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PREFACE 

The study of methods of applied time series is usually 

accompanied by the formulation of a model that is used to 

forecast the future of the series. Since perfect informa­

tion of the future is rare, these methods will have some 

error associated with the forecasts. The discussion of 

these methods in the literature is not uniform in the def­

inition of the error, the distribution of the error or the 

interpretation of the error. 

In this thesis, the ~rror is defined without any as­

sumptions of the distribution of errors in order to provide 

generality in the methods considered here. These methods 

were developed for the real world process and the examples 

presented are of this type. 

The computational algorithms used to provide the input 

for the forecasting model decompose the series into its 

linear trend, seasonal variation, and random variation 

about some mean level by the use of exponent~ally weighted 

moving averages. The exponential weighting of the his­

torical data is a function of the smoothing constants 

which are selected. Therefore, the selection of these 

constants determine the fit of forecast values to the 

actual data. The selection of these constants are based 
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upon the response of the series to the application of the 

smoothing constants in terms of the mean forecast error 

squared under some defined concepts of optimality of the 

fit. The met hods of selection of an opti mum start ing 

point within the historical data are also derived and 

supported by examples. 
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Professor Wilson J. Bent ley j Head of t he School of Indus ­

trial Engineeri ng and Management ~ for hi s advi c e and 

counsel during my graduate program; of Dr, Paul E. 

Torgersen for his interest and suggesti ons during the total 

program; of Dr. David L. Weeks , Dr. Carl E. Marshall and 

Dr. Robert A. Hultquist for serving on the graduate c om­

mit tee and providing quality instruction during my graduate 

course work, and Dr. Robert D. Morrison and Dr . George F . 

Schrader who added to my general educational level during 

the course of this work. Also , a debt of grat itude is 

acknowledged t o Sandia Corporation for providing the at­

mosphere and facili ties for conducti ng this s t udy , and to 

Mr. L. E. Snodgrass, both friend and supervisor , for his 

continued encouragement and making time and facilit i es 

avai lable for these i nvesti gations ; t o Mr. R. W. Devore 

and Mr . C. C. For ner o f or i ntr oducing me t o this pr oblem 

and their helpful suggestions i n t he i mprovement s t hat 

wer e needed i n the f orecasting scheme; Mr . D. D. Sheldon 

iv 



for making the time of Mitzi Fortenbury and Sue Bell Propst 

available for experiments in programming and data 

preparation. 

The final contributions to this thesis were performed 

by Miss Velda Davis who did an e~cellent job of preparing 

the final form and deserves a special note of thanks. 

V 



Chapter 

I. 

TABLE OF CONTENTS 

INTRODUCTION 

Contrasts in the History of 

Page 

1 

Time Series Analysis . . . 1 
Methods of Time Series Analysis " . . 6 
Interest in Time Series Analysis 9 
Scope of This Study ..... , . 11 

II. THE EXPONENTIALLY WEIGHTED MOVING AVERAGE 
AS A TIME SERIES MODEL ..... . 

The Moving Average as a Model . • 0 • 

The Simple Exponential Model . . . 
The Model for Trend and Noise ... 
The Complete Model for Trend~· 

Cycles and Noise ... 

III. THE MODEL AND FORECAST ERROR. 

• 0 

Assumptions ....... . 0 0 0 

Testing the Model .. 
Hierarchy of Models ... 

0 Q (I Q Search Methods ? •• 

Selection Methods ... 
Selection of Starting Points 

IV. EMPIRICAL RESULTS 0000~000000,.;i 

o 0 

Selection of Data for Study. " o , , •• 

Enumeration as a Search Method .. c 

Selection of the Search Grid , " . o o o 

Manual Selection of Smoothing 
Constants o " ••••• 

The Observed Series and 
Autocorrelation. "·" " . " " " . " 

Selection of Constants by Sums 
of Error Variance o •••• o 

Selection of Smoothing Constants 
Based Upon the Sum of Error 
Variances for Consecutive Lag 

O O 0 

Values o o (l <il [l o o o o o o o o o o o 

vi 

14 

17 
22 
29 

34 

40 

41 
42 
46 
48 
53 
62 

67 

68 
77 
Bl 

84 

87 

96 

99 



Chapter rage 

IV. (Continued) 

SelectiQn of Smoothing Constants 
for Individual Lag Values .••..•. 103 

Selection o! the Starting Point ••.•• 106 

v. OBSERVATIONS AND CONCLUSIONS •••.• . . • • 

Selection of Forecasting Methods 
Forecasting and Fo::r;-ecast Error• 
Summary . . . • . ~ . , . . • • 
Extension of This Study •.•• 

' • • '!t 

• • • . . . . . . . . . . 
BIBtIOGRAPHY 0 • e O • • ' e • e • ~ e O e ' ' e 

APJ?ENDIX - DISCUSSION OF COMPUTER PROGB,AMS. . . . . . 

vi:i. 

110 

110 
112 
114 
116 

117 

119 



LIST OF TABLES 

Table 

I. Series 1 - Random Type Series eOO(ll!:iOOO 

II. Series 2 - Autocorrelated Time Series 0 

III. Series 3 - Trend and Random Type Series 

IV. Series 4 - Cyclical Type Series . 0 0 . 
v. Series 5 - Cyclical and Trend Type Series 

VI. 

VII. 

VIII. 

IX. 

x. 

Series 6 - Non-Random Type Series . . 
Error Variance Table for Series 6 0 . 
Illustration of a Local Minimum in the 

Error Variances From Table VII . . 0 

Error Variance Table for Grid Size 0.1 
About the Local Minimum (0.2 0.8 0.0) 
of Series 6 0 . . 0 0 . . . . 0 0 0 

Error Variance Table for Grid Size 0.1 
About the Local Minimum (0.4 0.2 0.2) 

. 
0 

0 

. 

of Series 6 · ............ . 

XI. Comparison Forecast Summary of Error 
Variance and Observed Series Variance 

XII. Autocorrelation Coefficients for 
Lag Values 1 Through 12 .... 

XIII. Sums of Error Variances for Series 6. 

XIV. Comparison of Error Variances Between 
Methods of Smoothing Constant Selection 

0 . • 

0 . . 
0 0 . 

0 . . 
. 

0 0 • 

0 0 0 

0 0 0 

0 0 

Minimum Error Variance and Smoothing 
Constants for Individual Lag Values o O O 0 

XVI. Deletion of Historical Data and the 
Affect of Error Variances ••.. 

viii 

0 C O O 0 

Page 

71 

72 

73 

74 

75 

76 

78 

80 

83 

83 

87 

88 

98 

101 

105 

107 



Figure 

1. 

LIST OF FIGURES 

The Time Series Spectra of Subjects 
and Analyses ........•. 

2. Response of the Twelve Month Moving 
Average Cl Q O i> 0 e O G e O O O O 

3. Attenuation of Historical Data Based 
Upon Choice of Smoothing Constant 

0 0 0 0 0 0 

0 0 fl O O 0 

4. A Changing Process OQ•OOOQ.11100000 

Page 

12 

20 

27 

62 

5. A Series With Noise About a Process Level. 71 

7. 

8. 

9. 

10. 

A Series With Linear Autocorrelation 
Among Observations . . . . . ... • 0 • 

A Series With Noise and Trend . . . . 0 0 0 

A Series With Cyclical and Random Variations. 0 

A Series With Trend~ Cycles and Noise . 0 . 0 • 

A Series With Autocorrelation of a Different 
Type 0 0 . 0 . . 0 0 0 0 0 D D . 0 0 0 0 0 0 

ix 

72 

73 

74 

75 

76 



CHAPTER I 

INTRODUCTION 

The arrangement of events by their order of occurrence 

in time describes a time series. Time series analysis is 

the planned study of the data associated with this sequence 

of events. In general, the purpose ot a study is to pro~ 

vide information for the interpolation or extrapolation of 

some function of the observed series in order to obtain 

forecasts of intermediate or future events, 

The generality of these definitions indicates the 

range o! subject areas within time series analysis. Tnere­

fore1 it is proposed to consider only that segment wbich 

is related to exponentially weighted moving averages and 

record the results of investigations in that area. 

Contrasts in the History of Time Series Analysis 

lhe astronomers of the Sixteenth Century are credited 

with originating the study of time series (1). These stud­

ies were conducted on the movement of the known planetary 

bodies within the solar system. It is fortunate for sci­

ence in general and for the study of time series analysis 

in particular that the major influence upon the activity 

of the planets is the'sun. The reason this is considered 

l 



2 

fortunate is that the behavior of an observed process is a 

function of all things which influence the process; there­

fore, if a dominating influence is present it usually re­

duces the complexity of the behavior pattern and 

facilitates a description of that process as a function of 

time. Astronomers have continued to perform time series 

analysis upon the activity of bodies within the universe 

and after 225 years o! study they have a 175 page equa­

tion describing the movement of the Earth's moono This 

example is extreme in the amoup.t of emphasis it places 

upon patience, time, and precision, but it is illustrative 

of the procedural technique used throughout the develop­

ment of this subject area in that data are collected and 

an analysis is performed to determine if a sufficient .de­

gree of consistency is demonstrated in the activity to 

permit the formulation of a description of the observed 

activity within some acceptable limits, Generally, the 

maturity of an area of study can be measured by the range 

of these limitq. Since the range of the limits is quite 

small for astronomy, it is considered to be a mature science. 

Another classical study in time series analysis is a 

study of su~spot data made by Wolfer about the beginning 

of this century. This study was particularly significant 

to the geophysicists of that time because Wolfer not only 

interpreted the pattern within the historical data, but 

also forecast their occurrence within reasonable limits. 

The isolation of these periodicities in the sunspot data 
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created an interest in time series analysis not only in 

the study of sunspots but in many seemingly unrelated 

fields. It is ironic that similar studies of sunspot ac­

tivi ty are presently being conducted by space sci entists 

specifically for the purpose of forecasting such ac tivity. 

This is considered a near necessity for scheduling manned 

space travel in the fut ure since sunspots release large 

amounts of high-level radiation into outer space . 

History does not relat e a classical study in the 

field of meteorology, but is readily recognizable as a 

field that evo l ved from a mysterious curi osity i nto a ma­

ture science through time series analysis, Probably the 

first meteorologi s t was a mathematically inclined agricul­

turist that observed certain sequences in the weather and 

found that by recognizing the start of a particular pattern 

a certain type of weather activity would usually follow. 

The study of meteorology has advanced to the state that · 

analyses of meteorological data are performed on an auto­

mated basis. An example of this is the computer c omp l ex 

operated by the Navy at San Diego, California, which rou­

tinely analyzes the data collected oy a world-wide collec­

tion system and make~ long range weather forecasts. 

Another classical problem which is not immediately 

associated with time series analysis is that of the vi­

brating string. This is a case of a physical system that 

receives a known input and the response or output i s ob­

served and studied until a mathematical expression is 
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arrived at that describes the response adequately. A 

solution is known to exist in terms of differential equa­

tions or harmonic analysis, This type of analysis is 

involved in communication engineering and statistics where 

the input to a system is known, and the output is predic­

table, but due to external sources of noise the problem 

becomes one of recognizing the exact points of correspond­

ence between the input and output. This class of problems 

is undergoing intensive study at the present time due to 

the need to establish accurately the position and velocity 

of missiles in outer space. 

Time series do not lend themselves to an exact clas­

sification system. If the term stability is used as a 

measure of the probability that the future of the process 

can be forecast in time, then an exact delineation between 

stable and unstable processes is not possible. Therefore, 

only qualitative definitions can be given for stable and 

unstable processes. In this thesis the unstable processes 

are those which have ;not been quantified to the extent 

that their description is commensurate with the reasonable 

use of that description. The classification of processes 

is one of judgment based upon the mathematical description 

of the process and the use of the extrapolated series. 

The foremost example of unstable processes is that 

large class of processes associated with economic time 

series. Economic time series have been studied since the 

early Nineteenth Century and at the present time the amount 
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of effort expended in this area continues to increase. 

Progress has been made, but the standard economic time 

series are still judged to be unstable processes. Many 

attempts were made to correlate economic time series with 

Wolfer's sunspot data, and suprisingly enough many of the 

trials showed a significantly high degree of correlation. 

This led to a frenzy of activity in finding correlations 

among various economic time series or any other time series 

that would provide a significant correlation. Published 

result s of this nature attracted the attention of many 

mathematicians and scientists since these correlations 

could not be justified by any practical means onan a priori 

basis. This precipitated a number of mathematical papers 

on the subject of correlation and extrapolation of time 

series. The classics are those by Yule (2) in 1926 on why 

nonsense correlations exist and by Slutzky (3) in 1927 on 

random series. These provided the base for serious study 

of the unstable processes and the development of statis­

tical techniques to provide better forecasts of the future 

behavior of these processes. 

A majority of the studies of unstable processes are 

related to economic time series , but there are two other 

areas that are sufficiently large and should be mentioned. 

They are sociological and biological time series. The 

former is the study of people and their activity in terms 

of births , marriages, divorces, suicides, thefts, and any 

number of other such categories. The latter is the study 
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of changes in the populati on of insects ~ fish, game ani­

mals, birds, plant and animal growth, and related topics. 

There are undoubtedly other logical divisions of the study 

withi n t he s t able and uns t able proc esses that coul d be 

made, but t hose lis t ed ar e consider ed t o be t he maj or ones. 

A more de t ai l ed di s cussi on of t he above may be f ound 

by Davi s (1), as we ll as i n the introduct ory mat erial in 

many of t he texts lis t ed in t he Bi bliography. 

Methods of Ti me Series Analys i s 

The mathematic s used i n t he analysi s of time series 

vary as much as the areas of investigation. Duri ng t he 

last 200 years a number of mathemati cal techniques have 

been developed as a direct result of time series i nvest i ­

gations~ Other standard mathematical methods and special­

ized methods of analysis from other fields of study have 

been applied to the study of time series. The following 

discussion will list the more commonplace techniques t hat 

have been used in developing time series study and t hose 

that are being used at the present time. 

In general these methods are curve fitting techniques 

used as a base for extrapolation. The process of fitting 

a curve to the observed data is one of smoothing the ob­

served series and interpolating for values within the 

series. The simple forms o! curve fitting are those used 

for trend analyses. One procedure for this is to take the 

average value of all the observed results which may be 
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done either arithemetically or graphically by freehand 

methods. Similarly, determination of linear, exponential, 

logarithmic, moving average or moving polynomial trends can 

by accomplished by least squares techniques or graphical 

methods. Special cases of these methods are the linear 

regression and curvilinear regression methods of curve 

fitting and row experiment type of analysis of variance 

models. Generally, the above methods tend to smooth the 

data more than some time series models, but also tend to 

provide bett~r estimates of the mean, whi,ch may or may not 

be a proper mode for comparisons of methods. 

One curve fitting method that can provide an exact 

fit of the observed data is the interpolating polynomial. 

The degree of the polynomial will determine generally the 

fit of the curve with the exact fit obtained if the degree 

of the curve is one less than the number of points being 

considered. However, this exactnes~ is not indicative of 

the exactness of extrapolated values of such a polynomial. 

In fact, nth degree polynomials of this type generally 

cannot predict beyond the next few values in a series as 

well as some of the more general smoothing techniques~ 

Good estimates of the original series may also be obtained 

by using techniques of harmonic analysis. Two of the more 

important techniques o! this type are the use of a Fourier 

series to fit the data within an arbitrarily small amount 

of error and a method of analysis known as periodgramanal­

ysis which has rece;i. ved con1;3iderabl.e attention as a tool for 
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economic time series analysis. There are a number of var-

iations in the details of the methods of periodgram analy-

sis and some consideration should be given to the seleeti·on 

of the method to be used. 2 

Correlation in observed data is a rather important 

consideration in time series analysis. Autocorrelation is 

a special type of correlation which quantifies the rela­

tionship of values within a series to other observed values 

in that same series, Also, correlation among different 

time series may be determined by direct, lag or inverse 

correlation. The lack of autocorrelation is important in 

many of the statistical treatments of time series analysis, 

not only within the observed data but also within the time 

series of errors that are generated by a lack of fit of 

the smoothed data. 

The work of Slutzky (3) provided the fundamental con-

cept of the moving average technique which was based upon 

the observed statistical properties that cumulative sums 

or moving averages demonstrated. There have been a number 

of investigations regarding the length of the interval to 

use for a moving average and various methods of weighting 

the observed data to obtain a "best" estimate of the future 

mean value of a process. A notable example is a weighting 

formula developed by Macaulay (4) which contains 43 terms. 

Less detailed methods will be discussed later in t he thesi s. 

2Refer to Davis (1), Chapter 7, pp. 276- 326. 
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There are numerous other types of studies or tech­

niques that are associated with time series analysis and 

are found frequently in the literature on this subjecto 

These include cofluence analysis 9 factor analysis~ the 

variate difference methodi stochastic difference equa­

tions~ orthogonal functions~ operational calculus methods, 

methods derived from the calculus of variations and others 

which appear less frequent. Some of the related areas of 

study are spectral theory~ ergodic theory~ stochastic 

processes, Brownian motion~ comm\l!lication theory~ filter-

ing processes 9 random series and servomechanisms, 

Interest in Time Series Analysis 

An indication of the interest in a subject may be de­

termined by a review of publications in that area. In 

time series analysis, the individual contributions to the 

literature number in tens of thousands. The Selected 

Bibliography compiled by Deming (5) for the period 1930 to 

1957 from the :mathematical and statistical journals con­

tains over 240 entries.3 In addition to this, there were 

a number of publicat:Lons on this subject in the 130 years 

prior to this time period, in the tive years subsequent to 

it, and in the wor~s of economists, sociologists, biolo­

gists, electrical and communication engineers, and applied 

'These include Annals of Mathematical Statistics, 
Journal of American Statistieal Association 1 Biometrika'l 
Journal £f. :t_he Ro:y§;_l Statistical §_gciety~ and a number of 
foreign publications. 
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statisticianso 

For example, the economists have a number of journals 

which contain papers on the subject of economic time 

series. The leading journal from the standpoint of sta­

tistical treatment of this subject is Econometrica, but 

among the others which publish time series studies are 

Economica, Economic Journal, The Economist~ Review of 
• I -..--

Economics and Statistics, and Harvard Business Review. In 
__...,... . . ' ' ' ----

addition to these periodical publications in the field of 

economics, there are at least three major foundations that 

study the general field of economics with frequent studies 

in the area of economic time series. They are Harvard 

Economic Studies, the Netherlands Economic Institute and 

Cowles Commission of Research in Economics~ who sponsor 

the preparation of monographs for publication and distri­

bution through their individual monograph series. 

Each of the other disciplines of study have similar 

groups of periodicals that publish their works ;in the study 

of time series, with two periodicals that are more inter­

disciplinary in that they encourage the contribution of 

any person interested in the study of time series and more 

specifically isolation of periodicities within historical 

data. These two journals are Cycle~ and The Jou~1 of 

Cycle Research. Those journals which contained articles 

more closely related to this thes:i,s are Management Science 

and Journal of Operati~ Research Society£! America. 

Assuming that publication rate is a suitable index 
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of interest, then it is obvious that there i~ a widespread 

and continuing interest in time series analysis. 

Scope of This Study 

Within this complex of methods of analysis and vari~ 

ous disciplines there are gaps that should be filled be­

tween the mathematical-statistical approach to the 

theoretical time series and the less sophisticated methods 

of appro~imatio~ used to study real world data. Figure 1 

is a graphical display of that part of time series analy­

sis that will be considered in this thesis. 

This particular area is generally associated with in­

ventory, sales, personnel action, maintenance and market 

value. The purpose of this thesis is to present methods 

for improving the forecasts of exponentially weighted time 

series models by selection of smoothing oonste.nts. The 

se~ection procedure is based upon measures of optimality 

that are f9rmulated in terms of observed forecast error. 

The thesis is directed toward the application of the meth­

ods derived to real world processes. The connotations 

associated with the use of real world to describe processes 

include: their exact future behavior cannot be known 'Wl.der 

any conditions, they are generally of the unstable type, 

and are assum.ed to be influenced by a number of variab.le 

external factors. The external influences are assumed to 

com~ine to form the basic driving mechanism of the series. 

Also, any one single factor does not have a significant 
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influence upon that series. This is one of the few as­

sumptions that will be made in this study and it does not 

appear to detract from the generality of this thesis. 

The method of analysis to be used is a trial and 

error procedure involving the use of a partially self­

generated mathematical model which uses the basic tech­

nique of exponentially weighted moving averages for 

smoothing and interpolation of the observed time series~ 

and extrapolation of the smoothed time series. 

This basic approach has been used more recently by 

Magee (6), Brown (7), and Holt, Modigliani, Muth~ and 

Simon (8) with Brown presenting the basic philosophy of 

exponential smoothing under varying degrees of instability. 

Holt~ et al.~ modified the formulation of the mathematical 

model') but did not study the properties of the model under 

varying conditions of the unstable processes. This thesis. 

will attempt to extend some parts of the referenced works 

and present original ideas in the model formulation ~nd 

discussion of results. 

Almost without exce:Ption~ every author that discusses 

the real world processes and the mathematical model ap­

proach for forecasting points out that better methods are 

needed and that the best test of these methods is the 

results that they produce. There.fore 9 this thesis is not 

unlike the original studies conducted by astronomers and 

the goal is similar~to forecast the future. 



CHAPTER II 

THE EXPONENTIALLX WEIGHTED MOVING AVERAGE 

AS A TIJ:1E SERIES MODEL 

Before o.escribing a specific model~ perhaps something 

should be said about models in general, A mathematical 

model is defined here as a formulation of relationships 

that is believed to describe some part of a real world 

process sufficiently well for use in the study of that 

process. A basic reason for developing a model is the 

belief that the process has some pattern of behavior. The 

model is used to e:x:trapolate the pattern" The model is 

often mathematically simple, but the computations necessary 

for reducing the data may become complex. The computations 

that provide the input data for those models developed 

will be referred to as supporting algorithms. 

Some of the general philosophies on model construc­

tion that are followed throughout this thesis are that 

few assuniptions are made, that the economy of the model is 

considered 'by keeping the terms ip. the model to a minim.um, 

.and that a simple model is better than no model at all. 

The supporting algor;i. thms play an important part .in 

the models that are developed below. The basic function 

of the supporting algorithms is one of smoothing various 

14-
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components ot the b,istorical data for use in the modelo 

Smoothing is defined as a process of algebraic curve fit­

ting which minimizes some function of the deviations about 

a local process level. 

In general, it is the purpose of this thesis to 

develop the theory and the supporting algoritllms of a gen~ 

eral time series model for unstable ~rocesses. The objec­

tive is to extrapolate the time series to concur with the 

true time series as nearly as ~ossible based upon measures 

used to evaluate the degree of deviation. 

The true time series model is not known, but is as­

sumed to exist for each process considered and if known it 

would describe the process exactly for all historical data 

and fut'tU'e occurrences. 

As indicated in Figure 1 (page l2), the emphasis of 

this thesis will be directed toward building a model that 

uses exponentially weighted moving averages as estimates 

of the model's parameters. Due to the generality of the 

area of consideration, the basic mathematical theo~y that 

will be applied is that of smooth.i,.ng. Some of the mathe­

matics used will necessarily be supported by heuristic 

arguments. 

There are some general philosophies in the study of 

time series that will be adhered to in this thesis. One 

of these is in spectfic reference to the model building 

approach and it is basically tha~ the worth of the model 

is in how well it forecasts fut~re activityq This will be 

the oasic premise for the development of the complete 
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model. This is necessary due to the generality of the 

time series that are to be considered and the fact that 

the conditions for application of rigorous statistical 

techniques cannot be satisfiedq For the unstable type of 

time series that will be studied, it is assumed that all 

available information about the process is contained with~ 

in tlle histo:vical data. This does not require t;hat the 

series be stationary, the random fluctuations be independ~ 

ent or the forecast errors be independent. One or more of 

these common restricti9ns in time series studies often 

remove many of the real world processes from consideration. 

However, whatever the influences are in the observed se­

ries, they are assumed to continue throughout the period 

for which the forecast is made. 

Another general philosophy that is prevalent in the 

study of economic time series is that the series is com­

posed of a trend, a systematic cyclical variatio;n and a· 

random variation. A combination of the first two compo­

nents of variation may be referred to as the base series, 

driving mechanism, or signal, whereas, the latter may be 

termed noise. Noise is that part of the series which is 

not accounted for by the assumed model and may include 

both the inherent process error and the error due to lack of 

fit. However, these tb.;r:'ee sources of variation in an ob­

served time series should be understood to be the culmina­

tion of numerous known and unknown influences. The purpose 

is not to isolate the three components for study on 



an individ~al basis, but is to combine them in order to 

e~trapolate a given time series. 

The Moving Average as a Model 

17 

The e~onentially weighted moving average model was 

originated by studies o~ the cyclical phenomena demon­

strated by moving averages or moving sums~ The first 

notable study of this type was by Slutzky (3) in which he 

observed tllat for a series of random events or non-random 

events, that a moving sum co~taining some fixed number of 

observations would produce a smoothed series that was non­

random as determined by the autocorrelation coefficient~ 

In this work, he also stated and pr9ved the law of the 

sinusoidal limit which ~tates simply that i! a series is 

smoothed a sufficient number of times by moving sums that 

it approaches a sinusoid within some arbitrary amount of 

error. This sinusoid does not necessarily represent the 

base series of the process. Dodd (9) has shown that mis­

leading artificial cyclical variations may be created. 

Studies of the moving average and variations of it have 

been published by a number a! personso The work by Brown 

(?) provides the bae~ground and a base for the summary 

that will be presented here. 

The moving average, as its name implies, is an aver­

age of observations of a time series which uses only the 

most recent n terms !or purposes of computing an averageo 

This average is aonsider~d to be the most recent estimate 
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of the mean of the process being studiedo Matru;,matically 

this idea may be e~res.sed as 

where tis the latest point in timeo The major problem 

associated with the moving average type of time series 

model is that of deciding how many op~ervations are to be 

used in the moving average, The nUll,1.ber that will provide 

the best results in terms of having the least amount of 

error associated with its forecaEats of the mean of tlie 

proce~s is largely dependent upon the process being 

studiedo There are two e~treme cases of the mov;ing aver­

age that are of interest, one case includes all b.;i.storical 

data in the estimate of the mean and the other takes only 

the last observed value as an estimate of the present 

level of activity. Either of the cases mig.ht work tUlder 

certain cirei.unstanceso The former would be suitable when 

the process is in fact operating apout some mea+J,. with only 

:random fluctuations about that mean. Under this assump ... 

tion tb.e incl.usion, of all historici;,.l data in the average 

will provide the best estimate o! the mean value of the 

process since the average ~s an unbiased estimator of the 

process mean. The latter case would be more aecurat~ in a 

time series that has a high autocorrelation for a lag of 

one time interval~ Within the range spanned by these ~wo 

cases, there are a number of processes and values of n. 
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If a process has only random variations about a 

slowly changing mean or if the magnitude of the fluctua­

tions or variations is large compared to the mean, then a 

large value of n is desirable for the moving averageo This 

is because large values of n will tend to smooth the ra,n­

dom fluctuations and not be influenced to any extent by 

large deviations in one direction. If it is desired to 

smooth some of the non-random variations in a process when 

they are known to exist, a large n equal to the period of 

the variations that are to be removed may be used. For 

example, if it is desired to remove the cyclical variation 

within the year from the smoothed statistiqs of the time 
' 

series, then a twelve month moving average will provide 

this ty~e of smootbj.ng. To demonstrate this, Figure 2a 

indicates the e!fect of a twelve month moving ave~age upon 

a sine wave with a period of twelve months. This holds 

tor any systematic pattern of variation as long as the 

pattern is repeated in each period, 

The stze of n is not only dependent upon the type of 

smoothing desired, but it is also dependent upon the as­

sociated problem of the type of response that is desired 

for some corresponding oha,nge in the data, The interest 

in the response may arise fo:c a number of rea:1pons. One 

reason is that the mean of the process may undergo som.e 

change and shift to a new levei r and if' n is large' only 
.. ~-. 

1/n o;f the shift will 'l,:>e add$d to the e~tiJD.ate of tll.e level 

each t~me and it will requi~e n periods before the moving 
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average has reached the new process level. This type of 

lag for the moving average is illustrated in Figure 2b. 
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If the time series should experience a trend in the obser­

vations, then the moving average will always lag the 

observations by n/2 times the increase per time interval 

of the trend. This is based upon the assumption that the 

conventional procedure is followed in using the average to 

represent the point in the series at t~n/2. A typical lag 

is shown in Figure 2c. If the time series is composed of 

a trend, a cyclical variation and a random variation as 

illustrated by Figure 2d, then the selection of then for 

the moving average is usually by some trial and error pro­

cedure. This is simply due to the mathematics involved, 

in that it is difficult for a simple moving average to 

adapt to complex situations. If an exceptionally good fit 

were obtained, it would be attributable to chance as op­

posed to the tracking capability of the model since the 

moving average is not a self-correcting type of mathemati­

cal procedure. This means that the magnitude or the direc­

tion of the error observed in the fit of the smoothed 

series to the actual series does not influence the next 

value computed for the smoothed series. 

There are a number of improvements that can be made 

in the moving average that will correct for the various 

situations outlined above such as weighting the values in­

cluded in the average by the distance they are removed 

from the central value and adding an increment to allow 
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for the trend. It should also be noted that the moving 

average is more of a smoothing technique than an extrapo­

lation technique~ since the value of the moving average is 

generally associated with the mid-value of the averaged 

values, which means the last estimate of the mean of the 

process is still n/2 time units removed from the present 

time or the last observed value. There have been correc-

tions devised for this deficiency also. There are a num­

ber of published articles·on methods of compensating for 

cycles and trends in the use of the moving average. Brown 

(?) provides a treatment of some of these methods and the 

application of the moving average. However, the exponen­

tial weighting of historical data has replaced the use of 

the moving average to a large extent. This is due to the 

ease of computation, less data storage required, and the 

self-correction feature of exponential weighting. 

The Simple Exponential Mode.J. 

The moving average will be considered a13 a basis fol;' 

comparison in terms of -the error for the forecasting models 

to be developed. Simple smoothing or the simple· exponen­

tial model is only a slightly advanced form of the moving 

average. The main difference is that it is self-correcting 

or has the ability to adjust based upon its observed 

errors. It is ·convenient at this point to establish some 

notation that will be followed throughout this thesiso Let 

Xt be an observation at the tth point in time where 
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the ~oints are equ~lly spaced, 

M be the total number of observations available for 

a given time series, 

Xt be the exponentially smoothed value of the 

observed time series at time t, 

X be a computed value that is used as a starting 
0 

point in recurrence type computations, 

A be the smoothing constant for random variations 

in the observed seri~e. 

T be some number of time intervals into the future, 

FXt,T be the forecast at time t of the expected level 

of process activity, T intervals hence. 

The constant A,~s sometimes referred to as a weighting 

factor or an attenuation factor as well as a smoothing 

constant, the reasons for this triple identity will become 

more obvious in the disc~ssion that follows. 

The smoothing performed at time tin order to obtain 

Xt is accomplished by adding to the previous estimate of 

the process mean, Xt .... l' some fraction, A~ of the forecast 

error, (Xt ... Xt_1). This becomes the latest estimate of 

the mean and the forecast FXt T until some new information 
' I 

is added to the system. Algebraically, the model may be 

written: 

(1) 

with the supporting algorithm. as 
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0 < A < 1 - .,.. (2) 

Equation (2) may be rewritte~ in a more convenient form as 

(2a) 

and 

0 < A < 1 ... .... . 
(3) 

which establishes the form of the recurrence relation. If 

X0 ~ X0 and ~o is assumed to be of the same torm as x1 , 

then by successiv~ substitution into Equation (2) 

t t . 
- . ( ) -.l, xt "" A . E 1 - A xi , · · 

l,:;:Q 
0 < A < 1 .... - (4) 

is obta,ined as the moet recent estimate of the mean of the 

process. If X0 is not considere~ to be of the same form as 

lit then Equation (4) may be written 

- t t-i )t-xt ;:; A . I: ( l - A.) xi + ( l - A · XO , 0 S A ~ 1 
J.::;:l 

(4a) 

where t ~ M. As M becomes large, the last term of Equa­

tion (4a) approaches zero, Examination of the coefficients 

of x1 in eit:P.er :E;quation (4) or (4'a) wi:tl $how that their 

sum is a geometric progression. I! it is assumed for a 

finite value oft that this geometric progression is equal 

to 1/A, then the swn. of the weights applied to the histor­

ical data equals one. If the sw;p. of the weights is equal 

to unity, it is proper to call 1Xt an average" The 
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term (l - A)t-i describes the system of weights and adds 

the exponentially weighted portion to the descriptive 

title of the model, ~he term moving is attributed to the 

fact that It is computed each time a new observation in 

the series is available, thus completing the basis for the 

tit~e, exponentiallr weighted moving average, 

Since the sum of the expected values is ec;iual to the 

expected value of the sum a:p.d under the assumptions that 

the mean of the Xi series is stationary and that the series 
t t . 
E (1 - A)-~ converges to l/A, the 

i=l 

E(Xt) ;;,= E(X)A ~ (1- A) 1;;-i:. E(X)A(l/A) = E(l), for O <A< 1, 
· i=O 

(5) 

Therefore, It is shown to be an. approximation to the un­

biased e~timate o! the mean where the degree of approxima­

tion is dependent upon A and t. 

from the discussion of the simple moving average, it 

is noted that the response of the model to changes in the 

process is dependent upon n, the sample size. Similarly, 

in the simple exponential model, the response of the model 

to changes in the process is dependent upon the selection 

of .A. One extreme case ;i.s encountered when A= 0, which 

implies that X0 is the best est;i.mate of the future behavior 

of the pvocess and that all observed data are random vari~ 

ations about this level, This would not be unusual pro­

vided that the ~recess was quite stable and a sufficient 

amount of in!or~ation had been used in determini~g the 

vaiue of x0 ~ The other extreme case, AF 1, would be 
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applicable in the same type situation as n = 1 was in the 

simple moving average model. This occurs when there is a 

high degree of autocorrelation between successive values 

of Xi. For those time series in the range that is spanned 

by these two cases, it is necessary to be able to choose 

some value of A that will minimize some function of t~e 

forecast error. The magnitude of A determines the in­

fluence of the historical data upon the most recent esti­

mate of the process level. The relationship.between A and 

the weight ,given to historical data is shown in Figure 3o 

The ordinate values in the uppermost logarithmic cycle are 

(1 - A). 

This graph may be used to show comparisons between A 

and n. However, it should be realized that the simple 

moving average uses equal weights for each Xi contained in 

the sample n, where those same data in the simple exponen­

tial model are exponentially weighted. The ordinate values 

in Figure 3 represent that fraction of the weight unas= 

signed. Thus, the ordinate value of the intersection of 

an integral abscissa value and one of the lines for A equal a 

constant is the total weight given to the historical data 

whose age is equal to or greater than the abscissa value. 

Therefore~ in order to determine the total weight given to 

the last five months of historical data, it is necessary 

to compute one minus the value 'Of the ordinate correspond-

ing to Ct - 6). 
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As an example~ if it is desired to determine the rela-

tion between a five month simple moving average and a 

smoothing constant of Oo5,it may be accomplished by moving 



28 

vertically from an abscissa value of t-6 until the line 

for A= 0~5 is intersected. The ordinate value correspond­

ing to this point is 0.016 9 therefore, 98.4% of the total 

weight has been assigned to the first five data points 

under the exponential smoothing scheme. If it is desired 

to make a number of comparisons, then so~e general level 

of unassigned weight should be specified in order that the 

comparisons rank properly. Since the time scale is dis­

crete, an exact value for·the unassigned weight cannot be 

specified. 

Even though these comparisons between the moving 

average and simple exponential smoothing are possible, the 

.response of the simple exponential model to change is more 

sensitive if the unassigned weight for the comparison is 

less than 0.5. Both the simple moving average and simple 

exponential model are more suited for smoothing the process 

that is relatively stable about some level with the varia­

tion attributable to random variation as opposed to those 

processes generated by a base series with systematic 

variations. 

Any reasonable estimate of the mean of the proc·elss 

level may be used as X09 however, if a computational form 

is desired the first P data points of the observed series 

may be averaged to obtain X0 • The n:umerical value of P 

is arbitrary~ but approximately one-tenth of the historical 

data should provide a reasonable value. Due to the expo­

nential property discussed above 9 any reasonable value 
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will be suitable since the effect that it can have on the 

more recent estimates of the process level will be ex­

tremely small. A detailed discussion of the selection of 

A will be presented in Chapter III. 

The Model for Trend and Noise 

If the observed time series is in fact composed of 

some random variations superimposed on a linear trend, 

then the simple exponential model will general~y be less 

cap~ble ot smoothing the series than a mQdel formulated 

specifically for this type of serieso 

The simple smoothing of a time series with linear 

trend tends to produce a lag of the type that is shown in 

Figure 2c (page 20), If the series does have a iinear 

trend, a method of correction would be to determine the 

increment attributable to trend per time unit and add that 

to the estimate of the mean of the process in or~er to 

obtain the esti~ate of the next value in the observed 

series. Additional notation will be needed to describe 

this model. Let 

Yi be the time series of differences, Xi - Xi-l' 

which will be referred to as the trend increment 

series, 

Yt be the smoothed estimate of the trend increment 

at time t, 

B be the smoothing constant associated with the 

variations due to the trend. 
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Using these definitions and those of the preceding 

~ection, the mathematical model for a time series composed 

of a l;i.near trend component and a mean may be written: 

(8) 

The definition of Xt remains the same, but its funqtion 

~elative to the observed series, Xi' is changed. This ia 

due to the tact that Xt does not include the estimate of 

the trend. However, the basic logic us~d to develop the 

smoothed estimates in the simple exponential model ~sap~ 

plied in this ~odel development, 1he smoothing is accom­

pl~shed by making a !ore~ast of the next value in the 

series, taking some fraction of the observed error betwe~n 

the actual and forecast values, and adding it to the last 

estimate of the mean in orqer to obtain the new estimate 

of the mean, From Equation (8), the forecaet of Xt at 

time (t ... 1) :ts 

(9) 

Thus, 

O<A<l _, - . 
(10) 

0 <A< 1. . (11) - -
Applying the same smoothing techniques to the artificial 

variable Yi at time t yields 
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(12) 

(13) 

by definition of Yto The Yi variable was created as a 

notational convenience. The variation in the Yi series is 

assumed to be a base series of the linear trend increment 

with some noise superimposed. The Yt is essentially a 

double smoothing of the original time serieso To more 

clearly show this, it is necessary to break Equation (13) 

down by substituting Equation (11) for Xt to obtain 

yt = B[ AXt + ( l - A) (Xt-1 + yt-1) - Xt-1 - yt-1] + yt-1' 

(14) 

(15) 

By using the recurrence relation of Equation (11), Xt 

is shown to be a function of all historical data and the 

smoothing constants. 

t t · t 1 
Xt = Ai~l(l-A) -1.xi + i~l (1-A)t-iyi +(1-A)t(Xo+Yo) 

(16) 

This is of the same form as Equation (4a) and may be 

reduced to the form of Equation (4) by making simplifying 

assumptions about X and Y0 • . 0 
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The Yt is an exponentially weighted moving average 

also and may be expressed as a function of historical data 

and the smoothing constant by rewriting Equation (12) as 

(17) 

which is of the same form as the recurrence relation for 

simple exponential smoothing where 

- t ( )t-i ( )t -Yt = B I:: 1 - B Y. + 1 - B Y , 
i=l 1 0 

0,:SB<l .. (18) 

The Yt may be written in terms of the original time series 

by application of the recurrence relation of Equation ( 15.) o 

- t ( . )t-i ( ~ ) ( )t -Yt = BA. I: 1 - BA X. - .1,... l + 1 - BA Y , 
1=1 1 1- 0 

O<A<l, 0_:SB<lo(l9) 

Then Xt may be written in terms of the observed time 

series by substituting Equation (19) in Equation (16) to 

obtain 

t t · t-1 t · i i J' Xt = A I: ( 1 - A) - 1 X. + E ( 1 = A) - 1 BA I:: ( l - BA) = o 

i=l 1 i=l j=l 

0 ,:S A < 1 , 0 ,:S B < 1 o ( 20) 

The relationship of the smoothing constant A to the 

historical data from the standpoint of attenuation rate 

remains relatively unchanged, and from Equation (17) it 

would appear that the relationship between Band Y. is 
. 1 
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similar. However, from Equation (19) it is obvious that 

the historical data of the original series has less over­

all influence, but also has a slower attenuation rate than 

a corresponding simple exponential smoothing processo This 

is a result of the product, AB, being less than A or B, 

since it is unlikely that for a time series composed of a 

trend and random variations that both A and B would be 

large simultaneously. However, Xt and Yt each possesses 

those properties of the exponentially weighted moving 

average provided A, B, and tare in the proper perspectiveo 

The mathematical model for a time series composed of a 

trend and some random variation is the sum of two exponen­

tially weighted moving averages which use double smoothing 

for interpolating the observed time series. 

Figure 3 (page 27) is applicable for A, B, or AB, and 

it is not necessary to repeat the discussion of the re­

sponse of the model based upon the choice of these 

constants. The influence and selection of the smoothing 

constants will be discussed at length in Chapter III. 

The value of X0 is determined by the method outlined 

in the preceding section, and 

where X9 is the average of the last P observations. This 

is one simple method for computing the initial values, and 

is not to be considered a rule. Any reasonable estimate 

of the average trend per interval of time between 



o'bservations over the range of the h:;i,storical data will be 

suitable as a value for ! 0 • Like X0 , Y0 is attenuated in 

the oomputational scheme. 

The Complete Model far Trend~ Cycles and Noise, 

One of the assumptions stated at the beginning of 

this chapter was that the general class of economic time 

series is composed of a trend, a cyclical variation a,nd a 

random variation about some mean level, Thus, the formu­

lation of a general model of the exponential smoothing 

type for the general time series completes the model 

building phase~ 

If the series includes a cyclical variation, the m9del 

developed in the previous section will attempt to track 

the signal by the trend factor compensating for the cycli­

cal variation to some extent. As would be expected, tb.e 

fit of the model to the observed serie$ would not be as 

accurate as a moiel which includ~s direct consideration o! 

the cyclical component. 

The problem of formulating a general model is compli­

cated at this point by the fact that cyclical variations 

have two common forms. The simpler cycle is assumed to be 

independent of the local process mean and its amplitude is 

not a function of the level at which the process is oper­

ating. The other general type of cyclical variation is 

assumed to be dependent upon the local mean and as it in .... 

creases, the cyclica+ variations aiso increase as a ratio, 
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These two types of cyclical variations are refer.r~d to as 
., 

the additive and multiplicative or ratio cycles. Both 

types will be considered in this section, but in general 

the remainder of this thesis wi1ll deal with only:: the .. ratio 

type, the: reason being that the unstable processes are 

felt to be more inclined to. this type qf behavior, The 

additional definitions given in this section will also 

reflect the ratio type cycles. Let 

z1 be the artificial variable formed by XifX1 , 

!t be the smoothed estimate of the cyclical ratio 

at time t, 

P be the period ot the cyclical variation, 

C be the smoothing constant for the cyclical 

variations. 

If the cyclical variation was of the additive type, 

the supporting algori tluns could be written as shown below 

where zi would be the artificial variable xi - xi 0 

xt = A(Xt - xt-1 - yt~l - 1t-P) + 1\-1 + !'t-1 + 1t-P' 

O<A<l · (22) - -
yt = .B(!t - Xt-1) + (1- B)Yt-1 OS,B.$1 (23) 

zt = czt + <1 - c)lt-P O<C<l .. (24) - -
Since It is of the simple exponential form, the model would 

still be of the exponentially weighted moving average type 

and would be written as 

-(25) 



Before discussing the ratio model, the definition of 

It should be reviewed in. order to establish th~ proper 

perspective. The Xi in ,this mode;L may be thought of as 

the quotient of the observed series and the level of cycli­

cal variation at that point in time, or more simply as a 

ratio. Thus, It is the smoothed estimate of the mean 

ratio after the cyclical ratio and the t~end have been 

removed. The trend, however, is determined by the differ­

ence of the successive values of It, and it too becomes an 

estimate of the trend in terms of a ratio. The model for 

these assumptions i13.written· a.a 

(26) 

The forecast at time, t-1~ fo:t" time t, is 

FXt ... 1,1 = (It-1 + yt-l)Zt-P ( 27) 

and is a forecast.of Xt and not the ratio Xt. Therefore, 

the smoothing algorithm is writte~ 

xtzt-P = A(xt - 1t~1 + Yt-1 zt-p) + <1t-1 + rt-1)zt-J? ~ 

0 <A< l (28) - -
By dividing both sides of the equation by Zt-P' and re­

arranging .it gives : 

Xt = AXt/Zt-l? + ( 1 - A) (Xt-l + Yt ... l) • o :5. A :5. l ( 29) 

Notationally, Yt is unchanged from the previous :Corm, 

Yt = B(Xt - lt_1) + (1 - B)Yt-l Os_ B $1 ( 30) 

zt = cczt ... zt-P) + zt-P 

= czt + (1- C)zt ... P 

O<C<l - -
O<C<l - .... 

(31) 

(32) 
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(33) 

The index of Zi is not the same as Xi due to the fact 

that each time interval within the cyclic period is assumed 

to be different, and the smoothed estimate of the ratio is 

adjusted only once each period, therefore, there is a lag 

of P time units in the smoothing process. This causes the 

attenuation of the historical values of Zito be at a 

slower rate than Xi and Y1 , but the estimate of Zt is 

still a function of the historical data and the smoothing 

constant, as shown by the series 

[t/P] 
zt = 0 L (l - c)[t/PJ-1 ~t - [t/P- iJP 

i=l Xt-[t/P - i]P 

0 

+ Ic1-c)Ct!PJzi 
i=t-[t/P]P 

0 .:S, C < 1 (34) 

where the [ ] designates the use of the next largest . inte­

ger for the expression contained inside the brackets. The 

last term in Equation (34) represents the initial values 

of the cyclic ratio, and will be shown to be a function of 

the observed series also. 

The series expansion of Yt remains as given in 

Equation (19). 

By applying the recurrence relation in Equation (29), 

and substituting Equation (34) for Zt-P' Xt may be written 

as 



+ 

(1-A)t-i X. 
J. 

[i_/PJ . . ,·· . X . . . . 
c L (l-C)[i/P]-1 _ i-[i/P-.1]P + 

j,:::i xi-Ci/P-jJP 

0 L (1-C) [i/P] Z. 
. . . [ /P] J J=J.- 1 p 

t-1 t · .· i · · t 
. I: ( 1 = A) -l. BA , I: ( l = BA) 1 = J ( X . = X . -1) + ( 1 - BA) Y 0 
l.=l J =l J J . 

p8 

The values of X0 andY0 are computed as given in the 

previous section. The reason it is not necessary to deter­

mine their value as a ratio is due.to their being 

determined by taking averages of P values which was shown 

earlier to mask the effect of cyclical variations. For an 

average of the observed series over some interval P to 

equal the average of some ratio of the observed series to 

the cyclical component~ the sum of the cyclic ratios must 

equal P, at least in the initial estimates. Therefore, 

will represent t~e system of weights applied to the data 

within each cycle. The computational form for Zi is 

quite simple for a given P, but the general form is a more 

complex looking group of indices and summations that 

follow. Let 
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(3?) 

j=l.,2~ ooqP (38) 

j = 1~ 2~ ···~ P (39) 

Equation (39) satisfies the constraint of Equation 

(36). 

With the initial values of each of the smoothed series 

computed and the supporting algorithms for the model"~ the 

model formulation is complete with the notable exception 

of the smoothing constants~ A9 Bj and C. The considera­

tions for proper selection of these constants will be the 

subject of Chapter III. 



CHAPTER III 

THE MODEL.AND FORECAST ERROR 

In some of the referenced works, the authors distin­

guished between predicting e.nd forecasting future events. 

The difference is basically that forecasting is some sta­

tistical technique that extrapolates the historical data 
.. •I 

based upon some stated procedure. Prediction is an esti­

mate of future events that is based upon the knowledge of 

the person doing the predicting. He evaluates all rela-

tive processes that may influence the future of theproeess 

under consideration and may or may not analyze the histor:... 

ical data •. The nUDLber of people capable of accurate pre­

dictions of the future is exceedingly small, and it is 

becoming.more routine to use forecasting for the unstable 

type of time series. The objective of forecasting is to 

provide more suitable descriptions of the future activity 

involving various unstable processes than could. be obtained 

by some educated guess. Thus, the forecast error that may 

be associated with any forecasting process becomes an 

important factor in the continued use of a forecasting 

scheme. To reiterate some earlier state111ents in the thesiSJ, 

the proof of the mathematical model is given by the results 

that it produces. Magee (6) points out that to forecast 

40 



41 

the future for an unstable type process is similar to 

using a crystal ball, and that a forecast without an as­

socilted statement of the ppssible mag~itu4e of the error 

is incomplete~ Also, there is the possibility that the 

forecast by itself will be accepted a~ tact which would be 

misleading. 

Another objective is the consideration of the error 

associated with the forecast as a means .of improving the 

parameters of the model used for forecastingq T:o.is is es­

sentially az;i. additional consideration of the error, since 

the expone~tially weighte4 moving average uses the consid­

eration of observed error as the basis for adjusting the 

forecast valueso The teohniques presented i~ this chapter 

as improvements of the complete forecastin~ model presented 

in Chapter Il are based upon empirical studies of both real 

and simulated or artificial time series that were u~ed for 
' investigation of the model'ij properties. fhe formulation 

of the concepts as prese~teq in t;bis chapter will be sup. 

ported by numerical ex~ples in CAapyer IV. 

Assumptions 

A basic philosophy in the study of time series is 

that it is always possible to define the generating proc­

ess for the obse:c,ved time aerie~. This definition mey in­

clude a ratner large random component from some sp~cial 

distribution, but nevertheless it is not cons:Ldered as being 

math~matically u,nde:f';i.nedo If the form of the generating process 
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is kn.own, then the nature of the analysis of the observed 

series is that of estimating the constant terms within the 

generating process for that particular series being 

studiedo 

The particular approach used for the time series 

model in this thesis is, as stated previously in that no 

specific type of model for the generating process is 

assumedo However, a forecasting model is used which con­

sists of trend, cyclical variation, and random variation 

componentso If the generating series is not of this form, 

then the model is used to determine the best approxima­

tion of the series that is possible within the limitations 

of the model and the exponential smoothing methodo If the 

use of a particular model in forecasting provides consist­

ently good results, then it would be difficult to attribute 

this success to chance aloneo However, if the generating 

process is of the form of the model and certain statistical 

assumptions are satisfied, then the res~lts obtained by 

the methods used here agree with those of the curve fitting 

typeso It has been shown by Brown and Meyer (10) that 

exponential smoothing provides the least squares estimate 

of the true polynomial signal provided that the data are 

of a true polynomial signal and an independent noise 

source with the noise distributed about a mean of zero. 

Testing the Model 

Discussion would probably be aided by taking a 
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specific case of the general model .formulated in Chapter 

II. Since the applications are in the economic time 

series area, a model using monthly data and P = 12 would 

seem appropriate for the pu,rposes of discussion. The value 

of P could be 52 or 365~ but the computations would become 

lengthy. In future discussion~ the cyclical variations 

become seasonal trends, averages become yearly averages 

and random variations may be visualized as those random 

effects in the process such as those caused by local 

weather conditionso 

The basis for judging the relative merit of the con­

stants will oe the error SU1IJ. of sq\ilares. The definition 

of the error in this case is the difference between 

FXt,T and Xt+T for T = 1, 2, ••• , Np This is not the only 

method of evaluating the smoothing constants and they 

could oe evaluated on the basis of some penalty scale a,s .... 

E:1ociated with the 1;1ccuracy of the forecast. If the rela­

tion between small forecast errors and large forecast 

errors is linear in terms of the penalty associated with 

the error, then a logical method of evaluating the con­

stants would be the mean absolute deviation observed over 

·the test series. The test series is that part of the ob­

served series used for making comparisons between the 

forecasts of the model and the actual datao This compari­

son is then used as a measure of the forecast error that 

may be expected from the use of a particular model for a 

given time series. 



Testing the model brings up an important point that 

is often ignored in some of the published works in this 

area. For a valid comparison of techniques~ it is essen­

tial that the forecasting method has no a priori knowledge 

of the test series. If the test series is used in the 

selection of the coefficients for a model~ then there is a 

high degree of bias introduced in favor of that particular 

model upon the basis of error comparisons. If the test 

series is included in the final form of the model~ then 

the associated error is a smoothing error not a forecast 

error and should be evaluated as such. The method used 

here is to separate the historical data into two groups. 

The earlier group of historical data is used in the sup= 

porting algorithms for the preparation of input informa­

tion for the model and the latter group is used as a test 

series for the model. The first group is that historical 

data which was referred to in Chapter II. The older data 

is used for estimating the smoothed process via the sup­

porting algorithms for each set of constants used and then 

the forecasts are made T periods into the future. The 

error is computed as the difference between this forecast 

and the actual value. After each forecast~ the next value 

in test series is absorbed into the smoothed estimates in 

order to update the estimates. This is the same way the 

model is to be used in practice. After the last observed 

value has been forecast with the specified T the sum of 

the errors squared are averaged and used as a relative 
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measure of t~e forecasting ability of a particular set of 

qonstants in the model. When making real forecasts~ all 

the historical data is assimilated by the model in order 

to provide the latest estimates of the model parameters. 

The use of part of the historical data for the test 

series points out another advantage of the ex:ponentially 

smoothed model approach over the curve fitting techniques 

which assume that all the data available are usedo It 

would become computationally involved if a :polynomial 

curve fit is used for repeated forecasting and the degree 

of the polynomial is increased each time an observation is 

added to the series. 

The division of the historical data into two parts 

creates a question as to how the data should be divided 

b~tween the smoothed series and test series. Unfortunate­

ly, in the economic time series, there is some difficulty 

in obtaining enough data with the same base series for 

appropriate smoothing. It then becomes a question of 

using the data for obtaining better estimates of the 

process or for evaluating the modelo The test series 

should be less than one-.J::i.alf of the data. and should be 

long enough that the estimates of the variance are rea­

sonable from the users viewpoint. If these two conditions 

cannot be met simultaneously, some other form of estimation 

should be used since the length of the series does not 

provide the self-generating type of model with a fair 

test. The programming of this model, as presented ;in the 



Appendix, has t4is decision included as a part of the 

computational procedure. 

Hierarchy of Models 
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Betore discussing the elements of the selection 

process for the smootlling co~stants, it should be shown 

that the optimal selection of the smoothing constants 

automatically includes the consideration of the random and 

linear trend models, ~fa series is composed of rap.dom 

fluctuations about some mean value, the computational form 

fo~ Y0 given in Equation (21) should become Y0 ;::: o.o, and 

similarly Equation (39) yields z1 ;::: 1.0, i,;:: ~11~ ••• , o. 
For the set of smoothing co~stants (AO O), tb.e s11ppo:i;-ting 

algorithms reduce to the form 

zt 1 .= z1. ;::: 1. o ·+ 

0 < A < l - (40) 

(41) 

(42) 

and the model will be reduced to the same form as shown in 

Eg_uat:Lon ( ;L) 

T = 1, 2, ,..~ N (1) 

~he z1 are dependent upon the amount of historical data 

used and can be expected to approach unity as the amount 

of historical data becomes large and the generating process 

co~tinues as a random variation about the mean. 
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!If these same assumptions are made for Zi and the 
,. 

smoothing constants (ABO) are used in the complete model, 

then the computational algorithms will reduce to the form 

0 ;:SA.$. 1 (43) 

(44) 

(45) 

and the model will become 

T = 1, 2, 3 ooo, N (46) 

Thus, by searching for the optimal smoothing con­

stants of the complete model,the two simpler models will 

be considered, provided that the process being studied is 

of the simpler form. If the generated process is of the 

simpler form,this will allow the complete model to assume 

the forms discussed above. It should be pointed out that 

these search techniques and model formulations are compat­

ible ·downward only; that is, they cannot be reversed in 

direction where the optimum value of the smoothing constant 

A is chosen based upon single smoothing of the observed 

series and the value of Band C optimized in turn for the 

optimal values of the preceding constant. The reason is 

that the optimal value of A for a series composed of 

trend, seasonal and random effects would attempt to compen-

sate for all elements in the series; whereas~ with the 

trend and seasonal effects removed, the optimal value of A 
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would generally be expected to decrease. A similar com­

pensating action could be expected by the other two 

smoothing constants. The seasonal factors, !i's will in­

crease in the absence of trend factors under conditions of 

a steadily increasing trend in.the series and will perform 

adequately, but become subject to oscillations under con­

d.itii.onscof changing trend. Therefore, there are a number 

of interactions within the computational scheme that pre­

vent the step-by-step optimization in the selection of 

smoothing constants. This is a·case of the model degener­

ating to a simpler form but the reverse. optimization pro­

cedure not being possible unless the other parameters are 

considered concurrently. 

If the historical data file is short, it is possible 

that the supporting algorithms will not converge to those 

values that reflect the simpler process. For example, if 

there is some small degree of autocorrelation from one 

period to the next for lag P, the algorithm will tend to 

show this as a cyclical effect when a random series could 

have produced the same degree of autocorrelation. 

Search Methods 

Since the approach used in this thesis has been to find 

the best fit of the exponentially smoothed moving averages, 

it has now been reduced to the problem of finding the opti­

mum set of smoothing constants. The use of the term opti~ 

mum as opposed to minimum will become evident later in the 
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discussion, The judgment of optimum will be based on some 

function of the mean error sum of squares over the test 

series. ~he possible values of the smoothing coefficients 

each range over the interval zero to one. Within this 

range of values, it is possible to visualize the error 

mean square as the response of the process to a specified 

set of smoothing constants. This response may be discussed 

in terms o~ a hypersurface or an ?-nalogy may be drawn to a 

unit cube filled with a heterogeneous substance. The axes 

of the cube would correspond to the smoothing constants 

and the density qf the substance at the intersection of 

the coordinates of those constants as the response. The 

object of the search ~rocedure is to locate that set of 

smoothing constants which meet the prescribed requirements 

of optimality. 

The search is complicated by the compensation of one 

type of smoothing for another ap was pointed out in the 

discussion above. This will result in the creation of 

loca], minimums in the error mean square~ This type of 

response limits the use of some of the mathematical search 

techniques. The most important method eliminated is the 

gradient method or the method of steepest des9entq The 

application of this technique here experiences the same 

difficulty as when applied in the area of experimental 

design. This .is, a local minimum :qiay be found instead of 

the actual minimum which is the same basic problem for 

locating the region of minimum response. With the 
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high-speed, large-memory computer, the gradient method is 

marginal in some respects except for the academic fascina­

tion of reducing the number of trials required to arrive 

at the minimum value. 

An acceptable trial and error procedure is a system­

atic search of the axes. This in turn reduces the search 

problem to one of grid size to be used in three dimensional 

space. For lack of any better method at this point, it is 

suggested that the interval zero to one be divided into 

equal increments and applied to all three smoothing con­

stants. The number of values chosen for the search will 

be cubed in the final enumeration of points investigated 

if zero and one are not included. For example, if the 

increments were taken as 0.09 about the mid-value 0.5, 

this would result in 113 or a total of 1331 points to 

evaluate; whereas, if an increment of 0.15 is used, this 

reduces the number of possible permutations to 216. If 

the end values zero and one are used, the number of points 

to be investigated will be for (m-1) increments or m 

points including the end points zero and one~ m3-2(m2-m). 

If either, but not both zero and one, is included as an 

end point in the grid the number of points to be evaluated 

is m3-m2+m. This reduction in the number of points to be 

investigated is accomplished without a corresponding reduc­

tion in the grid size. The reason for this is when 

A= 0.0, B may take on any value between zero and one. 

Therefore~ this reduces the number of combinations 
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including A= 0.0 to the number of different values used 

for C. The mathematics in terms of the model may be shown 

by demonstrating the effect of A= 0.0 in Equations (29) 

and (30) by 

(47) 

(48) 

There is a similar reduction in the number of points to be 

investigated in the case of A= l.Oj since C may take on 

any value between zero and one. ·The effect of A = loO 

may be demonstrated by the reduced forms of Equations (29) 

and (33). 

xt = Xt/Zt-P 

zt = C Xt/Xt + (1- C) Zt-P O~C.$,1 

= C xtzt-P/Xt + (1 - C)Zt-P 

= C zt-P + (1 - C)Zt-P = Zt-P 

i = -11~ -10~ ···~ 0 0 

If it is desired to complete the grid of constants and 
\ 

(50) 

(51) 

(52) 

error variances~ this may be done by using the appropriate 



error term as determined by A and B, and A and C in the 

respective cases. Error variance is synonymous with the 

previously defined mean error squared. 
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The major criticism of the coarse grid search tech­

nique is that it may not locate all local minimums. Due 

to the general behavior of these error values, this criti­

ci~Ill. of': the coarse grid technique is not applicable in 

this case because the local minimW11,s are not of prime in­

terest. The reason the minimum is not of practical inter­

est is due to having ob-served these error values and 

reflecting upon the computational procedures, it was found 

that the error variance response is flat in the region of 

the optimum constants~ The size of the optimum region is 

dependent upon the form of the observed process. The more 

closely the process agrees with the model~ the less criti­

cal the constants become. This is due to the initial de­

terminations of the trend and the seasonal variations 

agreeing closely with that which is observed in the series, 

Then the weighting of one estimate of t~e process relative 

to an other estimate produces little change in the fore­

cast. This is particularly true in the case of the trend 

and seasonal components of the series. 

After the coarse grid is used in the primary search 

and the region of the minimum error located~ a finer grid 

may be used to search within the region. However, due to 

the low sensitivity of the model in the area of minimum 

error, it is seldom worth the additional effort. Since 



the sensitivity is low in this area~ it lends support to 

the necessity of finding the region rather than a local 

minimum" This is because there is some optimal set of 

constants and even though they are supposed to be in the 

region~ the ones selected may be near the optimal set~ 

but due to the flatness of the response this deviation 

does not become seriouso 

Selection Methods 
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Now that the search technique has been established as 

one of enumeration over a coarse grid, the next step is 

the proper selection of the constants from among the pos­

sible sets that have been exploredo 

The most obvious selection method has already been 

discounted in the discussion above; that is 9 the use of 

the set of constants associated with the minimum error 

mean squareo However, the minimum value may be in the 

optimum regiono This set of constants associated with the 

minimum value usually arouses some curosity and they are 

one of the program options of the program presented in the 

Appendixo The next most obvious method is to list the 

permuted constants and their associated error variances 

and use a manual selection procedure for determining the 

optimum set of constantso Even with the computer this 

method has some merit in that it provides the forecaster 

with a subjective evaluation of the sensitivity and after 

some education in the function of the supporting algorithms 



will give him a better feel for the form of the process 

that is being observed by the model and how closely it 

con.forms with the assumed form. 
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Xf each smoothing constant was to perform the speqif­

ic tasks assigned without the tendency to compensate for 

the other variations in the series, then the selection of 

smoothing constants would be simpler, The minimum error 

method of selection would work, but as a point for discus~ 

sion consider the idealized case where the minimum is at 

one point and the entire response surface is uriJformly 

monotone incl;'easing in a.11 directions about that point. 

Under these conditions, there are a number of methods that 

will work. The smoothing constants for the minimum error 

are obtained if, for each value of A that is in the search 

grid being used, the error variances for all combinations 

of Band C were summed, the minimum sum would provide the 

A coordinate of the minimum error. Likewise, if the error 

variance for all combinations of A and C were summed for 

each value of B, it would provide the B coord~nate of the 

minimum errorq ~he C coordinate could be determined in 

a similar manner. This particular method has been found 

successful in a number of the real and artificial series 

and,based upon these observations, the general class of 

processes for which it is most suitable as a method of 

selection of the constants has been determinedq This 

occirs when the observed series is of the form of the gen­

eral model or one of the simple~ forms which, in essence, 



provides a relatively large region of minimum erroro In 

order to support this inductively, the supporting algo­

rithms and model will be repeated below for purposes of 

discussion~ 
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(29) 

(30) 

(33) 

(26) 

If the process is of the simple form with some random 

deviations about a mean 9 then the initial determinations 

of trend and seasonal effects will approach the values of 

zero and one respectivelyo Thus~ for optimum fit of the 

data and a minimum sum of error squared~ the value of A 

will be small~ since the smaller the value of A the more 

historical data are included in the estimate of the mean. 

So~ assume that the A is small and observe the effect of 

changing the values of Band Go In the case of B9 the 

initial value Y is assumed to be near zero due to the 0 . 

type of process being observed. As a result of the small 

value of A9 the difference (Xt - Xt-l) is small since the 

smoothed values of Xt differ only by some small fraction 

of the latest observationo Therefore 9 regardless of the 

value of B 9 the value of 1\ remains near zero for a small 

Ao Looking at Zt for which its initial values were all 
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near unity the error would become dependent upon the value 

of C since C must be small for the values of Zt to remain 

near one and keep from causing the predicted values to 

oscillate which would increase the error values. Thus, 

for the fixed value of A it can be summarized that by 

summing over the values of c, the error terms become a 

function of the value of C itself and, therefore, the 

selection based upon this summation provides the optimum 

value of C for the other values, but since the range of B 

has essentially no effect on the forecasts, the error 

variance depends upon the value of C and the summation is 

simply a constant times the error variance associated with 

that particular value of C. 

If the value of A is increased in the absence of auto­

correlation in the observed series for a small value of B 

and any values of C, the forecasts tend to reflect the 

last observed value and, thereby, increase the variation. 

As the value of Bis increased, the addition of a false 

trend component in the model tends to increase the error 

variance. In general, the increase of B for the larger 

values of A causes a monotonic increase in the error 

variance. In those random series and those with small 

autocorrelation coefficients that were studied, there is 

some compensation for large values of both A and C, but 

the compensation is not sufficient to discredit this sum­

mation method for smoothing constant determination. Simi­

lar analyses can be made for the processes that have linear 
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trends. or both linear and seasonal trends which have 

small values for the autocorrelation of the adjusted ran-

dom series. 

The definition of the term autocorrelation in the 

preceding discussion was on an intuitive basis. This par­

ticular statistical definition is most important in the 

discussion of time series. Let rk be the autocorrelation 

coefficient with lag ko 

(53) 

This is the same form as the correlation coefficient 

for pairs of observations except they are from the same 

series with a lag of k between the observations. If there 

are M observations in the series for which it is desired 

to compute this statistic,then Equation (53) may be written 

in summation notation as 

Often, in the more mathematical treatments of the 

subject of time series, rk is assumed equal to zero. In 

the relatively ~hort series of'observations that are used 

as historical data for the processes discussed here, it is 
C 



difficult to reject this hypothesis statistically. This 

is similar to providing statistical evidence of non­

randomness in a series. Regardless of the level of sig­

nificance that can be shown statistically 9 the statistic 

rk is obviously related to the smoothing constants that 

are used in the exponential smoothing of the series" This 

relationship becomes more apparent if the numerator of 

Equation (53) is written in the form~ 

I'1 

L cxi = x(i)) cxi-k - x(i-k)) 
i=k+l (55) 

The value of rk is seen to be dependent upon the values of 

I'1 and k for a given serieso Since either of the quantities 

within the parentheses may be positive or negative and the 

summation of the cross products is for all values of i~ the 

numerator may become small or approach the value of the 

denominator either as a positive or negative quantity. If 

the values of the series have a tendency to be on the same 

side of their re spec ti ve means for the specified k 1 then 

this is indicative of systematic variation in the series 

for lag k. For a large I'1 and relatively small k~ the 

values of x(i) and x(i-k) approach the same value where 

and 

I'1 

xCi) = I x1/:t1=k 
i=k+l 

(56) 
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(57) 

There are some relationships between the value of rk 

and the model that assume~ the term of a trend, cyclical 

and random variation, that may oe stated without rigorous 

proof or empirical data, 

One point_ that should be made about a significant 

value o! rk is that all points which are integral values 

of kin either direction about every point in the series 

contributes to the relationship that is measured by rk not 

just each kth value peginning with the first data point. 

Some properties of the observed series may be determined 

by looking at rk for consecutive values of k. If r 1 > r 2 > 

r 3 > , • , > rn, then the series is seen to be dependent upon 

the most recent i:o!ormation as a forecast of .future actiy­

ity. If.' rl = :r:-2 i ••• rn ~ 1~ then tlle series has an es-

tablislled trend. If the, values of :r:- oscillate near zero 
k 

for all k, then the series is of a random nature, but if 

rk oscillates about zero with a large amplitude in either 

direction, then it has a cyclical variation, The proof of 

these observations is by inspection of ~quation (55). 

Combinations of these basic patterns ml;iY' be fo:r:-med for 

more complex fo:r:-ms of the time series. 

The display of the autocorrelation coefficients for 

consecutive values of k is formally known as a correlogram. 

Correlograms will be presented in conjunction with the 

nµmerical examples in Chapter IV. 
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Since the unstable type of time series may exhibit 

patterns within the data that are a function of the corre­

lation for various lag values within the data, a method 

for selecting the s~oothing constants that evaluates this 

relationship should be considered. 

If a single set of smoothing constants is to be used, 

then it is proposed that the determination of error be 

more nearly representative of the actual conditions of the 

real forecasts. One method would be to determine the 

error variance for lags of one tllrough Pend select the 

set of constants that has the minimum sum. of P error vari­

ances. lhis procedure should provide a more realistic 

estimate of the error that may be expecte~particularly 

for the stable type of series. 

Howeve+, since the coarse grid search is being used, 

it requires o~ly a little additional effort to arrive at 

an optimum ~et of constants for each lag value from one to 

P. Since the unstable series is likely to exhibit similar 

properties in terms of the autocorrelation for different 

values of the lag a more direct correspondence betw~en the 

smoothing constants eJ1.d the autocorrelation for a given 

lag could be used to improve the computed forecast errorq 

?he basic assumption that the generating process for 

the series do~s not change over the range of the observed 

data becomes important in the selection of smoothing con­

stants by this method because the error is based upon the 

forecast over the test series and the selection of tne 
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smoothing constants becomes some function of the autocor= 

relation over the test series. If the base series is un­

changed in the test series as in the total historical 

series, then the forecast may be expected to reflect the 

total amount of information after smoothing; but~if the 

test series is not of the same general pattern as the 

other historical datai then the forecast will reflect the 

test series alone. This in effect has compounded the level 

of stability in the observed series either positively or 

negatively in the forecast of the future activity of the 

process. Therefore, selection of a set of smoothing con­

stants for each interval of the forecast may result in 

forecasts corresponding closely to the last period of 

historical data. 

The relative merits of these methods of selection 

will be demonstrated in the next chapter by use of numeri= 

cal examples. However~ the development of exponential 

smoothing as a time series model has grown from the selec= 

tion of a single smoothing constant by trial and error to 

a systematic procedure for selection of 36 smoothing con= 

stants in order to forecast 12 months into the future. 

In summary~ there have been four separate methods 

proposed for selection of the smoothing constants for the 

exponentially weighted moving averages and each more suited 

for particular types of series. However, the general com­

putational form provides for evaluation of all four methods 

simultaneously. 
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Selection of Startin~ Point 

It is :possi'ble t<;> s;Lgnificantly reduce tl:ie error var ... 

iance by c:tianging the starting point in the historical 

data. by one uni.t ;in timeq Thi~ particular conclusion was 

formed by observing t~e errors assoqiated with the model 

as historical data were added to ap.d deleted from the pro­

gram.med eomp~tat~on, Generally, it is necessary to change 

the starting point !or the historical data more than one 

interval o! timeo For ex~ple, assume that the historica~ 

data available on a process took the !orm shown i~ Figure 

4o Under the type of model tnat is being used here for 

extrapolation of the series,~ intuitive startin$ point 

becomes obvious for a model that has a li.µear trend compo­

nent~ Th~s would be sometime after the first year of data~ 

9 ~7 30 33 

:Figure 4 .. .A. Changing Process 
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The reduction in the error variance for a process o! 

the type shown could be quite large. The main cause of 

incre.ased error in considering the whole series is the 

computation of Y0 on the basis of the data giv~n would 

indicate a very small trend component compared to that 

which actually exists~ Since the model was not originally 

provided with this ability to determine the optimal start­

i!'lg point, the suppopting algorithms would 13.ttempt var:i.ous 

methods of smoothing the series, ~ach attempt yielding a 

larger error variance than could be obtained with a more 

judicious choice of the historical origin of the series, 

I! the value of Bis large in order to discount the initial 

determination of the trend, then it will also fail to rec­

ognize the real trend in the later data. This will cause 

the trend factor to attempt to compensate for most of the 

variation which will distort the actual seasonal variation 

and increase the error variance. ·If the trend changes 

slowly, both the random factor and the seasonal factor will 

attempt to compensate for the lack of response in the 

trend. The random factor would assume that a high auto ... 

correlation exists between successive observations and 

would cause sympathetic oscillations in the trend factor 

or the seasonal :f.'actor would interpret the data l;l..S having 

large seasonal fluctuations. In either case, the forecast 

made over the test series would result in a relatively 

large error in forecasting and these artificial oscilla­

tions would be carried over into the actual forecast a! the 



64 

processo. Also in case of an observed series of this type~ 

the seasonal factors would become inverted during the 

year of decline and would take a much longer time to re­

verse the negative trend in these factors than the linear 

trend. Therefore, it is desirable to :d'.e"t,erm.ine1,.the opti­

mum starting point to begin the smoothing of the series in 

order to provide the· latest information as input to the 

model, and to provide the most representative data of the 

present generating process. This, then~ satisfies the 

requirements of the assumptions that are made in the use 

of the model in that the process that generate'd the series 

to which the algorithms were applied is assumed to continue 

into the future. 

In the example given above, if it is desired to in­

clude this large variation as part of the historical data~ 

then the period of the seasonal variation should be 

changed to a length such that the pattern as displayed in 

Figure 4 would only represent part of the period which 

would repeat with similar major fluctuations in the future. 

This would only be fair to the forecaster and to the model 

as presented here. 

In order to solve this particular problem associated 

with the use of the model and to obtain less error in the 

forecast, the difference operator~ A~ is used to determine 

the best fit of a first degree equation 9 linear trend~ to 

the observed data for a specified minimum interval of the 

historical data. This is accomplished by establishing the 
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minimum number of historical data points that will be used 

in smoothing the series and then changing the sta~ting 

point for the minimum sum of the absolute value of the 

third order differences for this interval as it is passed 

over the historical data available. The starting point in 

the series that results in the smallest sum of the absolute 

third order differences is then chosen as the origin of 

the observed series for purposes of estimating the parame­

ters of the model. General.ly, this interval would be ex­

pected to be at least seventy per cent of the historical 

data available, but not less than 45 months in length un­

less decisions are made external to the automated computa-

tional process, 

The third order differences are used instead of the 

second order differences in order to facilitate the auto-

matic computation and decision processes. From a theorem 

of finite differences, the nth divided differences of a 

polynomial of degree n are constant. If the second order 

differences were all equal to zero, then an e~act fit of 

the linear trend would have been accomplished. However, 

if something less than an exact fit is to be accepted, 

then the magnitude of the second order differences can in­

dicate the best of the choices. For the type of data that 

would ordinarily be encountered in the unstable type of time 

series, oscillations in successive values of the early qr­

der differences could be e:x:pected. Therefore~ second order 

differences could result in two common mistakes in 
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judgment. The first of these would be for large alternat­

ing signed values to sum to a small value thereby indicating 

a best fit condition. The second would be for a best fit 

condition as demonstrated by constant or near constant 

second order differences to be rejected in favor of a set 

of differences that had begun oscillating. By taking the 

third order differences, both of these mistakes a.re avoided 

since the oscillations in the second order differences will 

show up as even larger values in the third order differ­

ences and any near fit will have smaller third order dif= 

ferences. Also, if the second order differences were in 

fact zero indicating a first degree fit of the data~ then 

the third order differences would remain zero. The chances 

for a first degree fit and a second degree fit within the 

same series under the general rules given for selection of 

the interval are remote. A secondary benefit is derived 

from this procedure if the seasonal variation is of some 

low order polynomial, second degree or less~ in that this 

procedure tends to provide a better fit for the complete 

model. 

There are some modifications of this general tec.h= 

nique discussed in the Appendix along with the presenta= 

tion of this as a program option. A discussion of 

empirical results and examples will be given in Chapter IV •. 



CHAPTER IV 

EMPIRICAL RESULTS 

From the standpoint of rigor~ the analytical approach 

is usually preferred over the empirical approach to prob­

lem definition and solution. However 9 the empirical ap­

p:coach cannot be discounted in its usefulness and the type 

of problems that it approaches. Often 1 the use of ernpiri-­

c techniques will preci.pi tate some analytical formulation 

of the same result since the empirical approach provides 

some intuitive insight into the action or interaction of 

factors that provided a result which is general in formo 

1J:he analytical treatment is then used to derive the result 

that has demonstrated ability to provide a solution. One 

the more significant developments of th.is t;}rpe was the 

development of the t distribution by Student (Gossett) and 

the subsequent analytical proof or derivation of that; same 

d.istribu on by Fisher. There are a number of people 

presentLy working on time series from both the analytic 

a:nd empirical approaches. Of the contemporary investiga­

tors] B:rrnn1 would probably be a leader from the empirical 

studies approach and Parzen from the analytical approach 

to the subject. 

67 
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The empirical approach to these studies has been 

advanced in recent years ~Y the use of high speed computers 

which make it feasible to consider enough different types 

of series to be able to generalize the results of the 

study, It was th.rough the use of comput~r results that 

most of the material already presented was developed. The 

purpose of this chapter is to support those hypotheses and 

arguments that were advanced in the previous ~hapters., 

Selection ot Data for Study 

~he Qriginal d~ta that were used in the development 

of the results·presented in this work were actual data 

from personnel attrit~on studieso This type of time 

series would undoubtedly qtialify ~$ an unstaple process as 

described in previous discussions. The influences in this 

type data ~e many .. N<:>~ only are the economic cond.itiQns 

factors to be considered in ~he movement q! people to 

other jobs, but the day of the week ending the month and 

other such coincidences have au influence upon the monthly 

attrition rateo Much of the exploratory work in redueing 

foreeast error came about through the studies conducted on 

these datao These eal;'ly studies also provided a real test 

for this type of analysis. The test of the model was a 

comparison between the model and its fqreeasts of the fu­

ture activity of the process with those predictions made 

by an experienced pe~son.nel man that had ~tudied the 

problem and used economic indicators along with some 
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limited statistical analysis of the historical data to 

formulate his predictions. The model compared favorably 

during these early tests. Subsequent use qf a model which 

used the minimum error variance for forecast lag value of 

one as the basis of smoothing constant selection pointed 

out some of the types of errors that could be expected 

under a limited com~utational procedure~ This led to a 

trial and err9r procedw:'e for correcting the demonstrated 

deficiencies in the original methods, 'l1he improvements 

were directed at replacing the persopal judgment methods 

that were need~d to obtain better results with an automated 

decision process. 

In the early stages of the personnel attrition study, 

a number of the qurve fitttng techniques were used as time 

series models. The variation in the data and computational 

qomplexity involved in arriving at the mathematical form to 

be used for extr~polation, caused those methods to be re­

jected in favor of the exponentially weighted moving aver~ 

ages. Due to some proprietary considerations, the data of 

these early studies are not available for presentation, but 

it is not unlike data that will be used in the presenta­

tions in this chapter. 

In addition to using real world data to study the 

model and the forecasting procedure, artificially created 

time series data were used for investigating the reaction 

of the model to various types of known input variations. 

One o.:f tb.e basic experiments used selected combinations 
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of a factorial arrangement: of trend, random variation and 

additive cyclical . variations, ,, The experiment was to de­

teI'Jll,ine if the model could track and extrapolate a true 

sie;nal without erroro The signal combinations used in­

cluded: different values of slope for a linear trend, 

these same trends with three different levels of amplitude 

for the sine wave superimposed on the trend. The results of 

this particula,.r phase ot the experiment indicated that the 

multiplicative model could track a pr.ocess with an additive 

type of cyclical variation and that signals of the simpler 

!orm could be extrapolated without error~ The second 

phase of this experiment used the same base signals with 

three different levels of random variations superimposed 

upon the base signalo The levels of randomness were de­

termined by the width of the interval for the values used 

from a table of random numbers. The basic purpose of the 

second phase was to observe the change in the error vari­

ance associated with the increase in the random variations 

for the combinations of the base signals usedo This part 

of the study was generally to increase the confidence in 

the modelo 

The group of data that are presented in the illustra­

tions and presentation of numerical results in this chapter 

were selected in order to provide a comparison with other 

studies that have been conducted along these lines. The· 

data tp.at are used in the following tables and graplls are 

similar to those presented by Brown (7). 
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Figure 5. A Series With Noise About a Process Level 

TABLE I 

SERIES 1 - RANDOM TYPE SERIES 

Time 1 2 4 2 6 2 8 2 
1 102 083 083 095 126 065 104 080 051 

2 107 072 085 079 119 091 111 043 095 

3 104 111 108 113 116 097 128 088 049 

4 094 117 103 123 110 105 096 042 111 

5 124 086 118 076 103 086 165 124 077 

6 112 095 168 120 089 086 -103 102 093 

7 079 106 100 072 087 128 111 074 102 

8 095 098 114 110 091 104 080 086 081 

9 109 113 154 096 102 086 084 081 074 

10 067 048 118 036 089 122 115 111 124 

11 114 074 123 118 098 104 126 121 102 

12 095 114 116 116 124 111 104 075 060 
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Figure 6. A Series With Linear Autocorrelation 
Among Observations 

TABLE II 

SERIES 2 - AUTOCORRELATED TIME SERIES 

1 2 4 5 6 8 

106 113 074 117 155 135 107 091 

105 101 093 113 138 143 111 093 
108 .102 099 103 146 126 124 099 

097 100 094 125 _ 136 124 117 106 

096 086 112 125 119 137 101 107 
106 082 115 111 138 125 098 110 

100 064 127 110 151 122 084 107 
111 046 145 102 162 105 094 107 

107 048 135 113 155 101 103 106 

116 048 134 125 144 102 096 105 

098 063 119 141 134 105 107 090 

109 057 118 158 132 107 106 073 

108 

079 
069 
048 

041 

054 

065 
080 
064 

052 

056 

065 

063 
---
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Figure 7. A Series With Noise and Trend 

TABLE III 

SERIES 3 - TREND AND RANDOM TYPE SERIES 

Time 1 2~ 4 2 6 -2. 8 2 
1 106 091 146 117 056 104 169 203 170 
2 113 113 124 104 112 070 128 153 179 

3 076 138 126 041 104 133 192 159 136 
4 115 145 098 115 074 118 137 162 212 

5 155 111 048 096 115 159 130 112 180 

6 137 095 IOLI- 084 111 136 145 178 149 

7 107 067 095 114 138 098 104 177 203 
8 089 087 100 125 125 125 153 114 227 

9 079 108 096 117 098 098 147 200 224 

10 071 104 125 135 108 118 094 191 199 
11 107 101 136 101 065 133 181 ~14 199 
12 101 103 12L~ 108 116 072 161 172 188 
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Figure 8. A Series With Cyclical and Random Variations 

TABLE IV 

SERIES 4 - CYCLICAL TYPE SERIES 

Time 1 2 2- 4 5 6 7 8 9 
1 190 183 198 181 138 183 208 151 168 

2 157 174 144 172 130 148 146 156 146 

3 185 156 126 131 163 109 129 161 171 
4 098 145 149 135 144 115 158 119 103 

5 125 085 141 082 094 118 118 103 063 
6 091 037 100 050 096 076 126 117 054 

7 098 128 104 112 141 105 112 106 123 
8 112 108 119 140 105 127 070 094 069 

9 101 134 161 170 123 132 085 147 128 

10 151 202 148 122 138 183 176 174 141 

11 227 201 213 130 188 175 179 167 195 
12 198 194 202 203 189 195 240 168 211 
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Figure 9. A Series With Trend, Cycles and Noise 

TABLE V 

SERIES 5 - CYCLICAL AND TREND TYPE SERIES 

1 2 4 5 6 7 
1 113 116 146 172 197 205 243 

2 119 125 151 179 195 189 232 

3 131 142 177 192 235 234 268 

4 130 134 162 180 234 228 268 

5 120 126 173 182 230 233 271 

6 136 148 .. 179 217 242 263 316 

7 149 171 200 229 163 301 365 
8 149 171 200 241 273 294 348 

9 135 157 185 210 238 260 313 
10 120 132 161 192 210 228 275 
11 105 113 145 171 181 202 238 

12 117 141 165 193 202 228 279 
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Figure 10. A Series With Autocorrelation of a Different 
Type 

TABLE VI 

SERIES 6 - NON-RANDOM TYPE SERIES 

Time 1 2 4 6. 8 

1 168 418 582 433 547 629 511 492 570 
2 294 360 550 473 582 610 456 504 510 

3 244 302 514 529 619 614 471 494 568 
4 373 401 575 493 671 659 514 428 63'4-

5 433 476 518 549 689 571 549 404 658 
6 481 487 482 537 748 552 581 403 596 

7 521 484 507 476 793 467 466 436 661 

8 595 525 486 437 765 501 554 535 628 

9 522 450 535 414 698 420 460 547 631 
10 552 526 479 481 612 446 407 488 518 
11 462 532 426 464 628 442 401 568 589 
12 391 501 539 463 673 461 437 473 635 



Enumeration as a Search Method 

The discussion in this chapter will parallel that of 

the preceding chapter when possible. The first point that 

was made in Chapter III was that the enumeration of the 

coarse grid values was the proper approach to the search 

for the appropriate set of smoothing constants to be used 

in the computational · algori th.ms. Table VII is an em1mera-, 

tion of the error variances as computed for the last 60 

values of the data of series 6. This grid of values demon"'" 

strates the existence of local minimums, which is the type 

of occurrence that was discussed relative to the use of 

the gradient method of searching for the minimum value. 

This may be determined by comparing the response at point 

(0.4 0.2 0.2) with its adjoining values. 

The adjoining values of this point are all points 

that may be defined by combinations of A= 0.2, Oo4, Oo6~ 

B = 0.0, 0.2, O.L~, and C = 0.0, 0.2, 0.4. These points 

may be identified directly by inspection of Table VIIo A 

convenient means of identification is the construction of 

lightweight lines through the table for each value of 

the constants given above. This is done in an independent 

manner considering only one smoothing constant at a time" 

Upon completion of this construction of lines~ there will 

be 27 intersections of these lines in three columns and 

nine values per column. The center value ·will be the 

point being investigated and the comparisons may be made 



TABLE VII 

ERROR VARIANCE TABLE FOR SERIES 6 

·A 
o .• o 0.2 0.4 n .. 6 0 .. 8. 1-..0 

C o.o B o-.o 48815·.75 6930.61 3572.14 3421.04 4011.73 5212.46 
0.2 48815·. 76 3242.18 2796.59 3251.35 4272.08 6143.48 
o·.4 48815.76 3637.17 2820.37 3543.55 4954.73 7731.45 
o·.6 48815.76 2967.26 2982.52 3974.09 5863.37 10033.60 
0.8 48815.76 2552.56 3361.08 4497.48 7011.43 13462.06 
1.0 48815.76 2559.54 3922.36 5051.27 8472.51 18884 .. 26 

C 0.2 B 0.0 48323.25 6443.78 3513.67 3411.86 4025.36 5212.46 
o·.2 48323.25 2916.57 2776-.83 3257.76 4293.35 6143.48 
0.4 48323.25 3151.49 3011.52 3615.87 4994.83 7731.45 
0.6 48323.25 2882 .• 06 3517.08 4080.93 5914.49 10033 .. 60 
o·.8 48323.25 3135.07 4217.40 4588.04 7073.57 13462.06 
1 .• 0 48323 .• 25 3566.99 4889.84 5119.99 8560.76 18884.26 

C 0.4. B o.o 47131.48 6265.17 3624.54 3430.31 4029.90 5212.46 
0.2 47131-.48 3254.42 3061.34 3297.43 4297-24 6143.48 
0.4 47131.48 3653·.42 3634.53 3722.43 5009.35 7731.45 
0.6 47131.48 4311.74 4543.85 4248.46 5929.80 10033.60 
0.8 47131·.48 5891.81 5801.97 4799.54 7079.64 13462.06 
1.0 47131.48 6558.93· 7083.93 5367.28 8553.76 18884.26 

C 0.6 B 0.0 45147~99 6411.96 3955.16 3502.23 4027.96 5212.46 
0.2 45147.99 4229.66 3761.34 3424.98 4289.09 6143.48 
0.4 45147.99 52so.75 4932.46 3953.10 5006.71 7731.45 
0.6 45147.99 7901.92 6415.52 4625.57 5921.95 10033.60 
0.8 45147.99 13094.72 8514.95 5394.91 7048.29 13462.06 
1.0 45147.99 15219.25 11118.25 6207.71 8477.13 18884.26 

-<J 
OJ 



TABLE VII (Continued) 

A 
OoO 0 .• 2 Oo4 

C 0.8 B o.o 42706.70 6890.31 4542.68 
0.2 42706e70 5954.92 4952.08 
0-.4 42706.70 9326005 7152.33 
0.6 42706.70 15362.72 9540.63 
0.8 42706.70 29304.27 12671.24 
1 .• 0 42706.70 39686 .• 97 17286.26 

C 1.0 B o.o 40476-.09 7748.24 5401.78 
0.2 40476.09 8962.62 6638.62 
0.4 40476.09 20218.20 10493.85 
0.6 40476.09 30057.83 14326.36 
0.8 40476.09 60354.64 18350.76 
1.0 40476.09 103716.98 25359.64 

0 ... 6 0.8 

3656.03 4023.33 
3701.59 4276.00 
4413.48 4998.10 
5401.78 5908.78 
6756.24 7007.80 
8314.91 8376.25 
3917.94 4020.43 
4189.16 4266.20 
5225.75 4996.92 
6818.80 5912.46 
943ff. 58 6994.76 

12811.68 8316.15 

1 .• 0 
5212.46 
6143.48 
7731.45 

10033.60 
13462.06 
18884.26 

5212.46 
6143.48 
7731.45 

10033.60 
13462.06 
18884.26 

-'1 ,.o 
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directly. Since it is not convenient to use this method 

in this presentation, these values are displayed in Table 

VIII. If any part of the smoothing constants for the 

point being investigated as a minimum are 0.0 or 1.0~ this 

grid size will be reduced by a corresponding amount. 

TABLE VIII 

ILLUSTRATION OF A LOCAL MINIMUM IN THE 
ERROR VARIANCES FROM TABLE VII 

A 
0.2 0.4 0.6 

o.o 6931 3572 3421 
0.0 B 0.2 3242 2797 3251 

0.4 3637 3820 3544 
o.o 6444 3514 3412 

C 0.2 0.2 2917 2777 3258 
0.4 3151 3012 3616 
o.o 6265 3625 3430 

0.4 B 0.2 3254 3061 329'7 
0.4 3653 3635 3722 

The occurrence of local minimums is not uncommon 9 a:nd 

three or more may be found i.n the 216 point grid for some 

of the unstable series. With this one example~ it is pos 0 ~ 

sible to discount the use of the method of st;eepest descent 

as a general technique for location of the minimum value 
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in the search grid. The method of steepest descent would 

locate the position of this local minimum provided that 

the initial points for investigation were selected in this 

general area~ If the method of steepest descent were used 

for a smaller grid size than used above~ it would be rea­

sonable to expect the number of local minimums in the 

hypersurface to increase. 

By inspection of Table VII, the actual minimum value 

for the search grid th~t was used occurs at the points 

(0.2 0.,8> O.O)o It is irrelevant at this point as to 

which of the above is the optimum set of constants. The 

fact that local minimums can exist in the response of 

series to the smoothing constants justifies the selection 

of an enumeration method of...search over the method o.f 

steepest descent. 

Selection of the Search Grid 

The search grid is intended to serve two purposes~ 

the first is locate the region of optimum error variance 

and the second is to do this as economically as possible. 

The economy is measured in terms of the degree of conver­

gence that is desired for the error variance and the com­

putational effort involved. 

The size of the region of optimum error variance is 

dependent upon the observed series. The grid should be 

selected fine enough to assure that at least one point in 

this optimum region will be obtained. Generally~ this 
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particular value for grid size is unknown, but the 0.2 

increment used in this study has provided the general type 

of balance that is discussed above. When a local minimum 

is found, the grid size can be decreased for a search in 

the general region of that point. The finer grid search 

may be used upon a judgment basis; for example, if the 

values of Table VIII were of the same magnitude, this 

would indicate an optimum region and further search within 

that region for a smaller value of error variance could 

not be justified from an economic standpoint. 

For the type of search grid that yields more than one 

local minimum, the finer grid may be used to determine. 

which of the regions has less variation in the error vari-

ance values of that region. If there is only one local 

minimum, then the use of the finer grid should also be 
. 

used on a judgment basis. In order to demonstrate the 

type of region that is desired and the method of choosing 

between local minimums the data from series 6 will be used 

in conjunction with a grid of values that are one-half the 

size of the original search grid .values. These grids will 

be used for the two local minimums ,discussed above. The 

idea of a local minimum was illustrated above and is used 

here, with reference to the cube analogy, as a value that 

is less than its nearest neighbor in each plane and on the 

diagonals. The pqints (0.4 0.2. 0.2) and (Oo2 0.8. 0.0) 

are the only local minimums in the error variance grid for 

series 6. Therefore, a grid of size 0.1 is used to search 
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the region around each of these points. The results of 

these searches are displayed in Tables IX and X. 

o.o 
C 

0.1 

0.1 

C 0.2 

0 .. 3 

TABLE IX 

ERROR VARIANCE TABLE FOR GRID SIZE Ool 
ABOUT THE LOCAL MINIMUM 

(0.2 0.8 1 0,0) OF 
SERIES 6 

A 
0.1 0.2 

B B 
o.z 0.8 0.2 Oo2 0.8 Oo2 0 .. 2 

8237 9027 8607 2678 2553 2536 2714 

7687 8390 7965 2591 2602 2693 2994 

TABLE X 

ERROR VARIANCE TABLE FOR GRID SIZE 0.1 
ABOUT THE LOCAL MINIMUM 

( 0 • 4 :, 0 ~ 2 , 0 • 2) OF 
SERIES 6 

A 
0.3 0.4 

B B 
0.1 0.2 0°2 0.1 0.2 o., 0.1 
2747 2737 2745 2714 2754 2800 2866 

2718 2725 2779 2712 2777 2870. 2959 

2782 2836 2969 2768 2874 3033 2891 

0.3 
B 

0.8 0.9 
2794 2937 

3241 3558 

0.5 
B 

0,,2 0.2 
2943 3040 

2959 3085 

3008 3169 



The grid size may be made smaller until the values in 

the. search area have converged to some specified fraction 

of the minimum valu~ within the table. In the examples 

above, the smaller grid was taken as one-half the original 

grid. This is not a rule and any iterative technique that 

;yields the desired level of convergence may be used. 

The geneJ;'al computational scheme for this thesis used 

grid values equally spaced for each of the smoothing con­

stants. This is not necessarily the most efficient .method 

since a number of observations of the error variance tables 

for various observed series.indicates that the response of 

the error variance is less sensitive to changes in the 

seasonal smoothing constant. This would indicate that a 

. more efficient search might be obtained for the same amount 

of computational effort by making the increments of A and 

B smaller and increasing the increments of C. 

Manual Selection of Smoothing Constants 

One of the methods of selectiQn of the optimum set of 

. smoothing constants is a manual manipulation of the error 

variance table. This is probab~;y the most reliable method 

of selection for the general case and should not be over­

shadowed b;y the refinements that are presented later. 
) 

This procedure follows that which was used to arrive 

at the values presented in Tables IX and X. After the 

local minimums have been compared, it is desirable to 

choose the smoothing eonst~nts associated with that 
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local minimum which has the smallest ~cunt of variation 

a.mong those values in that region while remaining rela­

tively near the min~m1J.Dl value observedo This selection 

could be aided by using a relative measure such as the 

coe!ficient of variation, but the additional computations 

cannot be justified on the basis of past experienceo 

l! the selection of the smoothing constants is made 

on the basis of the information given in Tables IX and x, 
they will be the set (0,4 O.l Oo~)o Tb.is choice is justi­

fied on the basis that the values of error variance in 

Table~ have less variation than those of Table IXo This 

is particularly desirable since variations in the process 

would be less likely to influence the error variance si~­

nificantly, T~s is one property of the forecast that is 

most impo~tant in that the "best" estimate of the error 

variance, as determined by the procedure outlined above, is 

needed since the process may var1 with timeo Thus, the 

term optimum error is used to describe the basts for 

smoothing constant selection rather than minimum error, 

The coefficient of variation for the value selected is 

0~0942 which is only 0.0031 greater. than the minimum value 

of Table IX. Therefore, the conditions of smoothing con­

stant selection have been satisfied and arguments presented 

for their justifieation9 

One othe~ point that should be noted from this example 

is the efficiency of the coarse grid as a search method 

for locating the minimum error varian,ce values in each of 
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the tables. In both cases, the change in the coefficient 

of variation between those values that are common to Table 

VII (page 78) and Tables IX and X (page 83) is less than 

0.0010. 

The composition of the series in terms of non-random 

variations determines to a major degree the observed fore­

cast error for this time series model e At this point in 

the discussion in this chapter 9 the observations have been 

based upon those results obtained for a forecast lag of 

one unit of time. The definition of lag is the number of 

time units between the smoothed values of the series and 

the forecast value. For a lag of one unit, the forecast 

is made one unit into the future and error observed before 

the smoothed estimates are recomputed and the next fore­

cast is made. In order to summarize the numerical results 

that have been considered up to this point in the presen­

tation and to provide a basis for comparison with the fu­

ture developments~ Table XI compares the error variance 

for the manually selected smoothing constants for forecast 

lag of one time interval with the variance of observed series. 

These smoothing constants ·were selected by use of a 

coarse grid with an increment of 0.2 and the secondary 

grid of O.l. The secondary grid was applied to all local 

minimums that were obtained with the coarse grids. The CV 

is a common statistical term for coefficient of variation 

which is the standard deviation divided by t~e mean. This 

provides a relative measure of the variation. 
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TABLE XI 

COMPARISON FORECAST SUMMARY O? ERROR VARIANCE 
AND OBSERVED SERIES VARIANCE 

Series Series Series Smoothing Error CV x 100 
Variance Mean Constants Variance Series Error 

1 504.8 9a.7 .o .o .• 2 625.1 22.77 25.,34 

2 544.4 104,6 1. .o .o 153.2 22.32 11.84 

3 1159.1 129.9 .. o .o .2 1229.6 26.21 27.00 

4 1589.2 140.4 .o .o .o 703.5 28.40 18.89 

5 2145.9 207.8 .1 .3 .7 233.3 22.30 7.35 

6 10050.0 526.8 .4 ,1 .2 2712.2 19.02 9.88 

The explanation of the differences observed in the 

pairs of variances are due to the form of the observed 

series and the fit of the time series model that is 

assumed for these general types of series. In the next 

section, arguments will be presented in explanation of 

Table ,XI. , 

The Observed Series and Autocorrelation 

The form of the observed series can be hypothesized 

from inspection of the a:u.tocorrelation coefficients for 

consecutive lag values provided that the forms are re­

stricted to combinations of random, trend, and cyclical 

variations. 



The autocorrelation coefficients for lag values 1 

through 12 for each of the six series presented on pages 

71 through 76 are given in Table XII. 

TABLE XII 
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AUTOCORRELATION COEFFICIENTS FOR LAG VALUES 1 THROUGH 12 

Series 
Lag 1 2 3 4 5 6 

0 1.0 loO 1.0 loO 1.0 1.0 

1 0.092 0.901 0.455 0.567 0.858 0.822 

2 0.042 0.795 0.463 00239 0.770 0.720 

3 0.162 0.693 00370 -0.017 0.698 0.551 

4 -0.034 0.583 0.231 -0.359 0.662 0.364 

5 0.132 0.502 0.431 -0.569 0.664 0.262 

6 0.061 0.433 0.262 -0.636 0.656 0.176 

7 -0.026 0.364 0.426 -0.564 0.656 0.112 

8 -0.064 0.319 0.481 -0.263 0.648 0.155 

9 -0.039 0.266 0.535 0.028 0.699 0.106 

10 -0.027 0.206 0.933 0.322 0.776 0.105 

11 -0.085 0.154 0.505 0.579 0.851 0.071 

12 0.093 0.105 0.501 0.651 0.912 0.052 

The data presented in Tables XI and XII will be dis­

cussed for each of the series in turn. The measure of the 
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significance of the autocorrelation coefficients is 

usually compared to those obtained from a normally dis­

tributed random series. Anderson (11) provides an approx­

imate value of rk that can be used to test for a 

statistically significant non-random series. The value of 

rk changes with the number of observations included in the 

computation and the lag value usedo Therefore~ for the 

purpose of discussing those example series given~ a con= 

servative value of +k ~ [0?2J will be considered indica~ 

ti ve of a non-random series with signi.fica.r:i.t autocorrelation. 

Some insight may be gained by referring to the graphs 

of these series on pages 71 through 76 during the discus­

sion of the inferences that are drawn from the autocorre-

lation statistics~ Visual comparisons may be made by 

taking & fixed interval equal to one of the lag values and 

moving it along the graph of the series to determine a 

~ualitative estimate of these relationships~ 

Series 1 is a series of a random nature since the rk 

are all less than 0.2 in absolute magnitude. This could 

have been assumed by looking at the graph of the series. 

However, some periodicities may not be oovious from a 

cursory examination. Thereforei the best estimate of the 

future activity of this process is the mean or exponential 

smoothing with a very small smoothing constant. This is 

confirmed by the value of the variance of the series being 

less than the error variance for series 1 in Table XI. The 

optimum smoothing constants reflect th~s in that the random 



and trend constants are both zero which implies that the 

X0 and Y0 estimates of the process provide minimum error 

for this modelo However, the smoothing constant for the 

seasonal variation was not zero since the series is not 

lengthy enough for the values of !i, i = -11, 0 0 0 'J Oto 
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approach one:3. This made it necessary to use some smooth­

ing in an attempt to smooth these estimates. By using the 

assumed model, there are forecast that are even more 

erroneous due to the negative values of some rk in thi~ 

series. This causes the error variance to become greater 

than the series variance. Based upon these observations, 

this series is of a random form. 

Series 2 has very high autocorrelation coe!ficient 

for small lag values that diminish at a near linear rate 

for the larger lag values. This would imply that the more 

recent observations .are the best estimates of what may be 

expected of the process in the future. Since r 12 is sma;ll 

enough to be from a random series, this would indicate a 

lack of seasonal variation. The r 2, ••• , .t\1 decrease 

monotonically which indicates a lack of trend. If a trend 

were present, the rk wo1;1ld expect to approach so;me common 

value whose magnitude would be de;tpendent upon· the evidence 

of a trend. 

The smoothing c9nstants reflect the analysis pr~sented 
I 

for the rk since the~e is such a high degree of autocoTre­

lation for lag one. There is little reason to improve 

upon the estimates of the future over the last observed 
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value. The smoothing constants (loO O.Q. 0.0) provide: 

this type of forecasts since the estimates of the trend, 

Y0 , and seasonal effects, zi, i = -11, ••• , o, are not 

changed in time by the smoothing and the changes in the 

FXt,l are directly dependent upon the most recently ob­

served value, Xt. Since C can take on any value without 

affecting the results, the problem of smoothing the initial 

estimates of the seasonal factors is not a point of con­

sideration in this series as it was in series 1. 

The use of A= 1.0 allows the model to assume either 

of the simpler forms of variation about some mean leveJ,. or 

about a linear trend since the seasonal variation is re-

moved from consideration by this selection of A. This 

type of correlation along with A= 1.0 accounts for the 

error variance being less than one-third of the series 

variance. 

Series 3 has significant autocorrelation that is rel­

atively constant with the exception of r 4 ~ r 6 , and r 10• 

As indicated in the discussion of series 2, the relatively 

constant values of rk around 0.45 indicates a trend in the 

series. Essentially,this states that for any lag value, 

the length of runs of data on one side of the mean consid-

ered is relatively long for a trend type series. This may 

be shown by computing rk for a linear trend without any 

noise. The frequency of occurrence of identical algebraic 

signs in the numerator of Equation (55) will determine the 

magnitude of rk. The value of rk is an in~ication of the 



significance of the trend effects compared to other in= 

fluences in the series. 
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Aside from the evidence of a trend with some random 

variation, there is a major point demonstrated in this 

particular series by the large value of r 10 • This is~ 

these data are not analyzed properly if a period of length 

12 is used. The series is periodic for a period of 10 

time intervals which is well established by the magnitude 

of r 10 and by looking at the graph of the series. These 

data should be analyzed with the same basic time series 

model, but for P = 10. 

The smoothing constants selected upon the basis of 

P = 12 illustrate the attempt of the model to compensate 

for this pattern but does not provide an estimate of error 

variance that could be expected if P were equal to 10. 

Since the values of A and Bare zero as would be expected 

under the normal yearly data analysis and the initial de= 

termination of trend and mean value were appropriate for 

the series. However, this would change for P = 10. The 

value of C is small since the seasonal variation shifts 

time units each year and the model attempts to adjust each 

year~ but to the model these are unstable seasonal varia= 

tions and are weighted accordingly. This series has a 

trend with random variations and a seasonal variation for 

a period of 10 units in length. Two particular points 

that are worthy of note are that constant values of rk in­

dicate a trend and a singly large value of rk is indicative 
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of a cyclical variation for period of length, k. 

If this series is judged on the basis of P = 12, then 

its form would be analyzed as a series with linear trend 

and random variation superimposed. If a P of 10 is used, 

the series is of the form of a linear trend and seasonal 

variation with noise superimposed. 

Series 4 is another general type of non-random series. 

The magnitude of the rk is important for determining the 

form of any series, but again the pattern of the rk is of 

major importance. There are oscillations of the rk from a 

significant positive value to a signifioant negative 

value and back to the positive value. This pattern is not 

difficult to decipher since the rk is indicative of the 

relative likeness of the values of the series at intervals 

of the given lag. Thereforej with the fluctuations in a 

general pattern, the oscillations or the seasonal varia­

tion is illustrated in the rk themself~ The magnitude of 

rk does provide some qualitative measure of the amount of 

randomness that is present in the process. Generally, the 

larger the amplitude of this oscillation in the rk the 

more pronounced the seasonal'varia.tion •. Smoothing constants 

selected indicate that the series is rather stable and 

initial determination of the pattern of the series pro­

vides the least error variance for forecast lag of one 

unit of time. This fit of the data by the basic arithme­

tic procedures provides a reduction in the error variance 

over the series variance by more than one-half. 
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Series 5 is a general class of series for which the 

model presented in this thesis provides the best results. 

By inspection of the graph on page 75, this series could 

be described as one with a trend and multiplicative sea­

sonal variation. The rk are similarly indicative of this 

type of series, This series combines the features of se­

ries 3 and 4, as shown by the rk remaining nearly constant 

with the pattern of the seasonal variation superimposed 

upon the trend. The magnitude of r 12 is indicative of the 

continuing seasonal influence in the series. Other than 

pointing out the obvious values in Table XII which provide 

bases of comparison for rk and the graphical display of 

the series, nothing can be added to prior discussions 

about how the rk reflect the series proper. 

A more interesting point provided by this particular 

series is the selection of the smoothing constants for 

Table XI. ~he set of constants shown in the table are not 

that set which provides the minimum value of the error 

variancep This particular series has tbree local minimums 

in its error variance table. After applying the 0.1 in­

crement grid in these local regions, the minimum points in 

each region were (0.2 0.2 0.1), (O.l 0.3 0.7), and 

(0.1 0.1, 1.0) wj,th error variances of 422.46, 233.28, and 

189.70, respectively. This made it necessary to choose 

the constants that provided the least change in the error 

as a result of their being in a more optimum region or less 

sensitive region. The constants were selected after 
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consideration of the local minimwns · created .by' the 

seasonal factors compensating tor the trend. It was pri­

marily for this reason that. the second set of constants 

were selected. These appeared to provide more balance in 

the wei~hting of trend and seasonal effects. The interest 

is in providing the best estimates for. fo~ecas.ting the 

future. 

The first set of constants relies heavily upon the 
I 

initial determination of the series pattern and the his­

torical data. These will not allow the model input to 

change quickly enough to keep pace with the process. The 

third set includes C = loO, which emphasizes the impor­

tance of the seasonal variation and appears to account for 

some part of the trend in its estimates of the smoothed 

seasonal variation. This will provide good forecast re­

sults as long as the process continues to be of this form; 

however~ a slight deviation or change and this set of con­

stants will not respond properly. 

Series 6 is similar to series 2 in that it does not 

have a trend or seasonal variation that, is discernible by 

by inspection of r 1 , ••• r 12 , but it does have large values 

of rk fork< 5. The values of rk do not decrease in a 

linear fashion, but are more of an exponentially decreasing 

form. This indicates more randomness associated with the 

variation about the process level. 

From the analysis above of the form of the series as 

established by the appearance of the rk, the smoothing 
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constants would be expected to be similar to those of 

serie$ 2, However, they are not similar and this would 

appear to be oµe of those cases where the selection of 

smoothing constants provides a better fit of the data than 

would normally be expected. The explanation of those con­

stants listed in Table XI is that they provide a best fit 

of the data and consequently are able to reduce the error 

variance to a value less than one-third of the series 

variance. 

These six series are representative of the unstable 

type series that are found in economic processes. The 

foregoing discussion was presented in order that the fol .... 

lowin~ discussion may be more coherent. As indicated by 

earlier discussion and supported by the above examples, the 

more closely that a series conforms to the type of sea­

sonal and trend.effects assumed by the model, the smaller 

the forecast errors. The basic concept is to reduce the 

error variance through proper selection of the smoothing 

constants. A major part of the discussion pertaining to 

the relationship between smoothing constants and autocor­

relation has been derived from observation of the test 

series and experimentation with the model. 

Selection of Constants by Sums 

of Error Variances 

For the computational procedure that uses a forecast 

lag of one time unit for purposes of error variance 
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computation,·. ther.e· have been two methods of smoothing 
' constant selection discussed above. One of these methods 

is based upon considerations of minimum values without 

considering the sensitivity in that region. The other 

method involves manual manipulation or decisions external 

to the computer. The prime reason for providing an addi­

tional means of constant selection is the chance for the 

interaction of the constants and the seri_es to produce a 

minimum value of the erro,r variance in a highly sensitive 

region of the error variance response. This, selection, 

procedure may be performed entirely by a computer. 

the method that was proposed in Chapter III to 

aleviate this condition was the summation of the error 

variances ;for each value of the smoothing constant over 

the values of the other constants. The arguments presented 

were on the basis that the optimum region would influence 

the sums of the error variances more than isolated points 

could be expected to reduce the sum. 

For series 6, the results of these summations are 

displayed in. Table XIII. 

By inspection, the set of· constants which has the 

minimum sum in each colu:mn is (0.6 0.2 O.O)o The sum for 

C = 0.2 is approximately equal to the minimum sum at 

C = 0.0 and this is worthy of mep,tioning at this point. 

The minimum value from Table VII occurs for smoothing con­

stants of (0.2 0.0 0.8) aµ.d was shown in Tables VIII and 

IX to be less de~irable than the local minimum which has 
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smoothing constants of (0.4 0.2 0.1). The values :provided 

by this example do not coincide exactly with this local 

minimum; however, they are in the same local region as 

defined earlier and are not in the local region of the 

minimum value. The difference in the coefficient of vari= 

ation for selected constants in Table XI and those chosen 

from Table XIII is 1.21% or increases from 9.88 t;o 11.087. 

If a secondary grid is used about the set of constants for 

minimum sums, the local minimum resulting from that search 

reduces this difference to near zero. 

Constant 
o.o 
0 .• 2 

0.4 
0.6 
0 .• 8 

loO 

Total 

SUMS 

TABLE XIII 

OF ERROR VARIANCES FOR SERIES 

Sum on A Sum on B 

1635607 414654 

463643 408825 
244545 450737 
174433 502213 
208216 598314 
368804 720505 

3095248 3095248 

6 

Sum on C 

454031 
454366 
461707 
485070 
547212 
692862 

3095248 

This method of constant selection for the other five 

example series located the optimum set exactly for series 

2 9 3~ and 4 and was an adjacent :point in the coarse search 



grid to the selected optimum values for series 1 and 5. 

For the basic eomputational procedure of constant 

selection based upon errors for forecasts with a lag of 
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one this procedure of error sµm.m~tion has been demonstrated 

as superior tC? selection of constants based UJ?On minimum 

error alone. If there is only one minimum in the error 

variance table, this method will locate that region and if 

there is more than one local minimum ;it, will select the 

optimum region as determined by the relative sensitivity 

of the error varic;mce to chruiges in the smoothing con­

stants. Tlµs hypothesis is supported by the additional 

test series that were used in the empirical derivation of 

these s~oothing constant selection methodso 

Selection of Smoothing Constants Basei Upon the 

Sum o;t Error Variances for Consecutive 

Lag Values 

The methods of the preceding section were developed 

for the selection of the optim~ set of smoothing con­

stants based upon error variances computed !or forecasts 

of lag one~ Since the !orecast for the series is usually 

made a number of periods into the future, it follows that 

a more conservative type of testing the fo~ecasts for the 

series would be to use consecutive lag values !or fore­

easts over the test series. This provides an estimate of 

the error variance for each lag value~ ~he tests of this 

procedure.used lag values of one t):lrough 12~ 
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The smoothing constants selected after computation of 

the error variances associated with the consecutive lag 

values are those associated with the minimum sum of these 

error variances. If the immediate forecast values are 

considered more imp·ortant than the more distant future 

values of the forecast, these values may be weighted to 

provide this as an inherent consideration of the computa­

tion process. The improvement in the 9ver-all optimality 

of the smoothing constants for the total length of fore­

cast may be seen by comparisons provided in Table XIV. 

The comparisons shown are between. those error variances of 

the minimum sum for consecutive lag values and the optimum 

constants from the error variance tables for forecasts of 

lag one. The values for series 3 and 4 are not shown 

since both sets of constants are identical and the error 

variances are as shown in Table XI. 

In addition to illustrating an improvement of the 

method of selecting a set of smoothing constants~Table XIV 

demonstrates the applieabili ty of evaluating the lag of the 

forecast and integrating the consideration of future time 

by appropriate weighting of the. error variances. Table 

XIV also provides information on the form of the process 

and the noise associated with the process. If the series 

is of the form assumed by the model, the error variances 

are less than those for a more complex process • 
. '· 

Economic time series generally have noise superimposed 

upon the base series. If the base series can be definedj 



Series 

A 

B 

C 

Se lee-

TABLE XIV 

COl"IPARISON OF ERROR VARIANCES BETWEEN METHODS 
OF SMOOTHING CONSTANT SELECTION 

1 1 2 2 5 5 6 

0.2 o.o 6.0 1.0 o.o o.o 0.2 

o.o o.o o.o o.o o.o 0.2 0.2 

o.o 0.2 o.o o.o o.o 0.2 o.o 
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6 

0.6 

0.2 

o.o 

tion by C L* MS** C L MS C L MS C L MS 

Lag 

'1 686 625 194 153 521 427 3242 2777 

2 558 625 383 394 521 503 3490 2526 

3 620 625 496 538 521 555 4895 4261 

4 628 625 562 574 521 594 5725 4307 

5 629 625 663 652 521 583 7600 5864 

6 605 625 794 778 521 676 9120 7014 

7 637 625 909 947 521 778 12159 12783 

8 573 625 931 1012 521 833 13654 1490.5 

9 588 625 888 941 521 751 1692~· 22364 

10 594 625 879 920 521 706 18491 25.864 

11 529 625 857 927 521 705 20961 31862 

12 666 625 787 853 521 819 22625 35654 

* C L represents the selection of constants by the mini-
mum value of error variance for values 1 through 12. 

**MS represents the selection of constants by the mini-
mum sums of error variance'for lag of one. 
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then the errors in the extrapolation of that base series 

is dependent upon the distribution of the noise in the 

series. If, in fact, the base series as determined extends 

through the period of the forecast, the accuracy of the 

forecast ca:Q.not be expected to be better than the noise 

level present in the process. However, if the base series 

is de.fined by tb.e model, the inherent process variance is 

approximated by the error variance. Vnder this condition, 

the error variance should be relatively constant about the 

level of the inherent process variance for all lag values. 

Therefore, by inspection of the results produqed by 

this ty~e of smoothing constant sele~tion, information on 

the form of the observed series is provided as a seconda:r;zy 

benefit of the forecasting method. Series i, 3, 4, and 5 

for t~s method of smoothing constant seleqtion have almost 

constant error variances for all lag values in each case, 

From the above discussion, this would indicate that the 

proce_ss is of the form of the model or one of its simpler 

forms. This contention is also supported by the discus­

sion of the form of these series in the section on auto­

correlation. The error variances for these series are 

esti:m,ates o! the inherent process variance and provide 

measures of tlle forecast error that can be expected in the 

forecast of future values, 

Based upon the methods above, series 2 and 6 are not 

of the form of the model or its simpl~ forms. This is 

aiso supported by the d~seussion of thes~ series in the 
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section on autocorrelation. In these two ca$es, this 

method of smoothing constant seiection provides the infer~ 

mation that the series i$ not of the form. of the model, 

and indicates the magnitude of the error variance that may 

be expected !rom the best fit of the model and the data. 

For series 2, the error variance for forecast more than 

two iµtervals into the future would be expected to be 

approximately four times that for forecasts one period 

into the future if the same emoothing constants are used~ 

A similar analysis holds for series 6~ 

Two important points are illustrated in this section. 

One point is that the error variance and the forecast lag 

should be considered concurrently when selecting the 

smoothing constants. The other point is that the agree­

ment of the model and the generating process is a major 

influence upon the magnitude of the observed error. 

Selection of Smoothing Constants for 

Individual Lag Values 

In the preceding section, the method of selecting 

smoothing constants provides a single set of constants for 

all values of the forecast lag. The use of a single set 

of smoot}rlng constants is not a requirement of the model 

and the reduction in the error variance for forecast 

values may be significant if individual sets of constants 

are selected for each lag value that is to be used in 

actual forecasting practice. 
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The major part of the computations necessary for this 

smoothing constant selection process is performed by the 

computations associated with the methods of the previous 

sectiono In order to use this method of selection it is 

necessary to determine the minimum value of the error 

variance for each lag value used and its associated set of 

smoothing constants. The values for the six series used 

in this chapter are displayed in Table XV. 

The improvements provided by this method of smoothing 

constant selection over the one outlined in the previous 

section are that a given set of constants which provide 

relatively small chaIJ.ges in the error variance for some 

lags may cause the relative error for other values of 

the lag to be multiples of their minimum value. This fac­

tor of consideration is illustrated by comparing the 

results for series 6 in Tables XIV and XV. This method 

will also provide ·a minimum sum of consecutive lag error 

variances equal to or less than that method of the previous 

section" The error variances for different lag values may 

be weighted before they are chosen, but it will not affect 

the selection under this method. Therefore, if the compu= 

tations for the method given in the previous section uses 

weighted error variances, it will not affect the methods 

of this section. 

The method of selection for each lag value is on a 

minimum value basis~ but the sum on factors method 

described earlier may be used for each of the lag values 
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TABLE XV 

MINIMUM ERROR VARIANCE. AND SMOOTHING CONSTANTS 
FOR INDIVIDUAL LAG VALUES 

bO Ul bO m bO rn 
A.µ (l) A.µ (!) A-P (1) 

·r-1 ~ 0 ·r-1 A 0 :8 ~ 0 
..cl A ..cl c6 A r::1 .µ .µ H co +:> .p H co .p +:> l,'..i qJ 
0 rf.! O•ri 0 Cl) 0 ·rl om O·ri 

bO o A F--1 H OA H H o f:l t'.-1 H 
qJ ~ 0 H co !=l 0 fi co !=l 0 H co 
H CQO f:iH> CQO 1:i:H> CQO !'.£1 p,, 

Series l 2 3 - -· r•~ 

1 0 0 2* 625 10 0 0 153 0 0 2 1230 

2 4 0 0 548 6 0 2 382 0 0 2 1230 

3 2 0 0 620 0 0 0 422 0 0 2 1230 
4 0 0 2 625 0 0 0 422 0 0 

,.. 
1230 c.. 

5 0 0 2 6''r::. c...,., 0 0 0 422 0 0 2 1230 

6 2 0 0 605 0 0 0 422 0 0 2 1230 

7 0 0 2 625 0 0 0 422 2 0 2 1084 

8 2 0 0 573 0 0 0 422 2 0 2 1156 

9 2 0 0 588 0 0 0 422 2 2 0 918 

10 2 0 0 594 0 0 0 422 10 0 0 260 

11 6 0 0 439 0 0 0 422 0 0 2 1230 
12 0 0 2 625 0 0 0 422 0 0 2 1230 

Series 4 --2---==-- 6 

1 0 0 0 703 2 10 0 418 2 8 0 2553 
2 0 0 0 ,703 2 2 2 485 2 10 0 2344 

3 0 0 0 703 2 2 2 517 2 8 0 4014 

4 0 0 0 703 0 0 0 521 4 2 2 4303 
5 0 0 0 703 2 2 2 504 4 ~· 4 5468 C. 

6 0 0 0 703 2 2 2 500 4 r 8 5368 c'.. 

7 0 0 0 703 0 0 0 521 4. .,-, 10 8904 c:. 

8 0 0 0 703 0 0 0 521 2 8 4 9951 
9 0 0 0 703 0 0 0 521 2 2 0 16921 

10 0 0 0 703 0 0 0 521 2 2 0 18491 
11 0 0 0 703 0 0 0 521 

.. .., 2 0 20961 c:. 

12 0 0 0 703 0 0 0 521 2 2 0 22625 
c:ai..,_ 

*These values are 10 times the smoothing co:nstant;s. 
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or the manual method o! selection is possible but less 

practical since the amount of data increases directly pro­

portional to the number, of lag values used, 

There is one interesting point that is dis~layed in 

fable XV which was emphasized earlier. This is the length 

of the period for series 3, For a lag of 10, the error 

variance is approximately one~fou.rth of that for the other 

lag values~ The constants (lqO 0,0 o.o) essentially re­
move the consideration of the length of the period and the 

forecast value 10 intervals into the future is the present 

observed value plus 10 times the original trend value, Y0 • 

The value, 260, given in the table is not n~cessarily the 

minimum value of the error varianoe that would be obtained 

if P ~ lO had been used in the ~odel for the analysis of 

series 3 data. 

Selection of the Sta:r;:-ting Point 

The philosoph;Y behind the deletion of historical data 

1n order to improve the results of the forecasts was given 

in Chapter Ill. Three of the series did not require new 

starting points in order to minimize the ab~olute sum of 

the third order differences. Those series for which the 

starting point within the historical data was changed are 

given in Table XVI along with some comparative values to 

demonstr~te the changes due to this procedure. 
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2 

5 

6 

*Theee 
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';rABLE XVI 

DELETION OF HISTOE~CAL DATA AND THE AFFECT 
ON ERROR VARIANCES 

Sum of Th.;i.rd Smoothing Sum of 
Differences Points Constants Er:ror Fer Cent 
Orig. Miu. Deleted Old New Variances Reduction 

588 368 5 6 0 O* 004 5298 36"5 

1674 llOJ, ? 000 000 5291 15,4 

3055 1972 7 aoo 220 125881 9.4 

values are 10 times the smootlli:ng constants. 

The emphasis of this thesis has been on the reduction 

of the forecast error through improved methods of selectins 

the smoothing constants. This particular modification in 

the analysis of the historical data is for the same pur­

pose. The idea that all historical data is of value in the 

forecasting process is not entirely t~ue as indicated by 

the disQussion in Chapter III~ The purpose o! using the 

data is to obtain estimates of the future activity of the 

process. If some procedure provides accurate esti~ates of 

the future without using any of the historical data, then 

that procedure should b~ used in lieu of time series anal­

ysis. Therefore, the historical data is simply a means of 

p*ov~ding information for use in forecasting the future 

activity of a given time series. With reduced error vari­

ance as a prime obj.ecti ve, it is :p.ot unreasonable to justify 
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tb,e methods of this section on that basis alone. 

The data dsiplayed in Table XVI is indicative of the 

results that have been obtained tor the various test 

series and actual problems that have been considered dur-

.. ing the course of this investigation. There have been 

some isolated cases where the methods of this section did 

not improve the forecasts in terms of the error variance, 

but upon further investigation they were found to general­

ly be of a more extreme deviation from the assumed form of 

the model. It is not desired to limit the generality of 

the procedure at this point, but simply to point out 

another qualitative test on the form of the series and the 

results that may be expected for that series. 

Whether this point is basic ud ignored, or whether 

the experimentation with adding and deleting historical 

data from the consideration of the model has not been in­

vestigated, this particular point seems to be missing from 

the published articles in this area. Even in the more 

obvious eases of curve fitting as a method.of interpolating 

and extrapolating the time series, the selection of the 

origin within the data was not given as a prime considera­

tion of the method. However, due to the reductions in the 

length of the data. file along with the improvement in the 

computed error variance, this method cannot be ignored due 

to the frequency of the occurrence of the improvements in 

forecast'.errpr. It is also of interest that the entire grid 

of error variance values in the investigation of the 
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combinations of the ,factors and the vari..ous lag values 

change significantly which essentially indicates that the 

model and the computavional algorit;l;:tm.s recognize the seg­

ment of the historical data as new series and treat it 

accordingly~_ This particular re~uction in the forecast 

error for this model and its supporting algoritb,rns are 

felt to be an appropriate way to end this c:J:\apter on em­

pirical results~ This develop~ent was primarily an 

empirically derived idea, which was later s~pported by the 

model formulation and curve titting techniques which pro­

vided a heuristic proof of this contribution to the methods 

of time series analysis. 



OHAPTER V 

OBSERVATIONS AND CONCLUSIONS 

Selection of Forecasting Method~ 

The selection ot one forecastin~ method over another 

is primarily a matter o! personal opinion, The model and 

the sµpportin~ algorithms presented in this thesis were 

developed to se~ve a general type o! problem in the time 

series area. It is that of .f'oreoasting the economic type 

o! time· series which i$ assumed to be composed of a trend, 

seaijonai variations and random variations superimposed 

upon some process level. The B.+"gµments and examples pre~ 

sented in support of this procedure tor torecasting call 

attention to those points that should be considered in 

evaluating this particular procedure for application to a 

specifiq type ot time series data. lt is on the basis of 

demonstrated results that the methods are presented and 

justified.· 

The tecl)..:niques for time series analysis that have 

been p;r;tesented in th;is thesis start with the simple smooth­

ing model which has only a single smoothing constant anq 

the foreeast is a constant value. The last model and s~p~ 
,_ 

porting algorithms presented requ~re the ~canning of 
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the data for selection ot t;b.e optimwn starting point with­

in the d~ta; the qomputatio~ of the search grid ot values 

for each of the lag values~ and the se;i.eotion of the 12 op­

timµm sets of ti:l,ree smoothing const~ta each or 36 values 

!~om th~ enumeration ot a 13 by 156 grid of smoothing con­

$tant oombinations and the associated error variances. 

Wit};lin this ran~e of tecbni~ues, there have been a 

nuw.ber of procedures presented to aid in fo;c:ecasting tl+e 

future activity of a process. The methods presented have 

been arranged according to the computational effort re­

quired. Generally, the increase in computational effort 

provides a corresponding increase in the information pro­

vided the forecaster as to the type of process, the fit 

of the model and the poseiole magnitude of the forecast 

errors. The seleqtion of the particular model for ana- · 

lyting a given time series ~hou~d be evaluated in terms 

of the economics of computational effort and information 

provided. The increase in the information provided the 

forecaster is sufficient to make this consideration a 

ne9e$sary one~ One point t~at should be re-emphasized is 

the consid~ration of the forecast error for a fixed number 

of pqints in the future may significantly influence the 

choice of forecasting methods; therefore, the weighting 

of error variances should be considered carefully. 

The attempt has been. to :present a general type of 

computational fo~m for the applied type of forecasting that 

is becoming more routine in the various .fields. One 
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point of interest is the si~nificant influence of the 

.autocorrelation upon the results that may be . expected· from 

the forecasting procedure. This may affect which method 

provides the least amount of forecast error. 

The methods presented here are felt to serve the 

needs of generality and computational form which will per­

mit their application on a routine basis to a broad class 

of problems in the field of economic time series. 

Forecasting and Forecast Error 

As stated earlier'> a forecast without an estimate of 

the possible error is incomplete since the forecast is an 

e.stimate of the process without the noise superimposed. A 

major point to consider is whether the noise is greater 

than .t:ne process le.vel or tb.e forecast value. This has 

been the purpose of determining the optimal estimate of 

the inherent process variance in order that the estimates 

of the error variance are as nearly correct as is conven­

iently possible and not mislead the forecastere Therefore<> 

from the standpoint of the error variance being a good 

estimate of the process variance<> the methods presented in 

this study are felt to be correct under the conditions 

being considered and the mathematical techniques that are 

employed. In general the errors associated with the fore­

casts of this model are not independe;ntly normally dis­

tributed$ but may be from some non-,normal type of 

distribution which has dependence among the observations 



since the errors of the .forecast are autocor:r;-elated. Th;i.s 

makes the use of the two-sided tolerance limits for the 

normal distribution statistically unaccept~b;Le for the 

· purposes of pl~cing formal statistical li~its upon these 

forecasts. However, it is suggested that the s9.uare root 

of the error variance for a given lag value be used as an 

estimate of the variation about that point of the foreqast 

valrue. The effectiveness of this particular set of limits 

is dependent upon the process, the statistical p:r;-operties 

0£ the error distribution and the goodnes~ of t,he approx­

imation of the no,ise by the error variance. But, for 

those series.that were studied in the preparation·of this 

thesis, this performed as a reasonabl,e rule of thumb. these 

limits may serve in the same manner as the control chart 

philosophy used in quality control in that observed values 

beyond the limits placed on the forecast provide sufficient 

reason for investigating the data or the p:r:'oc_ess to account 

for this deviation from the forecast value. In order to 

improve confidence in the forecasting process, all old 

limits should be displayed in order to measure the per­

formance of past fo~ecasts and the correctness of the lim­

its on those toJ;'eoa~ts,. These limits can, be adjusted to 

some suitable multiple o! the opmputed error variance for 

the individual process under considerationp 

For some operations 1 it ~ay not be desirable to re~ 

vis,e the entire forecast at the end of eacA period and the 

same Sl)loothing constants can be us.ed for ea.ch subsequent 
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interval of the process without recomputing the smoothing 

constants and the forecast. In this case, the error var­

ian,ces could be used ov~r again as limits until some out­

of-control condition indicated that t:he process had 

changed and the data needed to be recomputed by regular 

procedures for the revision of the smoothing constants~ 

model parameters? and estimate of the expected error. 

Summary 

The objective o.f this thesis was to improve the .£'ore-­

cast error of the exponentially weighted moving averages 

time series model by the optimum selection of smoothing 

constants. The condition of optimality is that which pro­

vides the best estimate of the inherent process error 

associated with the process under consideration and the 

smallest error variance possible for consideration of the 

relationship between the forecast error and the lead time 

of the forecast. 

In order to provide a base for the optimization of 

t;he error variance, the following models were developed: 

the simple exponentlal smoothing model; the model for 

trend and random noise; the model for trend.~ cyclic.al~ and 

random variations; and the preceding model with provisions 

for selection of the starting :point. All of these models 

are of the exponentially weighted moving average(s) type. 

During the course of these investigations~ there were some 

results that proYed of more interest than others, but a.11 



contribute to the general success of this method of 

forecasting. 

Some of the major points include: 

(a) the illustration that the minimum error and 

the optimum error are not necessarily the 

same value, 

(b) the error sensitivity is low in the region 

of optimum error variance, 

(c) the location of the optimum region may be 

determined by the use of manual or automated 

means, 
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(d) the method of independent sums of error vari­

ances over smoothing constants may be used as 

the basis for selection of the optimum region, 

(e) the use of a multistage search procedure may be 

used in the interest of saving computational 

effort, 

(f) the lag value is a prime consideration in the 

selection of the smoothing constants and that 

more than one lag value should be investigated 

to improve the estimates of the error and to 

improve the confidence in the model. The use 

of the method of consecutive lags pointed out 

the necessity of the consideration of the lead 

time of the forecast. 

The ultimate use of the reduction in the error variance is 

to improve the confidence in the model and to place limits 
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that will monitor the forecasting process for detectable 

ehangeij in the process that may be of significant value to 

the user of the forecast model. The three most important 

~oints are the s~lection of a starting point, the optimal­

ity concept and the individual sets of smootlJ,ing constants 

for eaeh lag value of the forecast modelo 

E:xtension of This Study 

Probably the most challenging area of this thesis 

that needs further study is the statistie~l development of 

methQds to evaluate the form of the distribution of the 

error and the appropriate development of limits for the 

forecast in order to estimate the er~or that may be ex­

pected. The other ma~or area of possible improvement is 

in the basic problem of the decomposition of the observed 

series into other components, thereby reducing the a.mount 

of noise associated· with the process~ One additional en­

deavor that could be considered as an extension would be 

the proof of this particular model formulation by the use 

of the model over a wide range of proolemso At p~esent 

there are two companies using this particular model, one 

in the.at~dy of per~on.nel action, the other to st~dy e.n 

inventory problem. !he proof will be completed with the 

use of the concepts developed here and, therefore, must be 

delayed until some later dateo 
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INTRODUCTION 

The IBM 7090 and IBM 1620 FORTRAN programs presented 

in this appendix have been run on the IBM 704, IBM 650 and 

CDC 1604 with certain modifications. The computer program 

is simply the automated computation scheme for the support­

ing algorithms and forecasting model that has been present= 

ed in the text of this thesis. Since there are a number 

of options that may be exercised through the use of the 

computer, this appendix is continuous in that all the 

parts are related but for purposes of clarity these options 

will be discussed in turn. The major divisions of the ma­

terial to be presented will be as follows: 

I. The Complete FORTRAN Program 

II. Basic Program for Lag 1 and Minimum Error 

Variance 

III. Option - Sense Switch 1 for Enumeration of 

Grid and Error Variances 

IV. Option - Sense Switch 2 for Graphic Display 

V. Option - Sense Switch 3 for Selection of 

Constants Based Upon Independent Sums 

VIo Option - Sense Switch 4 for Selection of 

Constants Based Upon Consecutive Lags 
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VIIo Option - Sense Switch 5 for Selection of 

Optimum Starting Point 
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VIII. Option - Sense Switch 6 for External Control 

of Smoothing Constants 

IXo Option - Sense Light 4 for Selection of 

Individual Sets of Constants for Each Lag 

Value 

X. Table of Option Combinations 

XI. Preparation of Data 

XII. IBM 1620 Programs. 
'1 

Through a more detailed explanation of the programs 
! 
I 

written· for the time series analysis and extrapolation 

model~ it is hoped to provide a working knowledge_ of the 

various features of the program. The data that are used 

in the displays on the following pages are those presented 

in Tables I through VI. The format of this Appendix is to 

discuss verbally the provisions of each option and present 

the related display. 



SECTION I 

THE COMPLETE FORTRAN PROGRAM 

The listing of the program that follows this discus~ 

sion on the next eight pages is the source program wh.i.ch 

contains all t:b.e programming for the options that will be 

explained in the other sections. This progrl;l.lil was written 

with other users in mind,and a number of aids are incorpo­

rated in the program for easy modification by those who 

wish to do $0. After changes have been made, however, do 

not attribute errors to the original program. as listed 

here. Those aids that will help in the reading of the 

program are in the .forIIJ. of II Comment" cards placed in tl:l.e 

program at the entry point of each of the options. In ad­

dition, for each of the options that have been inserted 

into the basic program, a new numbering sequence is used. 

The basic program uS;ies statement :i:iumbers less than ;LOO, 

the sense switch 3 option uses numbe~s between 100 and 199, 

sense switch 6 option uses numbers between 200 and 299, 

the option of sense switch 5 uses t:hose numbers between 

300 and 399~ and s:imilarly the option of sense switch 4 

uses those numbers between 400 and 499. In addition to 

these tracing aids in the form of the statement numbers, 

the numenoic code that is used should aid in the 
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understanding of the program. Some examples of the code 

are MOTOL for month total, DEL for the difference operator, 

COMP for compare, MYR for years, YRAV for year average, 

SEA for seasonal, EST for estimate, TREND for trend, OBE 

for observed, VAR for variance, and SIGS for smallest 

sigma or square root of the error variance. The complete 

program was rewritten in order to place all statement num­

bers in consecutive and ascending order within each numer­

ical sequence used. This aids in discussion of the program 

and in locating points that will be referenced in this 

Appendix. 



-1, DATE 
* PROGRAM TIMES, RETURN TO GLEN SELF 
-.'f XEQ 
* LI ST8 
CTI MES 
C TIME SERIES ANALYSIS AND FORECAST USING OPTIMAL 
C SMOOTHING CONSTANTS FOR THE EXPONENTIALLY WEIGHTED 
C MOVING AVERAGES MODEL 
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DIMENSION OBE(600), OBS(12,50), YRAV(SO), TREND(600), 
1UNAD(12)< SEA(600), EST(600), PRED(620), PRl(612)( 
2SAGE(217J, SUMA(6), SUMB(6), SUMC(6), FA(6) FB(6J, 
3FC(6)t SENA(12), SMOTH(600), SSS(12), SA(12j 9 SB(12), 
4SC(12J, S1GIX(12)t SEANL(12,50), ARRAY(S), DEL(600), 
5PRIS(12), SEAS(12J, XLABEL(28), X(SO) 

CALL RELICF(30000) 
800 READ INPUT TAPE 2,1 

1 FORMAT(1H6,51H ) 
WRITE OUTPUT TAPE 3,1 
MOTOL = 0 
I = 1 

2 READ INPUT TAPE 2,3,0BE(I) 
3 FORMAT(Fl0.6) 

IF(OBE(I) - 999.999999) 4,5,99 
4 MOTOL = MOTOL + 1 

I = I + 1 
GO TO 2 

5 MYR = MOTOL/12 
C IF SENSE SWITCH 5 IS ON, THE PROGRAM WILL SELECT 
C THE OPTIMAL STARTING POINT WITHIN THE HISTORICAL DATA 
C AND MAKE THE DELETIONS BEFORE CONTINUING THE PROGRAM 

IF(SENSE SWITCH 5)300,311 
300 MTA1=12*(MYR-1) 

MTA2=MTA1-1 
MTA3=MTA2-1 
COMP=0.9E+25 
DO 301 1=2,MTA1 

301 DEL(l-l)=OBE(l)-OBE(i-1) 
DO 302 ! =2 ,MTA2 

302 DEL(l-1)=DEL(l)-DEl{l-1) 
DO 303 ! =2. ,MTA3 

303 DEL(i-l)=DEL(l)-DEL(i-1) 
WRITE OUTPUT TAPE 3,304 

304 FORMAT(1H0,9X,23HFIRST DATA SUM OF / 
110X,24HPOINT USED 3RD D!F ) 

DO 308 I N= 1 , 12 
SUMDL=O.O 
MTA4=1N+12*(MYR-2)-4 
DO 305 l=IN,MTA4,12 
D0305J=1,9 
LL=(i+J-1) 
ADEL=DEL(LL) 

305 SUMDL=SUMDL+ABSF(ADEL) 
WRITE OUTPUT TAPE 3,306,IN,SUMDL 



306 FORMAT ( 1 H , ! 15, F 16. 5) 
!F(COMP-SUMDL)308,308,307 

307 COMP=:SUMDL 
!NIT:=dN 

308 CONTINUE 
WRITE OUTPUT TAPE 3,309,INIT 
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309 FORMAT(lH0,9X,31HTHOSE DATA POINTS PRECEDING THE 13 
1,26HTH UNIT HAVE BEEN DELETED) 

DO 310 l~iN!T,MOTOL 
l=(!-INIT+O 

310 OBE(L)~OBE(I) 
MOTOL=MOTOL-lNiT+l 
MYR:,i;;MQTOL/12 

311 !F(MOTOL-12*MYR-9)6,7,7 
6 MOT§ 12*(MYR-1) 

MYR = MYR - 1 
GO TO 8 

7 MOT § ·12·kMYR 
8 FMYR = MYR 

Lg.1 
DO 10 J = ] , MYR 
YRJW ( J ) = 0 • 0 
DO 9. I = 1, 12 
UMAD(I) = 0.0 
SSS(i)=(0.9E+25)*(0.9E+25) 
OBS( I ,J) = OBE(L) 
YRAV(J) ~ YRAV(J) + OBE(l)/12.0 

9 L=L+1 
10 CONTINUE 

MiOT = MOT 
TREN = (YRAV(MYR)-YRAV(l))/(AMOT-12.0) 
DO 11 J :a: 1, MYR 
SUSEA = 0.0 
DO 11 I :,,: 1 , 1 2 
F ! ;;g i 
SEANL(i ,J) = OBS(! ,J)/(YRAV(J)-(6.5-Fi)*TREN) 
UN A, D ( I ) ~. 

11 
UN.AD ( I ) ~~ _( S ~AN L ( i i J ) I FM YR ) 

1 ·i SEA, :ce. .:)USEA +. ABSF ( lfaAD( I ) J 
PLY g 12.0/SUSEA 

12 I - 1,·12 
SEA(i)•UNAD(i)*PLY 

12 SENA(i)•SEA(i) 
/1, • 0.0 

C:;,, 0.0 
C IF KALL4 !SA 9 THE PROGRAM Will SELECT !NDiV!DUAL 
C SMOOTHI CONSTANTS FOR EACH VALUE OF THE LAG 

READ INPUT TAPE 2,509 9 KALL4 
509 FORM.AT ( I 1 ) 

!F(KALL4-9)511,510,99 
510 SENSE LIGHT 4 
S 11 ! E 



KONA§O 
S!GS = (0.9E+25)*(0.9E+25)*(0.9E+25) 
!F(SENSE SWITCH 1) 13415 
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13 WRITE OUTPUT TAPE 3,1 
14 FORMAT(1H0,9X,6HRANDOM,8X,8HSEASONAL,8X,5HTREND,6X, 

111HSQUARE ROOT,3X,3HLAG/9X,8HCONSTANT,7X,8HCONSTANT, 
27X,8HCONSTANT,5X,9HOF E.M.S./) 

15 M~l 
IF(SENSE SWITCH 6)200,16 

200 READ INPUT TAPE 2,201,A,B,C 
20] FORMAT(3F10.6) . 

SENSE U GHT 1 
SENSE LIGHT 3 
GO TO 202 

16 EST(l)=A*(OBE(1)/SENA(1))+(1.0-A)*(YRAV(1)+TREN) 
SEA(1)~B*(OBE(1)/EST(1))+(1.0-B)*SENA(1) 
TREND(1)=C*(EST{1)-YRAV(1))+(1.0-C)*TREN 
SMOTH(l) = EST(l)*SENA(l) 
DO 20 j:,,,: 2,MOTOl 
!F(i=12)17, 17, 18 

17 J§i 
SEA(J)ggSENA(J) 
GO TO 19 

18 J:,:d ~~ 1 2 
19 EST(!)= A*(OBE(!)/SEA(J)) + (1.0-A)*{EST(!-1)+TREND 

Hu - 1)) 
SEA(!)~ B*(OBE(i)/EST(l))+(l.0-B)*SEA(J) .. 
TREND(i)=C*(EST(!)-EST(i-1))+(1.0-C)*TREND(!-1) 

20 SMOTH{u)~EST(!)*SEA(i) 
l1'" = 0 
T .,. LO 
NOT= MOT+ 
LOW= MOT+ 
MAX "~ MOTOL 
S!SUM g; 0.0 
SUMER §l 0.0 
GO TO 401 
LT~ LT+ 1 
LO~J ~ NOT -· LT 
MAX :::;, MOTOL - LT 
T = T + LO 
DO 26 Kg LOW,MAX 
MA O::K~:-l. T 
PRED(MAD)~(EST(K-l)+T*TREND(K-l))*SEA(MAD-12) 
ERROR~(OBE(MAD)~PRED(MAD)) 
ERSQ = ERROR*ERROR 
SUMER= SUMER+ ERSQ 
!F(SENSE LIGHT 1) 23,26 

23 !F(SENSE LIGHT 3) 24,26 
24 SENSE LIGHT 1 

SENSE LIGHT 3 
WRITE OUTPUT TAPE 3,25, OBE(MAD),PRED(MAD),ERROR 



25 FORMAT(1H ,3F19.8) 
26 CONT I NUE 

DENOM u MOTOL - 12*MYR 
VAR= SUMER/DENOM 
SIGE = SQRTF(VAR) 
!F(SENSE LIGHT 4)501,503 

501 SENSE LIGHT 4 
SIG!X(LT+l)=S!GE 
!F(S1G!X(lT+1)-SSS(LT+1))502,502,503 

502 SSS(lT+1)=S1G!X(LT+1) 
Ml = (MOTOL-11+LT) 
SA(LT+l )=A 
SB(LT+l)=B 
SC(LT+1 )=C 
PRIS(LT+l)=(EST(MOTOL)+T*TREND(MOTOL))*SEA(MI) 
SEAS(LT+1)=SEA(MI) 

503 SAGE(M)=SiGE . 
M=M+l 
SISUM = SISUM + SIGE 
IF(SENSE LIGHT 4)504,505 

504 SENSE LIGHT 4 
GO TO 36 

505 IF(SENSE LIGHT 1)~7,402 
27 !F(SENSE LIGHT 3) 28,402 
28 SENSE LIGHT 1 

SENSE LIGHT 3 
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WRITE OUTPUT TAPE 3,29 
29 FORMAT(1H0,8X,12HPERIODS !NT0,7X,10HFORECASTED,10X, 

18HSEAS0NAL /lH ,9X,10HTHE FUTURE,11X,5HVALUE,13X, 
26HFACTOR ) 

DO 31 N = 1, 12 
T = N 
JK.= (N-12+MOTOL) 
MOTON.= MOTOL+N 
PR!(MOTON) = (EST(MOTOL)+T*TREND(MOTOL))*SEA(JK) 
WRITE OUTPUT TAPE.3,30,N,PRIGMOTON),SEA(JK) 

30 FORMAT(1HO, I 14,F24.8,F19.8) . · . 
31 CONTINUE 

MOTON= MOTOL+12 
C iF SENSE SWITCH 4 IS ON, THE SMOOTHING CONSTANTS WILL 
C BE SELECTED ON THE BASIS OF MINIMUM CUMULATIVE SUM FOR 
C LAGS 1 THROUGH 12 

402 !F(SENSE SWITCH 4)36,32 
32 1F(S1GE-S!GS)33,34,36 
33 SiGS = SIGE 

KOUNT = 0 
GO TO 35 

34 KOUNT = KOUNT + 
35 AS= A 

BS g: B 
CS = C 

36 IF(SENSE SWITCH 1) 37,39 
37 WRITE OUTPUT TAPE 3,38,A,B,C,SIGE,T 



38 FORMAT(1H ,3F15.4,F15.6,F7.1) 
39 !F(SENSE SWITCH 4;403,410 

403 !F(LT-11)404,405,99 
404 SUMER=O.IO 

IF(SENSE LIGHT 1) 40,401 
405 IF(S!SUM-SiGS)406 9 407,407 
406 SlGS1sS!SUM 

AS=A 
BS=B 
CS=C 

407 IF(SENSE SWITCH 1)408,410 
408 WRITE OUTPUT TAPE 3,409,A,B,C,SISUM 
409 FORMAT(1H0,3F15~41 F15.6,SX,5HTOTAL I ) 
410 IF(SENSE LIGHT l)q0,43 

40 SENSE LIGHT 1 
WRITE OUTPUT TAPE 3,41 

41 FORMAT(1HO, 31H CHECK ON VALUES USED /) 
WRITE OUTPUT TAPE 3,38, A,B,C,S!GE 

42 !F(SENSE l!GHT 3) 53,43 
43 IF(0.98-C)44,44,46 
44 iF(0.98-6)45,45,47 
4S iF(0.98-A)49,49,48 
46 C = C + 0.2 

!F(KONA-0)99,44,16 
47 B = B + 0.2 

C = 0.0 
IF(KONA=5)16,49,99 

48 A= A+ 0.2 
KONA~KONA+1 
C mi 0.0 
B ~ 0.0 
GO TO 16 

49 lF(SENSE LIGHT 4)506,508 
506 SENSE LIGHT 4 
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WRITE OUTPUT TAPE 3,14 
WRITE OUTPUT TAPE 3,507,(SA(M),SB(M),SC(M),SSS(M),M,M~l,l2) 

507 FORMAT(1H ,3F15.4,F15.6,!6) 
WRITE OUTPUT TAPE 3,29 
WRITE OUTPUT TAPE 3,30,(M,PRIS(M),SEAS(M),M=l,12) 
GO TO 99 

508 WRITE OUTPUT TAPE 3,50,AS,BS,CS,SIGS 
50 FORMAT(1H0 9 9X,6HRANDOM,8X,8HSEASONAL8X,SHTREND4X, 

111HSQUARE ROOT /9X,8HCONSTANT,7X,8HCONSTANT,7X, 
28HCONSTANT,3X,9HOF E.M.S. //3F15.4,E15.6) 

WRITE OUTPUT TAPE 3,51, KOUNT 
51 FORMAT(1H0,9X,34HNUMBER OF POINTS WITH EQUAL ERRO~ !6 

1/10X 0 40HFOR RANDOM CONSTANT= 0 OR 1 THERE ARE 5) 
A= AS 
B = BS 
C = CS 

c i F SENSE SW ncH 3 ! s ON, THE CONSTANTS WI LL BE 
C SELECTED UPON THE BASIS OF THE MINIMUM SUM FOR EACH 
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C SMOOTHING CONSTANT SUMMED OVER THE OTHER TWO CONSTANTS 
IF{SENSE SWITCH 3) 100,112 

100 KAA=2 
SUMA(1)=6~0*(SAGE(1)+SAGE(2)+SAGE(3)+SAGE(4)+SAGE(5)+ 

1SAGE{6)) 
101 DO 103 L=7,115,36 

SUMA(KAA) = 0.0 
N = L + 35 ' 
DO 102 M=L,N 

102 SUMA(KAA) = SUMA(KAA) + SAGE(M) 
103 KAA = KAA + 1 

SUMA(6)=6.0*(SAGE(151)+SAGE(152)+SAGE(153)+SAGE(154)+ 
1SAGE(155)+SAGE(156)) 

KAB=1 
DO 105 M=7,37,6 
SUMB(KAB)=SUMA(6)/6.0 
DO 104 L=M, 145,36 

104 SUMB(KAB)=SAGE(L)+SAGE(L+l}+SAGE(L+2)+SAGE(L+3)+ 
1SAGE(L+5)+SUMB{KAB)+1.5*SAGE(KAB} 

105 KAB=KAB+l 
DO 107 M=7, 12 
SUMC(M-6)=SUMA(1)/6.0 
D0106L=M 216,6 

106 SUMC(M-6,=SUMC(M-6)+SAGE(L}+6.0*SAGE(M+144) 
107 CONTINUE 

FA( 0==0 .0 
FA(2)=0.2 
FA(3)=0.4 
FA(4)=0.6 
FA(5)=0.8 
FA(6)=1 .O 
WRITE OUTPUT TAPE 3,108 

108 FORMAT(1H0;7X,9HCONSTANTS12X,8HSUM ON A ,9X,9HSUM ON B 
1,8X,9HSUM ON C ·) 

109 WRITE OUTPUT TAPE 3,110,(FA(K),SUMA(K),SUMC(K),SUMa(K) 
1, K= 1, 6) . ·· · · .. 

110 FORMAT(1H ,11X,F4.2,10X,E14.8,3X,E14.8,3X,E14.8) 
FB( 0=0.0 
FB(2)=0.2 
FB(3)=0.4 
FB(4)=0.6 
FB(S)=0.8 
FB(6)=1 .O 
FC( 1)=0. 0 
FC(2)=0.2 
FC(3)=0.4 
FC(4)=0.6 
FC(S)=0.8 
FC(6)=d .O 
CALL SORT(SUMA,6,FA) 
A=FA( 1) 
CALL SORT(SUMB,6,FB) 



B=FB ( 1) 
CALL SORT(SUMC,6,FC) 
C=FC( 1) 
WRITE OUTPUT TAPE 3,111,A,B,C 

111 FORMAT(1H0 1 9XA26HCONSTANTS FOR MINIMUM SUMS// 
1F16.4,F20.q,F1~.4) 

112 CONT I NUE 
SENSE Li GHT 1 
SENSE LIGHT 3 
BIG= 0.0 
SMALL= 0.0 

202 WRITE OUTPUT TAPE 3,52 
52 FORMAT(1H0,10X,8HOBSERVED,9X,10HFORECASTED,12X, 

15HERROR/12X,5HVALUE,14X,5HVALUE ) 
GO TO 16 

C IF SENSE SWITCH 2 IS ON, THE PLOT ROUTINE WILL BE 
C EXECUTED FOR ANY OF THE OTHER PROGRAM OPTIONS 

53 !F(SENSE SWITCH 2) 54,99 
54 DO 62 !=1 9 MOTOL 

IF(B1G-SMOTH(l))55,56,56 
55 BIG= SMOTH(I) 
56 !F(SMALL-SMOTH(1))58,58,57 
57 SMALL= SMOTH(I) 
58 !F(BIG-OBE(1))59,60,60 
59 BIG= OBE{!) 
60 !F(SMALL-OBE(l))62,62,61 
61 SMALL= OBE(I) 
62 CONT I NUE 

IF(BIG-PRED(!))63,64,64 
63.BiG = PRED(!) 

. DO 66 i =NOT,MOTOL 
64 !F(SMALL-PRED(l))66,66,65 
65 SMALL= PRED(I) 
66 CONTINUE 

MOTO fi:l!I.MOTOL + 1 
DO 70 I= MOTO,MOTON 
IF(BIG-PRl(l))67,68,68 

67 B!G = PRi(I) 
68 !F(SMALL-P.R!(l))70,70,69 
69 SMALL~ PRl(I) 
70 CONTINUE 

WRITE OUTPUT TAPE· 3, 71 
71 FORMAT(1H1,40X 9 27HPLOT OF INPUT AND ANALYSIS » 

111HiNFORMAT!ON ) 
DO 72 ig;;:1 ,35 

B 72 XlABEl(l)=606060606060 
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CALL MDFBCD( SEE SUBROUTINE MANUAL FOR INFORMATION ) 
MTPO=MOTON+l 
CALL. PLOT 1 A( 3, SMALL, Bi G, XLABEL ( 1), 4, 1) 
DO 77 1=1,MTPO 
ARRAY( Og;gl · 



IF(I-MOT)73,73 74 
73 ARRAY(2)~0BE(I) 

ARRAY(4)=0BE(I) 
ARRAY(3)=SMOTH(I) 
ARRAY(S)=SMOTH(I) 
CALL PLOTA(ARRAY) 
GO TO 77 

74 iF(i-MOTOL)75,75,76 
75 ARRAY(4)=0BE(I) 

ARRAY(S)=SMOTH(I) 
ARRAY(3)=PRED(I) 
ARRAY(2)=PRED(I) 
CALL PLOTA(ARRAY) 
GO TO 77 

76 ARRAY(S)=PRI(!) 
A.RRAY(.3)=PR! (I) 
ARRAY(4):aPRl(I) 
ARRAY(2)g:;PRl(I) 
CALL PLOTA(ARRAY) 

77 CONTINUE 
99 GO TO 800 

END 
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SECTIO~ II 

BASIC l?ROGEAM 

The basic program, with no sense swit~hes turned o;n, 

provides for the selection of the smoothing constants u~on 

the basis of the set that b.as the smallest error variance 

ove~ the test series, This basic program also makes the 

deci$ion as to what part of the data shall be used as the 

test series, Since this is based upon the programmer's 

judgment, the progra+n as w~itten will ;not u~e less than 

nine nor more than twenty observations for the test 

series~ The program logic determines if the n,;i.mber of ob-

. sex;-vations J.e!t after the largest integral ;o;umoer of years 

of data. is removed i13 equal to or greater tb,an nine; if' 

.so, it uses those; if not, t~e latest full year of data is 

added to compose the 1;;e$t series, ~his minimum. may be 

raised by changing statement num.ber 3llo 

After execution of the program and the constants are 

selected upon the basis of the minimum value compute~ for 

the error variance, the display on the following page is 

generated for p\lrposes of making the· ;f oz,ecast and p:r:'ovid­

ing appropriate supporting evidence for the forecast. 

Si,n.ce th;i.s :i,s the standard display, it will be de ... 

~oribed in detail here and only the add~tion.s made by the 

1:;2 
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other options will be described as they are considered. 

The first line is a label of the _study· that is pre:­

pared in accordance with the instructions in Section XI. 

The next group of titles are self-explanatory with the 

numerical values that appear immediately below them being 

the constants used for the extrapolation of the series 

along with the square root of the error variance obtained 

for the test series using these values. The next line of 

the display is a protective measure for the forecaster by 

the fact that it alerts him to the existence of other sets 

of constants that provide the same error variance. The 

set used in forecasting will be the most recently computed 
-.;.·. 

set. The titles and numerical values that follow are the 

test series observations, forecasts and errors that were 

used for the error variance determination. The test values 

are computed only one period into the future. The next 

group of titles and numerical values is the forecast of 

the future activity of the process being studied. The 

seasonal factor column was added as programmer's informa-

tion~ but it also provides information for the forecaster 

in that it describes the behavior of the seasonal varia-

tions and it indicates whether compensation is taking 

place in the computation of the supporting algorithms. If 

the sum of these values is not approximately twelve~ then 

some compensation is taking place within the computations. 

Two of the more likely conditions are compensation for 

trend by the seasonal factor, and compensating for 
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overestimates of the random influence upon the mean level 

of the process. The last line of title and numerical val­

ues is a built-in check upon the program and computero The 

first values were stored in memory and displayed upon re= 

quest; this latter set of values are recomputed with the 

displays and are provided as a check set of values. 

If it is desired to make forecasts further into the 

future, the seasonal estimates may be used over as many 

times as desired since they represent the latest estimate 

of this variation in the processo This may be accomplish= 

ed by changing the II DO 31" loop. 

This is the standard display that will be obtained if 

none of the sense switch options are exercised. 



SERIES 1 DATA 

RANDOM 
CONSTANT 

0.0000 

SEASONAL 
CONSTANT 

0.2000 
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TREND SQUARE ROOT 
CONSTANT OF E.M.S. 

0.0000 0.259249E 02 

NUMBER OF POINTS WITH EQUAL ERROR 0 
FOR RANDOM CONSTANTS= 0 OR 1 THERE ARE 5 

OBSERVED FORECAST ED ERROR 
VALUE VALUE 

51.00000000 82.56811619 -31.56811619 
95.00000000 76.80335236 18. 19664764 

.49.00000000 96.86666283 -47.86866283 
111.00000000 82.41220284 28.58779716 
77.00000000 104. 6966'7244 -27.69667244 
93.00000000 95.52171230 -2.52171230 

102.00000000 86.07085133 15.92914867 
81.00000000 85.37516403 -4.37516403 

· 74.00000000 86.97857189 -12.97857189 
124.00000000 87.80468559 36.19531441 
102.00000000 102.18780994 -0. 18780994 
60.00000000 93.22591114 -33.22591114 

PERIODS INTO FORECAST ED SEASONAL 
THE FUTURE VALUE FACTOR 

1 74.34796333 0.91513077 

2 78.42724037 0.96740887 

3 85.10323334 1 .05201089 

4 85.91246796 1.06429842 

5 96.65735435 1. 19998877 

6 92.61672211 1.15230846 

7 86.99682140 1.08473043 

8 82.35617828 1.02909569 

9 82.23734379 1.02984491 

10 92.62204075 L 16241801 

11 99.54193020 1. 25199135 
' 

12 84.36525154 1.06342836 

CHECK ON VALUES USED 
0.0000 0.2000 0.0000 25.924923 



SECTION III 

ENUMERATION OF GRID AND ERROR VARIANCES 

The display immediately fol.lowing is obtained by 

turning sense swith 1 ON while e~ecuting the program. 

This will list all 156 of the combinations of the smooth~ 

ing constants and square root of the error mean. square 

obtained by their use over the test series. The standard 

display discussed in the preceding section is also part of 

the computer output for this option. 

This pai;>ticular option is in line with some sugges­

tions made :\.n th.e text as a mei3.ns of smoothing constant 

selection. The display of the entire grid provides an 

indication of the sens~tivity of the model to the observed 

series and at the same time will provide an experienced 

person with a better understanding of the composition of 

the series. If it is desired to search the region of min­

imum er:ror Vt;l.riance with a finer grid, this display is a 

:p.ear necessity in order to establ::i.sh tl:le region originially 

and indicate the direction of search which would most 

likely provide smaller values of the error variance, The 

latter technique could be based upon the steepest descent 

methods since the nature of the response is assumed to be 

unimodal in this region. 
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If a finer grid is desired in the original search, the 

numerical values in statements 46, 47 and 48 may be changed 

to the length of interval desired. It is not necessary to 

change all the intervals by the same amount; for example~ 

the constant A may be considered more critical for optimum 

fit of the data and it alone could be changed to obtain a 

finer search grid along that axis. Care should be taken 

to not reduce the interval to extremely small values since 

this would require excessive computer time. If the output 

is desired on punched cards in order to sort and display 

the values on the basis of one of the other smoothing con­

stants or by ordered values of the error variance, state­

ment 37 may be changed to write on output tape 5. The 

tape number may vary depending upon the particular machine 

installation. This particular procedure of ordering the 

various columns is recommended for a person desiring to 

understand more of the relationship of the constants and 

the response of the series as measured by the error. 

Since this program, as written, uses both of the end 

points, zero and one, some additional programming was used 

to reduce the amount of computation and length of the dis= 

play. This is the reason for only six values for A= 0.0 

and A= 1.0, since in the former case B may take on any 

value between zero and one, and in the latter C may take 

on any value between zero and one. For a full 216 point 

grid, remove all IF statements between statements 46 and 

48 and replace with"GO TO 16." 
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SERIES 1 DATA 

RANDOM SEASONAL TREND SQUARE ROOT 
CONSTANT CONSTANT CONSTANT OF E.M.S. 
0.0000 · o. 0000 0.0000 26.051385 
0 .• 0000 0.2000 0.0000 25.924923 
0.0000 0. 4000 0.0000 27.016693 
0.0000 0.6000 0.0000 29.003139 
0.0000 0.8000 0.0000 31.254974 
0.0000 1. 0000 0.0000 33.392497 
0.2000 0.0000 0.0000 28.952703 
0.2000 0.0000 0.2000 29. 451722 
0.2000 0.0000 0.4000 31 • 225420 
0.2000 0.0000 0.6000 33.417658 
0.2000 0.0000 0.8000 35.656991 
0.2000 0.0000 1. 0000 37.560613 
0.2000 0.2000 0.0000 28.320306 
0.2000 0.2000 0.2000 28.621742 

SECTION OF THIS TABLE OMITTED FOR DISPLAY PURPOSES 

0.4000 0.0000 0.0000 31.857025 
0.4000 0.0000 0.2000 33.538881 
0.4000 0.0000 0.4000 35.413026 
0.4000 0.0000 0.6000 36.804882 
0. 4.000 0.0000 0.8000 37.6319H) 

SECTION OF THIS TABLE OMITTED FOR DISPLAY PURPOSES 

0.6000 0.4000 0.0000 52.890210 
0.6000 0.4000 0.2000 468.995960 
0.6000 0. 4000 o.4000 141.760754 
0.6000 0.4000 0.6000 65 .()11344 
0.6000 o. 4000 0.8000 120.221645 

SECTION OF THIS TABLE OMITTED FOR DISPLAY PURPOSES 

o.sooo 1. 0000 0.0000 55 . .310760 
0.8000 1. 0000 0.2000 298.433895 
0.8000 1. 0000 0.4000 sn.670395 
o.aooo 1. 0000 0.6000 174.524853 
0.8000 1. 0000 0.8000 230.225592 
0.8000 1. 0000 1. 0000 58L910812 
1. 0000 0.0000 0.0000 234.908638 
1 .0000 0.0000 0.2000 256. 184334 
1. 0000 0.0000 0.4000 269.630707 
1. 0000 0.0000 0.6000 289.528286 
1. 0000 0.0000 0.8000 305.879368 
] .0000 0.0000 1. 0000 313.895615 

THE STANDARD DISPLAY OF SECTION I I NORMALLY FOLLOWS 



SECTION IV 

GRAPHICAL DISPLAY 

A plot of the original data along with some of the 

computed statistical information may be obtained by turn­

ing sense switch 2 ON during execution of the program. The 

legend describing the symbols used in the plot of values 

appears in the upper left corner of the displayo The title 

and the labels used may be changed by altering the informa­

tion in statement 71 and the statement immediately follow­

ing statement 72. To add other sequences of points to the 

plot, the plot subroutine description should be consultedo 

For purposes of generality, the scales of the axes 

are of the floating point formato The exponents as shown 

are powers of 10 for left and top justified fractions, 

respectively; for example, 120 2 = 12. The abscissa 

scale is determined by a scanning routine in the program 

and will not truncate or discard any of the values to be 

plotted as it is now written. The plots of the values are 

posi tioned,,,.in the appropriate cell and are not on a con= 

tinuous scale as an analog output would be. 

The values that are plotted are generally self= 

explanatory~ but in terms of the text discussions, the ob=· 

served series is Xt~ the smoothed data are FXt,O or in 
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terms of the model XtZt-P' the trial values are FXt,l 

except when the sense switch option 4 is used this becomes 

FXt, 12 , and the forecasted value is FXt,T' T = 1,2, ···~ 

12. 

This particular feature of the program provides an 

aid for the interpretation of numerical data that is often 

difficult to comprehend from tabular presentationso 



PLOT OF INPUT ANO ANALYSIS INFORMATION 
• IS THE FORECASTED VALUE 
TIS THE TRIAL VALUE FOR COMPUTING ERROR 
0 IS THE OBSERVED OR INPUT DATA 
S IS THE EXPONENTIALLY SMOOTHED DATA 

0 3 6 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0 3 7 0 3 6 0 3 6 0 3 7 0 3 7 0 3 7 0 3 7 0 3 7 0 4 7 0 4 7 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 
0 6 2 1 4 8 2 5 9 2 6 0 3 7 0 4 8 1 5 8 2 6 9 3 6 0 4 7 1 4 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 5 8 1 5 8 

0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

100 1 s 0 
200 1 s 0 
300 1 OS 
400 1 os· 
500 1 s 0 
600 1 S 0 
10:0-·-1 0 s 
800 1 s 
900 1 s 0 
100 2 0 s 
110 2 s 0 
120 2 0 s 
130 2 0 s 
140 2 0 s 
150 2 s 0 
160 2 s 0 
170 2 0 s 
180 2 0 s 
190 2 s 0 
200 2 S 0 
210 2 s 0 
220 2 0 s 
230 2 0 s 
240 2 s 0 
250 2 0 s 
260 2 so 
270 2 S 0 
2so·2 s 0 
290 2 s 0 i--' 

!'-..,.., 
l,_J 



300 2 s 0 
310 2 s 0 
320 2 s 0 
330 2 s 0 
340 2 s 0 
350 2 s 0 
360 2 s 0 
370 2 s 0 
380 2 OS 
390 2 s 0 
400 2 s 0 
410 2 0 s 
420 2 s 0 
430 2 0 s 
440 2 s 0 
450 2 0 s 
460 2 0 s 
470 2 s 0 
480 2. s b 
490 2 s 0 
500 2 s 0 
510 2 s 0 
520 2 s 0 
530 2 s 0 
540 2 0 s 
550 2 so 
560 2 0 S 
570 2 OS 
580 2 s 0 
590 2 0 S 
600 2 s 0 
610 2 0 s 
620 2 s 0 
630 2 0 S 
640 2 s 0 
650 2 0 s 
660 2 0 s 
670 2 s 0 
680 2 s 0 
690 2 0 s 
700 2 s 0 
710 2 s 0 
720 2 s 0 I-' 
730 2 s 0 .p-
740 2 s 0 j\) 



750 2 s lJ 
760 2 OS 
770 2 s 0 
780 2 S 0 
790 2 s 0 
800 2 0 s 
810 2 0 s 
820 2 - s 0 
830 2 s 0 
840 2 so 
850 2 0 S 
860 2 0 s 
870 2 0 s 
880 2 0 s 
890 2 s 0 
900 2 s 0 
910 2 0 s 
920 2 OS 
930 2 0 s 
940 2 s 0 
950 2 s 0 
960 2 0 s 
970 2 0 s T 
980 2 T S 0 
990 2 0 s T 
100 3 T s 0 
101 3 0 s T 
102 3 0 S 
103 3 T S 0 
104 3 0 ST 
105 3 0 S T 
106 3 T s 0 
107 3 s 
108 3 0 s T 
109 3 * 
110 3 * 
111 3 * 
112 3 * 
113 3 .. 
114 ·3. 

* 115 3 * 
116 3 ·* 
117 3 * 
118 3 * 
119 3 

I-' 
* ~ 

120 3 • \>J 



SECTION V 

SELECTION OF CONSTANTS BY SUMMATION 

The sense switch 3 option provides for the selection 

of the constants based upon the minimum sum of error vari­

ances for each constant over all values of the other con­

stantso Each of the sums exhibited in the display is 

composed of 36 values and each column sums to the total 

for all 216 error variance values. The theory or basis 

for this method of smoothing constant selection is given 

in Chapter III. 

The particular display associated with this option is 

a composite of the standard display and the special fea­

tures of the summations. The first numerical values are 

the constants and associated error based upon the minimum 

value of the error variance per the standard display. The 

second group of numerical values are the respective sums 

for each value of the specified constantj summed over all 

other values of the other constants that appear in combina= 

tion with the specified constant. From these sums~ the 

set of constants which have the minimum sum are selected 

and displayed below the tableau of sums. These factors 

are then used to extrapolate the observed series in accord= 

ance with the computational forms and the model presented 
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in Chapter II. This particular model uses the check at 

the end of the display as the only display of the error 

variance associated with the particular set of smoothing 

constants. It could be computed from the test series also. 

This provides comparative values of the error variance for 

the selection of the constants upon the basis of independ­

ent sums or a strictly minimum value. 

If a finer grid is used, corresponding changes must 

be made in the 100 series of statement numbers. 



SERIES 1 DATA 

RANDOM 
CONSTANT 

0.0000 

SEASONAL 
CONSTANT 

0.2000 

146 

TREND SQUARE ROOT 
CONSTANT OF E.M.S. 

0.0000 0,259249E 02 

NUMBER OF POINTS WITH EQUAL ERROR 0 
FOR RANDOM CONSTANTS= 0 OR 1 THERE ARE 5 

CONSTANTS 
0.00 
0.20 
0.40 
0.60 
0.80 
1. 00 

SUM ON A 
0.10358616E 04 
0.20867509E 05 
0.70068999E 04 
0.16331500E 04 
0.18327073E 04 
0.21647408E 04 

CONSTANTS FOR MINIMUM SUMS 

0,0000 0.0000 

OBSERVED FORECAST ED 
VALUE VALUE 

51.00000000 82.56811619 
95.00000000 76.80335236 
49.00000000 96.86866283 

SUM ON B 
0.50681942E 04 
0.56946499E 04 
0,58260104E 04 
O.S9647417E 04 
0.58131324E 04 
0.61741400E 04 

0.0000 

ERROR 

SUM ON C 
0, 14613655E 04 
0, 146171 25 E 04 
0. 14884080E 04 
0,38282454E 04 
0,28935964£ 04 
0. 23407540E . 05 

- 3 1 • 5 68 11 6 19 
18. 19664764 

-47.86866283 

THIS PART OF THE STANDARD DISPLAY OMITTED FOR BREVITY 

10 

11 

12 

92.62204075 

99.54193020 

84.36525154 

CHECK ON VALUES USED 
0.0000 0.0000 0.0000 

1, 16241801 

1.25199135 

1.06342836 

26, 051385 



SECTION VI 

SELECTION OF CONSTANTS FOR CONSECUTIVE LAGS 

The program will select the set of smoothing con­

stants which have a minimum sum of error variances for lag 

values of one through 12 if sense switch 4 is ON during 

the program execution. The computation is basically the 

same as that of the standard program of Section II except 

it is repeated for the additional values of the lag be­

tween the time of the forecast and the point in time for 

which the forecast is made. For each value of the lag~ 

there is a change in the point within the process from 

which the forecast is made in order to provide the same 

number of observations in the error variance. This is 

accomplished by making the forecasts at an earlier point 

in the smoothing of the series each time. The forecasts 

in each case are over the same test series as for a lag of 

one. The set of smoothing constants that provide the min­

imum sum of the standard, deviations of error is used for 

the actual forecasting. 

The basic reasons for developing this particular form 

of smoothing constant selection were to locate the optimum 

region of error variance and to provide more confidence in 

the model. The use of this procedure without further 
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investigation for local minimums is justified upon the 

basis of those empirical results that have been studied 

and the highly improbable case of smoothing constant com­

pensation for all values of the lag. The forecaster's 

confidence in the model should be increased if for no 

other reason than the increase in the number of tests that 

are run on each set of smoothing constants. If the auto­

correlation coefficients for the series and this display 

are available, it is to the forecaster I s benefit to justify 

the smoothing constant selection for this method. 

The display of the grid values and the associated 

standard deviation of the error for the lag values and its 

total is provided by this option if sense switch 1 is ON 

at the time of the computation. A sample of the display 

of this type is shown following this discussion~ If sense 

switch 1 is OFF then the computation is performed~ the 

selection is made as discussed above, and the display is 

limited to the standard form as given in Section II. These 

methods presented in this section are for the case of a 

single set of smoothing constants to be used for forecast­

ing after selection of smoothing constants bas.ed upon con= 

sideration of error variances for consecutive lag values. 

If the more distant forecasts are not as important 

a consideration as the immediate values of the forecast~ a 

method of weighting the error variances ma;y· be used to 

automatically consider this in the smoothing constant se­

lection. This is possible with only a minor modification 
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of the program. The modification of SISUM located between 

statement numbers 503 and 504 will provide the type of 

weighting desired provided that it can be expressed as 

some function of the lag value. For example, if the 

weights assigned to the forecast are to be in the form of 

a simple harmonic progression, it could be arranged by 

dividing SIGE by T, where Tis the lag value for the par­

ticular standard deviation of the error that is being 

added to the sum for a given set of smoothing constants. 

An additional feature of tbis option is the computa­

tion and display of the standard deviation of the error 

for each lag value within each set of smoothing constants. 

Even though the statistical soundness precludes the direct 

use of these values as limits on the forecast, they pro­

vide an estimate of that which may be expected in terms of 

forecast error and can be used to judge the value of this 

method of forecasting against other methods that may be 

available. Repeated use of this procedure on a given 

process for a period of time would probably provide some 

degree of assurance to the forecaster as the magnitude of 

the error that may be expected relative to the values of 

the standard deviation of the error that are presented in 

the display. This would provide for establishing control 

limits on the forecasting process to be used in the sense 

of a quality control chart. 
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SERIES ·1 DATA 

RANDOM SEASONAL TREND SQUARE ROOT LAG 
CONSTANT CONSTANT CONSTANT OF E.M.S. 

(A SAMPLE OF THE DISPLAY FROM THE SENSE SWITCH 4 OPTION) 

0.2000 0.0000 0.0000 28.952703 LO 
0.2000 0.0000 0.0000 27. 175207 2.0 
0.2000 0.0000 0.0000 26.581068 3,0 
0.2000 0.0000 0.0000 27.391627 4.0 
0.2000 0.0000 0.0000 27.316981 5.0 
0.2000 0.0000 0.0000 25.753752 6.0 
0.2000 0.0000 0.0000 27.286433 7.0 
0.2000 0.0000 0.0000 25,205850 8.0 
0.2000 0.0000 0.0000 25.562231 9.0 
0.2000 0.0000 0.0000 27.056058 10.0 
0.2000 0.0000 0.0000 24.111557 11. 0 
0.2000 0.0000 0.0000 27.701136 12.0 

0.2000 0.0000 0.0000 320.094593 TOTAL 

0.2000 0.0000 0.2000 29.451722 1.0 
0.2000 0.0000 0.2000 27.190519 2.0 
0.2000 0.0000 0.2000 26.003510 3.0 
0.2000 0.0000 0.2000 27.638329 4.0 
0.2000 0.0000 0.2000 27.843888 5.0 
0.2000 0.0000 0.2000 25.727711 6.0 
0.2000 0.0000 0.2000 30.096730 7,0 
0.2000 0.0000 0.2000 28.276462 8.0 
0.2000 0.0000 0.2000 34. 180559 9,0 
0.2000 0.0000 0.2000 40.202959 10.0 
0.2000 0~0000 0.2000 39.081363 11.0 
0.2000 0.0000 0.2000 47.930486 12. 0. 

0.2000 0.0000 0.2000 383.624226 TOTAL 

0.2000 0.0000 0.4000 31. 225420 1.0 
0.2000 0.0000 0. 4000 29. 597482 2.0 
0.2000 0.0000 0.4000 29.481549 3.0 
0.2000 0.0000 0.4000 32.422558 4.0 
0.2000 0.0000 0.4000 30.865085 6.0 
0.2000 0.0000 0.4000 36.538964 7.0 
0.2000 0.0000 0.4000 32.857842 8.0 
0.2000 0.0000 0.4000 44. 160725 9,0 
0~2000 0.0000 0.4000 54.561029 10.0 
0.2000 0.0000 0.4000 57.119162 11. 0 
0.2000 0.0000 0.4000 71.090055 12.0 

0.2000 0.0000 0.4000 483.JS1886 TOT /\L 

THE STANDARD DISPLAY OF SECTION I I NORMALLY FOLLOWS 



SECTION VII 

SELECTION OF THE STARTING POINT 

The method of finite differences as explained in 

Chapter III for the selection of the starting point for 

application of the supporting algorithms may be included 

in the analysis by use of sense switch 5. The program 

provides some additional optimization aids over those pre­

sented in the discussion in the body of the thesis while 

providing the same basic technique. The interval of his­

torical data that is used as the minimum length of data to 

be used in the computation is passed over the absolute 

values of the third order differences~ but these differ­

ences are summed in groups that correspond to year inter­

vals of the original series. This still provides for the 

location of the best linear fit of the data by including 

80% of the second order differences in the third order 

differences~ but the additional benefit to be gained is 

that any systematic changes which appear in the data will 

be taken into consideration. For example~ if a particular 

process had its major activity during one month and then 

the activity tapered off until the same month the follow­

ing year and the cycle is repeated~ the conventional use 

of finite differences would indicate that this is a major 
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oscillation in the series and a relatively high degree 

polynomial would be required to fit the observed datao 

However, through the proper indexing, the sum is taken in 

terms of those third order differences determined by each 

year alone and not the entire sequenceo This, then, pro­

vides the method whereby the best starting point is 

selected for the periodic behavior of the serieso The 

importance of this can only be demonstrated by taking the 

third order differences of a sawtooth function and observ­

ing the difference in the absolute sum of the third order 

differences for each year in the series as opposed to the 

absolute sum of the third order differences for the whole 

series. This technique is considered to be relatively 

important for those series that experience a particularly 

sharp change at a given interval within each period. 

In the program listed in Section I of the Appendix, 

the interval for the historical data is taken as one year 

less than the largest integral number of years of data 

available, therefore, it necessarily limits the selection 

of the starting point to the first year of data. However~ 

in a number of the trials made during the course of this 

investigation, this was sufficient to change the error 

variance significantlyo 

The additional output, as a result of this addition to 

the standard display, is a listing of the months within 

the first year as starting points and the sum as described 

earlier of the third order differences, along with the 
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number of data points that have been deleted from further 

consideration as part of the series. 

To change the length of the minimum interval for this 

part of the program, all that is necessary is change the 

right side of statement number 300, make a corresponding 

change in the second term in the definition of MTA4 and 

change the upper limit of the "DO 308" loop to consider the 

number of data points that are in the historical data 1 but 

not in the minimum interval specified. 

This addition to the algorithms used in support of 

the time series model is felt to be an original contribu­

tion arising from this study. 



SERIES 1 DATA 

FIRST DATA 
POINT USED 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

SUM OF 
3RD DIF 

4760.00000 
4893.00000 
4947.00000 
4672.00000 
4501. 00000 
4294.00000 
4616.00000 
4979.00000 
4825.00000 
4657.00000 
4579.00000 
4944.00000 
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THOSE DATA POINTS PRECEDING THE 6TH UNIT HAVE BEEN DELETED 

THE STANDARD DISPLAY OF SECTION I I NORMAL~Y FOLLOWS 



SECTION VIII 

EXTERNAL CONTROL OF SMOOTHING CONSTANTS 

The program user may exercise external control over 

the selection of the constants to be used in the model by 

use of sense switch 6 and the addition of a card containing 

the constants to the data deck. The addition of this card 

and its format will be discussed in Section XI of the 

Appendix. The primary purpose of this addition to the 

program is to provide for the use of a finer search grid 

in a local area. It also provides for additional displays 

of various types once the smoothing constants are arrived 

at through the use of one of the other options of·the 

program. For example, the plot may be rather lengthy to 

obtain as a routine output for each of the combinations of 

analyses that are used in preliminary investigations. 

After the set of smoothing-constants is chosen, the pro­

gram may be executed in a small fraction of the time re­

quired to carry out the iterations and provide the output. 

By making a minor program change, this option may be used 

to start the search grid at some arbitrary point with the 

programmed increment used over the remainder of the grid. 

This alternative is available by removing the three cards 

in the source program between statements 201 and z13. 
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In general this option should not be used for fore­

casting in the absence of the use of the error analysis 

information that is provided by the other options. If 

the person doing the forecasting uses, the external control 

option exclusively for forecasting, he is defeating one of 

the prime purposes in the study that has been conducted in 

improving the search and selection methods associated with 

this model, The forecast of the model becomes a prediction 

under these conditions of external control. 

However, if coefficients have been established through 

the use of the error method of selection in past periods 

and the process appears to be stable, the use of the same 

constants for updating the estimates would be a reasonable 

approach for the more stable time series. The primary in­

tent of this particular option. is as an exploratory con­

venience for the forecaster. 

The display for this option is identical to the dis­

play of Section II and is not repeated in this section. 



SECTION IX 

INDIVIDUAL SETS OF CONSTANTS FOR·EACH LAG VALUE 

Since the IBM 7090 has only six sense switches, it is 

necessary to use a control card and a sense light for this 

particular programming option. The provisions of this 

program are essentially the same as those explained for 

the sense switch option for selection of constants based 

upon consecutive lags. This particular option was explain­

ed in the text of the thesis and it is used under the as­

sumption that each data point in the cyclical period 

possesses certain relationships to those points that pre­

cede and follow it and this relationship is often a direct 

function of the lag; that is, the relationships between a 

data point and two other points that are different becomes 

a certain function to be considered in the forecasting of 

events. Thus, the recognition of a relationship between 

the autocorrelation and lag within the series will con­

tribute to a reduction in the error associated with the 

forecast error that is observed in the series. In order 

to provide for this, the option provides for the selection 

·of the minimum error for each of the consecutive lags that 

are applied to the test series. Therefore, the autocorre­

lation or the relationship for the smoothing or the 
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forecasting of events that extends one period into the fu­

ture have different forms than those that extend some 

other number of periods into the future. An example of 

this is the use of a polynomial fit of the data. The fit 

for the prediction of one period into the future could be 

a much higher order polynomial than one that is to predict 

a greater number of periods into the future. This may be 

related more directly to this model since the seasonal 

factor empirically determines the degree of fit that is 

established in the model for the series. The amount of 

smoothing that takes place in the seasonal data could well 

have an effect upon the accuracy of the forecast of the 

future for various lags in the data. Consideration of 

this, at least over the test series, reduces the sum of 

the error for the consecutive lags. This is illustrated 

by a comparison of Tables XIV and XV for test series 60 

The display for this option provides the minimum 

standard deviation of the error and its associated 

smoothing constants for each lag value. The forecasts and 

seasonal factors are computed individually for each lag 

value and displayed as shown on the following page. 
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RANDOM SEASONAL TREND SQUARE ROOT LAG 
CONSTANT . CONSTANT CONSTANT OF E.M.S. 
0.8000 1. 0000 0.0000 44. 127215 1 
0. 8000 1. 0000 0.0000 50.507354 2 
o.aooo 0.8000 0.0000 59.934388 3 
0.8000 0.8000 0.0000 55. 577856 4 
0.8000 0. 80.00 · 0.0000 41.282528 5 
0.8000 0.8000 0.0000 41. 980234 6 
0.8000 0.8000 0.0000 51 . 553693 7 
0.8000 0.8000 0.0000 50.768961 8 
0.8000 0.8000 0.0000 59.581101 9 
0.8000 1. 0000 0.0000 55.555433 10 
0.8000 0.8000 0. 0000 . 39.487572 1 1 
0.8000 1. 0000 0.0000. 29.471549 12 

PERIODS INTO FORECAST ED SEASONAL 
THE FUTURE VALUE FACTOR 

60.7010298 0.890472 

2 65.2863646 0.956042 

3 56.3915958 1. O 13998 

4 57.0791225 0.985599 

5 55.9890518 1.241133 

6 59.8567791 . 1. 069360 

7 72.9479608 1.112799 

8 92.9617882 0~990582 

9 95.5730228 0.954830 

10 48.6098137 1.302878 

11 54.9222951 1. 285091 . 

12 45.3881621 1. 046367 



SECTION X 

TABLE OF OPTIONS 

The foregoing discussions of the available options 

w~re presented as though each one was an entity in itself. 

This is true, but certain combinations may be used to the 

advantage of the forecaster and the multiple provisions 

that the program is capable of providing. Table XVII pre-
•· 

sented below summarizes the available combinations. 

TABLE XVII 

TABLE OF PROGRAM OPTIONS 

Standard Display 0 * * * * * * * 
Error Variance Grid 1 * * * * * * 
Plot Routine 2 * * * * * * * 
Independent Sums 3 * * * * 
Consecutive Lags 4 * * * * 
Starting Point 5 * * * * * * * 
External Control 6 * * * 
Correlated Lags SL4 * * * * -(4) 
Sense Switches L-o 1 2 3 4 5 6 SL4 

NOTE: (4) Sense switch 4 must be ON. 
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All displays common to the points of intersection in 

the table for the options exercised will be provided in 

the computer output. 

In order to use the sense light 4 option, sense 

switch 4 must be ON and the last card in data deck must 

have a nine in column 1. 

As an example, if switches 2, 3, and 5 are on, the 

program will select the optimum starting point, select the 

constants on the basis of minimum sums, provide the dis­

play of Section V, and plot the observed series and its 

analysis according to Section IV. 



SECTION XI 

PREPARATION OF INPUT DATA 

The arrangement of the data deck is shown below. 

This is to be accompanied by the compiled program listed 

in Section I of this Appendix. The illustration is self­

descriptive, but will be supplemented by verbal descrip­

tions. The first card of the input is any title the user 

desires provided that it is only 51 characters long and 

the spacing of the output will correspond to the spacing 

on the input card. The card may be blank if des~red, but 

must be included,otherise the first data card will appear 

as a title and will not be included in the analysis. The 

data follows the title with one observation per card. This 

may be changed easily by changing statement 3, but was 

programmed in this manner to facilitate changes in the 

historical data file. The present program has a limit of 

600 data points: this may be increased by changing the 

DIMENSION statement. The next card is an end of data 

card: this notifies the computer that all the data has 

been read in. The format is the same as the data cards 

with nines in each numeric column. The next card is 

optional, depending upon whether sense switch 6 is to be 

used during the execution of the program. If it is not to 
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be turned ON during the execution, this card should be 

omitted from the ·data deck. If sense switch 6 is to be ON 

during execution, then this card should contain the smooth­

ing constants in a 3Fl0.6 format. The last card must be 

on the deck with a nine in the first column if sense light 

4 option is to be used and blank if not. This completes 

the description of the data deck for the program input. 

600 MAX 
DATA FlO. 

TITLE 51H 

PROGRAM 
DECK 

,Figure 11. Composition of 
Program and Data Deck 



SECTION XII 

IBM 1620 PROGRAMS 

Due to the memory requirements of this program~ it is 

necessary to divide the program discussed in the preceding 

sections into five parts in order to fall within the limi­

tations of the IBM 1620. For the convenience of the dis­

cussions the displays of these programs have been labeled 

in the comment cards placed at the beginning of each pro­

gram. They are in the normal sequence of their execution 

in the analysis of a time series. This also includes the 

cases of deletion of some of the options in the data anal­

ysis. The programs have been reduced considerably in the 

amount of historical data that they are capable of han­

dling. Therefore, rather than create confusion, the 

capacity of the memory is reflected consistently in all 

the individual programs and the maximum that can be ac­

commodated by the programs is five years of bistorical 

data. Certain other deletions were made in the output 

displays primarily due to the limitation of memory and due 

to the 1620 installations being less formal in the amount 

of personal contact between the computer user and the 

computer operator than the IBM 7090 installations. This 

reduces the need for explicit means of identification of 
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the output and strict rules of computer input. 

Program 1 is for the selection of the optimum start­

ing point within the first year of historical data. The 

results are identical with those of the 7090 output and it 

is self-explanatory when displayed by the typewriter out­

put of the 1620. This program makes the recommendation 

that a certain number of the data points be eliminated 

from the data deck before further consideration, since the 

program cannot exercise the control over the situation and 

must rely on the computer operator to remove those cards 

from the data deck. 

The input for the program is the historical data in 

the Fl0.6 format with the 999.999999 end-of-data card. 

The output of the program is a typed display of the 

sums of the third order differences for the data as de­

scribed in Section VII. 

The use of a point within the first year of the data 

as the starting point is particularly applicable in the 

use of the 1620 programs since the limit on the historical 

data is five years and the deletion of more than one year 

of these data could significantly affect the estimates of 

the process level and subsequently the forecasts. Any 

number of data decks may be processed sequentially by 

pushing START on the 1620 console after the completion of 

each display. 

The approximate time for reading the data~computation, 

and displaying the results is three minutes. 
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Program 2 is the basic program for the computation of 

the error variances for a given grid of constants and a 

lag value of one. The grid used in this program is arbi­

trary and is controlled external to the machine by use of 

punched card input in the 3Fl0.6 format for the sets of 

smoothing constants to be used. Once a primary or course 

search grid is established for the consideration of the 

processes, a complete deck of these grid values in some 

ordered sequence should be prepared to facilitate the use 

of the programs. These values are computed one at a time 

and the results may be obtained in three ways. The smooth­

ing constants and the error variance value can be on 

punched cards, they may be typed out, both of these methods 

may be used simultaneously, or they may be computed and the 

minimum error variance and its constants stored in memory 

to be displayed after the completion of the search grid by 

turning sense switch 2 ON during the last computation. 

However, if sense switch 3 is ON, the manual start must be 

used after each set of constants. This is to encourage 

use of punched card output and to save machine time. The 

program selects the minimum value of the error variance up 

to the point that it is requested to display that informa­

tion, and continues to re-evaluate the minimum for all 

values as long as a given set of series data is stored in 

memory. Therefore, a number of investigations may be per­

formed by using the smaller machine and having access to 

the display of the computations as they are made. This is 
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particularly true when a fine grid search is being made of 

a local minimum. The computation time for an iteration is 

approximately 24 seconds or one hour for the 156 value 

grid used in these studies. 

Program; is the modification of Program 2 in order 

to consider the consecutive lag values and their error 

variance. The display is limited to card output due to 

the length of the answers and the length of the program, 

except during the final computation of the series sense 

switch 2 may be turned on to obtain both a typed and 

punched display of the set of constants and the value of 

the minimum sum of the error variance. Once this option 

has been exercised the program transfers control back to 

the beginning of the program and reads in the next series. 

Sense switch 2 provides for the display of the minimum sum 

and the initiation of the computations for a new series, 

but once this transfer has been made the switch should be 

turned to OFF otherwise the program will transfer after 

the first computation and will necessitate reloading the 

data again to restart the computation. This program re­

quires about 45 seconds per iteration or a total of two 

hours for the 156 value grid. 

Program 4 provides for the summing of the error vari­

ances for each of the smoothing constants over all values 

of the other constants. The input to the program is the 

output of Program 1. The output of this program is typed 

out by the console typewriter and is of the form of the 
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display for Section V. Due to the small number of compar­

isons involved in determining the minimum value for each 

of the constants it is not automatically computed and dis­

played. Time is not of importance at this point, since it 

is necessary to load Program 5 before the optimum value 

determined by the minimum sums may be used in forecasting. 

The time required for this_program to read, compute, and 

display the results is approximately 3 minutes per deck of 

input data and any number of data decks may be considered 

by pushing start at the end of each previous computationo 

Program 5 provides a display of the forecasted values 

of the process and the seasonal factors. The input to 

this program is the standard data deck and the smoothing 

constants to be used for computations. The options permit 

the use of more than one set of constants for each data 

deck if sense switch l is ON. If sense switch 2 is ON~ the 

program will consider more than one data deck in sequence 

with one set of smoothing constants for each deck. These 

switches may be manipulated to suit the immediate needs of 

the computation. The display is by typewriter and is of 

the same form as the 7090 displays. The computation time 

required is less than 2 minutes per series iteration. 

The displays of these programs are not presented in 

this section since they are identical in nature to those 

of the 7090 output presented in the preceding sections and 

it would be redundant to include them. The only difference 

is the display of the error variance in the 1620 displays 
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as opposed to the display of its square root in the 7090 

displays. 
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C PROGRAM 1 - SELECTION OF STARTING POINT 
C INPUT- DATA DECK WITH 999.999999 AS THE LAST DATA CARD 
C OUTPUT - TYPEWRITER 
C OPTIONS - MORE THAN ONE DATA DECK, PUSH START 

DIMENSION OBE(60),DEL(60) 
MOTOL = 0 
I= 'I 

2 READ3,0BE(!) 
3 FORMAT (F10.6) 

IF(OBE(i) -999.999999) 4,5, 99 
4 MOTOL = MOTOL +1 

I = I + 1 
GO TO 2 

5 MYR = MOTOL/12 
MTA1=12'"'(MYR-1) 
MTA2=MTA1-i 
MTA3=MTA2-1 
COMP=0.9E+25 
DO 301 I =2, MT A 1 

301 DEL(i-1)=0BE(i)-OBE(i-1) 
DO 302 1=2,MTA2 

302 DEL{l-l)=DEL{l)-DEL{l-1) 
DO 303 1=2,MTA3 

303 DEL{l-1)=DEL{i)-DEL(l-1) 
PRINT 304 

304 FORMAT(10X,23HFIRST DATA SUM OF ) 
PRINT 3042 

3042 FORMAT{10X,21HPOINT USED 3RD DIF ) 
DO 309 I N= 1 , 12 
SUMDL=O. 0 . 
MTA4=!N+12*(MYR-2)-4 
DO 306 l=IN,MTA4,12 
DO 306 J= 1, 9 
LL={ i+J-1) 
ADEL=DEL(Ll) 
IF(ADEL)305,306,306 

305 ADEL= (-1.0)*ADEL 
306 SUMDL = SUMDL + ADEL 

PRINT 307,IN~SUMDL 
307 FORMAT(! 15,F16.5) 

IF(COMP - SUMDL)309,309,308 
308 COMP= SUMDl 

IN!T:.,; IN 
309 CONTINUE 

PR I NT 31 0 , ! N iT 
310 FORMAT(10X~31HTHOSE DATA POINTS PRECEDING THE 14,2HTH) 

PR i NT 311 
311 FORMAT(10X,23HVALUE SHOULD BE DELETED ) 

PAUSE 
GO TO 1 

99 END 
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C PROGRAM 2 - PROGRAM FOR COMPUTATION OF ERROR 
C VARIANCES FOR LAG OF 1 
C INPUT - DATA DECK AND DECK OF SMOOTHING CONSTANTS 
C OUTPUT - CARDS AND/OR TYPEWRITER 
C OPTIONS 
C SENSE SWITCH 1 FOR PUNCHED CARD OUTPUT 
C SENSE SWITCH 2 TO OBTAIN MINIMUM VALUES OF THE ERROR 
C VARIANCE AND ITS ASSOCIATED ~ONSTANTS AT ANY TIME 
C DURING THE COMPUTATION 
C SENSE SWITCH 3 FOR TYPEWRITER,OUTPUT, PUSH START 

DIMENSION OBE(60),0BS(12 1S)jYRAV(5),TREND(60),UNAD(12) 
DiMENSiON SEA(60),EST(60J,PRED(60),SENA(12) 
DIMENSION SEANL(12.,S) 
MOTOL = 0 
I= 1 

2 READ3,0BE(I) 
3 FORMAT (F10.6) 

IF(OBE(I) -999.999999) 4,5, 99 
4 MOTOL = MOTOL +1 

I = i + 1 
GO TO 2 

5 MYR = MOTOL/12 
!F(MOTOl - 12* MYR -9) 6,7,7 

6 MOT= 12*(MYR-1) 
MYR = MYR - 1 
GO TO 8 

7 MOT = 12,'f MYR 
8 FMYR = MYR 

L = 1 
DO 1 0 J = 1 ~ M YR 
YRAV(J)=O.O 
DO 9 ! = 1 , 12 
UNAD(!)=O.O 
OBS (I ,J) ~ OBE (l) 
YRAV(J) = YRAV(J) + OBE (L)/12.0 

9 L = l + 1 
10 CONTINUE 

DENOM = MOTOL - MOT 
NOT= MOT +1 
SMVAR = (0.9E+25)*(0.9E+25) 
AMOT gig MOT' 
TREN = (YRAV(MYR)-YRAV(1))/(AMOT-12.0) 
DO 12 J ~ 1, MYR 
SUSEA = 0.0 
DO 1 2. i = 1 , 1 2 
Fi ~ i . 
SEANL(I ,J) = OBS(!,J)/(YRAV(J)-(6.5-Fi)*TREN) 
UNAD(!) = UNAD(i) + (SEANL(I tJ)/FMYR) 
i F ( UNAD (! ) ) 11 , 12, 1 2 · 

11 UNAD(i) = (-1.0)*UNAD(i) 
12 SUSEA = SUSEA + UNAD(!) 



PLY= 12.0 /SUSEA 
DO 1 3 I = 1 , 12 · 

13 SENA(!)= UNAD(I) * PLY 
14 READ 15,A,B,C 
15 FORMAT(F10.6,F10.6,F10.6) 

EST(1)=A*(OBE(1)/SENA(1))+(1.0-A)*(YRAV(l)+TREN) 
TREND (1)=C*(EST{1)-YRAV(1])+(1.0-C)*(TREN ) 
SEA(l) = B*(OBE(1)/EST(1))+(1.0-B)*SENA(1) 
DO 19 I= 2, MOTOL 
IF(l-12)16,16,17 

16 J=I 
SEA(J) = SENA(J) 
GO TO 18 

17 J=i-12 
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18 EST(l)=A*(OBE(l)/SEA(J))+(1.0-A)*(EST(l-1)+TREND(l-1)) 
SEA (!) = B*(OBE(l)/EST(l))+(1.0-B)*SEA{J) 

19 TREND (I)= C*{EST(l)-EST(l-1))+(1.0-C)*TREND(l-1) 
SUMER= 0.0 
DO 20 K = NOT, MOTOL 
PRED(K) = (EST(K-1) + TREND (K-l))*SEA(K-12) 
ERROR= (OBE(K) - PRED(K)) 
ERSQ =ERROR* ERROR 

20 SUMER= SUMER+ ERSQ 
VAR= SUMER/DENOM 
IF(SENSE SWITCH 1) 21,22 

21 PUNCH 26,A,B C,VAR 
22 IF(VAR-SMVAR~ 23,24,24 
23 SMVAR = VAR 

SA= A 
SB = B. 
SC = C 

24 IF(SENSE SWITCH 3) 25,14 
25 PRINT 26, A,B,C 9 VAR 
26 FORMAT(F7.3,F7.3,F7,3,F20.6) 

PAUSE 
IF(SENSE SWITCH 2) 27,14 

27 PRINT 26,SA,SB,SC,SMVAR 
PUNCH 26,SA,SB,SC,SMVAR 
GO TO 1 

99 END 
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C PROGRAM 3 - PROGRAM FOR COMPUTATION OF ERROR 
C VARIANCES FOR LAG VALUES 1 THROUGH 12 
C INPUT - DATA DECK AND DECK OF SMOOTHING CONSTANTS 
C OUTPUT - CARDS 
C OPTIONS AT END OF PROGRAM TURN SWITCH 2 ON DURING LAST 
C COMPUTATION TO OBTAIN MINIMUM ERROR VARIANCE AND ITS 
C ASSOCIATED SMOOTHING CONSTANTS 

DIMENSION OBE(60),0BS(12{5),YRAV(5),TREND(60),UNAD(12) 
DIMENSION SEA(60),EST(601,PR~D(60),SENA(l2)~VAR(12) 
DIMENSION SEANL( 12,5) ·. 

1 MOTOL = 0 
I= 1 

2 READ3,0BE(I) 
3 FORMAT ( F 1 0 . 6) 

IF(OBE(I) -999.999999) 4,5, 99 
4 MOTOL = MOTOL +1 

I = I + 1 
GO TO 2 

5 MYR = MOTOL/12 
IF(MOTOL - 12* MYR -9) 6,7,7 

6 MOT= 12*(MYR-1) 
MYR = MYR - 1 
GO TO 8 

7 MOT= 12* MYR 
8 FMYR = MYR 

L = 1 
DO JO J = 1, MYR 
YRAV(J)=O.O 
DO 9 I = 1, 12 
UNAD(l)=O.O 
OBS (I J) = OBE (L) 
YRAV(J) = YRAV(J) + QBE (L)/12.0 

9 L = L + 1 
10 CONTINUE 

DENOM = MOTOL - MOT 
NOT= MOT +1 
SMVAR = (0.9E+25)*(0.9E+25) 
AMOT = MOT 
TREN = (YRAV(MYR)-YRAV(l))/(AMOT-12.0) 
DO 12 J = 1 , MYR 
SUSEA. = 0.0 
DO 12 i = 1, 12 
Fi = I 
SEANL(l,J) = OBS(l,J)/(YRAV(J)-(6.5-Fl)*TREN) 
UNAD(I) = UNAD(I) + (SEANL(I ,J)/FMYR) 
I F(UNAD (I)) 11, 12, 12 

11 UNAD(I) = (-1.0)*UNAD(I) 
12 SUSEA = SUSEA + UNAD(I) 

PLY= ·12.0 /SUSEA 
DO 13 i = 1, 12 

13 SENA(!)= UNAD(I) * PLY 
14 READ 15,A,B,C 



15 FORMAT(F10.6,F10.6,F10.6) 
EST(1)=A~(OBE(1)/SENA(1))+(1.0-A)*(YRAV(1)+TREN) 
TREND (1)=C*(EST(1)7YRAV(1))+(1.0-C)*(TREN. ) 

-SEA(1).= B*(OBE(1)/EST(1))+(1.0-B)*SENA(1) 
_DO 19 I= 2, MOTOL 
IF(i-12)16,16,17 

16 J=I 
SEA(J) = SENA(J) 
GO TO 18 

17 J=l-12 
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18 EST{l)=A*(OBE(l)/SEA(J))+(1.0-A)*(£ST{l-1)+TREND(l-1)) 
SEA (I)= B*{OBE{i)/EST(l))+(l.O~B)*SEA(J) . 

19 TREND {I)= C*{EST(l)-EST(l-1))+(1.0-C)*TREND(l~l) 
SUMVA = 0.0 
DO 2 1 LT = 1 , 1 2 
SUMER== 0.0 

. LOW= (NOT - LT+ 1) 
MAX= (MOTOL - LT+ 1) 
DO 20 K == LOW,MAX 
N = (K + LT - 1) 
T = LT 
PRED(N) = (EST(K-1) + T*TREND(K-l))*SEA(N-12) 
ERROR= (OBE(N) - PRED(N)) 
ERSQ =ERROR* ERROR -. 

20 SUMER== SUMER+ ERSQ 
VAR(LT) = SUMER/DENOM 

21 SUMVA == SUMVA + VAR(LT) 
PUNCH 26, A,B,C,SUMVA 
PUNCH 22,VAR(1),VAR(2),VAR(3),VAR(4) VAR(5),VAR(6) 
PUNCH 22,VAR(7),VAR(8),VAR(9),VAR(10},VAR(11),VAR(12) 

22 FORMAT(F12.4,F12.4,F1i.4,F12.4,F12.4,Fl2~4) ... 
IF(SUMVA - SMVAR) 23,24,24 

23 SMVAR = SUMVA 
SA= A 
SB= B 
SC= C 

24 IF(SENSE SWITCH 2) 27, 14 
26 FORMAT(F7.3,F7.3,F7.3,F20.6) 
27 PRINT 26,SA,SB,SC,SMVAR 

PUNCH 26,SA,SB,SC,SMVAR 
GO TO 1 

99 END 
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C PROGRAM 4 - PROGRAM FOR COMPUTATION OF SUM OF ERROR 
C VARIANCES FOR EACH VALUE OF THE SMOOTHING CONSTANTS 
C INPUT - OUTPUT DATA FROM PROGRAM 2 
C OUTPUT - TYPEWRITER. · .· 
C OPTIONS - MORE THAN ONE DATA DECK, PUSH START 

DIMENSION S(156),SUMA(6),SUMB(6),SUMC(6),FA(6) 
1 DO 100 I = 1 , 156 · 

100 READ 101, S(l) 
101 FORMAT(21X,F20.6) 

KA = 2 
SUMA(1)=6.0*(S(1)+S(2)+S(3)+S(4)+S(S)+S(6)) 
DO 103 L=7, 115,36 
SUMA(KA) = 0.0 
N =.L + 35 

. DO 1 02 M=L , N 
102 SUMA(KA) = SUMA(KA) + S(M) 
103 KA= KA+ 1 

SUMA(6)=6.0*(S(151)+S(152)+S(153)+S(154)+S(155)+S(156)) 
KB= 1 
DO 105 M=7,37,6 
SUMB(KB) = SUMA(6)/6.0 
DO 104 L=M, 150,36 
K = KB 
SUMB(K)=S(l)+S(L+l)+S(L+2)+S(L+3)+S(L+4)+S(L+5)+SUMB(K) 

104 SUMB(K) = SUMB(K)+1.5*S(K) 
105 KB= KB+ 1 

DO 107 M=7,12 
SUMC(M-6) = SUMA(l)/6.0 
DO 106 L=M, 150,6 

106 SUMC(M-6) = SUMC(M-6) + S(L) + 0.25*S(M+144) 
107 CONTINUE 

FA( 1) = 0.0 
FA(2) = 0.2 
FA(3) = 0.4 
FA(4) = 0.6 
FA(S) = 0.8 
FA(6) = 1.0 
PRINT 108 

108 FORMAT(32HSUM OF ERROR VARIANCES ON A,B,C ) 
DO 109 K= 1, 6 

109 PRINT 110,FA(K),SUMA(K),SUMC(K),SUMB(K) 
110 FORMAT(F7.3,F20.6,F20.6,F20.6) 

PAUSE 
GO TO 1 

99 END 
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C PROGRAM-5 THIS PROGRAM PROVIDES THE FORECASTS 
C INPUT REQUIRED - ORIGINAL DATA DECK AND SMOOTHING 
C CONSTANTS IN 3F10.6 FORMAT 
C OUTPUT - TYPEWRITER 
C OPTIONS 
C SENSE SWITCH 1 - MORE THAN ONE SET OF CONSTANTS 
C SENSE SWITCH 2 - MORE THAN ONE SET OF DATA 

DIMENSION OBE(60),0BS(12 5),YRAV(S),TREND(60),UNAD(12) 
DIMENSION SEA(60),EST(6Qj,PR1(12),SENA(12),SEANL(12,5) 

1 MOTOL = 0 
1=1 

2 READ3,0BE(I) 
3 FORMAT (Fl0.6) 

lf(OBE(I) -999,999999) 4,5, 99 
4 MOTOL = MOTOL +1 

I = I + 1 
GO TO 2 

5 MYR = MOTOL/12 
IF(MOTOL - 12* MYR -9) 6,7,7 

6 MOT= 12*(MYR-1) 
MYR = MYR - 1 
GO TO 8 

7 MOT= 12* MYR 
8 FMYR = MYR 

L = 1 
DO 10 J = 1, MYR 
YRAV(J)=O.O 
DO 9 ·1 = 1, 12 
UNAD(l)=O.O 
OBS (I J) = QBE (L) 
YRAV(J) = YRAV(J) + OBE {L)/12.0 

9 L = L + 1 
10 CONTINUE 

DENOM = MOTOL - MOT 
NOT= MOT.+1 
SMVAR = (0.9E+25)*{0.9E+25) 
AMOT =·MOT 
TREN = (YRAV(MYR)-YRAV{l))/(AMOT-12.0) 
DO 12 J = 1, MYR -
SUSEA = 0.0 
DO 12 I = 1 , 12 
Fi = i 
SEANL(l,J) = OBS{i,J)/(YRAV(J)-(6.5-Fl)*TREN) 
UNAD(I) = UNAD(i) + (SEANL(I ,J)/FMYR) _ 
!F(UNAD(l))11,12,12 _ -

11 UNAD(i) = (-1.0)*UNAD(I) 
12 SUSEA = SUSEA + UNAD(I) 

PLY= 12.0 /SUSEA 
DO 13 I = 1, 12 

13 SENA(!)= UNAD{I) * PLY 
14 READ 15,A,B,C 
15 FORMAT(F10.6,F10.6 9 F10.6) 



EST(l)=A*(OBE(1}/SENA(1))+{1.0-A)*(YRAV(l)+TREN) 
TREND (1)=C*(EST(1)-YRAV(1))+(1.0-C)*(TREN ) 
SEA(l) = B*(OBE(1)/EST(1))+{1.0-B)*SENA(1) 
DO 19 I = 2, MOTOL . 
IF(l-12)16,16,17 

16 J=I 
SEA(J) = SENA(J) 
GO TO 18 

J?? 

17 J=l-12 
18 EST(l)=A*(OBE(l)/SEA(J))+(l.O-A)*(EST(l-l)+TREND(l-1)) 

SEA (I)= B*(OBE(l)/EST(l))+(l.0-B)*SEA(J) · 
19 TREND (I)= C*(EST(l)-EST(l-1))+(1.0-C)*TRENO(l-1) 

PRINT 500 .. 
500 'FORMAT(44HPERIODS INTO FORECASTED SEASONAL) 

PR I. NT 501 
501 FORMAT(44H FUTURE VALUE FACTOR) 

DO 502 LT=l,12 
T = LT 
IND~ (MOTOL + LT - 12) 
PRl(LT) = (EST(MOTOL) + T*(TREND(MOTOL)))*SEA(IND) 

502 PRINT 503, LT, PRl(LT), SEA(IND) 
503 FORMAT(17,F22.5,F14.6) 

IF(SENSE SWITCR 1) 14,504 
504 IF(SENSE SWITCH 2) 1,99 
99 END 
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