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PREFACE

The study of methods of applied time series is usually
accompanied by the formulation of a model that is used to
forecast the future of the series. Since perfect informa-
tion of the future is rare, these methods will have some
error associated with the forecasts. The discussion of
these methods in the literature is not uniform in the def-
inition of the error, the distribution of the error or the
interpretation of the error.

In this thesis, the error is defined without any as-
sumptions of the distribution of errors in order to provide
generality in the methods considered here. These methods
were developed for the real world process and the examples
presented are of this type.

The computational algorithms used to provide the input
for the forecasting model decompose the series into its
linear trend, seasonal variation, and random variation
about some mean level by the use of exponentially weighted
moving averages. The exponential weighting of the his-
torical data is a function of the smoothing constants
which are selected. Therefore, the selection of these
constants determine the fit of forecast values to the

actual data. The selection of these constants are based
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upon the response of the series to the application of the
smoothing constants in terms of the mean forecast error
squared under some defined concepts of optimality of the
fit. The methods of selection of an optimum starting
point within the historical data are also derived and
supported by examples.

I would like to gratefully acknowledge the contribu-
tion of Dr. Leroy J. Folks for his helpful suggestions on
the content and arrangement of this thesis materiali of
Professor Wilson J. Bentley, Head of the School of Indus-
trial Engineering and Management, for his advice and
counsel during my graduate program; of Dr. Paul E.
Torgersen for his interest and suggestions during the total
program; of Dr. David L. Weeks, Dr. Carl E. Marshall and
Dr. Robert A. Hultquist for serving on the graduate com-
mittee and providing quality instruction during my graduate
course work, and Dr. Robert D. Morrison and Dr. George F.
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the course of this work. Also, a debt of gratitude is
acknowledged to Sandia Corporation for providing the at-
mosphere and facilities for conducting this study, and to
Mr. L. E. Snodgrass, both friend and supervisor, for his
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CHAPTER I
INTRODUCTION

The arrangement of events by their order of occurrence
in time describes a time series. Time series analysis is
the planned study of the data associated with this sequence
of events. In general, the purpose of a study is to pro-
vide information for the interpolation or extrapclation of
some function of the observed series in order to obtain
forecasts of intermediate or future events,

The generality of these definitions indicates the
range of subject areas within time series analysis. There-
fore, it is proposed to comsider only that segment which
is related to exponentially weighted moving averages and

record the results of investigations in that area.
Contrasts in the History of Time Series Analysis

The astronomers of the Sixbeenth Century are credited
with originating the study of time series (1). These stud-
ies were conducted on the movement of the known planetary
bodies within the scolar system. It is fortunate for sci-
ence in general and for the study of time series analysis
in particular that the major influence upon the activity

of the planets is the sun. The reason this is considered



fortunate is that the behavior of an observed process is a
function of all things which influence the process; there-
fore, if a dominating influence is present it usually re-
duces the complexity of the behavior pattern and
facilitates a description of that process as a function of
time. Astronomers have continued to perform time series
analysis upon the activity of bodies within the universe
and after 225 years of study they have a 175 page equa-
tion describing the movement of the Earth's moon. This
example is extreme in the amount of emphasis it places
upon patience, time, and precision, but it is illustrative
of the procedural technique used throughout the develop-
ment of this subject area in that data are collected and
an analysis is performed to determine if a sufficient de-
gree of consistency is demonstrated in the activity to
permit the formulation of a description of the observed
activity within some acceptable limits. Generally, the
maturity of an area of study can be measured by the range
of these limits. Since the range of the limits is quite
small for astronomy, it is considered to be a mature science.
Another classical study in time series analysis is a
study of sunspot data made by Wolfer about the beginning
of this century. This study was particularly significant
to the geophysicists of that time because Wolfer not only
interpreted the pattern within the historical data, but
also forecast their occurrence within reasonable limits.

The isolation of these periodicities in the sunspot data



created an interest in time series analysis not only in
the study of sunspots but in many seemingly unrelated
fields. It is ironic that similar studies of sunspot ac-
tivity are presently being conducted by space scientists
specifically for the purpose of forecasting such activity.
This is considered a near necessity for scheduling manned
space travel in the future since sunspots release large
amounts of high-level radiation into outer space.

History does not relate a classical study in the
field of meteorology, but is readily recognizable as a
field that evolved from a mysterious curiosity into a ma-
ture science through time series analysis. Probably the
first meteorologist was a mathematically inclined agricul-
turist that observed certain sequences in the weather and
found that by recognizing the start of a particular pattern
a certain type of weather activity would usually follow.
The study of meteorology has advanced to the state that-
analyses of meteorological data are performed on an auto-
mated basis. An example of this is the computer complex
operated by the Navy at San Diego, California, which rou-
tinely analyzes the data collected by a world-wide collec-
tion system and makes long range weather forecasts.

Another classical problem which is not immediately
associated with time series analysis is that of the vi-
brating string. This is a case of a physical system that
receives a known input and the response or output is ob=-

served and studied until a mathematical expression is



arrived at that describes the response adequately. A
solution is known to exist in terms of differential equa-
tions or harmonic analysis. This type of analysis is
involved in communication engineering and statistics where
the input to a system is known, and the output is predic-
table, but due to external sources of noise the problem
becomes one of recognizing the exact points of correspond-
ence between the input and output. This class of problems
is undergoing intensive study at the present time due to
the need to establish accurately the position and velocity
of missiles in outer space.

Time series do not lend themselves to an exact clas-
sification system. If the term stability is used as a
measure of the probability that the future of the process
can be forecast in time, then an exact delineation between
stable and unstable processes is not possible. Therefore,
only qualitative definitions can be given for stable and
unstable processes. In this thesis the unstable processes
are those which have not been quantified to the extent
that their description is commensurate with the reasonable
use of that description. The classification of processes
is one of judgment based upon the mathematical description
of the process and the use of the extrapolated series.

The foremost example of unstable processes is that
large class of processes associated with economic time
series. Economic time series have been studied since the

early Nineteenth Century and at the present time the amount



of effort expended in this area continues to increase.
Progress has been made, but the standard economic time
series are still judged to be unstable processes. Many
attempts were made to correlate economic time series with
Wolfer's sunspot data, and suprisingly enough many of the
trials showed a significantly high degree of correlation.
This led to a frenzy of activity in finding correlations
among various economic time series or any other time series
that would provide a significant correlation. Published
results of this nature attracted the attention of many
mathematicians and scientists since these correlations
could not be justified by any practical means onan a priori
basis. This precipitated a number of mathematical papers
on the subject of correlation and extrapolation of time
series. The classics are those by Yule (2) in 1926 on why
nonsense correlations exist and by Slutzky (3) in 1927 on
random series. These provided the base for serious study
of the unstable processes and the development of statis-
tical techniques to provide better forecasts of the future
behavior of these processes.

A majority of the studies of unstable processes are
related to economic time series, but there are two other
areas that are sufficiently large and should be mentioned.
They are sociological and biological time series. The
former is the study of people and their activity in terms
of births, marriages, divorces, suicides, thefts, and any

number of other such categories. The latter is the study



of changes in the population of insects, fish, game ani-
mals, birds, plant and animal growth, and related topics.
There are undoubtedly other logical divisions of the study
within the stable and unstable processes that could be
made, but those listed are considered to be the major ones.
A more detailed discussion of the above may be found
by Davis (1), as well as in the introductory material in

many of the texts listed in the Bibliography.
Methods of Time Series Analysis

The mathematics used in the analysis of time series
vary as much as the areas of investigation. During the
last 200 years a number of mathematical techniques have
been developed as a direct result of time series investi-
gations. Other standard mathematical methods and special-
ized methods of analysis from other fields of study have
been applied to the study of time series. The following'
discussion will list the more commonplace techniques that
have been used in developing time series study and those
that are being used at the present time.

In general these methods are curve fitting techniques
used as a base for extrapolation. The process of fitting
a curve to the observed data is one of smoothing the ob-
served series and interpolating for values within the
series. The simple forms of curve fitting are those used
for trend analyses. One procedure for this is to take the

average value of all the observed results which may be



done either arithemetically or graphically by freehand
methods. Similarly, determination of linear, exponential,
logarithmic, moving average or moving polynomial trends can
by accomplished by least squares techniques or graphical
methods. Special cases of these methods are the linear
regression and curvilinear regression methods of curve
fitting and row experiment type of analysis of variance
models. Generally, the above methods tend to smooth the
data more than some time series models, but also tend to
provide better estimates of the mean, which may or may not
be a proper mode for comparisons of methods.

One curve fitting method that can provide an exact
fit of the observed data is the interpolating polynomial.
The degree of the polynomial will determine generally the
fit of the curve with the exact fit obtained if the degree
of the curve is one less than the number of points being
considered. However, this exactness is not indicative of
the exactness of extrapolated values of such a polynomial.
In fact, nth degree polynomials of this type generally
cannot predict beyond the next few values in a series as
well as some of the more general smoothing techniques.
Good estimates of the original series may also be obtained
by using techniques of harmonic analysis. Two of the more
important techniques of this type are the use of a Fourier
series to fit the data within an arbitrarily small amount
of error and a method of analysis known as periodgram anal-

ysis which has received considerable attention as a tool for



economic time series analysis. There are a number of var-
iations in the details of the methods of periodgram analy-
sis and some consideration should be given to the selection
of the method to be used.2

Correlation in observed data is a rather important
consideration in time series analysis. Autocorrelation is
a special type of correlation which quantifies the rela-
tionship of values within a series to other observed values
in that same series. Also, correlation among different
time series may be determined by direct, lag or inverse
correlation. The lack of autocorrelation is important in
many of the statistical treatments of time series analysis,
not only within the observed data but also within the time
series of errors that are generated by a lack of fit of
the smoothed data.

The work of Slutzky (3) provided the fundamental con-
cept of the moving average technique which was based upon
the observed statistical properties that cumulative sums
or moving averages demonstrated. There have been a number
of investigations regarding the length of the interval to
use for a moving average and various methods of weighting
the observed data to obtain a "best" estimate of the future
mean value of a process. A notable example is a weighting
formula developed by Macaulay (4) which contains 43 terms.
Less detailed methods will be discussed later in the thesis.

2Refer to Davis (1), Chapter 7, pp. 276-326.



There are numerous other types of studies or tech-
niques that are associated with time series analysis and
are found frequently in the literature on this subject.
These include cofluence analysis,; factor analysis, the
variate difference method, stochastic difference egua-
tions, orthogonal functions, operational calculus methods,
methods derived from the calculus of variations and others
which appear less frequent. Some of the related areas of
study are spectral theory., ergodic theory, stochastic
processes, Brownian motion, communication theory, filter-

ing processes, random series and servomechanisms,
Interest in Time Series Analysis

An indication of the interest in a subject may be de-
termined by a review of publications in that area. 1In
time series analysis, the individual contributions to the
literature number in tens of thousands. The Selected
Bibliography compiled by Deming (5) for the period 1930 to
1957 from the mathematical and statistical journals con-
tains over 240 entries°5 In addition to this, there were
a number of publications on this subject in the 130 years
prior to this time period, in the five years subsequent to
it, and in the works of economists, sociologists, biolo-

gists, electrical and communication engineers, and applied

3These include Annals of Mathematical Statistics,
Journal of American Statistical Association, Biometrika,
Journal of the Royal Statistical Society, and a number of
forelgn publications.
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statisticians.

For example, the economists have a number of journals
which contain papers on the subject of economic time
series. The leading Jjournal from the standpoint of sta-

tistical treatment of this subject is Econométrica, but

among the others which publish time series studies are

Economica, Economic Journal, The Economist, Review of

Economics and Statistics, and Harvard Business Review. In

addition to these periodiCal publications in the field of
economics, there are at least three major foundations that
study the general field of economics with frequent studies
in the area of economic time series. They are Harvard
Economic Studies, the Netherlands Economic Institute and
Cowles Commission of Research in Economics,; who sponsor
the preparation of monographs for publication and distri-
bution through their individual monograph series.

Fach of the other disciplinés of study have similar
groups of periodicals that publish their works in the study
of time series, with two periodicals that are more inter-
disciplinary in that they encourage the contribution of
any person interested in the study of time series and more
specifically isolation of periodicities within historical

data. These two journals are Cycles and The Journal of

Cycle Research. Those Journals which contained articles

more closely related to this thesis are Management Science

and Journal of Operations Research Society of America.

Assuming that publication rate is a suitable index
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of interest, then it is obvious that there is a widespread

and continuing interest in time series analysis.
Scope of This Study

Within this complex of methods of analysis and vari~
ous disciplines theré are gaps that should be filled be-
tween the mathematical-statistical approach to the
theoretical time series and the less sophisticated methods
of approximation used to study real world data. Figure 1
is a graphical display of that part of time series analy-
sis that will be considered in this thesis.

This particular'area is generally associated with in-
ventory, sales, personnel action, maintenance and market
value. The purpose of this thesis is to present methods
for improving the forecasts of exponentially weighted time
series models by selection of smoothing constants. The
selection procedure is based upon measures of optimality
that are formulated in terms of observed forecast error,
The thesis is directed toward the application of the meth-
ods derived to real world processes. The connotations
associated with the use of real world to describe processes
include: their exact future behavior cannot be known under
any conditions, they are generally of the unstable type,
and are assumed to be influenéed by a number of variable
external factors. The external influences are assumed to
combine to form the basic driving mechanism of the series.

Also, any one single factor does not have a significant
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influence upon‘that series. This is one of the few as-
sumptions that will be made in this study and it does not
appear to detract frbm the generality of this thesis.

The method of analysisvto be used is a trial and
error procedure involving the use of a partially self-
generated mathematical model which uses the basic tech-
nique of exponentially weighted moving averages for
smoothing and interpolation of the observed time éeries,
and extrapolation of the smoothed time series.

This basic approach has been used more recently by
‘Magee (6), Brown (7), and Holt, Modigliani, Muth, and
Simon (8) with Brown'presenting'the basic phiibsbphy of
exponential smoothing under varying degrees of instability.
Holt, et al., modified the formulation of the mathematical
model, but did not study the properties of the model under
varying conditions of the unstable processes. This fthesis.
will attempt to extend some parts of the referenced works
and present 6riginal ideas in the model formulatioh and
discussion of results.

Almost without exception, every author that discusses
the real world processes and the mathematical model ap-
proach for forecasting points out that better methods are
needed and that the best test of these methods is the
results that they produce. Therefore, this thesis is not
unlike the original studies conducted by astronomers and

the goal is similar, to forecast the future.



CHAPTER II

THE EXPONENTIALLY WEIGHTED MOVING AVERAGE
AS A TIME SERIES MODEL

Before describing a specific model, perhaps something
should be said about models in general, A mathematical
model is defined here as a formulation of relationships
that is believed To describe some part of a real world
process sufficiently well for ﬁse in the study of that
process. A basic reason for developing a model is the
belief that the process has some pattern of behavior. The
model is used to extrapolate the pattern, The model is
often mathematically simple, but the computations necessary
for reducing the data may become complex. The computations
that provide the input data for those models developed
will be referred to as supporting algorithms.,

Some of the general philosophies on model construc-
tion that are followed throughout this thesis are that
few assumptions are made, that the economy of the model is
considered by keeping the terms in the model to a minimumn,
.and that a simple model is better than no model at all.

The supporting algorithms play an important part in
the models that are developed below. The basic function

of the supporting algorithms is one of smoothing various

14
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compohents of the historical data for use in the model.
Smoothing is defined as a process of algebraic curve fit-
ting which minimizes some function of the deviations about
a local process level.

In general, it is the purpose of this thesis to
develop the theory and the supporting algorithms of a gen-
eral time series model for unstable processes. The objec-
tive is to extrapolate the time series to concur with the
true time series as nearly as possible based upon measures
used to evaluate the degree of deviation.

The true time series model is not known, but is as-
sumed to exist for each process considered and if known it
would describe the process exactly for all historical data
and future occurrences.

As indicated in Figure 1 (page 12), the emphasis of
this thesis will be directed toward building a model that
uses exponentially weighted moving averages as estimates
of the model's parameters. Due to the generality of the
area of consideration, the basic mathematical theory that
will be applied is that of smoothing., Some of the mathe~
matics used will necessarily be supported by heuristic
arguments.

There are some general philosophies in the study of
time series that will be adhered to in this thesis. One
of these}is in specific reference to the model building
approach and it is basically that the worth of the model
is in how well it forecasts future activity. This will be

the basic premise for the development of the complete
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model. This is necessary due to the generality of the
time series that are to be considered and the fact that
the conditions for application of rigorous statistical
techniques cannot be satisfied, For the unstable type of
time series that will be studied, it is assumed that all
available information about the process is contained with-
in the historical data. This does not require that :-the
series be stationary, the random fluctuations be independ-~
ent or the forecast errors be independent. One or more of
these common restrictions in time series studies cften
remove many of the real world processes from consideration.
However, whatever the influences are in the observed se-
ries, they are assumed to continue throughout the period
for which the forecast is‘m‘aden

Another general philosophy that is prevalent in the
study of economic time series is that the series is com=-
posed of a trend, a systematic cyclical variation and a’
random variation. A combination of the first two compo-
nents of variation may be referred to as the base series,
driving mechanism, or signal; whereas, the latter may be
termed noise. Noise is that part of the series which is
not accounted for by the assumed model and may include
both the inherent process error and the error due to lack of
fit. However, these three sources of variation in an ob-
served time series should be understood to be the culmina-~
tion of numerous known and unknown influences., The purpose

is not to isolate the three components for study on



17

an individual basis, but is to combine them in order to

extrapolate a given time series.
The Moving Average as a Model

The exponentially weighted moving average model was
originated by studies of the cyclical phenomena demon=-
strated by moving averages or moving sums, The first
notable study of this type was by Slutzky (3) in which he
observed that for a series of random events or non-random
events, that a moving sum containing some fixed number of
observations would produce a smoothed series that was non-
random as determined by the autocorrelation coefficient.
In this work, he also stated and proved the law of the
sinusoidal limit which states simply that if a series 1is
smoothed a sufficient number of times by moving sums that
it approaches a sinusoid within some arbitrary amount of
error. This sinusoid does not necessarily represent the
base series of the process. Dodd (9) has shown that mis=-
‘leading artificial cyclical variations may be created. |
Studies of the moving average and variations of it have
been published by a number of persons. The work by Brown
(7) provides the background and a base for the summary
that will be présented here,

The moving average, as its name implies, is an aver-
age of observations of a time series which uses only the
most recent n terms for purposes of computing an average.

This average is considered to be the most recent estimate
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of the mean of the process being studied. Mathematically
this idea may be expressed as
t

Loov = ZE X;/n

i=t-n+l
where t is the latest point in time. The major problem
associated with the moving average ftype of timé series
model is that of deciding how many obgervations are to be
used in the moving average. The number that will provide
the best results in tefms of having the least amount of
error associated with its forecasts of the mean of the
process is largely dependent upon the process being
studied. There are two extreme cases of the moving aver-
age that are of interest, one case includes all historical
data in the estimate of the mean and the other takes only
the last observed value as an estimate of the present
level of activity. Either of the cases might work under
certain circumstances. The former would be suitable when
the process is in fact operating about some mean with only
random fluctuations about that mean. Under this assump-
tion the inclusion of all historical data in the average
will provide the Dbest estimate of the mean value of thé
process since the average is an unbisdsed estimator of the
process mean, The latter case would be more accurate in a
time series that has a high autocorrelation for a lag of
one time interval. Within the range spanned by these two

cases, there are a number of processes and values of n.
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If a process has only random variations about a
slowly changing mean or if the magnitude of the fluctua=-
tions or variations is large compared to the mean, then a
large value of n is desirable fér the moving average. This
is because large values of n will tend to smooth the ran-
dom fluctuations and not be influenced to any extent by
large deviations in one direction. If it is desired to
smooth some of the non-random variations in a process when
they are known %o exist, a large n equal to the period of
the variations that are to be removed may be used, For
example, if it is desired to remove the cyclical variation
within the year from the smoothed statistics of the time
series; then a twelve month moving average will provide
this type of smoothing. To demonstrate this, Figure 2a
indicates theleffect of a twelve month moving average upon
a sine wave with a period of twelve months. This holds
for any systematic pattern of variation as long as the
pattern is repeated in each period,

The size of n is not only dependent upon the type of
smoothing desired, but it is also dependent upon the as-
soclated problem of the type of response that is desired
for some corresponding change in the data. The interest
in the response may arise for a number of.;éasonsv One
reason is that the mean of the process may undergo some
change and shift to a new levéi{ and if n.is large, only
1/n of the shift will be added to the ééfimate of the level

each time and it will require n periods before the moving
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average has reached the new process level. This type of
lag for the moving average is illustrated in Figure 2b.

If the time series should experience a trend in the obser-
vations, then the moving average will always lag the
observations by n/2 times the increase per time interval
of the trend. This is based upon the assumption that the
conventional procedure is followed in using the average to
represent the point in the series at t-n/2. A typical lag
is shown in Figure 2c. If the time series is composed of
a trend, a cyclical variation and a randbm variation as
illustrated by Figure 24, then the selection of the n for
the moving average is usually by some trial and error pro=-
cedure. This is simply due to the mathematics involved,
in that it is difficult for a simple moving average to
adapt to complex situations. If an exceptionally good fit
were obtained, it would be attributable to chance as op-
posed to the tracking capability of the model since the
moving average is not a self-correcting type of mathemati-
cal procedure. This means that the magnitude or the direc-
tion of the error observed in the fit of the smoothed
series to the actual series does not influence the next
value computed for the smoothed series.

There are a number of improvements that can be made
in the moving average that will correct for the various
situations outlined above such as weighting the values in-
cluded in the average by the distance they are removed

from the central value and adding an increment to allow
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for the trend. It should also be noted that the moving
average is more of a‘smoothing technique than an extrapo-
lation technique, since the value of the moving average is
generally associated with the mid-value of the averaged
values, which means the last estimate of the mean of the
process is still n/2 time units removed from the present
time or the last observed value. There have been correc-
tions devised for this deficiency also. There are a num-
ber of published articles on methods of compensating for
cycles and trends in the use of the moving average. Brown
(7) provides a treatment of some of these methods and the
application of the moving average. However, the exponen-
tial weighting of historical data has replaced the use of
the moving average to a large extent. This is due to the
ease of computation, less data storage required, and the

self-correction feature of exponential weighting.
The Simple Exponential Model

The moving average will be considered as a basis for
comparison in terms of the error for the forecasting models
to be developed. Simple smoothing or the simple exponen-
tial model is only a slightly advanced form of the moving
averégea The main difference is that it is self-correcting
or has the ability to adjust based upon its‘observed
errors. It is convenient at this point to establish some
notation that will be followed throughout this thesis. Let

th

Xt be an observation at the % point in time where
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the points are equally spaced,

M be the total number of observations available for

| a given time series,

X, Dbe the exponentially smoothed value of the
observed time series at time t,

X be a computed value that is used as a starting
point in recurrence type computations,

A be the smoothing constant for random variations
in the observed series.

T be some number of time intervals into the future,

FX

£.T be the forecast at time t of the expectéd level
4, :

of process activity, T intervals hence.

The constant A is sometimes referred to as a'weighting
factor or an attenuation'factor as well as a smoothing
constaﬁt, the reasons for this triple identity will become
more obvious in the discussion that follows.

The smoothing performed at time t in order to obtain
Xt is accomplished by adding to the previous estimate of
the process mean, it—l’ some fraction, A, of the forecast
error, (X, - ?t_l), This becomes the latest estimate of
the mean and the forecast FthT until some new information

is added to the system. Algebraically, the model may be

written:
FX = Xt (1)

with the supporting algorithm as
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_t =
Equation (2) may be rewritten in a more convenient form as

X, = AX, + (1 - A)X

t 0L<AKL1 (2a)

t=-1"

and

X = AX + (1 - A)X 0<4Axg1 (5)'

t-1 t-1 t-27

which establishes the form of the recurrence relation., If

X, = io and X is assumed to be of the same form as X,

then by successive substitution into Equation (2)

t N
T,o=4 % (1-0", - 0<A<1 (&)

t 120
is obtained as the most recent estimate of the mean of the
process. If fo is not considered to be of the same form as

Xi’ then Equation (4) may be written

X

"

: : -
A2 Q-+ 1-0T, 0<ag1 (4a)
i=1 ‘ '

where t = M. As M becomes large, the last term of Equa-
tion (%4a) approaches zero, Examination of the coefficients
of Xi in either Equation (4) or (4g) will show that their
sumn is a geometric progression. If it is assumed for a
finite value of t that this geometric progression is equal
to 1/A, then the sum of the weights applied to the histor-
ical data equals one. If the sum of the weights is equal

to unity, it is proper to call_*it an average. The
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term (1 - A)t'i describes the system of weights and adds
the exponentially weighted portion to the descriptive
title of the model. The term moving is attributed to the
fact that it is computed each time a new observation in
the series is available, thus completing the basis for the
title, exponentially weighted moving average.

Since the sum of the expected values is equal to the
expected value of the sum and under the assumptions that
the mean of the Xi series is stationary and that the series

t s
L (1 - A)t * converges to 1/4, the
i=]1

E(Xy) = E(X)Aigo(l ~ 8% L B(X)A(1/A) =E(X), for 0< A< 1,
(5)
Therefore, it is shown to be an approximation to the un-
biased estimate of the mean where the degree of approxima-
tion is dependent upon A and t.

From the discussion of the simple moving average, it
is noted that the response of the model to changes in the
process is dependent upon n, the sample size. Similarly,
in the simple exponential model, the response of the model
to changes in the process is dependent upon the selection
of A. One extreme case is encountered when A =0, which
implies that io is the best estimate of the future behavior
of the process and that all ohserved data are random vari-
ations about this level, This would not be unusual pro-
vided that the process was quite stable and a sufficient
amount of information had been used in determining the

value of foo The other extreme case, A = 1, would be
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applicable in the same type situation as n = 1 was in the
simple moving average model. This occurs when there is a
high degree of autocorrelation between sucdessive values
of Xi“ For those time series in the range thaf is spanned
by these two cases, 1t is necessary to be able to choose
some value of A that will minimize some function of the
forecast error. The magnitude of A determines the in-
fluence of the historical data upon the most recent esti-
mate of the process level. The relationship between A and
the weight given to historical data is shown in Figure 3.
The ordinate values in the uppermost logarithmic cycle are
(1 - 4).

This graph may be used to show comparisons between A
and n. However, 1t should be realized that the simple
moving average uses equal weights for each Xi contained in
the sample n, where those same data in the simple exponen-
tial model are exponentially weighted. The ordinate values
in Figure 3 represent that fraction of the weight unas-
signed. Thus, the ordinate value of the intersection of
an integral abscissa value and one of the lines for A equala
constant is the total weight given to the historical data
whose age is equal to or greater than the abscissa value.
Théreforea in order to determine the total weight given to
the last five months of historical déta, it is necessary
to compute one minus the value 'of the ordinate correspond-

ing to (t - 6).
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As an example, if it is desired to determine the rela-

tion between a five month simple moving average and a

smoothing constant of 0.5,it may be accomplished by moving
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vertically from an abscissa value of t-6 until the line

for A = 0.5 is intersected. The ordinate value correspond-
ing to this point is 0.016; therefore, 98.4% of the total
weight has been assigned to the first five data points
under the exponential smoothing scheme. If it is desired
to make a number of comparisons, then some general level

of unassigned weight should be specified in order that the
comparisons rank properly. Since the time scale is dis-
crete, an exact value for the unassigned weight cannot be
specified.

Even though these comparisons between the moving
average and siﬁple exponential smoothing are possible, the
‘response of the simple exponential model to change is more
sepsitive if the unassigned wéight for the comparison is
iéss than 0.5. Both the simple moVing average and simple
exponential model are more suited for smoothing the process
that is relatively stable about some level with the varia-
tion attributable to random variation as opposed to those
processes generated by a base series with'systematic
variations.

Any reasonable estimate of the mean of the process
level may be used as foa however, if a computational form_
is desired the first P data points of the observed series
may be averaged to obtain foo The numerical value of P
is arbitrary, but approximately one-tenth of the historical
data‘shouldrprovide a reasonable wvalue. Due to the expo-

nential property discussed above, any reasonable value
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will be suitable since the effect that it can have on the
more recent estimates of the process level will be ex~-
tremely small. A detailed discussion of the selection of

A will be presented in Chapter III.
The Model for Trend and Noise

If the observed time series is in fact composed of
some random variations superimposed on a linear trend,
then the simple exponential model will generally be less
capable of smoothing the series than a mpdel formulated
specifically for this type of series.

The simple smoothing of a time series with linear
trend tends to produce a lag of the type that is shown in
Figure 2¢ (page 20). If the series does have a linear
trend, a method of correction would be to determine the
increment attributable to trend per time unit and add that
to the estimate of the mean of the process in order to
obtain the estimate of the next value in the observed
series. Additional notation will be needed to describe
this model. Let

Y. be the time series of differences, ii - Kiul’

which will be referred to as the trend increment

series,

il
ot

be the smoothed egtimate of the trend increment
at time %,
B be the smoothing constant associated with the

variations due to the trend.
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Using these definitions and those of the preceding
section, the mathematical model for a time series composed

of a linear trend component and a mean may be written:

FX, p = X, + 7T, . (8)

The definition of Xt remains the same, but its function
relative to the observed series, Xi’ is changed. This is
due to the fact that Xt does not include the estimate of
the trend. However, the basic logic used to develop the
smoothed estimates in the simple exponéntial model is ap=
plied in this model development, The smoothing is accom-
plished by meking a forecast of the next value in the
series, taking some fraction of the observed error between
the actual and forecast values, and adding it to the last
estimate of the mean in order to obtain the new estimate
of the mean, From Equation (8), the forecast of X, at

time (& 1) is

Flg 1,1 = Fooy * Tyon o (9

Thus,

P
i

g = Ay =Xy -To )+ X 3+ Ty, O0gag1 (10)

AX, + (L-M)E,_ + T ), 0gAg1. - (11)

Applying the same smoothing technigues to the artificial

variable Yi at time t yields
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+ Y

i
i

B(Y, - ¥ _1) b1 0<B<1 (12)

B(X, - X, _;-%. ) +¥._q» 0<BL1 (13)

by definition of Yto The Y.l variable was created as a
notational convenience. The variation in the Yi series is
assumed to be a base series of the linear trend increment
with some noise superimposed. The Yt is essentially a
double smoothing of the original time series. To more
clearly show this, it is necessary to break Equation (13)

down by substituting Equation (11) for X, to obtain

T, - BlAX + (1-A) (T, +T, ) -F - Yt-—l] + T 1o
0<A<1 (14)
= B(AX_ - A%, | -AY, ) +Y 0<B<1
= BA(X, - Kt_l _Yt_l) +Yt__l
= BA(X, - ')'i"t_l) + (1 - BA)Tt_l, (15)

By using the recurrence relation of Equation (11), it
is shown to be a function of all historical data and the

smoothing constants.

— t t-i t=1 tei = t = -
X, = Az (1-4) Xi+i§__l(1_A) T, +(1-8)"(F +T)

G i=1

| (16)
This is of the same form as Equation (#a) and may be
reduced to the form of Equation (4) by making simplifying

assumptions about X  and Y _.
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The Tt is an exponentially weighted moving average
also and may be expressed as a function of historical data

and the smoothing constant by rewriting Equation (12) as

Y, = BY, + (1 - B)Y

. = BY, 0<B<l  (17)

t-1°

which is of the same form as the recurrence relation for

simple exponential smoothing where

- T t-1 ts p
T, = Bizl(l-B) Y, + (1 - B) Y. O0<B<1. (18)

The Tt may be written in terms of the original time series

by application of the recurrence relation of Equation (15).

- t nb-1i : t 5
T, = BAiEl (1-3A) (X; _R’i_l) + (1 -BA) T .

0<A<1l, 0<B<1l.,(19)
Then it may be written in terms of the observed time

series by substituting Equation (19) in Equation (16) to

obtain

- t t-1 t=1 tei i i=j
X, =AY (1l=-4A X, + & (1-A BA © (1-3BA .
= AEQ-0"Tx ¢ TI(-4) E (1-30)

= t = t,= =
S (X =T g) ¢ (L-BATT 4 (L-M)NE +T),

O0<A<1l, 0<B<1l.(20)

The relationship of the smoothing constant A to the
historical data from the standpoint of attenuation rate
remains relatively unchanged, and from Equation (17) it

would appear that the relationship between B and Yi is



53

similar. However, from Equation (19) it is obvious that
the historical data of the original series has less over-
all influence, but also has a slower attenuation rate than
a corresponding simple exponential smoothing process. This
is a result of the product, AB, being less than A or B,
since it is unlikely that for a time series composed of a
trend and random variations that both A and B would be

large simultaneously. However, X_ and Tt each possesses

t
those properties of the exponentially weighted moving
average provided A, B, and t are in the proper perspective.
The mathematical model for a time series composed of a
trend and some random variation is the sum of two exponen-
tially weighted moving averages which use double smoothing
for interpolating the observed time series.

Figure 3 (page 27) is applicable for A, B, or AB, and
it is not necessary to repeat the discussion of the re-
sponse of the model based upon the choice of these
constants. The influence and selection of the smoothing
constants will be discussed at length in Chapter III.

The value of io is determined by the method outlined

in the preceding section, and
T, = (X, - X )/t - ) (21)

where ?e is the average of the last P observations. This
is one simple method for computing the initial values, and
is not to be considered a rule. Any reasonable estimate

of the average trend per interval of time between
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observations over the range of the historical data will be
suitable as a value for TO, Like Xo’ Yo is attenuated in

the computational scheme,
The Complete Model for Trend, Cycles and Noise

'One of the assumptions stated at the beginning of
this chapter was that the general class of economic time
series is composed of a trend, a cyclical variation and a
random variation about some mean level. Thus, the formu-
lation of a general model of the exponential smoothing
type for the general time series completes the model
building phase.

If the series includes a cyclical variation, the model
developed in the previous section will attempt to track
the signal by the trend factor compensating for the cycli-
cal variation to some extent. As would be expected, the
£fit of the model to the observed series would not be as
accurate as a model which includes direct consideration of
the cyclical component.

The problem of formulating a general model is compli-
cated at this point by the fact that cyclical variations
have two common forms. The simpler cycle is assumed to be
independent of the local process mean and its amplitude is
not a function of the level at which the process is oper-
ating. The other general type of cyclical variation is
assumed to be dependent upon the local mean and as it ine

creases., the cyclical wvariations also increase as a ratio,
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These two types of cyclical variations are referred to as
the addi'tive and multiplicative or ratio cycles. Both
types will'be considered in this section, but in general
the remainder of this thesis will deal with only. the. ratio
type, the reason being that the unstable processes are
felt to be more inclined to this type of behavior. The
additional definitions given in this section will also
reflect the ratio type cycles. Let
2, be the artificial variable formed by X_i/fi,

Zt be the smoothed estimate of the cyclical ratio
at time t,
P be the period of the cyclical variation,
C be the smoothing constant for the eyclical
variations,
If the cyclical variation was of the additive type,
the supporting algorithms could be written as shown below

where 2-i would be the artificial variable X, -fio

Xo=hE =Xy =T -2 p)+ X 1+ T 1+ 2 ps

0<Agl (22)
T, = BEy-%, )+ (1-B)T, 0<BL1 (23)
Z, - CZt+(l-G)Zt_P 0<C<1 . (24)

Since Zt is of the simple exponential form, the model would
still be of the exponentially weighted moving average type
and would be written as

Xy p = X+ IT, +2. p.p o (25)
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Before discussing the ratio model, the definition of
Xt should be reviewed in order to establish the proper
perspective. The Xi in this model may be thought of as
the quotient of the observed series and the level of cycli-
cal variation at that point in time, or more simply as a
ratio. Thus, it is the smoothed estimate of the mean
ratio after the cyclical ratio and the trend have been
removed. The trend, however, is determined by the differ-
ence of the successive values of it’ and it too becomes an
estimate of the trend in terms of a ratio. The model for
these assumptions is written as

FXt,T = (ft + TYt)zt_P+Tq (26)
The forecast at time, t-1, for time t, is

Fe1,1 = (Tyq + Tt-l)ztu-P | (27)

Therefore,-

and is a forecast of X  and not the ratio Xto

the smoothing algorithm is written

Xbe p=AXp-Xp (+ ¥y 32 )+ (X +Y 108 p &

0<A<1 (28)
By dividing both sides of the equation by zt-P’ and re-

arranging it gives:

el

= A /Z p+ (L-8)F,_+7 0<A<l (29)

t t~1)°
Notationally, Tt is unchanged from the previous form,

Y. =BEX,-X _;)+ (1-B)Y 0<B<1 (30)

% -1

i
I

£ = C(thit_P)ﬁZt_P 0<Cx<1 (31)

i

Cz, +(1-C)Z, p 0<Cx<1 (32)
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Z, = CX. /X + (1 -C)Z ;. 0<C<1 (33)

The index of Ei is not the same as Yi due to the fact
that each time interval within the cyclic period is assumed
to be different, and the smoothed estimate of the ratio is
adjusted only once each period, therefore, there is a lag
of P time units in the smoothing process. This causes the
attenuation of the historical values of Zi to be at a
slower rate than X; and Y,, but the estimate of Et is
still a function of the historical data and the smoothing

constant, as shown by the series

[t/P] %
— t/Pl=1 "t =[lt/P=-1]P
i=1 t=[t/P - 1i]P
0
+ Z(l—C)Et/P] Z, 0<C<1 (z4)
i=t-[t/P]P

where the [ ] designates the use of the next largest inte-
ger for the expression contained inside the brackets. The
last term in Equation (34) represents the initial values
of the c¢yclic ratio, and will be shown to be a function of
the observed series also.

The series expansion of ?t remains as given in
Equation (19).

By applying the recurrence relation in Equation (29),
end substituting Equation (34) for ‘E’t_P? }“(t may be written

as
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N (1-4)%1 X,
X, =4 : -
¢ ggl E;/P] '[i/P]ul Xim[i/P=°]P < [i/P] %
<:;Z (1-0) e s :Z(l-c) 4
j=1 1=[1/P=31P  3=i-[1i/P]P

t=1 t-i, & i-j - b
+ L (1l-A BA § (1-BAYI(x.-X. +(1-BA)YY
i=1( ) j=1( )TTY( 3 J_l) ( )Y,

+ (1-8)%Z +T). 0<A<1, 0<B<1, 0<C<1 (35)

The values of X  and Y _ are computed as given in the
previous section. The reason it is not necessary to detef=
mine their value as a ratio is due to their being
determined by taking averages of P values which was shown
earlier to mask the effect of cyclical variations. For an
average of the observed series over some interval P to
equal the average of some ratio of the observed series to
the cyclical component, the sum of the cyciic ratios nmust

equal P, at least in the initial estimates. Therefore,
Z, =P (36)

will represent the system of weights applied to the data
within each cycléo The computational form for ﬁi is

quite simple for a given P, but the general form is a more
complex looking group of indices and summations that

follow. Let



39

X,

— l 1 -
Zvi—‘ [1/P]P 1-1929 ODOM

2x 4 - B -5([3]- )T

-P([l/P] 1)+l

(37)
[M] 2.,
z, %f'*& J =1y 2y coos P (38)
i ]1i
7. =j§lzwjzwu . J=1, 2, 009.9 P (39)
j-12 P J

Equation (39) satisfies the constraint of Equation
(36). |

With the initial values of each of the smoothed series
computed and the supporting algorithms for the model, the
model formulation is complete with the notable exception
of the smoothing constants, A, B, and C. The considera-
tions for proper selection of these constants will be the

subject of Chapter IIT.



CHAPTER III
THE MODEL AND FORECAST ERROR -

In some of the referenced works, the authors distin-
.guished between predicting and forecasting future events.
The difference is basically that forecasting is some sta-
tistical technique that ext%?polates the historical data
based upon some stated procedure. Prediction is an esti-
mate of future events that ié based upon the knowledge of
the person doing the predicting. He evaluates all rela-
‘tive processes that may influence the future of the process
under consideration and may or may not analyze the‘histor—
ical datag - The number of people capable of accurate pre-
dictions of the future is exceedingly small, and it is
becoming more routine to use forecasting for the unstable
type of time series. The objective of forecasting is to
pfovide more suitable descriptions of the future activity
involving various unstable processes than could be obtained
by some educated guess. Thus, the forecast error that may
be associated with any fofecasting process becomes an
important factor in the continued use of a forecasting
scheme. To reiterate some earlier statéments in the thesis
the proof of the mathematical model is given by the results
that it produces. Magee (6) pointS'oﬁt that to forecast

40
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the future for an unstable type process is similar to
using & crystal ball, and that a forecast without an as-
socidted statement of the pessible magnitude of the error
is incomplete., Also, there is fhe possibility that the
forecast by itself will be accepbed as fact which would be
misleading.

Another objective is the consideration of the error
associated with the forecast as a means of ilmproving the
parameters of the model used for forecasting. This is es~-
sentially an additional consideration of the error, since
the exponentially weighted moving average uses the consid-
eration of obsérved error as the basis for adjusting the
forecast values. The techniques presented in this chapter
.as improvements of the complete forecasting model presented
in Chapter II are based upon empirical studies of both real
and simulated or artificial time series that were used for
investigation of the ﬁodel's properties. The formulation
of the concepts as presented in this chapter will be sup-

ported by numerical examples in Chapter IV.
Assumptions

A basic philosophy in the study of time series is
that it is always possible to define the generating proc-
ess for the observed time series. This definition may in-
clude a rather large random component from some specilal
distribution, but nevertheless it is not considered as being

mathematically undefined. If the form of the generating process
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is known, then the nature of the analysis of the observed
series is that of estimating the constant terms within the
generating process for that particular series being
studied.

The particular approach used for the time series
model in this thesis is as stated previously in that no
specific type of model for the genérating process is
assumed. However, a forecasting model is used which con-
sists of trend, cyclical variation, and random variation
components. If the generating series is not of this form,
then the model is used to determine the best approxima-
tion of the series that is possible within the limitations
of the model and the exponential smoothing method. If the
use of a particular model in forecasting provides consist-
ently good results, then it would be difficult to attribute
this success to chance alone. However, if the generating
process is of the form of the model and certain statistical
assumptions are satisfied, then the results obtained by
the methods used here agree with those of the curve fitting
types. It has been shown by Brown and Meyer (10) that
exponential smoothing provides the least squares estimate
of the true polynomial signal provided that the data are
of a true polynomial signal and an independent noise

source with the noise digtributed about a mean of zero.
Testing the Model

Discussion would probably be aided by taking a
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specific case of the general model formulated in Chapter

IT. BSince the applications are in the economic time

]

series area, a model using monthly data and P = 12 would
seem appropriate for the purposes of discussion. The value
of P could be 52 or 365, but the computations would become
lengthy, In future discussion, the cyclical variations
become seasonal trends, averages become yearly averages
and random variations may be wvisualized as those random
effects in the process such as those caused by leocal
weather conditions.

The basis for Jjudging the relative merit of the con-
stants will be the error sum of squares. The definition
of the error in this case is the difference between
FXt,T and Xt+T for T =1, 2, ¢..5 N, This is not the only
method of evaluating the smoothing constants and they
could be evaluated on the basis of some penalty scale as-
sociated with the accuracy of the forecast. If the rela-
tion between small forecast errors and large forecast
errors is linear in terms of the penalty associated with
the error, then a logical method of evaluating the con-
stants would be the mean absolute deviation observed over
‘the test series. The test series is that part of the obh-
served series used for making comparisons between the
forecasts of the model and the actual data. This compari-
gson is then used as a measure of the forecast error that
may be expected from the use of a particular model for a

given time series.
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Testing the model brings up an important point that
is often ignored in some of the published works in this
area. For a valid comparison of techniqgues, it is essen-
tial that the forecasting method has no a priori knowledge
of the test series. If the test series is used in the
selection of the coefficients for a model, then there is a
high degree of bias introduced in favor of that particular
model upon the basis of error comparisons. If the test
series is included in the final form of the model, then
the associated error is a smoothing error not a forecast
error and should be evaluated as such. The method used
here is to separate the historical data into two groups.
The earlier group of historical data is used in the sup-=
porting algorithms for the preparation of input informa-
tion for the model and the latter group is used as’a test
series for the model. The first group is that historical
data which was referred to in Chapter II. The older data
is used for estimating the smoothed process via the sup-
porting algorithms for each set of constants used and then
the forecasts are made T periods into the future. The
error is computed as the difference between this forecast
and the actual value. After each forecast, the next wvalue
in test series is absorbed into the smoothed estimates in
order to update the estimates. This is the same way the
model is to be used in practice. After the last observed
value has been forecast wifh the specified T the sum of

the errors squared are averaged and used as a relative
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measure of the forecasting ability of a particular set of
constants in the model. When making real forecasts, all
the historical data is assimilated by the model in order
to provide the latest estimates of the model parameters.

The use of part of the historical data for the test
series points out another advantage of the exponentially
smoothed model approach over the curve fitting techniques
which assume that all the data available are used. It
would become computationally involved if a polynomial
curve fit is used for repeated forecasting and the degree
of the polynomial is increased each time an observation is
added to the series.

The division of the historical data into two parts
creates a question as to how the data should be divided
between the smoothed series and test series. Unfortunate-
ly, in the economic time series, there is some difficulty
in obtaining enough data with the same base series for
appropriate smoothing. It then becomes a question of
using the data for obtaining better estimates of the
process or for evaluating the model. The test series
should be less than one-half of the data and should be
long enough that the estimates of the variance are rea-
sonable from the users viewpoint. If these two conditions
cannot be met simultaneously, some other form of estimation
should be used since the length of the series does not
provide the self-generating type of model with a fair

test. The programming of this model, as presented in the



46

Appendix, has this decision included as a part of the

computational procedure.
Hierarchy of Models

Before discussing the elements of the selection
process for the smoothing comnstants, it should be shown
that the optimal selection of the smoothing constants
automatically includes the consideration of the random and
linear trend models, If a series is composed of random
fluctuations about some mean value, the computational form
for YO given in Equation (21) should become Yo = 0,0, and
similarly Equation (39) yields Zi = 1.0, 1 = =11, «uoy O.
For the set of smoothing constants (A QO O0), the supporting

algorithms reduce to the form

Xp = A% + (1 - A)X, 0<AZ<L1 (40)
¥, =%, =0.0 (41)
Zg,p = Iy = 1.0 (42)

and the model will he reduced to the gsame form as shown in

Equation (1)

FX = X

_b‘)Tm— T=19 2, qooaN (1)

to
The Ei are dependent upon the amount of historical data
used and can be expected to approach unity as the amount
of historical data becomes large and the generating process

continues as a random variation about the mean.



If these same assumptions are made for Ei and the
smoothing constants (A B 0) are used in the complete model,

then the computational algorithms will reduce to the form

X, = A%+ (1-A)(FL 4 + T ) 0<Aagl (43)
T, =B(X, -X _)+ Q-BT_; 0<B<1 (44)
Zi_p, = &y = 1.0 (45)

and the model will become

FX, o= X o+ TT,. T=1,2, 3 ..., N (46)

Thus, by searching for the optimal smoothing con-
stants of the complete model, the two simpler models will
be considered, provided that the process being studied is
of the simpler form. If the generated process is of the
simpler form,this will allow the complete model to assume
the forms discussed above. It should be pointed out that
these search techniques and model formulations are compat-
ible downward only; that is, they cannot be reversed in
direction where the optimum value of the smoothing constant
A 1s chosen based upon single smoothing of the observed
series and the value of B and C optimized in turn for the
optimal values of the preceding constant. The reason is
that the optimal value of A for a series composed of
trend, seasonal and random effects would attempt to compen-
sate for all elements in the series; whereas, with the

trend and seasonal effects removed, the optimal value of A
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would generally be expected to decrease°‘ A similar com-
pensating action could be expected by the other two
smoothing constants. The seasonal factors, Zi's will in-
crease in the abéence of trend factors under conditions of
a steadily increasing trend in the series and will perform
adequately, but become subject to oscillations under con-
ditionsof changing trend. Therefore, there are a number
of ihteractiops within the computational scheme that pre-
vent the step-by-step optimization in the selection of
smoothing constants. This is a case of the model degener-
ating to a simpler form but the reverse optimization pro-
cedure not being possible unless the other parameters are
considered cdncurreﬁtlyg

If the historical data file is short, it is possible
that the supporting algorithms will.not converge to those
values that reflect the simpler process. For example, if
there is some small degree of autocorrelation from one
period to the next for lag P, the algorithm will tend to
show this as a cyclical effect when a random series could

have produced the same degree of autocorrelation.
VSearch Methods

Since the approach used in this thesis has been to find
the best fit of the exponentially smoothed moving averages,
it has now been reduced to the problem of finding the opti-
mum set of smoothing constants. The use of the term opti-

nmum as opposed to minimum will become evident later in the
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discussion, The judgment of optimum will be based on sonme
function of the mean error sum of squares over the test
series. The possible values of the smoothing coefficients
each range over the interval zero to one. Within this
range of values, it is possible to wvisualize the error
mean square as the response of the process to a specified
set of smoothing constants. This response may be discussed
in terms of a hypersurface or an analogy may be drawn Lo a
unit cube filled with a heterogeneous substance. The axes
of the cube would correspond to the smoothing constants
and the density ¢f the substance at the intersection of
the coordinates of those constants as the response. The
object of the search procedure is to locate that set of
smoothing constants which meet the prescribed requirements
of optimality.

The search is complicated by the compensation of one
type of smoothing for another as was pointed out in the
discussion above. This will result in the creation of
local minimums in the error mean square, This type of
response limits the use of some of the mathematical search
techniques. The most important method eiiminated is the

radient method or the method of steepest descent, The
application of this technique here experiences the same
difficulty as when applied in the area of experimental
design, This is, a local minimum may be found instead of
the actual minimum which is the same basic problem for

locating the region of minimum response. With the
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high-speed, large-memory computer, the gradient method is
marginal in some respects except for the academic fascina-
tion of reducing the number of trials required to arrive |
at the minimum value.

An acceptable trial and error procedure is a system-
atic search of the axes. This in turn reduces the search
problem to one of grid size to be used in three dimensional
space. For lack of any better method at this point, it is
suggested that the interval zero to one be divided into
equal increments and applied to all three smoothing con-
stants. The number of values chosen for the search will
be cubed in the final enumeration of points investigated
if zero and one are not included. ZFor example, if the
increments were taken as 0.09 about the mid-value 0.5,
this would result in 113 or a total of 1331 points to
evaluate; whereas, if an increment of 0.15 is used, this
reduces the number of possible ?ermutations to 216. If
the end values zero and one are used, the number of points
to be investigated will be for (m-l) increments or m
points including the end points zero and one, m3-2(m? -m).
If either, but not both zero and one, is included as an
end point in the grid the number of points to be evaluated
is m®-m? +m. This reduction in the number of points to be
investigated is accomplished without a corresponding reduc-
tion in the grid size. The reason for this is when
A = 0.0, B may take on any value between zero and one.

Therefore, this reduces the number of combinations



including A& = 0.0 to the number of different values used
for C. The mathematics in terms of the model may be shown

by demonstrating the effect of 4 = 0.0 in Equations (29)

and (30) by
Ty = Fyop *+ Top) (47)
Y, - B(}_{t - Xt_l) + (1 -B)Y, 4 0<B<1 (48)
= B(Yt_l + ?t—l - it—l) + (1 - B)Yt=l
= B(?t_l) + (1 - B)?tml = ?t-l
-7, . | (49)

There is a similar reduction in the number of points to be
investigated in the case of A = 1.0, since C may take on
any value between zero and one. The effect of A = 1.0
may be demonstrated by the reduced forms of Equations (29)
and (33).

Xy = X/2p (50)

Gy

]

C X /X +(1-C)T p 0<C<1 (51)

C XtZt_P/'Xt + (1 = C)ZtaP

CZ, p+ (1-C)Z, =3

t-P

= Ewi i = "llg "109 000 g O © (52)

If it is desired to complete the grid of constants and
{
error variances, this may be done by using the appropriate
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error term as_determined by A and B, and A and C in the
respective cases. Error variance is synonymous with the
previously defined mean error squared.

The major criticism of the coarse grid search tech-
nique is that it may not locate all local minimums., Due
to the general beha#iér of these error values, this criti-
cigm of the coarse grid technique is not applicable in
this‘case because the local minimums are not of prime in-
terest. The reason the minimum is not of practical inter-
est 1s due to having observed these error values and
reflecting upon the computational procedures, it was found
that the error variance response ig flat in the region of
the optimum constants. The size of the optimum region is
dependent upon the form of the observed process. The more
closely the process agrees with the model, the less criti-
cal the constants become. This is due to the initial de-
terminations of the trend and the seasonal variations
agreeing closely with that which.is observed in the series.
Then the weighting of one estimate of the process relative
to an other estimate produces little change in the fore-
cast. This is particularly true in the case of the trend
and seasonal components of the series.

After the coarse grid is used in the primary search
and the region of the minimum error located, a finer grid
may be used to search within the region. However, due to
the low sensitivity of the model in the area of minimum

error, it is seldom worth the additional effort. Since



the sensitivity is low in this area, it lends support to
the necessity of finding the region rather than a local
minimum. This is because there is some optimal set of
constants and even though they are supposed to be in the
region, the ones selected may be near the optimal set,
but due to the flatness of the response this deviation

does not become serious.
Selection Methods

Now that the search technique has been established as
one of enumeration over a coarse grid, the next step is
the proper selection of the constants from among the pos=—
sible sets that have been explored.

The most obvious selection method has already been
discounted in the discussion above; that is, the use of
the set of constants associated with the minimum error
mean square. However, the minimum value may be in the
optimum region. This set of constants associated with the
minimum value usually arouses some curosity and they are
one of the program options of the program presented in the
Appendix. The next most obvious method is to list the
prermuted constants and their associated error variances
and use a manual selection procedure for determining the
optimum set of constants. Even with the computer this
method has some merit in that it provides the forecaster
with a subjective evaluation of the sensitivity and after

some education in the function of the supporting algeorithms



will give him a better feel for the form of the process
that is being observed by the model and how closely it
conforms with the assumed form. ‘

If each smoothing constant was to perform the specif-
ic tasks assigned without the tendency to compensate for
the other variations in the series, then the selection of
smoothing constants would be simpler, The minimum error
method of selection would work, but as a point for discus-
sion consider the idealized case where the minimum is at
one point and the entire response surface is uniformly
monotone increasing in all directions about that point.
Under these conditions, there are a number of metths that
will work. The smoothing constants for the minimum error
are obtained if, for each value of A that is in the search
grid being used, the error variances for all combinations
of B and C were summed, the minimum sum would provide the
A coordinate of the minimum error. Likewise, if the error
variance for all combinations of A and C were summed for
each value of B, it would provide the B coordinate of the
minimum error. The C coordinate could be determined in
a2 similar manner. This particular method has been found
successful in a number of the real and artificial series
andgbased upon these observations, the general class of
processes for which it is most suitable as a method of
selection of the constants has been determined. This
occurs when the observed series is of the form of the gen-

eral model or one of the simpler forms which, in essence,
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provides a relatively large region of nminimum error. In
order to support this inductively, the supporting algo-

rithms and model will be repeated below for purposes of

discussions:
X, = AX /2, p+ (1 - )&, _+T._7) (29)
Y. =B(X, -X _)+ Q-BY, 4 (30)
Z, =0x. /% + (1 -0)7Z o (33)
FXy po= (B + Y )% pop - (26)

If the process is of the simple form with some random
deviations about a mean, then the initial determinations
of trend and seasonal effects will approach the wvalues of
zero and one respectively. Thus, for optimum fit of the
data and a minimum sum of error squared, the value of A
will be small, since the smaller the value of A the more
historical data are included in the estimate of the mean.
So, assume that the A is small and observe the effect of
changing the values of B and C. In the case of B, the
initial value Yo is assumed to be near zero due to the
type of process being observed. As a result of the small
value of A, the difference (ft - itul) is small since the
smoothed values of Xt differ only by some small fraction
of the latest observation. Therefore, regardiess of the
value of B, the walue of Yt remains near zero for a small

A, Looking at Et for which its initial values were all
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near unity the error would become dependent upon the value
of C since C must be small for the values of Zt to remain
near one and keep from causing the predicted values to
oscillate which would increase the error values. Thus,
for the fixed value of A it can be summarized that by
summing over the values of C, the error terms become a
function of the value of C itself and, therefére, the
selection based upon this summation provides the optimum
value of C for the other values, but since the range of B
has essentially no effect on the forecasts, the error
variance depends upon the value of C and the summation is
simply a constant times the error variance associated with
that particular value of C.

If the value of A is increased in the absence of auto-
correlation in the observed series for a small value of B
and any values of C, the forecasts tend to reflect the
last observed value and, thereby, increase the variation.
As the value of B is increased, the addition of a false
trend component in the model tends to increase the error
variance. In general, the increase of B for the larger
values of A causes a monotonic increase in the error
variance. In those random series and those with small
autocorrelation coefficients that were studied, there is
some compensation for large values of both A and C, but
the compensation is not sufficient to discredit this sum-
mation method for smoothing constant determination. Simi-

lar analyses can be made for the processes that have linear
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trends. or both linear and seasonal trends which have
small values for the autocorrelation of the adjusted ran-
dom series.

The definition of the term autocofrelation in the
preceding discussion was on an intuitive basis. This par-
ticular statistical definition is most important in the
discussion of time series. Let Ty be the autocorrelation

coefficient with lag k.

%, . X. .
. 12 “i-k _
Tx = 8, © ° lgr <1 (53)
i -k

This is the same form as the correlation coefficient
for pairs of observations except they are from the same
series with a lag of k between the observations. If there
are M observations in the series for which it is desired
to compute this statistic, then Equation (53) may be written

in summation notation as

> 11=k(ZM 0“ )/”k

P _lkr-i/-ll : ;Il i=1 .
/2 N = 2y /2
PEEPRERPERPETS

Often, in the more mathematical treatments of the
subject of time series, Ty is assumed equal to zero. In
the relatively Short series of ‘observations that are used

as historical data for the processes discussed here, it is
[
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difficult to reject this hypothesis statistically. This
is similar to providing statistical evidence of non-
randomness in a series. Regardless of the level of sig-
nificance that can be shown statistically, the statistic
Ty is obviously related to the smoothing constants that
are used in the exponential smoothing of the series. This
relationship becomes more apparent if the numerator of

Equation (53) is written in the form,

M
| % X)) Ky - T i)
Ty = bl : o (55)
5x. 8X,

i 1=k

The value of Ty is seen to be dependent upon the values of
M and k for a given series. Since either of the quantities
within the parentheses may be positive or negative and the
summation of the cross products is for all values of i, the
numerator may become small or approach the value of the
denominator either as a positive or negative quantity. If
the values of the series have a tendency to be on the same
side of their respective means for the specified k, then
this is indicative of systematic variation in the series
for lag k. For a large M and relatively small k, the

values of X(i) and i(i-k) approach the same value where

M
X(4y = Z X /M (56)
i=k+1

and
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M-k
X(3-x) =21 Y (57)
1=

There are some relationships between the value of T
and the model that assumes the form of a trend, cyclical
and random variation, that may be stated without rigorous
proof or empirical data,

One point that should be made about a significant
value of Ty is that all points which are integral values
of k in either direction about every point in the series
contributes to the relationship that is measured by T3 not

Just each O

value beginning with the first data point.
Some properties of the observed series may be determined
by looking at Ty for comnsecutive wvalues of k. If r1>>r2>
r5> ver > Thy then the series is seen to be dependent upon
the most recent information as a forecast of future activ-
ity. If Ty = T £ ... T, # 1, then the series has an es-
tablished trend, If the values of z oscillate near zero
for all k, then the series is of a random nature, but if
Ty oscillates about zero with a large amplitude in either
direction, then it has a cyclical variation. The proof of
these observations is by inspection of Equation (55).
Combinations of these basic patterns may be formed for
more complex forms of the time series.

The display of the autocorrelation coefficients for
consecutive values oka is formally known as a correlogram.

Correlograms will be presented in conjunction with the

numerical examples in Chapter IV.
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Since the unstable type of time series may exhibit
patterns within the data that are a function of the corre-
lation for various lag values within the data, a method
for selecting the smoothing constants that evaluates this
relationship should be considered.

If a single set of smoothing constants is to be used,
then it is proposed that the determination of error be
more nearly representative of the actual conditions of the
real forecasts. One method would be to determine the
error variance for lags of one through P and select the
set of constants that has the minimum sum of P error vari-
ances. This procedure should provide a more realistic
estimate of the error that may be expected, particularly
for the stable type of series,

However, since the coarse grid search is being used,
it requirves only a little additional effort to arrive at
an optimum set of constants for each lag value from one to
P, Bince the uynstable series is likely to exhibit similar
properties in terms of the autocorrelation for different
values of the lag a more direct correspondence between the
smoothing constants and the autocorrelation for a given
lag could be used to improve the computed forecast error.

The basic assumption that the generating process for
the series does not change over the range of the observed
data becomes important in the selection of smoothing con~-
stants by this method because the error is based upon the

forecast over the test series and the selection of the
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smoothing constants becomes some function of the autocor-
relation over the test series. If the base series is un-
changed in the test series as in the total historical
series, then the forecast may be expected to reflect the
total amount of information after smoothing; but,if the
test series is not of the same general pattern as the
other historical data, then the forecast will reflect the
test series alone. This in effect has compounded the level
of stability in the observed series either positively or
negatively in the forecast of the future activity of the
process., Therefore, selection of a set of smoothing con-
stants for each interval of the forecast may result in
forecasts corresponding closely to the last period of
historical data.

The relative merits of these methods of selection
will be demonstrated in the next chapter by use of numeri-
cal examples. However., the development of exponential
smoothing as a time series model has grown from the selec-
tion of a single smoothing constant by trial and error to
a systematic procedure for selection of %6 smoothing con-
stants in order to forecast 12 months into the future.

In summary, there have been four separate methods
proposed for selection of the smoothing constants for the
exponentially weighted moving averages and each more suited
for particular types of series. However, the general com-
putational form provides for evaluation of all four methods

simultaneously.
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Selection of Starting Point

It is possible to significantly reduce the error var-
iance by changing the starting point in the historical
data by one unit in time. This particular conclusion was
formed by observing the errors associated with the model
as historical data were added to and deleted from the pro-
grammed computation? Generally, it is necessary to change
the starting point for the historical data more than one
interval of time. vFor example, assume that the historical
data available on a process took the form shown in Figﬁre
4. Under the type of model that is being used here for
extrapolation of the geries, an intuitive starting point
becomes obvious for a model that has a linear trend compo-

nent. This would be sometime after the first year of data.

x(t)

36 9 12 15 18 21 2k 27 20 33 36 39 42 45 43 51 Sh
Figure 4. A Changing Process
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The meduction in the error variance for a progess of
the type shown could be quite large. The main cause of
increased error in considering the whole series is the
computation of Yo oﬁ the basis of the data given would
indicate a very small trend component compared to that .
which actually exists. ©Since the model was not originally
provided with this ability to determine the optimal start-
ing point, the supporting algorithms would attempt various
methods of smoothing the series, each attempt yielding a
larger error variance than could be obtained with a more
Judicious choice of the historical origin of the series.
If the value of B is large in order to discount the initial
determination of the trend, theﬁ it will also feil to rec-
ognize the real trend in the later data. This will cause
the trend factor to attempt to compensate for most of the
variation which will distort the actual seasonal variation
and increase the error variance. If the trend changes
slowly, both the random factor and the seasonal factor will
attempt to compensate for the lack of response in the
trend. The random factor would assume that a high auto-
correlation exists between successive observations and
would cause sympathetic oscillations in the trend factor
or the seasonal factor would interpret the data as having
large seasonal fluctuations. In either case, the forecast
made over the test series would result in a relatively
large error in forecasting and these artificial oscilla-

tions would be carried over into the actual forecast of the
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process.. Also in case of an observed series of this type,
the seasonal factors would become inverted during the

year of decline and would take a much longer time to re-
verse the negative trend in these factors than the linear
trend. Therefore, it is desirable to determine the opti-
mum startiﬁg point to begih the smoothing of the series in
order to provide the latest information as input to the
model, and to provide the most repfesentative data of the
present generating process. This, then, satisfies the
requirements of the assumptions that are made in the use
of the model in that the process that generated the séries
to which the algorithms were applied is assumed to continue
into the future. |

In the example given above, if it is desired to in-
clude this large variation as part of the historical data,
then the period of the seasonal variation should be |
changed to allength such that the pattern as displayed in
Figure 4 would only represent part of the period which
would repeat with similar major fluctuations in the future.
This would only be fair to the forecaster and to the model
as presented here.

In order to solve this particular problem associated
with the use of the model and to obtain less error in the
forecast, the difference operator, A, is used to determine
the best fit of a first degree>equation9'linear trend., to
the observed data for a specified minimum interval of the

historical data. This is accomplished by establishing the
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minimum number of historical data points that will be used
in smoothing the series and then changing the starting
point for the minimum sum of the absolute value of the
third order differences for this interval as it is passed
over the historical data available. The starting point in
the series that results in the smallest sum of the absolute
third order differences is then chosen as the origin of
the observed series for purposes of estimating the parame-
ters of the model. Generally, this intervai would be ex-
pected to be at least seventy per cent of the historical
data available, but not less than 45 months in length un-
less decisions are made external to the automated computa-
tional process,

The third order differences are used instead of the
second order differences in order to facilitate the auto-
matic computation and decision processes. From a theorem
of finite differences, the nth divided differences of a
polynomial of degree n are constant. If the second order
differences were all equal to zero, then an exact fit of
the linear trend would have been accomplished. However,
if something less than an exact fit is to be accepted,
then the magnitude of the second order differenoés can ine-
dicate the best of the choices. For the type of data that
would ordinarily be encountered in the unstable type of time
series, oscillations in successive values of the early or-
der differences could be expected. Therefore, second order

differences could result in two common mistakes in



Judgment. The first of these would be for large alternat-
ing signed values to sum to a small value thereby indicating
a best fit condition. The second would be for a best fit
condition as demonstrated by constant or near constant
second order differences to be rejected in favor of a set
of differences that had begun oscillating. By taking the
third order differences, both of these mistakes are avolded
since the oscillations in the second order differences will
show up as even larger values in the third order differ-
ences and any near fit will have smaller third order dif-
ferences. Also, if the second order differences were in
fact zero indicating a first degree fit of the data., Then
the third order differences would remain zero. The chances
for a first degree f£it and a second degree fit within the
same series under the general rules given for selection of
the interval are remote. A secondary benefit is derived
from this prbcedure if the seasonal variation is of some
low order polynomial, second degree or less, in that this
procedure tends to provide a better fit for the complete
model,

There are some modifications of this general tech-
nique discussed in the Appendix along with the presenta-
tion of this as a program option. A discussion of

empirical results and examples will be given in Chaptexr IV. .



CHAPTER IV
EMPIRICAL RESULTS

From the standpoint of rigor, the analytical approach
is usually preferred over the empirical approach to probe-
lem definition and solution. However, the empirical sp-
proach cannot be discounted in its usefulness and the type
of problems that it approaches., Often, the use of empiri-
cal techniques will precipitate some analytical formuiation
of the same result since the empirical approach provides
some intuitive insight into the action or interaction of
factors that provided a result which is general in form.
The analytical treatment is then used to derive the result®
that has demonstrated ability to provide a solution. One

of the more significant developments of this type was the

development of the t distribution by Student (Gossett) and

the subsequent analytical proof or derivation of that same

distribution by Fisher., There are a number of people

[

U

resently working on time series from both the analytical

o]

¢

and empirical approaches. Of the contemporary investiga-
tors, Brown would probably be a leader from the empirical

studiss approach and Parzen from the analytical approach

to the subJect.
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The empirical approach to these studies has been
advanced in recent years by the use of high speed computers
which make it feasible to consider enough different types
of series to be able to generalize the results of the
study., It was through the use of computer results thaﬁ
most of the material already presented was developed. The
purpose of this chapter is to support those hypotheses and

arguments that were advanced in the previous chapters,
Selection of Data for Study

The original data that were used in the development
of the results presented in this work were actual data
from personnel attrition studies. This type of time
series would undoubtedly qualify as an unstable process as
described in previous discussions. The influences in this
type data are many. Not only are the economic conditions
factors to be considered in the movement of people to
other Jjobs, but the day of the week ending the month and
other such coincidences have an influence upon the monthly
attrition rate. Much of the exploratory work in reducing
forecast error came about through the studies conducted on
these data. These early studies also provided a real test
for this type of analysis. The test of the model was a
comparison between the model and its forecasts of the fu-
ture activity of the process with those predictions made
by an experienced personnel man that had studied the

problem and used economic indicators along with some
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limited statistical analysis of the historical data to
formulate his predictions. The model compared favorably
during these early tests. Subsequent use of a model which
used the minimum error variance for forecast lag value of
one as the basis of smoothing constant selection pointed
out some of the types of errors that could be expected
undep a limited computational procedure. This led to a
trial and error procedure for correcting the demonstrated
deficiencies in the original methods. The improvements
were directed at replacing the pérsonal Judgment methods
that were needed to obtain better resuylts with an automated
decision process.

In the early stages of the personnel attrition study,
a number of the curve fitting techniques were used as time
series models. The variation in the data and computational
complexity involved in arriving at the mathematical form to
be used for extrapolation, caused those methods to be re-
jected in favor of the exponentially weighted moving aver-
ages. Due to some proprietary considerations, the data of
these early studies are not available for presentation, but
it is not unlike data that will be used in the presenta-
tions in this chapter.

In addition to using real world data to study the
model and the forecasting procedure, artificially created
time series data were used for investigating the reaction
of the model to various types of known input variations.

One of the basic experiments used selected combinations
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of a factorial arrangementr of trend, random variation and
additive cyClical variations, . Thé.experiment'was to de-
termine if the model could track and extrapolate a true
signal without error. The signal combinatibns used in-
cluded: different values of slope for a linear trend,
these same trends with three different levels of amplitude
for the sine wave superimposed on the trend. The results of
this particular phase of the experiment indicated that the
multiplicative model could track a process with an additive
type of cyclical variation and that signals of the simpler
form could be extrapolatéd without error. The second
phase of this experiment used thé same base signals with
three different levels of random variations superimposed
upon the base signal. The levels of randomness were de-
termined by the width of the interval for the values used
from a table of random numbers. The basic purpose of the
second phase was to observe the change in the error vari-
ance associated with the increase in the random variations
for the combinations of the base signals used. This part
of the stﬁdy was generally to increase the confidence in
the model.

The group of data that are presented in the illustra-
tions and presentation of numerical results in this chapter
were selected in order to provide a comparison with other
studies that have been conducted along these lines. The
data that are used in the following tables and graphé are

similar to those presented by Brown (7).
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Figure 5. A Series With Noise About a Process Level
TABLE I
SERIES 1 - RANDOM TYPE SERIES
Period

Time 1 2 3 4 5 6 7 8 9
1 102 0832 083 095 126 065 104 080 051
2 107 072 085 079 119 091 111 043 095
2 104 111 108 113 1lle 097 128 088 049
4 094 117 103 123 110 105 096 042 111
5 124 086 118 076 103 086 165 124 077
6 112 095 168 120 089 086 103 102 093
7 079 106 100 072 087 128 111 074 102
8 095 098 114 110 091 104 080 086 081
9 109 113 154 096 102 086 084 081 074
10 067 048 118 0% 089 122 115 111 124
11 114 074 123 118 098 104 126 121 102
12 095 114 116 116 124 111 104 075 060
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Figure 6. A Series With Linear Autocorrelation
Among Observations
TABLE II
SERIES 2 - AUTOCORRELATED TIME SERIES
Period
Time 1 2 3 4 5 6 7 8 9
1 106 113 074‘ 117 155 135 107 021 079
2 105 101 093 11% 138 143 111 093 069
3 108 .102 099 103 146 126 124 099 048
4 097 100 094 125 13?6 124 117 106 O41
5 0% 086 112 125 119 137 101 107 Ob54
6 106 082 115 111 138 125 098 110 065
7 100 064 127 110 151 122 084 107 080
8 111 046 145 102 162 105 0% 107 O64
9 107 048 1%5 113 155 101 103 106 052
10 116 048 134 125 144 102 096 105 056
11 098 063 119 141 134 105 107 090 0&5
12 109 057 118 158 132 107 106 073 063
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Figure 7. A Series With Noise and Trend
TABLE III
SERIES 3 -~ TREND AND RANDOM TYPE SERIES
Period

Time 1 2 3 4 5 6 7 8 9
1 106 091 146 117 056 104 169 203 170
2 113 11% 124 104 112 070 128 153 179
3 076 138 126 041 104 133 192 159 1%6
4 115 145 098 115 074 118 137 162 212
5 155 111 048 096 115 159 130 112 180
) 137 095 104 084 111 136 145 178 149
7 107 067 095 114 138 098 104 177 203
8 089 087 100 125 125 125 153% 114 227
9 079 108 096 117 098 098 147 200 224
10 071 104 125 135 108 118 094 191 199
11 107 101 136 101 065 133 181 214 199
12 101 103 124 108 116 072 16l 172 188
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Figure 8. A Series With Cyclical and Random Variations
TABLE IV
SERIES 4 - CYCLICAL TYPE SERIES
Period
Time 1 2 2 4 5 S 7 8 9
1 190 183 198 181 138 183 208 151 168
2 157 174 144 172 130 148 146 156 146
3 185 156 126 131 163 109 129 16l 171
4 098 145 149 125 144 115 158 119 103
5 125 085 141 082 094 118 118 103 063
6 091 037 100 050 096 076 126 117 O54
7 098 128 104 112 141 105 112 106 123
8 112 108 119 140 105 127 070 094 069
9 101 134 161 170 123 132 085 147 128
10 151 202 148 122 138 183 176 174 141
11 227 201 213 130 188 175 179 167 195
198 194 202 203 189 195 240 168 211

=
no
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A Series WithTrend, Cycles and Noise

TABLE V

SERIES 5 - CYCLICAL AND TREND TYPE SERIES

Period
Time 1 2 3 4 5 ) 7
1 113 116 146 172 197 205  24%
2 119 125 151 179 195 189 232
3 131 142 177 192 2%5 234 268
4 130 134 162 180 234 228 268
5 120 126 173 182 230 233 271
6 136 148 179 217 242 263 316
7 149 171 200 229 163 301 @ 365
8 149 171 200 241 273 294 348
9 135 157 185 210 238 260 313
10 120 132 161 192 = 210 228 275
11 105 113 145 171 181 202 238
12 117 141 165 193 202 228 279
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Figure 10. A Series With Autocorrelation of a Different
Type
TABLE VI
SERIES 6 - NON-RANDOM TYPE SERIES
Period
Time 1 2 2 4 5 6 7 8 9
1 168 418 582 433 547 629 511 492 570
2 294 360 550 473 582 610 456 504 510
3 244 302 514 529 019 o6l4 471 494 568
4 273 401 575 493 671 659 514 428 634
5 42z 476 518 549 89 571 549 404 658
o 481 487 482 537 748 552 581 403 59
7 521 484 507 476 793 467 466 436 66l
8 595 525 486 437 765 501 554 535 628
9 | 522 450 535 414 698 420 460 547 631
i0 552 526 479 481 612 446 407 488 518
11 462 5322 426 464 628 442 401 568 589
12 391 501 539 463 673 461 437 4973 635




Enumeration as a Search Method

The discussion in this chapter will parallel that of
the preceding chapter when possible. The first peint that
was made in Chapter IIT was %that the enumeration of the
coarse grid values was the proper approach to the search
for the appropriate set of smoothing constants to be used
in the computational algorithms., Table VII is an enumera-

£ 60

\,0

tion of the error variances as computed for the las
values of the data of series 6. This grid of values demcn-
strates the existence of local minimums, which is the Type
of oécurrence that was discussed relative to the use of
the gradient method of searching for the minimum value.
This may be determined by comparing the response at point
(0.4 0.2 0.2) with its adjoining values.

The adjoining values of this point are all points
that may be defined by combinations of A = 0.2, 0.4, 0.6,
B = 0.0, 0.2, Ou.4, and C = 0.0, 0.2, O.4. These points
may be identified directly by inspection of Table VII. A
convenient means of identification is the construction of
lightweight 1lines through the table for each value of
the constants given above. This is done in an independent
manner considering only one smoothing constant at a time.
Upon-éompletion of this construction of lines, there will
be 27 intersections of these lines in three columns and
nine values per column. The center value will be the

point being investigated and the comparisons may be made



TABLE VII

ERROR VARIANCE TABLE FOR SERIES &

. , 1 |
_ ” 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.0 48815.76 6930.61 3572, 14 2421, 04 4011.73 5212.46

G.2 48815.76 3242,18 2796.59 3251.35 4272,08 6143.48

0.4 48815.76 %6%7.,17 2820. 37 3543, 55 4954..7% 773145

0.6 48815.76 2967. 26 2982.52 32974.,09 5863.%7  10033.60

0.8 48815.76 2552.56 3261.08 449748 7011.43  13462.06

1.0 48815.76 2559, 54 3522.36 5051.27 8472.51  18884.26

0.2 0.0 4832%.25 6443.78 351%.67 3411.86 4025. 36 5212.46
0.2 48%2%.25 2916.57 2776.8% 3257.76 429%,35 614%,48

0.4 48323.25 3151.49 3011.52 3615.,87 4994.83 7731.45

0.6 48%2%.25 2882.06 3517.08 4080.93 5914.49  100%%.60

0.8 48323.25 3135,07 4217.40 4588, 04 707%.57  13462.06

1.0 48%23,25 3566.99 4889, 84 5119.99 8560.76  18884,26

0.4 0.0 47131.48 6265.17 3624 . 54 2430, 31 4029.90 5212.46
0.2 47131.48 3254 42 %061, 34 3207 43 4297, 24 6143.48

0.4 471%1.48 365%, 42 3634.5% 3722 4% 5009. 35 773145

0.6 47131.48 4711 .74 454%,85 UoU8 ., 46 5929.80  100%3.60

0.8 47131.48 5891.81 5801.97 4799, 54 7079.64  13462.06

, 1.0 47131.48 6558.93.  7083.93 5%657.28 8553%.76  18884.26
0.6 0.0 45147.99 €411.96 3955.16 3502.2% 4027.96 5212.46
0.2 45147.99 4229.66 3761. 34 340498 4289.09 6143.48

0.4 45147.99 5280.75 4932,46 395%.10 5006.71 7731 .45

0.6 45147.99 7901.92 6415.52 4625.57 5921.95  10033.60

0.8 45147.99  13094.72 8514.95 5%94,91 7048.29  1%462.06

1.0 45147.99  15219.25 11118.25 6207.71 8477.1 18884.26

o



TABLE VII (Continued)
_ N _

. 0,0 0.2 Q.4 0.6 0.8 1.0
¢ 0.8 B 0.0 42706,70 6890. 31 4542.68 3656,03 4023.3% 5212.46
0.2 4.2706.70 5954.92 4952.08 3701 .59 4276,.00 ©l143.48

Q.4 42706.770 93%326.05 7152.3%3% 441%,48 4998.10 7731 .45

0.6 42706.70 15362,72 9540.63% 5401.78 5908.78 1003%.60
0.8 42706.70 29304 .27 12671 .24 6756, 24 7007.80 13462.06
. 1.0 42706.70 29686.97 17286. 26 8314.91 8376.25 18884, 26
¢ 1.0 B 0.0 40476.09 7748, 24 5401.78 3917.94 4020.43 5212.46
0.2 40476.09 8962 .62 6638.62 4189.16 4266.20 0143%.48

O.4 40476.09 20218.20 10493%.85 5225.75 4996.92 7731 .45

0.6 40476.09 30057.8% 14226, 36 6818.80 5912.46 100%%.60

0.8 40476.09 60354 . 64 18350.76 9438.58 6994 .76 13462.06

1.0 40476.09 253590 .64 12811.68 83%16.15 18884, 26

103716.98

64

<
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directly. Since it is not convenient to use this method
in this presentation, these values are displayed in Table
VIII. If any part of the smoothing constants for the
point being investigated as a minimum are 0.0 or 1.0, this

grid size will be reduced by a corresponding amount.

TABLE VIIT

JLLUSTRATION OF A LOCAL MINIMUM IN THE
ERROR VARIANCES FROM TABLE VII

A
0.2 0.4 0.6

0.0 69%1 3572 3421
0.0 B 0.2 o420 2797 3251
0.4 2637 3820 3544

0.0 644L 3514 3412

C 0.2 0.2 2917 2777 3258
0.4 2151 3012 3616

0.0 6265 3625 3430

0.4 B 0.2 3254 3061 3297
O.4 3653 3635 37722

The occurrence of local minimums is not uncommecn, and
three or more may be found in the 216 point grid for some
of the unstable series. With this one example, it is pos-
sible to discount the use of the method of steepest descent

as a general technique for leocation of the minimum value
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in the search grid. The method of steepest descent would
locate the position of this local minimum provided that
the initial points for investigation were selected in this
general area, If the method of steepest descent were‘used
for a smaller grid size than used above, it.would be rea-
sonable to expect the number of local minimums in the
hypersurface to increaséa

By inspection of Table VII, the actual minimum value
for the searph grid that was used occurs at the points
(0.2, 0.8, 0.0). It is irrelevant at this point as to
which of the above is the optimum set of constants. The
fact that loéal minimums can exist in the response of
series to the smoothing constants Jjustifies the selection
of an enumeration method of.search over the‘method of

steepest descent.
Selection of the Search Grid

The search grid is intended to serve two purposes,
the first is locate the region of optimum error variance
and the second is to do this as economically as possible.
The economy:is measured in terms of the degree of conver-
gence fhat is desired for the error variance and the com-
pﬁtatfonal effort involved.

The size of the region of optimum error variance is
dependént upon the observed series; The grid should be
selected fine enough to assure that at least one point iﬁ

this optimum region will be obtained. Generally, this



particular'value for grid size is unknown, but the 0.2
increment used in this study has provided the general type
of balance that is discussed above. When a local minimum
is found, the grid size can be decreased for a search in
the general region of that point. The finer grid search
may be used upon a judgment basis; for example, if the
values of Table VIII were of the same magnitude, this
would indicate an optimum region and further search within
that region for a smaller value of error variance could
not be justified from an economic standpoint.

For the type of search grid that yields more than one
local minimum, the finer grid may be used to determine
which of the regions has less variation in the error vari-
ance values of that region. If there is only one local
minimum, then the use of the finer grid should also be
used on a Jjudgment basis. In order to demonstrate the
type of region that is desired and the method of choosing
between local minimums the data from series 6 will be used
in conjunction with a grid of values that are one-half the
size of the original search grid values. These grids will
be used for the two local minimums discussed aboveu The
idea of a local minimum was illﬁstrated above and is used
here, with reference to the cube analogy, as a wvalue that
is less than its nearest neighbor in each plane and on the
diagonals. The points (0.4 0.2 0.2) and (Q,2 0.8. 0.0)
are the only local minimums in the error variance grid for

series ©. Therefore, a grid of size 0.1 is used to search
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the region around each of these points. The results of

these searches are displayed in Tables IX and X.

TABLE IX

ERROR VARIANCE TABLE FOR GRID SIZE O.,1
ABOUT THE LOCAL MINIMUM
(0.2. 0.8, 0.0) OF

SERIES 6
T -
Ool O.2 ODB
B B B

0;7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0,9
0.0 8237 9027 8607 2678 2553 2536 2714 2794 2937

0.1 ’768’7 83290 7965 2591 2602 2693 2994 3241 3558

TABLE X

ERROR VARTANCE TABLE FOR GRID SIZE 0.1
ABOUT THE LOCAL MINIMUM
(0.4, 0,2. 0.2) OF
SERIES 6

— —
0.3 O.4 0.5
B B B )
0.1 0.2 0.3 0.1 0.2 0.3 0.1 0,2 0.3
0.1 2747 2737 2745 2714 2754 2800 2866 2943 3040
¢ 0.2 2718 2725 2799 2712 2797 2870 2959 2959 3085

0.3 2782 2836 2969 2768 2874 32033 2891 3008 3169
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The grid size may be made smaller until the values in
the. search area have converged to some specified fraction
of the miﬁimum value withinrthe table. In the examples
abbve? éhe smaller grid was taken as one-=half the original
grid. This is not a rule and any iterative technique that
yields the desired level of convergence may be used.

The general computational scheme for this thesis used
grid values equally spaced for each of the smoothing con-
stants. This is not necessarily the most efficient method
since a number of observations of the error variance tables
for various observed series indicates that the response of
the error variance is less sensitive to changes in the
seasonal smoothing constant. This would indicate that a
~more efficient search might be obtained for the same amount
of computational effort by making the increments of A and

B smaller and increasing the increments of C.
Manual Selection of Smoothing Constants

One of the methods of selection of the optimum set of
smoothing constants is a manual manipulation of the error
variance table. This is probably the most reliable method
of selection for the general caée and should not be over-
shadowed by the refinements that are presented lat%r.

| This procedure follows that which was used to arrive
at the values presented in Tables IX and X. After the

local minimums have been compared, it is desirable to

choose the smoothing constants associated with that
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local minimum which has the smallest amount of variation
among those values in that region while remaining rela-
tively near the minimum value observed. This selection
could he aided by using a relative measure such as the
coefficient of variation, but the additional computations
cannot be justified on the basis of past experience.

If the selection of the smoothing constants is made
on the basis of the information given in Tables IX and X,
they will be the set (0.4 0.1 0.2). This choice is Justi-
fied on the basis that the values of error variance in
Table X have less variation than those of Table IX. This
is particularly desirable since variations in the process
would be less likely to influence the error variance sig-
nificantly. This is one property of the forecast that is
most ilmportant in that the "best'" estimate of the error
variance, as determined by the procedure outlined above, is
needed since the process may vary with time. Thus, the
term optimum error is used to describe the basis for
smoothing constant selection rather than minimum error.
The coefficient of variation for the value selected is
0.0942 which is only 0.0031 greater than the minimum value
of Table IX. Therefore, the conditions of smoothing con-
stant selection have been satisfied and arguments presented
for their Jjustification.

One other point that should be noted from this example
is the efficiency of the coarse grid as a search method

for locating the minimum error variance values in each of
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the tables. In both cases, the change in the coefficient
of variation between those values that are common to Table
VII (page 78) and Tables IX and X (page 83) is less thamn
0.0010.

The composition of the series in terms of non-random
variations determines toa major degree theﬁobserved fore-
cast error for this time series model. At this point in
the discussion in this chapter, the observations have been
based upon those results obtained for a forecast lag of
one unit of time. The definition of lag is the number of
time units between the smoothed values of the series and
the forecast value. For a lag of one unit, the forecast
is made one unit into the future and error observed before
the smoothedvestimates are recomputed and the next fore-
cast is made., In order to summarize the numerical results
that have been considered up to this point in the presen-
tation and to provide a basis for comparison with the fu-
ture developments, Table XI compares the error variance
for the manually selected smoothing constants for'forecast
lag of one time interval with the va‘.fiance of observed series.

These smoothing constants were selected by use of a
coarse grid_with an increment of 0.2 and the secondary
grid of 0.1l. The secondary grid was applied to all local
minimums that were obtained with the coarse grids. The CV
is a common statistical term for coefficient of variation
which is the standard deviation divided by the mean. This

provides a relative measure of the variation.



TABLE XTI

COMPARISON FORECAST SUMMARY OF ERROR VARIANCE

AND OBSERVED SERIES VARIANCE

87

Series Series Series BSmoothing  Error CV x 100

Variance Mean Constapps Variapqe‘Sepies Error
1 504.8 98.7 .0 .0 .2 625.1 22.77 25.34
2 S44.4  104,6 1. .0 .0 153.2 22.32 11.84
3 1159.1 129.9 .0 .0 .2 1229.6 26,21 27.00
4 1589.2 140.4 .0 .0 .O 703.5 28.40 18.89
5 2145.9 207.8 .1 .3 .7  233.3 22.30 7.35
6 o2 19.02 9.88

10050.0 526.8 o4

2712.2

The explanation of the differences observed in the

pairs of variances are due to the form of the observed

series and the fit of the time séries model that is

assumed for these general types of series.

In the next

section, arguments will be presented in explanation of

Table XI.

The Observed Series and Autocorrelation

The form of the observed series can be hypothesized

from inspection of the autocorrelation coefficients for

consecutive lag values provided that the forms are re-

stricted to combinations of random, trend, and cyclical

variations.



The autocorrelation coefficients for lag values 1

through 12 for each of the six series presented on pages

71 through 76 are given in Table XII.

TABLE XII

AUTOCORRELATION COEFFICIENTS FOR LAG VALUES 1 THROUGH 12

Series
Lag 1 .2 3 4 5 6
0 1.0 1.0 1.0 1.0 1.0 1f0
1 0,092 0.901 0.455 0.567 03858 0.822
2 0.042 0.795 0.463 0.239 0.770 0.720
3 Ofl62 0.,69%2 0.370 -0.017 0.698 0,551
4 -0,034 0.58% 0.231 -0.359 0.662 Of564
5 0.132 0.502 0.431 =0.569 0.5664 03262
6 0.061 0.43%2 0.262 =0.6%6 0.656 0.176
7 ~0.026 0,364 0.426 -0.564 0.656 0.112
8 -0.064 0,319 0.481 =0.2063 0,648 0.15%
9 -0.039 0.206 0.535 0.028 0.699 0.106
10 -0,027 0,206 0.93% 0.3%22 0.776 03105
11 -0,085 0,154 0.505 0.579 0.851 OFO?l
12 0,093 0,105 0.501 0.651 0.912 0.052

The data presented in

cussed for each of the series in turn.

Tables XTI and ¥II will be dis-

The measure of +he
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significance of the autocorrelation coefficients is
usually compared to those obtained from a normally dis-
tributed random series. Anderson (11) provides an approx-
imate wvalue of Ty that can be used to test for a
statistically significant non-random series. The wvalue of
T changes with the number of observations included in the
computation and the lag value used. Therefore, for the
purpose of discussing those example series given, a con-
servative value of T > \Opal will be considered indica-
tive of a non-random series withsignificant autocorrelation.

Some insight may be gained by referring to the graphs
of these series on pages 71 through 76 during the discus-
sion of the inferences that are drawn from the autocorre-
lation statistics. Visual comparisons may be made by
taking a fixed interval equal to one of the lag values and
moving it along the graph of the series to determine a
quaiitative gstimate of these relationships.

Series 1 is a series of a random nature since the Ty
are all less than 0.2 in absolute magnitude. This could
have been assumed by looking at the graph of the series.
However, some periodicities may not be obvious from a
cursory examination. Therefore, the best estimate of the
future activity of this process is the mean or exponential
smoothing with a very small smoothing constant. This is
confirmed by thé value of the variance of the series being
less than the error variance for series 1 in Table XI. The

optimum smoothing constants reflect this in that the random
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and trend constants are both zero which impliés that the
io and ?0 estimates of the process provide minimum error
for this model. However, the smoothing constant for the
seasonal variation was not zerc since the series is not
lengthy enough for the values of 'Z“i., i=<1ly o0.5 O to
approaqh'oneu This made it necessary to use some smooth-
ing in an attempt to smooth these estimates. By using the
assumed model, there are forecast that are even more
errcneous due to the negative values of some Ty, in this
series. This causes,the error variance td become greater
than the series vafiance° Based upon these observations,
this series is of a random form.

Series 2 has very high autocorrelation éoefficient
for small lag values that»diminish at a near linear rate
for theblarger lag values. This would imply that the more
recent observations are the best estimates of what may be
expected of the process in the future. Since Tio is small
enough to be from a random_seriesg this would indicate a
lack of séasonal variation. The r,, ..,,ﬁildecrease
monotonically which indicates a lack of trend. If a trend
were present, the Ty would expect to approach some common
value whose magnitude would be dependent upon the evidence
of a trend. .

The smoothing constants reflect the analysis prgsentéd
for the Ty since there 1is such a high degree of autocorre-~
1Ation for lag one. There is little reason to improve

upon the estimates of the future over the last observed
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value . The.smoothing constants (1.0 0.0 0.0) provide:
this type of forecasts since the estimates of the trend,
?09 and seasonal effects, Ei’ i=-11, ..., O, are not
changed in time by the smoothing and the changes in the
FXt,l are directly dependent upon the most recently ob=
served value, th Since C can take on any value without
affecfing the results, the problem of smoothing the initial -
estimates of the seasonal factors is not a point of con-
sideration in this series as it was in series 1.

The use of A = 1.0 allows the model to assume either
of the simpler fofms of variation about some mean level or
about a linear trend since the seasonal variation is re-
moved from consideration by this selection of A. This
type of correlation along with A = 1.0 accounts for the
error variance being less than one-third of the series
variance.

Series % has significant autocorrelation that is rel-
atively constant with the exception of Tys Tgs and Ti0°
As indicated in the discussion of series 2, the relatively
constant values of T around 0.45 indicates a trend in the
series. Essentially, this states that for any lag value,
the length of iuns of data on one side of the mean consid-
ered is relatively long for a trend type series. This may
be shown by computing Ty for a linear trend without any
noise. The frequency of occurrence of identical algebraic

signs in the numerator of Equation (55) will determine the

magnitude of Ty The value of T is an indication of the



significance of the trend effects compared to other in-
fluences in the series.

Aside from the evidence of a trend with some random
variation, there is a major point demonstrated in this
particular series by the large value of T1g° This is,
these data_are not analyzed properly if a period of length
12 is used. The series is periodic for a period of 10
time intervals which is well established by the magnitude
of rio and by looking at the graph of the series. These
data should be analyzed with the same basic time series
model, but for P = 10.

The smoothing constants selected upon the basis of
P = 12 illustrate the attempt of the model to compensate
for this pattern but does not provide an estimate of errcr
variance that could be expected if P were equal to 10,
Since the values of A and B are zero as would be expected
under the normal yearly data analysis and the initial de-
termination of trend and mean value were appropriate for
the series. However, this would change for P = 10. The
value of C is small since the seasonal variation shifts
time units each year and the model attempts to adjust each
year, but to the model these are unstablélseasonal varia-
tions and are weighted accordingly. This series has a
trend with random variations and a seasonal variation for
a period of 10 units in length. Two particular points
that are worthy of note are that constant wvalues of Ty in-

dicate a trend and a singly large value of Ty is indicative
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of a cyclical variation for period of length, k.

If this series is judged on the basis of P = 12, then
its form would be analyzed as a séries with linear trend
and random variation superimposed. If a P of 10 is used,
the series is of the form of a linear trend and seasonal
variation with noise superimposed.

Series 4 is another general type of non-random series.
The magnitude of the Ty is important for determining the
form of any series, but again the pattern of the Ty is of
major importance. There are oscillations of the Ty from a
significant positive value to a significant negative
value and back to the positive value. This pattern is not
difficult to decipher since the Ty is indicative of the
relative likeness of the values of the serieé at intervals
of the given lag. Therefore, with the fluctuations in a
general pattern, the oscillations or the seasonal varia-
tion is illustrated in the Ty themself, The magnitude of
Ty does provide some qualitative measure of the amount of
randomness that is present in the process. Generally, the
larger the amplitude of this oscillation in the r, the
more pronounced the seasonalvariation. .Smoothing constants
selected indicate that the series is rather stable and
initial determination of the pattern of the series pro-
vides the least error variance for forecast lag of one
unit of time. This fit of the data by the basic arithme-
tic'procedures provides a reduction in the error variance

over the series variance by more than one-half.
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Series 5 is a general class of series for which the
model presented in this thesis provides the best results.
By inspection of the graph on page 75, this series could
be described as one with a trend and multiplicative sea-
sonal variation. The T, are similarly indicative of this
type of series, This series combines the features of se-
ries 3 and 4, as shown by the Ty remaining nearly constant
with the pattern of the seasonal variation superimposed
upon the trend. The magnitude of Tyo is indicative of the
continuing seasonal influence in the series. Other than
pointing out the obvious values in Table XII which provide
bases of comparison for Ty and the graphical display of
the series, nothing can be added to prior discussions
about how the‘rk reflect the series proper,

A more interesting point provided by this particular
series is the selection of the smoothing constants for
Table XI. The set of constants shown in the table are not
that set which provides the minimum value of the error
variance, This particular series has three local minimums
in its error variance table, After applying the 0.1l in-
crement grid in these local regions, the minimum points in
each region were (0.2 0.2 0.1), (0.1 0.3 0.7), and -

(0.1 0.1 1.0) with error variances of 422.46, 2323%.28, and
189.70, respectively. This made it necessary to choose
the constants that provided the least change in the error
as a result of their being in a more optimum region or less

sensitive region. The constants were selected after
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consideration of the local minimums created by the
seasonal factors compensating for theltrenda It was pri-
marily for this reason that the second set of constants
were selected. These appeared to provide more balance in
the weighting of trend and seasonal effects. The interest
is in providing the best estimates for forecasting the
future.

The first set of constants relies heavily upon the
initial determination of the series pattern and the his-
torical data. These will not allow the model input_to
change quickly enough to.keep pace with the process. The
third set includes C = 1.0, which emphasizes the impor-
tance of the seasonal variation and appears to account for
some part of the trend in its estimates of the smoothed
seasonal variation. This will provide good forecast re-
sults as long as the process continues to be of this form;
however, a slight deviation or change and this set of con-
stants will not fespond properly.

Series 6 is similar to serieé 2 in that it does not
have a trend or seasonal variation that is discernible by
by inspection of Tis eoo Pqpos but it does have large values

of r, for k < 5. The values of Ty do not decrease in a

k
linear fashion, but are more of an exponentially decreasing
form. This indicates more randomness associated with the
variation about the process level.

From the analysis above of the form of the series as

established by the appearance of the Ty the smoothing
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constants would be'expected to be similar to those of
series 2, However, they are not similar and this would
appear to be one of those cases where the selection of
smoothing constants provides a better fit of the data than
would normally be expected. The explanation of those con-
stants listed in Table XI is that they provide a best fit
of the data and consequently are ablevto reduce the error
variance to a value less than one-third of the series
variance.

These six series are representative of the unstable
type series that are found in economic processes. The
foregoing discussion was presented in order that the fol-
lowing discussion may be more coherent. As indicated by
earlier discussion and supported by the above examples, the
more closely that a series conforms to the type of sea-
sonal and trend effects assumed by the model, the smaller
the forecast errors. The basic concept is to reduce the
error variance through proper selection of the smoothing
constants. A major part of the discussion pertaining to
the relationship between smoothing constants and autocor-
relation has been derived from observation of the test

series and experimentation with the model.

Selection of Constants by Sums

of Error Variances

For the computational procedure that uses a forecast

lag of one time unit for purposes of error variance
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computation, there have been two methods of smoothing
constant selection discussed above. One of these methods
is based upon considerations of minimum values without
considering the sensitivity in that region. The other
method involves manual manipulation or decisions external
to the computer. The prime reason for providing an addi-
tional means of constant selection is the chance for the
interaction of the constants and the series to produce a
minimum value of the error variance in a highly sensitive
region of the error variance response. This selection
procedure may be performed entirely by a computer.

The method that was proposed in Chapter III to
aleviate this condition was the summation of the error
varianceslfor each value of the smoofhing constant over
the values of the other constants. The arguments presented
were on the basis that the optimum region would influence
the sums of the error variances more than isolated points
could be expected to reduce the sun.

For series 6, the results of these summations are
displayed in Table XIIT.

By inspection, the set of constants which has the
minimum éum in each column is (0.6 0.2 0.0). The sum for

C

li

0.2 is approximately equal to the minimum sum at

C

L}

0.0 and this is worthy of mentioning at this point.
The minimum value from Table VII occurs for smoothing con-
stants of (0.2 0.0 0.8) and was shown in Tables VIII and

IX to be ‘less desirable than the local minimum which has
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smoothing constants of (0.4 0.2 0.1). The values provided
by +this example do not coincide exactly with this local
minimumy however, they are in the same local region as
defined earlier and are not in the local region of the
minimum value. The difference in the coefficient of vari-
ation for selected constants in Table XI and those chosen
from Table XIII is 1.21% or increases from 9.88 to 11.087.
If a secondary grid is used about the set of constants for
minimum sums, the local minimum resulting from that search

reduces this difference to near zero.

TABLE XIITI
SUMS OF ERROR VARIANCES FOR SERIES 6

Constant Sum on A sSum on B sum on ©
0.0 1635607 414654 454031
0.2 4o2643 408825 454366
0.4 2U{BUS 450737 461707
0.6 174433 502213 485070
0.8 208216 598314 547212
1.0 268804 720505 692862

Total 2095248 3095248 2095248

This method of constant selection for the other five
example series located the optimum set exactly for series

2s 3, and 4 and was an adjacent point in the coarse search
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grid to the selected optimum values for series 1 and 5.
For the basic computational procedure of constant
selection based upon errors for forecasts with a lag of
one this procedure of error summabion has been demonstrated
as suberior to selection of constants based upon minimum
error alone. If there is only one minimum in the error
variance table, this method will locate that region and if
there is more than one local minimum it will select the
optimum region as determined by the relative sensitivity
of the error variance to changes in the smoothing con-
stants. This hypothesis is supported by the additional
test series that were used in the empirical derivation of

these smoothing constant selection methods.

Selection of Smoothing Constants Based Upon the
Sum of Error Variances for Consecutive

Lag Values

The methods of the preceding section were developed
for the selection of the optimum set of smoothing con-
stants based upon error variances computed for forecasts
of lag one. ©Since the forecast fqr the series is usually
made a number of periods into the future, it follows that
a more conservative type of testing the forecasts for the
series would be to use consecutive lag values for fore-
casts over the test series. This provides an estimate of
‘the error variance for each lag value. The tests of this

procedure used lag values of one through 12.
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The smoothing constants selected after computation of
the error variances associated with the consecutive lag
values are those associated with the minimum sum of these
error variances; If the immediate forecast values are
considered more important than the more distant future
values of the forecast, these values may be weighted to
provide this as an inherent consideration of the computa-
tion process. The improvement in the over-all optimality
of the smoothing constants for the total length of fore-
cast may be seen by comparisons provided in Table XIV.

The comparisons shown are between those error wvariances cf
the minimum sum for consecutive lag values and the optimum
constants from the error variance tables for forecasts of
lag one. The values for series 3 and 4 are not shown
since both sets of constants are identical and the error
variances are as shown in Table XI.

In addition to illustrating en improvement of the :
method of selectlng a set of smoothing cong%antngable XIV
demonstrates the appllcablllty of evaluating the lag of the
forecast dnd 1ntegrat1ng the consideration of future time
by appropriate weighting of the error variances. Table
XIV also provideé information on the form of the process
and the hoise associated with the process. If the series
is of the form assumed by thé model, the error variances
are less than those for a more complex process.

Ecohomic time series generally have noise superimposed

. upon the base series. If the base series can be defined;
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TABLE XIV

COMPARISON OF ERROR VARIANCES BETWEEN METHODS
OF SMOOTHING CONSTANT SELECTION

Series 1 1 2 2 5 5 6 6
A 0.2 0.0 6.0 1.0 0.0 0.0 0.2 0.6
B 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2
C 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0
Selec- |
tionby CIL* MS* CL MS CL MS C L M S
Lag
1 686 625 194 153 521 427 3242 2777
2 558 625 383 394 521 503 3490 2526
3 620 625 496 538 521 555 4895 4261
4 628 625 562 574 521 594 5725 4307
5 629 625 663 652 521 583 7600 5864
6 605 625 794 798 521 676 9120 7014
v 637 625 909 947 521 778 12159 12783
8 573 625 931 1012 521 833 13654 14905
9 588 625 888 941 521 751 16922 22364
10 504 625 879 .. 920 521 706 18491 25864
11 529 625 857 927 521 705 20961 31862
12 666 625 787 853 521 819 22625 35654

*C L represents the selection of constants by the mini-
mumn value of error variance for values 1 throughl?Z.

**11S represents the selection of constants by the mini-
mum sums of error variance for lag of one.
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then the errors in the extrapolation of that base series
is dependent upon the distribution of the noise in the
series. If, in fact, the base series as determined extends
through the period of the forecast, the accuracy of the
forecast cannot be expected to be better than the noise
level present in the process. However, if the base series
is defined by the model, the inherent process variance is
approximated by the error variance. Under this condition,
the error variance should be relatively constant about the
level of the inherent process variance for all lag values.

Therefore, by inspection of the results produced by
this type of smoothing constant seleg¢tion, information on
the form of the observed series is provided as a secondary
benefit of the forecasting method. Series 1, 3, 4, and 5
for this method of smoothing constant selection have almost
constant error variances for all lag values in each case.
From the above discussion, this would indicate that the
process is of the form of the model or ome of its simpler
forms. This contention is also supported by the discus-
sion of the form of these series in the section on auto-
correlation. The error variances for these series are
estimates of the inherént process variance and provide
measures of the forecast error that can be expected in the
forecast of future wvalues.

Based upon the methods above, series 2 and 6 are not
of the form of the model or its simple forms. This is

also supported by the discussion of these series in the
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section on autocorrelation. In these two cases, this
method of smoothing constant selection provides the infor-
mation that the series is not of the form of the model,
and indicates the magnitude of the error wvariance that may
be expected from the best fit of the model and the data.
For series 2, the error variance for forecast more than
two intervals into the future would be expected to be
approximately four times that for forecasts one period
into the future 1f the same smoothing constants are used.
A similar analysis holds for series 6,

Two i1mportant points are illustrated in this section.
One point is that the error variance and the forecast lag
should be considered concurrently when selecting the
smoothing constants. The other point is that the agree-
ment of the model and the generating process is a major

influence upon the magnitude of the observed error.

Selection of Smoothing Constants for

Individual Lag Values

In the preceding section, the method of selecting
smoothing constants provides a single set of constants for
all values of the forecast lag. The use of a single set
of smoothing constants is not a requirement of the model
and the reduction in the error variance for forecast
values may be significant if individual sets of constants
are selected for each lag value that is to be used in

actual forecasting practice.
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The major part of the computations necessary for this
smoothing constant selection process is performed by the
computations associated with the methods of the previous
section. In order to use this method of selection it is
necessary to determine the minimum value of the error
variance for each lag value used and its associated set of
smoothing constants. The values for the six series used
in this chapter are displayed in Table XV.

The improvements provided by this method of smoothing
constant selection over the one outlined in the previous
section are that a given set of constants which provide
relatively small changes in the error variance for some
lags may cause the relative error for other values of
the lag to be multiples of their minimum value. This fac-
tor of consideration is illustrated by comparing the
results for series 6 in Tables XIV and ¥XV. This metheod
will also provide @ minimum sum of consecutive lag error
variances equal to or less than that method of the previcus
section. The error variances for different lag values may
be weighted before they are chosen, but it will not affect
the selection under this method. Therefore. 1f the compu-
tations for the method given in the previous section uses
weighfed error variaﬁcess it will not affect the methods
of this section.

The method of selection for each lag value is on a
minimum value basis. but the sum on factors method

described earlier may be used for each of the lag values



TABLE XV

MINIMUM ERROR VARIANCE AND SMOCTHING CONSTANTS
FOR INDIVIDUAL LAG VALUES

Jot

\Ji

ggg o} E;Qﬁ @ téjfi
FEgNE oo D p & © FENE
+ mn o > 0o = 0o
Series i 2 2
i O 0 2* 625 10 00 153 00 2
Z 4 00 548 60 2 382 002
% 200 620 000 422 00 2
4 c Q2 625 000 422 00 2z
5 00 2 025 G 0O 422 0o¢C2
& 200 605 000 422 g0 2
7 002 625 000 422 20 2
8 200 573 000 422 202
9 200 588 Q00 422 2 20
10 200 594 00C 422 1000
11 6 00 429 000 422 002
12 002 625 000 422 002
Series 4 5 &
1 000 703 2 10 0 418 2 8 0
ped C 00 703 2 22 485 2 10 0
3 000 7073 2 22 517 2 8 0
4 000 703 0O 00 521 L o2 2
5 000 703 2 22 504 4 - 4 Site
& 000 703 2 22 500 &bz 8 5368
7 000 703 O 00 521 42 10 E904
8 000 703 0 CO0 521 2 8 4 9951
9 00090 70% 0 00 521 2 2 0 16921
10 0 CO0 703 G 0 521 2 2 0 18491
11 000 703 0 00 521 2 2 0 20961
12 000 703 G 00 521 2 2 0 22625
*These values are 10 times the smoothing constants.
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or the manual method of selection is possible but less
practical since the amount of data increases directly pro-
portional to the number of lag values used.

There is one interesting point that is displayed in
Table XV which was emphasized earlier. This is the length
of the period for series 3., For a lag of 10, the error
variance is approximately one~fourth of that for the other
lag values. The constants (1.0 0,0 0.0) essentially re-
move the consideration of the length of the period and the
forecast value 10 intervals into the fubture is the present
observed value plus 10 times the original trend value, To’
The value, 260, given in the table is not necessarily the
minimum value of the error variance that would be obtained
if P = 10 had been used in the mopdel for the analysis of

series 3 data.
Selection of the Starting Point

The philosophy behind the deletion of historical data
in order to improve the results of the forecasts was glven
in Chapter IITI. Three of the series did not require new
starting points in order to minimize the absolute sum of
the third order differenceéa Those series for which the
starting point within the historical data was changed are
given in Table XVI along with some comparative values to

demonstrate the changes due to this procedure.
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TABLE XVI

DELETION OF HISTORICAL DATA AND THE AFFECT
ON ERROR VARIANCES

Sum of Third Smoothing Sum of
Differences Points Constants Error Per Cent
Series Orig. Min. Deleted 01d New Variances Reduction

2 588 368 5 600004 5208  36.5

5 1674 1101 7 000 000 5291 15.4
6 3055 1972 7 200 220 125881 9.4

*These values are 10 times the smoothing constants.

The emphasis of this thesis has been on the reduction
of the forecast error through improved methods of selecting
the smoothing constants. This particular modification in
the analysis of the historical data is for the same pur-
pose. The idea that all historical data is of value in the
forecasting process is not entirely true as indicated by
the discussion in Chapter III. The purpose of using the
data is to obtain estimates of the future activity of the
process. If some procedure provides accurate estimates of
the future without using any of the historical data, then
that procedure should be used in lieu of time series anal-
ysis. Therefore, the historical data is simply a means of
providing information for use in forecasting the future
activity of a given time series. With reduced error vari-

ance as a prime objective, 1t is not unreasonable to justify
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the methods of this section on that basis alone.

The data dsiplayed in Table XVI is indicative of the
results that have been obtained for the various test
series and actual problems that have been considered dur-
ing the course of this investigation. There have been
some isolated cases where the methods of this section did
not improve the forecasts in terms of the error variance,
but upon further investigation they were found to general-
ly be of a more extreme deviation from the assumed form of
the model. It is not desired to limit the generality of
. the procedure at tﬁis point, bﬁt simply to point out
another qualitative test on the férm of the series and the
results that may be expected for that series.

Whether this point is basic and ignored, or whether
the experimentation with adding and deleting historical
data from the consideration of the model has not been in-
vestigated, this particular point seems to be missing from
the published articles in this area. Even in the more
obvious cases of curve fitting as a-method.of interpolating
and extrapolating the-time series, the selection of the
origin within the data was not given as a prime considera-
tion of the method., However, due to the reductions in the
length of the data file along with the iﬁprovement in the
computed error variance, this method cannot be ignored due
to the frequency of the occurrénce of the improvements in
forecast:error. It is also of interest that the entire'grid

of error variance values in the investigation of the
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combinations of the factors and the various lag values
change significantly which essentially indicates that the
model and the computational algorithms recognize the seg-
ment of the historical data as new series and treat it
accordingly.  This particular reduction in the forecast
error for this model and its supportiﬁg algorithms are
felt to be an appropriate way bo end this chapter on em-
pirical results, This development was primarily an
empirically derived idea, which was'later suppqrted by the
model formulation and curve fitting techniques which pro-
vided a heuristic proof of this contribution to the methods

of time series analysis.,



CHAPTER V
OBSERVATIONS AND CONCLUSIONS
Selection of Forecasting Methods

The selection of one forecasting method over another
is primarily a matter of personal opinion., The model and
the supporting algorithms presented in this thesis were
developed to serve a general type of problem in the time
series area. It is that of forecasting the economic type
of time series which 1s assumed to be composed of a trend,
seasonal variations and random variations superimposed
upon some process level. The arguments and examples pre-
gented in support of this procedure for forecasting call
attention to those points that should be considered in
evaluating this particular prbcedure for application to a
specific type of time series data. It is on the basis of
demonstrated results that the methods are presented and
Justified. |

The techniques for time series analysis that have
been presented in this thesis start with the simple smooth-
ing model which has only a single smoothing constant and
the forecast is a constant value. The last model and sup=~

porting algorithms presented require the scanning of

110
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the data for selection of the optimum starting point with-
in the dataj; the computation of the search grid of wvalues
for each of the lag values; and the selection of the 12 op~
timum sets of three smoothing constants each or %6 values
from the enumeration of a 13 by 156 grid of smoothing con-
stant combinations and the associated error variances.

Within this range of techniques, there have been a
number of procedures presented to aid in forecasting the
future activity of a process. The methods presented have
been arranged according to the computational effort re-
guired. Generally, the increase in computational effort
provides a corresponding increase in the information pro-
vided the forecaster as to the type of process, the fit
of the model and the possible magnitude of the forecast
errors. The selection of the particular model for ana-
lyzing a given time series should be evaluated in terms
of the economics of computational effort and information
provided, The increase in the information provided the
forecaster is sufficient to make this consideration a
hecessary one. One point that should be re-emphasized is
the consideration of the forecast error for a fixed number
of points in the future may significantly influence the
choice of forecasting methods; therefore, the weighting
of error variances should be considered carefully.

The attempt has been to present a general type of
computational form for the applied type of forecasting that

is becoming more routine in the various fields. One
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point of interest is the significant influence of the
,,autocorrelation upon the results that may be expected from
the forecasting procedureg This may affect which method
provides the least amount of forecast error.

| The methods presented,heré are felt to serve the
needs of generality and computational form which will per-
mit their application on a routine basis to a broad class

of problems in the field of economic time series.
Forecasting and Forecast Error

As stated earlier, a forecast without an estimate of
the possible error is incomplete since the forecast is an
estimate of the process without the noise superimposed. A
major point to consider is whether the noise is greater
than the proceés level or the forecast value, This has
been the purpose of determining the optimal estimate of
the inherent process variance in order that the estimates
of the error variance are as nearly correct as is conven-
iently possible and not mislead the forecaster. Therefore;
from the standpoint of the error variance being a good
estimate of the process variance, the methods presented in
this study are felt to be correct under the conditions
being considered and the mathematical techniques that are
employed. In general the errors associated with the fore-
casts of this model are not independently normally dis-
tributed,; but may be from some non-normal type of |

distribution which has dependence among the observations
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since the errors of the forecast are autocorrelated. This
makes the use of the two-sided tolerance limits for the
'normal distribution statistically unacceptable for the
- purposes of placing formal statistical limits upon these
forecasts, However, it is suggested that the square root
of the error variance for a given lag value be used as an
estlmate of the variation about that point of the forecast
value. The effectiveness of this particular set of llmlts
is dependent upon the process, the statistical properties
of the error distribution and the goodness of the approx-
imation of the noise by the error variance. But, for
those series that were studied in the preparation of this
thesis, this performed as a reasonable rule of thumb. These
limits may serve in the same manner as the control chart
philosophy used in quality control in that observed values
beyond the limits placed on the forecast provide sufficient
reason for investigating the déta or the process to account
for this deviation from the forecast value. In order to
improve confidence in the forecasting process, all old
limits should be displayed in order to measure the per-
formance of past forecasts and the COrrectﬁess of the lim~-
its on those forecasts, These limits can be adjusted to
some suitable multiple of the computed error variance for
the individual process under consideration,

For some operations, it may not be desirable to re-
vise the entire forecast at the end of each period and the

same smoothing constants can be used for each subsequent
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interval of the process without recomputing the smoothing
constants and the forecast. In this case, the error var-
iances could be used over again as limits until some out-
of-control condition indicated that the process had
changed and the data needed to be recomputed by regular
procedures for the revision of the smoothing constants,

model parameters, and estimate of the expected error.
Summary

The objective of this thesis was to improve the fore-
cast error of the exponentially weighted moving averages
time series model by the optimum selection of smoothing
constants. The condition of optimality is that which pro-
vides the best estimate of the inherent process error
associated with the process under consideration and the
smallest error variance possible for consideration of the
relationship between the forecast error and the lead time
of the forecast,

In order to provide a base for the cptimization of
the error variance, the following models were developed:
the simple exponential smoothing model; the model for
trend and random noise; the model for trend, ¢yclical, and
random variationss and the preceding model with provisions
for selection of the starting point. All of these models
are of the exponentially weighted moving average(s) type.
During the course of these investigations, there were some

results that proved of more interest than others. but all
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contribute to the general success of this method of

forecasting.

Some of the major points include:

(a) +the illustration that the minimum error and
the optimum error are not necessarily the
same value,

(b) the error sensitivity is low in the region
of optimum error variance,

(¢c) the location of the optimum region may be
determined by the use of manual or automated
means,

(d) the method of independent sums of error vari-
ances over smoothing constants may be used as
the basis for selection of the optimum region,

(e) the use of a multistage search procedure may be
used in the interest of saving computational
effort,

(£f) +the lag value is a prime consideration in the

selection of the smoothing constants and that
more than one lag value should be investigated
to improve the estimates of the error and to
improve the confidence in the model. The use
of the method of consecutive lags pointed out
the necessity of the consideration of the lead

time of the forecast.

The ultimate use of the reduction in the error variance is

to improve the confidence in the model and to place limits
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that will monitor the forecasting process for detectable
changes in the process that may be of significant value to
the user of the forecast model. The three most important
points are the selection of a starting point, the optimal-
ity concept and the individual sets of smoothing constants

for each lag value of the forecast model.
Extension of This Study

Probably the most challenging area of this thesis
that needs further study is the statistical development of
methods to evaluate the form of the distribution of the
error and the appropriate development of limits for the
forecast in order to estimate the error that may be ex-
pected. The other majdr area of possible improvement is
in the basic problem of the decomposition of the observed
gseries into other components, thereby reducing the amount
of noise asscciated with the process., One additional en-
}deavor that could be considered as an extension would be
the proof of this particular model formulation by the use
of the model over a wide range of problems. At present
there are two companies using this particular model, oné
in the study of personnel action, the other to study an
inventory problem., The proof will be completed with the
use of the concepts developed here and, therefore, must be

delayed until some later date.
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APPENDIX

DISCUBSSION OF COMPUTER PROGRALMS



INTRODUCTION

The IBM 7090 and IBM 1620 FORTRAN programs presented
in this appendix have been run on the IBM 704, IBM 650 and
CDC 1604 with certain modifications. The computer program
is simply the automated computation scheme for the support-
ing algorithms and forecasting model that has been present-
ed in tﬂe'text of this thesis. Since there are a number
of options that may be exercised through the use of the
computer, this appendix is continuous in that all the
parts are related but for purposes of clarity these options
will be discussed in turn. The major divisions of the ma-
terial to be presented will be as follows:

I. The Complete FORTRAN Program
IT. 3Basic Program for Lag 1 and Minimum Error
Variance
ITTI. Option - Sense Switch 1 for Enumeration of
| Grid and Error Variances
IV. Option - Sense Switch 2 for Grabhic Display
V. Option - Sense Switch 32 for Selection of
Constants Based Upon Independent Sums
VI. Option - Sense Switch 4 for Selection of

Constants Based Upon Consecutive Lags

120



VIIO

VIII.

IX.

XO

XI.
XII.
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Option - Sense Switch 5 for Selection of
Optimum Starting Point

Optioh - Sense Switch © for External Control
of Smoothing Constants

Option - Sense Light 4 for Selection of
Individual Sets of Constants for Each Lag
Value

Table of Option Combinations

Preparation of Data

IBM 1620 Programs.

Thiough a more detailed explanation of the programs

written for the time series analysis and extrapolation

model, it is hoped to provide a working knowledge of the

various features of the program. The data that are used

" in the displays on the following pages are those presented

in Tables I through VI. The format of this Appendix is to

discuss verbally the provisions of each option and present

the related display.



SECTION I
THE COMPLETE FORTRAN PROGRAM

The listing of the program that follows this discus~
sion on the next eight pages is the source program which
contains all the programming for the options that will be
explained in the other sections. This program was written
with other users in mind,and a number of aids are incorpo-
rated in the program for easy modification by those who
wish to do so. After changes have been made, hdwever, dd
not attribute errors to the original program as listed
here. Those aids that will help in the reading of the
program are in the form of "Comment' cards placed in the
program at the entry point of each of the options. In ad-
dition, for each of the options that have been inserted
into the basic program, & new numbering‘sequence is used{
The basic program uses statement numbers less than 100;
the sense switch 3 option uses numbers between 100 and 199,
sense switch 6 option uses numbers between 200 and 299,
the option of sense switch 5 uses those numbers between
300 and %399, and similarly the option of sense switch 4
uses those numbers between 400 and 499. In addition to
these tracing aids in the form of the statement numbers,

the numenoic code that is used should aid in the
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understanding of the program. Some examples of the code
are MOTOL for month total, DEL'for the difference operator,
COMP for compare, MYR for years, YRAV for year average,
SEA for seasonal, EST for estimate, TREND for trend, OBE
for observed, VAR for variance, and SIGS for smallest
sigma or square root of the error variance. The complete
program was rewritten in order to place all statement num-
bers in consecutive and ascending order within each numer-
ical sequence used. This aids in discussion of the program
and in locating points that will be referenced in this

Appendix.



124

* DATE

¥* PROGRAM T!MES RETURN TO GLEN SELF

e XEQ

* LIST8

CT!MES

C TIME SERIES ANALYSIS AND FORECAST USING OPTIMAL

C SMOOTHING CONSTANTS FOR THE EXPONENTIALLY WEIGHTED
C MOVING AVERAGES MODEL

DIMENSION OBE(600), 0BS(12,50), YRAV{50), TREND{600),

JUNAD(12), SEA(600), EST(600), PRED(620), PRI(612)
2SAGE (2175, SUMA(6), SUMB(6), SUMC(6), FA(6) FB(6§,
3FC{6) SENA(]Z) SMOTH(600), SSS(12), g 25, sB{12),
hsc{123, S1GIX(12), SEANL(12.50), ARRAY(5), DEL(600),
5PRIS(12), SEAS(125 XLABEL(28), X(50)
CALL RELICF(30000) |
800 READ INPUT TAPE 2,1
1 FORMAT(1H6,51H )
WRITE OUTPUT TAPE 3,1
MOTOL = O

| o= 1
2 READ INPUT TAPE 2,3,0BE(!)
3 FORMAT(F10.6)
iF(OBE(!) - 999. 999999) L,5, 99
L MOTOL = MOTOL +
| = | + 1
GO TO 2
5 MYR = MOTOL/12
IF SENSE SWITCH 5 IS ON, THE PROGRAM WILL SELECT
THE OPTIMAL STARTING POINT WITHIN THE HISTORICAL DATA
AND MAKE THE DELETICNS BEFORE CONTINUING THE PROGRAM
I F(SENSE SWITCH 5)300,311
300 MTA1=12*%{MYR-1)
MTA2=MTAT-1
MTA3=MTA2-~1
COMP=0.9E+25
DO 301 |=2,MTA1
301 DEL(I-1)= OBE(I)uOBE( -1)
DO 302 i=2,MTA2
302 DEL{1=1)=DEL(1)~DEL{I~1)
DO 303 [=2,MTA3
203 DEL(! “1)=DEL{1 )~ ~DEL{1=1)
WRITE OUTPUT TAPE 3,304
304 FORMAT(1HO,9X, 23HFIRST DATA SUM OF /
110X 2thJaNT USED  3RD DIF )
DO 308 iNe1,12
SUMDL=0. 0
MT Al | N4 12% (MYR-2 ) -4
DO 305 ﬁsﬁN,MTAh,ﬁZ
BO 305 J=1,9
Lle{ied=1)
ADEL=DEL{LL)
305 SUMDL=SUMDL4+ABSF{ADE
WRITE QUTPUT TAPE 3,

OO

L)
306, I N, SUMDL



306 FORMAT(IH ,115,F16.5)

| F{ COMP--SUMDL} 308, 308, 307
307 COMP=SUMDL

INIT=!N
308 CONTINUE

WRITE QUTPUT TAPE 3,309,iNIT
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309 FORMAT( 10,9%, 31HTHOSE DATA POINTS PRECEDING THE 13

1,26HTH UNUT HAVE BEEN DELETED )
DG 310 I=INIT,MOTOL
Las{ I =INIT+1)

310 OBE(L)=0BE(!)
MOTOL=MOTOL=INIT1
MYR=MOTOL/12

311 IF(MOTOL~12*%MYR-9)6,7,7

6 MOT = 12%(MYR-1)

MYR = MYR — 1

(@ TO 8

MOT = 12%MYR
FMYR = MYR

oo~

on

mB@(
YRAY

9 L.,%L-’:—?

10 CONTINUE
AMOT = M
TREN = (
D0 1
SUSEA
Do 1
Fi o= |
SLAN_(

: NAD(E

11 SLQEA
PLY =
0O 12

H

0
AV
§
!
(J

Iv}
YRAV(MYR) YRAV(?))/(AMOT 12.0)

J = 1, MYR

= 0.0
= 1,

12

OBS(a,J)/(YRAV(J)—(é,sta)*TQEN)
UN D( Vo (SEANL{I,J)/FMYR)

+ ABS#(UNAD(I)§
ISEA
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KONA=D
SIGS = (@.9E+25)f(0 9E+25)*(o 9E+25)
[F(SENSE SWITCH 1)
13 WRITE OUTPUT TAPE &
14 FORMAT ( 1HC,9X, 6HRANDOM 8X,8HSEASONAL , 8X, 5HTREND, 6X,
111HSQUARE ROOT , 3X, 3FLAG/9X 8HCONSTAhT 7% BHCONSTANT,
zzx , SHCONSTANT 5x SHOF E.M.5./)
F{SENSE SWITCH 6)200,16
200 READ INPUT TAPE 2,201,A,B,C
201 FORMAT(3F10.6)
SENSE LIGHT 1
SENSE LIGHT 3
GO TO 202

16 EST(1)=A*(0BE(1)/SENA(1))+(1.0=A)*(YRAV(1)+TREN)
stA(i) B*{OBE( 1)/EST(1))+(1.0-B)*SENA(T)
TREND( 1)= CW(E%T(%)wYRAV(i))+(I 0-C)*TREN
SMOTH( 1) = EST(T)®SENA(1)

DG 20 1= 2,MOTCL
PF( mﬂZ)i? 17,18

17 J=1
SEA(J)=SENA{J)
GO 70 19

18 d=1-12

19 EST(R
(1

SEA(E
TREND
20 SMOTH

E—Ii &=

T ==
=

[

NOT = MOT + 1

LOW = MOT + 1
MAX = MOTOL
SISUM = 0,0
SUMER = 0.0
GO TO 401

LoO LT = LT + 1
LOW = NOT ~ LT

A*(OBE{IY/SEA(J)) + (1.0=A)*(EST(1-1)+TREND

7
) = B¥(OBE({IY/EST{1))+(1.0=-B)*SEA(J)
[ y=C* (FST( } e EST( ~13)+(1,0=C)*T RENu(
I Y=EST (1 )*SEA(L)

panry
=1
=
=

MAX = MOTOL - LT
T=T4 1,0 :

BOT DO 26 K = LOW,MAX
MAD=K+LT

PRED{MAD )= {EST(K~1)+T*TREND(K=~1))*SEA(MAD-12}
ERROR=({0OBE(MAD)~PRED(MAD})

FRSQ = ERROR*ERROR

SUMER = SUMER + ERSQ

IF{SENSE LIGHT 1) 23,26

PF(SENSE LIGHT 3) 24,26

SENSE LE@HT 1

SENSE LIGHT 3

WRITE QUTPUT TAPE 3,25, OBE(MAD),PRED(MAD),ERROR

RO B
I



503

504

505
27
28

29

30 |
31

h@Z

s U
sf O

ln.(
no
=

FORMAT(IH ,3F19.8)

CONT I NUE

DENOM = MOTOL - 12*MYR

YAR = SUMER/DENOM

SEGE = SQRTF(VAR)
I F{SENSE LIGHT 4)501,503

SENSE LIGHT &4

Sﬁ@ﬂx(LTvi) SIGE
PF(SIGEX(LT+1)~55S(LT+1))502,502,503

) SSS(LTws) SIGIX(LT+1)

Z

= (MOTOL-11+LT)

PRI S(LT+!)=( ST
SEAS%LT+@)as A(
SAGE(M)=SIGE
Me=Med- §

SISUM = SISUM & SIGE

IF{SENSE LIGHT 4)504,505

SENSE LIGHT 4

GO TO 36

IF(SENSE LIGHT 1)27,402

IF{SENSE LIGHT 3) 28,402

SEMSE LIGHT 1

SENSE LIGHT 2

WRITE QUTPUT TAPE 3,29

FORMAT( 1HO, 8X, 12HPER1ODS INTO,7X, 1OHFORECASTED, 10X,
18HSEASONAL  /1H ,9X, 10HTHE FUTURE, 11X,5HVALUE, 13X,
26HFACTOR )

DO 31 N = 1,12

T = N _

K = (N=12+MOTOL)

MOTON = MOTOL+N

PRI(MOTONY = (EST{MOTOL)+T*TREND(MOTOL))*SEA(JK)
WRITE QUTPUT TAPE. 3, 30 N,PRI(MOTON), SEA(JK) ,

FORMAT (1HO, I 14, FZ& F19.8) .

CONT I NUE

MOTON = MOTOL+12

IF SENSE SWITCH & IS ON, THE SMOOTHING CONSTANTS WILL
BE SELECTED ON THE BAS!S OF MINIMUM CUMULATIVE SUM FOR
LAGS 1 THROUGH 12

KF(@EMSF SWITCH 4)36,32

( ?TOL)%T*TREND(MOTOL))*SEA(MB)
A(MI ‘, |

IE(SIGE~S1GS) 33,3k, 36
SIGS = SIGE
KOUNT = O

GO0 TO 35

KOUNT = KOUNT «+ 1
LS = A
BS = B
CU = C

IF{SENSE SWITCH 1) 37,39
WRSTF QUTPUT TAPE 3,38,A,B,C,SIGE,T
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38
39
Lo3

Lok ¢

LOosg
L06

L6

47

508 WR 'T

1 F@RM&T(i 0, 31H

128

F@RMAT(Wk , 3F15.4 F15.6

6,F7.1)
IF(S ENSE S I TCH uﬁh 03,410

StNSE LIGHT 1) 40,401
uﬁuw= $1GS)L06, 407 Loy

3y I > 3
\ﬂ‘%ﬁ(/‘
it

IF(SENSE SWITCH 1)408,510

3 WRITE QUTPUT TAPF 3, 4@9 A,B,C,S1SUM

FORMAT ( 1HO, 3F 15.4,F15.6,5X,5HTOTAL /)
IF(SENSE LiGHT 1)&0 B3
SENSE LIGHT 1
WRITE OUTPUT TAPE 3,41
CHECK ON VALUES USED /)
WRITE QUTPUT TAPE 3,38, A,B,C,SIGE
"F()ERJE LIGHT 3) 53,43
r(@ 98-C ) a4, L4 Lt
(0. 98 B)L5, 45 47
0.98-A)49, h9 i3
+ 0.2
\‘dA“’O>99 ‘“'H‘“y 6
+ 0.2

C

kk.

B

0.0

(ONA=5)16,49,99

A 4+ 0.2
As=KONAL T

= 0.

a.

O

E

E

£

s B B

Tﬁqfﬂf\\ﬂﬂ Eﬂﬁ@f*

71

KON

5,

&

i

A=
16

NSE LIGHT 4)506,508
LIGHT &

UTPUT TAPE 3 14
UTPUT TAPE 3,507, {SA(M), SB(M) SC(M) SSS(M),M JM=1,
T{iH ,3F15. 1+M,;6 16}
. 0
) 99

zwmmmﬁébmﬁwwﬂmm

T
S
S
T
%h T

prvi

WQ
Mu

ouT PUT TAPE 3 29
UTPUT TAPE 3,30,(M,PRIS(M),SEAS{M) ,M=1,12)

i

b
'\ T

(
i1
]
|
ORM
1T
P

q

ﬁﬂ‘!@[ﬁqfﬁls

0
0
0
0
- 0
0

UTPUT TAPE 3,50,A5,B5,CS,SIGS

50 FORMAT(THO,9X, 6HRAND©N 8X 8%8EA§©NAL8X SHTRENDLX,

T1THSQUARE rROOT /9%, BHC@NSTANT 7X, BHCONSTANT X,

Zb*CQNSTAWW 3X,9HOF E.M.S. //3F15 ,E15.6)

WRITE QUTPUT TAPE 3,51, KOUNT

51 FORﬁﬁT(]h@ 9x, 5MHMJMBER OF POINTS WITH EQUAL ERROR 16

[

/10X, LOHFOR RANDOM CONSTANT = O OR 1 THERE ARE 5)

AgAQ
= BS

F SENSE SWITCH 3 IS ON, THE CONSTANTS WILL BE
SELECTED UPON THE BASIS OF THE MINIMUM SUM FOR EACH

B
L= CS
i
]

12)



¢

129

SMOOTHING CONSTANT SUMMED OVER THE OTHER TWO CONSTANTS

IF(SENSE SWITCH 3) 100,112
100 KAA=2

SUMA( 1)=6.0%(SAGE (1)+SAGE(2)+SAGE (3)+SAGE(L)+SAGE(5)+

1SAGE(6))
101 DO 103 L=7, 115 36

SUMA(KAA) =

L + 35

DO 102 M=L,N
102 SUMA(KAA) = SUMA(KAA) + SAGE(M)
103 KAA = KAA + 1

SUMA(6)=6,0%(SAGE(151)+SAGE( 152 )+SAGE(153)+SAGE( 154)+

ﬁ@AGE(155)+SAGE(156))

KAB=1

DO 105 M=7,37,6

SUMB (KAB )=SUMA(6) /6.0

DO 104 L=M, 145,36
104 SUMB{KAB)=SAGE (L )+SAGE(L+1)+SAGE (L+2)+SAGE(L+3)+

1SAGE (L+5)+SUMB(KAB)+1,5%*SAGE (KAB)
105 KAB=KABR+1

DO 107 M=7,12

SUMC(M~6) SUMA(?)/6 0

DO106L=M,216,6
106 SUMC{M~63=SUMC(M=6)+SAGE (L)+6.0%SAGE (M+14L)

107 CONTINUE
FA(1)=0.0
FA(2)=0.2
FA(3)=0.4
FA(4)=0.6

=0.8

WRITE OUTPUT TAPE 3,108

108 FORMAT ( 1HO, 7X, SHCONSTANTS 12X, 8HSUM ON A ,9X,9HSUM ON B
1,8%,9HSUM ON €

109 WRI TE6§UTPUT TAPE 3,110, (FA(K),SUMA(K), SUMC(K) , SUMB(K)
1,K=1 ]

110 FORMAT ( 1H ,ﬁ1x,Fh.2,1ox,Eiu.8,3x,51h,8,3x,5§h.8)

-
v )

e
[

owuwou
QOO0OO~00
OGOG\J?NOQGDG\#NO

FC(6)=1,
CALL SORT(SUMA,6,FA)
A=FA(1)

CALL SORT(SUMB,5,FB)



[ R
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112

202
52

eru(i)
CALL SORT(SUMC,6,FC)
C=FC(1)
WRITE QUTPUT TAPE 3,111,A,B,C
FORMAT (1HO, 9X, 26HCONSTANTS FOR MINIMUM SUMS //
116,04, F20. 4, F18. 1)
CONT | NUE
SENSE LIGHT 1
SENSE LIGHT 3
BIG = 0.0
SMALL = 0.0
WRITE DUTPUT TAPE 3,52
FORMAT ( 1HO, 10X, 8HOBSERVED, 9X, 10HFORECASTED, 12X,
15HERROR/ 12X, 5HVALUE, 14X, SHVALUE )
GO TO 16
[F SENSE SWITCH 2 1S ON, THE PLOT ROUTINE WiLL BE
FXECJTED FOR ANY OF THE OTHER PROGRAM OPTIONS
r“"(SEN%’E SWITCH 2) 54,99
Du 62 l=1,MOTOL
| F(BIG~SMOTH{1))55,56,56
BIG = SMOTH(I)
| F(SMALL=SMOTH(1))58,58,57
SMALL = SMOTH(1)
IF(BIG~OBE(1))59,60,60
BHF = OBE(I)
| F{SMALL=-OBE(1))62,62,61
SMALL = OBE(I)
CONT I NUE
| F(BIG~-PRED(1))63,64,64
BIG = PRED(!)

- DC 66 1 =NOT,MOTOL

66

67
68
69
70

71

72

4

I F{SMALL-PRED(1))66,66,65
SMALL = PRED(I)

CONTINUE

MOTO = MOTOL + |

D@ 70 | = MOTO,MOTON
IF(216-PR1(1))67,68,68

BIG = PRI(1)
IF(SMALL-PRI(1})70,70,69

SMALL = PRICI)

CONT I NUE

WRITE QUTPUT TAPE 3, 71
FORMAT ( 1H1, 40X, 27HPLOT OF INPUT AND ANALYSIS

TTIHINFORMATION )

DO 72 l=1,35

XLABEL (1 )=606060606060

CALL MDrBCD( SEE SUBROUTINE MANUAL FOR INFORMATION

MTPO=MOTON+

CALL PLOT?A(B SMALL,BIG XLABEL(B) L, 1)
DO 77 i=1, MT 0

AhRAY( )=

st
AN

<



73

75

76

77
99

FF(1-M0T)73,73,74
ARRAY(2)=0BE (1}
ARRAY (4 )=0BE( 1)
ARRAY (3 )=SMOTH(
ARRAY (5 )=SMOTH(
CALL PLOTA(ARRA
GO T0 77

IF{1=MOTOL)75,75,76
ARRAY (4)=0BE(1)
ARRAY (5 }=SMOTH(
ARRAY (3 )=PRED( !
ARR&Y(?)aPRED(!
CALL PLOTA({ARRA
GO TO 77
ARRAY (5)=PR! (1)
ARRAY{3)=PRI (1)
ARRAY (4 )=PRi (1)
ARRAY(2)=PRI(1)
CALL PLOTA({ARRA
CONT I NUE
GO TO 800
END

Y)
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SECTION IT
BASIC PROGRAM

The basic program, with no sense switches turned on,
provides for the selection of the smoothing constants upon
the basis of the set that has the smallest error variance
over the test series. This basic program also makes the
decision as to what part of the data shall be used as the
test series, Since this is based upon the programmer's
Jjudgment, the program as written will not use less than
nine nor more than twenty observations for the test
series, The program logic determines if the number of ob-
servations left after the 1arges£ integral number of years
of data is removed is equal to or greater than nine; if
80, it uses those; if not, the latest full year of data is
added to compose the test series. This minimum may be
raised by changing statement number 311.

After execution of the program and the constants are
selected upon the basis of the minimum wvalue computed for
the.error variance, the display on the following page is
generated for purposes of making the forecast and provid-
ing appropriate supporting evidence for the forecasw.

Since this is the standard display, it will be de~

scribed in detall here and only the additions made by the
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other options will be described as they are considered.

The first line is a label of the study that is pre-
pared in accordance with the instructions in Section XI.
The next group of titles are self-explanatory with the
numerical values that appear lmmediately below them being
the constants used for the extrapolation of the series
along with the square root of the error variance obtained
for the test series using these values. The next line of
the display is a protective measure for the forecaster by
the fact that it alerts him to the existence of other sets
of constants that provide the same error variance. The
set used in forecasting will be the most recently computed
set., The titles and numerical vgiues that follow are the
test series observations, forecasts and errors that were
used for the error variance determination. The test values
are computed only one period into the future. The next
group of titles and numerical values is the forecast of
the future activity of the process being studied. The
seasonal factor column was added as programmer's informa-
tion, but it also provides information for the forecaster
'in that it describes the behavior of the seasonal varia-
tions and it indicates whether compensation is taking
place in the computation of the supporting algorithms. If
the sum of these values is not approximately twelve., then
some compensation is taking place within the computations.
Two of the more likely conditions are compensation for

trend by the seasonal factor, and compensating for
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overestimates of the random‘influence upon the mean level
of the process. The last line of title and numerical val-
ues 1s a bullt-in check upon the program and computer. The
first values were stored in memory and displayed upon re-
quests this latter set of values are recomputed with the
displays and are provided as a check set of values.

If it is desired to make forecasts further into the
future, the seasonal estimates may be used over as many
times as desired since they represent the latest estimate
of this variation in the process. This may be accomplish-
ed by changing the '"DO 21" loop.

This is the standard display that will be obtained if

none of the sense switch options are exercised.



SERIES 1 DATA |
SQUARE ROOT

N
St

RANDOM SEASONAL TREND
CONSTANT CONSTANT CONSTANT OF E.M.S,
0.0600 0.2000 0.0000 0.259249E 02
NUMBER OF POINTS WITH EQUAL ERROR 0
FOR RANDOM CONSTANTS = 0 OR 1 THERE ARE §
OBSERVED FORECASTED ERROR
VALUE VALUE
51.00000000 82.56811619 -31.56811619
95.,00000000 76.80335236 18, 19664764
49,00000000 96.86866283 -447,86866283
111.00000000 82.#122028# 28.58779716
77 .00000000 104.69667244 -27.69667244
93, 00000000 95,52171230 -2.52171230
102.00000000 86.07085133 - 15.92914867
81,00000000 85.37516403 ~44,37516403
-+ 74,00000000 86.,97857189 -12.97857189
124,00000000 87.80468559 36. 19531441
102.00000000 102, 18780994 -0. 18780994
60.00000000 93.22591114 -33.2259]11@
PERIQDS INTO FORECASTED SEASONAL
THE FUTURE VALUE FACTOR
1 7434796333 0.91513077
2 78. 42724037 0.96740887
3 85.10323334 1.05201089
4 85.91246796 1.06L429842
5 96.65735435 1.19998877
é 92.61672211 1.15230846
7 86.99682140 1.08L73043
8 82.35617828 1.02909569
9 82.23734379 1.02984491
10 92,62204075 1.16241801
11 99,54193020 1.25199135
12 84.36525154 1.06342836

CHECK ON VALUES USED

@ s O@GQ

C.2000

25.924923



SECTION III
ENUMERATION OF GRID AND ERROR VARIANCES

The display immediately following is obtained by
turning sense swith 1 ON while executing the program.

This will list all 156 of the combinations of the smcoth-
ing constants and square root of the error mean square
obtained by their use over the test series. The standard
display discussed in the preceding section is also part of
the computer output for this option.

This particular option is in line with some sugges=-
tions made in the text as a means of smoothing constant
selection. The display of the entire grid provides an
indication of the sensitivity of the model to the observed
series and at the same time will provide an experienced
person with a better understanding of the composition of
the series., If it is desired to search the region of min-
imum error variance with a finer grid, this display is a
near necessity in order to establish the region originally
and indicate the direction of search which would most
likely provide smaller values of the error variance, The
latter technique could be based upon the steepest descent
methods since the nature of the response is assumed to be

unimodal in this region.
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If a finer grid is desired in the original search, the
numerical values in statements 46, 47 and 48 may be changed
to the length of interval desired. It is not necessary to
change all the intervals by the same amount; for example,
the constant A may be considered more critical for optimum
fit of the data and it alone could be changed to obtain a
finer search grid along that axis. Care should be taken
to not reduce the interval to extremely small values since
this would require excessive computer time. If the output
is desired on punched cards in order to sort and display
the values on the basis of one of the other smoothiﬁg con—-
stants or by ordered values of the error variance, state-
ment 37 may be changed to write on output tape 5. The
tape number may vary depending upcn the particular machine
installation. This particular procedure of ordering the
various columns is recommended for a person desiring to
understand more of the relationship of the constants and
the response of the series as measured by the error.

Since this program, as written, uses both of the end
points, zero and one, some additional programming was used
to reduce the amount of computation and length of the dis-

play. This is the reason for only six values for A 0.0

H

and A = 1.0, since in the former case B may take on any

value between zero and one, and in the latter C may take
on any value between zero and one. For a full 216 point
grid, remove all IF statements between statements 46 and

48 and replace with"GO TO 16,"



SERIES 1 DATA

RANDOM
CONSTANT
). 0000
.0000
. 0000
.0000
.0000
.0000
. 2000
. 2000
. 2000
. 2000
.2000
. 2000
,2000
. 2000

SEASONAL
CONSTANT
- 0.0000
0.2000
0. 4000
0.6000
0.8000
1.0000
0.0000
0.0C00
0.0000
0.0000
0.0000
0.0000
0.2000
0.2000

TREND
CONSTANT
.0000
. 0000
.0000
.0000
.0C00
.00C0
. 0000
. 2000
. 4000
.6000
.8000
. 0000
. 0000
. 2000

OO0 —=0O00000D00OCOO

fd
W

SQUARE ROOT

OF

26.
25
27
29.
31.
33.
28.
29,
31
33.
35.
37
28,
28.

E.M.S,
051385

.924923

1016693

003139
254974
392497
952703
451722

L225420

417658
656991

560613

320306
621742

SECTION OF THIS TABLE OMITTED FOR DISPLAY PURPOUSES

0.4000
0. 4000
0.4000
0.4000
0. 4000

0.00G0
0.0000
0.0000
0.0000
0.0000

0.0000
0.2000
0.4000
0.6000
0.8000

310
33.
35.
36.
37.

857025
538881
13026
804882
631910

SECTION OF THIS TABLE OMITTED FOR DISPLAY PURPOSES

0.6000
0.6000
0.6000
0.6000
0.6000

0.4000
0.4000
0.4000
0. 5000
0.4000

0.00030
0.2000
0. 4000
0.6000
0.8000

52.
L68,
141,

65.
120,

890210
995960
760754
011344
221645

SECTION OF THIS TABLE OMITTED FOR DISPLAY PURPUSES

.8000
. 8000
. 8000
. 8000
. 8000
.8000
. 0000
.0000
.0000
.0000
.0000
.0000

1.0000
1.0000
1.0000
1.0000C
1.0000
1,0000
0.0000
0.0000
0.0CQ0
0.0000
0.0000
0.0000C

.0000
. 2000
. 5000
. 6000
. 8000
.0C00
.0000
. 2000
. 4000
. 6000
. 8000
. 0000

= OO0 0D=200000

55.
298,
S‘E‘ﬁo
17k,
230.
581.
234,
256,
269.
289.
305.
313.

310760
433895
670395
524853
225592
910812
908638
184334
630707
528286
879368
895615

THE STANDARD DIiSPLAY OF SECTICN |1 NORMALLY FOLLOWS



SECTION IV
GRAPHICAL DISPIAY

A plot of the original data along with scme of the
computed statistical information may be obtained by turn-
ing sense switch 2 ON during execution of the program. The
legend describing the symbols used in the plot of wvalues
appears in the upper left corner of the display. The title
and the labels used may be changed by altering the informa-
tion in statement 71 and the statement immediately follow-
ing statement 72. To add other sequences of points to the
plot. the plot subroutine description should be consulted.

For purposes of generality, the scales of the axes
are of the floating point format. The exponents as shown
are powers of 10 for left and top Justified fractiocns,
respectively; for example, 120 2 = 12. The abscissa
scale is determined by a scanning routine in the program
and will not truncate or discard any of the values to be
plotted as it is now written. The plots of the wvalues are
positioned, in the appropriate cell and are not on a con-
tinuous scale as an analog output would be.

The values that are plotted are generally self-
explana%oryg but in terms of the text discussions, the ob-

served series is Xt9 the smoothed data are FX% o OF in
i 9
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terms of the model XtZth’ the trial values are FXt91
except when the sense switch option 4 is used this becomes
FXt,lE’ and the forecasted value is FXt,T’ T = 1,25 ooes
120

This particular feature of the program provides an
aid for the interpretation of numerical data that is often

difficult to comprehend from tabular presentations.
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320
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SECTION V
SELECTION OF CONSTANTS BY SUMMATION

The sense switch %3 option provides for the selection
of the constants based upon the minimum sum of error vari-
ances for each constant over all values of the other con-
stants. Each of the sums exhibited in the display is
éomposed of 36 values and each column sums to the total
for all 216 error variance values. The theory or basis
for this method of smoothing constant selection is given
in Chapter III.

The particular display associated with this option is
a composite of the standard display and the special fea-
tures of the summations. The first numerical values are
the constants and associated error based upon the minimum
value of the error variance per the standard display. The
second group of numerical values are the respective sums
for each value of the specified constant, summed over all
other values of the other constants that appear in combina-
tion with the specified constant. From these sums, the
set of constants which have the minimum sum are selected
and displayed below the tableau of sums. These factors
are then used to extrapolate the observed series in accord-

ance with the computational forms and the model presented
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in Chapter II. This particular model uses the check at
the end of the display as the only display of the error
variance associated with the particular set of smoothing
constants. It could be computed from the test series also.
This provides comparative values of the error variance for
the selection of the constants upon the basis of independ-
ent sums or a strictly minimum value.

If a finer grid is used, corresponding changes must

be made in the 100 series of statement numbers.



SERIES 1 DATA

RANDOM
CONSTANT

0.0000

SEASONAL
CONSTANT

0.2000

c
0

TREND
ONSTANT

.0000

NUMBER OF POINTS WITH EQUAL ERROR
FOR RANDOM CONSTANTS = O OR 1 THERE ARE 5

CONSTANTS
0.00
0.20
0.40
0.60
0.80

SQUARE ROOT

OF E.M.S,

0

0.259249E 02

COOO0O

1.00
CONSTANTS FOR
C.0000

OBSERVED
VALUE
51.00000000
95.00000000
49.,00000000

SUM ON A SUM ON B SUM ON C
.10358616E 04 0.50681942E 04 0. 14613655E
20867509E 05 0.56946L99E 0L  0.14617125F
"70068999E 0L  0.5826010LE Ok  O.14884080E
.16331500E 0L 0.596L7L17E 04 0.38282454F
"18327073F 04 0.58131324F O  O.2893596LF
[2164740BE 04  0.61741K00E O4  0.23407540F
MINIMUM SUMS

0.0000 0.0000

FORECASTED " ERROR
VALUE

82.56811619 -31.56811619

18.1966L764
-L7.86866283

76.80335236
96.86866283

TH{S PART OF THE STANDARD DISPLAY OMITTED FOR BREVITY

10
11
12

92.62204075 1.16241801
99.54193020 1.25199135
8436525154 1.06342836

CHECK ON VALUES USED

0.0000

C.0000 0.0000 26.051385

o4
04

04
ol
05



SECTION VI
SELECTION OF CONSTANTS FOR CONSECUTIVE LAGS

The program will select the set of smoothing con-
stants which have a minimum sum of error variances for lag
values of one through 12 if sense switch 4 is ON during
the program execution. The computation is basically the
same as that of the standard program of Section II except
it is repeated for the additional values of the lag be-
tween the time of the forecast and the point in time for
which the forecast is made. ZFor each value of the lag,
there is a change in the point within the process from
which the forecast is made in order to provide the same
number of observations in the error variance. This is
accomplished by making the forecasts at an earlier point
in the smoothing of the series each time. The forecasts
in each case are over the same test series as for a lag of
one. The set of smoothing constants that provide the min-
imum sum of the standard deviations of error is used for
the actual forecasting.

The basic reasons for developing this particular form
of smoothing constant selection were to locate the optimum
region of error variance and to.provide more confidence in

the model. The use of this procedure without further
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investigation for local minimums is Justified upon the
basis of those empirical results that have been studied
and the highly improbable case of smoothing constant com-
pensation for all values of the lag. The forecaster's
confidence in the model should be increased if for no
other reason than the increase in the number of tests that
are run on each set of smoothing constants. If the auto-
correlation coefficients for the series and this display
are available, it is to the forecaster's benefit to justify
the smoothing constant selection for this method.

The display of the grid values and the associated
standard deviation of the error for the lag values and its
total is provided by this option if sense switch 1 is ON
at the time of the computation. A sample of the display
of this type is shown following this discussion. If sense
switch 1 is OFF then the computation is performed, the
selection is made as discussed above, and the display is
limited to the standard form as given in Section II. These
methods presented in this section are for the case of a
single set of smoothing constants to be used for forecast-
ing after selection of smoothing constants based upon con-
sideration of error variances for consecutive lag values.

If the more distant forecasts are not as important
a consideration as the immediate values of the forecast., a
method of weighting the error variances may be used to
automatically consider this in the smoothing constant se~

lection. This is possible with only a minor modification
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of the program. The modification of SIBUM located between
statement numbers 50% and 504 will provide the type of
weighting desired provided that it can be expressed as
some function of the lag value. For example, if the
weights assigned to the forecast are to be in the form of
a simple harmonic progression, it could be arranged by
dividing SIGE by T, where T is the lag value for the par-
ticular standard deviation of the error that is being
added to the sum for a given set of smoothing constants.
An additional feature of this option is the computa-
tion and display of the standard deviation of the error
for eaéh lag value within eéch set of smoothing constants.
Even though the statistical soundness precludes the direct
use of these values as limits on the forecast, they pro-
vide an estimate of that which may be expected in terms of
forecast error and can be used to Jjudge the value of this
method of forecasting against other methods that may be
available. Repeated use of this procedure on a given
process for a period of time would probably provide some
degree of asdurance to the forecaster as the magnitude of
the error that may be expected relative to the values of
the standard deviation of the error that are presented in
the display. This would provide for establishing cdntrol
limits on the forecasting process to be used in the sense

of a quality control chart.



SERIES 1 DATA

RANDOM
CONSTANT

.2000
. 2000

.2000

. 2000
. 2000
.2000
.2000
. 2000
.2000
.2000
. 2000
.2000
.2000
.2000
. 2000

.2000
. 2000
. 2000
. 2000
. 2000
. 2000

. 2000

SEASONAL
CONSTANT

TREND

CONSTANT

(A SAMPLE OF THE DISPLAY FROM

.2000
.2000
. 2000
.2000
. 2000
.2000
.2000
. 2000
.2000
. 2000

.2000
. 2000
.2000

. 2000
. 2000

. 2000

THE STANDARD

O COO0O000D0DO0OO0O00 O OO0OO0O0CO0OOO0OOCOOO0OO0O O OOOCOOOOOOOOO

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0000

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000C
.0000
.0000

.00090

DISPLAY OF SECTION 11 NORMALLY FOLLOWS

O OOCODOO0OOO0CO0O0Q O O000000O0O0O0OO0OO0O0 O O0O0OODOO0OOOOOO0OO0O

SQUARE ROOT

OF

E.M.S.
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LAG

THE SENSE SWITCH L OPTION)

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.C000

. 2000
.2000
.2000
.2000
.2000
.2000
. 2000
.2000
.2000
.2000
.2000
.2000

.2000

.4000
.4ooo
.4g0oo
.4000
.4000
. 4000
.4000
.4000
. 4000
.4000
. 4000

.4000

483

-952703
. 175207
.581068
.391627
.316981
.753752
.286433
.205850
.562231
.056058
. 111557
.701136

.094593
451722

190519
.003510
.638329

.843888

727711

.096730

.276462

. 180559

.202959
.081363
.930486
624226

.225420

.597482
481549
. 422558

.865085

.538964
.857842
. 160725
.561029

. 119162

.090055
.151886

B = SN0 00~ VU USRS —
COO0QOO0OO0QOQOCO0Q

TOTAL

M — OO 0O~ O\ i N —
COCOOO0DOOOC

o) — —

TOTAL
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QOO0 0
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SECTION VIT
SELECTION OF THE STARTING POINT

The method of finite differences as explained in
Chapter III for the selection of the starting point for
application of the supporting algorithms may be included
in the analysis by use of sense switch 5. The progran
provides some additional optimization aids over those pre-
sented in the discussion in the body of the thesis while
providing the same basic technique. The interval of hisg-
torical data that is used as the minimum length of data to
be used in the computation is passed over the absolute
values of the third order differences, but these differ-
ences are summed in groups that correspond to year inter-
vals of the original series. This still provides for the
location of the best linear fit of the data by including
80% of the second order differences in the third order
differences, but the additional benefit to be gained is
that any systematic changes'which appear in the data will
be taken into consideration. For example, if a particular
process had its major activity during one month and then
the activity tapered off until the same month the fecllow-
ing year and the cycle is repeated, the conventional use

of finite differences would indicate that this is a major
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oscillation in the series and a relatively high degree
polynomial would be required to fit the observed data.
However, through the proper indexing, the sum is taken in
terms of those third order differences determined by each
year alone and not the entire sequence. This, then, pro-
vides the method whereby the best starting point is
selected for the periodic behavior of the series. The
importance of this can only be demonstrated by taking the
third order differences of a sawtooth function and observ-
ing the difference in the absolute sum of the third order
differences for each year in the series as opposed to the
absolute sum of the third order differences for the whole
series. This technique 1s considered to be relatively
important for those series that experience a particularly
sharp change at a given interval within each period.

In the program listed in Section I of the Appendix,
the interval for the historical data is taken as one year
less than the largest integral number of years of data
available, therefore, it necessarily limits the selection
of the starting point to the first year of data. However,
in a number of the trials made during the course of this
investigation, this was sufficient to change the error
variance significantly.

The additional output, as a result of this addition to
the standard display., is a listing of the months within
the first year as starting points and the sum as described

earlier of the third order differences, along with the
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numnber of data points that have been deleted from further
consideration as part of the series.

To change the length of the minimum interval for this
part of the program, all that is necessary is change the
right side of statement number 300, make a corresponding
changé in the second term in the definition of MTA4 and
change the upper limit of the "DO 308" loop to consider the
number of data points that are in the historical data, but
not in the minimum interval specified.

This addition to the algorithms used in support of
the time series model is felt to be an original contribu-

tion arising from this study.



SERIES 1 DATA
FIRST DATA  SUM
POINT USED 3RD

4760
4893

429k

4979
Les7

N =0WR~NICWVTLITWN—

— ol ok

4579,
QLI

OF
DIF

.00000
.00000
4okL7.
Le72.
4501,
.G0000
Lé16.
.00000
L4825,
.00000

CC000
00000
00000
00000
00000

00000
00000

THOSE DATA POINTS PRECEDING THE 6TH UNIT HAVE BEEN DELETED

THE STANDARD DISPLAY OF SECTION [l NORMALLY FOLLOWS



SECTION VIII
EXTERNAL CONTROL OF SMOOTHING CONSTANTS

The program user may exercise external control over
the selection of the constants to be used in the model by
use of sense switch 6 and the addition of a card containing
%he constants to the data deck. The addition of this card
and its format will be discussed in Section XI of the
Appendix. The primary purpose of this addition to the
program is to provide for the use of a finer search grid
in a local area., It also provides for additional displays
of various types once the smoothing constants are arrived
at through the use of one of the other options of the
program. For example, the plot may be rather lengthy to
obtain as a routine output for each of the combinations of
analyses that are used in preliminary investigations.
After the set of smoothing;constants is chosen, the pro-
gram may be executed in a small fraction of the time re-
guired to carry out the iterations and provide the output.
By meking a minor program change, this option may be used
to start the search grid at some arbitrary point with the
programmed increment used over the remainder of the grid.
This alternative is available by removing the three cards

in the source program between statements 201 and 213.
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In general this option should not be used for fore-
casting in the absence of the use of the error analysis
information that is provided by the other options. If
the person doing the forecasting uses the external control
option exclusivély for forecasting, he is defeating one of
the prime purposes in the study that has been conducted in
improving the search and selection methods associated with
this model. The forecast of the model becomes a prediction
under these conditions of external control.

However, if coefficients have been established through
the use of the error method of selection in past periods
and the process appears to be stable, the use of the same
constants for updating the estimates would beba reasonable
approach for the more stable time series. The primary in-
tent of this particular option is as an exploratory con-
venience for the forecaster.

The display for this option is identical to the dis-

play of Section II and is not repeated in this section.



SECTION IX
INDIVIDUAL SETS OF CONSTANTS FOR EACH LAG VALUE

Since the IBM 7090 has only six sense switches, it is
necessary to use a control card and a sense light for this
particular programming option. The provisions of this
program are essentially the same as those explained for
the sense switch option for selection of constants based
upon consecutive lags. This particular option was explain-
ed in the text of the thesis and it is used under the as-
sumption that each data point in the cyclical period
possesses certain relationships to those points that pre-
cede and follow it and this relationship is often a direct
function of the lags; that is, the relationships between a
data point and two other points that are different becomes
a certain function to be considered in the forecasting of
events. Thus, the recognition of a relationship between
the autocorrelation and lag within the series will con~-
tribute to a reduction in the error associated with the
forecast error that is observed in the series. In order
to provide for this, the option provides for the selection
of the minimum error for each of the consecutive lags that
are applied to the test series. Therefore, the autocorre-

lation or the relationship for the smoothing or the
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forecasting of events that extends one period into the fu-
ture have different forms than those that extend some
other number of periods into the future. An example of
this is the use of a polynomial fit of the data. The fit
for the prediction of one period into the future could be
a much higher order polynomial than one that is to predict
a greater number of periods into the future. This may be
related more directly to this model since the seasonal
factor empirically determines the degree of fit that is
established in the model for the series. The amount of
smoothing that takes place in the seasonal data could well
have an effect upon the accuracy of the forecast of the
future for various lags in the data. Consideration of
this, at least over the test series, reduces the sum of
the error for the consecutive lags. This is illustrated
by a comparison of Tables XIV and XV for tesf series 6,
The display for this option provides the minimum
standard deviation of the error and its associated
smoothing constants for each lag value. The forecasts and
seasonal factors are computed individually for each lag

value and displayed as shown on the following page.



RANDOM
CONSTANT
. 8000
.8000
. 8000
.8000
.8000
.8000
. 8000
. 8000
.8000
. 80600
. 8000
. 8000

COOOO0OO0O0OO0O000O0

PERIODS INTO
THE FUTURE

O W 00 ~N O 1 = w N —

O — {
N

SEASONAL

- CONSTANT

.0000
.0000
.8000
.8000
.8000"
.8000
.8000
.8000
.8000
.0000
. 8000
.0000

— O —-0000000D—=—

FORECASTED

60.
65.
56.
57
55
59.
72
92
95
48.
54.
L5

VALUE
7010298
2863646
3915958

.0791225
.9890518

8567791

.9479608
.9617882
.5730228

6098137
9222951

.3881621

TREND
CONSTANT
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

COOO0O0O0O0OO0O0OO0O0O0O

.00G0

SQUARE ROOT

OF

L,
50.
59.
.577856
.282528
.980234
.553693

55
L7
41

51

50.
59.
55.
39.
29.

E.M.S.
127215
507354
934388

768961
581101
555433
487572
L71549

SEASONAL
FACTOR

0.890472
0.956042
1.013998
0.985599
1.241133

~1,069360

1.112799
0.990582
0.954830
1.302878

1.285091"

1.046367

LAG

N = OOW OO N —



SECTION X
TABLE OF OPTIONS

The foregoing discussions of the available options
were presented as though each one was an entity in itself.
T@is is true, but certain combinations may be used to the
advantage of the forecaster and the multiple provisions
thgt the program is capable of providing. Table XVII pre-

sented below summarizes the available combinations.

TABLE XVII
TABLE OF PROGRAM OPTIONS

Standard Display 0 - * * * * * * N
Error Variance Grid 1 * - * * ® * *
Plot Routine 2 * * - * % * * "
Independent Sums 3 * * * - *
Consecutive Lags 4 * * * - *

Starting Point 5 * * * * * _ « .
External Control 6 * * * -~
Correlated Lags SI4  * * * * ~(4)
Sense Bwitches S 1 ) 3 4 5 6 SI&

NOTE: (4) Sense switch 4 must be ON.
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All displays common to the points of intersection in
the table for the options exercised will be provided in
the computer output.

In order to use the sense light 4 option, sense
switch 4 must be ON and the last card in data deck must
have a nine in column 1.

As an example, if switches 2, 3, and 5 are on, the
program will select the optimum starting point, select the
constants on the basis of minimum sums, provide the dis-
play of Section V, and plot the observed series and its

analysis according to Section IV.



SECTION XI
PREPARATION OF INPUT DATA

The arrangement of the data deck is shown below.
This is to be accompanied by the compiled program listed
in Section I of this Appendix. The illuétration is self-
descriptive, but will be supplemented by wverbal descrip-
tions. The first card of the input is any title the user
desires provided that it is only 51 characters long and
the spacing of the output will correspond to the spacing
on the input card. The card may be blank if desired, but
must be included, otherise the first data card will appear
as a title and will not be included in the analysis.l The
data follows the title with one observation per card. This
may be chénged easlly by changing statement %3, but was
programmed in this manner to facilitate changes in the
historical data file. The present program has a limit of
600 data points: +this may be increased by changing the
DIMENSION statement. The next card is an end of data
card: this notifies the computer that all the data has
been read in. The format is the same as the data cards
with nines in each numeric column. The next card is
optional, depending upon whether sense switch 6 is to be

used during the execution of the program, If it is not to
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be turned ON during the eXQCution, this card should be
omitted from the data deck. If sense switch 6 is to be ON
during execution, then this card_should contain the smooth-
ing constants in a %F10.6 format. The last card must be

on the deck with a nine in the first column if sense light
4 option is to be used and blank if not. This completes

the description of the data deck for the program input.

9 IF SL 4 ON
Blank Otherwise

CONSTANTS

10.
IF 886 ON .
Omit Otherwise

(999-999999
600 MAX
(~ DATA F10.6

[ rime 51m

/

PROGRAM
DECK

Pigure 11. Composition of
Program and Data Deck



SECTION XIT
IBM 1620 PROGRAMS

Due to the memory requirements of this program, it is
necessary to divide the program discussed in the preceding
sections into five parts in order to fall within the limi-
tations of the IBM 1620. For the convenience of the dis-
cussions the displays of these programs have been labeled
in the comment cards placed at the beginning of each pro-
gram. They are in the normal sequence of their execution
in the analysis of a time series. This also inciudes the
cases of deletion of some of the options in the data anal-
ysis. The programs have been reduced considerably in the
amovnt of historical data that they are capable of han-
dling. Therefore, rather than create confusion, the
capacity of the memory is reflected consistently in all
the individual programs and the maximum that can be ac-
commodated by the programs is five years of historical
data. Certain other deletions were made in the output
displays primarily duve to the limitation of memory and due
to the 1620 installations being less formal in the amount
of personal contact between the computer user and the
compuber operator than the IBM 7090 installations. This

reduces the need for explicit means of identification of

le4
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the output and strict rules of computer input.

Progfam'l is for the selection of the optimum start-
ing point within the first year of historical data. The
results are identical with those of the 7090 output and it
is self-explanatory when displayed by the typewriter out-
put of the 1620. This program makes the recommendation
that a certain number of the data points be eliminated
from the data deck before further consideration, since the
program cannot exercise the control over the situation and
must rely on the computer operator to remove those cards
from the data deck.

The input for the program is the historical data in
the F10.6 format with the 999.999999 end-of-data card.

The output of the program is a typed display of the
sums of the third order differences for the data as de-
scribed in Section VII.

The use of a point within the fifst year of the data
as the starting point is particularly applicable in the
use of the 1620 programs since the limit on the historical
data is five years and the deletion of more than one year
of these data could significantly affect the estimates of
the process level and subsequently the forecasts. Any
number of data decks may be processed sequentially by
pushing START on the 1620 console after the completion of
each display.

The approximate time for reading the data, computation,

and displaying the results is three minutes.
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Program 2 is the basic program for the computation of
the error variances for a given grid of constants and a
lag value of one. The grid used in this program is arbi-
trary and 1s controlled external to the machine by use of
punched card input in the 3F10.6 format for the sets of
smoothing constants to be used. Once a primary or course
search grid is established for the consideration of the
processes, a complete deck of these grid values in some
ordered sequence should be prepared to facilitate the use
of the programs. These values are computed one at a time
and the results may be obtained in three ways. The smooth-
ing constants and the error variance value can be on
punched cards, they may be typed out, both of these methods
may be used simultaneously, or they may be computed and the
minimum error variance and its constants stored in memory
to be displayed after the completion of the search grid by
turning sense switch 2 ON during the last computation.
However, if sense switch % is ON, the manual start must be
used after each set of constants. This is to encourage
use of punched card output and to save machine time. The
program selects the minimum value of the error variance up
to the point that it is requested to display that informa-
tion, and continues to re-evaluate the minimum for all
values as long as a given set of series data is stored in
memory. Therefore, a number of investigations may be per-
formed by using the smaller machine and having access to

the display of the computations as they are made., This is
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particularly true when a fine grid search is being made of
a local minimum. The computation time for an iteration is
approximately 24 seconds or one hour for the 156 value
grid used in these studies.

Program 3% is the modification of Program 2 in order
to consider the consecutive lag values and their error
variance. The display is limited to card output due to
the length of the answers and the length of the program,
except during the final computation of the series sense
switch 2 may be turned on to obtain both a typed and
punched display of the set of constants and the value of
the minimum sum of the error variance. Once this option
has been exercised the program transfers control back to
the beginning of the program and reads in the next series.
Sense switch 2 provides for the display of the minimum sum
and the initiation of the computations for a new series,
but once this transfer has been made the switch should be
turned to OFF otherwise the program will transfer after
the first computation and will necessitate reloading the
data again to restart the computatidnc This program re-
guires about 45 seconds per iteration or a total of two
hours for the 156 value grid.

Program 4 provides for the summing of the error vari-
ances for each of the smoothing constants over all values
of the other constants. The input to the program is the
output of Program 1. The output of this program is typed

out by the console typewriter and is of the form of the
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display for Section V. Due to the small number of compar-
isons involved in determining the minimum value for each
of the constants it is not automatically computed and dis-
played. Time is not of importance at this point., since it
is necessary to load Program 5 before the optimum value
determined by the minimum sums may be used in forecasting.
The time required for this program to read, compute, and
display the results is approximately ? minutes per deck of
input data and any number of data decks may be considered
by pushing start at the end of each previous computation.

Program 5 provides a display of the forecasted values
of the process and the seasonal factors. The input to
this program is the standard data deck and the smoothing
constants to be used for computations. The options permit
the use of more than one set of constants for each data
deck if sense switch 1 is ON. If sense switch 2 is ON., the
program will consider more than one data deck in sequence
with one set of smoothing constants for each deck. These
switches may be manipulated to suit the immediate needs of
the computation. The display is by typewriter and is of
the same form as the 7090 displays. The computation time
required is less than 2 minutes per series iteration.

The displays of these programs are not presented in
this section since they are identical in nature to those
of the 7090 output presented in the preceding sections and
it would be redundant to includé them. The only difference

is the display of the error variance in the 1620 displays
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as opposed to the display of its square root in the 7090
displays.
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PROGRAM 1 - SELECTION OF STARTING POINT
INPUT~ DATA DECK WITH 999.999999 AS THE LAST DATA CARD
QUTPUT - TYPEWRITER

OPTIONS - MORE THAN ONE DATA DECK, PUSH START
DIMENSION OBE(60), DEL(60)

MOTOL = O

f=1

READ3,0BE(1)

FORMAT (F10 6)

IF(OBE(1) -999.999999) 4,5, 99

MOTOL = MOTOL +1

il =14+ 1

GO TO 2

MYR = MOTOL/12

MTA1=12%(MYR-1)

MTA2=MTA1-1

MTA3=MTA2-1

COMP=0 ., 9E+25

DO 301 =2 ,MTAIT
DEL{1-1)=0BE(1)-0BE(i-1)

DO 302 I=2,MTA2
DEL(1-1)=DEL(1)-DEL(1~-1)

DO 303 !=2,MTA3

DEL(i-1)=DEL(1)=-DEL(1~1)

PRINT 30L

FORMAT (10X, 23HF {RST DATA SUM OF )
PRINT 3042

FORMAT (10X, 21HPOINT USED  3RD DIF )
DO 309 IN=1,12
SUMDL=0.0
MTAL=1N+12%(MYR-2)-k
DO 306 I=IN,MTAL, 12
DO 306 J=1,9
LL=(1+J=1)"
ADEL=DEL(LL)
IF(ADEL)305 306, 306
ADEL = (-1.0)*ADEL
SUMDL = SUMDL + ADEL
PRINT 307,1N,SUMDL
FORMAT(I15 F16.5)
I F(COMP - SUMDLJ 309, 309, 308
COMP = SUMDL
INIT = IN
CONT INUE
PRINT 310,INIT
FORMAT (10X, 31HTHOSE DATA POINTS PRECEDING THE |4, 2HTH)
PRINT 311
FORMAT (10X, 23HVALUE SHOULD BE DELETED )
PAUSE
GO TO 1
END
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PROGRAM 2 - PROGRAM FOR COMPUTATION OF ERROR

VARIANCES FOR LAG OF 1

INPUT ~ DATA DECK AND DECK OF SMOOTHING CONSTANTS

OUTPUT -~ CARDS AND/OR TYPEWRITER

OPT}ONS

SENSE SWITCH 1 FOGR PUNCHED CARD OUTPUT

SENSE SWITCH 2 TO OBTAIN MINIMUM VALUES OF THE ERROR

VARIANCE AND 1TS ASSCCIATED CONSTANTS AT ANY TIME

DURING THE COMPUTATION

SENSE SWITCH 3 FOR TYPEWRITER OUTPUT PUSH START
DIMENSION OBE(60),0BS(12,5),YRAV(5), TREND(60) UNAD(12)

DIMENSION SEA(60), EST(605 PRED(60) ,SENA(12)

DIMENSION SEANL(12,5)

MOTOL = 0O

be=1

READ3,0GBE(1)

FORMAT (F10.6)

IF{OBE{1) -999.999999) 4,5, 99

MOTOL = MOTOL +1

=1 + 1

GO TO 2

MYR = MOTOL/12

| F(MOTOL -~ 12% MYR —9) 6,7,7

6 MOT = 12%(MYR~-1)

il
12

"SUSEA =

MYR = MYR - 1
GO T0 8

MOT = 12% MYR
FMYR = MYR

L =1

It

(L)
J) + OBE (L)/12.0

MOTOL - MOT

T+-1
(0.9E4+25}%(0.9E+25)
oT

(YRAV(MYR )~ YRAV(1))/(AMOT 12.0)
, MYR

FIl = |
SEANL (
UNAD (1
| F(UNA
UNAD( !

6.5- FB)*TREN)
FMYR)
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15

20
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23

24

25
26

27

29
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PLY = 12.0 /SUSEA

DO 13 | = 1,12

SENA(1) = UNABG(!) * PLY
READ 15,A,8,C

FORMAT(F10.6,F10.6,F10.6)

EST(1)= A+(03£(1)/SENA(1))+(1 0=A)* (YRAV(1)+TREN)
TREND (1)=C*(EST{1)~YRAV(1))+(1,0-C)*(TREN )
SEA(1) = B*{OBE(1}/EST(1))+(1.0~B)*SENA(1)

DO 19 | = 2, MOTOL

[F(1-12)16, 16 17

Je=1

SEA(J)} = SENA(J)

GO TO 18

J=l~12

EST(1)=A%(CBE(1)/SEA(J) )+ (1.0-A)Y*(EST(}=1)+TREND(1-1))
SEA (1) = B*(OBE(I1)/EST(1))+(1.0-B)*SEA(J)

TREND (1) = C#(EST(1)~EST(1=1))4(1.0~C)*TREND(1~1)

SUMER = 0.0
DO 20 K = NOT, MOTOL

PRED(K) = (EST(K~1) + TREND (K-1))*SEA(K-12)
ERROR = (OBE(K) - PRED(K))
ERSQ = ERROR * ERROR

SUMER = SUMER + ERSQ

VAR = SUMER/DENOM

IF{SENSE SWITCH 1) 21,22
PUNCH 26,A,B,C,VAR
|F(VAR-SMVAR} 23,24, 24
SMVAR = VAR

SA = A

SB = B

SC = C

IF(SENSE SWITCH 3) 25,14
PRINT 26, A,B,C, VAR
FORMAT(F? 3, F7. 3 F7.3,F20.6)
PAUSE

lF(SENSE SWITCH 2) 27,1k
PRINT 26,5A,SB,SC,SMVAR
PUNCH 26.SA.SB.SC,SMVAR

GO TO 1

END

]
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PROGRAM 3 - PROGRAM FOR COMPUTATION OF ERROR
VARIANCES FOR LAG VALUES 1 THROUGH 12

INPUT - DATA DECK AND DECK OF SMOOTHING CONSTANTS
OUTPUT - CARDS

OPTIONS AT END OF PROGRAM TURN SWITCH 2 ON DURING LAST
COMPUTATION TO OBTAIN MINIMUM ERROR VARIANCE AND ITS
ASSOCIATED SMOOTHING CONSTANTS

DIMENSION OBE(60),085(12,5), YRAV(S) TREND(60),UNAD{12)
DIMENSION SEA(60).EST(60),PRED(60),SENA(12),VAR(12)
DIMENSION SEANL(12,5) :

MOTOL = O

Je= 1

READ3,0BE(1)

FORMAT (F10.6)

IF(OBE(1) -999.999999) 4,5, 99

MOTOL = MOTOL +1

=1 + 1

GO TO 2

MYR = MOTOL/12

IF(MOTOL - 12% MYR -9) 6, 7,7

MOT = 12%(MYR-1)

MYR = MYR - 1

GO TO 8
MOT = 12% MYR
FMYR = MYR
L= 1
DO 10 J = 1, MYR
YRAV(J)=0.0
DO 91 =1, 12
UNAD(1)=0.0
0BS (1,J) = OBE (L)
YRAV(J) = YRAV(J) + OBE (L)/12.0
= L 4 1
CONT | NUE
DENOM = MOTOL - MOT
NOT = MOT +1
SMVAR = (0.9E+25)%(0.9E+25)
AMOT = MOT
TREN = (YRAV(MYR)wYRAV(1))/(AMOT 12.0)
DO 12 J = 1, MYR
SUSEA = 0.0
DO 12 | = 1, 12
Fi = |
SEANL(1,J) = 0BS(1,J)/(YRAV(J)-(6.5-FI)*TREN)
UNAD(1) = UNAD(!) (SEANL (1,J)/FMYR)
FF(UNAD(1))11,12, 12
UNAD(1) = (-1, 0)*UNAD(E)
SUSEA = SUSEA + UNAD(1)
PLY = 12.0 /SUSEA
DO 12 | = 1,12
SENA(!) = UNAD(1) * PLY
READ 5 A,B,C
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FORMAT(F10.6,F10.6,F10.

6)
EST(1)=A*(OBE(1)/SENA(1))+(1.0-A)*(YRAV(1)+TREN)
TREND (1)=C*(EST(1)~YRAV(1))+(1,0-C)*(TREN )
"SEA(1) = B*(OBE(1)/EST(1))+( .0-B)*SENA(1)

DO 19 | = 2, MOTOL

iF(i-12)16, 16 17

J=

SEA(J) = SENA(J)

GO TO 18

J=1-12
EST{1)=A*{0BE(!1)/SEA(J))+(1.0-A)*(EST(I-1)+TREND(i=1))
SEA (1) = B*{OBE(1)/EST(1))+(1.,0-B)*SEA(J

TREND (1) = C*{EST(1)-EST(1~- -1))+(1.0-C)* TREND(I—])

SUMVA = 0.0
DO 21 LT = 1,12

~SUMER = 0.0

290
21

22
23

24
26

27

29

LOW = (NOT - LT + 1)

MAX = (MOTOL - LT + 1)

DO 20 K = LOW,MAX -

Ne= (K+ LT - 1)

T = LT

PRED(N) = (EST(K-1) + T*TREND(K-1))*SEA(N-12)
ERROR ~-(OBE(N) ~ PRED(N))

ERSQ = ERROR * ERROR

SUMER = SUMER + ERSQ

VAR(LT) = SUMER/DENOM

SUMVA = SUMVA + VAR(LT)

PUNCH 26, A,B,C,SUMVA

PUNCH 22 VAR(1),VAR(2),VAR(3),VAR(L) VAR(5),
PUNCH 22,VAR(7).VAR(8) .VAR(9) .VAR(10),VAR( 11
FORMAT(F12.4 F12.4,F12. 4, F12.4,F12.4,F12.4)
IF(SUMVA — SMVAR) 23y2h,24

SMVAR = SUMVA

VAR(6)
),VAR(12)

SA = A
SB = B
SC=2C

IF(SENSE SWITCH 2) 27,14
FORMAT(F7.3,F7.3,F7.3,F20.6)
PRINT 26,5A,SB,5C,SMVAR
PUNCH 26.SA.SB.SC.SMVAR

GO TO 1

END
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PROGRAM 4 - PROGRAM FOR COMPUTATION OF SUM OF ERROR
VARIANCES FOR EACH VALUE OF THE SMOOTHING CONSTANTS
INPUT - OUTPUT DATA FROM PROGRAM 2

QUTPUT —~ TYPEWRITER .

OPTIONS - MORE THAN ONE DATA DECK, PUSH START
DIMENSION 5(156) SUMA(6) ,SUMB(6), SUMC(6) FA(6)

DO 100 | = 1,156

READ 101, »S(I)

FORMAT(21X F20.6)

KA = 2

SUMA({1)=6. o*(s(l)+s(z)+5(3)+5(4)+s(5)+5(6))
DO 103 L=7,115,36

SUMA(KA) = 0.0

N =L 4 35

DO 102 M=L,N

SUMA(KA) = SUMA(KA) + S(M)

KA = KA + 1

SUMA (6)=6.0%(S(151)+5(152)+S(153)+S(15L)+S{155)+S(156))
KB = 1

DO 105 M=7,37,6

SUMB(KB) = SUMA(6)/6.0

DO 10k L=M, 150,36

K = KB
SUMB(K)=S({L)+S(L+1)+S(L+2)+S(L+3)+S(L+4)+S(L+5)+SUMB (K}
SUMB(K) = SUMB(K)+1,5%S(K)

KB = KB + 1

DC 107 M=7,12

SUMC (M-6) = SUMA(])/6 0

DO 106 L=M,150,6

SUMC(M-6) = SUMC(M-6) + S(L) + 0. 25wS(M+1h4)

CONT I NUE

FA(1)
FA(2)
FA(3)
FA(L)
FA(5)
FA(B)
PRINT 10
FORMAT{32HSUM OF ERROR VARIANCES ON A,B,C )
DO 109 K=1,6

PRINT 110,FA(K),SUMA(K), SUMC(K) SUMB (K)
FORMAT(F7.3,F20.6,F20.6,F20.6)

PAUSE

GO TO 1

END

WRB R
C);I)O\FN@

CO—-00000
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PROGRAM-5 THIS PROGRAM PROVIDES THE FORECASTS
INPUT REQUIRED - ORIGINAL DATA DECK AND SMOOTHING
CONSTANTS IN 3F10.6 FORMAT
OUTPUT - TYPEWRITER
OPTIONS
SENSE SWITCH 1 — MORE THAN ONE SET OF CONSTANTS
SENSE SWITCH 2 - MORE THAN ONE SET OF DATA
DIMENSION OBE(60),0BS{12,5),YRAV(5), TREND§60) ,UNAD(12)
DIMENSION SEA(60) .EST(60),PRI(12),SENA(12),SEANL(12,5)
MOTOL = O
f=1
READ3,0BE(1)
FORMAT (F10.6)
IF(OBE(1) -999.999999) 4,5, 99
MOTOL = MOTOL +1
P | o 1
GO TO 2
MYR = MOTOL/12
i F(MOTOL - 12% MYR -9) 6,7,7

MOT = 12%(MYR-1}

MYR = MYR - 1

GO TO 8

MOT = 12% MYR

FMYR = MYR

L =

DO 10 J = 1, MYR

YRAV(J)}=0.0

DO9 1 =1, 12

UNAD(1)=0.0

0BS (1,J) = OBE (L)

YRAV(J} = YRAV(J) + OBE (L)/12.0
L=L + 1

CONTINUE

DENOM = MOTOL - MOT

NOT = MOT +1 -

SMVAR = (0.9E+25)%(0.9E+25)

AMOT = MOT

TREN = (YRAV(MYR)-YRAV(1))/(AMOT-12.0)
DO 12 J = 1, MYR

SUSEA = 0.0

DO 12 ! = 1, 12

Fl = |

SEANL(!,d) = OBS(! JI/(YRAV{J)~(6.5-F1)*TREN)
UNAD(!) = UNAD(1) + (SEANL(I,J)/FMYR)
EF(UNAD(H))!],!Z,!Z o
UNAD(1) = (=1.0)*UNAD(1)

SUSEA = SUSEA + UNAD(1)

PLY = 12.0 /SUSEA

DO 13 | = 1,12

SENA(1) = UNAD(1) * PLY

READ 15,A,B,C

FORMAT(F10. 6,F1o 6,F10.6)
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501

502
503

504
99

177

A)*(YRAV(1)+TREN)
0-C)*(TREN )

EST(1)=A*(0BE(1) -
1.
0 B)*SENA(1)

/
TREND (1)=C*(EST(
SEA(1) = B*(OBE(1
DO 19 | = 2, MOTO
IF(1=12)16,16,17
J=|

SEA(J) = SENA(J)
GO TO 18

J=1-12
EST(1)=A*(0BE(1)/SEA(J))+(1.0
SEA (1) = B*(OBE(I)/EST(1))+(1.
TREND (1) = C*(EST(1)-EST(1-1
PRINT 500

T(1=1)+TREND(1~1))
SEA(J)
~C)*TREND(1-1)

'FORMAT (L4HPERI0ODS INTO FORECASTED SEASONAL)

PRINT 501 :
FORMAT(44H  FUTURE VALUE FACTOR )
DO 502 LT=1,12

T = LT

IND = (MOTOL + LT - 12)

PRI(LT) = (EST(MOTOL) + T*(TREND(MOTOL)))*SEA(IND)
PRINT 503, LT, PRI(LT), SEA(IND) _
FORMAT(17,F22. 5;F14.6)

| F(SENSE SWITCH 1) 14,504

I F(SENSE SWITCH 2) 1,99

END
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