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CHAPTER I 

INTRoOUC'rION 

In recent years th~ natural gas industry pas turned to underground 

storage in its continuing efforts tc;;> develop low cost gas storage facil­

ities in its marketing areas (S). One 13uch development -- gas storage 

in virgin aquifera .,._ was initiated, beca1.1se of the absence of depleted 

oil or gas fields near many of the centers o:1; high gas consumption. 

Rigid .government regulation of tbhe projects has enhanced the 

need fo-r adequate description of th~ performance of these man-made 

gas fields. 'l'he need for this description has brought about several 

interesting extensions of the fluid-flow-in-porous-media concepts of 

reservoir mechanics •. Included among these fluid flow concepts are 

the theories of unsteady-state flow and of two-phase flow. The object 

of this dissertation was a study of a. portion of the two-phase flow 

theory. 

The two-phase fluid flow o~curring in gas storage reservoirs 

differs from the two-phase flow conditions that are normally encoun-

tered in natural petroleum reservoirs. This difference in flow conditions 

arises because the geologic format:ions used for gas storage reservoirs 

are subjected to a cyclic process of gas injection and withdrawal at 

common points in the reservoir. In contrast to the gas storage case 

are processes such as water flooding or gas cycling of a petroleum 

reservoir. In these oil recovery cases, the displacing ;l;luid is 

1 
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injected at one point in the reservoir while the produced fluid is 

withdrawn sinrultaneously at a different point. The importance of this 

difference in operation is that the cyclic operation of gas storage 

reservoirs introduces, within the reservoir, flow conditions under which 

the relative permeability hysteresis phenomenon has been observe~. 

The hysteres;i.s pheno-qi.enon becomes important in describing gas 

reservoir behavior because it has the effect of physically trapping, 

within the reservoir, a volum.e of gas th1:1-t is significant economically. 

Also, an additional volume of gas is not recoverable economically be­

cause the production of a large volume of water is required to recover 

small increments of gas. The gas industry can never divorce its opera­

tion::; from economic considerations. l'herefc;>re, it is of particular 

importance when selecting and operating a gas storage reservoir to 

estimate accurately this loss of gas which is related to the two-phase 

relative permeability characteristics of the rock fc;>rmation. 

Relative permeability characteristics vary from formation to forma­

tion; thus it is an obvious conclusion that certain formation::; are more 

desirable than others £or the purpose of gas storage. However, one 

should be cognizant of the fact that random variations of permeability 

also occur within formations which add to the complexity of the problem 

under consideration. 

In addition to predic;.ting the volume of gas lost, the two-phase 

flow concept provides essential data for predicting the rate of water 

production during gas withdrawal and for predicting the efficiency of 

the displacement of the w1:1-ter during ga$ injection. Information concern­

ing water production rate is essential for the efficient selection of 

production wells in order to minimize the hydrate and line freeze-up 
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problems occurring at the cold temperatures during which gas demand is 

highest. The water production information can also be used in sizing 

equipment to meet the peak load demands for removal and disposal of 

water from the produced gas. With regard to water displacement effi-

ciency, two-phase flow theory should lead to techniques for the develop-

ment of underground storage in aquifers which will maximize gas storage 

volume per unit of rock pore volume • 

. The key to the solution of many of the problems mentioned above 

I 
is the rapid advance in, computer technolo.gy in recent years. These 

technological advances have made possible and have created an interest 

in the sinrulation of industrial processes: by mathematic.al models. l3y 

applying mathematical techniques and high speed computers, this study 

seeks to contribute to the development of such a model for the gas 

storage process. As theoretical advances are made in the more accurate 

mathematical description of the reservoir mechanics of the gas storage 

process, these devices should make possible a rapid and accurate pre-

diction of the $torage reservoir behavior under any one proposed set of 

operating conditions. This ability to predict reservoir behavior would· 

then make possible the comparison of many different operating programs 

in order to select the most de~irable program. 



CHAPTER II 

PREVIOlJS INVESTIGATIONS 

The development of two-.phase flow theory has progressed ri:lpidly 

since Buckley and Leverett (4, 35) published their work on "Mechanism 

of Fluid Displacement in Sands'' in 1941. Their work has been ext:ende<l 

from linear to radial systems ( 5l, 64) and from water displacement of 

oil to cases of gas going into and coming out of solution during the 

displacement of oil by gas (48). Currently, there is also a substantial 

interest in the field of two-.phase flow in the area of miscible dis­

placement of oil from sands (7, 20, 48, 59 ) 

Also of interest is the work that has been done on the effects of 

gravity and capillary pressure as they affect the two-phase displace­

(15 19 26 39) 
ment process ' ' ' . Of particular importance in these 

investigations is the fact that the inclusion of the capillary pressure 

term in the fractional flow equation eliminates the triple value of 

saturation that occurs in the Buckley-Leverett equation (6). However, 

its inclusiop. means resorting to numerical methods and high-speed 

computers for the solutiQn of the differential equation. .The triple 

value has previously been eliminated by material balance considerations 

(4, 63) and shock theory (60). 

(25) · . (14) . 
Hawthorne has presented Dietz's theory to determine the 

tilting of the fluid interface due to gravity effects as one fluid is 

displaced by another at low rates. It should be noted, however, that 

4 
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this theory considers a constant saturation of the displacing fluid in 

the region behind the fluid interface. The assumption of constant satu-

ration is not true in the general case. 

(65) 
West, et: al have investigated the case of unstea.dy,-state, two-

phase flow for a bounded, solution .. gas-drive system by the simultaneous, 

finite difference solution of two second..,order, non-linear partial 

differential equations at each time step. Nevertheless, their solution 

does not consider frontal displacement or cyclic flow which are both of 

importance in gas storage operations. 

Welge, et al (64) have recently extended the radial, two-phase flow 

model to a radial cone type reservoir. Their work has potential appli-

cation in describing the gas storage process since most gas storage 

reservoirs are of a dome-type geologic structure. In its present form, 

however, this work considers only the fluid injection process and does 

not consider cyclic flow. 

(61) h In a recent publication, Sheffield and Brinkman ave presented 

a two-dimensional, finite difference analysis of the two-phase displace-

ment process with the effects of gravity and capillary pressure being 

included. Their work, if modified to include hysteresis, has possible 

application to gas storage problems. 

Geffen and co-workers <23 ) have noted the hysteresis phenomena of 

relative permeability functions. They <24) have also studied experimen-

tally the effect of imbibition on the loss of gas in naturally occurring 

gas reseJ;"voirs being produced by water drive. Their investigations 

showed that from 15 to 50 per cent of the initial gas in 81ace would 

be lost ultimately in the exterior region of the reservoir which is 

subjected to water invasion. It is this phenomenon of high gas losses 
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that makes the present study of particular interest to the gas storage 

industry. 

A valuable contribution to the theory of relative permeability 

hysteresis has been made by Naar and Henderson (4Z, 43). They developed 

a mathematical model based on a bundle of capillaries of random radii 

that is sliced into sections and rotated by a random angle theJeby having 

capillaries of random radii joined in series as well as in parallel. 

Based on this model, Naar and Henderson developed an equation for pre-

dieting the imbibition non-wetting phase relative permeability curve 

from the corresponding drainage curve. Difficulty was encountered in 

that the imbibition behavior is also related to the consolidation char-

acteristics of the porous medium; that is, an unconsolidated sand 

behaves very differently from a well consolidated sandstone. It is 

for this reason that tedious experimental techniques still must be 

resorted to in determining the hysteresis characteristics of a particu-

lar porous medium. 

Kruger (3l) has experimentally investigated the effect of satu-

ration history on the residual gas saturation after water flooding. 

He found that the residual gas after water flooding increased with 

increasing initial gas saturation when using a drainage-imbibition 

process. Also, ~hen the test cores were displaced to residual water 

saturation then sub j ected to an imbibition-partial drainage-imbibition 

process, he found the residual gas saturation to be essentially constant 

and to be equal to the maximum residual gas saturation. The residual 

gas saturation was approximately 30 percent for the cores tested. The 

described behavior of these cores is the same as would be i ndicated by 

an examination of relative permeability curves with hysteresis. 
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Most of the investigations in the area of two-phase fluid flow in 

porous media have dealt with the recovery of liquid hydrocarbons; but 

recently, its application to the gas storage process has been recognized 

(8, 12, 13, 21) 

Gardner, et al (Zl) have noted the importance of hysteresis upon 

gas storage. Because of the bearing of this article upon this study and 

because of the comp,lete, concise manner in which it is stated, the fol-

lowing direct quotation is made from their article.: 

It is the intention of this paper to discuss a factor 
in the.use of aquifers for storing gas which has a pro­
found influence on the eqonomics of storage. This is 
the necessity of providing "cushion gas"; it stems 
from a hysteresis in the injection and removal of a 
non-wetting phase from a porous medium. While 
the detailed mechanism of this hysteresis is still not 
fully understood, its consequences .are. In brief, it is 
found that if gas is injected into an aquifer so as to 
displace water, there remains a certain irreducible 
volume of water which cannot be displaced. The 
permeability of the rock to gas ,during this displace­
ment process is a function 0£ t~e water saturation, 
Typically, the relative permeab~lity to gas varies in 
the manner shown by curve l in ~ig. 1. · When the 
gas is withdrawn the variation d

1
f permeability with 

water saturation is different; the permeability to gas 
at a part:i,.cular saturation is lower·than during injec-
t ion. This is illustrated by curve 2 in Fig. 1. What 
is important from the standpoint of gas storage is that 
permeability to gas becomes zero at a gas saturation 
which may be large. In the example shown in Fig. l 
it is 43 per cent. This means that if gas is injected 
into an aquifer until the gas saturation exceeds 70 per 
cent and then attempts are made to remove it, 43 per 
cent of the pore volume of the rock will contain gas in a 
form so discontinuous that it is no longer able to flow 
to a borehole. If gas :is again injected it is found that 
the variation of permeability with saturation now 
follows the gas withdrawal curves (marked 2 on Fig l); 
subsequent production and injection cycles do like-
wise. In practice, a gas field cannot be produced 
economically below a saturation somewhat in excess of 
this trapped residual. This gas volume, greater than 
43 per cent of the pore volume in the example cited, is 
known as "cushion gas." Cushion gas is a phenomenon 



only important in the use of aquifers for gas storage, 
sincei in the case of most old gas fields used for 
storage, the cushion gas is already present as a 
residual unproduced gas. 

If? therefore, a trap structure in a large aquifer is 
to be used as a reservoir for the storage of natural gas 
during the summ~r months and for production during 
the winter? it is necessary that cushion gas first be 
injected into the reservoir. In other words, before 
an aquifer can be used as a reservoir of natural gas it 
must be conditioned by the pre-injection of some 40 
per cent or more of its pore volume of natural gas. 
This gas is to all intents and purposes lost, In the 
case of large storage projects the cost of the cushion 
gas is extremely high and amounts to some 50 pel,' cent 
of the. capital cost of the entire venture. 

FIGURE I 
GAS RELATIVE PERMEABILITY FOR BEREA SANDSTONE 
ON BOTH LIQUID IMBlBITION AND· DRAINAGE CYCLES 
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It should be noted that Gardner and co-workers did not deal with 

the mechanics of flow of the problem, but only consic;lered the problems 

of mixing and diffusion that arise if a low cost gas such as air or 

flue gas is used for a cushion gas: 

(12) 
Cornell has published a computer program applying the two-

phase flow concepts to a linear gas storage reservoir; but he neglected 

starting the gas withdrawal under the reservoir saturation conditions 

that existed at the end of the gas injection period. This investi-

gation also did not consider the gas permeability hystel'."esis phenomena 

observed by Geffen (Z3), by Osaba (45), and by Gardner <22 ). 

An excellent extension of two-phase flow theory was made by Ribe 

( 5l) in studying the "Production Behavior of a Water-"Blocked Oil 

Well." This work developed the radial, two-phase flow equation and 

applied it to the invasion of an oil sand by water during c'!, work-over 

operation and then the subsequent removal of the water as the oil was 

produced. Relative permeability hysteresis was not taken into consid-

eration by Ribe. The writer of this dissertation has been unable to 

derive Ribe 0 s equation for the gas-water front during withdrawal; 

however, this may be because his notation is .not cle11rly defined. 

Of interest to those persons surveying the two-phase flow litera­

ture is a report by Baker (l) entitled "A Surrlmary of Research of Two,.. 

phaseJ Immiscible Fluid Flow in Porous Mediao" A "Review of Aquifer 

(37) 
Gas Storage Projects" has been presented by Martinson • Also, 

Erickson and Svoboda (l 7) have presented geological information of a 

gas storage reservoir. 

Katz and co-workers (lO, ll, 28' 29 ' 3o, 56, 69 ) have made a 

rather extensive investigation into the effect of unsteady aquifer 
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movement upon the pressure and production performance of gas storage 

reservoirs. However, their work has not dealt with the actual water 

displacement process in that a gas zone of constant gas sat\lration 

and of essentially constant dimensions has beeµ assumed to exist initial-

ly. Also, gas has been considered to be the only flowing phase within 

the gas storage region; that is, "piston-like" displacement of the 

water was assumed with all residual water being considered to be im-

mobile. 

In a recent publication, the writer of this disse;r:tat;ion and Comer 

(66 ) have sought to minimize the limitation of single-phase gas zone 

flow by incoi;-porating into the unsteady-state model a variable radius, 

two-phase gas storage region. This model considered only the displace-

ment; process during which a single-well radial gas storage reservoir 

was being developed. However, this model gave a good correlation with 

the initial development stage of at;1. operating gas stora,ge re1:1ervoir. 

All of these works that have been reviewed have made important 

contributions in the fields of two-phase flow and of aquifer stol:'age 

of natural gas. But, to date, no one has published results of the 

effect of two-phase flow, with or without relative permeability 

hysteresis, on the operation of a gas storage reservoir undergoing 

cyclic injection and withdrawal of gas. It is in this area of two-

phase immiscible flow that this dissertation seeks to make a contri-

but ion. 



CB.APTER IU 

l'HEORET;(CAL CONS ID~RATJ;ONS 

In using mathematical models to describe the behavio:r of physical 

processes, it is necessary to have equations which adequately describe 

the model. In this chapter, equations are given for desc;i::ib:i,ng cycl;i.c, 

two-phase flow in porous media. 

The equati,ons discussed in this chapter are derived in detail in 

Appendix A. All symbols used, in this dissertation are defined in 

Appendix C and follow those suggested in 'the AJME Symbols List, 

Transactions, AIME (1956) 207, 363. 

The equations of immiscible two-phase flow in porous media are 

based on the four fundamental concepts that follow. The material 

balance o:r equation of continuity for two-phase flow i,s given by 

Darcy's Law for each phase is represented by 

u. ::::c 
1. 

-k k . (S) 
r1. 

7 (P. + p. gz). 
1. 1. ' 

i ,:;: g,w. 

The thermodynamic equation of state for the case of isothermal, in-

compressible fluid may be written as 

The equation for capillary pl:'essure is given by 

11 

(1) 

(Z) 
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p = p (S) :c p . - pJ. 
C C 1. 

(4) 

which relates the presst.1res in the wetting, j, and non-wetting phases, 

i. 

Eqµations (1), (2), (3), and (4) cap. be comb;i..ned iq.t;o a pair of 

general equations for incompressible, immiscible two-phase flow. These 

h . (20, 65) 
two equations are t e continuity equations for each phase, 1., , 

oS. 
7.~i + ¢ otl. = o, , . i :c g,w, ••• 

and the fractional flow equation 

-
=E 

k k ,U 

pw~g)J 
rJ t (7P - [ pg .,...1.,. f. + j - . 1. 

µ,jj u/ 
C 

~ 
k ,µ,] 

+ r 1 1. i ::: g,w;j = Y7, g. k . µ,. . . • • . 
r1. J 

. Except at extremely low flow +ates the capillary effects are 

(53) 
usually of minor import;ance and may bl;\ neglected . Also, if the 

(5) 

(6) 

area under consideration is of limited extent and if the formation thick-

ness is limited, then gravity effects may be neglected witqot.1t serious 

error. Since a one-well system is being coni;,idered in this study, these 

assumptions seem justifiable, The validity of these assumptions about 

capillary pressure and gravity should be ~nvestigated for each part;i..cu-

lar geometrical system that is considered, 

With the assu,mption that gravity and capi11ary pressure are negli-

gible, the fractional flow equ/;ltion becomes 



1 
f . ~ -....---.---- ., • .• 

i 1 + krjµ,i 

k;riµ, j 

Equations (5) and (7) may be combined when Equation (5) is a4apted 

to a particula:r geo~t:ry. 

lfor linear, incompressible, immiscible Uow with<:>ut gravity aqq 

capillary ef:f;ects, the two-phasE1 flow e,C(uati0.n beco~s tJ,.e :Suck.\ey­

Leverett equat:ton (4), as givE1n by Equation (8). 

For the radial case the correspo:ndins equation is 

q oS. 
, I .t f' .....J;. 

2:rr0hr i o-r 

where fi = d,f/dS. 

as. 
-'+ _..!, ;;:; 0 ••• ot 

Equations (8) and (9) are :i,lanar partial diff,rential equ.a.ti;op.s 

which have no direc.t analytical solution of the fopn -S 1 :;:: g(r1 t;); 

howeve:i;, they yield to solutic;:,n by the method of chara.ctedsttcs, 

13 

(7) 

(8) 

(9) 

This method of solution yields the doubly infinite set Qf Ct.lX'ves given 

by 

Si :;: cons t/:!.nt · (10) 

and 

C AQ:1\ 2 0\ 
r. = ,-h ·+ r. . .• 1.,m '!Tiu. i,m-

(11) 

in which m refers to time, ri is t;he radius of a surface Qf a. constant; 

saturation, and A.Q is the total fluid (gas Qr gas and water) injected 

or produced during the 'm'th 1;:ime ir;1:t:erva.1. l'he sigµ of AQ is consider• 

ed positive for the injection ca1;1E1 and negative for t;he withdrawal case. 



The numerical solution qf Eqt,1.ation (11) yields a, saturatioq.,-r~di1.g1 

relationship similar to Fig, 1, 

.Frontal Development, First Injection 

The application of Equation (11) au.d EquG!-tion. (7) i;-e~n11ts in a 

multiple valued saturation distribution at the f'ront whicq. can not 

exist physically. ·This condition ot.a non~un:tque trPntal satu;i;ation 

is 1;emedied by using a material balance procedure t;o dete1;mine the 

radius of the displacin~ .flui~ bank. For a two~phase displacement 

process the condition to be satisfied for material pal~nce~ as shown 

by Welge (6~) for the injection of a non~wettiqg fluid, is th~t · 

i4 

(12) 

A graphical interpretation of this condition is that f;f is the slope 

of a tangept to the fractional :l;low cu;t:"ve which passes through, ~he 

origin. The graphical representation is shown in F;i.g. 2. · The 

material balance condition is also eq1,1ivalent to ba.lanoiµg' the volumes 

represented by Regions A and Bin Fig. 1. 

Frontal Development, Withdrawa~ Wi.thout llysteresis 

The corresponding IMtirial balance candit;:ioas fo1;two•phase 

imbibition after displacement are 

where r* and r are the ;r;adii of the upper and lQwer vdu~~ of the 
** 

multi-valued saturation disti;-;ibutiqn, ~s ah9wµ in Fig. 11 and QY 

material balance that 

(lS) 
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G. is the init; ial volume of gas injected,, and G is the volume qf gas 
i . . p 

withdrawn (algebraically negative,). 
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The fractional flow function, ~,maybe calculated f+om Equation '. 

(7) once the e~perimental relative permeability functiqn.s ar~ determined, 

The derivative o:f t9e fractional £1qw function, f', may be comput:e<:l 

by numerical (57) or graphical methods. Th~n the satut"ations at t;he 

front, S* and S**' may be determined by a trial and error solutiQn 

of Equation (14) for any given fractioµia,1 v.qlume wit.hd:rawn, G. /<!, .• p l 

The application of Equation (14) is eqyivalent. to balancing the 

volumes of C and Din Fig. 1, 
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Observation of the behav:i.or of tlle Siil,turation .. radiµs fela.tionship 

given by Equat:ion (11) in Fig. 1 will show that de;finite lim,its can be 

placed on the values that S* and s,,h\' may a1:Jsurne, For example, consider 

the relative pO$itions of Sf and Sf+l as shown in Fig. 1. These satup 

rations originated from a commo!:l. aurface, the well bore, at th~ beginning 

of gas injection; but at the en~ o~ the :injection per:i.od1 Sf lies at 

a greater radius tqa.n Sf+l bec~use Qf it:i,i greatet value pf £1 , Appli .. 

cation of Equation (11,) q.uri.ng wi.thd'.1:,'awa,1 wiU show that t:he calculated 

radius of Sf will aiways be gt"eater than the iadius of ~f•H until Qp==G:i.. 

~ow consider the relative pos:i.tions of Sf ang s:f+{:1 . 13y material 
;:•Jf 

balance (Equation 12), these two sa,tu1=ations are placed on the same 

radial sur~ace at the end of tlte injection period, During withdrawd, 

S f~l will advance toward the WI;\ 11 bore more rapidly than Sf because it 
,,. 

has a larger value of£', Therefore, the calculated radius of sf, 

during withdrawal, will always be gl.'eater than the calculated r~dius 

of s ff,l. Since sf has a greate:i;- radius tha1;1 its adjacent vdues of 
! .' 

saturation, :i.t !l1U$t represent: the ma:i1;imum ra,di1,1s of th(;l R~&ion C in 

Fig. 1. 

Next, observe the behavior of the saturation for whi~h f' is a 

ma:dmum, Smd·· l3y Equation (11) Smd will ltavl:! the maxii;num 1:7at;:~ of: ad· .. · 

vancement; toward the weil bore because of its fractic,>nal flow derivative. 

At the beginning of withd1=awal (end of injection) Smd li~~ on ~he same 

radial sudace as aU S s; Sf' . There~ore, because of its -rate of travel, 

the radial position of smd, d1,1ring withdrawal, will always be less thaQ. 

any S :s: Sf and must then be the minimum radi1,1s of the Region D. 

further reflectioµ upon these condit:ions shows that ;for Regions C 
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and D to be equal, Sjc must lie between Sf i:lnd a higher i,aturation, 

S(rmd,w)' having the same radius as Smd or Sf<S*<[S(rmd,w)>SfJ. The 

calculated saturation distribution and these i:;ame conditions show that 

S .<s, ,<S d where S is the critical gas saturation on the drainage gc ww m gc 

gas relative permeability curve. 

Frontal Development, Second J;njection Without Hysteresis 

The process of injec;tion after withdrawal (drainage a,fter imbibi-

tion when the injected phase is non-wetting) may be deo.uced by the same 

reasoning as for the withdrawal a~tei: injectiom case. The conditions to 

be satisfied are 

::;: 0 

where r+ and r are the radH of th,e upper and lpwer i:;aturat,ions at 

the front du1;ing the sec;:ond injection and for material balance that 

f' = 
+ 

l 
(S - S ) 

+ 

G. l 6Q 
[ ..2:..z._;::, (f I - f I ) - ~ f,tJ • 

G. 2 f ,r G. 2 1, 1, 

(15) 

(16) 

An implicit assumption of these two relations is that relat:i.ve permea-

bility hysteresis is not important, 

For the case of injection after withdrawal, further mc,iiification of 

the equation of; the front must be made if the gas~watel;' front for the 

withdrawal cycle broke through into the well-bore. if this situation 

has occurred then Equation (16) becomes 

1 { G · 1 f I ::;i f+ - f + ~ f' (S - s _) . + 
+ (S+ - S) G. 2 f wb 

Q 
..:E__ (f - f_)}. 
G. 2 wb 

1, 

l,' . 

(17) 
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Pe liberation upop. th.e ranges of S+ ai:,.d S ~ as was done tor S* and 

s** shows that s d <S+<s* and S <s <s*"" for the aot1ditiol;ls implied l;>y m . . gc ~ ~ 

. Equation (16). . $* and S** a'X'e those vall.ies e:x:isting at the enq. of 

withdrawal (beginning of injection), Fqr Equation (17) where break .. 

through has occurre<.l, S ~<S <S and S <s <s. b.' m"' + max · gc ~ w 

ln the general impibition c,;1.se in which rd~tive per,meabilit;y 

hysteresis is a factor, Equ,;1.tioq.s (14) l!l-lld (16) must be modified~ 'rhi,:;; 

modi.fication is necesE;iit;ated by the fact thc;1t d1.,1ring an imbibition pro• 

cess th.e fractional flow £unction, fi, is no· longer a ;function of satut"a .. 

tion only, but is also dependent 1,,1pon the dincti<;>n pf approac.;h a,;uJ upon 

the initial saturation at a given poi:ri.t, Since a saturation gt'~dient 

exists in the resE:irvoir as a result of two~phai;e disp\acement by gas 

injection, the fractional flow funct::ion w;til tl;ten vary ftom point to 

point as well as from sa.turatiQn t;o saturatiqn during t'Ji).e imbibiti1;>n 

process. 

These factors lead to a part:::ial differe:i;,.tial equa,t;ion in two 

dependent ,;1.nd two independent variables as given 'by, ~qu~tion (18); 

where 

f = f (S , · S . ) 
' g g g1 

· is the fractional :flow of; gas i:l,n4 

s . == g (r) 
g1 

US) 

·(19) 

(20) 



20 

if;! the initial gas satura.t ion at tbe l;'adius r at the eni;l of tqe injec· 

t ion period. The sQlutioo of Equation (18) would require the use of 

complex finite difference techniques. 

A solution yielding the limiting performa.nce values for the ind>i~ 

bitic;:m case with hysteresis can b~ obtaip.ed by mc;,difying J::quations 

(14)? (16), and (17) to permit solutions '\.11\liog the two limiting gas 

relatj.ve pe·.rm·eability curves. 

Frontal Development, With Hyst;eredl'! 

When con!i!ide"ring hysteresis, t;he µiaterial bdant1e eq"Uations 

[Equation1;1 (14), (16), and (17)] ~oi- determining the saturation at the 

front i;m.tEJt be modified to use a combination of .fractional ;flow vt;ih1es 

from both the drainage and imbibition relative c,;urves. N<:>st:; of these 

modifications are minor and arise from the fact that all S < Sf we'!'.'e 

placec:;1 on a common radius 1;,y material ba1a.nee. 

-Several cases must be recogn;i.:z;ec:l. First, the t1rapped 9t r¢sidual 

gas sa.turatioq, Sgr' on the imbipit;i.on relative permea'!:>:i;lit;y curve 

may be less than (l~gr < Sf) or greater t;han (S81 > Sf) the iatuta.tion 

at t::he front during the initilil injection. 'l'h:l.s e:t'eates two wi'!Zhdtawal,-

second injection situat;.ions. Also, sin~e the. seco'l;l<;l injec:t;ion froi,.td 

eq1.,1ation is dependent upon whetb,er or not breakt1'ro1,.1gh occurred during 
i 

withdrawal, tot.Jr possible situ~tions exist fpr the 1;3econd :l.njectiott. 

Withdrawal 

For 1;:he case of Outd withdt;"awal with hyste'l;'e$is for the condi-

tion that S <Sf. the frontal eqtJatic:>u eq\livaiet1,t to Equation (14) . gr . ' 

is Equat i-on CH) . 
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{ G. 
f.b, = f~'<'2 - f **2 + ....,...,.,Q. 

1 
[ f f S f 1 (S · S ) ] } 

p · '1'<1 .. f 1 ** "" *1 · ~\- - ' ** 
(21) 

In this equation the subscript "1" indicates values calculate!! from 

the drainage relative permeability curve and ''2" indicates val1,1~s from 

the hysteresis imbibition rel1;1,tive permeability curve, I~ hysteresis 

is not to be c;onsiclered, Equl'\tion (21) reduces to ;ll:quation (14) upon 

replacing the subscript "2" with "1'' a,i;ld making algebraic siinplif'ic~.-

t;i.ons. 

When the trapped gas saturc1.tion for wit;~drawai, Sgr' is greater 

than the initial sa.t;:urat;::i,on at the :f;rpp:~, S :I!' which wiU generally be 

the case, Equa.t;i.on (21) will become Equation (22). '.L'his cond:lt:i,on is 

depicted by Fig, 3. 

£12 ~ { f.•2 - '**2 "' ~ r "n - ~**t • £~1 (S* • s*~)l} !/ (S* • s..,., 
(22) 

Swb 

z 
0 

~ 
a:: 
:::> 

~ 
(/) 

(/) 
4' Svr . c., 

s, 

( 
,..-... __ 

r+ r_ 
RADIUS 

,, 
FIG. ' RADIAL SATURATION DISTRIBUTION WITH HY$TERES18, s,,. s, 
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lnjec1;:ion 

As is shown in Append:i~ A, Equation (16) ;for injection after injec .. 

tion .. withdrawal may be modified t9 include hysteresis for the eondition 

that Sgt;' < S £ w~th the tesult being Equation (23), 

Q . 

£~2 .:,;, {ff2 .. £ .. z + f.-<£**2 - f .. 2> + <s1t* - s .. > 
i, 2 

Gil Q . }. 
[ ......,.... ( f ~, l .. £' ) - ..:.a......] / (S - S ) 

Gi2 ~ *l Gi,2 . ** .. (2:3) 

For the second injection ~ase where brea~throu~J,,. has occurred 

durb.g t;;he withdrawal phase, ~quation (17) is vdid where all val1,1es 

of f and :I;' are given a subscript "211. 

When considering the case whei;re Sgr > sf then Equation (23) 

beco~s 

In th,e case of breakthrough during withdrawal,·ll:quatio,;i(24b) 

replaces Equation (24a) as the equation giving the satU;ratioIJ. pf the 

front. 
G Q 

f'., .,;i; {f+2 - f_n + G_· 11·(fwb l .. f_l) + ~--- (fwb" '" £ .. z>} 
+~ ~ i2 ' · · · 1',liZ '~ 

1/ (S ., S ) 
+ -

(24b) 

Wa. te r ·J>1;odu.c t ion 

As gas is produced the gas-wate+ front (baPk) will move toward the 

well bore. J;f production is continl,led, the front wi1l Undly te~~h the 
i. 

well bore and water production will begin, At thii.; time 1;;he i;at;;uration 
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distribution will appear as in Fig. 4. · 

'rhe fracti,oi,,. of gas t;"emainin~ in t;he resel:'Voir c1,t 01:' af!ter break~ 

through is given by Equatio~ (25a) for the case whe'J;'e hysteresis is 

neglected. 

The subscript ''wb" indicates "at the well bo:i:'e," 

The cutm,Jlative .water pr9d1.1,ctio\l ;ls givep. qy Eql,!.a,tiop (25b), 

W • G. + Q ~ .G~ . p 1, p .... 

The produced vol:1,nne, Qp, is considered algebr1;1ically i;ie~ative. 

111 the hysteresis case where the Umiting i.mbibit:i.on ;elative 

(25a) 

(2Sb) 

permeability curve is being ~onsid~red, it is possible for water pro~ 

duction to occur before breakthrough. The 1H1.tut'l:!.tio.n c,iist;1;ibution for 

z 
0 

5 

Smax 
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= • ., 
CS .. 0 w .. 

·s·· . QC 

0 

WITtfDRAWAL 
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FIG. 4 RADIAL SATURATION OISTft18UTION AT BltEAl<Tl,f,.OUGH 

W/0 HYST£FtES1J 
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thia case as dete:t:'mined froltl- E:quatton (1i) will appear as in Fig. 3, 

'l'he shaded reg;i.on ~n this figu,:e to the left of the well 1'ore, t'w' 

mathematic~lly rep1;esents the volume of watel;' that has. 1;,een produced 

as given by Equation (26), 

-W = G (1 - f ) + Q (1 - f ) 
p · i wb,l p wb,i 

(26) 

At or after brei1;lkt:hrc:,ugl;l th~ fraction of gas re~ining in the 

. reservoir., for the hysteresj.s case, with t;h,e rest.ri:ction that sg'l!'>s f' 

is given by ~quation (27). 

Gr . Q 

GrD ii:; o.' = fwb, 1 + f fwb,2 
1 1 

(27) 

The total water produced wiil then be 

W . :;c Q + W bt + Gi .. G P, t P P, :t:' 
(28) 

where wp,bt is the cumulative water produced at breakth:1;ougb as.given 

by Equation (26). 

The pro4ucing water-ga,111 ratio lilt sudaee condition.s fot eithe:i:-

withdrawal case is given by 

~g"" </ .. 1) t-
. wb w 

(29) 

where "B" is the forl.llB-t;:ion volume fact;:o:r. 

It is of importance i:n the ul;l,dergro1,1ncjl stQrage of natura.1 gas in 

aquifers to develop the ma:dlJli.lm possible gas storage volume per unit of 

pore volume, · An eJ!:pression for the ~verage gas ~aturation during in.:. 

jection into a linear or single .. well radial system can be l;'eadily de­

riv~d and is givel;l. py Equati9n (30). (4B) . 

(;~O) 
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It is noted that sinGe ;ff is a Constant ;for injectioll then the average 

saturation behind the front, Sf' is also a constant. Also of inter~st 

is the fact thia'\;- S £ can be obtained re,;1.dily by extending the tangent 

to the fg curve, in Fig. 2 up to fg == 1, 

It should be pointed out that the ave')rage saturation obtained in 

this manner applies tQ linear or single well radial systems, This 

saturation would represent a millimum vlilue in t;he interior region of a 

multi-weU system and would closely apprcndmate the average sat;\.lration 

in the region beyond the outside wells. Th~ average saturation in 

the interj.or region of a multi.,well system is very likely dependent 

upon the initial development prograiµ £or the field, 

Algebraic exprE;issions f;or the variable average 13atu1-""a.tion occurring 

during gas withdrawal and re•:i.njection can be derived. However, they 

do not have the same simple graphical interpretation and are also of 

lesser importance. 

Two,.Phase Gas Zone, Unstea<ly Aquifer Model 

A mathematical model for gas injection into a radiall single ... well 

gas storage reservoir has 'been presente~ /:l.nd discus1;1ec;l by this atithor 

and Comer (66 ) in a previous publication. ';['he model c9ns ists of a 

semi-compressible core into which gi:ls is stored an4 a surrounding 

comp'):'essible aquifer. The geometric con,figut;ation for th,is model is 

shown in Fig. 5. The equation defining the weU .. bore pressure of the 

model at the end of the "n''th time step is g:i,ven by 

P ~ AP1 + Ap2 ~ P w,n ,n ,n c,n 
(30) 

where the pressure inct;ement in the two ... phase zone is 
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The pressure increment in the incompressible wa.ter zone is 

AG. µ, 
" 1,n w 1 ( I ) 
~P2,n = .07952rrhk 6~ n re rf,n 1 

w n 
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(31) 

(32) 

and the pressure at the inner boundary of the compressible aquifer is 

Pc,n;:: Pi +·h k 
w 

25,1µ, 
w 

n 

)h [ (L:.Gi/At)j - (AG/At)j-l)Ptd. (33) 

In Equations (32) and (33), L:.G / 6t is given by 

~:i). = 

z.G .. 
J J,, 1, SC .,. 

p .(t . .., t. 1) 

z. lG .. l 
J- .. 1, 1- .z SC ) ( T I T ) 

· ·(·t t ) Psc r zsc sc".· P . l · 1. - . 2 J g, J J J - . g, J., . J - J-

(34) 

which rela,tes the rate of water flow out of the incompressible core, 

r, to the rate of gas zone growth resulting from gas being injected and/ 
C 

or resulting from change of the gal:l zone pressure. The pressure distri-

bution for the gas storage model is depicted by Fig. 6. 

It is necessary to iterate the solution 9f Equations (11) and (30) 

at each time step in order to obtain a pressure solution because of 

the dependence of gels flow relte, ;i. , and gas volume, G. , upon this g,n 1,n 

pressure. 

A new solution of the defining eqt,ta.tions of the Two-Phase Gas Zone; 

Pnsteady Aquifer Model is now presented. This new solution has decreased 

the computation time for the gels storage problem presented by Woods and 

(66) 
Comer by a factor of two. The decrease in solution time has been 

achieved by increasing the convergence rate of Equation (30). This 

increase in convergence rate has been accomplished by introducipg a 
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linear app1;o~imation of: the gas compressibil~ty fac:;:t:ol;'~ z, as given by 

Equation (35), 

z:;:ap +b 
g 

(35) 

andby iterating the solution for the average gas zoi;i.e pressure, Pg· 

The assumption regarding the compt"essi.bPity fac;:tor is valid for t;he 

pressure range normally occurring in gas storage reservoirs, 

For this situation Equation (30) becomes 

P - P + 0.9t::.pl - Psc; w,n g,n ,n (36) 

where 

(37) 

In Equation (36) 

25.1 µ {n-1 . 
011 :;: p + P. + hk · w ·. i 1[t::.Gi/ t::.t). - (t::.G ./ ().t). 1]Pt. 

SC l. W J;:: . J l. . . J - . · J 

- (6G./6t) lpt} + 012{132 [aG! . - G.. 1 ] + 0,la "(1}(38) 
1. • n- n 1., n 1., n-. 

and 

where 

and 

P .T µ.w 
SC r. 

~2:;: z T hk 6t 
sc se. w n 

1 r 
13 2 = ---......;;;;..-- ln ....£-... + 25.1 P 

0.07952n rf,n t,n 

dr/1; 

(39) 

(40) 

(41) 

(42) 

(43) 
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Pt is a pressure change function <2s, 68) and primed(') values of gas 

volume, Gi, and rate, ig, indicate standard conditions, 

With the pressure equation in the form of Equation (37), only the 

(3 2 and y1 terms are pressure dependent. l'he radius of the front, r f' 

in these te'(tllS is related to pressure because of the relation of gas 

volume in Equation (11) to pressure. aowever, the pr~ssure dependence 

of these terms is s~ll, and rapi9 convergence ~f t~e pressure equation 

is attained. 

The pressure distribution in the reservoir follows the tre~d 

indicated in Fig. 6. 



CHAPTER lV 

EXPERIMENTAL APPARATUS 

Several e;xperimentd methods have been proposed for the measure-

ment of relative permeabUities each of which has its own advant;ages 

and di,sadvantages, An exceUe1;1.t review of the relative merits of 

the more widely accepted methods is given by Scheidegger <59), Osaba 

(45), and Richardson <52). After consideration of the vatious 

techniqt1es 1 the Penn State method (Z3, 40) which is a dynamic steady-

state method was selected. This method was believed to be the most 

likely technique tp give rapid and accurate result;s for drainage and 

imbibition relative permeability curves for a gas-water system, 

Core Assembly 

The Penn State method was then modified to suit our purposes as 

experimentation p;roceeded. The modifications included the use of stt"ain 

gauge presst,1re transducers; a constant-rate, positive-displacement 

Liquid pump, and a dispersed-feed gas-water r(i.i~ing head <52 ). Also, 

for the core sections mounted in Lucite, o-ring seals were used between 

the three core sections to maintain a pressure seal, and point-contact, 

radially opposed electrodes were used to measure the eleCt:i;:-ical resis-

tance of the core. This modified core assembly is shown in Fig. 7. 

Later, the core assembly was further modified by m~unt;ing the 

three core sections in pressurized rub)::,er sleeves as shown in Plate 1. 
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The three core sections were placed in 'l;'Ubber sleeves inside of aluminum 

cylinders. Nitrogen at 300 psi was admitted to the anqulus between the 

aluminu~ cylinders and the nibber sleeves to cause the sleeves to seal 

the circumference of the cores. This pressure was found to provide an 

adeq4ate seal for the internal operating pressures of 0~125 psi, The 

gas and water were fed into the core assembly through a grooved Lucite 

dispersing head. The core sections were held in place by a special core 

clamp designed by the Pan American Research Corporation, 

Pressure Measurei;nent 

The pressure probes for the rubber sleeve core assembly consisted 

of two .040 st,ainless steel tubes which were shaped to fit the test 

core. Pressure communication was througq .020~inch holes in the wall of 

the tube, One end of each tµbe was allowed to protrude between the 

rubber sleeves at each end of the center core section as shown in 

Plate I. The tubes were then attached to the differential and gauge 

pressure transducers by high pressure nylon li~es. 

The transducers consisted of aDynisco Model PT69-401 0-50 psi 

differential pressure transducer with a 0-25 mv output voltage and a 

Consolidated Electronics Model 4-311-250G1 0-.250 psig gauge pressure 

transducer with an output voltage of 0-25 mv, 

The pressure lines from the core to the tr,;1nsducers were \ .. ip.ch, 

300-psi test, nylon tubing. These lines permitted electrical isolation 

of the core which was desirable because of the electrical resistance 

measurements used to determine the w.ater saturation of the test core. 



Fluid Control Syst~m 

The water phase was controlled by the use of an Exline Model 215 

constant rate pump driven by a\ hp. synchronous motor as shown in 
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Plate II. An auxilia'.l;"y mechanical transmission was designed and built 

for the pump to provide water rates of O.S to 1000 cc/hr. The trans­

miss ion consisted of two pal;'allel mechc;1.nical gear trains each of which 

was activated by a separate magnetic clutch. This system permitted a 

new gear ratio to be set up on th~ idle gear train, while the other train 

was in operation. lnstam.t: shifting from one train to the other was 

provided by a two•way electrical sw;i.tch, controlli~ the clutches. The 

regulation of water rates in this manner prevented the uncontrolled 

ex~ansion of the ~as in the core that occurred when the pump was shut 

down to change water rates. The transmission and motor unit are shown 

in Plate III. 

The water was stored in a s•ump constructed of Lucite tubing and 

was filtered through a fritted glass disk between the sump and pump. 

The discharge line of the pump contained a 5-micron stainless steel 

filter and the fluids also circulated through a l\~inch long mixing 

core s~ction before entering into the test core. 

The gas source was a nitrogen bottle with pressure regulation by a 

Hol<,e ballast-type constant pressure regulator, The gas was then passed 

through a 5-micron stainless steel filter before ~ntering the gas 

flow controller. The gas rate was controlled by a Moore constant 

upstream pressure i1ow controller connected across a Hoke vernier-head 

neeq.le valve. The gas pasaed from the flow controller to the d;i.spersed 

feed-type mixing heac;1. 
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P L A. T E II 

Constant Rate Liquid Pump 
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P LAT E III 

Pump Transmission and Motor 



The system back pressure was controlled with a Grove 0-300-psi 

back pressure regulator connected to the gas outlet of the gas-liquid 

separator. 

· A flow diagram for the system is shown in Fig. 8. 

Fluid Measurement 
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The gas and water were sepa~ated at the outlet of the core assembly 

by permitting gravity segregation in a thick-walled Lucite tube designed 

for an internal working pressure of 300 psi. The separator is shown 

in Fig, 9 and ~late IV. 

The gas flow from the gas-liquid separator was measured either by 

the timed displacement of a soap bubble through a vertically mounted 

100-ml. burrett or by a 0~20· cfm wet test meter whichever the rate 

required (Plate IV). 

The water flow rat~ was determined by the displacement rate of 

the pump when the system had reached a steady state. A ~umber of 

checks of the calculated displacement rate versus measured rate showed 

a maxinrum deviation of two per cent which is within the limits of 

experimental error. 

Electrical System 

Electrical power for the strain gage transducer circuits and the 

potentiometric recorders was supplied th+o~gh a voltage stabilizing 

transformer to minimize voltage fluctuations resulting from varying 

line load within the laboratory. 

The 6-volt power source for the strain gage pressure transducers 
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was a 6-12-volt EIOQ battery eliminator. Its output voltage was con­

tinuously monitored with a Keithley electr<;>meter. l'he transducer circuit 

also contained precision potentiometers to adjust the zero pressure out­

put voltage to correspond to the recorder zero. The electrical diagram 

is given in Fig. 10. 

~nstrument and ContrQl Panel 

The complete permeameter and its associated equipment is pictured 

in Plate IV. 
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CHAPTER V 

'EXPERlMENTAi PROCEDURE 

Once a general experimental method and the experimental apparatus 

have been selected, it is of equal importance to devel9p an experimental 

procedure that will produce consistent, reliable results under known 

e~perimental condition~. Sometimes a conflict of interest may develop 

and a compromise must be made. For example, in measuring the trapped 

gas saturation during imbibition, Sgr' it is desirable to operate at a 

low mean pressure within the core. Opera.ting ;:i.t a low pressure permits 

a weight determination of the saturation of the core without having a 

significant amount of liquid being expelled from the core by gas ex-

pansion as the core is removed from the apparatus. However, experience 

has shown that the residual gas saturation tends to become a function 

of the pore volumes of liquid injected when operating near atmospheric 

pressure. Yet, a rather definite trapped gas saturation is obt,;1ined 

when operating at pressures in the 20-40 psi or higher range. l'his 

topic will be discussed further in the section on experimental results. 

The general procedure used in the. final stages of the experimental 

testing is given below. The steps reflect .experience with .numerous.· 

experimental ·dif £i.cultfesT 

1. Dry the core and determine its dry weight. 

2. Determine the permeability of the core to dry nitrogen at 
several different mean .pressures in the range of 1 to 8 
atmospheres. 
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3. Evacuate the core sections; then saturate with the test 
liquid and weigh. 

4. Determine the water permeability and electrical resistance 
of the core while injecting the test liquid at several dif­
ferent back pressures between 1 and 8 atmospheres, 

5. Measure the saturated weight of the core. 

6. Establish an initial fixed-injection gas-water ratio. 

7. Permit the system to reach steady-state conditions and 
measure the operating variables (differential pressure, 
mean pressure, Uow rates, temperature and electrical 
resistance). 

8. Change the gas-water ratio and repeat Step 7. ~ncrease the 
GWR ;for the drainage cycle; decrease the GWR for the imbibi­
t ion cycle). 

9. When a permeability value has been determined at the lowest 
pump rate, the pump is stopped and the core _is removed for 
weighing. The core is then retl.lrned innnediately to the 
permeameter' 

10. Additional mobile water in the core is displaced by gas 
injection until the residual water saturation is attained. 
During this latter stage of the testing, the core is removed 
several times for weighing •. 

11. After attaining the residual w~ter saturation and weighing 
the core, repeat Steps 6, 7, and 8 for imbibition. 
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12. For imbibition, Step 8 is continued until the gas-water ratio 
beco~s zero (gas injectiou is sfopped). . Liquid injection is 
continued for a predetermined number of pore volumes of water 
to obtain a residual (trapped) gas saturation. During this 
liquid injection period, a mean core pressure of at least 
2~ atmospheres absolute is maintained. 

13. Stop the fluid flow; check the core resistance; depressure 
the system; again check the resistance; and weigh the core. 

14. Do not discontinue testing for an extended period of time 
during either the drainage or imbibition cycles unless the 
core saturation is very near the residual water saturation. 

It is suggested that a different procedure be investigated for 

determining the saturation-resistance characteristic for the test core. 

One procedure would be to determine this characteristic curve by 
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conducting a separate test. The suggested procedure is as follows: The 

core could be initially saturated with water and displaced with gas at 

low pressures. During the unsteady-state displacement of the water by 

gas, the electrical resistance could be measured and the core could be 

removed periodically for weighing. After the water saturation reached 

its residual value, the process could be reversed by displacing the 

gas with water and measuring the core resistance and weight periodically. 

The saturation-resistance characteristic could then be calculated. A 

knowledge of t]le satur,9.tion-resistance relationship would greatly 

facilitate the relative permeability testing since inadequate spacing 

of the test points could be avoided. 

· Drying of Cores 

The cores which were mounted in plastic were dried by passing air 

through them for several days. The air first passed through a liquid 

and solid "knockout," a fiber filter, and a tube filled with a dessi­

cant before passing into the core. The unmounted cores used in the 

rubber sleeve core asse~bly were oven-dried at about 200°F. 

·Klinkenberg Permeability Tests 

Klinkenberg permeability tests (7, 4B) were performed on each of 

the cores before making a relative permeability test. These gas perme­

ability tests were made with the relative permeability apparatus as 

shown in Plate IV. Dry nitrogen was used as the test fluid and was 

allowed to flow through the cores to produce a constant differential 

pressure. The mean pressure in the core was controlled by the back 

pressure valve and was varied over a range of approximately 1 to 8 



atmospheres absolute pressure. As the mean pressure was varied, the 

flow rate was also altered to maintain a nearly constant differential 

pressure. Ey holding a constant differential pressure, the gas flow 

rate in the test core was maintained essentially constant. The tech·­

nique of varyip.g the mean pressure at a constant differential pressure 

was used in preference to the procedure of controlling the mean 

pressure by changing the flow rate. This latter method could result 
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in flow rates that were beyond the laminar flow region for which parcy' s 

equation is valid. 

Saturation of Cores 

Two methods were ~sed to attain 100 per cent liquid saturation of 

the test cores. 

The first method used was to place the core in the relative perme­

ability test apparatus, to evacuate the system by using a vacuum pump, 

and then to flush the core with c,;irbon dioxide to remove the remaining 

air. The core was then re-evacuated and flooded with the test liquid 

at pressures up to 125 psi in order to dissolve the remaininggi.s in 

this liquid and {lush it from the core. 

the second procedure used was to saturate the cores as follows. 

First, the cores were placed in a vacuum dessicator or flask which was 

then evacuated to remove the air, After 30 minutes of evacuation of 

the vacuum vessel, -the test liquid, which also had been de-aerated with 

a vacuum, was admitted to this container until the cores were completely 

submerged. The cores and water within this container were then held 

under vacuum for an additional hour to remove additional air. The 

method of saturating the cores in a vacuum vessel was adopted as the 
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more reliable one of the two techniques discussed because the weight 

gain of the cores was less during the subsequent liquid injection tests. 

Water Permeability Tests 

The water permeability tests were made with the system under 

several different pressures between one and nine atmospheres absolute. 

This procedure permitted a final check for leaks in the test system 

and also gave an indication of how completely the cores were saturated, 

since liquid permeability is independent of mean pressure. A signifi-

cant change of the differential pressure upon changing the back pres-· 

sure, with the liquid rate being held constant, was an indication of 

gas saturation within the core. 

Saturation Measurement 

Liquid saturation determinations under flowing conditions were 

made with an electrical resistance-saturation correlation. Electrical 

resistance measurements were made with an A-C resistance bridge 

operating at 60 or 1000 cps, The choice of frequency remained fixed 

for any given test run. The resistanc,:e measurements were correlated 

with periodic weight determinations of satul'.;'ation in order that 
/ 

saturations under flowing conditions couid be determ:j_ned from resis'-

tance measurements. Residual water saturation was determined by 

weight in all cases. The trapped gas saturations, S , were deter­
gr 

mined by resistance correlation in cases where this point was attained 

at a significant mean core pressure. 
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Data Observations 

!he differential pressure and the downstream pressure for the test 

section of the core were continuously recorded. Periodic observations 

of gas flow rate, fluid outlet temperature and electrical resistance 

were made periodically and recorded on the differential pressure chart 

so that a definite time correlation between the variables would be 

established. The liquid rate under steady-state conditions was 

assumed equal to the calculated pump displacement rate as justified 

in Chapter IV, "Fluid Measurement," 



CHAPTER VI 

EXPERit,IB~TAL RESULTS 

The experimental results presented here represent drainage-imbibi­

tion relative permeability tests of four natural sandstone core samples 

and two artificial cores composed of aluminum oxide. One of the natural 

sandstone samples was analyzed twice with an intervening time of approx­

imately fifteen months and with several improvements having been made 

in the experimental apparatus. The specifications for the cores are 

presented in Table I. 

The experimental results were obtained with the experimental 

apparatus described in Chapter IV by using the test procedure delineated 

in Chapter V. The dat~ reduction was accomplished by use of the 

equations and computer programs presented in Appendix B. 

Porosity 

, , The porosity of the test cores was measured by the saturation 

met):iod as described in Chapter v, "Saturation of Cores." The weight 

of the test fluid in.the core was determined by weighing the core when 

it was dry and again when it was saturated. The fractional pore space 

was then obtained ft"om the density of the fluid and the sample p,imen­

sions. The e:icperimental values of the porosity of the coresiare 

presented in Tal;>le II. The confidence intervals are at the 95 per cent 

level. 
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Laboratory No. . 

Core Material 

·Texture 

Orientation 

Type of Mounting 

Type of Electrode 

Dry Weight, gm. 

Length, cm. 

Diameter, cm. 

Porosity, per cent 

Permeability, md. 
(water) · 
(nitrogen} 

TABLE I 

CORE SAMPLE SPECIFICATIONS 

AL-1-13 

Alundum 

Fine Grained 

Rubber Sleeve 

2-Circumferential 
Steel Wires 

59.487 

3.757 

2.637 

26.5 

87 
102 

AL-1-21 

Alundum 

Medium Grained 

Rubber Sleeve 

2-Circumferential 
Platinum Bands 

63.389 

4.082 

2.690 

27.2 

72(} 
759 

D;,;.1-1 .. 

Sandstone 

Granular 

Horizontal 

Lucite 

4-Radially 
Opposed Contacts 

130.048 

3.49 

2-.54 

17.3 

20.8 
144 at 7.45 atm 

U1 
0 



Laboratory No. 

Core Material 

Texture 

Orientation 

Type of Mounting 

Type of Electrode 

Dry Weight, gm. 

Length, cm. 

Diameter, cm. 

Porosity, per cent 

Permeability, md. 
(water) 
(nitrogen) 

* See Table IX 

TABLE I (CONTINUED) 

M-1-lA 

Sandstone 

Granular 

Horizontal 

Lucite 

4-Radially 
Opposed Contacts 

114. 842 

2.75 

2.54 

16.6 

1,130 
930--622'"' 

M-2-1 

Sandstone 

Granular 

Horizontal 

Lucite 

4-Radially 
Opposed Contacts 

136.627 

3.68 

2.54 

18.5 

720 
790 

N-3-1 

Sandstone 

Fine Grained 

Horizontal 

Lucite 

4-Radially 
Opposed Contacts 

141. 7 53 

3.58 

2.54 

12.6 

7 
60 

u, 
I-' 
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TABLE I+ 

POROSITY 

Core No. Weight of Porosity, 
Water, gm, per cent 

AL-1-13 
Upstream 4.962 26.14 
Section 4.986 26.27 

4.912 25.88 
4.990 26.29 
4.968 26.17 
4.949 26.07 
4 .957 26.12 
4.950 26.08 
4.949 26.07 
4.973 26.20 
4.927 25.96 

Confidence 
Interval 4.957 ± Q.016 26 .11 ± 0.08 

Test 5.360 26.16 
Sect.ion 5.409 26.40 

5.232 25.54 
5.405 26.38 
5.554 27 .11 
5.3e7 26,.29 
5.415 26.43 
5.287 25.81 
5.411 26.41 
5.397 26.34 
5.404 26.38 
5.415 26.43 
5.543 27.05 
5. 522 26.95 
5.528 26.98 
5.555 27 .11 
5.550 2 7 .09 

Confidence 
Interval 5.434 ± 0.049 26.52 ± 0.24 

Oownstrearn 5.534 26~25 
Section 5.542 26.29 

5.547 26.32 
5.533 26.25 
5.553 26.35 
5.523 26.20 
5.429 25.76 
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T~LE II (CONTINUED) 

Core No. Weight of Porosity 
Water, gm. per cent 

AL-1-13 
Downstream 5. 542 26.29 
Sect:ion 5.523 26.20 
(Continued) 5.514 26.16 

5.469 25. 95 
5,517 26.17 

Confidence 
Interval 5.519 ± 0.079 26.18 ± 0.37 

AL-1-21 
Upstream 5.795 28.13 
Section 

Test 6.302 27.17 
Section 6.302 27.17 

6 .352 27.38 

Confidence 
:(nterval 6.319 ± 0.072 27.24 ± 0.31 

Downs t rea.m 6.265 2 7 .26 
Section 

D-1-1 
Test 2,919 16.56 
Section 3.088 17. 52 

3 .129 17.75 

Confidence 
Interval 3.045 ± 0.277 17.28 ± 1.57 

M-1-lA 
Test 2.275 17.33 
Section 2.393 17.17 

2,413 17.32 
2.344 16.82 
2 .277 16.34 
2.246 16 .11 
2.246 16 .11 

Confidence 
Interval 2.313 ± 0.064 16.60 ± 0.46 
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~A:8LE II (CONTINUED) 

Core No. Weight of Porosity, 
Water, gm. per cent 

M-2-1 
Test 3.467 18. 59 
Section 3.492 18.73 

3.425 18.37 
3.396 18.21 

Confidence 
Interval 3.445 ± 0.068 18.47 ± 0.37 

N-3-1 
Test 2.379 12.49 
Section 2.474 12.99 

2.160 11.34 
2.455 12.89 
2.418 12.69 
2,537 13.32 

Confidence 
Inte:rval 2.404 ± 0.137 12.62 ± 0.72 
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Resistance-Satul;'ation Measul;'ements 

The saturation of the test cores under flowing conditions was 

determined from resistance-saturation correlations. These correlations 

were made by interrupting the fluid flow at intervals,measuring the 

electi:ical resistance of the col;'e at atmospheric. pressure, and then 

weighing the core to determine its water content. Since the maxinrum 

water content was determined during the porosity measurements, the 

liquid satvration was rea,dily determined. Each of the measured resis-

tances was corrected to a temperature of 68°F to remove the effects 

of temperature variation of resistance from the correlation. The 

saturation-resist,;1.nce correlations for the test cores are presented 

in Figs. 11-16 and Tables III-VIII. The data is in floating point form. 

Refl~ction upon the theoretical aspects of the saturation-

resistance corl;'elation shows that the resistance ratio, ~ is an 

exponential functi.on o:f water saturation (48) 

R. 68 

~ .. Ri~0,68 =; 

-2 s 
w 

(44) 

In this equation, R is the core resistance at 100 per cent water 100,68 

saturation as corrected to 68°F. This theory is based upon the assump-

t:i,.ons that the core material is non-eonducting, the water within the 

pores is the only electrical conductive material, the electrical current 

field is linear (end electrodes are used), and a unique distribution of 

water in the pores exists for each saturation. 
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'1"".A9• ··•. •• ~ .. ·· ·J"U . :1· : ·- :I.I;.,. -· i 

SATUR1ATfON:-R£:SlSTANO£ •.. ;C,ORE AL-t-13 

IDENTI­
FICATION. 

.RMIN 
RESIST• 
ANCE 
SWalO'O 
KILOHM'S 

WMAX 
MAXIMUM 
WEIGHT . 
OF W·ATER 
GRAMS 

POR 
FRAC­

TIONAL 
POROSITY 

, CARD 
NO. 

8140001001+ 2179.264751+ 5405000:0Sl+ 2634063050+ 

rDENTl• ws WO RESIST• TR . RR SW 
FI CATION WEIGHT DRY ANCE AT TEMPER- RESIST- WATER 

AT SAT• WEIGHT SAT11 .AND ATURE Art CE .SATIJRA.:. 
GRAMS GRAMS · TEMP ,.OHMS F RAfIO TION 

·a140001001+ 64U50·0.052+ ·5871oooos2+ 2030000051+ noooo~os2+ 1000000051·+ 1000000051+ 
8140001001+. fl4U.500052+ 5871000052• 1800000051+ 7300000052+ 88.66994950+ 1000000051+ 
8.150001001+ 6390400052+ 5871000052+ 405000005 l+ 6400000052+ 1749105951+ .96096207'50+ 
8150001002+ 64810400052+ 5,96100005.2+ 4200000051+ 6400000052+ 1813&87651+ 960·9620150+ 
815,0001003+ 6080000052+ 5961-000052+ 7700000052+ 7100000052+ 3689182852+ 2201665151)+ 
8150001031+ 60800000:52+ 59610000:5.2+ 8050000052+ 7100000.052+ 385,6873052+ 2201665lSO+ 
8160001001+ 6.06.l,.000052+ 5961000052.+ 5000000052+ 7080000052+ 2388825252+ 1850138850+ 
8160001002+ 602·0500052+ 5961000052+ 8300000052+ 7350000052+ 411667455;2+ UOOS32650+ 
8160001003+ 60142.00052+ 5961000052+ 1200000053+ 59000000,52+ 477765055.2+ 9:842738249+ 
8160001.003+ 6014200052+ 5961000052+ 1270000053+ 5900000052+ 5056346852+ 9842738249+ 
8170001001+ 6001900052+ 5948700052+ 1600.000053+ 6100000052+ 6586139452+ 9842738249+~ 
s110002001+ .6001900052+ s94a100052+ 1600000053+ 6100000052+ 6586l3945c+ 9'842738249+ 
8110002ooi+ 627060oos2.+ 5948700052+ 6800000051+ 7050000052+ 3235036151+ 5955596750+ 
8220002001+ 6327400052+ 5948700052+ 5180-000051+ 6610000052+ 2310533851+ 7006475550+ . 
8220003001+· 6327400052+ 5948700052+ 5180000051+ 66i0000052+ 2310533851+ 7006475550+ 
8220003002+ 6031900052+ 594870.()052+ 1030000053+ 7080000052+ 4920980052+ 1539315450+ 
8.22.0003002+ 6031900052+ 5948700052+ 1240000053+ 7080000052+ .592428635.2+ 15393154.50+ 
8231003001+ 6032200052+· 5948700052+ 9000000052+ 6700000052+ 4069100552+ 154486'5950+ 
8231003001+ 6032200052+ 5948700052+ 1050000053+ 6700000052+ 4747283852+ 1544865950+ l~' 

8231003002+ 6022000052+ 594870.0052+ 1180000053+ '7250000052+ 577299'405.2+ 1356151750+ 
82.31003002+ 6022000052+ 5948700052+ 1280000053+ 7250000052+ 6262231052+ .1356151750+ 
8291003001+ ·60174.0005.2+ 5948700052+ 1210000053+ 6500000052+ 5307375552+ 1271045350+ 
8291004001+ 6017400052+ 5948700052+ 1210000053+ 650,000005:2+ 5307375552+ 12"71045350+ 
8291004002+ 6319600052+ 5948700052+ 4950000051+ 720000.0052+ 2405020651+ 6862164750+ 
8290004,002+ 6319600052+ 5948700052+ 5050000051+ 720000005:2+ 245360!>9·51+ 6862164750+ 

690000+ 

CARO 
NO~ 

700000+ 
710000+ 
720000+ 
730000+ 
740000+ 

· 750000+ 
7i>.OOOO+ 
'770000+ 
180000+ 
790000+ 
800000+ 
Bl0000+ 
320000+ 
8·30000+ 
8400.00+ 
850.0·00+ 
860000+. 
·870000+ 
880000+ 
690000+ 
900000+ 
910000+ 
92.0000+ 
930000+ 

·. 940000+ 
(J'\ 

N 



TABLE tV 
.SATUR:AT:tON-R£S t~STAN'CE, 

I DENT I- RMIN 
FICATION, RESIST-

ANCE 
SW=lOO 
KILOHMS 

WMAX 
MAXIMUM 
WEIGHT. 
OF WATER 
GRAMS 

POR. 
FRAC­

TIONAL 
POROSITY 

9250001001+ 209'522.0651+ 6365000051+ 2744404450+ 

IOENTI- ws WD RESIST• 
FlCATION ·WEIGHT DRY AN.CE AT 

A.T SATe WEIGHT SATe AND 
GRAMS GRAMS TEMP,OHMS 

TR 
TEMPER• 
ATURE 

F 

CORE AC-,l-2t 

RR SW 
RESIST- WATER 
ANCE SATURA-
RATIO TION 

9250001001+ 6970400052+ 6338900052+ 1620000051+ 7050000052+ 8016143050+ 9921445450+ 
9250001002+ 6970400052+ 6338900052+ 1900000051+ 7050000052+ 940164925()+ 9921445450+ 
9260001001+ 6975400052+ 6338900052+ 2050000051+6950000052+ 1000000051+ 1000000051+ 
9250001002+ 6416400052+ 6338900052+ 1640000053+ 6750000052+ 7769784252+ 1217596250+ 
92600010-03+ 633930:0052+ 6338900052+ 1270000054+ 6600000052+ 5883137653+ 6284367647+ 
1001001003+ 6339300052+ 6338900052+ 76000Q0.053+ 6600,000052+ 3520617653+ 6284367647+ 

. 1001001002+ 6338900052+ 63387000.52+ 1350000054+ 6650000052+ 6301105553+ 3142183847+ 
1001002002+ 6338900052+ 6338700052+ 1350000054+ 6650000052+ 6301105553+ 3142183847+ 
1001002003+. 6958800052+ 63.38900052+ 20800000.51+ 7300000052+ 1065730851+ 9739198750+ 
1001003003+ 6958800052+ 6338900052+ 2080000051+ 7300000052+ 1065730851+ 9739198750+ 
lOOi003004+ 6339100052+ 633890005.2+ 1480000054+ 7400000052+ 7686962453+ 3142183847+ 
1001003004+ 6339100052+ .6338900052+ 2500000054+ 7400000052+ 1298473454+ 314.2183847+ 

CARD 
NOe 

950000+ 

CARD 
NOe 

960000+ 
970000+ 
980000+ 
990000+ 

· 1000000+ 
1010000+ 
1020000+ 
1030000+ 
1040000+ 
1050000+ 
1060000+ 
1070000+ 

"' w 
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TABLE V 

SATURATION-RES IS TAN CE, CORE D-1-1 

Weight of Resistance, Temperature, Correction Saturation, Resistance 
Core and ohms OF to 68"F for per cent Ratio, 
Water, g Resistance R/RlOO 

133.177 21,500 83.0 1.205 100.0 1.00 
132.330 32,50Q 93.0 1.342 72 .0 1.68 
132.166 55,800 92.5 1.335 66,5 2.68 
131.895 61,500 93.0 1.342 57.6 3.19 
131. 540 62,500 92.0 1.329 45.8 3.21 
131.328 60,500 91.5 1.322 38.8 3.09 
130. 796 355,000 93.5 1.349 21.1 18.50 
130.790 102,000 86.0 1.247 20. 9 4.92 
132.129 34,000 95.5 1.373 65 .4 1.81 

TABLE Vi 
SATURATION- RESISTANCE~ CORE M-1-IA 

!DENT!- RMIN WMAX POR CARD 
Fl CATION RESIST- MAXIMUM FRAC- NOe 

ANCE WE !GH T T!ONAL 
SW= l 00 OF WATER POROSITY 
K!LOHMS GRAMS 

1011001001+ 8058823551+ 233900005!+ !678569050+ 10000+ 

!DENT!- ws WD RESIST- TR RR S'a CARD 
FICATION WEIGHT DRY ANCE AT TEMPER- RESIST- WATER NO, 

AT SAT, WEIGHT SAT• AND ATURE ANCE SATURA-
GRAMS GRAMS TEMP,OHMS F RATIO HON 

1011001001+ l 171810053+ 1148420053+ 8000000051+ 6850000052+ 100000005!+ 1000000051+ 20000+ 
9050001001+ 1170860053+ 1148420053+ 800000005!+ 6850000052+ 1000000051+ 9602394250+ 30000+ 
9050001001+ 1170880053+ 1148420053+ 8300000051+ 6850000052+ 1037500051+ 9602394250+ 40000+ 
9060001001+ 1156160053+ 1146420053+ 5900000052+ 7150000052+ 769799285 !+ 3309106550+ 50000+ 
9070001001+ 1155480053+ 1146420053+ 6200000052+ 7400000052+ 8372262851+ 3018383950+ 60000+ 
9070001002+ l 15460005 3+ 1148420053+ 7100000052+ 7450000052+ 9652372351+ 2642154850+ 70000+ 
9050001002+ 1169950053+ 1148420053+ 1140000052+ 6850000052+ 1425000151+ 9204788450+ 80000+ 
9060001001+ 116901005.3.+ 1148420053+ 9600000051+ 7000000052+ 1226 27745 J + 8802907250+ 90000+ 
9120001001+ 1151520053+ 1148420053+ 1210000053+ 6700000052+ 14 79379652+ 1325352750+ 100000+ 
9120001002+ l 149240053+ 1148420053+ 1210000054+ 6650000052+ 1468339453+ 3505771749+ 110000+ 
9120001002+ 1149240053+ 1148420053+ 1090000054+ 665000005·2+ 1322719053+ 3505771749+ 120000+ 
9120001003+ 1149000053+ 1148420053+ 2500000054+ 6900000052+ 3147810253+ 2479692249+ 130000+ 
9120001003+ 1149000053+ 1146420053+ 2000000054+ 6900000052+ 2518248253+ 2479692249+ 140000+ 
9120002003+ l 14900005 3+ 1146420053+ 2500000054+ 6900000052+ 3147810253+ 2479692249+ )50000+ 
9130002003+ 1171680053+ 1148420053+ 600000005!+ noooooo52+ 1036496451+ .9944420750+ 160000+ 
9130002003+ 1171680053+ 114842.005.J+ 8100000051+ 7100000052+ 1049'•52651 + 9944420750+ 170000+ 
9170003003+ 1171680053+ 1148420053+ 8100000051+ 7100000052+ 1049452.65!+ 9944420750+ 180000+ 
9170003001+ 1170270053+ 11484200.53+ 8500000051+ 7600000052+ 1178832151+ 9341599050+ 190000+ 
9170003002+ 1159420053+ 114842'0053+ 4000000052+ 6550000052+ 4781021951+ 4702864550+ 200000·> 
9170003002+ 1159420053+ 114842005 "J+ 3900000052+ 6550000052+ 4661496351+ 4702864550+ 210000+ 
9170003003+ 1155520053+ 1148420053+ 7100000052+ 6850000052+ 8875000151+ 3035485350+ 220000+ 
9180003001+ 1154350053+ 1146420053+ 8900000052+ 6800000052+ 1104379652+ 2535271550+ 230000+ 
9190004001+ 1167270053+ 1148420053+ 2360000052+ 6580000052+ 2857737251+ 8058999650+ 240000+ 
9190004001+ 1167270053+ 1148420053+ 2130000052+ 6580000052+ 2557554751+ 8058999650+ 250000+ 
9200004001+ l 167420053+ 1148420053+ 2070000052+ 6850000052+ 2587500051+ 6123129550+ 260000+ 
9200004001+ 1167420053+ 1148420053+ 177000005 2+ 6850000052+ 2212500051+ 8123129550+ 270000+ 
9200004002+ 1170710053+ 1148420053+ 9200000051+ 6800000052+ 1141605851+ 9529713650+ 280000+ 
9200004002+ lJ 70710053+ 1148420053+ 1300000051+ 6800000052+ 1613138750+ 9529713650+ 290000+ 
921000400 l + 1170900053+ 1148420053+ 900000005·1+ 6650000052+ 1092153351+ 9610944850+ 300000+ 
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TABLE VI (CONTINUED) 

RUN 1 

Weight o:j: Resistance, Temperature, Correction Saturation, Resistance 
Core and ohms OF to 68°F for per cent Ratio, 
Water, g Resistance R/RlOO 

108.655 16,000 80.0 1.163 100.0 1.00 
107.938 35, 500 81. 5 1.183 69.0 2.26 
107.399 108,000 78.0 1.135 46.8 6.60 
107.123 122,000 77.5 1.127 35.2 7 .43 
108.567 19,000 80.0 1.163 95.0 1.19 
107.892 35,000 75.3 1.080 67.2 2.04 
107.398 103,000 74. 5 1.085 46.5 6.00 
107.062 86,000 82.8 1.200 32.5 5.55 
107.020 92,000 77.5 1.150 30.8 5.68 
107,642 47,000 86.0 1.245 56 .8 3.15 

TABLE VII 

SATURATION-RESISTANCE-;· CORE M-2-1 

Weight of Resistance, Temperatur~, Correction Saturation, Resistance 
Core and ohms OF to 68°F for per cent Ratio, 
Water, g Resistance R/RlOO 

140. 052 26,000 76,5 1.115 100.0 1.00 
140.053 25,000 82.0 1.190 100.0 1.03 
l.39.435 29,800 87.0 1.260 82.1 1.30 
138. 958 45,000 88.0 1.275 68.4 1.98 
138.741 62,000 88.5 1.282 62.0 2.74 
137.6,74 114,000 86.0 1.247 31.4 4.92 
137.649 108,000 86.0 1.247 30.7 4.65 
138,350 62,000 87.0 1.260 51.0 2.69 
138,660 60,000 88.5 1.282 60.0 2.65 
138,678 63,000 89.0 1.290 60.3 2.78 



TABLE VIII 
SATURAT lON--RES I STANCE, CORE N-3-1 

!DENT!- RMIN WMAX POR CARD 
FICA TION RESIST- MAXIMUM FRAC- NO. 

ANCE WEIGHT TIONAL 
SW=lOO OF WATER POROSITY 
KILOHMS GRAMS 

3226201002+ 1327941252+ 2537000051+ 1331'162250+ 10000+ 

!DENT!- ws WD RESIST- TR RR SW CARD 
FI CATION WEIGHT DRY ANCE AT TEMPER- RESIST- WATER NO. 

AT SAT. WEIGHT SAT. AND ATURE ANCE SATURA-
GRAMS GRAMS - TEMP,OHMS F RATIO TIDN 

3226201002+ 1439850053+ 1417530053+ 8700000051+ 8000000052+ 7707641050+ 8797792750+ 20000+ 
3226201003+ 1439130053+ 1417530053+ 9400000051+ 8200000052+ 8535990950+ 8513992950+ 30000+ 
3236201004+ 1442060053+ 1417530053+ 10500000.52+ 8300000052+ 9651162350+ 9668900350+ 40000+ 
3236201005+ 1441710053+ 1417530053+ 1280000052+ 7900000052+ 1119822851+ 9530942150+ 50000+ 
3286101006+ 1442900053+ 1417530053+ 1050000052+ 8600000052+ 1000000051+ 1000000051+ 60000+ 
3286201007+ 1436110053+ 1417530053+ 5360000052+ 8700000052+ 5164119551+ 7323610650+ 70000+ 
3286201008+ 1437100053+ 1417530053+ 3800000052+ 8050000052+ 3387596851+ 7713835250+ 80000-1 
3286201009+ 1433530053+ 1417530053+ 5850000052+ 8000000052+ 5182724151+ 6306661450+ 90000+ 
3286201010+ 1432310053+ 14}7530053+ 6300000052+ 8100000052+ 5651162751+ 5825778550+ 100000+ 
3286201011+ 1431320053+ 1417530053+ 5450000052+ 7800000052+ 4707641151+ 5435553850+ 110000+ 
3306101012+ 1430140053+ 1417530053+ 7700000052+ 7350000052+ 6267441751+ 4970437550+ 120000+ 
3306101013+ 1428290053+ 1417530.,53+ 1220000053+ 6900000052+ 9322259151+ 4241229850+ 130000+ 
3306101014+ 1424360053+1 1417530053+ 3600000053+ 7000000052+ 2790697752+ 2.692156150+ 140000+ 
3306101015+ 1421500053+ 1417530053+ 2500000054+ 7000000052+ 1937984553+ 1564840450+ 150000+ 
3306101016+ 1419220053+ 1417530053+ 2500000054+ 7000000052+ 1937984553+ 6661411149+ 160000+ 
4026102017+ 1432310053+ 1417530053+ 4600000052+ 7700000052+ 3922480551+ 5825778.550+ 170000+ 
4036102018+ 1422400053+ 1417530053+ 3550000-052+ 7600000052+ 2987818451+ 1919590150+ 180000+ 
4036102019+ 1442290053+ 1417530053+ 1120000052+ 8300000052+ 1029457351+ 9759558550+ 190000+ 
4046102020+ 1441860053+ 1417530053+ 1250000052+ 7850000052+ 1086655651+ 9590067050+ 200000+ 
4056103'020+ 1434500053+ 1417530053+ 2530000052+ 7850000052+ 2199390951+ 6689002850+ 210000+ 
4066103021+ 1426220053+ 1417530053+ 1730000053+ 7750000052+ 1484773052+ 3425305550+ 220000+ 
4066103022+ 1425410053+ 1417530053+ 1610000053+ 7700000052+ 1372868252+ 3106030750+ 230000+ 
4066103023+ 1423680053+ 1417530053+ 4580000053+ 72500000.52+ 3677187152+ 2424123050+ 240000+ 
4066103024+ 1419740053+ 1417530053+ 2400000054+ fr900000052+ 1833887053+ 8711076149+ 250000+ 
4066103025+ 1418440053+ 1417530053+ 2500000054+ 8200000052+ 2270210453+ 3.586913749+ 260000+ 
4066103026+ 1418860053+ 1417530053+ 2500000054+ 6900000052+ 1910299053+ 5242412349+ 270000+ 
4096104J27+ 1434060053+ 1417530053+ 1700000052+ 8100000052+ 1524916951+ 6515569650+ 280000+ 
4106104028+ 1435050053+ 1417530053+ 1980000052+~550000052+ 1655481751+ 69057942.50+ 290000+ 
41J61C4029+ 14356"-0053+ 1417530053+ 148000.0052+ 7600000052+ 1245625651+ 7138352450+ 300000+ 
4116105030+ 1433860053+ 1417530053+ 4450000052+ 7450000052+ 3671373151+ 6436736350+ 310000+ 
4116105031+ 1432300053+ 1417530053+ 7000000052+ 7700000052+ 5968992251+ 5821836850+ 320000+ 
4126105032+ 1429110053+ 1417530053+ 6300000052+ 7200000052+ 5023255751+ 4564446250+ 330000+ 
4126105033+ 1424610053+ 1417530053+ 2500000053+ 7450000052+ 2062569252+ 2790697750+ 340000+ 
4166105034+ 1424300053+ 1417530053+ 7000000053+ 7700000052+ 5968992252+ 2668506150+ 350000+ 
4166105035+ 1422160053+ 1417530053+ 21100C0054+ 8050000052+ 1881007753+ 1824990150+ 360000+. 
4166105036+ 1418240053+ 1417530053+ 2500000054+ 7650000052+ 2117940253+ 2798581049+ 370000+ 
4166105037+ 14182600;3+ 1417530053+ 2500000054+ 8350000052+ 2311738653+ 2877414349+ 380000+ CJ', 

CJ', 
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I 

' 
The relationship implied by Equation (44) suggests a log-log plot 

of the experimental data thereby yielding a straight line with a slope 

of two. Actually the assumption that thewater is the only conducting 

mat.erial is not always valid. For example, the core may contain natural 

clays or bentonite from drilling fluids which become electrical con­

ductors when water saturated (47). This clay then acts as a conductor 

in parallel with the wa.ter contained in the pores. As a result the 

resistance ratio £cir the c::ore becomes 

Ri ( 1 + RlOO/Rc,100~ 
~' i = R100· 1 + R. /R . ) 

l. c, l. 
(45) 

where R. is the electrical resistance of the water in the core at a 
l. 

fractional saturation "i", R100 is the resistance of the water at 100 

per cent core saturation, and R is the resistance of conducting solids 
C 

within the core. The resistance of the conducting solids can be con-

sidered virtually independent of water saturation when compared with 

the change .of the resistance of the water with changing water satura-

tion. Therefore, at high water saturations the experimental resis-

tance ratio Ra approaches ratio of the water resistances, R1 /R100, 

which is the same as Equation (44) for the case without conducting 

solids. However, as the water saturation decreases with a concurrent 

increase in water resistance, R., and R. becomes large compared to 
l. l. 

R ., the resistance ratio, R, begins to approach a finite limit in-c, 1. -R 

stead of infinity as predicted by Equation (44). This offers a possible 

explanation of the saturation-resistance relationships exhibited by 

Cores D-1-1 and M-2-1 (Figs. 13 and 15) respectively. 
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The resistaµQe of the c.ores tested would E1.ls9 be e.xpected to de .. 

viate :fr~>1:n Equat:i,c;,p {44) ·. because of tl-.e complex geometry of the cu;rrent 

fie\d ~hen using radial ~nd ba~pe electlodes instead of end electrodes. 
(42) . . 

· Naar and Rendei;-son · staJ;le that the e::l\'..ponent :i,n E:quation (44) 

becomes .. (l+e) with e s 1 fpr t~e imbibition ~ase wh~re e ;is a fui:iction 

of the imbibit;ion satu~ation [e = e{SiWP~. There was some shifting 

of the curve fo;r Gore AL,.l-13 (F;i,g, 11); however, it 1;ihould be pointed 

. out tha; most of thi$ change can be attrib1,1ted to the changes that ac­

companied l::hf;I i;epair of the.Wire ba'Qd-type elec::t;odes. The1:1e changes 
' .. 

are sp.i:>W!l by the dashed, portions of tll~ cul;".re. Core N,.:3.1 (Fig. 16), 

which had radial electrodes, e~hibited shifting of the saturatlon 

resistaq.ce c~rve, but; a definite patte;l'I, was not e1;1tablis1,led~ 

It is of inte~est to note that the slopes o~ the saturation• 

resistance c;orrelli!.Uon ~or Co-x,e M·l--14 {Fig, 14) .fol:' Runs 1 and 2 

are essen:t11;1.lly the same fol:' \the saturation range covered. by Ru!l 1 

even· though these ex;p~rime'1,tal · ~ns were· ~ep~rated by 15 mqn.t::hs during 

which a significant change occurred in the measured permeability. 

The single-phase permeability of each co:i:e to nitrogen and to 

water was measured. The water permeabiUty ;of qbres o .. 1 ... 1l M--1-:iJ.A 
'! 

(Run 1), and M-2~1 we~e Ir1easured. with dis~itled water containing 1250 

ppm sodium c}).loride and 50 ppm~£orma14ehyde~ f$t-,.:Peter fotination water 

~ont:aining 50 ppm for~ld,eJ,,,yde was use<i for t::hiE! test £pf Cores AL .. 1-13, 

Ar,, .. 1-21 .and N--3-i, Dry n,itrogen was -...seq for the K,linkenberg g~s 

permeability tests. Th~ result$ of tl:tese tests are sh~wn in Table lX, 
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Those gas permeabiliti~s with an indicated infinite mean pressure 

have been obtained by the Klinkenberg method of extrapolating to 1/p = 0 

on a k versus 1/p plot. Most of the Klinkenberg values were calculated 
g 

by the least siuares method using the computer program described in 

Appendix B. The computer-calculated values include the 95 per cent 

con£tdence interval for the Klinkenberg permeability as determined from 

Student's ''t" distribution (62). An example of this method of obtaining 

the equivalent non-reactive liquid permeability (Klinkenberg permea-

bility) for Core AL-1-21 is shown in Fig. 17. 

An observation of the water permeability of the test cores indi-

cates that flow rate sensitivity is present to a small degree. 

Scheiddegger ( 59 ) has discussed this effect, and it is thought that the 

increase in permeability with increasing water flow rate can be attrib-

u t:e·d to the dest1;t1ction of the ionic double-layer that exists at 

solid-liquid interfaces. This effect is best demonstrated by the be-

havior of Core D-1-1, as given in Table IX, when it was subjected to 

a two-fold increase in water rate. Core M-1-lA (Run 1) exhibited the 

same effect for a nine-fold increase in water rate. Yet, one should 

be cognizant of the fact that with the equipment and procedure avail-

able at the time of the initial test on Core M-1-lA, the lower water 

rate represents a very small recorded differential pressure which, 

thereby, decreased the sensitivity of the measurement. The water per-

meability of Core M-2-1 exhibited the opposite of this effect for reasons 

that are not presently known. 

Also of interest are the differences between the Klinkenberg and 

water permeabilities of the cores, since the Klinkenberg gas permea-
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bility is theoretically equivalent to the permeability to a non-reactive 

liquid. The fact that the liquid permeability is sometimes signifi-

cantly lower than the Klinkenberg permeability, such as that exhibited 

by Core N~3-1 in Table IX, is generally attributed to a reaction 

between the test liquid and some of materials contained in the core 

such as clays or bentonite from drilling fluids. This phenomenon was 

not overcome even br using in situ fluid from the same formation as 

TABLE IX 

SINGLE-PHASE PERMEABILITY 

Core No. Water Flow Water Mean Gas 
Rate, Permeability Pressure Permeability 

cc/sec. md. atm. md. 

AL-1-13 0.0475 87.4 OQ 102 ± 5 

AL-1-21 0.1344 720 co 759 ± 14 

D-1-1 0.0115 18.0 7 .45 144 
0.0183 19.0 
0.0309 20.8 

M-1-lA 
(Rui;1 1) 0.0309 846 co 930 

0.297 1,130 

(Run 2) co 622 .± 38 

M-2-1 0.188 720 co 790 
0.297 614 

N-3-1 0.00300 7 co 60 ± 5 
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.Relative Permeability 

Gas-wt;tter relative permeabil:i,ty curves have been determined experi,-

mentally for tlie cores that are identified in Table I. The equipment 

and proced~res that were used have been described in Chapters IV and V . 

. Two liquid solutions were used, both containing formaldehyde to retard 

bacterial growth. 

The relative permeability characteristics of Core AL-1-13, an 

Alundum core, ~ere measured with nitrogen and St. Peter formation water, 

and it was found that the curves exhibited .the imbibition hysteresis 

phenomenon that is normally expected when a consolidated porous media 

is subjected to two-phase flow. Experimental difficulties in the 

measurement of the gas permeability were encountered near the end of 

the first and second drainage curves, but the final saturations were 

determined from we:i,ght measurements at the residual water saturation. 

The dashed portions of these relative permet;tbility curves for Core 

AL-1-13 represent extrapol.ations based on weight determined residual 

saturations and on relative permeability theory. 

The gas and water imbibition curves exhibited instability near 

the trapped gas saturation. It is noted that this value changed 

from an apparent value of 45 per cent gas (55 per cent water) to 

about 35 per cent after several hundred pore volumes of water had 

.been injected into the core after ceasing gi:ls injection. A reason for 

this change in trapped gas st;J.turation was .not known at the time of 

the test. After ana1yzing the other cores and finding this same 

condition to be even more pronounced it was decided that the change in 

trapped gas saturation was probably due to low pressure gas diffusion 

r~~ 
I 
\ 
\ 



as was observed by Gardner, et al <22 ) and discussed by Naar and 

(42) Henderson • Difficulty in measuring the trapped gas saturation is 

also mentioned by Geffen, et al <24). 

It is interesting to compare the trapped gas saturations with the 

73 

h . 1 d. . f 50 f h · · · 1 · 1 <42 ) t eoretica pre iction o per cent o t e initia gas in pace • 

For the first imbibition, originating at a gas saturation of 91 per 

cent, the trapped gas saturation of 45 per cent is essentially 50 per 

cent of the initial gas in place as is predicted by the theory. For 

the second inhibition, which began at 87 per cent gas saturation, the 

trapped gas value was 38 per cent which is 44 per cent of the initial 

gas in place and is less than the theoretical maximum. 

The base perme<;1.bility for the relative permeability curves for 

Core AL-1-13 (Fig. 18 and Table X) is the Klinkenberg permeability 

given in Table lX. 

Relative permeability curves for Core AL-1-21, based on its 

Klinkenberg permeability, are presented in Ftg. 19 and Table XI. 

This permeability test yielded essentially no indication of reaction 

between the St. Peter formation water and the core as would be expected 

of an Alundum core. The hysteresis phenomenon was again present as 

illustrated in Fig. 19. 

The imbibition curve for Core AL-1-21 is of particular interest 

because actually it cannot be considered different from the drainage 

curve for water saturations greater than 60_per cent, and also, the 

t:rapped gas saturation is very low (approximately 2.5 per cent). Also 

of interest is the fact that the imbibition water permeability curve 

falls below the drainage water permeability curve at water saturations 
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TABLE X 
RELATIVE PERMEABILITY, CORE AL-1-13 

IDENTI- WATER GAS FLOW DIFF, MEAN RESIST- TEMPER- CARD 
FICATION FLOW RATE RATE PRESSURE PRESSURE ANCE AT ATURE NO, 

CC/SEC CC/SEC ATM ATM SAT• AND F 
TEMP, 
KILOHOMS 

8140000018+ 4746944449+ 2334375050+ !422935951+ 3100000051+ 7600000052+ A0590000+ 
8150000002+ 4746944449+ 1197090450+ 5878125050+ 2268232651+ 7100000051+ 6800000052+ A0630000+ 
8150000011+ 2813055649+ 1332391450+ 4584375050+ ·2005920151+ 7150000051+ 6950000052+ A0810000+ 
8150000017+ l 796388949+ 2721723750+ 3346875050+ 2260508351+ 9400000051+ 7100000052+ A0930000+ 
8150000021+ l 120277849+ 3250051150+ 2615625050+ 2013145851+ 1130000052+ 7150000052+ AlO!OOOO+ 
8150000027+ 8336111148+ 3662787250+ 2460937550+ l 913186451+ 1280000052+ 7200000052+ All30000+ 
8150000033+ 5991666748+ 3990558150+ 2123437550+ 175138645 l + 1461000052+ 7400000052+ Al250000+ 
8150000038+ 4305555648+ 42116271'>'0+ 2137500050+ 2463539551+ 1670000052+ 7500000052+ Al350000+ 
8150000042+ 2994444448+ 4307842350+ 2039062550+ 2438855151+ !780000052+ 7500000052+ Al430000+ 
8150000047+ 177500004 8+ 5287443250+ 1898437550+ 2378860751+ 2570000052+ 7350000052+ Al530000+ 
8150000050+ 1114722248+ 5941529950+ 1364062550+ 2226979451+ 5250000052+ 7300000052+ Al 590000+ 
8150000054+ 682777784 7+ 9301546350+ 2123437550+ 2370348251+ ·~900000052+ 7200000052+ A1670000+ 
8150000059+ 3780555647+ 9296127550+ 2010937550+ 2377898251+ 5850000052+ 7200000052+ Al 770000+ 
8150000064+ 161055564 7+ 9329500350+ 1828125050+ 2375345151+ 7950000052+ 7150000052+ Al870000+ 
8160000015+ 7365215752+ 1870312550+ 2242538051+ 8000000052+ 7400000052+ A2210000+ 
8170000002+ 1610555647+ 1119449251+ 1926562550+ 1539830151+ 1500000053+ 6300000052+ A2290000+ 
8170000010+ 378055564 7+ 1140343351+ 2235937550+ 1555298951+ 6200000052+ 7100000052+ A2450000+ 
8170000017+ 682777784 7+ 1180752951+ 2306250050+ 1512702051+ 5800000052+ 7350000052+ A2590000+ 
8170000022+ 1775000048+ 1109198651+ 2615625050+ 1594045851+ 4120000052+ 7450000052+ A2690000+ 
8170000029+ 4305555648+ 8023268150+ 2601562550+ 160651765!+ 2620000052+ 7400000052+ A2B30000+ 
8170000040+ 1796 388949+ 3454088850+ 3501562550+ !651517651+ 1240000052+ 7250000052+ A3050000+ 
8!70000055+ 2813055649+ 3740625050+ 2019195851+ 6410000051+ 7100000052+ A3350000+ 
8170000068+ 2813055649+ 4106250050+ 1965014551+ 5850000051+ 7050000052+ A3610000+ 
8220000004+ 1796388949+ 1589756050+ 2221875050+ 1941819551+ 8520000051+ 6700000052+ A3690000+ 
8220000010+ 1796388949+ 1630552350+ 2264062550+ 1878053851+ 8450000051+ 6900000052+ A3810000+ 
8220000017+ 8336111148+ 3028331350+ 2137500050+ l 881+900751 + 1270000052+ 7150000052+ A3950000+ 
8220000020+ 4305555643+ 3653329350+ 1800000050+ 1558413251+ 1600000052+ 7250000052+ A40!0000+ 
8220000025+ 1775000048+ 3887203350+ 16734375,,o+ 1466447651+ 2090000052+ 7280000052+ A4110000+ 
8220000032+ 682777784 7+ 4184034050+ 139218755,J+ 1353,72651+ 2820000052+ 7280000052+ A4250000+ 
82 2 0000044+ 271777784 7+ 3955 743950+ 13078125~]+ 2357241351+ 3420000052+ 7300000052+ A4490000+ 
8230000008+ 14527?0951+ 2770312550+ 2476473851+ 1120000053+ 7060000052+ A.487.JOOO+ 
8290000006+ 271777781+ 7+ 7300390850+ 1631250050+ 2375386851+ 4310000052+ 6800000052+ {5030000+ 
8290000012+ 682777784 7+ 6792485450+ 1659375(1"0+ 25744181,•l+ 368()f'!00052+ 1ooc,000052+ A515.)0i)O+ 

8290000014+ 1775000048+ ,878628150+ 1350()~0()50+ Z08Lt64935 l+ 21'50000052+ 7100000052+ .~5190000+ 
8290000019+ 4305555648+ 400434%50+ l 715625050+ i~C30468J. S l+ 1620000052+ 725000':052+ ,'\529:1000+ 
829C.000026+ 8336111148+ 314968]250+ 227~125050+ 256:JtU0651+ 1310000052+ 7400000052+ .>.51+ 30000+ 
8290000033+ 1796388949+ 6000043749+ 4921875050+ lP.8775~;651+ 9990000051+ 7lf00008052+ ,\5570000+ 

829 000004 7+ 2813055649+ 3276562550+ l 30!~8399? l+ 5700000051+ 7?00000052+ ,\S850000+ 

8290000049+ 2813055649+ 3023437550+ 132512125!+ 560000005.1+ -1200000052+ l\5 890000+ 

!DENT I- WATER GAS I/ATER GAS RESIST- AREA SATURA-
F!CATION VISCOSITY VI SCOS l TY RELATIVE RELATIVE ANCE TION, 

CP CP PERM PERM RATIO CM PER CENT 
EABILITY EABILITY 

8140000018+ 9017007650+ 1780799349+ 8529101950+ !589314651+ 545320895 100,0+ 
8150000002+ 1002000051+ 1761498849+ 3763920050+ 1668659949+ 3256880851+ 545.320895 ,1.0+ 

· 8150000011+ 9818645450+ 1765026449+ 2802509650+ 2386163649+ _ 35216545 J+ 545320395 70,0+ 
8150000017+ 9623720150+ 1769062'•49+ 2402709250+ 6691832249+ 450215875]+ 545320895 61,0+ 
815 0000021+ 9560126250+ 1770075049+ 1904632650+ 1023066!50+ 5450283351+ 545320895 55.0+ 
8150000027+ 9497206650+ 1771236849+ 1496429250+ 1226267150+ 6216945551+ 545320895 52,0+ 
8150000033+ 9252081350+ ! 776102749+ 1214353150+ 1552600050+ 7293173251+ 545320895 46.2+ 
8150000038+ 9133323150+ 1779326949+ 8557546349+ ]630785750+ 81+49136551+ 51+5320895 44,S+ 
8150000042+ 9133323150+ 1779302349+ 6238955349+ 1748543150+ 900~666551+ 545320895 43,0+ 
815000004 7+ 9312398!50+ 17754 73749+ 405005521+9+ 2300175750+ 1274251252+ 545320895 36, 5+ 
8150000050+ 9373351950+ 1774067049+ 3%3072449+ 3594441250+ 2'l85334652+ 545320395 26,0+ 
8150G00054+ 9497206650+ 1771693949+ 1420473649+ 3609954450+ 2379924552+ 545320895 27,0·• 
8150000059+ 9497206650+ 1771701549+ 830~20'+0l+8+ 3809705750+ 281>] 338452+ 545320895 25,0+ 
8150000064+ 9560126250+ 1770437249+ 3917696748+ 4202719350+ 3834/+91452+ 545320895 21. 5+ 
8160000015+ 9252081350+ 1776593849+ 3254294052+ 3993524052+ 545'l 208 95 12,0+ 
8170000002+ !074143051+ 1748101949+ 4176880648+ 4724821250+ 6374 79775 2+ 545320895 10,0+ 
8170000010+ 96.23720150+ 1768357249+ 7568961848+ 4195109750+ 2969508952+ 545320895 15, 7+ 
8170000017+ 9312398150+ 1774607549+ 1282L~21+749+ 4226221950+ 2875742052+ 545320895 16,8+ 
8170000022+ 9192392650+ 1777203649+ 2901675049+ 3505648450+ 2070561252+ 545320895 19,2+ 
8170000029+ 9252081350+ 1 775957849+ 7122488049+ 2 54 7692650+ !307879152+ 54532089:, 25.5+ 
8170000040+ 9434951550+ 1772232449+ 2251518450+ 8131855349+ 6064490151+ 545320895 40,2+ 
8170000055+ 9623720150+ 1768821149+ 3366467750+ 3070089!51+ 545320895 60, 5+ 
8170000068+ 9687996050+ 1767508749+ 308 7196950+ 2782143851+ 545320895 64,0+ 
8220000004+ 1015794951+ 1758642649+ 3820182350+ 5853097549+ 3850782551+ 545320895 78,0+ 
8220000010+ 9865035350+ ·1763633:>49+ 361,8274650+ 5908156849+ 3933148951+ 545320895 55,5+ 
8220000017+ 9560126250+ 176994681+9+ 1734276650+ 11661+ 19650+ 6125539751+ 545320895 4512+ 
822ooboo20+ 9434951550+ 1772139349+ !049769050+ 1673060050+ 7825148551+ 545320895 40,3+ 
8220000025+ 9397913750+ 1772803849+ 1+636792649+ 1915516150+ 1026389652+ 545320895. 35.5+ 
8220000032+ 9397913750+ 1 772691049+ 2143929349+ 2478)81250+ 1384889452+ 545320895 31,0+ 
8220000044+ 9373351950+ 1774197249+ 9060678648+ 2496211,650+ ]684160852+ 545320895 28.2+ 
823U000008+ 9649348750+ 1768772549+ 4314423250+ 5349163652+ 545320895 13,9+ 
8290000006+ 1002000051+ 1761606049+ 7765304548+ 3667175650+ 1977061+252+ 545320895 2017+ 
8290000012+ 9752969750+ 1766855749+ 18666 76449+ 3364206150+ 1737722652+ 545320895 2214+ 
829QOC0014+ 9623720150+ 1768886549+ 5885792149+ 2363968650+ 1029749152+ 545320895 30.3+ 
8290000019+ 9434951550+ 1772611449+ 1101397050+ 1924507150+ 7922962851+ 545320895 35,2+ 
8290000026+ 9252081350+ 1776917149+ 1571,790250+ 1]42756150+ 6539395651+ 545320895 39 • 3+ 
8290000033+ 9252081350+ 177623911>9+ !570748150+ 10072)6049+ 4986913151+ 545 32 08 95 46 ,O+ 
8290000049+ 9497206650+ 1770648749+ 4110272150+ 27!9913751+ 545320895 65,5+ 
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TABLE XI 
RELATIVE PERMEABILITY, CORE AL-1-21 

IDENTI- WATER GAS FLOW D!FF. MEAN RESIST- TEMPER- CARD 
FICA TION FLOW RATE RATE PRESSURE PRESSURE ANCE AT ATURE NO, 

CC/SEC CC/SEC ATM ATM SAT. AND F 
TEMP• 
KILOHOMS 

927000()003+ 1344027850+ 8437500049+ 1149463851+ 1910000051+ 6950000052+ 590000+ 
9270000006+ 9818645450+ 1764122049+ 6860161050+ 

4994512149+ 
9291443850+ 5704379851+ 660000+ 

9260000010+ 9752969750+. 1765845349+ 4193399650+ 1585983751+ 5704379851+ 740000+ 
9260000018+ 9726897250+ i766314849+ 1673448650+ 1144461050+ 21+94441351+ 570437'9851+ 900000+ 
9260000025+ 9752969750+ 1765729949+ 1878556 750+ 3010651250+ 3856600051+ 5704379851+ 1040000+ 
9260000033+ 9752969750+ 1765802849+ 3959853249+ 3235769250+ 58!!989851+ 5704379851+ 1200000+ 
9260000039+ 9726897250+ 1766226849+ 1995742249+ 4180680250+ 839712935]+ 5704379851+ 1320000+ 
9260000046+ 9752969750+ 1765677249+ 9085083448+ 5323390650+ 1231353852+ 5704379851+ 1460000+ 
9260000048+ 9752969750+ 1765704749+ 3097579848+ 6392011350+ 2093301452+ 5704379851+ 1500000+ 
926000005 0+ 9752969750+ 1 768904849+ 3145604548+ 1983530650+ 2068674352+ 5704379851+ 1540000+ 
9260000056+ 1015794951+ 1758537549+ 198/tl 90548+ 6600335550+ 2644736852+ 5704379851+ 1660000+ 
9260000064+ 108957095 !+ 1746586049+ 1325520048+ 6 790326450+ 3162820252+ 5704379851+ 1820000+ 
9260000072+ 1089570951+ 1746131249+ 9578245550+ 4537011053+ 5704379851+ 1980000+ 
92(,0000082+ 9560126250+ 1770891349+ 9925052150+ 6640866953+ 5704379851+ 2180000+ 
1010000005+ 1029897351+ 1756582449+ 2257134151+ 6315789453+ 5704379851+ 2280000+ 
1010000007+ 1022807151+ 1758103449+ 6458 04 7651 + 6316844953+ 5704379851+ 2320000+ 
1010000010+ 1141396551+ 1738547049+ 1439062148+ 8219438850+ 111708.4153+ 5704379851+ 2540000+ 
1010000023+ 1138043251+ 1739285849+ 3533698848+ 694 77095 50+ 8095271552+ 5704379851+ 2640000+ 
1010000027+ 113804325.1+ 1739304049+ 6593682348+ 6461552550+ 6974387852+ 5704379851+ 2720000+ 
1010000031+ l ll338615H )743214249+ 11)9156949+ 5921546850+ 5704334352+ 5704379851+ 2800000+ 
1010000038+ 1066559651+ 1751586249+ 6083195549+ 3349798750+ 1206374952+ 5704379851+ 2940000+ 
1010000042+ 1002000051+ 1761617349+ 9231883349+ 2894742050+ 7751196251+ 5704379851+ 3020000+ 
1010000045+ 1015794951+ 1759139249+ 915 7713449+ 2 774918950+ 6364340051+ 5704379851+ 3080000+ 
1010000047+ 97529697',0+ 1766324149+ 1844340850+ 9541943349+ 25!l961751+ 570437985 l + 3120000+ 
1010000051+ 9687998050+ 1767737549+ 1730273550+ 8620456849+ 2455495451+ 5704379851+ 3200000+ 
1010000054+ 9497206650+ l 770574349+ 9159470350+ 9777652750+ 5704379851+ 3260000+ 
1010000055+ 9497206650+ l 770575749+ 8864003850+ 977765275 o+ 5704379851+ 3280000+ 
1010000059+ 9312398150+ 1774225849+ 5555402650+ 9929636950+ 5704379851+ 3360000+ 
1010000060+ 9312398150+ 1774217349+ 6339694850+ 9671052650+ 5704379851+ 3380000+ 
1010000061+ 9312398150+ 1774539249+ 1858986650+ 5831529049+ !970412351+ 570437985!+ 3520000+ 
1010000011+ 9373351950+ 1773017349+ 1887502450+ 11 l 00693450+ I 75668L155 2+ 5704379851+ 3600000+ 
1010000074+ 9687998050+ 1767555349+ 6311613649+ 3017691850+ 45141'+3051+ 5704379851+ 3660000+ 
1010000078+ 9687998050+ 176713821+9+ 1034192150+ 62ll901750+ 362123565;>+ 5704379851+ 37',0000+ 
1010000087+ 9687998050+ l 7671888L19+ 1053226350+ 6219833250+ 3963516852+ 5704379851+ 3920000+ 
1010000100+ 9560126250+ 1769877149+ 3779346049+ 4138836150+ 6842105351+ 5704379851+ 4180000+ 
1010000100+ 9348893450+ 177394 7 249+ 2911058549+ 7993'.i35250+ 79833944'>2+ 5704379851+ 4340000+ 
1010000116+ 9623720150+ 1768676449+ 1102975351+ 2397973553+ 5704379851+ 4500000+ 
10·10000123+ 9312398150+ 1775572649+ 1105241351+ 7654095153+ 5701+379851+ '•640000+ 

!DENT!- WATER GAS WATER GAS RESIST- AREA SA TUl<A-
FICATION VISCOSITY VISCOSITY RELATIVE RELATIVE ANCE T !ON, 

CP CP PERM PERM RATIO CM PER CENT 
EAB!L!TY EABI Ll TY 

9270000003+ 9818645450+ 1764170049+ 946'14 7 8 250+ 9340346250+ 570437985 100,0+ 
9270000006+ 7789444449+ 6752000049+ 1101501351+ 1900000051+ 695000005 100,0+ 
9260000010+ 7789444449+ 5124099450+ 1097875050+ 1563957651+ 322000005)+ 700000005 79.5+ 
9260000018+ 4115833349+ 15500 "/L185 l+ 1442437550+ 1528835751+ 5050000051+ 702000005 64,3+ 
9260000025+ 4115833349+ 36'13397051+ 1294750050+ 1448638851+ 7830000051+ 700000005 52,B+ 
9260000033+ 9618888948+ 43{11282351+ 1435375050+ 1521545151+ 1180000052+ 700000005 42,5+ 
9260000039+ 5194444448+ 5992520251+ 1539812550+ 1440829451+ 1700000052+ 702000005 35,5+ 
9260000046+ 2596305648+ 8403124451+ 1681500050+ 1395863851+ 2500000052+ 700000005 29.5+ 
9260000048+ 966361114 7+ 1101471552+ 1842187550+ 1423360751+ 4250000052+ 700000005 23,2+ 
9260000050+ 966361114 7+ 3359747651+ 1815062550+ 46231179451+ 4200000052+ 700000005 23,0+ 
9260000056+ 9663611147+ 1856848652+ 2998312550+ 18367111951+ "610000052+ 670000005 20,7+ 
9260000064+ 966361114 7+ 30!18227752+ 4800'175050+ 2566Lt32651+ 7250000052+ i.2C000005 18.3+ 
9260000072+ 3516419552+ 3882250050+ 2111601351+ 1040000054+ 620000005 1.9+ 
9260000082+ 46/36254952+ 5068500050+ 282941385 !+ 1320000054+ 715000005 1,2+ 
1010000005+ 4596127652+ 2163625050+ 2410272151+ 1360000054+ 660000005 1,3+ 
1010000007+ 8787727352+ 1'•48437550+ 2670850251+ 1350000054+ 665000005 1,3+ 
1010000018+ 9663611147+ 3623699752+ 4648625050+ 2672359651+ 2700000053+ 588000005 9,0+ 
1010000023+ 2596305648+ 33110071152+ 5061500050+ 29011253351+ 1950000053+ 590000005 11,7+ 
1010000021+ 5194444448+ 3330666952+ 5423125050+ 2922534651+ 1680000053+ 590000005 12,7+ 
1010000031+ 9618888948+ 3250604552+ 5796750050+ 3006690851+ 1340000053+ 605 000005 14,0+ 
1010000039+ 7789444449+ 2611842852+ 8267750050+ 3756253351+ 2700000052+ 635000005 29,5+ 
1010000042+ 7789444449+ 1389255752+ 5)18750050+ 2386653351+ 1620000052+ 680000005 37,0+ 
1010000045+ 7789444449+ 1362936352+ 5234250050+ 2438390851+ ]350000052+ 670000005 40,8+ 
1010000047+ 1344027850+ 3839462151+ 4305125050+ 2042847151+ 510000005)+ 700000005 66,0+ 
1010000051+ 1344027850+ 3669780051+ 4552250050+ 2193840851+ 4950000051+ 705000005 6l11 5+ 
1010000054+ 1344027850+ 8437500049+ 1250653351+ 1930000051+ 720000005 l(J0,0+ 
1010000055+ 1344027850+ 8715750049+ 1252059651+ ]93000005!+ 720000005 100,0+ 
1010000059+ 1344027850+ 1364062550+ 1130954451+ 1920000051+ 735000005 100,0+ 
1010000060+ 1344027850+ 1192312550+ 1122516951+ 1870000051+ 735000005 100,0+ 
1010000061+ 7789444449+ 1282297051+ 2360500050+ 1444376351+ 3Hl0000051+ 735000005 72,0+ 
1010000011+ 4115833349+ 4727260151+ 1237500050+ 1177326351+ 3420000052+ 730000005 76,0+ 
!010000074+ 4115833349+ 1078582352+ 3825000050+ 2011563851+ 9100000051+ 705000005 48,0+ 
1010000078+ '4115833349+ 1355328852+ 2334375050+ 1594482651+ 7'l0000005?.+ 705000005 17,5+ 
1010000087+ 9687998050+ 1767188849+ 1053226350+ 6219833250+ 'l%35lh852+ 570'+379851 + 16,7+ 
1010000100+ 2084305649+ 1232944452+ 3192187550+ 1815235751+ 1360000052+ 715000005 39,4+ 
1010000100+ 9618888948+ 1391978052+ 1870312550+ 1604216951+ 1550000053+ 732000005 11, 8+ 
1010000116+ 2201625852+ 2137500050+ 18741188851+ 4800000053+ 710000005 3,8+ 
1010000123+ 3224082052+ 3135937550+ 247776075!+ 1480000054+ 735000005 1,0+ 
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greater than 70 per cent. This behavior of the imbibition water perme-

ability curve is contrary to the experience with Core AL-1-13, and it 

is also contrary to the imbibition theory of Naar and Henderson (42 ). 

As expressed under the discussion of Core AL-1-13, the behavior 

of the imbibition gas permeability curve at high water saturations is 

believed to be due to low pressure gas diffusion. This diffusion 

effect would be expected to be more significant in this core because 

its permeability is greater than that of Core AL-1-13 by a factor of 

about seven and one-half. This higher permeability implies that the 

average pore diameter is greater, and therefore, the interfacial 

tension between the bubbles of trapped gas and the surrounding liquid 

would be less. It is not known whether the abnormal behavior of the 

imbibition water curve is related to this phenomenon. 

The relative permeability characteristics that were measured for 

Core D·l-1 are given in Fig. 20 and Table XII with the maximum water 

permeability being used for a relative permeability base. The test 

fluid for this core was distilled water containing 1250 ppm sodium 

chloride and 50 ppm formaldehyde. 

Cores D-1-1, M-1-lA (Run 1) and M-2-1 were the first cores tested. 

At the time of these tests it was not possible to obtain intermediate 

points on the imbibition curves because the pump'transmission described 

in Chapter IV had not yet been developed. Nevertheless, it was possible 

to determine the end points of the imbibition relative permeability 

curves. 

Observation of Fig. 20 indicates that Core D-1-1 had a high 

sensitivity to the test liquid with the absolute water permeability 
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TABLE XII 

RELATIVE · PERMEAB !LITY, CORE D-1-1 

Water Gas Flowing Resistance Pressure Barom. Average 
Flow Flow Temp., at Temp., Drop, Pressure, Pressure, 
Rate Rate QF ohms atm atm atm 
cc/sec cc/sec 

0.0027 0.611 93.0 24,000 1.250 0.976 8.18 
0.0027 0.601 93.0 24,000 1.265 0.976. 8.19 
0.0027 0.603 93.0 24,200 1.358 0.976 8.10 
0.0027 0.605 93.0 24,300 1.380 0.976 8 .14 
0.0027 1.537 87.0 26,200 1.370 0.980 8.05 
0.0027 1.494 87.5 26,100 1.360 0.980 8.26 
0.0027 4.180 87.5 33,500 1.890 0.980 8.20 
0.0027 4.200 89.0 50,100 1.960 0.980 8.54 
'"" ... ---- 9.330 91.0 67,500 0.279 0.980 6.26 
------ 15.900 93.0 _..,.. __ -- 0.312 0,976 6.31 
0.0000 41. 700 86.0 102,000 0.825 0.980 7.01 
0.0027 0.000 95.0 27,000 0.142 0.976 2.39 
0.0000 12.800 77. 5 .,. ........ --- 0.142 0.980 7.45 

Water Gas Relative Relative R/RlOO Water 
Viscosity, Viscosity Gas Water Saturation, 

cp cp Perm. Perm. % 

0.736 0.01829 0.0410 0.0610 1.24 90.0 
0.736 0.01829 0.0398 0.0604 1.24 90.0 
0.736 0.01829 0.0375 0.0568 1.26 89.5 
0.736 0.01829 0.0370 0.0555 1.26 89.5 
0.788 0.01812 0.0949 0.0596 1.28 89.0 
0.784 0.01813 0.0908 0.0596 1.28 89.0 
0.784 0.01811 0.1840 0.0430 1.66 78.5 
o. 770 0.01816 0.1710 0.0406 2.50 65.0 
o. 7 52 0.01820 3.5500 

.,._"'II ___ 3.43 41.0 
0.736 0.01825 5.5100 -----...- 21.1 
0.797 0.01808 5.0000 -----..- 20.9 
o. 719 --'"'I'---- 0.0000 0.5240 65 .4 

0.01787 8.0000 0.0000 0.0 
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being only one-fifth of the value of gas permeability at residual water 

saturation. Also, the shape of the water permeability is unusual when 

compared with non-reactive cores such as Core AL-1-13 or Core AL-1-21. 

It is noted that a very rapid change in water permeability, to about 

5 per cent of its initial value, occurred between 90 and 100 per cent 

saturation; then the permeability decreased very slowly as the satu-

ration continued to decrease. It is not known if this particular 

permeability behavior is typical of reactive cores, or if it is only 

a function of the pore configuration of this test sample. In spite 

of the reactivity of Core P-1-1, its trapped gas saturation of 35 

per cent compared well with the value obtained for Cores M-1-lA and 

M-2-1 which also were cut from the Mount Simon formation, but from 

another well. The end point of the imbibition water permeability 

curve fell above the drainage curve as predicted by imbibition theory 

(42) . 
, but to an extreme degree as compared w1th other test cores. Pas-

sibly, equilibrium had been reached between the test liquid and 

materials in the core at this stage of the testing, or possibly con-

taminants from the drilling fluid were flushed from the core as water 

injection continued. Since other points on the imbibition curve were 

not obtained, it is impossible to establish a hypothesis regarding 

the behavior that was observed. 

Two different experimental tests of the relative permeability 

of Core M-1-lA were made which were separated by an interim period 

of 15 months. Run No, 1 was made with a prepared liquid solution 

of distilled water, ·;250 ppm sodium chloride and 50 ppm formaldehyde, 

and St. Peter formation water with 50 ppm formaldehyde was used in 



Run No. 2. The data for these two tests are represented by Figs. 21 

and 22 and Tables XIII and XIV respectively. The water permeability 

was used as a base permeability for Run 1 and the Klinkenberg perme­

ability was used as a base permeability for Run 2. 

It is of interest that the relative permeability curves for the 
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two tests at Core M-1-lA are very similar; however, the gas perme­

ability increased more rapidly at high water saturations in Run 1 than 

it did in Run 2. Also, there was a change in the trapped gas saturation 

from 38 to 27 per cent. This occurrence may be partially the result 

of the lower pressure and higher water rate used to determine the 

trapped gas-saturation for Run 2. Of significance is the apparent 

change in single-phase permeability between the two tests. The water 

permeability of Run 1 was 1,130 md. The water permeability for Run 2 

is not considered reliable because of experimental difficulties, but 

the Klinkenberg permeability was 622 md. This is a remarkable change 

in single-phase permeability but no definite conclusions can be drawn 

because the effects of the interim period, of the change of test liquid, 

and of previous testing are not known. It is significant that the 

drainage relative permeability curves were very similar in spite of 

this apparent permeability change. 

It is noted that the gas relative permeability curve for the second 

drainage cuts across the hysteresis loop. Scrutiny of the original 

experimental data showed that the fluid outlet temperature dropped 

markedly between the water saturations of 41 and 29 per cent. This 

occurrence and the fact that a lower residual water saturation was 

obtained during Run 2 infer that evaporation of the water in the core 
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TABLE XIII 

RELATIVE PERMEABILITY., CORE M-1-lA, RUN 1 

Water Gas Flowing Resistance Pressure Barom. Average 
Flow Flow Temp., at Temp., Drop, Pressure, Pressure, 
Rate, Rate, QF ohms atm atm atm 
cc/sec cc/sec 

0.03085 0.0468 82.5 18,000 0.0140 0.974 2.46 
0.03085 0.0765 83.0 33,800 0.0826 0.974 2.86 
0.03085 2~1900 83.0 34.0 0.0560 0.974 3.53 
0.03085 14.9000 79.8 36,500 0.2415 0.974 4.56 
0.03085 Zl.8000 77.5 38,500 0.3275 0.974 5.40 

0. 002 71 66. 6000 72.0 74,000 0.2180 0.974 6.32 
0. 00000 T. 8300 77 .o 122,000 0,0854 0.973 1. 73 
0.002n 7 .noo 80.2 70,000 0.0602 0.973 4.91 
0. 00000 55. 7000 81.5 88,000 0.1400 0.973 6.44 
0. 00271 0. 0000 86.0 39,000 0.0280 0.973 

Water Gas Relative Relative R/RlOO Water 
Viscosity, Viscosity, Gas Water Saturation, 

cf? cp Perm. Perm. % 

0.829 0.01788 0.0114 0.88200 1.160 93.0 
0.824 0.01789 0.2972 0.14900 2~190 68.0 
0.824 O.Ot789 0.0960 0.22000 2.235 67.5 
0.857 0.01783 0.1230 0.05570 2.280 67.0 
0.885 0.01777 0.1027 0.04020 2.340 65.5 

0.950 0.01764 0.2100 0.00568 4.200 49.0 
0.01776 0.4420 --.----- 35.2 

0.854 0.01783 0.2070 0.00300 4.380 46.0 
0.840 0.01786 0.6160 ----""'-- 30.8 
0.797 

___ °"'! ___ ------ 0.03710 2.650 62.0 
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TABLE XIV 
RELATIVE PER ME ABILITY,· CORE M-1-IA (RUN 2) 

!DENT I- WATER GAS FLOW DIFF, MEAN RESIST- TEMPER- CARD 
FICAT!ON F LO~-J RATE RATE PRESSURE PRESSURE A~CE AT AT URE NO. 

CC/SEC CC/SEC ATM ATM SAT• AND F 
TEMP, 
KILOHOMS 

9060000004+ l 344027850+ 4359375049+ 3129831151+ 8150000051+ 7150000052+ 830000t 
9060000008+ 7789444449+ 1917859650+ 1181250050+ 4622934251+ 1260000052+· 7450000052+ 910000+ 
9060000014+ 4115833349+ 1206090050+ 1321875050+ 3839465551+ 1510000052+ 7000000052+ 1030000+ 
9060000020+ 2084305649+ 1085693951+ 1448437550+ 4899793651+ 2040000052+ 6850000052+ 11c,oooo+ 
9060000025+ 5 J 9444444 8+ 2150812051+ 10·'.)4687550+ 7350418651+ 2750000052+ 6680000052+ 1250000+ 
9060000029+ 5194444448+ 2001810951+ 1012500050+ 6953059251+ 2620000052+ 6720000052+ 133JOOO+ 
9060000038+ 2596305648+ 2136990751+ 8859375049+ 7671356151+ 2910000052• 6650000052+ 1510000+ 
9060000041+ 968861114 7+ 2907093251+ 9703125049+ 9836274851+ 3860000052+ 6400000052+ 1570000+ 
9060000052+ 4398843251+ 6890625049+ 6383537351+ 6200000052+ 7000000052+ 1790000+ 
9120000009+ 121707825?+ 1504687550+ 4603142351+ 2500000054+ 6900000052+ J.970000+ 
9130000014+ 9663611147+ 8698920651+ 2095312550+ 6247005751+ 5950000052+ 6700000052+ 23]0000+ 
9130000019+ 2596305648+ 7599440651+ 2854687550+ 6383707051+ 1,320000052+ 690000'0052+ c'.i+l 0000 t 
9130000022+ 5194444448+ 638862?5'.:J}+ 3417187550+ 5423787051+ 3290000052+ 685000'0052 + 2470000+ 
9130000026+ ')618888948+ 548.207975 l + 'J881250050+ 4821177651+ 2800000052+ 6700000052+ :?550000+ 
9130000030+ 2084:105649+ 380030jl?l+ 4640625050+ 5089708951+ 2500000052+ 6750000052+ 2630000-t-
9130000052+ 1344027850+ 9281250049+ 5200S2l4S1+ 8500000051+ 680000C052+ '.107COOO+ 
9130000057+ 1344027850+ 871875004'.1+ 4341333951+ 8000000051+ 7150000052+ 3170000+ 
9170000002+ 1344027850+ 4640625049+ 2578150551+ 7780000051+ 760000Gb52+ 3210000+ 
9170000007+ 7789444449+ 7131819049+ 1195312550+ 1+393338051+ 1220000052+ 740G000052+ 3330000+ 
9170000Cl8+ 4115833349+ 2228023750+ 9703125049+ 3772744351+ 1480000.0S?.+ 7000000052+ 3550000+ 
9170000023+ 2()84305649+ 122?02925] + 9843750049+ {~876853751+ 209000005?.+ 695000,,052+ 36 :'i OOOC-t· 
9170000031+ 9618888948+ 1894072251+ 9421875049+ 500649435!+ 2140000052+ 6800000052+ 3810000+ 
9170000035+ 5194444448+ 225524125)+ 9281250049+ 5466916251-r 2620000052+ 6750000052+ 3e9oooo+ 
9170000039+ 2596305648+ 2480217851+ 9000000049+ 6519509951+ 295Q000052+ 6600000052+ 3970000+ 
917000001,9+ 966361114 7+ 2521416351+ 7453125049+ 7925115645 l + 3720000052+ 6550000052+ 4170000+ 
91 70000051+ 2591255551+ 6890625049+ 76?9ll13951+ 4300000052+ 6550000052t 4210000+ 
9170000065+ 5861788051+ ]195312550+ 8804331451+ 7150000052+ 6800000052+ 4490000+ 
9180000001+ 1108530452+ l67343755C+ 5B32109451+ 1050000053+ 6600000052+ 4510000+ 
9180000003+ l 134969252+ 1335937550+ 45306719:il+ 2080000053+ 6650000052+ 1•550000+ 
9180000006+ 1028328652+ 5906250049+ 112060635]+ 2500000054+ 6800000052+ 1,6 l 0000+ 
9190000016+ 966361114 7+ 7308905351+ 2053125050+ 506]383351+ 5300000052+ 6200000052+ 4990000+ 
9190000029+ 5194444448+ 5439417]51+ 3079687550+ .4915086451+ 3800000052+ 6400000052+ ~,2soo00+ 
9190000035+ 9618888946+ 4235641651+ 3515625050+ 4739258351+ '1000000052+ 635,J000052+ 5370000+ 
9190000039+ 2084305649+ 313579035] + 3571875000+ 461032.0851+ 2700000052+ 640000005?+ '.)4~0000+ 
9190000057+ 778Y444449+ 548437'i049+ 1955898951+ 1200000052+ 6600000052+ 5810000+ 
9200000004+ l 341,027d50+ 7171875049+ 2099770651+ 92 000000 51 + 6800000052+ 5970000+ 

!DENT!- WATER GAS WATER GAS RES1ST- ARE/1. SATURA-
Fl CA Tl ON VISCOSITY VlSCOSITY RELATIVE RELATlVE ANCE TION, 

CP CP PERM PERM RATlO CM PER CENT 
EAB!LlTY EABILI TY 

9060000004+ 9560126250+ 1771191749+ 2522090151+ 113053905]+ 506708665 94.0+ 
9060000008+ 9192392650+ 1780232549+ 5187936350+ 2474211549+ ]821162551+ 506708665 73,3+ 
9060000014+ 9752969750+ 1768120849+ 2599497350+ %7098 3049+ ?050675151+ 506708665 69,0+ 
9060000020+ 9952150050+ 1765392049+ 1225924350+ 1132749550+ 271108195]+ 506708665 59,5+ 
9060000025+ 101859055 l+ 1763544949+ 429 3756',9+ 3078578950+ 35639tr53? 1 + 506708665 56.3+ 
9060000029+ 1013011651+ 1764160549+ 4L1l;.8807349+ 2985731,900+ 34]580015]+ 506708665 '.) 2 • 8+ 
9060000038+ 10228071'> l+ 1763103949+ 2S6?8~il 749+ 3640'>12850+ 3754365351+ 506708665 so.a+ 
9060000041+ 105906155 l+ 1758935949+ 905221,2648+ 451]099850+ 1,7927%351+ 506708665 44,0+ 
9060000052+ 9752969750+ 1770664849+ 9676121850+ 84)9990651+ 506708665 32,0+ 
9120000009+ 9885035350+ 1766358549+ l 22302735 l+ 334665'>353+ 50670fl665 2,5+ 
9130000014+ 1015794951+ 1762947849+ 401034'.>348+ 6265289050+ 7731'168851+ 506708665 3L1, 3+ 

5 li0,0+ 
9130000022+ 9952150050+ 1765916049+ 1?95007649+ 28261391,50+ 4372281+051 + 506708665 l16. 5+ 
9130000026+ 1015794951+ 1761522049+ 2154985849+ 21298396">0+ 36396088'>1+ 506708665 51,0+ 
9130000030+ 1008859651+ l 763054649+ 3878P30J49; 1235926450+ 3273902051+ :106708665 54,0+ 
9130000052.i. 1002000051+ 176443111+9+ 121,2094451+ c;, l 1213720'i 1 + 506708665 94, :i+ 

9130000057+ 9560126250+ 1772403249+ 1261545051+ 1109731551+ 506708665 95.0+ 
917U000002+ 9017007650+ 1781951,649+ 2235523851+ 114 7136451 + 506708665 93.5+ 
9170000007+ 9252081350+ 1 778744649+ 5~611866~0+ 90848451,48+ 1751513351+ 506708665 75 .o+ 
9170000018+ 9752969750+ 176805401+9+ 3~ 413'+42~0+ 3475272249+ 2009933251+ 506708665 69,7+ 
9170000023+ 98186454?0+ 1767897449+ 1779661850+ 1878724850+ 281807785 l + 506708665 58,9+ 
9170000031+ 1002000051+ 1764237149+ 8756698649+ 3035996450+ 1087071251+ 506-108665 5S,8+ 
9170000035+ 100885965 l+ 176343184')+ 4833352549+ 3668008250+ 343\049351+ 50"708665 52,5+ 
9170000039+ 102989735 l+ 1760691649+ 2543269~49+ 4153514250+ '3777355251+ 506708665 50,0+ 
9170000049+ 1037066651+ 1760Pi6749+ 1151046349+ 5099268350+ '~727223551+ 506708665 4'+ • 5+ 
917000005!+ 1037066651+ 176056()349+ 56,S711l~9150+ ':146'1261751+ ''06708665 41,2+ 
9l7D000065+ 1002000051+ 1768034949+ 7422062150+ 94327176'>1+ 50670B665 29,2+ 
9180000001+ 1029897351+ 1760004249+ 9980146550+ 1344482'+52.+ 506708665 16,0+ 
9180000003+ 1022807151+ 175996324.9+ 1279931251+ 2683532652+ 506708665 9,3+ 
9180000006+ 100200005 l+ 1760351249+ 26?361, 1651+ 3298153053+ 506708665 2,5+ 
9190000029+ 1059061551+ 1754014749+ 1529110049+ 2651942150+ {1718298')51+ 506708665 L14 • 5+ 
9190000035+ 106655965 l+ 17525692'+9+ 249800091+9+ 1.B0749435Q+ 3695871651+ 50<\708665 so.s+ 
9190000039+ 1059061551+ 1753709949+ 5290192149+ 1317933950+ ,35247555!+ 50670B665 53.5+ 
9190000057+ 102989735 l+ 1756128049+ 1252155851+ 153655135]+ 506708665 80,3+ 
9200000004+ 1002000051+ 1761330449+ 160741625\+ 121372035]+ 506708665 91,0+ 
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was occurring. Equipment modification was made to insure that the in-

jected gas in subsequent tests would be water saturated. This modifica-

tion consisted of connecting into the gas inlet line a Lucite tube 

filled with the test liquid and glass beads. 

The relative permeability test of Gore M-2-1, as presented in 

Fig. 23 and Table XV, yielded results almost identical to those obtain-

ed for Core M-1-la (Run 1). This identity might be expected since 

the cores were from the same well and were separated by only four feet. 

Nevertheless, it is significant in thqt this similarity occurred in 

cores hc;tving a wate.r permeability ratio of 1.6. The trapped gas satu-

ration of 35 per cent for Core M-2-1 compares with 38 per cent for 

Core M-1-lA and their residual water saturations under the imposed 

differential pressures were 30.8 and 30.7 per cent respectively. It 

is remarkable that the relative permeabilities, the trapped gas satu-

rations, and the residual water saturation compared so closely even 

though the absolute permeabilities differed significantly. 

The relative permeability characteristics, based on the Klinken-

berg permeability, for Core N-3-1 are given in Fig. 24 and Table XVI. 

This core was the first one tested after the development of a pump 

transmission that would permit the imbibition curves to be obtained 
\ 

in detail. The effects of low pressure diffusion were also experienced 

for the first time in the testing of this core. This diffusion phenom-

e no,n appeared in the form of a break in the relative permeability 

curves when tests were temporarily stopped over night. An example of 

this is illustrated by the dashed portion of the second drainage gas 

permeability curve in Fig. 24. Although the reason for this behavior 
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TABLE XV 

RELATIVE PERMEABILITY, CORE M-2-1 

Water Gas Flowing Resistance Pressure Barom, Average 
Flow Flow Temp., at Temp., Drop, Pressure, Pressure, 
Rate, Rat~, OF ohms atm atm atm 
cc/sec cc/sec 

0.1875 1.65 87.0 24,500 0.3120 0.975 4.62 
0.1875 1.20 87.0 24,500 · 0.2440 0.975 5.04 
0.0308 . 1.72 86.8 36,300 0.1570 0.975 4.87 
0.0308 4.85 87.0 40,000 0.2760 0.974 4.97 
0.0027 11.95 88.5 75,500 0.2850 0.974 5.17 
0.0000 16.70 86.0 117,000 0. 0728 0,976 5.54 
0.0027 o.oo . 88.0 58,000 0.0476 0.976 

Water Gas Relative Relative R/RlOO Water 
Viscosity, Viscosity, Gas Water Sa tu rat ion, 

cp cp Perm. Pe:i:-m. lo 

0.788 0.01810 0.0203 0.48100 1.065 97.0 
0.788 Q.01810 0.0172 0.61800 1.065 97.0 
0.790 0.01809 0.0;396 0.15700 1. 575 80.0 
0.788 0.01810 0.0648 0.08900 1.740 76.0 
o. 775 0.01813 0.1450 0.00748 3.340 51.0 
0.797 9.01806 0.7400 ------- ------ 30.7 
o. 779 o. 01811 ------ 0.04530 2.530 63.0 
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TABLE XVI 

·RELATIVE PERMEABILITY, CORE N-3-1 

!DENT!- WATER GAS FLOW DIFF • MEAN RESIST- TEMPER- CARD 
FICATION FLOW RATE RATE PRESSURE PRESSURE ANCE AT ATURE NO. 

CC/SEC CC/SEC A.TM ATM SATo AND F 
TEMP, 
KILOHOMS 

3280000004+ 2997 222.248+ 2362500050+ 1927025051+ 1050000052+ 8600000052+ 2700001" 
3280000007+ 161055564 7_+ 1360870750+ 5625000050+ 6~27950051+ 4100000052+ 8700000052+ 330000+ 
3290000002+ 6704163850+ 9562500050+ 6682988251+ 5780000052+ 8000000052+ 390000+ 
3290000003+ 1069183851+ 1012500051+ 7240113251+ 6170000052+ 8050000052+ 410000+ 
3300000001+ 3476822051+ 2242000051+ 7964873751+ 7800000052+ 7300000052+ 450000+ 
·3300000002+ 660026295,I+ 2572400051+ 7257223751+ 1130000053+ 6900000052+ 470000+ 
3300000003+ 1086360452+ 2537000051+ 8297523751+ ·3600000053+ 7000000052+ 490000+ 
3300000004+ 1232177752+ 2383600051+ 8591123751+ 2500000054+ 7000000052+ 510000+ 
3300000007+ 1610555647+ 9016955 350+ 1392400051+ 5133123751+ 3300000052+ 7900000052+ 570000+ 
3300.000008+ 341111114 7+ 8248624750+ 1498600051+ 5662323751+ 3000000052+ 75000·00052+ 590000+ 
402000000 l+ 6493055648+ 334-6875050+. 6164817551+ 2400000052+ 7800000052+ 610000+ 
4030000002+ 6493055648+ 2503125050+ 4165330051+ 1850000052+ 8300000052+ 650000+ 
4040000001+ 2994444448+ 1189440051+ 4936526651+ 1380000052+ 8000000052+ 10000+ 
4040000002+ 1602777848+ 3007464849+ 1040-760051+ 4862186651+ 3020000052+ 8000000052+ 30000+ 
4040000003+ 682777784 7+ 1313110150+ 9982800050+ 4840946651+ 3700000052+ 8100000052+ 5 ooon+ 
4040000004+ 3697222247+ 2002120350+ 8708400050+ 44598.51651+ 3980000052+ 8100000052+ 70000+ 
4040000005+ 1610555647+ 3971618350+ 9770400050+ 4386001651+ 4550000052+ 8100000052+ 90o"OO+ 
4050000001+ 1931068351+ 2039040051+ 612328975!+ 4220000052+ 7700000052+ 110000+ 
4050000002+ 2t06179051+- 1755840051+ 5537364751+ 4800000052+ 7700000052+ 130000+ 
4050000003+ 4391800251+ 2775360051+ 6554924751+ 5700000052+ 7450000052+ 150000+. 
4050000004+ 4533719651+ 2662080051+ 6053959751+ 6420000052+ 7500000052+ 170000+ 
4050000005+ 4877202451+ 2548800051+ 5616469751+ 7780000052+ 7550000052+ 190000+ 
4050000006+· 5067045351+ 226.5600051+ 5411394751+ 1000000053+ 7550000052+ 210000+ 
4050000007+ 5408975351+ 1982400051+ 5079369151+ 140000005 3+ 7600000052+ 230000+ 

"4050000008+ 5454593451"+ 1897440051+ 5036889751+ 1640000053+ 7600000052+ 250000+ 
· .4050000009+ 5490882751+ 1840800051+ 5008569751+ 1710000053+ 7650000052+ 270000+ 

406.0000001+ 8725523251+ 2676240051+ 7148599251 + 2250000053+ 7350000-052+ 290000+ 
4060000002+ 9203311751+ 2543136051+ 69424022>1+ 3320000053+ 7300000052+ 310000+ 
4060-000003+ 9461642451+ 226,600051+ 6752854251+ 4580000053+ 7250000052+ 330000+ 
4060000004+ 1129515252+ 2605440051+ 7798729251+ 6550000053+ 7250000052+ 35000Q+ 
4Cll,0000005+ l.138496652+ 2520480051+ 7737206751+ 7750000053+ 7200000052+ 370000+ 
4060000006+ 1135693752+ 239.870405]+ 7682666251+ 1540000054+ 7200000052+ 390000+ 
4060000007+ H 34427852+ 240720005 l+ 7636134251 + 2300000054-1; 7050000052+ 1,10000+ 
4090000004+ 1603166748+ 1784160051+ 7689085051+ 1880000052+ 8100000052+ 530000+ 
410000000 l+ 2994444448+ 4927500050+ 2810813451+ 14800000 5·2+ 7600000052+ 550000+ 
411000000 2+ 1603055648+ .33.20643050+ 2124000051+ 5590284251+ 4550000052+ 7400000052+ 610000+ 
4110000003+ 68277.7784 7+ 3-584231550+ 1879740051+ 521.4254251+ 4800000052+ 7450000052+ 630000+ 
4110000004+ 3697222247+ 3836088150+ 1667340051+ 4885891751+ 5050000052+ 7450000052+ 6>0000+ 
4160000002+ 1247697.052+ 2449680051+ 8324651251+ 7650000052+ 830000+ 
416·0000004+ 7698057450+ 1535625050+ 7208330051+ 8350000052+ .870000+ 

!DENT!- WATER GAS WATER GAS RESIST- AREA SATURA-
Fl CATION VISCOSITY VISCOSI TY RELATIVE RELATIVE ANCE T!ON, 

CP CP PERM PERM "RA Tl 0 CM PER CENT 
EABILITY EABiL!TY 

3280000004+ 797448"8950+ 1806271449+ 1191961850+ 1013695651+ 506708665 100.0+ 
3280000007+· 7881070250+ 1813262249+ 2658586348+. 5168533649+ 4004265851+ 506708665 10.0+ 
3-290000002+ _8574864150+ 1796076449+ 1483577850+ 5190839751+ 506708665 63o5+ 
3290000003-+ 8522069150+ 17978.81849+ 2236818950+ 5575718451+ 506708665 6lo0+ 
3300000001+ 937335-1950+ 1779804949+ 3251858450+ 6392007251+ 506708665 57o5+ 
3300000002"+ 9885035350+ 1769012649+ 5347687350+ 8752806451+ 506708665 50,0+ 
3300000003+ ·9752969750+, 1772578849+ 8942755650+ 28289178"52+ 506708665 30o5+ 
3300000004+ 9752969750+ 1772872449+ 1079766351+ 1964526353+ 506708665 13,5+ 
3300000007+ 86820"57650+ 1792022649+ 1183168848+ 1367262050+ 2926582951 + 506708665 64o3+ 
.3300000008+. 9133323150+ 1782525749+ 2449352648+ 1155963150+ 2525819551+ 506708665 68_o3+ 
402000000i+ 8791438750+ 1790551249+ 2009472050+ 2101481851+ 506708665 73,2+· 
40300000-02+ 8265831650+ 1801043649+ 2526187050+ 1723731551+ 506708665 79.0+ 
404900000 I+ 8574864150+ 1794329949+ · 254339-2249+ 1239335'•51+ 506708665 89;5+ 
404·0000002+ 8574864150+ "l 794255649+ 15551!30749+ 6108669648+ 2712168851+ 506708665 660 5+ 
4040000003+. 8469799350+ 1796 73-2749+ 6825154648+ 278448 3149+ 3364391651+ 506708665 61, 3+ 
4040000004+ 8469799350+ l 796351749+ 4236650848+ 4865814449+ 3618994251+ 506708665 59o7+ 
4040000005+ 8469799350+ 1196277849+ 1644935:448+ 8602823549+ 4137292351+ 506708665 5606+ 

. 4050000001+ 89030671!.50+ 1788007449+ 1995049150+ 3647732451+ 506708665 59.5+ 
4050000002+ 8903067850+ 1787421549+ 252°6095050+ 411+9079551+ 506708665 56.~+ 
40~0000003+· 9192392650+ 1782164549+ 3322641150+ 4767063351+ 506708665 53.5+ 
4050000004+ 9133323150+ 1782917'149+ 3577479550+ 5405253751+ 506708665 52,0+ 
4050000005+ 9074864350+ 1783735549+ "4021405250+ 6593960551+ 506708665 47,3+ 
405-0000006+. 9074864350+ 17835"30449+. 469963°8450+ 8475527651+ 506708665 44o0+ 
405Q000007+ 9017007650+ 178445584!;+ 5736432650+ 1194432052+ 506708665 37,7+ 
405000·0008+ 9017007650+ 1784413349+ 6043689650+ 1399191752+ 506708665 3.5-. 5+ 
4050000009+ 8959744850+ 1785638049+ 6275399250+ 1468511552+ 506708665 35o0+ 
406.000000 l+ 9312398150+ 1780243449+ 6838457650+ 18564 77352+ 506708665 31.8+ 
4.060000002+ 9373351950+ 1778782449+ 7584199350+ 2720700552+ 506708665 27;5+ 
406000000:i+ 9434951550+ 1777333849+ 8745097750+ 3727548352+ 506708665 2'+• 3+ 
4060000004+ 9434951550+ 1778379649+ 9083387650+ 5330882452+ 506708665 19o4+ 
4060000005+ 9497206650+ 1 777060849+ 9457212450+ 6264032452+ 506708665 17o5+ 
4060000006+ 9497206650+ 1777006349+ 9912561350+ 1244723853+ 506708665 11.3+ 
4060000007+ 9687998050+ l 773179849+ 9845319750+ 1820273953+ 506708665 e.6+ 
4090000004+ 8469799350+ 1799580949+ 8966652948+ 1709474651+ 506708665 66,0+ 
4100000001+ 9017007650+ 1782187249+ 6456013449+ 1262685251+ 506708665 11.0+ 
4100000002+ 9017007650+ 1782257449+ 6283852949+ 1262685251+ 506708665 11.a+ 
4110000003+ 9192392650+ 1780823949+ 3933892748+ 40006596.49+ 4014369151+ 506708665 63.oO+ 
-4110000004+ 9192392650+ 1780495549+ 2401553848+ 4826337149+ 4223450851+ .506708665 62,0+ 
4160000002+ 8959744850+ 1 7.88954'149+ 1073522951+ 506708665 2,8+ 
4160.000004+ 8216084050+ 180533.2949+ 1066266251+ 506708665 2.9+ 
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of the relative permeability was unknown to the experimenters at the 

time, steps were taken to prevent its recurrence, The action taken was 

to test without interruption for any significant period of time except 

when the core was at residual water saturation or trapped gas saturation. 

It was later found that significant changes in permeability also occur­

red when testing was stopped at·· the trapped gas saturation. This change 

of permeability at the residual gas saturation occurred in the testing 

of Core AL-1-13 (Fig. 18). 

Reference to Fig. 24 indicates that Core N-3-1, from the St. Peter 

formation, was highly reactive to water from this same formation. 

This reactivity is indicated by the water permeability of only 7 milli­

darcys as compared to a Klinkenberg permeability of 60 millidarcys. 

The trapped gas saturation for two different imbibition cycles was 27 

and 30 per cent respectively. This volume of residual gas would amount 

to approximately one-third 0£ the maximum gas saturation of 90 per cent 

as compared to the 50 per cent theoretical value. 



CHAP'l'ER VII 

PREPICTED RESERVOIR PERFORMANCE 

From an ~ngineering point of view, the importance of theory and 

experimental work of the type prese1;1ted bears a direct relationship 

to its utility in understanding and predicting the behavior of physi­

cal processes. In summarizing, therefore, it is desirable to demon­

strate the utility of the work that has been presented. 

The experimental rela.tive permeabilities that have been presented 

may be combined with the theory given in Chapter III in order to predict 

reservoir behavior. The necessary ~alculations for this predicted be­

havior of a reservoir undergoing cyclic,two-phase flow are performed 

by using the cowputer programs described in Appendix B. 

The experimental values of permeability must be curve-fitted, 

tabulated at intervals of one per cent gas saturation,and converted to 

values of gas fractional flow at each per cent of gas saturation. The 

fractional flow data is then similar to Fig. 2. The fractional flow 

values may then be used with the equations of Chapter III to calculate 

the saturation-radius characteristics, the saturation at the gas-water 

front, the produced volumes of water, and the producing water-gas ratio. 

Example Problem 

An example problem of injection, withdrawal, and re-injection into 

a radial single-well gas storage reservoir has been worked to illustrate 

93 
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the .method of analysis that has been presented. It is assumed that a 

flµid volume, .equivalent to one ... tentb, of the maximum injected gas volume, 

is injected or withdr,g.wn during each time increment. 

The cui;ve-fitted drainage curves and theoretical imbibition curve 

for Core N-3-1 are presented in Fig. 25. For this example, the criti-

cal gas satut;'ation has been assumed to be 15 per cent (S = .15) ,. and gc 

the maximum gas saturation has beep. assumed to be 77 per cent (S =.23). wr 

The corresponding drainage and imbibition gas fractional flow curves 

appear similar to Fig. 4. l'he saturation distribution for injection 

and withdrawal with hysteresis being neglected is similar to Fig. 1. 

Reference to Fig •. 26 for the non-hysteresis case shows the frac-

t.ion 0£ gas in place, G/G. , the cumulative gas production, G /G. 
1., max p 1., max 

and cumulative water production, W /G. • Of particular importance 
p 1-, max 

is the rapid decrease in gas production and rapid increase in water 

production after breakthroughr . Even after the cumulative water pro-

duction has reached 105 per cent of the initial gas injected, the gas 

recovered is only 44,5 per cent of the initial gas injected. The 

cumulative fraction of gas produced as a :function of the fraction of 

water produced, fig. 27, also illustrates the large water production 

required to recover a small volume of gas a:f;ter breakthrough has occur-

red • 

. Figure 28 presents the injection-production performance for the 

case where the maximum theoretical hysteresis of the gas relative 

permeability chal;'acteristic is considered. The theory of Naar and 

Flende.rson <42 ) was used to obtain this imbibition gas permeability 

curve:which is shown in Fig. 25, 
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For the imbibition case breakthrough occurs almost immediately 

upon initiation of withdrawal and the gas recovery after water produc-

tion of 1.05 G. is 0.0675 per cent of the initial volume of gas 
1., max 

injectedJ G. 
1., max 

This volume of gas re.covered is obviously an unreal-

istically low value. 

It is worthwhile to consider the factors that affect the maximum 

recoverable gas volume. First, it is physically impossible to reduce 

the gas saturation below the critical gas saturation, S , for the non­
gc 

hysteresis case. In this example problem S = .15 and the average gc 

saturation for injection was Sf= .23. Therefore, a rough estimate 

of the fraction of residual gas is GtD = .15/ .23 = 0.65. Next, since 

there is a saturation distribution in the reservoir, the average gas 

saturation of the reservoir at breakthrough will be greater than S 
gc 

Yet, the saturation at brei:lkthrough can not be greater than the satu-

ration having the maximum fractional flow derivative, S ~, which for mr._ 

this example problem was Smd = .20. One can, therefore, estimate the 

loss of gas by having only the relative permeability characteristics 

and the fractional flow function. 

Now consider the reason why the maximum hysteresis case resulted 

in essentially all of the gas being trapped. First, the maximum gas 

saturation is 77 per cent and the residual gas saturation, S , must 
gr 

then be, by the Naar-Henderson imbibition theory, 38.5 per cent. This 

value of residual gas saturation means that the gas is immobile for 

any gas saturaion equal to or less than 38.5 per cent. Because of the 

average saturation of 23 per cent and because of the nature of the 

fractional flow derivative for this core, which causes all saturations 

greater than 30 per cent to lie at dimensionless radii of less than 
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0. 02, it can be stated tha.t essentially all of the gas is innnobile 

and very little, therefore, is produced. 
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It is possible to calculate theoretical imbibition curves origina­

ting from saturations other than the niaxinnim gas saturation, but there 

is no theoretical or physical basis for doing this. 

It is noted that i:nuch of the valuable information regarding the 

reservoir performance during cyclic operation is dependent on relative 

permeability values near to the critical gas saturation, Sgc' at 

which gas first starts to flow. It is unfortunate that the region 

near the critical gas saturation is the most difficult portion of the 

gas relative permeability curve to obtain accurately. Nevertheless, 

even with the present experimental techniques and equipment, the gas 

storage engineer has available to him, in the method that has been 

presented, a va.luable tool to aid him in predicting the behavior of 

gas storage reservoirs. 



CfJAPTER VIII 

SUMMARY AND CONCLUSIONS 

The commercial uti~j.zation of virgin aquifers for natural gas 

storage is increasing steadily. A majority of these ventures have 

been undertaken at a high capital expenditure and with little original 

thought given to'the actual mechanics of flow of the gas and water 

within the storage reservoir. Consequently, problems have developed 

concerning the pressure behavior of these reservoirs, the efficiency 

of displacement of water by gas and of gas by water, and the production 

of water during gas withdrawal. These problems facing the gas storage 

industry have presented the engineering profession with an enormous 

challenge. The writer of this dissertation has accepted this engineer­

ing challenge, and he has applied the two-phase-flow-in-porous-media 

concepts ~o the movement of gas and water within the storage region 

of gas storage aquifers. 

In this dissertation, the writer has extended the two-phase flow 

theory in order to describe the cyclic, injection-withdrawal process 

to which gas storage reservoirs are subjected. Theoretical relation­

ships for two-phase flow in a radial gas storage reservoir have been 

derived in detail from fundamental engineering concepts. The equations 

that have been developed were combined with experimental data to reveal 

important features of the gas storage process with regard to water pro-

101 
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duction and gas recovery. Computer programs are presented to facili­

tate the combining of theory and experimental data so that rapid, 

accurate comparisons of the effect of different operating conditions 

can be made. 

An example gas storage problem for a hypothetical reservoir hai 

been solved by using the theory, the experimental data and the computer 

programs that are presented in this dissertation. The behavior of this 

hypothetical reservoir shows that a significant volume of the injected 

gas cannot be recovered economically by present methods of production. 

The quantity of gas lost is in terms of the pore volume of the reser­

voir. Therefore, since gas density is pressure dependent, the appli­

cation of gas production rates and methods that would reduce the gas 

zone pressure belqw the initial formation pressure, would reduce the 

mass of gas lost in the reservoir. 

A significaµt improvement in the solution of the Two-Phase Gas 

Zone;-Unsteady Aquifer Model (66 ) for gas storage has been developed 

in this dissertation. The solution time for the model has been re-

duced by a factor of two. With this gas storage model the gas storage 

engineer can predict the well-bore pressures and gas zone radii that 

would be expected during the initial development of a gas storage field. 

In the course of the work for this dissertation,experimental gas-

water relative permeability tests were made on four natural sandstone 

cores and on two artificial cores. The result of the drainage and im-

bibition relative permeability tests showed that a significant volume 

of gas is physically trapped in a porous medium subjected to cyclic 

two-phase fluid flow. The volume of trapped gas amounted to 35 per 

cent of the pore volume in some cases. 
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Numerous e~perimental problems were encountered during experimen­

tal testing of the relative permeability of the cores. Among these 

problems were adequate mixing of the gas and water phases, determina­

tion of accurate water saturations, and establishment of a unique 

trapped gas saturation. Defi,nite i;mggestions have been made in this 

dissertation for refini.pg the ~est procedure to minimize these problems. 

It is concluded tb,at the mathematical methods and experimental 

information that have been presented in this study can serve as a 

valuable tool in giving the ga,s storage engineer greater insight into 

the operation and behavior of gas storage fields that have been develop­

ed, or are to be developed, in aquifers. Also, it is believed that this 

disseration has made a significant contribution to the theory of two­

phase flow in porous media, 



CHAPTER IX 

RECOMMENDATIONS FOR FUTURE STUDY 

· .. Many avenues are avc;t.ilable for future study in the area of cyclic 

two-phase flow in pqrous media in both the experimental and the theoret­

ic a1 phases. 

Two significant problems in the experimental phase are the obtain­

ing of precise saturation measurements under flowing conditions and 

the uniform mixing of the gas and water phases at the core inlet. Auto­

mation of the experimental apparatus to the extent that the gas and 

water permeabilities could .be directly recorded would provide for instan­

taneous recognition of many of the experimental difficulties that will 

occur. Such records would also permit a more detailed study of the 

drainage and imbibition relative permeability characteristics. 

There is a need for experimental validation of the Naar-Henderson 

<42 ) imbibition theory and for the determination of imbibition gas 

permeability characteristics originating from initial gas saturations 

that are less than the maximum. That is, internal branches of the 

non-wetting phase imbibition relative permeability need to be determined 

to allow a more adequate theoretical description of the cyclic perfor-

mance of a reservoir . There is also a need for checking for correla-

tions between the trapped gas saturations and the pressure at which 

it is measured in order to determine the effects of low pressure gas 
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diffusion. Absolute permeability is a possible factor in a correlation 

of this type. 

In the theoretical phase of describing the gas storage process, 

one could combine the Two-Phase Gas Zone,unsteady Aquifer Model with 

the cyclic two-phase flow model to determine both the pressure and two-

phase behavior of a reservoir undergoing cyclic operation. The accom-

plishment of such a combined model is dependent upon the availability 

of high speed computing facilities with adequate storage capacity 

(approximately 4000 words). It should also be of great interest to 

extend the present work to a multi-well system and to solve numeri­

cally the ex~ct form of the differential equation for cyclic two-phase 

flow (Equation 18) in order that actual storage field conditions could 

be described more accurately. By including capillary and gravity 

effects and using a procedure similar to Sheffield and Brinkman (6l), 

one could possibly remove the necessity of having the many frontal 

equations needed to cover the different possible cases that arise. 

The correlations between model performance and field performance 

might be improved by using the conical model of Welge, et al (63). 

Those persons desiring to develop a highly sophisticated mathematical 

model could solve the gas storage problems mentioned above and also 

include the effects of gas going into solution in the water and of 

the dry injected gas becoming water saturated as it travels through the 

porous medium, 

The ultimate objective of these developments would be the adequate 

description of all phases of the behavior of a gas storage reservoir 

under any set of proposed operating conditions. The accomplishment of 

this objective would permit optimum development and operation of the 

reservoir. 
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APPENDIX A 

PERIVATION Of EQUATIONS 

Mi;iterial Balance 

Equation (1) ~y be derived in the following manner (7). Let pu 

be the mas13 flu;x act;'oss the surface of a vnit volume and let the 

mass concentration withiµ the volume be 0pS. Then for m~terial balance 

the integral at the mass flu~ over surface of the volume plus the 

time rate of change of the integral of the mass concentration over 

the volume must be zero as is stated in Equation (A-1). 

(A-1) 

The surface integral may be ~ransformed to a volume integral by the 

divergence theorem, and by noting that the limits of the volume 

integral are not functions of time, 9ne may differentiate under the 

integral sign. The rei;ult is Equation (A-2). 

IJI (7·p~ + 0 ~ts)dv = o 
V 

(A-2) 

Since Equation (A-2) must hold for any arbitrary volume, the integrand 

must be zero. Therefore the continuity equation for two-phase is 

obtained. 

7 ( ~) 0 o(pS) 
· · • P i + ot = o, i = g,w (A-3) 
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For incompressible flow for·which pis constant, Equation (A-3) takes 

the form of Equation (5). 

?)S. 
- l. 

?•u. + 0-;:-- :;: 0 
l. at 

(5) 

Fra.c:tional Flow 

The fractional flow function may be derived in terms of the rela-

tive permeability characteristics by using O.a.rcy' s equation 

k kri 
u1..:;: - ?(pi.+ p.gz) 

µ. i l. 
(A-4) 

for each phase and by use of the capillary pressure relationship 

p ::, p - p • 
C g W 

(A-5) 

These equations are compiµed to eliminate the pressure term in the 

following manner. Let the fractional flow be defined as 

(A-6a) 

and 

:I;. ;,: 1 - f. ~ 
J l 

(A-6b) 

Then Equation (A-4} for the water phase may be rearranged as 

where j is a positive upWard unit vector. Upon substituting Equations 

(A-5) and A-7) into Equation(A-4) the following result is obtained. 

kk ~ µ. 
u :;: .. -!S. (-~ + 7P + tipg) 

g JJ, kk C 
g rw 

(A-8) 

where 

Ap = p - p • g w (A-9) 
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By then substituting_Equation (A-6) for each fluid into Equation(A-8), 

Equation (A-10) is optained. 

(A-10) 

Upon neglecting capillary and gravity effects as justified previously 

this equation becolll6s Equation (7) 

g,w; j = w,g. (7) 

Two-Phase Flow 

'l'he two-phase flow equation can be obtained by combining Equations 

(5) and(l\-11) to obtain Equation (A-12). 

(A-11) 

7·q £ + 0 M:,: o 
t·g ot (A-12) 

The two-phase flow equation as given by Equation(A-12) is indepen-

dent of geometry, By recalling the general form of 7~B where 

-7·B = (A-13) 

Equation (A-12) i;na,y be adapted to a particular geometry by knowing the 

scale factors, hi. For a radial system h1 = 1, h2 = r, h3 = 1. If 

we choose a radial system where qt is independent of angular position, 

e, and height, z, then ~quation (A-12) becomes EquationQ\-14). 
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of 
Q' . oS O 

__.Q, + - = o! ot (A-14) 

On neglecting capillary and gravity effects and considering flow 

that is non-cyclic or without permeability hysteresis, f becomes a 
g 

function of saturation, S, only, Then Equation (A-14) takes the form 

of Equation (9), 

2Tih0r · (9) 

This equation yields to sqlution by the method of characteristics. 

If Equation (9) is compared with the total derivative of saturation 

as given by Equation (A-15), 

dS - oS dr + oS dt - or ot 

it is seen that 

dS 
dt = 0 

and 

df 
dS • 

(A-15) 

(A-16) 

(A-17) 

These ordinary differential equations, Equation (A-16) and (A-17), 

then have the solutions 

·S = constant (10) 

along surfaces of constant radius and 

[ /)JJ._ dfk 2 ]\ 
r - -.- + r k,m - Tih0 dS k,m-1 

(11) 

where "k" designates a particular saturation and 

(A-18) 
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is the total volume of fluid (gas) injected or fluid (gas or gas and 

water) withdrawn during the "m"th time interval. Consider the volume 

injected to be algebraically positive and volume withdrawn to be nega-

tive. 

Two-P~ase Flow With Hysteresis 

For radial two-phase flow with relative permeability hysteresis 

one may begin with ~quation (A-14) since no assumptions were made con-

cerning the fractional flow function, f, up to this point. If cap­
g 

iUary and gravity ef£ects are again neglected in Equation (A-10), it 

reduces to Equation (7) which indicates that f is a function of the . g 

;relative permeability ratio. In the cyclic flow case with hysteresis, 

relative permeability becomes a function not only of saturation, but 

also of direction of approach and the initial saturation at a point 

when the Uow direction was :i;-eve:rsed; that is f · = f(S, Sgi) and by 

chain rule differentiation 

of of as of os . _ = __ + _ ~ (A-19) 
or oS or ~ . or g1 

with S . indicating the initial saturation at r. However, application g1 

of Equation (11) indicates that the initial saturation distribution 

at the end of the initial injection period is some function of radius; 

that is, S . ~ g(t). Now Equation (A-19) becomes Equation (A-20) 
g1 

of of os + M_ og 
sr = oS or oS . or 

g1 

and Equation (A-14) becomes 

(A-20) 
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2TTh0r 
1-'Q! os of g_g_\ as 0 
\...oS or + ~ or) + ot = 0 

g1. 
(18) 

Frontal Development, First Injection 

The saturation at the gas-water front during injection is readily 

determined by a material balance procedure. Consider the volume of gas 

injected in relation to the saturation distribution in the reservoir as 

given by Equation (A-21). 

(A-21) 

The radius terms may be eliminated from the equation by making use of 

Equation (11), The radii of s~sf will be given by 

2 2 Gi 
rk - r w = TTh0 f ~' . • • • s ~sf 

with ff being a constant. The radii of S~Sf is given by 

2 2 Gi fk 
rk - rw = TTh0 

Substitution of these equations into Equation (A-21) then yields 

since 

1 - f I o 
f 

(A-22) 

(A-23) 

(A-24a) 

(A-24b) 

(A-25) 

On solving Equation (A-24b) for ff, one obtains Equation (A-26) which 

is equivalent to Equation (12). 

fi = ff 
f sf (A-26) 
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The saturation at the front can now be determined by simply draw-

ing a li,ne from the origin:. that is tangent to the fractional flow curve 

as shown in Fig. 2. 

One numerical method of finding the combination that satisfies 

Equation (12) is to consider the function (f/S) which is the slope 

of a line from the origin to a point on the fractional flow curve. The 

maxima and minima may be investigated by setting the first derivative 

of function equation ta zero. 

or 

d(f/S) 
dS 

f 
f' ::; s 

::; Sf' - f :::i O 
S2 

(A-27a) 

(A-27b) 

Equation (A-27b) is identical to Equation (12) and reference to 

Fig. 2 shows that f/S is a maxinrum when Equation (A-27b) is satisfied. 

Therefore, ff, ff and Sf can be determined by finding the maximum value 

of f/S. 

Frontal Development, Withdrawal 

The material balance equations for determination of the saturations 

at the front during with4rawal will be derived for the hysteresis 

case. Equation (21) for the hysteresis case then readily reduces to 

Equation (14) for the non-hysteresis case. 

Consider the saturation distribution for withdrawal given in Fig. 1 

for the non-hysteresis and hysteresis (S < Sf) withdrawal cases res­gr 

pectively along with the general material balance given by Equation 

(A-28). 
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Jl 2 2 
Q = Tih0 (r. 2 - r. 1)dS 

p O J J 
(A-28) 

The subscript 'j' design.ates the gas saturation and •1 • and •2 • desig­

nate values calculated from the drainage and imbibition fractional flow 

curvesrespectively. The saturation range is covered by the following 

three equations of radius. 

(A-29) 

G (f I f ) Q f I 
i *1 - fl p *2 

Tih0 + Tih0 ' . . . (A-30) 

(A-31) 

Now upon remembering that £~2, £~1 and £fl are constants, Equation 

(A-28) may be broken into four parts covering the entire saturation 

range and may then be integrated as was Equation (A-24a). Algebraic 

rearrangement of the integrated form of Equation (A-28) then yields 

the equation of the front for the condition that the trapped gas satu-

ration, Sgr' is less than Sf. This frontal condition is determined by 

Gi 

£*2 - (S*: s**) {£*2 - f**2 + Qp [f*l - ffS** - f~l(S*-s**)]}, 

s 
gr 

If all subscripts I I 

2 
are replaced by 11 •, this equation reduces to 

Equation (14) for the non-hysteresis case. 

(21) 
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(14) 

Now consider the saturation distribution depicted by Fig. 3 for 

the withdrawal case having hysteresis and S > Sf. The same general gr 

material balance equation, Equation (A-28), holds for this case. 

-Equation (A-29) holds for the same saturation ranges; but without the 

restriction of S** < Sf' and Equation <A.-31) is now valid for S**~j:s:S*. 

On substituting these two equations into Equation (A-28) the integral 

is broken into three parts, covering the saturation range. Integration 

of the resulting equation and rearrangement yields Equation (22). 

s > sf gr 

Frontal Development, Injection after Withdrawal 

Consider the saturation distribution in Fig. 1 for the second 

injection phase. The material balance for the injected gas volume 

is given by Equation (A-32), 

(22) 

(A-32) 

where the subscripts 'i, and 'w' refer to the second injection and 

withdrawal respectively. rhe four saturation-radius equations 

covering the saturation interval are as follows: 

2 2 Gi2 , 
r j2i - rj2w = TTh(6 fj2' • • • • 0:S:j~ -' S+~j~l (A-33) 

2 2 2 2 2 2 2 2 2 2 2 2 
r+ - rj2w ~ (r*l-rw)-(r£1.rw)~*2-r*l)-(rj2w-rfl)+(r+-r*2) 

(A-34a) 
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(A-34b) 

(A-35) 

(A-36) 

These equations may now be substituted into Equation (A-32), thereby 

.breaking it into the sum of five integrals covering the saturation range. 

Since f*l' f*2' f_ 2 and £fl are constants, the integrated equation may 

· be arranged as Equation (22). 

1 { Q 
f..1-,2 ::;:: <s+ - s ) f+2 - f_2 + ~ (f**2 - f_2> + (s** - 8 > 

·[ Gil Q ]} (f I • f 1 ) - _,E_ f 1 

G iZ · fl *1 G i 2 *2 ' ' 
.. .s < sf gr 

(22) 

Gil and GiZ are the volumes of gas injected during the first and 

second injections respectively and Qp is the algebraically negative 

total volume of fluid produced. Change of the subscript 1 2 1 to 

I I 

1 
in Equation (22) yields Equation (16) for the non-hysteresis case. 

For the second injection case where S > Sf Equations (A-33), gr 

(A-35) and (A-36) hold for the same saturation ranges, and since the 

range from s_ to S** is no longer influenced by S < sf, the constant 

ff in Equation (34b) is in effect, replaced by the variable fj which 

results in Equation (A-37), 

r! - rj2w = Gi2 (f~l - fjl) + QP(fi2 - fj2w) + Gi2f~2]! 

(A-37) 
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By following the procedure of integration that was used for Equation 

(A~24a), Equation (23) is .. obtained. 

(23) 

If breakthrough occurred during the withdrawal process for the 

condition of non-hysteresis or S < Sf then the equations defining the 
gr 

saturation-radius relationship become as follows: 

2 
- r 

w 

~ [Gi2f:2 - Fi2f;l - Qpfj2w]/Tih0, • • . 

s $J~ b. - w 

(A-39) 

(A-40a) 

(A-40b) 

Substituting these equations into Equation (A-32) and integrating as 

before yields Equ~tion (17) for the non-hysteresis and hysteresis 

(S < gr Sf) cases. 

1 
S ) { f+2 

G.l Q 
f' .::, - f + G:2 ffl(Swb - s ) + ....:.E..._ 
+ (S - -2 Gi2 + 

(f - f_2> }, . . • s < sf (17) wb gr 

The subscript 'wbv again designates 'at the well bore' at the end of 

the withdrawal phase. 
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The handling of the S > Sf case is the same with the constant 
g;r 

f' again, in effect, being replaced by the variable f~ .. The equation 
f J1 

of the front then becomes Equation (24b) after Equation(A~3~ is integ-

rated. 

f' 1 
{f+2 f_2 

.Gil 
(fwbl .:. ~ ·~ - +-·- f_l) + G +2 (S - s ) Gi2 + i2 

(fwb2 - f -2) }, . . . . s > s (24b) gr f 

Water Production 

The cumulative volume of water produced, WP, at any time after 

breakthrough is also derived readily from material balance. First, 

consider the gas remaining in the reservoir as depicted by the satu-

ration distribution in Fig. 4. 

where 

18wb 2 2 
Gr ::;; Tih0 ·. (rJ. 2 - r ) dS 

0 w 

2 
r.2 

J 

G. 

= TI~0 f~ + Qpfwb2 

(A-41) 

(A-42a) 

(A-42b) 

Upon substitution of Equation (A-42) in Equation (A-41), dividing by 

G. and integrating, the equation for the fraction of the initial inject­
i 

ed gas still remaining in the reservoir becomes Equation (25a). 

The total gas produced, G, must necessarily be given by 
p 

G = - (G. - G ) p i r 

(25a) 

(A-43) 
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with the produced volumes being considered negative. Then the water 

produced must be the total fluid produced less the total gas produced. 

W = Q + G. - G (25b) p p 1 r 

This equation holds for the non-hysteresis case. It also holds for 

hysteresis with S < Sf if there has not been water production before 
gr 

breakthrough. 

For the hysteresis case considered it is possible for water 

production to occur before breakthrough since for the fractional flow 

of water the physical condition holds that f > 0 for S < S w g gmax 

This water production is then found by integrating over the volume 

bounded by the well bore and the hypothetical saturation distribution, 

as given by Equation (11), lying to the left of the well bore as 

shown in Fig. 3. 

where 

Jl 2 
W = (r. 2 p s J 

wb 

2 
- r 

w 

2 
- r )dS 

w 

= (G.f~l + Q f~ 2)/Tih0 
1 J p J 

(A-44) 

(A-45a) 

(A-45b) 

The combination and integration of these equations give the volume of 

water produced. 

W = G.(1 - f b 1) + Q (1 - f b 2) p 1 w,. p w, 
(26) 

This equation evaluated at breakthrough gives the volume to be added 

to Equation (25b) if there was water production before breakthrough 

for the S < Sf hysteresis case. gr 

The water production when Sgr > Sf may be found by the same 
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methods. Combining Equations (12), (A-22) and (46b) with Equation 

(A-41) 

2 
- r 

w 
(A-46a) 

== (G.f~l + Q f! 2)/nh0 
1 J p J 

(A-46b) 

results in the fraction of gas remaining in the reservoir. 

G ~ 
GrD 

r 
fwbl fwb2 = + G. G. 

:i. 1 

(27) 

Using Equation (27) and the total water produced before break-

through as given by Equation (26) yields the cumulative water production 

for the case where S >Sf. gr 

W = Q + G. - G + W 
p,t p 1 r pJbt . . s > sf gr (28) 

The produced gas-water ratio follows from the definition of frac-

tional flow from Equation (A-6), 

f = ~, f == qw == 1 - f 
g qt w qt g 

(A-47) 

The equation for the producing ratio at surface conditions is then 

given by Equation (29) (7, 48). 

R 
wg 

Average Saturation 

The average saturation behind any saturation, i, is given by 

SdV 

(29) 

Jvok 
S · (A-48) 

JVk dV 
0 

2 
where dV: 2nh0rdr == nh0dr , Now on setting up the integral for separa-

tion into parts, Equation (A-48) becomes 
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s = 1 2 Jrk 2 S (dr ) 
2 

(.A.-49) 
r - r r k w w 

or by using Equation (11) 

1 
[<skr! -

2 · s:k ~!0fk + rw2) dS J, s = 2 2 l.Or) 
w 

rk - r 
w 

(A-50) 

On completing the integration and again applying Equation (11) this 

becomes 

(A-51) 

If Skis aLlowed to become Sf' the saturation at the front, and it 

is remembered from Equation (12) that ff= f~ Sf' then the average 

saturation behind the front becomes 

with it being noted that Sf may be found by extending the tangent used 

to determine Sf' (Fig. 2), to f = 1. 

Two-Phase Gas Zone-Unsteady Aquifer Model 

To obtain the pressure equation for this model, Equation (36), it 

is necessary to algebraically c;.ombine the equations giving the pressure 

increments in the three zones (semi-compressible gas, incompressible 

water, and compressible water) of the model. In the following deriva-

tion primed, ('), values of rates and volume indicate "at standard 

conditions. 11 

Equation (A-52) gives the pressure increment in the two-phase gas 

zone in terms of the injection rate, i I and is equivalent to Equation 01). 
g 
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]; 

6p = g 
· 1, n O. 079 52rrhk 

z 
n = 0/2 'Y1 ...,..,. 

Pg,n 

Z T hktit 
SC SC n 
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Z T p 
Jrf 

dr/r n r sc 
z scTscPg,n krg (;r) + k (r) 

rw r 

(A-52a) 

w µ.g µ.w 

(A-52b) 

(40) 

dr/r 
(42) 

(43) 

The equation for the pre~sure increment in the incompressible water 

zone is given by Equation (A-53) which is equivalent to Equation (32). 

~3 = 

0. 079 52TThk6t 
n 

Psc Tr 
Z T 

SC SC 

r Z 
ln _c_ [-n G ~ - G ] 

rf p 1,n i,n-1 ,n g,n 

z 
= 0/2~3-·[-n G '. ... G. 1J· p 1,n 1,n-

(A-53a) 

(A-53b) 
. g,n 

r 
1 ln ....£._ 

0.07952TT r f,n 
(A-54) 

The pressure at the inner boundary of the compressible aquifer is now 

given by Equation (A-55) which is equivalent to Equation (33). 

25.1µ. {n-1 ~GAG") GAG") J P = P . + hk w • I:1 _l. - ----l . P j 
CJ n l. W . J= t _j • t j - l t, 

p T Z +[ sc r ( n 
. Z T tit p 

SC SC n g,n 
G' 

i, n 
) C 6G.) J } -G . - ....-1. p 

i,n-1 At 1 t,n 
n- (A-55a) 
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== ot3 + 25.lot2Cn · G. - G. ·\ P \..p i,n i,n-1) t,n 
g,n 

(A-55b) 

Gt,Gi) 
- - p 

t n-l t,n 
(A-56) 

Now if the assumptions are made that 

Z = ap + b n g,n 
(A-57a) 

or 

(A-57b) 

and on the basis of the volumetric average pressure for single-phase, 

radial flow that 

= ~ 0.1 (A-58) 

then Equations (A-52b), A-53b), A-SSb) and A-57b) may be substituted 

in Equation ~-58) to obtain an expression for the average pressure, 
. 

p , in the gas zone at the end of the 'n'th time step. 
g,n 

&pl 
p = ~ &p + 6p + p + p 
g,n 6p1 1,n 2,n c,n sc 

= 0.1 a2y1 (a + _b ) + ot ~ fi(a__!:_·) 1 - G ·] 
Pg,n 2 3L Pg,n i,n i,n-1 

+ a 3 + 25.la2fi(a + J:!.-·) G! .. G. 1·] + p L p i,n i,n- sc 
g,n 

(A-59a) 

(A-59b) 
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(A-59c) 

(A-59d) 

or 

(A-60) 

and by th~ quadratic formula 

(37) 

The other possible root is an extraneous root which was introduced by 

multiplying Equation (A-59b) by pg ~o obtain Equation (A-60). 



APPENDIX B 

CO!WUTEa PRCXlRAMS 

As this i'!1Vestrig<1!tion progressed, !!levet;al co111p1,1ter programs were 

written t;o facilitate the data processing, These programs permit the 

calculation of Klinl<.enberg peri;neal:>:Uity; rela'!=ive permea'bility, and 

satutation•resistap.ce data from the observ~d experimentd data; 

tabulation of ,;elative pe,:meabiUt;y; c,:alculat:ion of hactional flow 

characteristic;ls; and the pred:tcti<:m of teservoir performance for a 

radial gas sto;i;age 1;eservo:(:r, AU of these programs w~re written in 

l;B~ 650 FORTRAN computer lai;ig1,.1age_, and they were all compiled with· 

qpti<;>nal p-:rint and/or,punch output;. The iJ1.p1,.1t and output variables 

are in. fixed point;! or in floati1,1,g point fo:nn a$ identified by the 

fi-:rst letter of the mnemonic name of each variable according to the 

r1,.1les of FORTRAN. The symbol Ust;s fol' these progr,a.ms are included 

in Appendix C. 

Relative Permeability 

The computer processing of experimental relative permeability 

data increases the:pr11e1;:icality of cal~ulating a larger number of data 

poip.t1,1 and, t;hereby allows an observation of the trends taking place 

during the experimental testing. A flow chart of the program is 

given in Fig. 29 and a progr..a~'listing in 'l;aple XVII, 

The program is based on Darcy's eq1,1ation for each phase in 
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READ 
INPU'l; DA TA 

CALCULATE 
AP, PM 

CALCULATE 
TK' VG' VW 

CALCULATE 
~' A 

+ IF Q IS~, 0, +. 
- G 

0 

SET 
Kc = 0 

eAILet}LATE 
Qc . 

CALCULATE 
KG, i<w 

CALCULATE . 
RR 

· PUNCH 
I, Qw, QG, AP, 

F~, Rs~. TF 

PUNCH 
--- I, VW, Ve, KRw• 

·KRG' RR, A 

FIG. 29 FLOW CHART, RELATIVE 
I PERMEABILITY 
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TABLE XVII 
RELATIVE PERMEABILITY 

COMPUTER PROGRAM 
•• i. .•• 

C 0006 0 RELATIVE PERMEAB1LITY 
1 0 READ1,X,D,RS1,BK 
2 0 READ2,I,OW•QG,T,DP,P2,RS,TR, 
2 1 PB,DMV,GMV 
3 0 IF(DMV-10.0) 4,4t6 
4 0 DP=DP*DMV*le35E-3 
5 0 GO TO 10 
6 0 IF(DMV-20.0) 7,7,9 
7 0 DP=DP*DMV*le416E-3 
8 0 GO TO 10 
9 0 DP=DP*DMV*l•468E-3 

10 0 PM=C6e324E-3)*P2*GMV+(PB/760e0 
·10 1 )+Oe5*DP 

1010 O TK=0.55555555*CTR-32e0)+273el5 
11 0 VG=C(l3.a5E-4)*TK**l•5l/(TK 
11 1 +102eO)+(leOE-5)*PM 
12 0 VW=le002*EXPF ((01686*(6810-TR 
12 1 l-(4e53E-4)*{TR-68e0)**2)/(78, 
12 2 222222+D.55555555*TR)l 
13 0 QW=QW/3600e0 
.17 0 A=(D**2)*0e7854 
14 O IF(QGI 16,15,16 
1s o GK=o.o 

1015 0 GO TO 19 
16 0 QG=CQG*PB/(PM*T*760eO))-QW 
18 0 GK=VG*OG*X•lOOOe/(A*DP) _. 
19 0 WK=VW*QW*X*l OO't1".; l(.A*DP) 

.. 2Cf' 0 RWK=WKIBK 
21 0 RGK=GK/BK 
22 0 RR=RS*TR/t 68e0*RS1) . 
23 0 PUNCHl,~,QW,QG,DPtPM,RStTR 
24 0 PUNCH2t ItVW,VGtRWK,RGKtRR,A 
25 O GO TO 2 
26 O END 
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the following form 

µ,q.L 
1. 1. 

ki "" - Al::.p , • • • • i == g, w 
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(B-1) 

and on equations for the fluid viscosities from API Reconnnended Practices 

(B-2) 

= 1 002 (0.686(68-T) - 4.53(10-4)(T-68)~ 
µw • explO\: 96 + 5/9 (T-32) "'") (B-3) 

The gas rate, q in Equation (B-1.) is the.measured rate corrected 
g 

to the mean core pressure; the nitrogen viscosity is bas.ed on tempera-

ture "Kand pressure in atmospheres with a pressure correction term of 

-5 -[10 p(atm)] being added. The water viscosity was based on tempera-

ture in r.,F. 

'l'he resistance calculations are in the form of a ratio corrected 

to a temperature of 68''F as given by Equation (B-4). 
R. X 'I' 

1. 

where R. is the measured resistance, Tis the temperature in "F, 
1. 

and R100 68 is the resistance at 100 per cent water saturation as 

' 

(B-4) 

The input data for each core is 1) length, 2) diameter, 3) resis-

ta.nee at S == 100, and 4) the base permeability. The input data for 
w 

each experimental data point consists of 1) an identification number, 

2) water :r.at1$J 3) gas volume, 4) time, 5) differential pressure, 6) 

o.ownstream pre.ssure, 7) electrical resistance, 8) flowing temperature, 

9) barometric pressure, 10) differential pressure recorder scale range, 
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and 11) gauge pressure scale range.. The output data then consists of 

l) the identification number, 2'.) water rate, 3) gas rate, 4) differen-

tial pressurep 5) mean pressure, 6) electrical resistance, 7) tempera-

ture, 8) water viscosity, 9) gas viscosity, 10) water relative permea-

bility, 11) ga.s relative permeability, 12) electrical resistance ratio, 

and 13) flow area. 

Saturation-Resistance 

A computer program was written to process the core weight and 

electrical resistance data in order that a saturation-resistance 

correlation might be obtained. A flow chart is given in Fig. 30 and 

a program listed in Tab le XVIII. 

The basic equations are as follows: 

w. - WO 1 s 
w,i -· 

wlOO - w 
0 

(B-5) 

wlOO - w 
0 0 

:::: 
rr/4 d2.L~ 

(B-6) 

where w. is the weight of the co·.r.e at a saturation of 'i'. The tempera-
1 

ture corrected resistance ratio was obtained from Equation (B-4). 

The input data for each core consisted of 1) an identification 

number, 2) core length, 3) core. diameter, and 4) resistance at 100 per 

cent saturation. For each data point the input information was 1) an 

identification numbe.r, 2) core weight at a saturation to be calculated, 

3) dry weight of core, 4) electrical resistance, S) fluid temperature, 

and 6) a drainage or imbibitio:n cyclic identification index to identify 

the conditions under which the data was obtained, i.e. K == 1 for first 

drainage; K c.:: 2 for first imbi.bition, etc. 
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READ: CORE CONSTANTS 

l 
READ: SATURATED AND 

DRY WF.IGHTS, 
t·~EASURED 

RESISTANCE AND 
TEMPERATURE· 

! 
CALCULATE: WEIGHT 

OF WATP,R 
TEt..1PERA TURF. 

' CORRECTED RESISTANCE 
i 

TEST: R1 , 68 .;: 0 r 
,i' ,v~-. 

PUNCH: 
IDENTIFICATION, 

WEIGHT OF WATER, 
R1 68 ,MAXIMUM WEIGHT 
OF'WATER, MINIMUM 

RESISTANCE 
I 

DETH'.RMINE: MAXIMUM 
':/EIGHT O!<' WATER ·f'I---AND CORRESPONDING 

RESISTANCE 
t 

CALCULATE: POROSITY 
l 

PUNCH: MINIMUM 
RESISTANCE, MAXIMUM 

WEIGHT OF WATER, 
AND POROSITY 

1 
CALCULATE: WATSR 

SATURATION AND 
RESISTANCE RATIO 

' PUNCH: SATURATBD 
ANP DRY WEIGHTS, 

MEASURED 
RESISTANCE; 
TEMPERATURE, 

RESISTANCE RATIO, 
AND WATER 
$ATUfiATION 

J 
END 

FIG. 30 FLOW · CHART, SATURATIQN..-RESISTANCE 



TABLE; XVI II 

SATURATION~RESISTANC~ 
COMPUTER PROGRAM:: 

1 • • • • • 

C 0000 0 SATURATION-RES1STANCE 
1 0 DIMENSION ID(60),R5(6Q),TR(60) 
l .1 ,RSC(60)•WW(60),WS(60)tWD(60) 
3 0 WMAX=OeO 
6 0 REAOltlD(lh.XL,DIAtRMIN 

106 0 DO 315 J=l,60 
7 0 READ2,ID(JJ,WS(J),WD(Jl,RS(J), 
7 l TR<Jl,K 
BO IF(ID(J)l 9,16,9. 
9 0 ID(J)=I.D(J)+lOOO*K 

C 0000 0 WEIGHT OF WATER 
10 o WvHJJ=WSfJ.)-WD·<JL .. 

C 0000 0 TEMPERATURE ·CORRECTED 
C 0000·'1· RESISTANCE 

13 0 RSC(.J)=RS(Jl*TR(J)/68.0 
·14 0 IF(RSC(J)1 15,15,11 
15 0 PUNCH,l.D(J) ,J,RSC(J) ,RMIN,.WW(J 
15 1 ),WMAX 

115 0 GO TO 7 
11 0 IF(WMAX-WWCJ)') 12,315,315 
12 0 WMAX=WW(J) 

112 0 RMIN=RS((J) 
315 0 CONTINUE 

/ 16 0 JE~J-1 
C 0000 Q POROSlTY 

51 0 POR=WMAX /(XL*Oe7854*DIA**2) 
52 0 PUNCHl,ID(l),RMINtWMAXtPOR 
53 O D0159 J=l,JE 

C 0000 0 SATURATION 
153 0 SW=WW(J)/WMAX 

. C 0000 0 RESISTANCE RATIO 
54 0 RR=RSC(~)/RMIN 
55 0 PUNCH2.XD1J) ,WS(J) tWDCJ) ,RS(Jl 

- 55 1 ,TR(J),RRtSW 
159 0 CONTINUE 

60 O GO TO 3 
END 

136 
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The output information for each core was 1) the identification 

number, 2) mininuun resistance at 100 per cent water saturation, 3) 

maximum weight of water in the core, and 4) porosity. Then for each 

data point the following information was punched: 1) identification 

and cycle inde~, 2) weight of water in the core, 3) weight of the 

core at the calculated saturation, 4) 4ry weight, 5) electrical 

resistance, 6) !l,uid temperature, 7) te~perature corrected resistance 

ratio, and 8) water satu~ation, 

Each set of input data, not to exceed 60 data points IlD.lst be 

followed by a card with zeros in its first word (card columns 1-10). 

lf it is desired, continuous processing of several sets of data may 

be accomplished by stack:i,n~ the sets, each with its "trigger card," one 

behind another. 

~linken~erg Permeability, Model II, Bivariate 

This comput~r prog~am permit$ determination of the Klinkenberg perme-

ability, kk, which is defined as t;he gas pexmeability at infinite mean 

pressure (1/p~ O); it is sometimes referred to as the equivalent liquid 

permeability. The purpose of the program is to apply linear regression 

to the gas permeability data as a linear f4nction of reciprocal mean 

pressure. That is, a statistical model of the form 

k . =a+~ [1/p. - (1/p)] g l. l. 
(B-7) 

is used where k. is the gas permeability at a mean pressure of p .• 
g l. l. 

The Klinkenberg permeability is then given by 

(B-8) 
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A stat:i,stical estimate of Equation (48), as giyen by Snedecor (62), 

is 

k . ~ k + b[l/p. - (1/p)] g1, l. 
(B-9) 

in which k . is the estima~ed value of gas permeability at 1/p., k 
g1. l. 

is the arithmetic average permeability (an estimator of a), and bis 

an estimator of the population regres$ion coefficient S, 

The following six statistical quantities are required to evaluate 

(62) 
b, kk, and their confidence i~te,rvals 

1) the number of gata points, n, 

2) the a.ve1age peJ;"meability, k=~ n 

E{l/E) 
3) the reciprocal mean pressure, (1/p) average = n 

ncZ 
n 

(l/p)2 
n 

1/p/· /n 4) :; E - (E 
1 1 

5) ~2 ;:: ~ k~ ~ (~ k) 2/n 
1 1. 1 

n 11- n 
6) Dey= E (k./p.) - (~ k.E 1/p.)/n 
. 1 1 l. l 1.1 l, 

The equation giving the sample regres1:1 ion coefficient ''b" is 

Equation (B-10). 

2 
b = r:t..y/r:x. 

The I<.Unkenberg pe:rmeabiU~y is then es:tiJitQted by 
~ 

Kk = ~ - b(l/p). (B-11) 

The equation giving the least squares estimates of each experimental 

point is Equation (B-12) which may be written as 

(B-12) 

and the deviation .from regression at each point is then 
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(B-13) 

The calculation of ~he difterent standard deviations allows the 

placing of int;erval esti1;11ates. on t;he values of; the regression coefficient, 

~, and the Rlinkenberg permeability, kk. The standard deviation from 

regression is given by 

{ 2 . 2 2 }\ 
s y, x = [~ - (EXy) /"£X ] / (11 .. 2) 

the sample standard deviation of the regres~ion coefficient by 

Sb= S /(E)C2)lz 
y·~ 

and the sample standard deviation of 1c by 

(B-14) 

(B-15) 

(B-16) 

These statiitical pa~ameters may now be used along with Student's 

"t'' distribution to set a 9~ per cen~ confidenc;e interval on ~ and kk 

as indicated l;>y Equat:i.onis (B-17) l;lnd B-18). 

b - sbt,05,n .. 2 S~Sb+sbt,05,n-2 (B-17) 

kk • $1c, ot, 05, n-2!!;;k~is:1c~ +sk, ot. 05, n-2 (:8-18) 

with s~,O being the sample standal!'d deviation of it evaluated at 1/p = 0 

and t.os,n-Z being Student's ''t" (3.t the 5 per aent level for n-2 degrees 

of freedom(6Z). 

The input data for this program consists of a table of Student's 

"t:" values for 1 to 49 degre~s of freedom and of the output from the 

relative permeability program when it has processed gas permeability 

data with a base permeability of 1 md, This use of a base permeability 

of 1 md. provides ef~ective permeability data for this program instead 

of relative permeability data. 
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The output data fcr:i; each set o~ input data coµsists of three types 

of cards. The first Cijrd contains l) an iqentification number; 2) the 

estimated Klinkenberg per~~bili;y, &.k; 3) the lower limit of its 

confidence interval; 4) its upper limit; 5) the per cent deviation for 

the half intei;-val, s1, 0t 0,5 2 ; 6) the standard deviation from regres-,,.., . , n- . 

sion, s ; and 7) the ~egrees of freedom. The second card is comprised y,x 

of 1) an identific.ation; 2) ~he estimate of the regression coefficient; 

3) the lower limit of tts confidence interval; 4) its upper limit; 

S) the per cent deviatiQn f<>r the hdf interval, sbt ,OS; 6) the sampl,e 

standard deviation of the regt:ess iol'!r coefficient, sb; &nd 7) Student's 

"t", .Following tp.ese two cards cl.re 'n' cards with 1) an identifica-

tion number)2) an e~perimental value of gas per~ability; 3) its 

estimate by regression; 4) the reciprpcal mean pressure; 5) the mean 

pressure; 6) the deviation between the permeability and its estimate. 

Each set of qata tnQst be followed by a card with a non-zero number 

in word two (columns 11-20) ·S"ince the prqgram determines ':n' by a card 

count. The value pf 'n' ma,y not exceed SQ. 

A number of sets of data may be placed in the read hopper at one 

time for continuous processing. · Each 1;1et nrust 1;,e separated by a card 

of the above type, 

The program flow chart is shown in Fig. 31 and the program listing 

in Table XIX. 

Relative Permeability Tabulation 

The purpose of this prosram 1$ to tabulate relative permeability 

curves at saturation intervals of one per c~nt to be used in a program 



FlG. ·st F~OW 

READ: S'l'UDENT:'S "t"s 

.· RF.AD : . EFFEC',rIVE . . . 
. PERMEABILITY 

OUTPUT FROM . 
PELATlVE. 

PERMEABl!ilTY PROOR.AM .... 

CALCULATE: SUMS ANO 
UNQQRRECTEDSI1MS.OF 

. ·_ .SQUARES 

, ,-· -· . •' .~ -

CALCUT-ATE : 
CORRECTED SUMS 

· OF SQUARES AND -
. · AVERAGES. . 

cAtctiri:rili : SLOPE ·o, 
PEORl!JSST.ON ,LINE, _ 

KLINKENBF.,RO . . 
.PF1ll.fE4B1U!l'Y · 

SAMPLE l?ITVIA'l'tONS, 
STUDEN'l't.S '1t 11 -· AND .. . ·. . . . ' . .. . 
CONFIDENCE !N'l'I'.~RVAt . ' ". ' : .. _.._l:. 

PUNCB ; KitNKENBF.RO . 
. PERMEABIUTY ANO 
' · CONFIDENCE INTBRV 1\1,, 

. _ . ST·ANDARD . 
DEV:tATlONt AND 

DEQR~~S: 0~ F'RE~DOM -· 

?UNCft i SLOPE .. or 
REG:ttESSI0N t:tNE · 
.AND CONFIDENCE 

IN'.rtllVAt,_S'tAND.A,RD 
·· DEVIAt:f 0.1'1; iNP . 
STt,1D~Nt •s ttt'! · - ··" ... 

C:AtCUtATE .ANb PUNCH: : 
EXPER IMti:JfTAt AND . 
REGRESSION VALUES 
OF PEBMEA'.BIU1'Y 

PRESStmBS ' . 
DEVIATidNS'tROM 

RiQRESSION 
. - . . . 

END 

. .· . 
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TABLE XIX 
KLINKENBERG PERMEABILITY COMPUTER PROGRAM 

C 0000 0 KLINKENBERG PERMEABILITY, 
C 0000 1 MODEL 2, BIVARIATE 

1 0 DIMENSION ID(50),PM(50l,GK(50J 
1 1 ,RPM(50),TS(50J 

101 0 READ3,(TS(I),l=l,49J 
2 0 J=l 
3 0 READ!, ID(JJ ,0\1,QG,DF!, 
3 1 PM(JJ,RS,TR 
4 0 IF ( QW J 8 , 5 , 8 
5 0 READ2,ID(J),VW,VG,WK,GK(Jl,RR, 
5 1 A 
6 0 J=J+l 
7 0 GO TO 3 
8 0 SUMPK=O.O 
9 0 SUMK=O•O 

10 0 SUMP=O•O 
11 C SKS=O.O 
12 0 SPS=O•O 
13 0 JM=J-1 
14 0 DO 20 J=l,JM 
15 0 RPM(~)=loO/PM(J) 

C 0000 0 SUMS AND SUMS OF SQUARES 
16 0 SUMK=SUMK+GK(Jl 
17 0 SUMP=SUMP+RPM(J) 
18 0 SUMPK=SUMPK+GK(JJ•RPMIJ) 
19 0 SKS=SKS+GK(Jl**2 
20 0 SPS=SPS+RPMIJl**2 
21 0 FN=JM 
22 0 C=SUMK*SUMP/FN 
23 0 SXY=SUMPK-C 
24 0 SYS=SKS-((SUMKl**2l/FN 
25 0 SXS=SPS-((SUMP)**2)/FN 
26 0 AK=SUMK/FN 
27 0 ARPM=SUMP/FN 
28 0 B=SXY/SXS 

C 0000 0 KLINKENBERG PERMEABILITY 
29 0 GKK=AK-B*ARPM 

129 0 JDF=JM~2 
30 0 DF=IDF 
31 0 IF(DFJ 32,32.36 
32 0 SD=99999999o 
33 0 SB=99999999o 
34 0 T=99999999o 
35 0 GO TO 39 
36 0 SD=(( SYS-(SXY)**2 /SXS)/DFl** 
36 1 0 .·5 
37 0 SB=SD/(SXSJ**Oo5 
38 0 T=B/SB 

138 0 SYH=SD*(lo/FN+ARPM**2/SXSl**•5 

238 
C 0000 

338 
438 
538 
638 
7 38 
838 
938 

1038 
39 
39 

0 TS 1 =TS ( I DF J 
0 CONFIDENCE INTERVAL 
0 GKHI=SYH*TS1 
0 GKKL=GKK-GKHI 
0 GKKU=GKK+GKHI 
0 PERGK=GKHI*lOOo/GKK 
0 BHI=.SB*TS1 
0 BL=B-BHI 
0 BU='B+BH I 
0 PERB=BHI*lOOo/8 
0 PUNCHl, ID( 1) ,GKK,GKKL,GKKU,PER 

GK,SD, IDF 1 
0 
0 
0 
0 

139 
40 
41 
42 
43 0 
43 1 
44 0 
45 0 
46 0 

PUNCH3,ID( 1) ,B,BL,BU,PERB,sB,T 
DO 44 J=l,JM 
ESK=GKK+B*RPM(J) 
D=GK(Jl-ESK 
PUNCH2,!D(J) ,GK(JJ,ESK,RPM(Jl, 
PM ( J l, D 
CONTINUE 
GO TO 2 
END 

142 
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for calculation of the fractional flow characteristics and two-phase 

frontal displacement. If the sign of tb,e computer console is set to 

minus instead of plus, the program also tabulates tb,e theoretical non-

wetting phase (gas) imbibition relative permeabilitr curve corresponding 

to an experimental drainage relative permeability curve. This imbibi­

tion curve is based on the theory of Naar and Henderson <42), The 

program fl.ow chart is shbwn in Fig. 32 and the program itself in Table 

xx. 

The input source is the coefficients of a least-squares polynomial 

fit of experimental relative per~ability data, This curve fitting is 

done by a program named LS-l, IBM Program Library No. 6.0.024, which 

was written by Mr. Gene Pulley of the Oklab,oma State University Comput-

ing Center, It fits first, second, third, and fourth degree polynomials 

through the input data, calculates the standard deviation, and also, 

calculates the least sq4,ares estimate and deviation at 

• 
The basic equations for the relative permeability 

program iare the fourth degree polynomial 

k + a.S a s 2 3 4 
ri 

::; a + ,i. f1.3Sg + a4s 
0 l. g 2 g g 

for the drainage relative permeabil~ty curve and 
. k 

S ~-,._ == [ S (2S d - S ) J ~. g, ,1,mµ . g, max g, r g, rpax 

each point. 

tabulator 

(:8-19) 

(B-20) 

In Equation (B-20) sg,imb is a gas saturation on the imbibition curve, 

originating from $ g, ma~' which has the same relative permeability as 

the gas saturation sg,dr on the drainage relative permeability curve. 

The imbibition curve is represented pictorially by Fig. 25. The imbi-

bition relative permeabilities are then tabulated by picking the proper 

value from the table of drainage relative permeabilities. 

\ 



READ·: sg AND Sm c . ax 

BEAD: POLYNOMIAL 
COEFFICIENTS 

. EVALUATE POLYNOMIAL 
AND TABULATE 

RELATIVE 
PERMEABILITIES 

PUNCH: POLYNOMIAL 
DEGREE AND 

COEFFICIENTS, sg8, 
smax' AND TABLE F 

RELATIVE 
PERMEABILITIES 

.. TEST: CONSOLE PDUS 
' 

CALCULA::.'E: S 
gr 

TABULATE IMBlBITION 
.RELATIVE 

PERMEABHITIES 

PUNCH : T ABLF. OF 
tMBIBITION. RELAT!VE 

PERMEABILIT!F.s· 

END 

FIG. 32 FLOW CHART, RELATIVE PERMEABILITY 
TABULATION 
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TABLE XX· 

RELATIVE PERMEABILIT-Y 
. TABtJLATIO.N:· COMPU'T.ER, 

• •. •• • .. · ·1· • •• • • • ,. '· •• 

PROGRAM 
C 0000 0 RELATIVE PERMEABllITY 
C 0000 1 TASULATION 

DI MENSI ON RK ( 100) tRKI ( 10-0) 
1 0 READl,ID,IL,IU 
2 0 REA02,Nl,AO,Al,A2,A3,A4 
3 0 SG=(FLOTF(IL))/100• 
4 0 00 5 I = 1 , I L 
5 0 RK('l)=O• 

- 105 0 ILl=lL+l 
6 0 DO 8 I=lLl,IU 
7 0 SG=SG-t.Ol 
8 0 RK(l)=AO+Al*SG+tA2*5G**2•+(A3*. 
8 1 SG**3)+A4*SG•*4 
9 0 N=Nl/10~1 . 

10 0 PUNCHl,lD,IL,IU,N,AO,Al,A2tA3t 
10. l A4 
11 0 PUNCH2J(RK{l1•I=l,IU) 

C 0000 0 CALCULATED IMBIBITION 
C 0000 1 PERMEABILITY . 

12 O IF ( X CON F ( 1) l 13 , i 3, 2 3 
13 0 ILW=(IU+l,/2 
14 0 SG=(FLOJF(JLW))/100• 
15 0 SGU=(FLOTF(IUJl/100• 
1~ 0 DO 17 K=l,ILW 
17 O RKI(K)=O• 

117 0 ILWl=ILW+l. 
18 0 DO. 21 K=ILWl,IU 
19 0 SG=SG+.Ol 
20 0 t=.5+(SGU*(~•*SG-SGU),**•5 
21 0 RK I CK) ==RK ( I') 
22 0 PUNCH3t(RKI(Kt,K=l1IU) 

. 23 0 ENO 
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The input data for each core are 1) an identification number, 

2) lower limit of gas saturation, Sgc' 3) maximum gas saturation (one 

minus residual water saturation). The input data for each curve to be 

tabulated is then the coefficient cards from the LS-3 program with the 

following datc;t: 1) degree of polynomial plui:; one, 2) a 0 , 3) a1, 4) a2, 

5) a3, 6) a4 . The output data is 1) the identification, 2) lower 

limit of gas saturation, 3) maxinn.im gas saturation, 4) degree of poly-

nomia~ 5) a 0 , 6) a 1, 7) a2, 8) a3, 9) a4 . Following this are the 

tabulated values of permeability punched siaven values per card. The 

imbibition cQrve, if it is qesired, is also punched as seven values 

per card. 

Fractional Flow-Saturation Distribution 

This program converts the output from the relative permeability 

tabulator program into fract;:ional flow data and calculates the satu-

ration distribution for the injection case. The flow chart is shown 

in Fig. 33, and the program is listed in Table XI. 

The equations used by this program are the fractional flow eqµation 

f 
g 

1 

and the equation for the sat~ration of the front 

(7) 

(12) 

where the proper value of saturation is found by finding the maxirrn.tm 

value off/Sas suggested in Appendix A. The average saturation for 

injection is calculated from Equation (30). 
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READ: s ' sii.~x' 
AND VIS~5SITIES 

+· 
READ: RELATIVE 
PERMF'AB!lIT!F.S 

t 
CALCULATE: 

FRACTIONAL. FLOW 
AND FRONTAL 
SATURATION 

+ 
CALCULATE: 

FRACTIONAL FLOW 
DERIVATIVES 

' PUNCH: RELATIVE 
' PFRMF.ABII !TIES, 

FRACTIONAL FLOW, 
DERIVATIVES, ,, 

DIMENSIONLESS 
· RADII, VISCOSITIES, 

8md' fmd~ sr, ' 
' 

· ANO fr . 
' t 

CALCULATE AND 
PUNCH: BRF.AK • 

. THROUGH SATURATION 
· FOR NON-HYSTERESIS 

WITHDRAWAL, 
AVERAGE SATURATION 
FOR INJECTION AND 

WITHDRAWAL, 
BRF.AKTHROUGH 

WATER-GAS RA'l'IO 
t 

SET UP CONSTANTS 
FOR TRANSFFR TO 

TWO-PHASE GAS.ZONE, 
UNSTEADY AQUIFER 
MODEL CO!!PUTER 

PROGRAM 
+ 

END 

FIG. 33 FLOW CHART, FRACTIONAL FLOW-. 
SATURATION DISTRIBUTION 
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TABLE XXI 

FRACTIONAL FLOW~SATURATION DISTRIBUTION 
COMPUTER PROGRA~ 

C 0000 0 FRACTIONAL FLOW-SATURATION 
C 0000 1 DfSTRl~UTION 

1 0 DlMENS(ON FDllOOl,DFDllOOltRKI 
1 1 100t21tRSD211001 
2 0 REAOltlD,lLtlUtVltV2 
3 0 READ2•(RKll,lltl•ltlUI 
4 0 READ3t1RKII~2ltl•ltIU) 
5 0 DO 6 I=IU,100 

1005 0 DFDUl=Oo 
6 0 FDlll=l,O 
7 0 DO 8 I=l,11. 

1007 0 DFDlfl=O~ . 
8 0 FD.( I l=OeO 

1008 0 DFDB=O• .. 
2008 0 DFDM=O• 

C 0000 0 FRACTIONAL FLOW 
9 0 DO 18 l~lLtIU 

10 0 FDlll=RKIItll/lRKIItll+RKII,2! 
10 1 *Vl/V2 I 

C 0000 0 FRONTAL SATURATION 
14 O Sl=IFLOTFIIll/1001 
15 0 FS•FDIIJ/SI 
16 0 IFIDFDB-FSI 17,18,18 
17 0 DFDB=FS 

1017 0 ISB•I 
18 0 CONTINUE 

C 0000 0 DERIVATIVE OF FRACTIONAL FLOW 
21 0 DO 28 1=1,IU 

1021 0 IFII-ILJ 2013,2013,11 
11 0 IFIIL+2-rl i2,io11,1011 

1011 0 DFDIIl=l-3e*FD1il+4e*FDII+ll-
l0ll l FD(I+211/o02 . . 
2011 0 GO TO 1013 

12 o IF198-II 1012,13113 
1012 0 DFD(Jl•IFDII-2l-4e*FDII-11+3, 
1012 l *FDIIl)/002 
2012 0 GO TO 1013 , 

13 0 DFDIIl=IFDII-21-FDl1+21+8,*, 
13 1 IFDI 1+11-FD(l;..ll II /ol2 ' 

1013 0 IFIDFDIIJI ·2013,3013,3013 
2013 O DFDlll•O, 
3013 0 IF(DFDM-DFDII)j 4013,4013,22 
4013 0 DFDM•DFDII) 
5013 0 IMD•I 

22 0 RSD2111= DFPIII/DFDB . 
23 0 IF(l•ISBI 24,24,26 
24 0 RSD•l• 
25 0 GO TO 1026 
26 0 RSD•IRS0211ll**•5 

1026 0 IDS=JD+I 
20 0 DFDIIUl=O~o· 

1020 0 DFDIILl=O, 
27 0 PUMCH2~ IDStRKlltlltRKll,21, 
27 1 FDll),DFDlll,RSD,RSD2111 
28 0 CONTINUE 
19 0 PUNCHltIDStlL,IU,IMD,DFDM1lSB1 
19 1 DFDB,Vl,V2 

C 0000 0 BREAKTHROUGH SATURATION 
1019 0 FMIN=99o0El9 
2019 0 IB=IL+l 

29 0 DO 35 l•IB,IMD 
30 -0 St=IFLOTFIIll/100, 

1030 0 IFIDFDIIII 42,42,31 
31 0 Fl=ABSFll,•FDtll+IFDIII-DFDB*. 
31 1 Sll/11•-DFDB/DFDIIIII 
32 0 IFIFMIN-Fll 35133,33 
33 0 JSBT=I 
34 0 FMIN=Fl 
35 0 CONTINUE 

C 0000 0 AVERAG~ SATURATION, INJECTION 
36 0 ISAl•lOO,/DFDB 

C 0000 0 AVERAGE SATURATION, WITHDRAWAL 
1036 0 IFIISBTI 43,43,37 

37 0 SBT=IPLOTFIISBTl)/100, 
38 0 lSAW=ISBT-FDIISBTI/DFDIISBTll 
38 1 *100. . .. 

C 0000 0 BREAKTHROUGH WGR 
39 0 WGRBH=l,/FDIISBTl-1, 

C 0000 0 FRACTION OF GAS IN RESERVOIR 
40 0 GDBT•l,•DFDB/DFDIISBTI 
41 0 PUNCH,IQ,ISAI,ISBT,ISAW,WGRBH, 
41 1 GDBT 

C 0000 0 STOP llli~ DFD•0,1030 
42 0 STOP 1111 

C 0000 0 STOP 1222, ISBT=O, 1036 
43 0 STOP 1222 

IUX=IU 
ISBX=ISB 

· DFDBX•DFDB 
IMDX=IMD 
DFDMX=DFDM 
ILX=IL 
END 
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(30) 

A dimensionless radius squared for each saturation as a fraction of 

the radius to the front is given by 

2 2 f'. 2 
r. - r 

1 w 1 • (B-21) rill = 2 2 
;::: f' 

rf - r f w 

This squared dimensionless radius given by Equation (B-21) is also 

equivalent to the dimensionless distance in a linear system; that is, 

(B-22) 

AlsoJ the well bore saturation, the 1;1.verage saturation, the produc-

ing water-gas ratio, and the fraction of injected gas in place are calcu-

lated at breakthrough for the withdrawal without hysteresis case. The 

well-bore saturation at breakthrough is found by minimizing e in Equa-

tion (B-23) 
f. - ff' s. 

1 1 
1 - fi + i - f'/£! ~ e. 

. f l. 

The average gas saturation at breakthrough is found from 

(B-23) 

and the fraction of the injected gas remaining in the reservoir at 

this time by Equation (67). 

(B-25) 

The bottom-hole, water-gas ratio is then determined by Equation (29) 

which with the formation volume factors of unity becomes Equation (B~26) 

R = - 1- - 1. 
wg fwb 

(B-26) 

The input data is comprised of 1) an identification number, 2) 

gas saturation at zero gas permeability, 3) gas saturation at the 
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maximum gas permeability (residual water saturation), 4) gas viscosity, 

5) water viscosity, 6) the tabulated values of gas relative permeability, 

and 7) the tabulated vah.1es of water relative permeability. 

The output data consists of the following values at each per cent 

of gas saturation: 1) identification c;1nd saturation, 2) gas relative 

permeability, 3) water relative permeability, 4) gas fractional flow, 

5) derivative of the fractional flow, 6) the approximate dimensionless 

radiusy and 7) the dimens:j.onless radius squared, Also punched out are 

1) the identification, 2) the minimum saturation, 3) the maximum satu-

ration, 4) the saturation at which f I is a maximum, 5) the maximum f', 

6) the saturation at the injection front, 7) ff at the front, 8) gas 

vis cos ityJ and 9) water viscosity. 

The last six statements of the program permit the machine program 

deck to be modified readily ~o continue automatically into the program 

for the Two-Phase Gas Zone, Unsteady Aquifer Model while retaining 

the necessary fractional flow data in the computer memory. 

Two-Phase Gas Zone~Unsteady Aquifer Model 

This computer program solves the equations describing the radius 

of the gas zone and the well-bore pressure of the mathematical model 

discussed under the above title in Chapter III. The program is described 

by the flow chart in Fig, 34 and the listing in Table XXIL 

The basic equations are for the well bore pressure, 

pw n "" Pg, ,n + 0, 9 AP - P 
J ; 1, D SC 

(36) 

and for the radius of the gas zone obtained by modifying Equation (11) 

to the form of Equation (B-27) 



RFAD:RESERVOIR AND 
FLUID PARAMETERS 

READ FLOW RATE A'flTD 
TIME DATA 

. PUNCH RESERVOIR AN 
FLUID PARAMRTERS 

CALCULATE CONSTANTS 

S.E'.1!:. . TW'EloiiPHASE . 
. FLOW RES lS'.llAjCJ!: ~o 

CALCULATE MAXIMUM 
GAS VOLUME . 

TEST: KR• 0 

READ FRACTIONAL 
FLOW DATA 

·cALCULATE MAXIMUM 
GAS ZONE RADIUS 

I 

PUNCH: Gmay; Gi ,illax 

01;max, :l'.'f,max 

TF.ST: JB • 2 
· NO. 

READ: PRIOF FLOW, 
PRFSSURE,. AND 

RADIUS HioTOR'! 

CALCULATE TIME 
DEPENDENT 
COEFFICIENTS 

SET: CONVERGENCE 
RANGE FOR 

TERATIVE PRESSURE 
OLUT!ON a 0.01 Pi 

CALCULATE 
DIMENSIONLESS 

O'IE AND UNSTEADY­
S.T ATE PRESSURR 

CHANGE FUNCTION 

EVALUATE AVERAGE 
GAS ZONE PRF.SSURF. 

TisT: O = o 

STOP 

CALCULATE rr 

Ol\LCUtATF FtOW 
RESISTANCE OF TWO­

. PHASE ZONE 

TEST: DIFFERF.NCE OF 
TWO SUCCESSIVE 

PRF,~SS0HF. VALUES 

_ ___,E 

AGAINST CONVF.Rom.'CE :r-. -,,,, .. 

. , RANGE, . 
IP 2-P i' ... d • R • :: O 

TFST: . NUMt3BR OF 
ITP.RAT!ONS, 
.. I < 5' .. 

FIG. 34 FLOW CHART, TWO-PHASE GAS ZONE, 
UNSTEADY AQUIFER. MODE. L 
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'· 
DOUBLE CONVERGENCE 

. RANGE 

~s---------~+---.,...,...-....-.-TF.sT; 
IP2 '.:' P1I~ C.R;:; 0 

NO· 
SET: NUMBER OF 
ITERATIONS ~ 0 

. CALCULATE : WELL 
BORR PRF.SSURF. ; 

TWO-PHASE, 
INCOMPRESSIBLE; 

AND UNSTEADY-STATE 
PRESSURE . 

INCRE_MRNTS 

PUNCH : t , Pw; 1 ' G 1 . o' . . . g, 1' 
· 1, l"r, Pl; P2, 
Pc,n,. g,o<,1, tf1, 
. TWO-PHASE FLOW 

RESISTANCE; TOTAL 
NUMBF.n OF · 
ITERA'.l'IONS .___......,.........._...,.... __ .__.....,.ES 

TEST: J ~ JM: 0 

t END 

. FIG. 34 ( CONTI NUEO l 
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TABLE XXII 

TWO-PHASE GA·s ZONE, UNSTEADY AQUIFER. MODEL 
~COMPUTER PROGRA~ 

C 0000 0 TWO-PHASE GAS ZONE• UNSTEADY 
C 0000 l AQUIFER MODEL 

100 0 DIMENSION OD!200l,RK(lOo',2), 
100 l RSD(l00),T(200) 
101 0 READ4,JM,JB,PG;BK,P,H,RW,C,ZM, 
101 l zc,v1,v2,PB,PO,TB,TR,KR 
102 0 READ5,CODCJl,J=ltJMI 
103 0 READ6,(TCJ),J•l,JM) 
104 0 PUNCH3,BK,P,H,Vl,TR,POtPG 
105 0 RB•RW 
106 0 GC=PB*TR/TB 
107 0 PIHP=3,1415927*H*P 
108 0 HBKG=GC/(Q.2498194*H*BK) 
109 0 CU=25ol*V2/(H*BK) 
110 0 TPR=OoO 
112 0 SUMQS=QD!ll*T(ll 
113 0 QMAX,.O.O 
114 0 DO 119 J=2,JM 
115 0 SUMQS=SUMQS+ODIJ)*(T(Jl-T(J-1) 
115 l l 
117 0 IFCQMAX-SUMOS) 118,119•119 
118 0 QMAX=SUMQS 
ll9 0 CONTINUE 

1119 0 IFIKRl 120,2119,120 
2119 0 READ10,x,x,IU,ISB,DFDB,x~x 
3119 0 DO 5119 I=l,IU 
4119 0 READ9,X,RK( I ,1) ,RK( I,2ltx,x,Rs 
4119 1 D ! I l ,X 
5119 0 CONTINUE 

120 0 SUMO=OMAX*GC*!ZM+ZC/PG) 
C 0000 0 MAXIMUM GAS ZONE RADIUS 

121 0 RA=(RW**2+(SUMO*DFDB/PIHP)l** 
121 l 
123 0 
123 1 
124 0 

0.5 
CTD=(6.3216E-3)*BK/(V2*P*C* 
RA**2l 
PUNCH4,JM,RA,QMAX,SUMQS,SUMQ 
SUMQS=QDlll*T(l) 1124 0 

125 O 
126 0 
127 O 

IF(JB-2) 192,128,126 
JC=JB-1 
DO 3.127 J=.2,JC 
READ7,x,x,x,x,suMQS,RB,X 
READ8iX,x,x,x,PG,QD(J)tTPR 
CONTINUE 

1127 0 
2127 0 
3127 0 

C 0000 
128 
129 

1129 
2129 

130 
131 
132 

1132 
2132 
3132 

160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
169 
171 
172 
172 
173 
174 
174 
175 

0 
0 

PRESSURE CALCULATION 
ZPG=ZM+ZC/PG 

0 DO 190 J=JB,JM 
0 DT=TIJ)-T(J-1) 
0 SQSl=SUMOS*ZPG 
0 SUMQS=SUMQS+QD(J)*DT 
0 AIC=V2*HBKG/DT 
0 ATP=0,9•QDIJ)*HBKG 
0 AQS=ZM*SUMQS-SQSl 
0 BQS=ZC*SIJMQS 
0 DPO=O,Ol*PO 
0 DPUl,,0,0 
0 DO 177 K=2,J 
0 TD=CTD*IT(J)-TIK-1)) 
0 IF(TD-2o0l 165,174,.164 
0 IF ITD-100.0l 114,176'176 
0 IFITD-,0,09) 166,172,172 
O IF ITD-OoOll 167,167,169 
0 PT=2,0*(TD/3,1415927l•*0,5 
0 GO TO 1176 
0 PT=0.174583l*LOGEF((TD+0,03)/ 
l 0,021536) 
0 GO TO 1176 
0 PT =0.3551249*LOGEF((TD+0•2l/ 
1 0,10225) 
0 GO TO 1176 
0 PT=0,4845196*LOGEF((T0+1,0l/ 
1 0.36588) 
0 GO TO 1176 

176 0 
1176 0 

177 0 
1177 0 
2177 0 
3177 0 

178 0 
179 0 

1179 0 
180 0 
181 0 
182 0 
183 0 

C 0000 0 
184 0 

1184 0 
134 0 

1134 0 
C 0000 0 

135 0 
135 1 
142 0 
143 0 
144 0 
149 0 
150 0 
151 0 
152 0 
153 0 
153 1 
154 0 
155 0 
156 0 
157 0 
157 1 
157 2 

1057 0 
2057 0 
1157 0 
2157 0 
2257 0 
2357 0 
2457 0 
2557 0 
3157 0 
4157 0 

C 0000 0 
C 0000 1 

158 0 
1158 0 

C 0000 0 
C 0000 1 

159 0 
1159 0 

C 0000 0 
2159 0 

18 5 0 
186 0 
186 1 

1186 0 
187 0 
188 0 
188 l 

1188 0 
189 0 
189 1 
190 0 
191 o 
19~ 0 

PT=0~5*LOGEF(2a2458*TD) 
IF(K~J) 177,1177,192 
DPUl=DPUl+(QD(KJ-QDIK-lll*PT 
DPU2•(DPU1-QD(K~ll*PT)*CU 
AU=CU*GC*PT/DT 
LM"O 
D02157 L=l,5 
PG2=PG 
RLN=LOGEF(RA/RB) 
AIU=AU+AIC*RLN 
ATPR=ATP*TPR 
AA=AIU*AQS+DPU2+ATPR*ZM+PO+PB 
BB =BQS*A IU+A TPR*ZC 
AVERAGE GAS ZONE PRESSURE 
PG=( ( (AA**2+4,*BBl**,5l+AAl/2, 
ZPG=ZM+Z.C/PG 
SUMQ=SUMOS*GC*Z.PG 
IF(SUMQ) 192,135,135 
GAS ZONE RAD !US 
RB=(RW**2+(SUMQ~DFDB/PIHPll** 
0,5 
RWD=RW/RB 
IFCL-2) 1057,144,1057 
TPR=O,O 
B=(RSD(ISBl**2+RWD**2l**0•5 
IM=IU-1 
DO 157 l=i°SB,IM 
A•B 
IF!RSDCl+ll/RWD-7,0l 154,156, 
156 
B•(RSD(l+l)**2+RWD**2l**0,5 
GO TO 157 
B=RSDi l+ll 
TPR=TPR+2,0*(A-8)/18*!RK(l+l•l 
l/Vl+RK(l+l,2)/V2l+A*(RK!ltl)/ 
Vl+RKI I ,2)/V2)) 
ADP=ABSF!PG-PG2) 
LM=LM+l 
IFIADP-DPO) 158,158,2157 
CONTINUE 
IFIPG-PB) 2357,3157,3157 
PG=PB 
ZPG=ZM+ZC/PG 
GO TO 158 
DP0"2•0*DPO 
IFIADP-DPO) 158,158,178 
TWO-PHASE-ZONE PRESSURE 
INCREMENT 
DPTP=QD(J)*TPR*HBKG*ZPG 
QUS=ISUMO-SQSl*GC)/DT 
INCOPRESSIBLE-ZONE PRESSURE 
INCREMENT 
DPiC=V2*HBKG*QUS*RLN/GC 
DPU=DPU2+QUS*CU*PT 
WELL BORE PRESSURE 
PW=PG+O,i•DPTP-PB 
JP=J+lOOOO 
PUNCH5 ,JP,TC J) ,PW,QD( JhSUMQS, 
RB,SUMQ 
QD(J)=QUS 
JP=J+20000 
PUNCH6,JP,DPTP,DPIC,DPU,PG, 
QDIJ),TPR 
JP=J+30000 
PUNCH7,JP1LM,ADP,DPO,AA188, 
DPU2 
CONTINUE 
GO TO 101 
END 
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(B-2 7) 

The basic data input for thi~ program is comprised of three dif-

ferent sets of data: reservoir parameters, flow rates, and times at 

which these flow rates ended, One or two additional sets of data are 

required if th~ following conditions exist: l) this program is being 

used independently of the fractional flow computer program; that is, the 

fractional data is not alreacty in the computer memory i-n which case it 

may be read in by setting equal to zero an index (X<R.) .in the basic 

data set, 2) a problem bas been partially processed and it is desired 

to pick up the calculation where it left off, 

The reservoir parameters consist of 1) the number of constant-

flow rate time steps to be considered (JM:s::200); 2) the time step 

with which calculations are to b·egin (JB:2:2); 3) the average gas zone 

pressure at time step JB·l; 4) base permeability; 5) porosity; 6) 

formation thickness; 7) well-bore radius; 8) the combined compressi· 

bility of the formation and its in situ fluid; 9) the slope of 

linearized gas compressibility factor' equation; 10) the intercept of 

this equation; 11) gas viscosity; 12) water viscosity; 13) initial 

reservoir pressure; 14) base temperature for gas volume measurement; 

15) reservoir temperature; 16) an index (KR.), defining whether or 

rwt the fractional flow data is in the computer memory. The flow 

rate (the initial rate must be zero). The time data indicates at what 

time after injection began that each flow rate ended (the initial time 

must be zero), 

The fractional flow data, if I it is to be read into the computer, 

must be headed by the card giving the minimum, maximum and frontal 
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values of saturation and the fractional £low derivative at the front 

(which is the next to the last card of the output deck of the fractional 

flow program; the last card should be discarded), and the index KR nrust 

be set to zero. In the case where calculation is to be resumed at an 

intermediate time step, the necessacy quantities from the previously 

calculated answers can be read into the computer: by setting the index 

JB in the basic data set eq~al to the number o{ the time step at which 

the calculations are to be resumed, 

The output data at each tiµie step consists of three cards. On 

the first card is 1) the number of the time step; 2) total time 

elapsed from beginni~ of injection; 3) well bore pressure at the 

end of the time s1=ep; 4) gas injectio'Q. rate at standard con4itions; 

5) cunrulative volume of gas injectep. at standard condit-ions; 6) the 

radius of the gas zone; and 7) the cumulative volume of gas at reser­

voir conditions. On the second card isl) the number of the time 

step; 2) the pressure increment in the two-phase zone; 3) the pres­

sure increment in the i1:1,compressible water zone; 4) the unsteady-

state pressure increment; 5) the averaise gas zone pressure; 6) the 

gas injection rate corrected to reservoir conditions; and 7) the 

two-phase flow resistance represented by the integral in Equation (42). 

The third card then contains several of the partial prod~cts making 

up Equation (36). 

Cyclic Two-Phase Flow 

A computer program was developed to study the theoretical aspects, 

as developed in Chapter III, of cyclic two-phase flow in a reservoir, 
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The major objectives were to determine saturation distributions, water 

production, producing water-gas ratios, and the fraction of gas recover-

ed at breakthrough. The program flow chart is shown in Fig. 35 and the 

program listing in Table XXIII. 

The basic equations, in addition to those computations necessary 

to separate and defin~ the various cases, were the equations for the 

square of the dimensionl~ss radius of the saturation as developed from 

Equation (11) and as given by Equation (B-28). 

2 
- r 

w 
2 

- r w 

(B-28) 

and, also, the various equations for the sat1,1ration at the front for 

the various cases. These equations are represented by Equations (12), 

(14), (16), (17), (21), (22), (23), and (24a,b). 

The input data may be divided into reservoir parameters, two sets 

of fractional flow data, and fluid volume data. The reservoir parameters 

are 1) reservoir iden~ification; 2) formation thickness; and 3) well-

bore radius. The fractional flow data consists •of two complete sets 

of output data from the fractional ·flow program each headed by the card 

containing saturation limits and saturation and fractional flow deriv-

ative at the front (the last ~ard, containing the computed average 

saturations, is discarded from these de~ks). lf hysteresis is not be 

be considered, both of these sets should be fractional flow data from 

the drainage relative permeability curves. If hysteresis is being 

considered, the first set should be for drainage conditions and the 

second set for imbibition conditions. The fluid volume data includes 

1) an identification number, and 2) the volume of gas, at reservoir 
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TABLE XXIII 
CYCLIC, TWO-PHASE FLOW COMPUTER PROG_RAM 

C 0000 0 CYCLIC• l/:.'0-PHASE FLO,.' 
t. 0000 1 RADIAL ~A~E .. -

1 0 DIMENSION li'O(lQ0•2ltDFD(l00•2) 
1· 1 tRSDW2(1001 . 

30 0 GI=O• 
31 0 GI2=0• 

10:U O .FP=Oo 
2031 0 GP=Oe 
3031 0 WP=O • 
4031 0 GD=O• 
5031 0 WPD=O. 
6031 0 KBT=l 
7031 0 WGR=O• 
8031 0 JWB=O 
9031 0 KIW=l 
9131 0 IP=O 
9231 0 WPB=O• 
9331 0 KWB•0-
9431 0 JB<'O 

32 0 M=l 
1032 0 N=O 

C 0000 0 READ FRACTIONAL FLOW DATA 
1132 0 IFIXCONF(lll 35t2032t2032 
2032 0 READ5tIOtHtPtRW 
3032 0 PUNCH5,10tHtPtRW 
4032 0 DO 8132 J~lt2 
4132 0 GO' TO 15032t5232}tJ 
5032 0 READ6tXt!LtlU,IMDtDFDM•ISB, 
5032 1 DFDB 
5132 0 GO TO 6032 
9232 0 READ,X,ILW•Xt!MDWtDFDMWtXtX 
6032 0 DO 8032 I=l•IU 
7032 0 READ7tXtXtX;fD1ltJ)tDFDII•JI, 
7032 1 x.x 
8032 0 CONTINUt 
-8132. 0 CONTINUE 
9032 0 DO 9132. l•l,ISB 
9132 0 DFDll~ll=DFDB 

3·3 0 RW2=RW**2 
34 0 PlHP•3ol415927*H*P 

1034 0 DO 2034 I:lUtlOO 
2034 0 RSDW2111~0, 

39 0 ISWBU=IU 
36 0 ISWBL=O 

1036 0 lSB2=ILW 
37 0 IF(ILW-iLI 10811037,3037 

l0'37 0 JH=l 
2037 0 GO TO ~8. 
3037 O IFIIMDW•ISBI 4037t4037,6037 
4037 0 JH=2 
5037 0 GO TO 39· . 
6031 0 lfllLW•ISBI 1081703717037 
7037 0 JH=3 . . . 

-t 0000 0 READ FLOW RATE 
38 0 READ4tJP,DELV 
39 O JFIDELVI 4ltl02t40 
40 0 JFIKIWI 43•105,44 
41 O M=2+N 

l°04i O KlW= ... l 
42 0 ($0 TO 45 
43 O N=N+2 
44 0 M,;l+N 

1044 O iOW=l 
45 0 GO 10(46,52t66t1041•M 

C 0000 0 INJECT·JON 
46 0 Gl=G!+DELV 

1046 0 RB2=RW~+GI*DFD~/PIHP 
47 0 RB•IRB2l**o5 . 
48 0 G=GI 
49 0 ISBU=ISB 
50 0 ISBL=O 
!il O GO TO 102 

t 0000 0 INJECTION•WI THDRAWAL 
52 0 JWB=J· 

53. 0 t'B=ISB 
1053 0 JB=l 
2053, 0 KWB=l 

54 o·FP=FP+DELV 
55 0 FPD=FP/G! 
56 0 RM2~1DFDIIMDW,ll+DFDMW*FPDI/ 
56 1 DFDB . . 
57 0 DO 62 I=ltlU 
58 0 RSDW21Il=IDFD1ltll+FPD*DFD1I,2 
58 1 11/DFDB 

1058 0 GO TO (1061,2058t2058}tJH 
2058 0 GO TO (1061,305jltl0611,JB 
3058 0 IFIRSDW2.(II-RSDW21I-lll4058, 
3058 1 l06ltl061 
4058 0 IB=I-1 
5058 0 JB=3 
6058 0 KWB=2 
1061 0 IFIRSDW,11111 706lt206lt2061 
2061 0 GO TO (3061,5061,621,JWB 
3061 0 ISWBL=I 
4061 O.GO TO 59 
5061 0 ISWBU=l 
6061 0 GO rn 59 __ . _ 
7061 0 GO TO (716lt7361),KWB 
7161 O· JWB=2 . 
7261 0 GO TO 8061 
7361 0 JWB=3 
8061 0 GO TO (59,30621,KBT 

59 0 IFIRM2-RSDW2C!II 61,1060,60 
60 0 GO TO ll60,62t62),JH 

160 0 ISWBU=IU 
260 0 GO fo 5062 

1060 0 JB=2 
2060 0 GO TO (3060t611,JWB 
3060 0 JWB=2 
4060 0 ISWBL=O 

61 0 ISM=! 
62 0 CONT.INUE 

1062 0 IFIRSDW21ISWBU+l)+RSDW2CISWBUI 
1062. 1 13062,3062•2062 
2J62 0 iSWBU=lSWBU+l 
3062 0 lFllSWBL) 4162,4162,3162 
316! 0 RATIO=RSDW2(ISWBL~/CRSDW21ISWB 
3162 l L)+A!3SF(RSDW21ISWBL+l.l) 
3262 0 SWBL=I RAT!O+FLOTFIISWBLll/100 
3262 1 • 
3362 0 FDWBL=FDIISWBL,21+RAT!O*CFD1 
3362 1 lSWBL+l,2}-FD1lSWBLt2)I 
3462 0 FDWBl=FDIISWBtll+RA1IO*IFD(lSW 
3462 1 BL+l ;11-FDI iSWBLtll I 
3562 0 IFIRSDW21ISWBL+ll+RSDW2fISWBLI 
3562 1 I 4162,4162,4062 
4062 0 ISWBL=ISWBL+l 
4162 0 GO TO C5062,42621tKBT 
4262 0 1swau=IS.WBL 
4362 0 ISBU=IswaL 
4462 0 !SBL=ISWBL 
4562 0 GO TO 14662,4862,48621,JH 
4662 0 WP=GI*(l•-DFDB*SWBL-FPD*FDWBLI 
4662 l +FP . 
4762 0 GO TO 4962 
4862 0 WP=GI*llo-FDWBl-FPD*FDWBLl+FP 
4862 1 +WPB . 
4~62 0 WGR=lo/FDWBL-1• 

GO TO 6062 
5062 0 WP=llo-FD(ISWBU,i)+FPD*ll,-
5062 l FD1ISWBU,211l*GI 
5162 0 WPB=WP 
5262 0 WGR=l~/FD(ISWBU,21•1, 
6062 0 GD=IFP-WP)/GI 
7062 0 WPD=WP/GI 
8062 0 G=GI*ll.+GDI 
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TABLE XXI 11. (CONTINUED) 

63 0 IFIGI 106,64,64 
64 0 IE=ISM 

1064 0 IlU= IMDW 
2064 0 IlL=ILW 

65 0 GO T0(80,1065l,KBT 
1065 0 IF(!Pl 2065,2065,4065 
2065 0 IP=l 
3065 0 GO TO 1080 
4065 0 IP=O 
5065 0 GO TO 102 

C 0000 0 INJECTION-WITHDRAWAL-INJECTION 
66 0 ISWBU=O 
67 0 ISWBL=O 

1067 0 WGR=Oo 
68 0 Gl2=Gl2+DELV 
69 0 GID=Gl2/GI 

1069 0 GD=GID 
2069 0 GFD=Gl2/FP 
3069 0 G=Gl+Gl2+FP-WP 
4069 0 !F(GI-Gl 107,70,70 

70 0 DO 75 l=l,IU 
71 0 IF( I-ISB2l 72,1073,1073 
72 0 RSDW211l=(DFDII,ll+IFPD+GIDl* 
72 1 DFDII,211/DFDB 
73 0 GO TO 75 

1073 0 GO TO 174,2074),KBT 
74 0 RSDW2lll=(DFDIISB1,ll+FPD•DFD1 
74 l ISB1,2l+GID*DFD(1,21l/DFDB 

1074 0 GO TO 75 
2074 0 RSDW21ll=DFDll,2l*GID/DFDB 

75 0 CONTINUE 
77 0 IB=IMD 
78 0 !E=IU 
79 0 llU=ISB2 

1079 0 llL=ILW 
C 0000 0 MATERIAL BALANCE 

80 0 FDEL=99o0E19 
1080 0 PUNCH,RSDW2 
2080 0 IFIIPI 81,81,3080 
3080 0 IP=O 
4080 0 GO TO 2100 

81 0 DO 100 !=IB,IE 
1081 0 DR1=99o0El9 

82 0 DO 93 IBL=llL,IlU 
94 0 DR=ABSFIRSDW21II-RSDW21IBLII 
95 0 IFIDR-DRll 96,96,83 
96 0 DRl=DR 
98 0 L=IBL 
93 0 CONTINUE 
83 ci DS=IFLOTF(I-Lll/100, 
84 0 Sl=IFLOTF(Lll/100, 
85 0 Fl=DFD(I,2l*DS-FDII,2l+FDIL,2l 

1085 0 GO TO (105o86t88o104l ,M 
86 0 GO TO (1086,1086,3086),JH 

1086 0 FUN=Fl-(FDll,ll-DFDB*Sl-
1086 1 DFDlltll*DSI/FPD 
2086 0 GO TO 90 

3086'0 FUN-,;-F'i-.:(FD( 1,11-FD(L,ll-DFD(,, 
3086 1 ll*DSI/FPD 

87 0 GO TO 90 
88 0 DSl=(FLOTFIISB2-Lll/100, 
89 0 GO TO (2089,10891,KBT 

1089 0 GO TO 12089,2089,8089),JH 
2089 0 FUN=Fl-lFD(ISB2,ZI-FDIL,2ll/GF 
2089 l D-DSl*DFDB/GID 
3089 0 GO TO 14089,901,KBT 
4089 0 FUN=FUN+DSl*IDFD(ISBl,11/G!D+D 
4089 l FDIISBl,21•GFDI 
5089 0 GO TO (90,90,608Sl,JH 
6089 0 FUN=FUN+IDFDB*DS1-FDl!SB2,ll+ 
6089 1 FDIL,lll/GID 
7089 0 GO TO 90 
8089 0 FUN=Fl-(FD(ISB2,1)-FDIL•lll/GI 
8089 1 D-IFDIISB2,2l-FDIL,2ll*GFD 

90 0 FUN=ABSF I FUN l 
1090 0 !FIFDEL-FUNI 1097,91,91 

91 0 ISBL=L 
92 0 FDEL=FUN 
97 0 !SBU=l 

1097 0 JlLU=lll*lOOOO+llU 
2097 0 IBIE=IB•lOOOO+IE 
3097 0 IDJP=ID+JP 

99 0 PUNCH, IDJP, I ,L, I lLU, IBIE,FUN, 
99 1 DRl,GD 

JOO O CONTINUE 
3101 0 RB=(RSDW2(ISBUl*IRB2•RW2l+RW2l 
3101 1 "'*•5 
1100 0 GO TO (105,21D0,1Q21tM 
2100 0 JSBl=ISBU 
3100 0 lSB2=ISBL 

101 0 IfllSBU-ISWBUl 102•1101,1101 
1101 0 KBT=2 

RB=RW 
IP= l 
GO TO 4262 

102 0 KP=JP+M*lOOOOOO+lOOOO 
1102 0 PU~CH4,KP,DELV,G,WP,GD,WPD, 
1102 1 WGR,RB 
2102 0 KP=KP+lOOOO 
3102 0 ~-'WB=KWB*lOOOO+JWB*lOO+JB 
4102 0 PUNCH5,KP,ISBU,ISBL,ISWBU, 
4102 l !SWBL,JH,KBT,KJWBB 

103 0 GO TO 38 
C 0000 0 STOP 1444, M=4, 45,85 

104 0 STOP 1444 
C 0000 0 STOP 1111, M=l• 40,85,1100 

105 0 STOP 1111 
C 0000 0 STOP 1999, G=Oo, 4064 

106 0 STOP 1999 
C 0000 0 STOP 1333, G=GI, M=3, 4069 

107 O STOP 1333 
C 0000 0 STOP 1888, ILW, 37,6037 

108 0 STOP 1888 
END 
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conditions, injected or volume of fluid (gas or gas and water) withdrawn 

during a time period. ~he injeGted volumes are considered positive, 

and the produced volumes are considered negative. 

Since the calculations are based upon volumes instead of rates, 

no real values of time are required; only the cumulative volumes of 

flow within time periods, Therefore, the number of time periods is 

unlimited except that calculation stops at the beginning of the second 

withdrawal, 

The data output contains two cards for each fluid volum.e input. 

The first card has the following values: 1) volume identification; 

2) fluid volume; 3) volume of gas in place;4) cumulative volume of 

water produced; 5) fraction of initial gas volume that has been pro-

duced or re-injected; 6) water production as a fraction of initial 

injected gas volume; 7) producing water gas ratio at the end of the 

time period; and 8) the radius of the gas-water front. The second card 

has 1) the volume identification; 2) the upper saturation at the 

front; 3) the lower saturation at the front; 4) the upper saturation 

at the well-bore; 5) the hypothetical lower saturation at the well-

bore; 6) an iµdex identifying the hysteresis case (JH~l for non-

hysteresis and for S s Sf; JH = 3 for S ~ Sf); 7) an index gr gr 

identifying breakthrough (KBT = 1, before breakthrough; KBT = 2 after 

breakthrough); and 8) a combination of several indices used in the 

calculation, 
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SYMBOL LIST FOR 'J;'HE TEXT 

163 

Coefficient of linear term in linear equation for gas 
compressibility factor, z. 

Statistical estimat;e of ordinal intel;'cept, 0t, of least 
squal;'es regression line for Klinkenberg permeability. 

Constant term of fourth degree polynomia,1 f9r least 
squares fit of relative pe:rmeability function. 

Coefficient of linear term of fou:t;:t]:,. degree polynomial. 

Coefficient of quadratic term of fourth degree polynomial. 

Coefficient of cubic term of fourth degree polynomial. 

Coefficient of quartic term of fourth degree polynomial. 

Fluid formation volume factor, vol./vol. 

Constant term in linear equation for gas compressibility 
factor, Z. 

Statistical estimate of regression coefficient, S, in 
least squares regression line ;!;or Klinkenberg permeability, 

-1 
Combined compressibility of formation and water, psi • 

Drainage fractional flow at gas-water front du?,"ing injection. 

Derivative of ff with respect to saturation. 

Fraction1;1.l ;Elow of fluid "i''. 

Derivative of f. with respe.ct to sat1.1.ration. 
1 . 

Drainage fr1:1ctional flow at the well-bore saturation. 
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TABLE XX1V (CONTINUEO) 

Drainage fractional flow at upper saturation of the 
front during withdrawal. 

164 

Derivative off*' f*l with respect to saturation. 

Imbibition fractional flow at the upper saturation' of the 
front duJ;"ihg withdrawal. 

.Derivative of f*2 with respect to saturation. 

Drainage fractional £low at the lower saturation of 
the front during withdrawal. 

Derivative of f**l with respect to saturation. 

lmbibition fractional flow at the lower saturation of 
the front during withdrawal. 

Drainage fractional flow at the upper saturation of the 
front during re~injection. 

Derivative off+, f+l with respect to sa~uration, 

lmbibition fractional flow at the upper saturation of 
the front during re-injection. 

Derivativ~ of f+2 with respect to saturation. 

Drainage fractional flow at the lower saturation of the 
front during re-injection. 

Derivative off_, £_ 1 with respect to saturation. 

Imbibition fractional flow at the lower saturation of the 
front during re-injection. 

Derivat;iv.e of f _2 with resp~ct to saturation. 

Cunru,lative volume of injected gas at reservoir conditions, 
3 ft . .._./ 

Change of injected gas volume at reservoir conditions 
during time interval t:.t, ft:3. 

Change of injected gas volume at standard conditions during 
time interval l::.t, ft3 , 

V 1 f i . d d . f · · j · f 3 o ume o gas nJecte ur1ng 1.rst 1n ect1on, t • 
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. l'ABLE XXlV ·· (CON'l'lNUEP) 

Vofome of gas injecteq during second injection; ft3 

Cumulative volume of gas p;roc;luced at reservoi1;; conditions, 
ft3. 

Volume of residual gas in rese'rvoir at end of withdrawal. 

Ratio of residual gas volume to initial injected gas 
volume, 

Undetermined mathematical function. 

Forma.tion thickness, ft. 

Gas injection rate at reservoir conditions1 ft3 /da. 

Gas injecHon rate at standard conditions, 3 ft /da. 

Upward directed unit normal vector. 

Absolute permeability, millidarcys, darcys, 

Single-phase gas permeability, 

Klinkenberg permeability. 

Relative p~rmeabil;i..ty to fluid "i.". 

Single phase ~ater permeability 

Average permeability 

Stat;i..stica.l estimate of permeability 

Reservoir length, ft. 

Capillary pressure. 

Pressure at outer rac;lius of incompressil:)le core (inner 
radiui:; of aquifer) at time "n", psi, 

Average p1;essu')'."e in the gas zoni= at time "n", psia. 

Pressure in fluid "ill, atm. 

Presi;mre at standard conditions, psia. 

Well-bore pressure at time "n", psi. 
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TABLE ~IV (CONTINU~D) 

Pressure increment in the two-phase gas zone at time "n", 
psi. 

Pressure increment in the incompressible water zone at 
time "n", psi. 

Flow r1;1.te of -fluid "i". 

3 
cumulative volume of fluid produced, ft . 

Total flow rate. 

Radius of the gas~water front during injection, ft. 

Electrical res;i.stance at saturat;i.on "i", ohms, 

Radiu1:1 of saturation ''i", ft. 

Dimensionless radius of saturation Iii". 

Radius of saturation "k" at time "m'', ft.-

Radius of the saturation having the maximum der;i.vative 
of fractional flow, ft. 

Electrical resista1;1ce ratio. 

Well-bore fadius, ft. 

Electrical resistance at S = 100% and 68°F., ohms. w 

Radius of the upper satur~tions of the front during 
withdrawal, ft. 

Radius of the lcwer saturation of the front during 
withdrawal, ft. 

Radius of the upper saturation of the front during 
re-injection. 

Radius of the lower saturation of the front during 
re-injection, ft. 

Sample standard deviation of the regtession coefficient. 

Satura.tion of the front during injection, fraction. 

Average saturation beb,ind the front during injection. 

Gas saturation, fractio:n. 



s 
g 

s g,dr 

s . gi 

s . b g, l.m 

s 
gr 

s. 
]. 

sf'_ • 
K, l. 

s max 

s . md. 

T 

t 

t. 
i, n 

T 
r 

T 
SC 

u· 
i 

V 

167 

TAl3LE XXIV (CONTINUED) 

Average gas sat;ur-;1tion, fract;;i.on. 

Gas saturation on t;he dr-;1:i,nage relat:i.ve permeability curve, 
fraction. 

Initial g-;1s saturation, fraction, 

Gas saturation on the imbibition relative permeability 
curve, fractiqn. 

Residual ~as saturation, fraction. 

Saturation of :f;luid "i'',, fraction. 

Sample st,;tndard deviation of :Rat the value "i" of 
the independent variable, 

Maximum gas sc;l.turation, fraction. 

Saturation with the maximum derivative of fractional 
flow, fraction. 

Standard deviation from regression. 

Upper saturation of the front during withdrawal, fraction, 

Lower saturation of the front during withdrawal, fraction. 

Upper saturation of the front during re-injection. 

Lower saturation of the front during re~inject;ion. 

Temperature, °K, 0 R or °F. 

Time, seconds or days. 

Student's ''t" at confidence level "i" for "n" 4egrees of 
freedom, 

Reservoir temperature, 0R. 
Temperat:u:1;es at s~andard conditions, 0 R. 

Velocity vector for fluid "i", 

3 Volume, ft . 



X 

y 

z 

z 

z 
SC 

TT 

p. 
1. 

TABLE XXIV (CONTINUED) 

3 Volume enclosed py saturation "k", ft , 

Core weight at saturation "i", gm, 

Volume of water production, ft 3 . 

Dry weight of; core, gm. 

Statistical deviation of independent variable from its 
mean. 

Linear distance to saturation "i", ft. 

Dimensionless Linear distance to $.::tj:uration "i", ft. 
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Statistical dev:i.ation of dependent variable from its mean. 

Coordinate axis in the direction of j. 

Gas compressibility factor. 

Gas compressibility factor at staqdard conditions 

Constan.t term of the regression l;i.ne, 

Term defined by Equation (38), 

Term defined by Equation (40). 

Term defined by Eqtiation (A-56). 

Slope qf the regression line. 

Term defined by Equation (39) . 

Term defined by Equation (41). 

Term defined by Equation (A-54). 

Term defined by Equation (42). 

Differential vector operator. 

Constant, 3.1415927, 

Viscosity of fluid "i", cp, 

Density of fluid "i". 

Porosity, fraction. 



A 

BK 

D 

PMV 

DP 

GI.< 

GMV 

I 

PB 

PM 

P2 

QG 

QW 

RGK 

RWK 

RR 

RS 

RSl 

T 

TK 

TABLE XXV 

SYMBOLS FOR TIU; RELATIVE PERMEABILITY COMPUTER PROGRAM 

area of c;ol,"e 

base permeability, md 

diameter of core~ cm 

differential pressure recorder range, rnv. 

differential pressure, cha'I."t divisions 

gas effective pe;nneability, md 

downstream pressure recorder range, mv, 

ident:tfioation number 

barometric pressure, mm Hg 

mean core pressure, atm 

downstream pressure, chart divisions 

gas flow rate, cc/sec 

water flow rate, cc/sec 

gas relativ~ permeability 

water relative perm~ability 

resistance rat;i.o 

A-C resistance of core i:l.t s w 

t .. c resistance of core at s w 
time., sec 

temperature,, °K 

:;:; S-

~ 100% 
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TR 

VG 

vw 

WK 

X 

TABLE XXV (CO~TINVED) 

flowing temperature, QF 

g~s viscosity, c; 

water viscosity, cp 

water effective perme~bility, md 

length of core, cm 

170 



DIA 

IP 

J 

JE 

K 

POR 

RMIN 

RR 

RS 

RSC 

TR 

WO 

WMAX 

ws 

WW 

XL 

'I;'Al3LE )QCVI 

SYMBOL LIST FOR SATURAT~ON-RE$IST~CE:COMPUTER PR~RAM 

Core diameter, in. 

Identification number. 

Subscript. 

Maximum value of J. 

A number identifying whether saturation was obtained 
under drainage or imbibition conditions. 

Porosity, ~, fr~ction. 

Electrical saturation at Sw = 100% and 68 9F, 
R100, 68, ohms or kilohms. 
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Electrical resistance ra~io of RSC to RMIN1 ~, fraction. 

Electrical resistance at a saturation to be calculated 
and a,t a measured temperfl.ture,; Ri, ohms or kilohms, 

Elec~rical resistance RS correcteQ to 68 9 F, ohms or kilohms. 

Fluid tempe:r~t;ure at core outlet, T, 9 F. 

Dry weight of core, gm. 

Weigl;lt of core at s ..,. 100%, fraction. 
w 

Weight of core at a resistance RS 1 gm. 

Weight of water in core at; a resistance RS, gm. 

Core Length, cm. 
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TABLE XXVll 

SYMBOL LIST :11'0R.RELA'J;'IVE PF;RMF,:ABU,,l'J;'Y 'l;'ABULATOR COMPUTER PROORAM 

AO 

Al 

A2 

A3 

A4 

I 

m 

IL 

lLl 

ILW 

ILWl 

IU 

K 

N 

Nl 

RKI 

SG 

SGU 

Coµstant term of fourth degree least squares polynomial, 

Linear term of fourth degree polynomial ~1• 

Quadratic term .of fourth degree polynomial, a2 . 

Cubic term of fourth degree polynomial, a3 . 

Quartic term of fourth degree polynomial, a4 . 

Subscript. 

Identification number, 

Critical gas saturation, Sgc' per cent. 

11 .. 1. 

Residual gas saturation, S , per cent, . gr 

ILW-l .. 

Maximum gas saturation, Sma;x., per cent. 

Subscript. 

Degree of least squares polynomial, 

N+l. 

Relative permeability, k ., md. 
l;'l,. 

Imbibition relative permeability. 

~as saturation, Sg, per cent. 

Maximum gas saturation, Smax' per cent. 

a . 
0 



A 

AK 

·ARPM 

B 

BHI 

BL 

BU 

C 

DF 

DP 

ESK 

FN 

GK 

GK.HI 

GK.KU 

TABtE XXVIII 

· SYM.BOL LIST FOR KJ,INKE~ERG PERMEABILITY COMPU'.l:'ER PROORAM 

Flow area of core, 2 cm • 

Average permeability, k, md. 

· Avera,ge reciprocal mei:l,n pressure, (1/p), atm-l 

Sample regression coefficient:, b. 

One~half of confidence interval for the regression 
coefficient. 

Lower limit of confidence interval on the population 
regression coefficient a. 
Upper limit of confidence interval on the population 
regression coefficient~. 

Sum of squares correction for the mean. 

'Degrees of freedom. 

Differential pressure, atm. 

Least squa:r:es estimate ot permeability, 1c, rod. 

Number of d~ta points. 

Gas pe1;meability, kg' md. 

One-half of confidence interval on Klinkenberg 
permeability, md. 

Klinkenberg permeability, ~, md, 

Lower limit of confidence interval on Klinkenberg 
permeability, md. 

Upper limit of confidence interval on Klinkenberg 
permeability, md. 
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m 

lDF 

J 

JM 

PERB 

PERGK 

PM 

QQ 

QW 

RPM 

RR 

RS 

SB 

SD 

SKS 

SPS 

SUMK 

· SUMP 

SUMPK 

sxs 

SXY 

SYH 

SYS 

TABLE XXVIII (CONTINUED) 

Identification number. 

Degrees of freeqom. 

Subscript. 

Maximum value of J. 

Ratio of half confidence interval of the regression 
coefficient to its estimate, per cent. 

Ratio of half confidence interval of Klinkenberg 
permeability to its estimate, per cent. 

Mean core pressure, p, atm. 

Gas flow rate, q , cc/sec. 
g 

Water flow rate, ~, cc/sec, 

-1 
Reciprocal mean pressure, 1/p, atm 

Electrical resistance ratio, RR. 
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Measured electrical core resistance, R., ohms or kilohms. 
1. 

Sample standard deviation of the regress ion coefficient, 
Sb. 

Sample standard deviation, Sd, 

Sum of squares of sample permeabilities. 

Sum of squares of sample reciprocal mean pressures, 

Sum of sample permeabilities. 

Sum of reciprocal mean pressures, 

Sum of permeability -- reciprocal mean pressure products. 

2 
Corrected sum of squares for reciprocal mean pressure, x 

Corrected sum of squares for permeability -- reciprocal 
mean pressure products, 

Sample standard deviation of k. 
2 

Corrected sum of squares for permeability, y . 



T 

. TR 

rrs 

TSl 

VG 

vw 

WK 

TABLE XXVIII (CONTINUED) 

Calculated Student's "t" for tlie sample. 

Fluid temperatu~e • 

Student's "t" (62). 

Significant Student I s "t'' at the 5% level for IDF 
degrees of freedom. 

Gas viscosity, µ, cp. 
g 

Water viscosity, µ, cp. 
w 

Water permeability, k, md. 
w 
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DFD 

DFDB 

DFDM 

FD 

FMIN 

FS 

Fl 

GDBT 

IB 

ID 

IDS 

IL 

IMD 

ISAI 

ISAW 

ISB 

ISBT 

TABLE XXIX 

SYMBOL LIST FOR F~CTIONAL FLOW COMPUTER PR<X;RAM 

Derivative of fra~tiona,l flow, f'. 

Derivative of fraction flow at the front, ff. 

Maximum derivative of fractional flow f' md. 

Fractional flow, f. 

Minimum val'ue of f/S. 

Ratio of fractional flow to its saturation, f/S. 

176 

Material balance function at breakthrough, Equation (B-23), 

Fraction of injected gas remaining in the reservoir 
at breakthrough, Gr. 

IL+ 1. 

Identification number. 

Combined identification and saturation, 

Critical gas saturation, S 
gc 

Saturation for DFDM. 

Average saturation behind the front for injection, Sf' 
per cent. 

Average saturation behind the front at breakthrough 
(non-hysteresi$), per cent. 

Saturation at the front, sf, per cent. 

Saturation at the front at breakthrough (non-hysteresis), 
s,.,.'l':' per cent. 



IU 

RK(I, 1) 

RK(I, 2) 

RSD 

RSD2 

SBT 

SI 

Vl 

V2 

WGlIBH 

TABLE XXlX (CONTINUED) 

Maximum gas saturation, S , pet" cent. max 

Injected phase relative permeability, k , fraction. rg 

.Displaced phase relative J?ermeability, k , fraction. 
rw 

Dimensionless radius of a saturation, fraction. 

Square of di~nsion radius of a saturation, fraction. 

Frontal sa~uration at breakthrough (non~hysteresis), 
S**' pe'.[" cent. 

Gas saturation, S, fraction. 
g 

Injected phase viscosity, µ, cp. g 

Displaced phase viscosity, µw' cp. 

Well bore water~gas ratio, R , vol./vol. wg 
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TAJ3LE XXX 

SYMBOL LIST FOR TWO-PEA.SE GAS ZONE-UNS':I:'EADY AQUIFER COMPUTER PROORAM 

A 

AA 

ADP 

AIC 

AIU 

AQS 

ATP 

A'.l'PR 

AU 

B 

BB 

BK 

C 

CTD 

cu 

·DFDB 

· DPIC 

DPO 

DPTP 

Defined by Statement 152. 

Defined by Statement 182, CYF psia. 

Pressure convergence difference, psia. 

Defined by ~.tement 131. 

Defined by Statement 180. 

Pe fined by Statement 1132. 

Defined by Statement 132. 

Defined by Statement 181. 

Defined by Statement: 2177, 

Defined by Statements 149, 154, or 156, 

Defined by Statement 183, s1, psi2 . 

Base (single-phase) permeability for relative 
permeability functions, md, 

-1 
Combined compressibility of formation water and rock, psi 

Dimensionless time constant. 

Unsteady £low constant. 

Derivative of fractional flow at the f'):'ont, ff' fraction. 

Pressure increment due to liquid flow in the incompressible 
zone between RB and RA, psi. 

Allowable pressure convergence difference, psia. 

Pressure increment due to unsteady compressible liquid 
flow beyond RA, psi. 



.DPU 

OPUl 

DPU2 

DT 

FD 

GC 

H 

HBKG 

I 

IL 

IU 

J 

JB 

JC 

JM 

JP 

K 

KR 

L 

LM 

p 

PB 

J?G 

TABLE XXX (CONTINUED) 

Unsteady-state pressure increment for compressible 
liquid flow in the aquifer, psi. 

Defined by Statement. 177 

Defined by Statement 1177. 

Time increment, days. 

Gas fractional flow, f, fraction, 
g 

Gas volume constant, psi. 

Formi;ttion thickness, h, ft. 

Incompressible flow constant. 

Gas saturation, S , pel;" cent. 
g 

Critical gas saturation, S , per cent. gc 

Maximum gas saturation, S , per cent. max. 

Subsct"ipt. 
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Number of the gas injection period at which calculation 
are to begin. 

JB-1• 

Maximum number of constant gas injection rates included 
in the: problem. 

Sorting number based on Statements 185, 187, and 189. 

Subscript. 

Index: 0-read in fractional flow values; 1 - values 
already on drum, 

Subscript. 

.Number of iterations for pressure convergence. 

Porosity, 0, fraction. 

Pressure at standard conditions, psc' psia. 

Average gas zone pres:;;ure, pg' psia. 



PG2 

PlllP 

PO 

PT 

PW 

QD 

QMAX 

RA 

RK(l, 1) 

RK(l,2) 

RLN 

RSD 

RW 

RWO 

SQS1 

SUMQ · · 

SirnQS 

T(J) 

TB 

'ID 

TPR 

TR 

TABLE XXX (CONTINUED) 

Previous value o.f averc;l.ge gas zop.e pressure, psia. 

Constant defined by Statement 107. · 

Initial reservoir pressure, pi' psi~ 

Dimensionless unsteady~state pressure change function 
(28, 68). 

Well~bore pressure, pw' psi. 

Gas injection rate, i, sc~/day. 
g 

Maximum volume of injected gas, G. , scf. 
1 1., max 

Maximum radius of gas zone (radius of assumed in­
compressible zone), r, ft. 

. C 

Injected phase relative permeability, k. , md. rg 

.. Displaced phase relative permeability, krw' md. 

L(T)garithm of radius ratio~ 

Dimensionless radius of saturation, riD, fraction, 

Well bore radius, r, ft. 
w 

Dimensionless well bore radius, rw/rb, fraction. 

·Defined by Statement 2129. 
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· CumulJtive volume of gas in place at r~servoir conditions, 
G, ft , 

CuII\l,llative volume of gas in place at standard conditions, 
Gsc' scf. 

'Time elapsed from beginning of injection to end of Jth 
flow rate, t, days. 

· Gas temperature at standa.rd conditiop.s, T , 0 R. 
SC 

Dimensionless time, td <28, 6S), 

Flow resistance integral for two-phase zone. 

Reservoir temperature, Tr' 0 R. 



Vl 

V2 

zc 

Z:,M 

TAB~E XXX (GO~TINUED) 

Injected phase viscosity1 µ,g, cp. 

Disph.oed phase viscosity, µ , cp. 
w 

Constant for linear gas compressibility e~uation, b. 

Slope of linea:i:- gas compressibility equation,a. 

. Ratio of gas compressibility to average gas zone 
ptessute1 psi-1, 
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DELV 

DFD 

·DFDB 

··DFDM 

DFDMW 

DR 

DRl 

DSl 

FD 

FDEL 

FDWBL 

FP 

FPO 

FUN 

Fl 

G 

TABLE XXXI 

SYMBOL LIST FOR CYCLIC l'WO-PHAS~ FLOW COMPUTER PROGRAM 

·Reservoir volume of gas injected duriµg a time-step, 
Gi, :l;t3. 

Derivative of fractional flow, f; fraction. 
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·Derivative of fractional .flow at the front (first injection), 
ff fraction. 

Maximum fractional flow derivative (drainage), f~d,l' 
fraction. 

Maximum fractional flow derivative (imbibition) 
f~, 2, fraction. 

Increment of dimensionless radius, riD, fraction. 

Minimum value of DR, fraction. 

Increment of saturation, Statement 83, 

Increment of saturation, Statement 88~ 

Fractional flow, fg, fraction. 

Minimum value of material balance function. 

Fractional flow at the lower saturation at the well 
bore, fraction, 

Cumulative volume of fluid produced, Q, ft3 . 
p 

Dimensionless fluid pi;-oduced, Q /G. , fraction, 
p 1., max 

Material balance function. 

Partial material'balance function, 

3 Volume o-J: gas in ;reservoir,. G, ft . 



GD 

GFD 

GI 

Gl2 

GP 

H 

IB 

IBIE 

IBL 

ID 

IDJP 

IE 

IL 

ILW 

IlLU 

IMP 

IMDW 

IP 

ISB 

ISBL 

TA:aLE X)Q{I (CONTINUED) 

Dimensionless volume of gas injected or produced, 
G . 2 /G . or G /G . . • 

1., 1., max p 1., max 

Ratio of volume of gas re-injected to fluid produced, 
G. 2 /G. . , fraction. 

1., 1., max 

Cumula§ive volume of gas injected (first injection), 
G ., ft . 

l. 

Cumulati~e volume of gas injected (second injection),. 
G. 2, ft . 

l.' 
3 Cumulative volume of gas produced, G, ft . 

p 

Resf:t:Voir thickness,. h, ft. 

Indexing parameter, 

Defined by Statement 2097. 

Indexing parameter. 

Core identification. 

Defined by Statement 3097. 

Indexing parameter, 

Critical gas saturation, Sgc' per cent. 

Residual gas saturation, Sgr' per cent. 

Defined by Statement 1097. 

Saturation with maximum fractional flow derivative 
(drainage), smd,l' per cent. 

Saturation with maximum fractional flow derivative 
(imbibi.tion), Smd,Z' per cent. 

Punch index. 

Saturation at the :f;ront (fin~t injection) Sf' 
per cent. 

Lower sat\l.ration at the :front, S~·c~\o' or S _; per cent. 
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ISBU 

ISBl 

ISB2 

ISWBL 

IU 

IlL 

JB 

JH 

JP 

JWB 

KB'l' 

KIW 

l(JWBB 

KP 

KWB 

L 

M 

N 

p 

PIHP 

RATIO 

RB 

RB2 
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'l'ABLE XXXI (CONTINUED) 

Upper saturation at the front, s* ors' ' + 
per cent. 

Upper saturation at the front (withdrawal), s,"'' per cent. 

Lower saturation at t;:he front (withdrawal), s,b"'' per cent. 

Lower saturation at the well bore, Swb' per cent. 

Maximum gas saturation, Smax' per cent. 

Trial lower saturation at the front, S·,h'I'' or S _, per cent. 

. Index used in search for IB. 

Index identifying hysteresis case: 1 for non-hysteresis, 
2 for s ::;sf, 3 for S ;;;:sf. gr . gr . 

flow increment identification. 

Index used in search for ISW:SL and ISWBU • 

Ereakthrough index: 1 - before, 2 - after. 

Injection-withdrawal index: 1 - injection, 2 - withdrawal. 

Defined by Statement 3102, 

Punch identification. 

Index µsed in searc4 for ISWBL and ISWBU, 

Saturation for DRl, per cent. 

Injection-withdrawal index: 1 .,. first inject:i.on, 2 -
withdrawal, 3 - second injection, 

Index used in determining M. 

Porosity, 0, fraction. 

Defined by Statement 34. 

Interpolation ratio for determining.SW.SL, fraction, 

Radius of the gas water front, rf, ft. 

2 2 
Square of RB, rf, ft . 



. RM2 

RSDW2 

RW 

RW2 

SI 

SWBL 

WGR 

WP 

WPB 

·WPD 

X 

185 

TABLE XXXI (CONTINUED) 

Dimensionless radius of Smd' fraction. 

Squa:l;'e of dimensionless radius o:f a saturation, fraction. 

Well•bore ra.ditis, r , ft. 
w 

Square of well-bore radius,. r;,, fl. 

Gas saturation, S, fraction, 
g 

Lower g,;1,s saturation at the well bore, fraction. 

Reservoir water-gas ratio, R , vol/vol. wg 
1 d d W ft 3 

Cumu ative vol\1me of water pro uce , f;' . . 

Cumulative volume of water produced before breakthrough, 
ft 3 . 

Dimensionless water production, W /G. . 
· p :i, max 

Unnecessary data. 
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