67.0 40.0 .365 .596

70 210.0 .2680 50.0 25.0 .584 .495

71 260.0 .2680 141.0 55.0 .266 .395
72 177.0 .2680 91.0 31.0 .472 .342

73 300.0 .2680 151.0 60.0 .244 .398
74 223.3 .2680 110.5 36.0 .415 .326
76 151.1 .2680 41.1 19.0 .769 .462

77 198.5 .2680 55.4 25.0 .584 .452

78 277.0 .2680 72.4 40.0 .365 .553

79 267.0 .2680 37.2 35.0 .417 .941

80 306.0 .2680 39.4 35.0 .417 .890

81 215.0 .2680 31.4 21.0 .695 .670

83 178.0 .2680 21.9 16.0 .914 .730

117 235.0 .0658 28.7 15.0 .239 .524

118 218.0 .1365 60.0 35.0 .214 .584

123 282.0 .1365 41.1 26.0 .287 ,633

124 282.5 .1365 19.1 15.5 .492 .811

129 295.0 .2750 41.8 29.0 .515 .695

130 208.0 .2750 113.1 42.0 .570 .372

143
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TABLE A-9

ADSORPTION PARAMETERS 
N-PENTANE - N-HEXANE

RUN ft
«B

min
®E

min
«T
ft

Component

35.7 ,715 5.39 3.5
9.8

12.0
23.1

5.75
4.71

n-C,
n-C,

4
4

34.7 .695 5.39 3.0
8.0

11.8
20.0

7.00
4.86

n-C, 
n—C,

46
46

24.3 .476 5.39 5.0
11.7

14.8
31.3

5.39
5.16

n-C,
n-C,

49
49

24.8 .506 5.39 3.0
9.0

12.0
25.0

6.21
5.78

n-C,
n-C,

51
51

24.3 .483 5.39 2.8
7,5

13.5
25.9

7.34
6.29

n-C,
n-C,

103
103

11.3 ,534 14.95 56.5
106.0

99.1
140.6

8.29
4.21

n-C,
n-C,

105
105

11.8 .555 14.95 44.2
66.9

59.9
110.2

4.41
7.59

n-C,
n-C,

106
106

22.4 1.058 14.95 24.6
54.1

45.2
95.1

8.55
8.54

n-C,
n-C,

108
108

21.3 1.000 14.95 27.9
62.5

56.0
103.0

9.95
7.34

n-C,
n-C,

110
110

44.1 2.080 14.95 9.0
19.0

20.0
36.0

10.82
9.84

n-C,
n-C,

112
112

23.1 1.090 14.95 15.7
25.0

25.1
48.8

6.86
10.65

n-C,
n-C,

113
113

45.2 2.150 14.95 10.0

27.2
28.0
60.2

13.81
12.01

n-C^
n-C,
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TABLE A-10

MULTICOMPONENT ADSORPTION EQUILIBRIUM CONSTANTS
N-PENTANE - N-HEXANE

RUN

co
mple %

q. '
lb/lb lb/lb

% k'AD
(mole

1 .45 .0509 .0550 .902 .400
1 .42 .1122 .1175 .976 .935

4 1.01 .0933 .1042 .866 .385
4 .45 .0964 .1220 .716 .687

46 .57 .0531 .0661 .751 .334
46 .50 .1230 .1334 .904 .864

49 1.05 .0821 .1051 .702 .312
49 .48 .0885 .1300 .600 .575

51 .87 .0755 .0926 .702 .311
51 .40 .0755 .1110 .606 .580

103 .50 .0545 .0950 .880 .390
103 .74 .1595 .1665 .906 .868

105 1.17 .0800 .1150 .608 .270
105 1.03 .1611 .2040 .690 .660

106 .61 .0561 .0715 .748 .332
106 .54 .1331 .1390 .973 .931

108 .45 .0482 .0555 .846 .376
108 .40 .1121 .1145 .984 .945

110 .81 .0680 .0877 .714 .316
110 .80 .1444 .1670 .745 .714

112 1.61 .0840 ,1335 .472 .209
112 1.42 .1803 .2445 .611 .585

113 .34 .0390 .0435 .876 .389
113 .30 .0867 .0910 .941 .900
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TABLE A-Il

EQUILIBRIUM CAPACITIES AND EQUILIBRIUM PARAMETERS 
N-PENTANE - N-HEXANE

RUN

P

psig

T

°F

co
mole 7o

q» '
lb/lb

rm

1 810 89 .45 .0550 .847
1 .42 .1122 .725

4 785 93 1.01 .0933 .720
4 .45 .0964 .764

46 803 92 .57 .0531 .840
46 .50 .1230 .700

49 806 90 1,05 .0821 .753
49 .48 .0885 .795

51 807 91 .87 .0755 .773
51 .40 .0755 .816

103 805 98 .50 .0545 .815
103 .74 .1595 .609

105 800 92 1.17 .0800 .760
105 1.03 .1611 .605

106 790 94 .61 .0564 .831
106 .54 .1331 .674

108 805 91 .45 .0482 .855
108 .40 .1121 .725

110 800 93 .81 .0680 .796
110 .80 .1444 .646

112 815 92 1.61 .0840 .748
112 1.42 .1803 .559

113 800 94 .34 .0390 .883
113 .30 .0867 .788
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TABLE A-12

COMPARISON OF MEASURED AND CALCULATED RESULTS 
N-PENTANE - N-HEXANE

RUN
«3
min

MEASURED

min
Vz'

ft/min min

CALCULATED

*E
min

Pm

CONSTANT
PATTERN

^Zcp
ft/min

1 3,5 12.0 .524 .678 3.5 13.8 .492 .678
1 9.8 23.1 .413 .355 9.4 22.7 .470 .345

4 3.0 11.8 .431 .794 2.9 11.4 .470 782
4 8.0 20.0 .442 .406 7.3 19.8 .475 .405

46 5.0 14.8 .489 .550 4.2 17.6 .492 .561
46 11.7 31.3 .447 .262 12.5 31.5 .466 .260

49 3.0 12.0 .536 .688 3.6 12.7 .482 .698
49 9.0 25.0 .368 .361 8.0 21.4 .478 .357

51 2.8 13.5 .474 .685 4.1 14.5 .479 .624
51 7.5 25.9 .447 .342 7.3 25.2 .480 .332

103 56.5 99.1 .458 .195 51.5 97.0 .497 .200
103 106.0 140.6 .493 .122 104.2 140.5 .452 .121

105 44.2 59.9 .580 .281 43.9 63.9 .573 .332
105 66.9 110.2 .426 .176 69.0 112.0 .452 .173

106 24.6 45.2 .552 .416 23.4 45.0 .525 .456
106 54.1 95.1 .434 .208 55.6 89.0 .462 .207

108 27.9 56.0 .518 .353 26.6 54.0 .529 .384
108 62.5 103.0 .541 .177 64.5 104.8 .470 .177

110 9.0 20.0 .564 .985 10.5 20.5 .535 1.01
110 19.0 36.0 .412 .576 18.5 35.3 .470 .564

112 15.7 25.1 .511 .731 26.0 45.4 .545 .865
112 25.0 48.8 .355 .448 15.4 23.4 .444 .426

113 10.0 28.0 .526 .770 10.2 29.3 .525 .760
113 27.2 60.2 .422 .363 27.0 56.0 .478 .358
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TABLE A-13

MASS TRANSFER COEFFICIENT CALCULATIONS
N-PENTANE - N-HEXANE

RUN

(D'/Z) v$

ft^

Dv$
Q

min

NP HTU'

ft

k a ' P P
min ^

1 132.9 .0421 7.82 27 .195 3.450
1 258.0 15.19 22 .245 1.450

4 110.0 .0421 6.66 14 .384 2.120
4 214.0 13.00 22 .245 1.690

46 107.5 .0421 9.52 25 .215 2.620
46 235.0 20.80 18 .300 .866

49 87.6 .0421 7.29 17 .317 2.320
49 172.1 14.28 29 .185 2.030

51 96.6 .0421 8.42 19 .284 2.260
51 182.5 15.95 26 .202 1.630

103 140.5 .2750 69.6 45 .332 .644
103 232.0 120.08 40 .374 .321

105 87.5 .2750 43.4 38 .394 .876
105 108.5 83.4 40 .374 .479

106 121.2 .2750 31.6 38 .394 1.200
106 271.0 70,6 31 .482 .501

108 137.0 .2750 37.7 44 .340 1.169
108 301.0 82.6 40 .374 .544

110 108.0 .2750 14.26 29 .516 2.040
110 195.0 25.90 22 .680 .856

112 65.6 .2750 16.50 35 .426 2.120
112 134.2 33.90 19 .786 .560

113 148.2 .2750 18.95 40 .374 2.110
113 314.0 40.20 36 .415 .895
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TABLE A-14

MULTICOMPONENT EQUILIBRIUM ENHANCEMENT FACTOR
N-PENTANE - N-HEXANE

r* kp*p' Hp I.R. X X
RUN - min"^ - lb lb/min - CALCULATED MEASURED

1 .847 3.450 27 .00095 .0382 .10 1.0634 1.050

4 .720 2.120 14 0 .0798 - 1.000 1.000

46 .840 2.620 25 .00300 .0322 .21 1.090 1.060

49 .750 2.320 17 .00402 .0614 .13 1.092 1.050

51 .773 2.260 19 0 .0499 - 1.000 1.020

103 .836 .644 45 .02710 .0263 .18 1.160 1.100
103 — - - - — — —

105 .760 .876 38 .25400 .0628 .30 1.55 1.38

106 .831 1.200 38 .1136 .0616 .35 1.30 1.160

108 .855 1.169 44 .0843 .0436 .26 1.20 1.16

110 .796 2.040 29 .0325 .1625 .18 1.15 1.19

112 .750 2.120 35 .2770 .1725 .35 1.50 1.25

113 .88 2.110 40 0 .0720 - 1.00 1.16
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TABLE A-15

TRANSIENT COLUMN PARAMETER
N-PENTANE - N-HEXANE

V c H
c D' D k a ° H °/H_ HTU°/HTU' 8 o T k a 'o P P T T $D' P P

RUN mole % - - min ^ ft/ft ft/ft min ^ CALC.

1 .45 132.9 140.5 1.45 9.650 1.950 .0313 3.000
1 .42 258.0 270.0 .72 3.160 1.835 .0461 1.384

4 1.01 110.0 123.0 .85 5.560 1.770 .1431 1.685
4 .45 214.0 272 .71 5.010 1.750 .0363 1.580

46 .57 107.5 134.0 1.00 10.500 1.860 .0309 2.350
46 .50 235.0 252.5 .57 1.850 1.300 .0700 .790

49 1.05 87.6 112.2 .69 8.160 1.875 .0909 1.660
49 .48 172.1 253.0 .60 5.750 1.430 .0302 1.265

51 .87 96.6 118.8 .78 8.000 1.835 .0684 1.760
51 .40 182.5 268.0 .62 8.350 1.270 .0156 1.169

103 .50 140.5 155.0 .64 2.110 1.060 .0476 .705
103 .74 232.0 242.0 .34 .427 1.000 - .387

105 1.17 87.5 126 .46 2.24 1.100 .1760 .729
105 1.03 168.5 213 .34 .569 1.000 - .430

106 .61 121.2 154.5 .96 3.330 1.000 .0846 1.220
106 .54 271.0 283.0 .55 .600 1.000 - .574

108 .45 137.0 158.0 1.14 2.900 1.010 .0592 1.312
108 .40 301.0 306.0 .58 .804 1.000 - .590

110 .81 108.0 139.5 1.07 4.000 1.030 .2070 1.440
110 .80 195.0 225.0 .80 .836 1.000 - .924

112 1.61 65.6 104.6 .49 5.240 1.400 .2710 1.090
112 1.42 134.2 182.0 .44 .802 1.000 - .596

113 .34 148.2 165.5 1.70 4.080 1,010 .0634 1.92
113 .30 314.0 330.0 .94 1.540 1.00 - .988
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TABLE A-I6

ADSORPTION PARAMETERS 
N-PENTANE - N-HEXANE - N-HEPTANE

V Q H_ 9„ H„ COMPONENT
g  1 o  £i Z

3RUN ft/min ft /min ft min min ft

201 40.8 1.910 14.06 7.0 21.0 14.04 n-C^
201 17.0 35.5 9.79 n-C^
201 48.0 60.0 - n-C^

217 30.7 1.420 14.06 6.0 27.0 16.95 n-C^
217 8.0 36.0 17.61 n-C^
217 29.0 68.5 - n-C^

220 30.6 1.435 14.06 10.0 32.0 14.04 n-C^
220 30.0 52.0 7.55 n-C^
220 60.0 91.0 - n-C,

221 30.5 1.390 14.06 5.0 30.0 18.00 n-C
221 20.0 48.0 10.55 n-C6̂
221 - n-C^

222 30.8 1.415 14.06 5.0 27.5 17.75 n-C^
222 19.0 37.5 10.65 n-C.o
222 40.0 63.0 - n-C^

225 32.0 1.472 14.06 9.0 29.0 15.62 n-C^
225 30.0 49.5 6.95 n-C^
225 54.0 66.5 - n-C^

226 31.1 1.406 14.06 6.0 25.0 16.95 n-C^
226 26.5 44.0 6.64 n-C^
226 46.0 62.5 - n-C^

227 31.5 1.448 14.06 5.0 26.0 18.40 n-C^
227 26.0 39.0 5.50 n-C^
227 42.5 70.0 - n-C^
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TABLE A-17

MULTICOMPONENT ADSORPTION EQUILIBRIUM CONSTANTS 
N-PENTANE - N-HEXANE - N-HEPTANE

RUN
=o 

mole 7o

q»' ' 

lb/lb

q«

lb/lb

1
“i " " a d

(mole %)"!

201 .1969 .01070 .0270 .380 .169
201 .2158 .03190 .0695 .411 .393
201 .2100 .05740 - - -

217 .2320 ,01158 .0313 .349 .155
217 .0618 .00476 .0225 .199 .191
217 .3800 .08590 - - -

220 .1515 .01105 .0210 .508 .246
220 .1200 .02170 .0408 .490 .469
220 .2140 .08600 - - -

221 .1625 .00976 .0226 .421 .187
221 .1248 .01940 .0434 .417 .399
221 .2830 .08910 - - -

222 .1549 .00844 .0213 .378 .168
222 .1020 .01205 .0351 .312 .299
222 .3530 .09190 - - -

225 .0524 .00338 .00775 .444 .197
225 .2660 .04740 .0831 .515 .494
225 .1930 .06420 - - -

226 .0538 .00263 .00831 .334 .184
226 .2510 .04140 .0791 .470 .45
226 .2660 .07710 - - -

227 .0536 .00195 .0080 .248 .110
227 .2020 .03020 .0670 .414 .396
227 .3680 .1110 - - -
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TABLE A-18

EQUILIBRIUM CAPACITIES AND EQUILIBRIUM PARAMETERS 
N-PENTANE - N-HEXANE - N-HEPTANE

RUN
P

psig
T
°F

co
mole 7o

q«"
lb/lb

rm

201 804 98.3 .1969 .01070 .968
201 - - .2158 .03190 .921
201 - - .2100 .05740 -

217 800 88.0 .2320 .01158 .965
217 - - .0618 .00476 .988
217 - - .3800 .08590 -

220 800 92.4 .1515 .01105 .967
220 - - .1200 .02170 .947
220 - - .2140 .08600 -

221 800 90.0 .1625 .00976 .971
221 - - .1248 .01940 .952
221 - - .2830 .0891 -

222 800 91.8 .1549 .00844 .975
222 - - .1020 .01205 .971
222 - - .3530 .09190 -

225 800 91.8 .0524 .00338 .989
225 - - .2660 .0474 .884
225 - - .1930 .0642 -

226 800 90.6 .0538 .00263 .992
226 - - .2310 .0414 .888
226 - - .2660 .0771 -

227 800 92.3 .0536 .00195 .994
227 - - .2020 .03020 .926
227 - - .3680 .11100 -
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TABLE A-19

COMPARISON OF MEASURED AND CALCULATED RESULTS 
N-PENTANE - N-HEXANE - N-HEPTANE

RUN
«B

min

MEASURED

«E
min

m Vz
ft/min

®B
min

CALCULATED

«E
min

m

CONSTANT
PATTERN

VZcp
ft/min

201
201
201

7.0
17.0

21.0
35.5

.500

.519
1.010
.529

5.2
13.2

20.5
37.1

.537

.510
1.350
.596

217
217
217

6.0
8.0

27.0
36.0

.541

.511
.808
.626

5.7
6.3

26.5
32.8

.555

.570
1.110
.850

220
220
220

10.0
30.0

32.0
52.0

.549

.500
.639
J^3

/. j
25.7

33.7
54.6

,509
.515

.744

.353

221
221
221

5.0
20.0

30.0
48.0

.581
,624

,724
,377

5.0
18.7

31.4
48.0

.535

.550
1.026
.475

222
222
222

5.0
19.0

27.5
37.0

.566

.626
,791
,576

4.4
18.4

25.7
37.2

.552

.585
1.005
.555

225
225
225

9.0
30.0

29.0
49.5

.451

.489
,781
,357

8.9
26.2

25.4
49.4

,510
.495

,884
,387

226
226
226

6.0
26.5

25.0
44.0

,516
.611

.887

.379
7.6

25.7
28.7
43.5

.572

.540
1.130
.406

227
227
227

5.0
26.0

26.0
39.0

.436

.594
.876
.424

4.5
24.4

20.0
40.0

.565

.550
1.540
.456
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TABLE A-20

m s s  TRANSFER COEFFICIENT CALCULATIONS
N-PENTANE - N-HEXANE - N-HEPTANE

(D/Z) v$ Dv4» N HTU' k a "
Q p P P

RUN - ft^ min - ft min”^

201 74.9 .2585 10.15 85 .1651 7.86
201 170.0 - 23.00 80 .1760 3.48
201 — — — — — —

217 68.2 .2585 12.40 85 .1651 6.85
217 89.0 - 16.20 220 .0638 13.60
217 — - — — - —

220 101.2 .2585 18.91 100 .1406 5.24
220 210.0 - 37.80 125 ,1125 3.31
220 — - — — — —

221 82.6 .2585 15.40 97 .1450 6.30
221 180.0 - 33.50 110 .1280 3.28
221 — — — — —

222 75.0 .2585 13.71 95 .1480 6.92
222 136.5 - 24.90 200 .0704 8.02
222 — — — — — —

225 89.5 .2585 15.75 220 .0640 14.00
225 205.5 - 36.10 83 .1695 2.30
225 — — — — — —

226 67.4 .2585 12.39 250 .0564 20.20
226 190.0 - 35.00 80 .1765 2.28
226 — - - - - —

227 49.9 .2585 8.91 275 .0511 30.90
227 172.5 - 30.80 135 .1041 4.44
227 — — — — — —
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TABLE A-2I

MüLTICœffONENT EQUILIBRIUM ENHANCEMENT FACTOR 
N-PENTANE - N-HEXANE - N-HEPTANE

RUN

rm k a •• 
P P
. -1min

NP
lb

IvR.

Ib/min

X

CALCULATED

X

MEASURED

201 .968 7.86 85 .0624 .0365 .90 1.30 1.18
201 .921 3.48 80 .0675 .0484 .35 1.30 1.11
201 - - - - - - - -

217 .965 6.85 85 .0725 .0319 1.2 1.31 1.22
217 .984 13.60 220 .0305 .0103 1.1 1.34 1.31
217 - - - - - - - -

220 .967 5.24 100 .0285 .0213 .636 1.21 1.1
220 .947 3.31 125 .0175 .0201 .260 1.20 1.13
220 - - - - - - - -

221 .971 6.30 97 ,0470 .0223 .840 1.31 1.18
221 .952 3.28 110 .0270 .0205 .330 1.23 1.20
221 - - - - - - - -

222 -975 6.92 95 .0445 .02150 1.0 1.31 1.20
222 .971 8.02 200 0 .0170 - 1.00 1.42
222 - - - - - - - -

225 .989 14.00 220 0 .0076 1.00 1.12
225 .884 2.30 83 0 .0461 - 1.00 1.05
225 - - - - - - - -

226 .992 20.2 250 .0138 .0075 .85 1.34 1.30
226 .888 2.28 80 .0650 .0415 .22 1.31 1.10
226 - - - - - - - -

227 .994 30.90 275 .0275 .0026 2.03 1.40 1.29
227 .926 4.44 135 .0375 .0344 .26 1.29 1.20
227 - - - - - - - -
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TABLE A-22

TRANSIENT COLUMN PARAMETER 
N-PENTANE - N-HEXANE - N-HEPTANE

:p»p" HIPVHTP'
RUN mole 7o - - min ^ ft/ft ft/ft . -1min CALC.

201 .1969 74.9 189.0 7.86 8.75 1.180 .02990 7.45
201 .2158 170.0 371.0 3.48 7.69 1.380 .01690 2.95
201 .2100 - - - - - - -

217 .2320 68.2 184.2 6.85 11.10 1.270 .02350 6.51
217 .0618 89.0 420.0 13.60 17.89 3.260 .00296 13.20
217 .3800 - - - - - - -

220 .1515 101.2 192.2 5.24 5.40 1.385 .02120 5.91
220 .1200 210.0 395.0 3.31 6.16 2.000 .00710 3.13
220 .2140 - - - - - - -

221 .1625 82.6 191.0 6.30 6.95 1.310 .02160 6.66
221 .1248 180.0 411.0 3.28 7.11 1.750 .00741 3.31
221 .2830 - - - - - - -

222 .1549 75.0 189.5 6.92 7.84 1.281 .02020 7.24
222 .1020 136.5 398.0 8.02 11.12 2.980 .00516 7.26
222 .3530 - - - - - - -

225 .0524 89.5 205.5 14.00 5.31 2.105 .00880 14.5
225 .2660 205.5 383.0 2.30 4.89 1.590 .02120 2.28
225 .1930 - - - - - - -

225 .0538 67.4 213.0 20.20 7.11 2.300 .00870 21.8
226 .2510 190.0 364.0 2.28 5.46 1.520 .01880 2.24
226 .2660 - - - - - - -

227 .0536 49.9 205.0 30.90 9.60 2.540 .00880 31.25
227 .2020 172.5 383.0 4.44 7.18 2.350 .01285 4.10
227 .3680 - - - - - - -
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FIGURE A 2
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FIGURE A 370
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FIGURE A 4
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FIGURE A 59
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FIGURE A 6
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FIGURE A 7
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FIGURE A 8
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FIGURE A 9
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FIGURE A 10
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FIGURE A 1 17
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FIGURE A 127
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FIGURE A 13
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10 FIGURE A 15
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FIGURE A 16
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FIGURE A 17
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FIGURE A 19

T H O M A S  SOLUTION 
FOR

INTERNAL SOLID P H A S E  
DIFFUSION

20
Ca/C o - 0.01

- 0 .1

40 Redrawn by permission:
Dr. Nevin K. Hiester, 
Stanford Research Institute

50

80

100

200
- 0 .0 1

400

600

800

1000
03

EQUILIBRIUM PARAMETER - T
- 0.001 2.0



164

FIGURE A 20100
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FIGURE A 21
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FIGURE A 241000
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FIGURE A 260
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FIGURE A 27
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FIGURE A 31 
SOLID P H A S E  DIFFUSION60

.58

STOICHIMETRIC C O N S T A N T  
E F F L U E N T  CONCENTRATIONS 

XM - XMM

.56

.54

BINARY D A T A

.52

MULTICOMPONENT
DATA

.50

J.l -EQUILBRIUM ENHANCEMENT FACTOR A

.48 -S

.46

.44

.42

EQUILIBRIUM PARAMETER.40



177

FIGURE A 32
SOLID PHASE DIFFUSION60

FRACTIONAL T O W E R  
CAPACITY 

A F T E R  B R E A K T H R O U G H  
-VS-

EQUILIBRIUM P A R A M E T E R
58

A EQUILIBRIUM ENHANCEMENT FACTOR

.56

.54

.52

.50

.48

BINARY DATA
46

.44

.42

EQUILIBRIUM PARAMETER.40
.3 .4 .5 .6 .7 .8 .9 1.0



178

FIGURE A 33 
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FIGURE A 41
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FIGURE A 43
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FIGURE A 107
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RUN NO. 68 _ INLET TEMP. 91 INLET PRESS._®£5_ PSIG. TOWER I. D._&9_ln.
TOWER L G T H ^ 4 5 . 5  cm . FLOW  R A T E i l i f l f t / m l n .  C O M P O S IT IO N ;.

03 G E L

-%C4 0-54 %Cg. _%G. -%G,

d e s s i g a n t :.

N - P E N T A N E

FIGURE A 100
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RUN N0._!1_ INLET TEMP._Ë£:i_*F INLET PRESS._i°L PSI6. TOWER I. D.  ̂?.\n.

TOWER L G T  cm . FLO W  R A T E _ Î L £ L f t /m i n .  C O M P O S IT IO N :_______% C4 '  ^3  %Cg -%G,

d e s s i g a n t :. 03 G E L

N - P E N T A N E

FIGURE A 109
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RUN NO.. 86 INLET TEMP. 90 INLET PRESS. BOB PSIG. TOWER I.D Liin.
TOWER L G T  H 445.5 cm FLOW RATE 45.08f | /min.  COMPOSITION:______ _%G. -%C,

d e s s i g a n t :. 03 G E L

N-PENTANE

FIGURE A 110
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RUN NO. 87 INLET P R E S S . . 003

TOWER l - f i T H  445.5 cm FLOW RAT E_l l :£Zf t /min .  COMPOSITION:.

d e s s i g a n t :____ ____________

PSIG.  TOWER I.D.

 %Ĉ  ' G2 %Gg--
2.9 in.

-%C. _%G,

N-PENTANE

FIGURE A 1 1 1
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RUN NO. 88 INLET TEMP. 89 INLET PRESS._iL2_ PSIG. TOWER I. D. 2.9_in.
TOWER L G T H . _ i d ^ c m .  FLOW R A T E  45.78 f j /mln.  COMPOSITION:.

d e s s i g a n t : ________g e l _____

-%C4_±fL%G5. _ % c .

N-PENTANE

FIGURE A 112
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RUN NO.. 89 .INLET TEMP.. 91 INLET PRESS. 800 PSIG.

TOWER L G T  H. 445.5 cm. FLOW R A T E - ü i î i f t / m i n .  COMPOSITION:_________________ %Cs

03 G E L

TOWER I.D. ̂  ?.ln.
_%G. _%C,

DESSIGANT.

N - P E N T A N E

FIGURE A 113
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RUN N 0 . _ £ £ _  I N L E T  T E M P . _ 5 ° _ * F  INLET P R E S S  . _ZÎ£_  PSIG.  TOWER I.D._&9_in.  

TOWER L G T  H . _ l £ 5 ^ c m .  FLOW RA T E _l£ i£ i f t / mi n .  COMPOSITION:______ %C^. -L.:.g°%G5------------% C , .

d e s s i g a n t :_g l - _________

_%G,

N-PENTANE

FIGURE A 114
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RUN NO._Llî_ INLET TEMP._Ë°i^“F INLET PRESS._®°1 PSIG. TOWER I.D.-iii-ln.
TOWER L G T H  226 cm. FLOW R A T E _L 2 illf t /m in .  COMPOSITION. -%G4- 1.14 .%G« -%C,

d e s s i g a n t :. 03 G EL

N-PENTANE

F IG U R E  A 115
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RUN NO '20 inlet TEMP.Æ “F INLET PRFSS 800 psiG TOWER I. D _&Ê_in.
TOWER L 6 T  H ._ 2 2 6 _ c m .  FLOW R A T E _ 2 £ d ^ t / m i n .  COMPOSITION:.

d e s s i g a n t : _______g e l ______

_%G^ 0-..64_%G5. _%G. _%C,

N - P E N T A N E

F IG UR E  A 116
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RUN N O ._ L i L I N L E T  TEMP
91.0 "F INLET P R E S S . P S I G .  TOWER I. D . - i i i - i n .  

TOWER l . G T H  226 cm. FLOW R A T E i M I f  1/mln. COMPOSITION:--------- %C4 % C5-----------

d e s s i g a n t : ________Jî5_'=_____

_% c .

N-PENTANE

F I G U R E  A  117
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RUN N0._ÜL INLET TEMP ±2. _"F INLET PRESS.-£22_ PSIG. TOWER I.D.
TOWER I f i T H  226 nm FLOW R A T E _ L M Ë f Vmin. COMPOSITION;.

03 GEL

_%G. _%G,

d e s s i g a n t :

N - P E N T A N E

FIGURE A 110
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RUN N0._LE5_ INLET TEMP. 90.0 INLET PRESS. 800 PSIG.
TOWER L G T H  226 cm FLOW RATE ^ '  Q’ ft/inin.  COMPOSITION; %C4 ' , 9  %G«----------- %0,

TOWER I.D. 2.9_|n.
5------ '*̂ 9- -%C,

DESSIGANT: . 03 G E L

N - P E N T A N E

F IGURE A 119
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RUN NO.—llL INLET TF UP  ^2.0 .p inlET PRE SS . PSIG. TOWER
TOWER I RT H 456 cm FLOW R ATE^iiZifVmln. COMPOSITION:---- %C^  %C, _%C,

d e s s i g a n t :. 03 G E L

N - P E N T A N E

FIGURE A 120
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RUN N O . J i £ _  IN L E T  TEMP.  9 ' °  °F INLET P R E S S ._122_ PSIG.  TOWER I . D . i l £ _ l n .  

TOWER L G T  H ^56 r.m. FLOW R A T E i ^ d l f V m i n .  COMPOSITION; ^%G4_ £ l iL % C 5----------- %Cg.

d e s s i g a n t : _________

-%C,

N - P E N T A N E

FIGURE A 121
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RUN NO._!!£. INLET T EM P  93.5 »p INLET PRESS ._§i2_ PSIG. TOWER I. D._&9_in.
TOWER L G T  H 421 r m  FLOW RATF 10 0 f t /min COMPOSITION;.

03 G EL
■%04 _%C. -%C,

d e s s i g a n t :

N-PENTANE

FIGURE A 122
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RUN NO. 52 i n l e t  TEMP. 9°°- »F INLET PRESS._§°J_ PSIG. TOWER I.D.2̂ o§2in.
TOWER LGTH._LËf_cm. FLOW RATE£fi£lfVtnln. COMPOSITION:---- %C^—

d e s s i g a n t :____ ° L  ______

.%Cs..0̂ 5 _ % c.

N-HE XAN E

FIG URE A 123
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RUN NO. 55 inlet TEMP._5M_"F INLET PRESS.-7.̂ °- PSIG. TOWER I. O.iÆZin.
TOWER L6TH._iË£_cm. FLOW RATEÜ±Lff/min. COMPOSITION:---- %C^---- %C 5-LH— %C,.

d e s s i g a n t :___________________

_ % c .

N-HEXANE

FIGURE A 124
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RUN NO G9 INLET TEMP.liJ_*F INLET PRESS. 810 PSIG.

TOWER L G T H .  4 4S5_ cm. FLOW RATE 24 37ft/m ln .  COMPOSITION:______ %C,.

TOWER I. 0. ! .l in.
_%G,

DESSIGANT:. 03 GEL
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F I G U R E  A  125
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RUN NO 70 INLET TEMP _ Ë i _ ® F  I N L E T  P R E S S . P S I G .  

TO W ER  LGTH.liËiS-Cm. F L O W  R A T E Ü d ^ f t /m in .  C O M P O S I T I O N .  %Cj,.
03 G EL

TOWER I. D.i±_in.
_% C . 0.93 _%C. _%c.

d e s s i g a n t ;.

N-HEXANE

FIGURE A 126
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RUN NO 71 INLET TEMP._11_*F INLET PRFSS 806 psiG TOWER I. D._&a_ln.
TOWER L G T H . j H i £ _ c m .  FLOW R A T E _ l£ :£ f f t /m in .  COMPOSITION; % G. %C _%c.

d e s s i g a n t :. 03 G EL

N-HEX ANE

FIG URE  A 127
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RUN NO.. 72 INLET TEMP..?-°î  «F INLET PRESS._i£5_ PSIG. TOWER I. D._&2_ln.
TOWER LGTH._^f£lLcm. FLOW RATE_l&Zlff/mln. COMPOSITION:---- %C4_

d e s s ig a n t : ----------

.%C5_Li2_%Cg. _%c.

N-HEXANE

FIGURE A 128
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RUN NO 73 INLET TEMP . 91 INLET PRESS. 802 PSIG. TOWER I. D._i±in.
T O W E R  L G T H  445.5 cm F L O W  RATE_LLHfVmin. COMPOSITION; _%C4- _%0. 0.47 -%C, _%G,

d e s s i g a n t :. 03 GEL

N-H EX AN E

FIGURE A 129
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RUN NO 74 i n l e t  T E M P  -Êg =F INLET PRESS._2§L PSIG. TOWER I. D.-âii-ln.
TOWER I R T H  445.5 cm FLOW RATE "  3 0 ft/mln . COMPOSITION:.

d e s s i g a n t : _________________

_%0. _%c.
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RUN NO 76 i n l e t  TEMP._21_”F INLET PRFSS 815 PSIG TOWER I. D _&2_ln.
TO W ER  L G T  H . i £ L 5 _ c m .  F L O W  R A T F ^ l-Z O  f t /m ln .  C O M P O S IT IO N : .

03 GEL
_%c. _%C5 Lll%Ca. _%C,

d e s s i g a n t :
N-HEXANE

FIGURE A 131
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RUN NO IZ— INLET TEMP.. Æ_°F INLET PRFSS G20 PSIG. TOWER I. D._&Ê_ln.
TOWER L G T H  445.5 pLOW RATEiMIft/mln. COMPOSITION;____ _%C,

d e s s i g a n t :. 03 GEL

N-HEXANE

FIGURE A 132
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RUN N0.Z£ INLET TEMP. 2L-“F INLET PRESS._ami_ PSI6. TOWER I. D.-ilÊ-ln.
TOWER LGTH. 445,5 cm. FLOW RATEJliHft/min. COMPOSITION:____%C4---- %Gs

03 GEL
_%c.

d e s s i g a n t :.

N-HEXANE

FIGURE A 133
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RUN NO._ZÎ_ INLET TEMP. 91 -“F INLET PRESS._®°2_ PSIG. TOWER I. D._&Ê_ln.
TOWER L O T H  445.5 cm FLOW R A T E _ H iH f t /m ln .  COMPOSITION; ----------% C5_ ^ — %Cg _%C,

d e s s i c a n t :. 03 G E L

N-HEXANE

FIGURE A 134
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RUN N0._Ë2_ INLET TEMP. 90 "F INLET P R E S S . P S I 6 .  TOWER [.D._i:i-ln.
TOWER t-R T  H 445.5 cm FLOW R A T E JA ^ J -f t /m ln .  COMPOSITION:. _%G. _%G,

d e s s i c a n t :. 03 GE L

N-HEXANE

F IGURE A 135
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RUN NO._ü_ INLET TEMP. INLET PRESS._Ë£2_ PSIG. TOWER I. D— LLln.
TOWER LGT H 445.5 cm FLOW RATE 39 >3 ff/mln. COMPOSITION:____ %C^—

D ESSICANT! ______

■%C5 _%G,

N -HE XAN E

FIGURE A 136
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RUN NO._Ŝ  INLET TEMP. 91-3 «p INLET PRESS._SÛ2_ PSIG. TOWER I. D._&^ln.
TOWER I A T M  445.5 rm FLOW RATE/>5.77ft/min. COMPOSITION;____

d e s s i c a n t :____ E _ ^ z ______

-%G,

N-HEXANE

FIGURE A 137
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RUN NO.. 117 INLET TEMP. 94.0 «F INLET PRESS._Ë£2_ PSIG. TOWER I. D..̂ .?̂ in.
TOWER LGT H.l££lLcm. FLOW RATE_!2d2ft/min. COMPOSITION:_______  %Gs ° .%G,.

d e s s i c a n t :  ________

-%G,

N-HEXANE

FIGURE A 130
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RUN NO ' 18 INLET T E M P  93 0 "F INLET P R E S S . P S I G .  T O W E R  I. D.È^in.
TOWER L G T H  226 cm. FLOW RATE <0-52 ff/mln. COMPOSITION:----- _%C,

DESSICANT;. 03 G E L

N -HEXANE

F IGURE A 139
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RUN no._L11_inlet temp. 91 INLET PRESS._£££_ PSIG. TOWER I. D._&f_ln.
TOWER L G T  H ._ H L _ c m .  FLOW R A T E _ l£ £ L f t /m in .  COMPOSITION: __ % C; -%C. _%C,

DESSICANT!- 03 GEL

N - P E N T A N E

FIGURE A 140
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RUN NO._HilNLET TEMP._iL2_®F INLET P R E S S . P S I G .  TOWER I. O.-iî in.
TOWER I fiTH 226 cm. FLOW RATE^Îlîlft/mln. COMPOSITION;. _% C. -%C5 0 -%c.

d e s s i c a n t : - . 03 G EL

N-HEX ANE

FIGURE A Ml
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RUN N0._124_ inlet TEMP.-2° *F INLET PRESS._Ë°L PSIG. TOWER I. D._&i_in.
TOWER LGTH.iii_cm. FLOW RATEJiiZlfVmin. 30MP0SITI0N:____ %C^—

d e s s i c a n t :  9 E !:-----------

_%G,

N- HEXANE

FIGURE A 142
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RUN NO.JiS— INLET TEMP....g?:.P."F INLET PRESS._®22 PSIG. TOWER I. D._&Ê_ln.
Î5-

d e s s i c a n t :.

TOWER l . f i T H  456 cm. FLOW R A T E l L ^ l f t / m i n .  COMPOSITION:______ _%C,
03 GEL

N-HE XA NE

FIGURE A 143
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RUN NO. INLET TEMP.J^?_»F INLET PRESS._M2. PSIG. TOWER I O 2.9 |n.
tower LGTH. cm. FLOW RATE_L2iZ2f1/mln. COMPOSITION:_______  <LP.- 0 93 mLC,

OFSSICAN GEL______

_%C,

N-HEXANE 

FIGURE A 144

0“

1  ' §-
2  .. I-z
Hi

S  'oo
I- 0 .z
u
3
_ i  0 .
u.
Ü.
UJ

Ui 0 .  
>

tu
q :

4

2

0

8

6

4

2

70

to
00VO

80 90 100 110 120 
TIME - MINUTES 130 140



RUN NO._!flINLET TEMP._!IlL*F INLET PRESS. 800 PSIG.

TOWER L G T H ._ l i !  cm. FLOW R A T E i£ l ! _ f t /m in .  COMPOSITION:---------

TOWER I .D - . - l l - i n .  

 %C5.°:.?gg-%Ca _%C,

d e s s i c a n t :. 03 G EL

N-HEX ANE 

FIGURE A 145
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RUN NO L

t o w e r  L G T H  '¥■
INLET TEMP. ° "F INLET PRESS. _i!2 PSIG. TOWER I. D.iÜÎZin.
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RUN N0._^ INLET TEMP INLET P R E S S . P S I G .  TOWER l.D.hSËlln.
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RUN NO._i£_ INLET TFMP 92.0 op INLET PRESS._£E_ PSIG. TOWER I. D.&HZin.
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RUN NO._1Ü_ INLET TFM P 90 0 op INLET P R E S S . P S I G .  TOWER I. O.A2É3n.
TOWER L G T H . - J . H _ c m .  FLOW R A T E £ ± H _ f t /m in .  COMPOSITION;.
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RUN NO._li_ INLET TEMP. ”F INLET PRESS._S2Z_ PSIG. TOWER 1.0.2̂ 067,0.
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RUN NO._L°LINLET TFMP 94 0 °F INLET PRESS._®°L PSIG. TOWER I. D.-L5_ln.
TOWER I R T H  456 cm FLOW RATElH±ft/ntin. COMPOSITION:---------  %Gg_&Zi_%Gg.
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RUN N0._!£Î_ INLET TEMP._£flL*F INLET PRESS._ZÎ5_ PSIG. TOWER I.D.̂ il-ln.
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RUN NO._L£L INLET TEMP._1Ll2-"F INLET PRESS. 805 PSIG. TOWER I. D.ii2°.in.
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RUN NO._Li£_INLET TEMP._EiL«F INLET PRESS.-Ë2L PSIG. TOWER I D. ^^. in.
TOWER LGTH._£56_cm. FLOW RATEi±iZ.ft/mln. COMPOSITION; %C4 9.:.?! ..TkCg 9 Qp_%C,.
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RUN N0._11£_INLET TEMP. ° "F INLET PRESS. 815
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RUN N0._L1L INLET TEMP INLET PRESS. 800 PSIG. TOWER I.D. ^.i£-in. 
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RUN N0.J£Î_ INLET TF M P  983 »F INLET PRESS._E£1_ PSIG. TOWER l.0.2ii_in.
TOWER LGT H.JlËllcm. FLOW RATF^’ ° ft/min. COMPOSITION:_I_
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RUN NO._ilZ_ INLET TEMP INLET PRESS._®°°_ PSIG. TOWER I. D._&9_ln.
TOWER L6TH.ilËJ_cm. FLOW RATE 27.6 ft/min. COMPOSITION:____ % %Cg_:Cm8_%GgWam .%07

DESSIGANT:___________________
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RUN NO 220 inlet TFMP 92.4 »p INLET PRESS._89.9_ PSIG. TOWER I. D._&^in.
TOWER LOT H.ii£:£_cm. FLOW RATE_^ZllfVmin. COMPOSITION:---- %C4^1M5_%C5_LllZÊ_%Gg_i2i36_%Ĝ

d e s s i g a n t :____ ----------------------
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RUN NO 221 INLET T E M P  -1 ^ INLET PRFSS GOO pGiG TOWER I. D._lf_ln.
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RUN NO._?iL INLET TEMP -RliL'F INLET PRESS._5°2_ PSIG. TOWER I. D.-ëiÊ-in.
TOWER LGTH.J^Ëlicm. FLOW RATE 27-4 ft/min. COMPOSITION: —
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RUN N0._!35_ INLET TEMP._iLl*F INLET PRESS._^22_ PSIG. TOWER I. D._L£_ln.
TOWER LGTH._liM.cm. FLOW RATE_iiiË_ft/min. COMPOSITION; %G4Mil_%G5_^iÊÊ_%Gg0di20_%C;
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RUN N0._E£Z_INLET TEMP INLET P R E S S . P S I G .  TOWER I.D.i:£_in.
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APPENDIX B

DEFINITIONS AND DERIVATIONS OF GENERAL ADSORPTION 

DIMENSIONLESS PARAMETERS

Surface Reaction Kinetics 

As shown in an earlier chapter, the general adsorption rate equa­

tion written according to the Langmuir theory can be summarized as:

= ^ [c [ q ° - q j - ^ ]  B-1d 0 “kin a “ a u
AD

at dq^/d9 = 0:

Co(q.° - q.) = . -̂2
%AD

This equation is the general dynamic adsorption isotherm applied to the 

adsorption analysis. Solving for q^° from B-2 and combining with B-1 

gives :

"  ■ ‘ ■ i ' -  “ •

Rearrangement of the equation can be seen to give:

 — ;----  \in®f
*‘ab
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Defining a dimensionless time, t, as:

, .  .V  '
V

with an effective adsorption time, 9 ’, as:

6» = 8 - —  B-6Vg

yields :
> a / ' " ' -

Now, noting that r =     , as described in an earlier chapter,
1 + kAD° =o

Equation B-2 yields:

'‘ad “o

= c q ['‘aP °°  ̂] b-9

c q ° . B-10

Thus:
q.r = 1 ----— , B-11
q j

is an alternate expression for r that can be applied as well as r = 

: + “a d° “o '
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t = ‘°. -  [6 - — ] B-12
''g

In defining a further relationship for t, use is made of a parameter, D, 

such that:
t = -SI te _ _ b-13

g

Where D is the Column Distribution Coefficient defined by: 
q p

D = : (c is in the proper units) B-14c <P oo

k is the surface reaction mechanism proportionality factor that will ins
allow other rate equations to be compared to Equation B-1.

k. , = k   B-15Tcin ms o
q. ps

Returning to B-4 gives:

o o
Or,

ÈL =dt
Equation B-17 is the generalized rate equation that applies directly to 

the adsorption theory along with the material balance equation.

x[l-y] - ry[l-x]. B-17
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APPENDIX C

GENERAL DERIVATIONS OF DYNAMIC ADSORPTION RELATIONSHIPS

Differential Material Balance 

The generalized dynamic adsorption material follows in an analagous 

form to the energy balance in conduction heat transfer in a linear sys­

tem. The following derivation closely follows the heat transfer solution

derived by Schuman (SI), and Furnas (FI). It's application to the dynamic 

mass transfer process occurs only at an equilibrium parameter equal to 

unity as will be shown:
h h + Ah

V  I   ^  U a j G  3 c  ( h . e )

Illustration C-1

The above illustration shows a differential tower element of volume, V, 

with an adsorbate laden carrier flowing through at mass flow rate, G.

All terms have been defined previously. For this analysis, c^ will have
3the units - m/ft .

The general material balance can be summarized as:

Adsorbate lost by gas = Adsorbate gained by solid + Adsorbate remain­

ing in voids.

384
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Expressed symbolically: C-1

A0 {c (h,0) - c (h + Ah, 0)} = p {q (h, 0 + A0) - p g a a a a

q^(h, 0)} AgAh + ${c^ (h, 0 + A0) - (h, 8)}AgAh

Thus:
3c 3q 9c

• ''g^âîT^e ’ “ b

Simplifying C-2 gives:
3c 3q 3c

"^g^3h"^0 " ^36"\ """ ^^30~^h*

As before, the net time of adsorption at any volume corresponding to h,

is given by:

9 ’ = 9 - —  . C-4V
8

Thus:
3c 3c 30' 3c

= (39̂ ) W  + l i T

3c . 3c
sir-

g

Replacing C-6 into C-3:

3c 3c 3q 3c
' (aif) e''g ■ "B

Thus:
9 c 9q

= Pj (5p-)h- c-8

Dividing C-8 by c^, q^, and noting that:

t = -&  [ 0- C-8AD Vg
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s = k — —  C-8Bm Vg

9x k 0 p_ k $ c

- Ô  = <S>- C-»

Equation C-9 is the material balance equation written in differential 

form with the dimensionless parameters, t and s.

Solution for the Adsorption Case When r = 1 

The general rate equation given in Appendix C is:

(|^)g = x(l-y) - ry(l-x) . C-10

At r = 1, which corresponds to the trace chromatogram case,

= * - y c-ii

The stipulation made by C-9 is such that a function, U, is assured to 

exist such that:

dU = A  ds + (I7) dt = 0. C-12

And:

3t3s 3s t

Thus the partial derivatives of the theoretical function with respect to 

s and t are defined at any point by y and x.
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Schuman (SI) suggests the assumption of a solution for x and y such

that:

y = (u(t,s) - V(t,s)\ exp[-(t + s)] C-15

X = {ü(t,s) + V(t,s)\ exp[-(t + s)] . C-1Ô

Thus:

- = +{u(t,s) + V(t,s)} exp[-(t + s)] - C-17

exp[-(t + s)] +

And:

1^ = - /u(t,s) - V(t,s)\ exp[-(t + s)] +

exp[-(t + s)] , C-18

Rewriting C-18 and C-17 with C-11 and C-9 (with U = U(t,s): V= V(t,s))

-2V exp[-(t + s)] = -(U + V) exp[-(t + s)] + C-19

("^ + exp[-(t + s) ]

2V exp[-(t + s)] = - (U - V) exp[-(t + s)] +

(-^ - -|̂ ) exp[-(t + s) . C-20

-2V = -(U + V) + (|j + |j) C-21

2V = -(U - V) + ( ^  - . C-22

Solving these relationships for U and V gives:

= * - V ' c-23

Thus ;
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= U  + V C-24

In order to reduce this equation to an expression involving only one 

dependent variable, say, V in terms of s and t, the expressions are 

differentiated again;

M  ^  C-25as9t 9s3t 9t 9t

3^0 c-269t9s 9t9s 9s 9s *

Thus, combining C-26 and C-25 gives;
2

2 = U + V - U + V C-27d t o S

2cj
- V = 0 . C-289 t9s

Equation C-28 is a general hyperbolic partial differential equation re­

duced to its canonical form.

In order to evaluate the boundary conditions for U and V, use is made

of the general rate equation:

9y
97 = - y '

Evaluating this equation at s = 0

dy = (x - y) dt . C-29

Demanding that:

x(0,t) = 1 C-30

= dt . C-311-y
Or:

-In (1-y) = t + * C-32
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At t = 0, y = y°, thus:

= -In (l-y°) . C-33

Finally

ln[-i^] = t . C-34i-y

Solving this equation for y :

y = 1 - (l-y°) e ^ . C-35

For y° = 0 or assuming an initially adsorbate free adsorbent:

y = 1 - e  ̂. C-36

Equation C-36 is the solution to the material balance and general rate

equation at h = 0 (s=0). This expression will be used to evaluate the

boundary conditions on V and U. In order to find a solution for x, a

moving boundary is assumed for h, i.e., h = v 8.At this variable dimen-g
sionless time, t, y = 0 since the adsorption front is defined only for 

positive values of:

0 - M
V

Thus ;

and:

g

=  - X  C-37at

In X  = -t C-38

X = exp (-t) . C-39

Now at s = 0, from C-15

y = (U - V) exp (-t)

but:

y = 1 - exp (-t) .

So that combination of C-36 and C-15 gives:



390

1 - exp (-t) = (U - V) exp (-t). C-40

In addition the stipulations for x from C-16 give:

X = (U + V) exp (-t).

At s = 0, however, x = 1.0 so that:

U + V = exp (t) . C-41

Solving C-41 and C-40 simultaneously yields:

V = 1/2
(s = 0) C-42

U = exp (t) - 1/2.

Equations C-42 are the boundary conditions for the unknown functions 

U(s,t) and V(s,t) at s = h = 0.

Likewise at t = 0, C-15 and C-36 yield: 

y = (U - V) exp (-s).

But y = 0 since the adsorbate is assumed virgin, so:

U - V = 0 C-43

C-16 and C-39 yield:

X = (U + V) C-44

X = exp (-t) = 1.0.

Solving C-44 and C-43 together, yield:

U = 1/2
(t = 0) C-45

V = 1/2.

Equations C-45 complete the evaluation for the boundary conditions on 

U(s,t) and V(s,t) for both end points.

As is the case with the hyperbolic equation, C-14 the following sub­

stitution reduces the equation to an ordinary homogeneous differential 

equation:
2

^ = - 4st. C-46
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ü  = iL9s 2s 

#  ■ &
29 4̂ = L_  

9s9t 2s '

And:

9^V = 9ji
9t9s dip hip 9s^ 9t

d^V 1 dV C-482dijj ip dip 

Finally, Equation C-48 becomes:

- -  —  - V = 0 . C-49
diji“ ip d̂ p

This equation can be immediately recognized as the Bessel Equation of 

order zero. The general solution for V(s,t) is therefore:

Where:

V(t,s) = A J (*) + B Y (*) . C-50

Jq (4') = Bessel function of the first kind order zero.

(tjj) = Bessel function of the second kind order zero.

At ^ = 0, implied by s or t = 0, yields V = 1/2 from C-42 and C-45. In 

addition, the Bessel function of the second kind approaches infinitely 

large negative values for an increasingly small argument, ip, while 3^(0) 

equals unity.

Thus :

B = 0  and A = 1/2.

And:
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V(t,s) = 1/2 J^(2i>^). C-51

Now, C-15 and C-16 indicate that

X  - y = 2 V(t,s) exp[-(t + s)] . C-52

Thus C-52 and C-51 become with C-11 and C-9:

r9X 
‘3s

Integrating C-53 for constant s:

-(-^)t = J^(2i«/^) exp[-(t + s)]. C-53

/s
X = - / Jg(2i/Ç t) exp[-(t + Ç)] dÇ + n(t), , C-54

0
Where:

n(t) = a function of t alone

The integral, J^(2i/sT) is the Bessel function with an imaginary argu­

ment, I^(2/st). Also, the following values are noted for the parameters;

-s
@ Ç = 0, X = 1, -exp[-(Ç + t) ] I 1 ^ ( 2 / ^ )  dÇ = 0.

0

Thus :

n ( t )  =  1.0.

Incorporating these results into C-54 gives;

X  = 1 - exp[-(t + Ç)] I 1 ^ ( 2 / ^ ) dÇ. C-55
0

Likewise, the expression for y yields:

(|^)g = I^(2/sT) exp[-(t + s) ] C-56

r
y = exp[-(s + a)] / I^(2/sa) da + y ( s ) ,  C-57

J 0
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At t = 0, y = 0 so that y(s) = 0 

Thus : ^

y = exp[-(s + a)] / I (2/sa) da, C-58
Jo

C-58 and C-56 are the required solutions for x and y under the stipu­

lations of the assumed rate equations, as well as r = 1.

Proportionate Pattern Mechanics 

For this particular application, a constant equilibrium parameter is 

assumed, such that the derivative: dy/dx is a function of x alone. From 

the relationship between x, y , and r:

A: = r_______
dx ((1-r) x + r)^

From the material balance:

C-59

= (R)a ' C-61

with the stipulation that (dy/dx) is constant, then:

Expressing t in terms of Z:

z . .  i  C-63Dv0 s

s = k ^  C-63Am Q

‘  Z + s f  C-64dx ds ds

i  ̂  . Z + iZ . C-65s dx s ds
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At constant t, the solution to C-65 is:

(Zs) = s + A C-66ax

from C-59, and noting that A = 0

Z --------   2 » C-67
((1-r) X + r)'

solving for x gives;

^ (r/Z)l/2 - r 
1 - r

This equation holds only for the following stipulations:

(1) s »  1,0

(2) r = const.

Constant Pattern Mechanics - Solid Phase Diffusion

Binary Equations 

For this case, the basic rate equation is:

C-68

^ = k a ° ( q  - q ) . C-69d0 p p a a 

In addition, the constant pattern diffusion theory states that:

(iF)x = 1' C-70

This expression written in conjunction with the material balance yields; 

X = y.

For binary mechanics, the instantaneous adsorbate concentration on the 

adsorbate is given by the Langmuir theory.

—  = .  —  . C-719. r + (1-r) c j c ^
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Replacing C-71 in C-69 gives:

^  .  ,d0 p %  r + (1-r) X C-72

Further simplification leads to: 

dy k a °
= r / a - r )  X [X - ? *)]- C-73

Or:
dy k a °
d ?  '  r  / ( 1-r) X " - y )  -  ^

This equation is similar to Equation B-17 (Appendix B). If the condi­

tion is met that;

k.  ̂ k a °int ^ P P
D r + (1-r) X C-75

Where:

k_^^ = The solid phase mechanism proportionality factor cor­

responding to k for the surface reaction case, ms
Then the rate Equation C-74 may be used in the general solution to 

the material balance. The dimensionless variables, s and t are thus 

written:

k a ° V - v0
t = ____2-2______  (______) ̂ (r + (1-r) x) I Q ^

1 . C—76k a D v$
^ P P________ _____

(r + (1-r) x) Q

Further, a Column Capacity Parameter, Z (or N), and Column Throughput 

Parameter, 0, are defined such that:
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« ■ ( ^ )

" ■ kp»p°D ^  •

Where:

0 = t(r + (1-r) x)

Z = s(r + (1-r) x) .

By the fundamental laws of differentiation:

C-77

C-78

È L â ^ Û l =  ÈL C-79
do dt de de '

Writing C-79 with C-74:

dy Cr + (1-r) x) ^ k a °
d0 (r + (1-r) X ) % %  * r + (1-r) x ‘

Thus:

A i  _  X (l-x) (1-r)
d0 " r + (1-r) X ’ C-81

Rearrangement of this equation into a reasonable expression for subse­

quent integration, gives:

f j  ï ( â r  + (1-r) j i f e r »  = C-82

Equation C-77 can be integrated by partial fractions by writing;

  T “X l-x x(l-x)

And: C-83

1 - r  
(l-x) ”

For A^ = r, B = r. Likewise, at A„ = IE—, B = 1- . Thus C-82 be- 
1 i  ̂ l-x ^

comes :
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-/ 1

X, V  X,
C-84

"1 " *1

Integration and simplification of C-84 gives the final binary solid

phase asymptotic solution:
r X (l-x ) l-x

W  - “ • C-85

Where A9 = N AZ.P

Multicomponent Equations

The multicomponent case is defined by the condition:

A > 1.0. C-86
*Thus, the Langmuir relationship for yields:

* / q c /ca a om
q r + (1-r ) c /c“>m m m a  om

C-87

Introducing this equation into the rate equation:

f r - v . ' I . - V .m m a om

Thus :

= t +  ( 1 - / )  c /c [ f - ’- m  - Sa'fm +  ^  )]C-89m m a  om om om

Since the stipulations for the multicomponent case are that:

c = X c om 0
C-90

q = X q
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Then, C-89 can be further simplified to read:

^  —  è  C - 9 1

Cm + f l  °

Simplification and division by gives:

W  = Xr / ( i - r ' T T  - ^y('m +  I  >1 ■ C-92m m

Or, with y = x:

s ■ V,' .m m

As before, in terms of the dimensionless variables:

+ (i_r } = AQ, c-94
x(A-x) n  I ( X - x )

X

Integration of expression u-94 yields the required multicomponent solu­

tion:
r x„(X-x ) X-x

(I:;-) - i»(x:;-) = "p^z. 0-95m i z i

This equation is only applicable so long as the original assumptions are 

valid. The fact, however, that instantaneous equilibrium values increase 

beyond the binary level for both gaseous and solid phases lends support 

to the original contention for X > 1.0. The most important aspect in 

C-95 is that of determining a valid Z value for multicomponent mixtures 

where "steady-state" mass exchange has not been initiated. For these 

cases, however, a 'pseudo-steady state' value of z may be computed as a 
function of adsorption parameters. This procedure has been outlined in 

Chapter VII, and allows use of Equation C-95 for transient dynamic cases.
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The practicality of this relationship, as opposed to more precise yet 

more complex equations, lends it a useful tool in predicting multicompo­

nent adsorption phenomenon.

Combined Phases Reaction 

When the overall resistance for the solid - gas interface is con­

sidered to be a combination of the external phase diffusion and internal 

phase diffusion cases, the resulting expression can be equated to the 

generalized surface reaction case, i.e.:

[----- 1-----+ -----2 _ ---- ]. c-96
1. ’« kf*p° 1.

Solving for -jg— :
* *̂oo A

d q _  (q_ -  q_) + —  (c -  c )— â =-- — §--Ê------- 2̂--Ê Ê—  C-97d0 I D
, 0 , 0  k a k^aP P f P

This expression may now be equated to the surface reaction equation:

t^a (q. - 9a) " "’'̂ â '̂ o " ^a^  ̂=*CO

* . *̂00 , *.(q^ - q^) + —  (c, - c )
C-9 8

, 0 , 0  k a k^aP P f P
Therefore:

+O , 0 , 0q c k, . k a k̂ -a<» o Kin p p f p
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Rearrangement gives:

™  c _ w o
\%° kf»p° q.°Coktin ĉ (q.-q̂ ) - rSa'Co-Ca»

By defining a parameter, b, that is a function only of the transient 

adsorption phenomenon:
* / *x% - + T" ‘ V = a  >

b = °
Ca(q.-qa) - ' q a < V = a ’

Thus:

^ =  P ----  . C-lOl
p*p°D kf*p° »B'ïXin

Vermeulen (V2) outlines a procedure for the determination of b for any

r at an average elution value of .5 for x. By Equation C-lOl, values

of k^a ° or k a ° can be determined as a function of the surface reaction f p p p
group, b$/pgqjk^^^.

From C-101 it is further evident that:

This equation is useful in design cases where either or is desired 

from a previous knowledge of b and N .
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APPENDIX D

DERIVATION OF THE ZONE VELOCITY EQUATIONS

Constant Pattern Equations 

The original stipulation for constant pattern adsorption, is that:

From the solid phase diffusion definitions for s and t:

g
k a D , .

^ ° r f M r )  X • “-3g
Thus :

And:

g e - —
g

h$ V D

g g
1 = (— ) (@v - h$) 3s/3t = 1). D-5

Since the distance, h, divided by the time, 6, represents the velocity 

of the adsorption wave, V^, (in order to satisfy x = const.):

. D-6V
—S. _ $
Vz

Solving for V^:

402
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V /$

\

This equation is the basic constant pattern zone velocity equation used 

in this work.

Zone Velocity Equations From the Material Balance 

Written in terms of h and 6, the material balance is:

Assuming that c^ is a function of x and 6, the criteria of interest 

(i.e. constant x) is denoted by:

4=2 = G = 4^ 4^ • D-9

Rearrangement gives:

^ 9 G  ^ h ' ^ ^ ' â ï r ^ e  ■ D - 1 0

By replacement of C-10 into D-8:

9c V p 9q 9c

Differentiation of the Langmuir expression for the adsorbate yields:
(q*/c )r 9c

" (r + (1-r) x)^ ^98"^h ' -̂12

Equation D-12 may be evaluated at x = .5, in order to represent

average mass transfer conditions. Thus:
3q_ 4(q /c )r 3c
<dT>h - ( ^ ) h -

Replacement of D-13 into D-11 gives:

Vg (l+r)2p^
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Simplification of this equation with r = 1 ----— yields the desired

expression for V

%

^  ^  ■>00 Pg 9 .4 .°   ̂ q .° -  q.

Vz ’' g P g * i  =0
D-15

This equation is identical with D-7 when the former is written as:

D-16

The equations represent a linear plot when represented on a co-ordinate 

scale with the following parameters:

Constant Pattern (D-16)

INTERCEPT

$/v

SLOP!

<4>/v

Zone Velocity (D-15) $/vg
400p MW o g
V p MW,g 8 i

These equations have been proven valid in the laboratory as described 

previously.
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APPENDIX E

STEADY STATE ADSORPTION EQUATIONS - THE MICHAELS APPROACH

Adsorption Capacity Equations 

The amount of the adsorbate contained within the adsorbent bed at 

8 = 8 can be written as:D

% '  V e  1.  + «zVb

Or:

Qg = < " r ™ Z >  V s  9.- E-2

Likewise, at 6 = 8̂ , or the zone exhaustion time, the total amount ad­

sorbed on the bed is:

E-3 and E-2 result in an interesting relationship that is useful in the 

evaluation of F:

Hz—  = 1 - F —  , E-4Qt \
The efficiency of a tower can be determined by noting that the fractional 

adsorption of the bed to zone breakthrough is denoted by:

B + (1-F)
E-5

B H^ + (1-F) Hg •

406
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At zone exhaustion:

,   ^ ________E + (1-F) A3P3 H3

E. -

E-6

E + (1-F) •

Adsorption Time Equations 

Michaels (M3) has shown that the ion-exchange theory yields impor­

tant times that can be classified as:

TIME OCCURRENCE

0„ Zone BreakthroughD
8g Zone Exhaustion

6p Zone Formation

These times have analagous adsorption counterparts that can be related 

to other adsorption variables.

From E-1 it can be seen that:

8g = [H^ - FH ]. E-7
® I.R. ^  ^

Where: I.R, = injection rate of any adsorbate into the tower.

Likewise:
, . V b ".
E I —  «T’ 2-8

From these equations, it can be seen that the zone velocity is equiva­

lent to:
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which may be useful in design once is determined. In addition, I.R. 

can be expressed as:

I.R. = .0183 Q MW^ Ib/min. E-10

Where: All terms have been previously defined.

Further relationships involving the time parameters are herein presented: 

 ̂ = V„ . E-11

Thus:

»E - *F *z :

6 is equivalent to:r
8p = (1-F) 82» E-13

Therefore:

Values of the Michaels zone velocity can be calculated by E-14 from 

measure laboratory parameters, i.e.: H^, 8̂ , F, 6̂ . Likewise, H^,

the mass transfer zone height is:

"z ‘ W -

These equations are defined for a steady state zone advance, a condi­

tion that may not necessarily be met during a dynamic process.
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APPENDIX F

EXAMPLE CALCULATIONS FOR BINARY AND 

MULTICOMPONENT MIXTURES

Let it be desired to calculate the dynamic behavior of independent 

binary mixtures of methane - n-pentane and methane - n-hexane in a sili­

ca gel adsorber for the following adsorbate concentrations;

Component Mole - %

n-pentane 1.0

n-hexane .75

In addition, the theoretical incoming gas is flowing at 10 MMCFD. The 

cycle time is to be set at 20 minutes. Hardware specifications, and 

adsorption behavior demand a velocity of 30 ft./min. Adsorption pres­

sure and temperature are 800 psig and 90°F. The packed gel density 

is 50 lb/ft.3.

Binary Calculations 

Step 1 - Adsorbate Equilibrium Concentrations 

Figures A-1 and A-2 give the n-pentane and n-hexane adsorbent con­

centrations:

(— ) @ 1.0 (1/c ) = 9.8 F-1
P °

q = 0.102'loop --------

410
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« 1-333(1/=.)h, ■ 3-9 f-1

9-hx " ^ M 9 5  .
Step 2 - Column Distribution Coefficients

The general expression for the column distribution coefficient is

given as: (with ths c^'s as mole fractions)

q,Pg (T 4- 460) 10.72 
° ^ c^MW^ (P + 14.7)$

= .102 X 50 X 550 X 10.72 ^ _
p .010 X 72 X 814.7 x .4 —

_ .1695 X 50 X 550 x 10.72 _ 
hx .0075 X 86 X 814.7 x .4 —

Step 3 - Column Area and Diameter 

For a given gas flow rate and a stipulated gas velocity the tower 

cross section must be fixed. This macroscopic bed area, A^, can be ex­

pressed as:

Ag = 19.65 ^  (Jt 14?7) • 
g

Where:

Q = MMCFD

V = ft/min.S
T = °F 

P = psig 

The subsequent bed diameter is:
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Thus ;

A„ = 19.65 X XB " 30 814.7

= 4.42 ft^

Step 4 - Calculation of r, the Equilibrium Parameter

r = 1 ------ , or F-6o
q.

r,- 1 - till = Ji24

1 + .444 X 1.0 1.444 ‘

fh,= 1 = -15i

^ = .583hx 1 + .959 X .75 1.716

Step 5 - Determination of the Mass Transfer Coefficients, k a °P P
Assuming constant pattern results. Figures A-17 and A-18 give the 

corresponding values of k a ° and k a °.
P Pp P Phx

k a ° = . 80 
P Pp

k a ° = .52 .
P Phx

Step 6 - Column Throughput Parameter Determinations - 
Real Time Equations

For either n-pentane or n-hexane the value of (or Z)
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N = k  a ° D ̂  . F-7P P P Q

Corresponding real times have been derived as;

^  II - “ bb k- V  + dI '■-«

6 = [D + 1] F-8AM X

= -^ [D [1+ AZggCr, Np)] + 1] . F-8B

Expressing these equations in terms of field units, i.e., Q = MMCFD,
3V = ft , $ = .4, gives:

®B = ^ 2 - ^  tl - AZ,B(r.Np) + |] F-9

\ l  = ^  [D + 1] F-9A

®E ■ Î ^  I” II + A Z eE (''H p)l +  11 r-9B

Noting the equation steady state mass transfer unit height:
V /$ 75

HTU ° = — 2---- =-----  F-10
P k a °D 102,5 

P P p

= .731 (n-pentane).

For r = .694, v = 30, Figure A-27 shows HTU ° = .73 P g P
HTU, ° = T^T = .572 (n-hexane). F-lOAnx lj±----------

Again, Figure A-27 shows HTU° = .6 for r^^ = ,586, v^ = 30.

Step 7 - Tower Length Calculations

The unknowns in the time dependent equations for 6 (r,N ) andiJ P
e„(r,N ) are AZ„„(r,N ), AZ._(r,N ), and H_ respectively. As both the hi p Dis p oh. p i
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differential throughput parameters are functions of the procedure in­

volved is a trial and error solution for As 6„ was 'set' at 20 min-B
utes, the H^(l - AZ) product is:

H^ti-AZ(.694,N^) 4. i] . n f

= 11.8 (n-pentane) .

And,

H^ll-AZ(.586,Np) + ij = f #  F-12

= 6.4 (n-hexane) .

Assuming for n-pentane, = 15', the value of is:

N = = 20.5p o 731 P
The binary value of AZ (.694, 20.5) from Figure A-33 gives:VD

AZgg(.694, 20.5) = .35 .

Recalculation of Equation F-11 gives:

15 X ,658 = 9.85 (5̂ 11,8).

Repeating the procedure for = 17

N = = 23.2p , 731

AZgg(.694, 23.2) = .31

17 X .698 = 11.87 = 11.8 .

The second iteration establishes the tower height for n-pentane in methane 

at 17' (approximately).

For n-hexane the procedure yields: (H^ = 10')

AZgg(.586, 17.5) = .28
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10 X .72 = 7.2 6.4)

Repeating for = 9'

AZL_(.586, 15.75) = .3VD

9 X .7 = 6.3 = 6.4.

Thus, the n-hexane tower length is approximately 9'.

Figure A-22 indicates that for = 23.2 for r = .694, and = 15.75 

for r = .586 the zones should be stabilized.

Step 8 - Real Time Effluent Concentration Calculations 

Determination of the tower heights, now, allows evaluation of the ad­

sorption times:

.02039 X 128 X 4.42 x 814.7 x 17
B 550 X 10

= 28.9 X .698 = 20 min.

[1 - .31 + .0078] F-13

M 128 

28,9

X [129] = 29.2 min. F-13A

X [128 [1 + .39] + 1]E 128

= .226 X 179 = 40,4 min, F-13B

Where .39 is AZ (.694, 23,2) from Figure A-34 y ej
For n-hexane, the time evaluations are:

= .02039 X 238 x 4.42 x 814.7 x 9 
B 550 X 10

= 28,5 X .724 = 20, 0 min.

[1 - . 30 + .0042] F-14

B

, ^ 28,5
M 238

28.5

[239] = 28,6 min, F-14A

[238 [1 + .40] + 1] F-14BE 238

= ,12 X 334 = 40,2 min
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Again .40 is AZ-^(.586, 15.75) from Figure A-34.

The corresponding values of x for both adsorbates are:

TIME-min. RELATIVE EFFLUENTS-x

9 n-pentane n-hexane n-pentane n-hexane

9^ 20,0 20.0 .05 .0515
9 29.2 28,6 .52 .527M
9^ 40.4 40.2 .95 .95£

Where ,52 and ,527 are the x values for n-pentane and n-hexane asm
given by Figure A-31.

Step 9 - Overall Theoretical Adsorption Calculations

The zone velocity for n-pentane is given by:

''zcp° ■ s V t  ' Ï29 " -581 ft/ml"- 8-15P
As shown by Equation V-4B in Chapter V, the total tower adsorption is 

defined as:
H - FH H

Q = I.R,( „ ) + I.R. F —  F-16
Vz Vz

Q = I.Rc -----  (Equation V-54). F-16A

Where:

I.R. = .0183 Q c MW. Ib/min.o 1

= Injection rate of the component into the tower

Thus :

= .0183 X 10 X 1 X 72 X — = 385 lbs. n-pentane/cycle (40 min.) 

The tower bed density was taken as 50, so that the gel requirements for 

the n-pentane design are:
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Pg Ag = 50 X 4.42 x 17 = 3750 lbs, gel

Thus:
385 = .1025 = q , the equilibrium capacity.3750

The calculated value of q^^, agrees precisely with the original value, 

.102, establishing coordination between all parameters.

For n-hexane, the zone velocity is:

' 'z t a °  ■ '  ^ 314 f t /m in .  F-18
hx

Likewise, the total theoretical adsorption for this case:

«T= (I. R J  — ^  F-19

"Zhx

= .0183 X 10 X -75 X 86 X ,314

= 338 lbs, n-hexane/cycle (40 min.)

For a 9' tower the amount of gel is:

4,42 X 9 X  50 = 1990 lbs, gel .

Thus, the calculated equilibrium capacity:

hx

This value again agrees well with the value given by the isotherm, .1695.

In summary, the calculared results for the hypothetical cases are 

as follows:

N-PENTANE/METHME

Gas flow rate - 10 MMCFD
Gas velocity - 30 ft/min (superficial)
Adsorption conditions - 90°F 800 psig
Tower diameter - 2,374 ft.
Tower area - 4.42 ft.2



418

N-PENTANE/METHANE (Con*t.)

Tower length - 17 ft.
Cycle time - 20 min.
Zone mid-point time - 29 min. (c /c = .52)
Zone exhaustion time - 40 min.
Tower adsorption - 264 lbs. n-pentane/20 minutes
Gel requirements - 3750 lbs. 03 grade silica gel

N-HEXANE/METHANE

Gas Flow Rate - 10 MMCFD
Gas velocity - 30- ft/min.
Adsorption conditions - 90°F; 800 psig
Tower diameter - 2.374 ft.
Tower area - 4.42 ft.^
Tower length - 9 ft.
Cycle time - 20 minutes
Zone mid-point time - 29 minutes (c /c = .527)
Zone exhaustion time - 40 minutes °
Tower adsorption - 236 lbs. n-hexane/20 minutes
Gel requirements - 1990 lbs. 03 grade silica gel

It should be noted that, generally, an even tower diameter will be used

as close as possible to the calculated value of D^. For this reason the

adsorption calculations must be repeated to account for the altered tower

conditions.

Also, the calculations could have proceeded in a slightly different 

form, if the tower height were known and the breakthrough time was the 

desired variable. For this case, the calculations are more direct, since 

the overall column capacity parameter can be directly calculated. This 

facilitates the evaluation of the 'AZ' parameters, and allows direct 

computation of all real times.

Binary Data Reproduction 

For the purpose of illustrating the binary correlations of adsorp­

tion data presented by McLeod, and herein revised, the conditions of 

Run No. 122 for n-pentane will be assumed valid. The unknowns are the 

breakthrough and exhaustion times.



(n-pentane)
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Run 122 

1.022 mole %

18.93 ft/min. 

.890 ft^/mln. 

7.5 ft.

T

P

= 54 lb/ft.' 

= .0458 ft.' 

= 90°F 

= 800 psig

Step 1 - Adsorbate Equilibrium Concentration.

1/c^

1/q.
op .978, thus from Figure A-1

= 9.9, and:

.101 .

Step 2 - Column Distribution Coefficient.

q=n + 460) 10.72

D

c MW.(P + 14.7).4op 1

.101 X 54 X 550 X 10.72 

.0102 X 72 X 814.7 x .4

= 134.3 .

Step 3 - Column Flow Rate. Since in this example the flow rate as 

well as the column area are set, the corresponding flow rate in field 

units will be:

q = .05089 A,

814.7Q

Q
= .05089 X .0458 x 18.93 x

= .0654 MMCFD .
550

Step 4 - Calculation of the Equilibrium Parameter, r.

q.r = 1 ------
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.101
.333

r = . 70

Step 5 - Determination of the Mass Transfer Coefficient, k^a^^.

From : k a ° for n-pentane at + 20 ft/min. is: .685P P
k a ° = .685 .P P

Step 6 - Determination of the Number of Transfer Units. Since the

height of the column is a given condition, the number of transfer units

for n-pentane can be directly calculated:

N = k a ° D ^P P P Q
^ _ .685 X 134.3 X 7.5 x .0458 x .4
p .890

N = .685 X 20.7 = 14.2 .P ----

Step 7 - Real Time Calculations. From Figures A-33 and A-34, the 

values of AZgg(.7, 14.2) and AZgg(.7, 14.2) are:

AZgg (.7,14.2) = .49

Thus !

AZgg (.7,14.2) = .68 .

*8 = [1 - A=8B(r' *p) + F]

= 20.7 X .503 = 10.35 min.

= .154[135.3]

= 20.83 min.

®E ' + AZeE'r- + II
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= .154[134.3 [1.68] + 1]

= .154 X 226.5 = 34.96 min.

Figure A-31 indicates that @ r = .7 is;

X = .519 .m
Comparison with the measured values of Run 122 indicate the follow­

ing results:

(Run 122)

Time - min. Relative Effluent
 6___________  Concentration

10.35 .05

20.83 .51

34.96 .96

The agreement of the calculated and measured data indicate a good ap­

plicability of the procedure to binary data.

It is of interest to note that the entire effluent curve can be con­

structed by referring to Figure A-60 of the binary master curves for r = 

.7, = 14.2. Values of AZ for a given x multiplied by:

Dv$
Q '

will give the corresponding value of the time, A9, associated with the 

AZ and x. The calculated points on Illustration F-1 indicate a close 

agreement for the entire effluent curve.

The following table illustrates the results obtained by solving the

■quation for r = .7 and N =14.2. P
X AZ A0 9

.05 0.00 0.000 10.35

.10 0.13 2.690 13.04

.20 0.27 5.589 15.94
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X AZ A0 0

.30 0 .37 7.659 18.01

.40 0.46 9 .522 19.87

.50 0.54 11 ,178 21.53

.60 0.62 12.834 23.19

.70 0.71 14 .697 25.05

.80 0 .83 17 .181 27.53

.90 1.02 21.114 31.46

.95 1.19 24.633 34.98 (0g)

In most practical applications, however, the times 9^, 0^, and 0^,

should serve to sufficiently define the effluent curve.

Multicomponent Calculations 

The same general data as in the previous calculation will apply, 

with the exception that the n-pentane, and n-hexane are both in the in­

coming gas stream. In addition, n-heptane is present as n-heptanes+ at 

.28 mole %. The entering gas analysis is taken as:

Component Mole - %

n-pentane .16

n-hexane .12

n-heptanes+ .28

Bed density = .8/6 x 62.4 = 54.6 lb/ft.^ (Run 221)

For this case, the bed. length will be established as 15 ft., in order 

to demonstrate the alternate calculation of the real times. The data 

follow closely with the three adsorbate Run No. 221 for comparison of the 

results.
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Step 1 - Adsorbate Equilibrium Concentrations 

N-pentane is experiencing an alternate 'pseudo-binary' concentra­

tion of:

c + c = .12 + .28 = .40 mole % .
°hx °hp

Likewise n-hexane is present with an alternate total component of:

c + c = .16 + .28 = .44 mole % .
°P °hp

Figures A-9 and A-10 indicate n-pentane and n-hexane multicomponent 

equilibrium constants of:

kAo" = "20P

X x  “
From the multicomponent isotherms, the single point values for the 

equilibrium concentrations are:

9." %  kao"
q." - 1 1 y - c  "p AD op p

.333 X .16 X .20 .01065
1 + .16 X .20 1.032

= .0103 (n-pentane)

% Vhx hx hx

hx hx

,408 X .12 X .36 .01765
1 + .12 X .36 1.0431

= .01690 (n-hexane).
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The binary levels of and are:
p hx

q^p = .022 (n-pentane)

q , = .0421 (n-hexane).^“hx

Step 2 - Column Distribution Coefficients 

For both adsorbates, the multicomponent as well as binary column dis­

tribution coefficients are needed.

Thus :
q " p_(T + 460) 10.72

D " = ---------------------------    F-23p c^^MW^(P + 14.7)*

_ M .0103 X 54.6 X 550 x 10.72 
p .0016 X  72 X  814.1 x .4

= 88.5

D ° = 88.5 X = 189.0 F-24p .0103 -----

.0169 X 54.6 X 550 x 10.72 p
°hx .0012 X 86 X 814.7 x .4

= 162

Step 3 - Calculation of the Multicomponent Equilibrium
Parameters rm

r = 1 - = .969 F-26mp .333 22ZZZ

= .969 F-26Amp 14- . 16 X .2
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r.hx = 1 - ^  f-27

mhx 1 + .12 X 35 = .960. F-27A

Step 4 - Evaluation of the Desorption Equilibrium 
Concentrations - Aq“iD

The governing equation, presented in Chapter V for the Aq^^'^ param­

eter is:

'"’-Dl ■ q„," - .0183 Q MW^

F-28

The steady state zone velocities will apply only if the mass transfer

unit has been fairly well established. For this criteria to be met the

parameters :

k a ° D ", k a ° D, " ,P P P P p p hx hx

are used with Figures A-55 and A-56 to determine the minimum bed length

requirements.

The binary mass transfer coefficients are:

k a ° = 2.0 (Figure A-17)P P P

k a °, = .82 (Figure A-18). p p hx

Thus :

k a °D " = 88.5 x 2 = 177 P P P

k a °D " = 162 X .82 = 133. P P P
Figures A-55 and A-56, for r = .95 and r = .99, are used to determine 

the minimum column height required to achieve steady state conditions:
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(min) = 110' (n-pentane 

H^^°(min) = 115' (n-pentane).

Thus :

= 110/15 = 7.34 (n-pentane

= 115/15 = 7.67 (n-hexane).

Figure A-30 indicates that at these relative column heights the ratios 

of the constant pattern velocity to the Michaels velocity are 1.10 and 

1.05 for n-pentane and n-hexane respectively. Thus, the Michael's zone 

velocities applicable to this calculation are:

''Zpm" ■ 81.5“x Ï.Ï - -761

nCc V 0 = = .395 ft/min. (binary)5 Zpm 190

” ‘=6''zhxm" " 163 ” l.05 '

■ &  = -185 (binary)

Returning to F-28:

‘“-Dp ' .0103 a 3620 " 3620 - .0183 a 10 a 72 a .16 a

15[2.53 - 1.31]}

= .0268 [42.4 - 38.50]

= .0268 X 3.9 = .1045 (n-pentane)

aslnh, - Ï  {-02565 a 3620 - .0183 a 10 a 86 a .12 a*«Dhx .01645 X 3620
15[5.40 - 2.28]}
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= .01682 [92.6 - 88.4] =.0706 (n-hexane).

Step 5 - Evaluation of the Equilibrium Enhancement Factor - X

Equation V-54 is the defining equation for X:

2 AQ_(X) k a  ’
^i " ^I.R.  ̂ ÂZjjCr, X, Np)).  ̂  ̂ ^ ^-29

k a ' AQ
Where: ^ ^ and AQ (X) = — ^

N Dv$P
For n-pentane and n-hexane, values of D v$/Q are:

D"p^^ = .02039 X 814.7 x 4.42 x 15 x 88.5
Q 550 X 10

= 17.65 (n-pentane)

F-30

^ hx ^ .02039 X 814.7 x 4.42 x 15 x 162 
Q 550 X 10

= 32.4 (n-hexane)

F-31

Values calculated previously for each adsorbate are reviewed.

I. R. (Ib/min) AZj^(X)db)

n-pentane 2.105 1.95 7.34

n-hexane 1.889 2.10 7.67

The factor that still must be calculated is the individual HTU' for each 

adsorbate, in order to determine the total transfer units 15 feet of 

tower represents to the components.

Figures A-28 and A-29 present the Transient Column Parameter as:
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Thus, the Transient Parameters for the adsorbates are:

SS^S X (n-pentane)

ill I 7.67 “  -̂ 22225 (n-hexana) .

The transient mass transfer unit heights from Figures A-28 and A-29 are 

seen to be

Component HTU*

n-pentane .130

n-hexane . 100

From these values the transfer units are calculated:

N = —^  = 115.1 (n-pentane) F-33PP • J. J

N , = ^  = 150. (n-hexane) • F-34phx . 1

Assuming, initially, that = 1.2 for n-pentane. Figure A-46 indi­

cates a AZj^(.969, 1.2, 115.1) value of:

AZj^(.969, 1.2, 115.1) = .42 (1 = 1.2) .

Recalculating from F-29 gives:

^p " (2.105) ^ (.42 ) ^17.65)

A = 1.249 1.2) .P
Thus, for Ap = 1.3, AZj^(.969, 1.3, 115.1) = .58 (Figure A-47)

^p " (2.105) ^ (.58 ) (17.65)

A = 1.181 (̂  1.3)P
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The following plot illustrates an approximate way in which can be 

found from the iterations:

(calculated)

1.3
O Iteration 1 
• Iteration 2

1.2

1.1

1.0
1.0

X (assumed)

Illustration F-1

Xp = 1.21; from the intersection of the dashed line and the 45° line. 

This value of X gives the equivalence between calculated and assumed 

equilibrium enhancement factors.

For n-hexane X^^ is also taken initially as 1.2, thus:

AZ^ (.96, 12., 150) = .27

^hx " *'1.889^^727^ (32.4) ^

X^^ = 1.255 ^ (1.2).

Redefining X^^ as 1.3, AZj^(.96, 1.3, 150) = .36 Figure A-47.

Re-evaluation of X^^ gives:

ĥx " (1.889) (35) (32.4) ^ 1'°

X^^ = 1.19 (f 1.3).

The acceptable value of X^^ can therefore be expected to fall between 1.2 

and 1.1. Illustration F-2 indicates the graphical results:
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O Iteration 1 
# Iteration 2

(calculated)
1 . 1 -

1.0
1.0 1.1

X (assumed)
Illustration F-2

The results are summarized, and compared with the measured data from

Run 221.

Component X(Calculated X (Measured)
(Run 221)

n-pentane

n-hexane

1.21

1.21

1.28

1.20

Step 6 - Real Time Evaluations

Determinations of the values for Aq J ' , Aq n ws as well as X and
^ooL/p ^ooUnx p

X^^ allows the selection of the proper master curves  ̂om which to deter­

mine values of the AZ terms.

For n-pentane, the correct throughput parameter values are:

AZ„^(.969, 1.21, 115.1) = .69 (Figure A-39)

. AZgg (.969, 1.21, 115.1) = .61 (Figure A-40) 

For n-hexane the corresponding values are:

AZgg (.96, 1.21, 150) = .42 (Figure A-39)

AZgg (.96, 1.21, 150) = .37 (Figure A-40)

Subsequent adsorption times are therefore: (Following the equations

from Chapter V)
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(■p ^ TA 1) ^f! ^ ^ ^ 1

>Bm - '02039 (T + 460)  Q------  + Aq, - iZegCV^.N^) + 5I

F-35

=Mm ■ '02039 ID" U  + + U  F-36

« E m  ■  ' 0 2 0 3 9  ' 0 " 1 1  +  A , , -  +  A Z g ^ ( r ^ . X , N _ , )  1 +  I l

F-37
.02039 X 814.7 x 4.42 x 15 x 88.5,

Bm 550 x 10

= 17.56 [.4275] = 7.48 minutes (n-pentane)

[88.5 [1.1045] + 1]

[1 + .1045 - .68]

Mm 88.5

= .1985 X 98.6 = 19.6 minutes (n-pentane)

8̂  = .1985 X  [88.5 [1 + .1045 + .61] + 1]Em

= .1985 [154.5] = 30.3 minutes (n-pentane)

The value of A8 (r , À, N ) for this case is: (From Chapter V, Equa- Lin m p
tion V-73)

''«Em = '02039 »p>

Where:

Em ’ p^ 115.1^ .0475 (1 - r^) ^

.05 ..969 + .95 X  .031.L AA7C n Q1 J115.1 ' .0475 X .031
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.05 X .999 = .294 .115.1  X .0475 X .031 

The differential time at which the n-pentane effluent reaches a value 

of unity is then:

= 17 .56  X .294 = 5.16  min. (n-pentane).

Thus:

®Em ^ " il.46 minutes .

The throughput parameter for zone desorption is given as 

AZjj(.969, 1 . 2 1 ,  115.1)  = .43 .

Thus, the total time at which the n-pentane effluent has reached a value

of X is:

AZ  ̂ ( .9 6 9 ,  1.21, 115.1)

_ or //■ . .02039 X 814.7 x 4.42 x 15 x 88.5 x .43 
■ 35-46 + 5 5 Ô T Ï Ô --------------------

= 35.46 + 7.56 

= 43.02 min. (n-pentane).

Figure A-31 indicates that for X = 1.21, x = .458, thus the times andp mm
effluent concentrations for n-pentane are summarized

Time-6(min) x (x meas.)
Run 221

7.A8 (e_ ) .05 .05Bm
19.6 (6^ ) .458 .40Mm
30.3 (6_ ) .95 .91Em
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(con'to)

Time-6(min) x (x meas.)
Run 221

35.46 (6^ + 1.00 1.00hm

43.02 (8g(X)) 1.21 1.18

The analagous n-hexane values follow in the same manner:

= 17.56 X X [1 + .0706 - .40 + .00618] F-39

= 32.2 X ,6768 = 21.69 minutes (n-hexane)

" lit^ [162 [1.0706] + 1] F-40

= .1986 X 174.8 = 34.7 minutes (n-hexane)

9^ = .1986 [ 162 [ 1.0706 + .37] + 1] F-41

= .1986 X 235.0

= 46.7 minutes (n-hexane).

The value of AZ_ (r, X, N ) for n-hexane from F-38 Em p

- t i

.05 X  1.0075
150 X .0475 X .05 

= .141 .

The time, A0_ , is:Em
A0 = 32,2 X  .141 = 4,4 minutes (n-hexane),

Thus :
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8g(X) = 46.7 + 4.4 + 32.2 x .28,where: AZjj(.96, 1.21, 150) = .28

= 59.8 minutes (n-hexane).

The n-hexane data is summarized as:

Time-9(min) x x(meas.)
Run 221

21-7 (8»») .05 .075

34.7 (8%») .459 .34

46.7 (8a,) .95 .90

51.1 (8a, + 1.00 1.08

A8a,)
59.8 (82(1)) 1.21 1.20

Step 7 - Overall Theoretical Adosrption Calculations

As with the binary; calculations, the total adsorption to 0 = 9 for£jin
n-pentane is:

«TQ = (I.R.)   n- F-43
Zpm

= 2.105 X — = 41.4 lbs. n-pentane/cycle .

The equilibrium capacity of the silica gel for the n-pentane is therefore 

(with the desorbed amount of 3.9 lbs.)

<  ’ • M  ■ -01035 . F-44

This number agrees exactly with the original isotherm value of .0103 lb (n- 

pane)/lb gel.

Likewise for n-hexane;

= 1.889 X — = 72 lbs. n-hexane/cycle.
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For the same bed weight, the equilibrium capacity for the n-hexane is; 

„ _ 64.4 - 4.2
q“hx 3620

=  60.2 
3620

= .01661 .

Again .01661 agrees very closely with the original isotherm value of 

.01690.

The calculations herein presented could very well have solved for a 

tower length, if the cycle time were stipulated. In such a case, an 

iterative procedure for will yield the required parameter. The 

multicomponent simultaneous adsorption calculations are nevertheless 

well suited to solve for any unknown parameter, with the minimum input 

data as presented here. No attempt is made in this work to describe 

the n-heptane component behavior as an effluent, since the adsorption 

cycle is usually never allowed to proceed much beyond the n-hexane ex­

haustion time in practice.
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