
SOME PROPER TIES OF Tl-JE MEJ:'H0:0 

OF STEEPEST ASCEN'l'1 

By 

CHARLES HENRY JOf!NSON 
I( 

Ba.chij Lor of Sci~n.ce 

Bradley Un,iver:sity 

Peoria, Illi:q.o:i.s 

1949 

Master of Sciel'l.Ce 

Bradley Un.iv(;)rsity 

Peoria, llLinois 

1950 

Submitted to the Faculty of the Grc;1.d1;1,ate School of 
the Oklahoma State Vniversity 

i:q. partial fulfillroer:i.t of the req1,1irernents 
for the degree of 

DOCTOR OF PHILOSOPHY 
A~gusti 196~ 



G~ 
STA1E . ffl8ff 

UBR~RY 

JAN 8 196 

SOME PROPERTI~S OF THE M,ETHOD 

OF STEEPEST ASCENT 

The sis Approved: 

I c ... 

542 0317 



ACKNOWLE:DGMEN1'S 

I ~m indebted tg Drr Leroy FoU~$ for sµ,ggestiI1,~.the problem c;1.:r;:i.d 

for hi$ vi:1,b.1able 0iid i:tnd dir~oUcm, 

! aen:i ~lso indehted to th~ Nationa,l Seieri.c~ Founq.a,tiop. a;nd the 

E:ly LilW F ou.ndatip:n £or thei1." H:n.an<;:icj.\ SUPJ:?P1."t, 

Espeda.Uy, I am ~rateful to Dr. Hal"ris1;m. S, Mend,e;oJ,:i.~ll for 

fug~es;ti11-g Okia.ho:rna St;,;i.te University to me a:n,d .to Dr, C~rl E:;. Ma.rs}t~ll 

fo,;, Ms in.te~re st and encoul'!,3-gement. 

:M'.y thanke are e~ten.ded to th,e meml;>Elrs of J;l')y advisory c;o:n:rrr;iHte~~ 

ProfeEisors Jolin E. H0Hrr;ia.n1· :Robert D, Mi;;irtisc;>:q,, George W. Newl;lll~ 

'.E{er'bart Scholz Jr, , a.rid David L, Weeks, 

! wis~ to acknowled~e the fi:ore suppqrt r;>{ rny fq.T,Oihr,thX"oµghc;n1t my 

st~dies a1tp, d~ri:ni?; the preparaUon, of t4ia th~eif:i, 

My th~:rtkli! are e~tE;J:q.ded to Mr1:1. ~eve:dy Ric~ards on for lier caref1,1l 

ty:ping of tl:ii s the sis . 

:j.i,i 



TABLE OF CO:NTE;NTS 

Cl?,~pter 

~ . INTRODUCTION . . , ' . . ' ' . ,. ' ' 

Il . ESTIMATION OF F;l;RST ORDER :PAR TlAL 
PEl;UVATIV:e::s AND DE;SIGN SIZJ;D . r • 

Ddi;n..ition e>f ~asic Te.rn:tl'$ , , . 
Estimati9n of th~ F:l.rst Ordtilr Pa.rtiais 
Responses i:tt the Poir.i.ts o! a: Sq,u~re Orid 
9ho;i.ce of Desig:Q. Size . . .r • • • , • 

II! . P~ OPER TlES OF 'l;'HE METHOD O:,f 
STEEPES~ ASC:i:::;NT . . , , . 

An Invaric:1,nc:;e Prope~ty of th~ 
Ste(;lpest ,Ascent Path , , . , . , • , 

' , 

! ' 

Page 

1 

4 

4 
7 

14 
18 

24 

The Pred,ictedRespop.1;,1e , . , ' ' 

. . 25 
44 
48 

IV. 

Upper_ q.Ud ~ower :j3o~nds for 13 1/13 2.Z 

Qrf;Ldient Propl=)rties , . , . 

THE CHOICE OF SCALE , ' . . ' 

T4e L~c k of Sca,11;:l In.var:i.anc~ pf the 
Steepest Asqen,t Pq.th,. . • , . , '. . 

E~pt'lrimentMiPn J\Lopg ~e Transformed 
Path of St~epe et Ascflnt , , . • , . 

' . 

The Choice ];3etweel'). th.e L~neij Ld am.d LP , 

V ! ~UMMA,R y . . • ' . ' . T • • 

Conclu1;1im:~$ . . . . • . 
.4\rea$ for Future R es~a'rGh 

SELECTED BIJ:$LIOGRAPI:IY . ~ . 

iv 

' . 

, " ' , 
. ' 

. . 

' . 
' . , . 53 

. ' ! ' 

' ' 
67 

, 72 
7$ 

. 85 

85 
87 

, 89 



LIST OF TABLES 

Tabl~ Page 
... 

I , Design. Size Necessary to Minimi?ie M. S, E, !3 1 . 23 

XI. · Upper and Lower Bo1,1.l;l.d,s f c;i;r 13 i / 13 22 · , · 52 

Figu11e 

l . 

2. 

3 . 

5 . 

Q . 

7, 

s. 

9. 

LlST OF FXGU~:e;;s 

Page 

Relative MagniNde of Observ1:Jd. a.n.d J?rediGt~d Respm;ises ~ 47 

Intersection of the Gradient Wit:h tti,e A:x::es of the Contour 
System . , 60 

Relation!iihip Between m 1, n'lz, ro 31 a:Jlld thE;: Cont9ur 
Sys te n;l Ax;e s . . . , . , , , ~ , . , . 6 5 · 

Th.e Effec\ 0£ a C}?.ange oi Sc,:ale ori, t4e Steepest Asce:n,t 
Pat4 , 73 · 

An ApprqpriatE:l Odd for Eorhontal .EHon.gc1rted Qontours 80 

The Slppe of L is Pc;,sitive l There is no :S~sis for a.. 
· Decision _ . .P . , , 1 8 l 

The Slope -of LP is Positive; th~ Line LP Should be 
Chos_en , , 82 

Th,e Slope of LP is Negative: the Line Lt ShPu~d be 
Chosen . , . , . . • . . 83 

The Slope of L is Negativ~; the Line LP Shoµid be 
Chosen P 84 

V 



CHP,..PTER I 

INTRODUCTION 

A fairly common objective in indmitry is to find that level of the 

ingredients and operating char~teristics \lVhich maximizes or minimizes 

some charactedstic of the ep.d product. For example, a lens maker 

might be interested, in minimizing the coefficient of expans~on of the . 

finished lens. He might feet th.at tlie dedsive factors were the con

ce:p.tration of a particular ingr~dient , the rate at which the molten 

~lass was allowed to cool, and the l~;o.gth (')f ti:r:ne the gLas s was retained 

in a 1:i.~uid state before po1,1ring. 

F:t:"equently, it is not prac;;ticii!,L to opercil,te at the particular factor 

,Levels wp.ich optimizes the end pl,"Pduct characteristic; of interest. It 

may be that the cost or time involved is prohibitive .. The practical 

limits on the factors involved ¢1.efi.ne the factor space or the experi

mental region. 

Let the controUed continual.ls variaples, x 1, x 2, ... , xp, be 

th'e independent factors and let 11 be the true measure of the charac -

teristic of the end product. T) is called the respons~ and is dependent 

O:Q. the variables x 1, x 2, · , 

be w'ritten. as 

,x 

y =, T'l + 

p 
Then the statistical model may 

e ( 1. 1 ) 

l 
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where y is the observed :r~spons~ and e is a mec3;sure of the 

failure of the mathem9,,tical model to conform to the. reai world, I~ 

. 11 b h ,.· ( 0 2 ) w1. e assumed t at e - , CT 

In many situations when~ time and ~xpense are prime considera-
. . 

tions, it is imperative to adopt a strat'egy fo:r approaching an optimal. 

or stationary point in the experimental region, \+sing ai, few experiments 

as possible. One proposed strategy is the metliod of steepest ascent 

pat forward as a statistical technique by C. E. P. :Box and K. B. 

Wilso:n ( l )1 in 1951 . Further descr:\.ptio;ns of this techniq\le c1,re 

given by 0. L. Davies- ( 2) and W. C. Cochran and G. M. Cox(3) 

Box and Wilson ( 1 ) have shown that the ;maxim1.;J.m g,1in in 

respon.se in proceeding a .dietance r fro:rp ;;i. paint O to a point P 

in, a kTdemensional space i$ achieved approximately by varying the 

factors i;p. proportion to _their £int order partial derivativl:ls at 0. 

The di:vec;:tion thus determined is caUed the direc:;tion of steepE;lst 

c;1.scent. 

In pri;tctice, the controlled variables are coq.ed and the direction 

of steel?est ascent estimated in terms of the coq.ed variaoies. Tl;lis 

is <;lone by using the method of least squares to fit a piane to the 
; . 

resppnse surface and using the coefficients of the fitted plane aEi 

estimates of the partial derivatives at O . Jt wiH be shpwn, in Chapter 

Il that these estimates are unbiased. The steepest a,scent path is 

uncoded and further experiments are performE:::d along this path unt:i..L 

it is felt that a ma:ximum has been attained. Another set of experimt;?nts 

l 
. · Note: ( refers t0-.Selec~ed Bibliog:r.ap,hy . 



is. rl,l:p. using this point as the design ceri,ter and the foregoir.i.g prpc;edure 

is repeated. The procei;is is iterated until the experimente·r f e·el::i that 

the process is being run in the proximity of a stationary point. 

ln chapter II some theore;ms regarding tb,e estim.ation of the 

coef£ic;:i1;=mt::, of the fitted plane will be presented,. The content of a 

number of these theorems is no doubt known to experimenters b~t 

do nqt seem to have been formalized. Also a;n exaroin;3.tion will pe 

;made of the relationship betwll;len variance, bias, mean sq1Jare error, 

and spreaq. of the point::, in the desij?;n. A design size. i::i suggested SQ 

as to minimize the mean squar(;l error, 

In chapter III a number of theorems regarding the path of 

steepei;it ascent wili be presented. An, interesting property of.invari.-
, 

ance of the steepest ascent line will be examined and a nu.mber of 

theorems involving the gradient line will also he given. Singe the 

g:t'adi-en.~ to the factor space contours does not involve error, the 

st\'ldy obviously suffers to the extent tha,t the +nathematical model 

£ails to represeint the experimental sitl).ation, In spite of this drawback., 

;it is felt that some of the results wHl provide the experi:i;nenter with 

c1-dditional insight. 

When the direction of steepest ascent in the coded variables is 

transformed to the uncoded variables, it is found tbfat, in general, 

the resulting direction is no longer normal to the contours. This lack 

of invariance under a change of sc;ale was noted by Box a.nd Wilson ( l ) 

and more recently by 0. Kempthorne ( 4 ) . Chapter ~V deals with 

the effect of the choice of units used in the coding and will examine. in, 

soroe detail the lack of invariance under a obange of sc;:ale. 



CHAPTER II 

ESTIMATION OF FIRST ORDER PARTlAL 

DERIVATIVES AND DESIGN SIZE 

Certain terms occur frequently in the ensu,ing discussion and it is 

necessary to establish their meaning at the outset. 

Definition of Basic Terms 

Definition 2. l . The space in which the controlled variables are 

allowed to va,ry will be called the factor space. 

A point i:q the factor space will be denoted by x = ( x 1 , x 2 , . . . , 

x ). It will be assumed throughout that the e~pE;!rirnenter can attc1,in 
p 

the point x without err o:r. 

Definition 2. 2 Tht;: true response at a point x will be denot~d 

. , x ) or more commonly by 11 . 
p 

The symbol 11 will al Wq.ys be taken as a polynomial in the 

vc1-riable s .. , X . 
p 

For l:;lxample, the true response might 

be a 9 sumed to bt:l quadratic, in which case 11 would h,ave the form, 

( Z. 1 } 

4 
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Dehnition 2. 3. The observed responf;le at the point X will 

simply be called the "response" and will be denoted °J?y y, 

The response y is a mec;1.surc;1.ble quantity the magnitµde of whicl;i. 

depends on the particular value of x. For example, a bacteriologist 

might be concerned with the effect of temperature and humidity on the 

bacteria count in a culture ln this case the factors are te:rn:reratur(;) 

and humidity while the response is the number of bacteria expressed 

in appropriate units. 

Definition 2. 4 . The random error, denoted by e, :is the 

d~fference bet':"'een the true response and the observed response. 

The random errors will be assumed to be independent of each 

oth,er, to have a mean of 0, and a variance of 2 
(J" • 

In conformance with definitions 2. 2, 2. 3, a:q.d 2. 4, y, ri , and 

e are related by the eqmiti on 

Y = ri + e . ( 2. 2 ) 

When it if'i necessary to distinguish between responses at different 

points or to fix attention at a particular point in the factor space, 

tl"j,e subscript i will be used. In th,is event, 

In ;matrix notation this may be written as 

( 2. 2 ) is written as 

+ e .. 
:I. 

( 2. 3 ) 



+ e ( 2, 4 ) 

or more 1;:oropii!,ctly by 

( 2 5 ) 

Many times it is desirable to consider conc;:urrentty a :n\l.mber of 

points in the £actor space together with, tl;ie associated resppnses and 

rand9m errorf:i. For this purpose the vector concept is well suitE:d , 

N respo:ri,ses corresponding to N points in the factor space tpg(:)ther 

with the N random errors may be summarized by the mc:1,,trix eq,uation 

Y1 l xll ' .. 
Yz X!z ... 

= 

l 

or more compactly by 

Y = Xf3 + E 

li:;pf; 
;x p2 

X N P. 

f3 0 

f3 1 

el 

ez 

* ( 2. 6 ) 

( 2. 7 ) 

'rhe matrix X as displayed in ( 2. 6 ) shows at a glancf;) t})e c onfigµ-

ration of the points in the £actor space. When the dimE11;1sion 0£ the 

matrix X is pot apparent from the context it will be indicated, 
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Definition 2. 5. The matrix . X as displayed in ( 2r 6 ) wiU be 

kuQwn as the design matrix; for the assumed modeL. 

Estimation of the First Order Pa.r~iaLs 

'l;'he method of steepest ascent calls £or experimentation in a 

direction which is determined by the estimates of the fi:rst order 

partiq.l derivatives of 11 evaluc;i.ted at the origin. From a geometrical 

sta:p.dpoint, .this is equivalent to fitting a hyperplane ti;> th,e response 

sµrface over some small initic;i.l region in the £ac;tor spac.e and p:t:'D-

ceeding in a direction determined by the coefficients oi the fitted 

plane. Tr,i,i:;, strategy has an intuitive appeal for the type of responses 

likely to be enco\,lntered in practice. 

In th!:! case of quadratic type responses, the type about wh,ich this 

thesis is chiefly concerned, the design matrix; may be chost;:n so tlwt 

the first order partials are estimated readily without bi,as. 

I)efinition 2. 6. The response predicted at a point x by µ::ieans 

of a hyperplane fitted from a design by the method of lea.st squc:1-res 

will be denoted by y . 

The response predicted by means of a plane at a point x; ::;: (x:1, x:2 ) 

is 

( 2. 8 ) 

The question of what type of design, to use in order to estimate the 

partial derivatives is an important one.. It is especially dl;ls:i.rable 

to have estimates which are unbiased and the ensuing discui;;sio;n sheds 
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light upon why factorial designs are a common chqice fo;r thh purpos~. 
' 

Tq.e · X and ~ matrices of (2. 7) may be pa:rtitioned into their 

constcl,!lt, linear, and quadratic parts. Y: may be written 

( 2. 9 ) 

where 

(:r ~. 

~ l l ~ 11 

BO :;: l, Bl:;;, 
13 2 ' 

B2 ..., 13 12 

13 22 

2 2 
xll X21 XU xl1~21 x21 

1 2 2 
1 xl2 ~22 Xiz Xlz''z2 x22 

XO ;i: xl = and x2 = 

• 
1 2 2 

~N x2N :x;.lN xtN·:,i;ZN x2N . 

In matrix notation, the fitted plane is 

( 2. ~o ) 

w4ere 

Bl = ( X IX ) -i X i y 
1 l l 

( 2. 1i ) 

Now 

( 2. 12 ) 

or 

( 2. 13 ) 

.,., 
Hence if x 1' x 0 = <I> and .x1 .1x 2 . - <I> , then E (BL) ::;, :e1 and B 1 
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will be an -unbiased estimate of I3 i' FaGtol'ia,l d~signs e;njoy the 

pr ppe rty that xl' XO = <I> and X 'X = ..i. if th .. e variables are 
,1 2 "' 

properly coded. Also it is well known from least aquares theory that 
... 

the vartance-covar:i,ance matrix of Bl is the sam(;l w]iether the qµad" 

ratic terms are pres_ent or not. 

Definition 2. 7 . A factorial design whose pi;>ints fi;;ir:i:n a 

z,..dimensional factor space will be caHad a rectangular gri<;i, a 

square grid, or a unit grid acc;;:o:i;-ding as the factor points for:ro a 

rectangle, a square, or a µnit sq\l,are. If the lengt:q, o~ the side of 

the square grid is 2 h, the grid wiU be said to be of size h, 

Tlle orem ,_2. 1 . Let y :;;: TJ + e where 

( 2. 14 ) 

and let 

... ... 
Y ;:: 13 o + 13 Lxl + 13 ·i' 2 ( 2~115 ) 

be fitted.fl•,om. a rectangula<t" grid whose· cent;{;;}r ,is._ at. ( Oj .0) , 

.. Then if e = 0 , 

a TJ 

a x;, ( 0, 0) 

... 
13 . 

;J. 
i = 1, 2 

Proof: Let the design matrix be 

l -h -k 

X = l .-h k ( 2, 16 ) 
1 h -k 

l h k 
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'r'hen by least ~.quares, 

,.. y 
13 0 

' :kzl 
l l 1 1: 1 

131 = diag. 
l 1 

-h ~h 4 h 
Yz 

( 2. 17 ) 4' 4h2 
" Y3 
13 ~k k ~k k 2 

Y4 

s p that 

,.,. 1 
131 = 

4h 2 ' h ( 4h 131) :: 13 \ 

a:r;i.d 

132 
1 

k ( 4k 13 2) 13 2 ' ( 2, 18 ) = 
,;-2 

;:, 

Now 

a 11 
13 l + 213ux~ + l312X2 :: 

j a xl 

and 

a 11 
13 2 + 13 l2xl + Zf3 22x;2 ( 2. 19 ) = 

a X2 

which at ( 0, 0 ) reduce to 

a 11 
13 l and a 11 

~2 ( 2. 20 ) = = . 
. a xl a Xz 

The questipn naturally a,rises as to whether the coeffi.cients of 

the plane fitted without error are equal to the first order pc1.rtii;1.ls 

at an arbitrary point other than ( 0, 0 ) . That the anew~r is in the 
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affirmative is the content of theorem z. 2 , 

Theorem 2. 2. Let y and y l?e as in ( 2. 14 ) and ( 2~ 15 ) 

respectively and let y be fitted from a rec;:tangular ~rid with 

0 0 
center at ( x 1 , x 2 ) Then, if e = O , 

Proof: 

a TJ 

ax. 
1 

= 

Let the de sign matrix be 

1 0 h XL p 

l 0 ~h xl 
X ;:: 

l 
0 

x 1 +h 

1 
0 

x 1 th 

.... 
f3 . 

1 

0 .-k Xz 

Xz o+k 

0 x 2 .. k 

0 
x 2 +k 

i = 1, 2 . 

Translate the center of the design to the origin by means ,of the 

translation 

x' 1 

x' 
2 

0 = xz .... xz -, 

( 2. 21 ) 

( 2. 22 ) 

Sotvin.g for x 1 and x 2 in ( 2. 22 ) and substituting in ( 2. 14 ) , 

tlw re results 

1"'I = A.Q I + A. IX I t A. IX I '-' A. IX I 2 + A. 'x 'x I t A. IX , 2 
'I !-' !-' l l !-' 2 21 !-' 11 1 !-' 12 1 2 !-' 22 2 ( 2. 23 ) 

where 

0 0 
= l3 l + 2 l3 11 X 1 'T ~ l zX. 2 
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an,d 

( 2. 24 ) 

The design ( 2. 21) b(;lcomes the design. ( 2,16) and l:i.ence, by 

theore:rn 2. l, 

= !3 11 and = !3 2 I . ( 2. 25 ) 

0 0 If the partial derivatives ( 2. 19 ) , be evaluated at the point (x1 , x 2 ) , 

the result is the right side of ( 2. 24 ) . 

In the presence of error,, the coefficients of the fitted pla:n.e are nQt 

equal to the first order partial derivatives evaluated at t4e center of 

the q.esign. However, that th~ first order partial derivatives are 

estimated without bias by the linear fitted c oe;ifficients will he shown 

inth,eorems 2.3 and 2.4. 

Theorem 2. 3 . Let y be fitted by a rectangular grid whose 

center is at ( 0, 0 ) Then 

( 0, 0) . i q l, 2 

Proof; From theorem 2. 1, it is knQWI?- that 

a 11 _......,... 

a x. 
l 

... 
It remains to show that E ( !3 i) 

equation ( 2. 13 ) . 

0, 0 ) 
::!:! A. I'-'. • 

l 
i = l, 2 

= f3. but this is the content of 
l 



l'hat the first order partial derivatives are estimated witho\lt bia.s at 

an, arbitra,ry point is thEl content of theorem 2. 4 , 

Theorem 2. 4 . Let y 'be fitted by meap,s i;,£ a rectangular 

· 0 0 
grid whose center is at the point ( :xil , ~ 2 ) Then 

"' 
E ( ~. ) 

],. 
~ 
a x. 

1 

i = 1, 2 

Proof: The proof is accomplished by a trar.i.slation to the origin 

as in, theorem 2. 2 followed by the application of theorie:m 2. J, 

\ £' Frequently in what. is to olLow the resporise will l;>e conffi.dered 

withrout f;)rror and the iinear coefficients of the fitted :(!>l<=!.ne wiU be 

used on that basis. Although in practice there will always be error, 

t:h.Elorems 2. 2 and 2. 4 are comforting in that the linear coefficients 

c;1,re estimated witlwut bias when error i~ tc;1.ken 'into a-ccp~t. 

Definition 2. 8 . The line through thf;l centel;' of the design in 

a direction determined by the fitted plane in ftie presence of error 

will be cal~ed tli.e steepest ascent Une, 

For exarnple, for two variables x 1 and x 2, the fitted plane has the 

form 

and the steepest ascent line through the origin is 
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x;2 = ( 2. 26 ) 

Definition 2. 9 . The line through, a point in a direction dE]ter~ 

rninE)d by the first order partial derivatives at that po,int wilL be 

called the gradient line. 

The gradient line through the ol;'igin for a quadratic surface is 

X 
1 

( 2. 27 ) 

Responses at the :Points of a Square Grid 

Consider the response 

!3 . X ' 
i 2/ 2) ( 1 ) + e 

!3 22 X2 

( 2. 28 ) 

wb,ere 

and 
!3 11 

( 
!312/ 2 

In this potation the predicted re spor;i.s e of equation ( 2. 8 ) 1 

,.. 
y::: 13 0 + 13 1x 1 + 13 2x 2 , bec;ornes y::: B 0 + ZB 1 . ( 2. 29 ) 
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Now let B 2 = 12 and suppose tha,.t the responses y 1, y 2, y 3 , 

and are measured without error at the grid points ('-h~ - h) , 

( .. h, h), ( h, -h) a,nd ( h, h) Then at any of these grid points the 

response as given in ( 2. 28 ) may be written as 

( 2, 30 ) 

According to least squares 

13 0 ( 2. 31 ) 

Also, since the responses are measured without error, B 1 = B 1 

so that equation ( 2. 29 ) bee ome s 

( 2. 32) 

which is seen to be the same as y. If the center of the grid is not 

at the origin, a translation of the axes to the center of the grid results 

in new variables for w4ich again y = y at the grid poi!'),ts. These 

results are summa:i;ized in theorem 2. 5 , 

Theorem 2. 5 . Let y be measured without erro1: and be 

given by ( 2. 28) wherein B 2 = 12 . Then th,e leg.st squares 

plane passes through the respon$es at the points of a square grid. 

Suppose now that the matrix B 2 is allowed to be of the form 

B2 
bll 

h
0
22) 

= 
0 

so that the circular contours considered 

in theorem 2. 5 become elliptical.. 
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The i;>rem 2. 6 . Let y be measwred without eJ;"ror and be 

given by. ( 2.28) wherein B 2 = dic:1,g. (bll' b 22 ). Then the 

least squares plane passes thrc;>~gh the responses at the points of 

a squa.re grid. 

Proof: The respprises at.the grid points are given by 

( 2. 13 ) 

·Now 

,.. 
:eo = J/4(yl + Y2 + Y3 + Y4) "'l/4(4Bo + 4ZB2 Z') 

( 2. 35 ) 

so· that on tJ;ie grid points, y ;;: y . 

... 
It can be readily verified that y ~ y when the matrix ;a 2 

has off ~diagonal elements. The oremfii 2, 5 and Z, 6 can both b.e 

general:i.zed but since 2. 5 is a special case of 2. 6 it will suff:i,ce 

to ge:q.erali:ze the latter .. 

Theorem 2. 7 . Let y be measured without-error and be of the 

f orrn y = 11 + e where 'n = :a 0 + z B + z B z • 
'I 1 .. 2 ( 2, 36 ) 

and where the dimensions of B 0, Z, B 1, and B 2 c1.re respectively 

1 ::x; 1, 1 X p, p X l and 
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The:q, the least squares hyperplane, y .,,. B 0 + Z B 1 , pasE1es 

through tJ::i.e responses at the :(Joints of a p•dimens!onal s~uare grid. 

Proof: The responses at the grid points are given by 

2 
y = BO + Z Bl + h ( b l l + b 2 2 + . , . + b PP ) , ( 2. 37 ) 

Now 

2 = BO + h ( b 11 + b 2 2 + . , . + l;> PP ) ( 2. 38 ) 

where N = zP. 

This retatfonship between the least square$ plane fitted from the 

grid poin.ts and the responses at these points is surprif:ling, It is 

rema:r,kable that the rei;;ponses at the grid poi;nts sho1,1.ld lie in. a plane. 

Apparently the grid points in the factor space are memberi:i of a set 

of points for which the response is the same as the predicted r~ sponse. 

What is the locus of these points in the factor space? Evidently the 
.., 

answer may be found by setting. y = y . In order to 'visualize th,e 

geometry, consider the two 4imensional cai,e of theorem ·i. (> with 

bu and b22 

r~t· ~21 y = 

replaced by 13 l l and 

; j satisfies tl}e equation 
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( 2. 39 ) 

which may bl:l written as 

2 
h ( !3 ll + 13 22) 

+ :::I 1 . ( 2. 40 ) -z 
h ( 13 11 + 13 22) 

13 ll 13 22 

Suppose that the c;:ontours are elliptical and 1;hat y attains a 

maximum vaiue at some point in t~e factor space so th~t 13 11 and 

13 22 are both negative. Then [x:1, X2 ly > ~3 y, lie s within th(;) 

ellipse given in ( 2. 40 ) while 
~L' X:2 ly < ;3 lies outside the 

ellipse given in ( 2. 40 ), 

If in ( 2. 40) , 13 11 = 13 22 1 ( 2. 40) may be written as 

:;: ( 2. 41 ) 

which is a circle of radius '12~h . Suppose that an ex:pe:drnent is 

performed at a non~grid point on this circle. If t:he observed response, 

y, and the predicted response, y , a.re nearly th~ sq-me at this poi:q.t, 

it indic;:ates that 13 u and 13 22 are appro:ximatEJly of the samEJ 

rnagnHude. U in addition, the ex:perimente r has reae; on to be Ll,eve th,at 

13 12 0 , then circular contours are indicated. 

Choice of De sign Size 

Suppose that the 13 's of the fitted plane are ee;tima.ted by means 

of a square grid of size h 'Whose center is at ( 0, 0 ) . . Then 
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1 ~h ..,h 

l -h h 
X = ( 2. 42 ) 

l h 

l h 

and 

(X'X)-l = diag. 
1 

4 

so that var. var. = 

-h 

h 

2 
CT 

4h 2 

1 

4h 2 ' 

1 

4h 2 

It would seem advisable to take h as large as possibie so as to 

reduce the vi:l,riance. However, enlargement of the design, while 

red1,1cing the variance, gene rally increases the hias. The failure of 

the estimator y is due to the unavoidable variability of the data 

and to the inadequacy of the ass1,1med model in representing the true 

:model. A measure which ti:l,kes into acco1,1nt both of these factors ii;; 

the mean·-square-error, hereafter referred to as :rp, s. ~ 1 

By definition, 

m. s, e. ( j3 ) 
1 

( 2. 43 ) 

This may be written so as to displa,y the reb:1.tionship between m. s. e. , 

varian,c;e and bias as 

( 2. 44 ) 

where the first term on the right is the var 13 1 ap.d the sec;ond term 

is~e (bias in ~ 1 ) 2 

The following discussion attempts to give an indic;ation of the grid 



size required -in order to minimize the rn. s. e . 

Suppose that the experimenter has chose.J;l the rnod,el 

where 

but in reality, 

where 

Now 

... 
Po 
,.. 
p l :;: 

... 
P2 

so th,at 

Hence , 

y = 11 + e 

y = 111 + e 

3 
11 1 = 11 + p 111 xl 

1 1 
diag, (-, -z, 

4 4h 

l 1 
1 

4h2 
.) .,h -h h 

-h h -h 
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( 2. 45 ) 

( 2. 46 ) 

( 2.,47 ) 

( 2. 48 ) 

y 
1 

l Y2 
h 

·y3 
( 2'. 49) 

4 
Y4 

i( 2.,50) 

( 2. 51 ) 

Substituting the var p 1 and the ( bias in ~ 1) 2 into ( 2. 44 ) tl~ere 

results, 

2 
er ( 2. 52 ) 



Now 13 ll l is generally unknown Ol,lt mi;iy be expressed a$ 

!3111 = 
2 

C (T 

and on substitution in ( 2. 52 ) there rt;lsults 

-
m.s.e. ( 13 1 ) = 

2 
er 
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( 2. 53 ) 

( 2. 54 ) 

Differentiating ( 2 54) with respect to h and solving for the 

-h which minimizes m. s. e. ( !3 1 ) , 

d m. s. e. 

-dh 

and 

h = 

2 2 
' CJ' 

1' 3' s 

2 ( ccr) · 

( 2. 55 ) 

( 2. ~6 ) 

If ( 2. 56 ) is differentiated with respect to h the result is 

-
m s.e. ( 13 1 ) 

dh2 
::;: ( 2. 57 ) 

Since all of the exponents are even, ( 2. 57 ) is positive wb,ich insl).res 
.,., 

that the h of ( 2. 56 ) mi,;iimizes the m. fi;L e. ( 13 ~) • 

Now suppose that instead of ( 2. 47), the actual response hc1,s the 

form 

y = + e ( 2. 58 ) 

where 

T] 2 T] + ( 2. 59 ) 
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ln this case, it is readily verified that E ( 13 1 ) 13 1 so that 

~ 

( bicl. s in 13 1 ) = 0 · 

The use of similar calculations produces Table f. Table I is a 
! 

summary of the values of h required to minimize the associated 

mean square errors in the presence of c;1.U possible combinations of 

cubic terms. These combinations are listed in the fa:i;- left column. 

In this column the number l stands for, 
3 3 

13111 :xl ' 2 for \3 222:xZ 

3 for and 

mixture 

as 1, 3, 4 . 

4 for 
2 

13 122 :xl:x2 With this coding the 

is written simply 



TABLE I 
I .... 

DESIGN SIZE NECESSARY TO MINIMIZE M, S. E. !3 1 

.... 
C\lbic Terms _ ·M. S. E. !3 J 

l 

2 

3 

4 

1, 2 

1, 3 

1, 4 

2, 3 

2,4 

3,4 

1, 2, 3 

1, 2, 4 

1, 3, 4 

2, 3, 4 

1, 2, 3, 4 

o-2/ 4h 2 + h 4!311/ 

o-2/4h2 

o-, 2 I 4h 2 

o-2 I 4h 2 + 1112/h4 

o-2/4h2 +h4!311f 

cr2/4h2 +h4!31112 

Like 1, 4 

Like 4 

Like 1, 4 
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( Bias in ~) 2 h to r,nin, M. S. E . 

4 2 
h !3111 . 

0 

4 2 
h !3 Ul 

4 2 
h !3 Ul 

0 

4 2 
h !3uz· 

4 
h !3112 

-
,,.[2/Z(ccr) I/ 3 

h large 

h large 

, ,.,[2 ,'' ... 1/ 3 
2(co-) '. 

-{2 

i(c~ 
,1£Zr - · 1 3 

2(i;:;o-) 

zl/.f> 
. 1/3 

2( CO') 

h large 

' ,.,[ 2 

~(ca}/ 3 , 

-{2 ~-vj 
2(co-) 

,{"2 
· l/3 

2 (ca") 



CHAPTER III 

PROPERTIES OF THE METHOD OF 

STEEPEST ASCENT 

In accorda:µce with the method of st(;)epest ascent, an initial 

set of experiments are performed in order to determine the steepest 

ascent path. Add:i,tional expedments are perf orrped at points along 

thE; path until it is felt t~at fo.rther appreciable gain cannot be realized. 

No use is made of information available at th.e se points other than to 

decide whether or not additional experimentation sho1,tld qe carried 

on along the path.. 

Now it would seem th.at an acceptable strategy wou.ld 1:>e to run 
.. 

the first additional point sornewh,ere on the i,teepest ascent line and 

u,se this point together with the original design points to calculate a,. 

new path of steepest ascent. This proGess could be repeatEld, altering 

the path on the basis of information obtained at each a.ddhional point. 

The rather surprising fact for certain de signs is that, if addHional 

points are taken on; the path and used together wit4 the odginaL points 

to Gakulate a new path, the new path turns out to be the same as the 

original one. This res1:.1-lt will be proved a£ter the introduc,tion of 

formulae which simplify the caLculation of (he path based on additional 

points, 

24 



An lnvariance Property of the Steepest Ascent Pi;l.th 

Suppose that N 1 initial observations are takell at 1 points in the 

factor space where the response is given by y = TJ + e whl;l re 

TJ is quadratic in the p variables, x 1, x 2, . . , x . ln matrix 
p 

notation the N 1 responses at the N 1 design points can. be written 

( 3. 1 ) 

where x 1 is the N 1 x q design matrix, q is the number of 

parameters in the model, 13 . is a q x 1 vector of un,known para~ 

:meters, E 1 is an N1 x 1 vector of rc\.ndom errors, and Y1 is 

the N 1 x 1 vector of responses, Let 

y = X 13 ( 3. 2 ) 

be the least squares prediction of y based on the initial destgn x1, 

Now suppose that N 2 additional observations aTe taken. 

Denote the ass odated N 2 x q de sign matrix by X 2 and the 

response vector by Y 2 , Let X and Y be the design matrix and 

response vector associated with the N1 + N 2 = N observations i;Lnd 

let a be the least-squares estimate of 13 where a is based 

upon all of the N observations. Further let 

= sl 

( X 1 X) ;::: s .. ( 3. 3 ) 

25 
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~l 

::; 
-1 -1 -1 ,..L . -1 -1 

;:z:Sl (I+s 2s 1 ) ;;;:S1 (I+X21·;x:2s 1 ), 

( 3. 4 ) 

Now by using the relationship 

( I + AB ) - l = I ~ A ( I + BA ) -. l B ( 3. 5 ) 

in ( 3. 4 ) andassociating x:2 • with A ar.i.d 

resu.lts 

( 3. 6 ) 

Now let 

J xt sl 
-1 

;:: 

-1 
~ ::; Xz S1 X'z 

G ( I + R) 
-1 

= 
.., 

Q ~ Yz ~ Xz ~- ( 3, 7 ) 

Then ( 3. 6 ) may bJ written 

-1 S ,..1 _ s = 1 JI GJ. ( 3. 8 ) 

Now 
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= 

= 

The second term of ( 3. 9 ) may be written 

-1 
S l Xz 'Y 2 = J ty 2 = J'GG-lY 

2 = J'G (I+ JXz ') Y 2:;: J'GY z+J'GJXz'Y 2· 

( 3, 10 ) 

Substituting ( 3. 10 ) in ( 3. 9 ) therEJ results 

.... 
a = [3 + Jrcy 2 -J'G:X2 [3 = 13 + J' G(Yz - X 2[3) = ~ + J' GQ. 

( 3, U ) 

The advantage in using ( 3. 8 ) and ( 3. l l) is thii!.t in finding 

-1 
S and a , the dimension of the matrix ( I t R ) which must be 

inverted is N 2 x N 2 . These expressions can be used profitably 

whenever N 2 is less than q. 

The method for finding a and 
-1 s 1:;>ased on new observations 

with a minimum of calc;:ulation was set forth by R. L. Plackett ( 5 ) 

and the expressions for a and S but not their der:ivation, are to 

be found in ( 1 ) . 

Theorem 3. L Let a unit grid with center at the origin be used 

to determine the steepest ascent line . x 2 = 
[3 1 

lf a second 

steepest ascent line, x 2 = 
az 

x 1 is determined by means of 

al 

the initial grid and an additional point i:m the fin,,t nne, the second 
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line.will be the same as the first line. 

Proof: The grid d(i:lsign is given as 

l -1 -1 

l -~ 1 
X = 1 l 1 -1 

( 3. 12 ) 

1 l 1 

··, and the, fifth point may be taken as 

... ... 
X 2 = ( 1, h 13 V h 13 2 ) ( 3. 13 ) 

Now by ( 3. ll ) 

... 
a = 13 t J I GQ 

and since in the present appLication N z ~ 1, both O and · Q 

are scalars. Now 

J' -1 .1 l x I l X I = s1 Xz' = 4 3 2 =-r 2 ( 3. 14 ) 

so that 
... 

ao !3 0 l 
,.. l ... 
al = 13 l -rl-7 h!31 GQ ( 3. 15 ) 

... 
a2 13 2 hl3 2 

It follows that 

... + 1 
... GQ 

ao = 13 0 GQ = 13 o ( 1 + . ;::J 
4 

4 13 0 

,.. hGQ 
131(1+ 4 
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1 .... hGQ 
a2 = 13 2 + T""" h 13 2 GQ - 13 2 ( 1 + 4 ) . ( 3. 16 ) 

Hence 
.,.. 

a2 13 2 
( 3. 17 ) ~ = -

al 13 i 

so that 
~2 

is the line 
a z 

Xz = xl same as Xz +·~ x1. ~ 

13 1 al 

------
It is to be noted that the pr oportionali,ty of the coefficients 

ip. the last proof did not extend to 13 0 c;1.nd a O . TJ+e factor h was 

not specified and it may be seen from ( 3. 15 ) or ( 3. 16 ) that if h 

is chosen so that 

-h13 0 =1, ( 3. 18 ) 

then ( 3.15) becomes 

a = 13 + i- h G Q ~ = ( I t + h O Q) ~ ( 3, 19) 

from which it is apparent that the proportion,ality property does 
..,. 

extend to a O -and [3,, 0 . 

The magnitude of h determines the step size taken a~ong the 

steepest ascent line. Apparently the choice of h c;1.s given by ( 3. 18) 

has no particuLar merit other than simplifying the ca,.iculations. 

Definition 3. 1. 1£ the second steepest ascent line is the same 

as th,e first, the steepest c;1.scent line will be said to be invariant, 

Thus the mathematical expression of invaria,.nce is 
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,... 
a. 

J 
(3 . 

J i, j = 1, 2, . . . , p ( 3. 20 ) 
a. (3. 

1 1 

Theorem 3. l proves the property of invariance for p = 2. It is 

natural to inquire if invariance holds in p-dimensional space in 

general. That it does for certcl.in designs is affirmed in theorem 3. 2. 

Theorem 3. 2. Let be determined fr om the 2P - N 
- 1 points 

of a p-dimensional unit grid design with center a,t the origin. Let 

a be determined fr om these points and th,e addi.tional point 

X2 ::; ( 1, h (31' h (3 p ) The;n 

~. a. 
~ = J -:::---,- i, j = 1, 2, . , . , p . 

(3 . a. 
1 1 

Proof: 

(X IX ) -1 1 
I so that = l'fl p+l 1 1 

l 

h(3 l 

J' 1 
x2 I 

l 
=-I =w Nl p+l l 

h (3 
l? 

Now by ( 3. 11 ), a = (3 + J I GQ and since N 2 = 1, G and Q 

are scaJars. Substituting in ( 3. 11) there results 
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.., 
ao 13 0 1 

a 1. 13 1 hl3 1 

::; + GQ 
~ ( 3. 21 ) 

l 

a 
p 

... 
hl3 •.•. 

p 

a. = ( 1 + 
1 

GQh 
N. 

1 
i .-- 1, 2, . . , , p. 

from which 3. 20 ) follows. 

'l'he relationship between the design matri:x, the: additional points, 

and the invariance property is given in theorem 3. 3 . C::onsider the 

following conditions: 

( a ) 

( b ) 

( C ) 

..,. 
a 

j 13 . 
= J i, j = ... 

a 
i 13 . 

1 

..,. ... ...... 
= ( 1. h 13 t, h. 13 2, . . ' ' • h 13.p ) 

(X 'X )~l 
1 1 ir ) ·· 

p 

l; 2, ••• :I p 

Condition (a) is the mathemp.hcal state;ment of invariance, Condition 

( b) insures that x 2 is in the direction of steepest ascent while 

condition ( c ) deals with the form of the d13sign matrix. 

Theorem 3. 3 . Any two of the above th:t;'ee conditions impLi~s 

the third. 
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Proof: Let 
... -1 

a. (3 ' sl J l;:>e pc1,rtitipned as indkated. 

.,. 
a. 0 !3 0 

___,. 

,,.,. 

al 13 l 

·to) 13 (50) a ~ = - :a 1 , Al , 

... ... 
a !3p p 

u 0 0 0 

Q V 0 0 

µ 

v:J :;: ( 3, 22 ) 
0 

0 0 

.o 0 V 

and 
... 

4 13P) :;: (x20 • x~1) = ( 1, h B11 ). 

,,.,. 

To :prqve that (b) ancl ( c) imply (a), the ~quatio11, a :;;,; (3 + J'GQ 

is written using the above partition$ as 

( ;3. 23 ) 

On equating corresponding members and using the valu.~Ei indicated 

in ( 3. 22 ), there results 

= + u G Q 



Now G Q is a scalar so that 

A.1 :::; B ( l + v h G Q ) 
l 

from which condition ( a ) follows. 
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( 3. 24 ) 

( 3. is ) 

To provwthat ( a) a.nd ( C ) imply ( b ), by ~ondition (a) ' 

.A. 1 · may be wrftten as k B1. Hence 

(~J GQ 

so that 

It foHows frbm ( 3, 27 ) that 

( k - 1 )B 1 = GQ v X 21 •. Hence ::X 21 :::; 

which indicates that 

condition ( b ) . 

X 
21 

is a scalar rnulti,ple of 

. k - 1 

vGQ 

( 3. 26 ) 

B' 1 

~ 1•asin. 

In order to prove that ( a ) and ( b ) imply ( c ) , the 

symmetric mc;1.hix S 11is partition~d as 

C pp 
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Now 

so that 

J ::: ( coo 

clO 

+ 

+ 

Hence 

GQ. ( 3, 28 ) 

On equating corresponding elements of ( 3, 28 ) , there res\lLts 

::;: + ( 3, 29 ) 

and 

( 3, 30 ) 

Now by (a), A 1 may be written as kB 1 so that ( 3. 30) becomes 

kBl = Bl + c~o GQ + ell hBl G Q , ( 3. 31) 

Since ( 3, 31) holds for all B 1, ClO = 0 so that 

( 3, 32 ) 

It follows that 

= I 
p 

( 3. 33 ) 

so that 

k I I 
::; _ _£_~_-,-l2...... = 

hGQ hGQ 



H<;lnce c 11 is a diagonal matrix as ip. condition { c ) . Since 

c 10 = 0, the ,expression £or A 0 in { ~. 29 ) beci;:imes 

so that 

A = 0 + • COO G Q 

Ao ... Bo 
............... -.~ 

GQ 

{ 3, 34 ) 

( 3, 35 ) 

Note that if the -invariance property is extenq.eq. to a O pend 13 0 , 

then Ao = kB-- and, as in ( 3, !8 ) /. BO = L/h. Hence 0 

3, 35 ) becomes 

k :So Bo { k .. l ) Bo k.,. 1 

coo = __,,__ ;:,; ~-~ = 
GQ GQ GQh 

wh,ich may be recognized as the scaiar :r:n\l.Ltiplier of lp occur:r;i.ng 

in tht:: e;x:pres sion for C 11 . 

S\lppose that instead of Jµst one additional point, N 2 iidd:i,ticm.al 

points were taken in the steepest ascent direc~ion. Would th,e new 

steepest ascent direction based on the originc1.l grid a:i;1d the N 2 

additional points be the same as th.e old? Again t4e a:q.sWEH' is in the .1 

affirmative and this is the content of theorem 3. 4 . 

...,. 

~orem 3.4. Let 13 be cletermined f?,"orn tbe 

zP = N 1 points of a p~dimensionat u.nit grid. Let c;i. q~ 

d,etermined from the N 1 initial points and N 2 c;1-dditioni'l.l 

points which lie in the steepest i;Lscent direction, Then 
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13 • a, . ~-;;: +-. i, j ,.. l, 2, , .. , p . 
13 . a. . 

1 1 

Proof: The N 2 x p + l matrix, x 2• Il)fl.Y be written ap,d 

partitiqn-ed as 

- -
hll3 L hl(3 2 

- -
l hzl3 1 hzl3 2 

x2 = 

l 

Now W 1 may be written c1,s 

H = 

h BI 
- 2 l 

hN 
2 

and B = l 

Then ( 3. 36 ) may be written as 

" 
hlf3 p 

-
h 13 2 p 

B I ea H;B l 
l l 

13 p 

X: 2 = ( W o' W l ) = ( W o • HB 1 ' ) . 

( 3. 36 ) 

( 3. 37 ) 

( 3, 38 ) 
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Now 

( 3. 39 ) 

and 

-1 s1 may be partitioned as 

= 

Then using 

written as 

J 

so that 

~1 ~~-... ~.~o-\ 
0 

0 

1 

Nl 
0 

0 

0 0 

1 

~ 

as given by ( 3. 4 0 ) in ( 3. 3 9 ) , 

( WO' HB/ ) 

J' = 

( 3. 40 ) 

J :may be 

( 3, 41 ) 

Although explicit expressioni;i m;:i.y be written for O and Q~ ~t 

-1 
is only nee es sary to note their dimensions. Now G = ( I + R ) · = 

so that the dimension of G 

so that t:q.e product G Q has dimension N 2 x 1 1 Now SUrbstituting 

the expression ( 3, 41 ) for J' in the equation £pr q and 



partitioning a as indicated then~ obtains 

a = 

and 

a 
p 

Now since H' 

scc;l,lar. Also 

is 1 X 

ell = 

= 

Nz and GQ is 

1 
I s D that 

Nl p 

= 

38 

( 3. 42 ) 

( 3. 43 ) 

N2 X 1, H'GQ is a 

. B'GQ 
Bl ( 1 + ~-~ ) . ( 3 1 44 ) 

l 

Let = k, so that ( 3. 41 )' bec::orpes AL = kB 1, that is 

a2 
= k 

a 
P/ 

from 'wnicb the invariance property follows. 
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In view of the g~neri;tlization of theorem 3. 2 q.$ given in 

theorem 3. 4, It is to be e:x:pected that theorem 3. 3 :rnay alsp be 

e:x:tE:nded. Ttie generalization is given i:p. theore;m 3. 5 Consider the 

following conditions: 

a. . !3 . 
( a ) _J_ = J i, j = 1, 2, p ~ . . ... ..,. 

a.. !3 i 1 

... A 

1 hl (3 1 h1!3 2 h1!3p 
... ... 

1 hz!3 1 hz!3 2 h ~ . z p 

( b ) xz = 

" ... .,.. 
-
1 hN !31 h,N (3 Z hN 13 

2 2 2 p 

( C ) (X 'X ) -l 
l 1 = (: v:J 

These conditions are the same as those pre<;:eding tht:iore:m 3. 3 

except that condition ( b) irnplieE? that there are N 2 additional 

points in th~ direction of steep~ st ascent instead of just o:r;i.e ;,;tdd:i.tional 

ppint. 

Theorem 3. 5 , Any two of the above thrt;ie c ondiUons imply 

the third. 

Proof: x 2, a., and f3 may b~ partiUoned as in theorem 3. 4, 

( X I X (:-1 may be partitioned as 
l 1 



(X'X)- 1-1 l -

u 0 

0 V 

0 0 

40 

0 

0 

= (:00 :J 
V 

Tq.e proof that ( b) and ( c) imply (a) is the content pf 

theorem 3. 4 
1 

with -. Nl replaced by u and, v as indicated in 

the above partitioning of 

To prove that ( a) and ( c ) imply ( b) t:h~ equation 
... ,.. 
a = 13 + J'GQ is written as 

( A 0) ( B 0) (u O ) (w O ') 
kB) " Bl + 0 vlp Xzt' 

GQ ( 3. 45 ) 

where A.1 has beep. replaced by k ;s 1 according to ( a ) . Equating 

corresponding eiements of ( 3. 45 ) the:re res\,l.Lts 

and 

= 

Equation ( 3. 47 ) may be written as 

\( k - l 

V 

or 

= 

£B' .. l 

( 3. 46 ) 

( 3. 4 7 ) 

( 3. 48 ) 

( 3. 49 ) 

wbere M = ( GQ)' has dimension · l x N 2 · and £ is the scalar 



k .. l 
V 

Evidently, the elements 

:x. . = 
lJ 

Let 

I+Jay be writte:p. _as 

all [31 a12f3 2 
... ... 

a21f31 a22f3 2 

( ml' mz, , '.mN) 
2 

... 
aN 1f31 

2 
aN f 2 

2. 

:x; .. 
lJ 

' ' . 

. T 

are of the £ orm 

l+lN ) 
2 

Then ( 3, 49 ) 

... 
al ~ p :p 

' ... 
a ~ . Zp-· P 

... ... 
(.t f3 L ;£:(3 2 ~ ' ' .. .t f3 ) . ,_ p 

" 
aN Pf3 P ( 3, 50 ) 

z 

Now ( 3. 50 ) must be true for all M and iP particular must hold 

as M ranges over the 1,1.nit vectors 

ci.nd 

u 1 ;::; ( 1, 0, . , 0 ) , 

u 2 ;::; ( 0, l, . , . O ), 

UN z a ( 0, 0, . . . 1 ) . 

When M = u 1, equating the corresponding eleI+Jents o~ ( 3. 50 ) 

yields 

so that ;::; = 

::; 1 f31 

= 1 f3 
. -~ 

= 

41 



More generally, when M = 1,li ' 

ail 13 1 = 1 13 1 

ai2 P 2 = .epz 

a p = 11 p 
1p p p 

so that ai 1 = ai2 = a. 
ip 

Since this 18 true for i = 1, 2, 

alike. Hence x 21 has the form 

~ 

alp 1 a1~2 alp p 

azP 1 azP 2 a2pp 

aN ~ 
2 p 

which is of the forrn of ( b ) . 

N 2, the a.. in any row are 
lJ 

al Bl 
I 

a2Bl 
I 

= = 1\. Bl I 
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In order to _prove that ( a) and ( b) imply ( c ), the symmetric 

matrix 
-1 s 1 is partitioned as 

cop 

clp roo COl) 
-

ClO cu 

C 
PP 
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Now J = ( w O' HBl I ) coo COi) so that 

C 10 ell 

J' coo COI) (B~~ Hf;:'!nce ,.. 

c10 cu 

(::) (:OJ coow o' + c 01B/I') 
= + GQ 

Cl Q w QI + CllB 1H 1 ~ 
( 3. 51) 

It follows that 

( 3. 52 ) 

and that 

( 3. 51 ) 

Now by ( ah A 1 = kB 1 so that ( 3. ,53) becomes 

( 3. 54 ) 

Sin,ce ( 3. 54) must be true fol:" all vecte>rs B1, C lO ..,. 0 ·so 

that 3. 54) beco:mf;ls 

Now H 'GQ is a scalar so that ( 3, 55 ) rne.y be written 

implies that 

It follows that 

( k I - H I G Q Cl l ) B 1 = l3 1 · whi9h 

k I - H' GQC ll = I. 

( k - l ) 

H'GQ 
I so that C ll 

( 3. 55 ) 
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is a scalar matrix as in ( c ) . 

If the inva:r;-iapce property is €):!(;tended, to include and 13 0 

then H must be chosen so that Bo Ii = W O. Th,er;i. sine:€) c 0 L = 0, 

eC3ruation ( 3. 52 ) becomes 

( k - 1 ) BO 

W 1 GQ. 
0 

QI G'W . 0 

( k - 1 ) Bo 
= 

= ( k - 1 ) -- which is the ,scalar multiplier of I in the 
H' G Q 

expression for c 11 above, 

The Predicted R ~sponse 

Thus far the invatiance property has been inv«;lstigated but :n,o 

expression for the response ~t an addHional point has been given. 

Suppose that a p-dimensional unit grid has been employed to estimate 

13 and that in addition to the NL = zP grid points, i:i,n <;l.ddition.a.l 

point x :;;: ( x 1, x 2 , ... , xi? ) is used. It is conveniE)nt then to 

distinguish between; 

( a ) y, the observed response at x, 

( b ) yl' the least squares p:r;-ediction of 11 at X on the 

basis of the Nl points, and 

( C ) • Yz, the least squares p:rediction of 11 at X on th~ 

basis of .the Nl + 1 points, 
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Clearly, and Yz ::; . Xa . Now suppose that the additional 

point is in the steepest ascent direction so that in matrix notaticm, 
... 

= ( l, h 13 1 , . . . . , h 13 P ) = ( 1, h B 11 ) • Now 

... 
Yz = Xz a ::; X z ( 13 + J' GQ) 

. ,. 1 ... 
= X 2 13 + x 2sl ·x2 1 G(y,.x213) 

R)., I 
... 

= yl + R ( I t (y - y L) ( J. 56 ) 

Now R is a p9sitive scalar written 

1 
0 

(h~J a 

: __ 
l -1 Nl 

( l + h 2B/B{ R = X2S1 Xz' = ( l, hB l 1 ) __:e_ 
0 Nl 

Nl 

Denote the quantity R ( I + R ) - l = 
R . 2 

so that o < k < 1. 
L + R 

Then by ( 3, 56 ) , 

Yz = ( 3. 57 ) 

so that 

2 ... Yz"'Y~ 
Y 2 - y 1 = k ( y - y l ) and O < < l . 

y - Y1 

( 3. 58 ) 

It is to be noted that is simpLy th~ sum of squares 

of the elements of the additional point divided by the number of points 

in the initial design. The result ( 3. 58 ) is more general than has 

been indicated since it is valid whenever the d~s:ign matrix has the 

form x 11 x 1 = pI . Further, t:q.e additional point is not restricted 

to th.e steepest ascent line but may be arbitraJ;y, In these circ:;urnstances 
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which is a positive $Calar. 
p 

Then ( 3. 56 ) becomes 

p 
+ ( y - Y1) + 

p 
( 3. 59 ) 

Hence ( 3. 58) is valid in the general case. 

The expression ( 3. 58 ) symbolizes a condition wh,ich intuition 

could have foretold. It states that the observation y and the 

prediction on the basis of N + l pqints, y 2 ,, either are both 

greater than the prediction on the basie of N 1 points, y 1, or they 1;1,re 

both less than y 1 . 

and y 1. 

It also :i,mplies that y 2 is always betweer:i. y 

These facts can be :more elegantly stated if ( 3, 57) is written as 

2 2 -
Yz = k y + ( l - k ) Y1 ( 3, 60 ) 

from which Yz may be recognized to be a convex combination of 

y and. y 1. In addition, since k 2 = the further 

along the steepest ascent path the additional obeervati.on is taken, the 

greater is the weight placed upqn it. Figure l indicates th.E:l retative 
,., 

positions of y, y 1, and y 2 in a two dimensional factor space. 
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J 

I 
l y 
I 
I ~ 
r Yz 
I 
I 

j Y1 

I ---_ __.,.... 

--- -(Steepest ascent line) 

Figure l.. Relative Magnitude of Observed and Predicted 
·Responses 

A judicious choice of the location of the first expf;)riment on 

the steepest ar:;cent line is a problt:1rn to which some spa~e will be 

given subsequently. Apparently the step size along the steepest 

ascent line is something about which the expedmenter is supposed 
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to have some feeiling. To be more concretl:l, suppose the experimenter 

wishes to take a step of such a size that the predicted yi€;lld wiLl 

increase by an amount II . 

Now at the origin, x = ( 0, ... , 0) sothilt X ~ ( 1, 0, ... ,0) 

and 

= !3 0 ( 3. 61 ) 
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.... 
It is desired to determine h so that at X ::; ' • • J. hf3 ) p 

the response has increased by an amount II i that is 

y ::; ( l, hBl I) (::) ::; II + f3 0 (3.62) 

Then f3 0 + hB 1 'Bl ::; II + f3 0 s; o that 

h II 
::; ( 3.63) 

B1'B1 

Hence an increase in response by the amount II is predicted at the 

point 

'Upper 

IIB' 
l 

B1'B1 

. 13 11 
and Lower Bounds for. r , .. 

"- -~ 22 

( 3. 64 ) 

Usually the experimenter has some prior information regarding 

the response under considera.tion. He is quite likely to know whether 

the response has a maximum or a minimum in, the region of interest 

and he may even know the shape of the factor space contours. The 

following discussion indicates a position along the steepest ascent line 

where the first experiment may be run in ord,er to utilize prior inforrna-

tion. 

Consider the response 

and the least squares prediction 

- - -
Y = (3 0 + f3 lxl + 13 2x2 + f3 1ix:1x2 ( 3. 65 ) 

where the 13 IS are estimated by means of a unit grid. It may 
( 
\ 
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readily be verified that 

A 

E ( [3 O ) = [3 0 + [3 11 + [3 22 

A 

E([3L2) = f312 

so that 

( 3. 66 ) 

Henct;i the difference between the observed response and the p:i;,-edicted 

response at a point ( x 1, x 2 ) is an unbiased estimate of 

The gradient line at the origin has the equation x 2 = 13 2/[3 1 ~l 

so that a point on the gradient line may be written as ( h[3 1, h[3 2 ) 

Then the difference y - y at the point ( h[3 L' h[3 2 ) is an estimate 

2 2 2 2 
of f3 11 h [3 1 + [3 2 2h [3 2 - [3 11 - [3 2 2 · 

That is, 

2 2 2 2 
= f3 uh f3 1 + f3 2 24 f3 2 - ~ u , ~ f3 2 2 · ( 3 · 6 7 ) 

A 

E( y - y ) 

The quantities [3 1 and [3 2 have been estimated by ~ i anrjl [3 2 . 



f3 11 and f3 22 are unknown while the choice of h remains witb 

the investigator; Suppose li is chosen so that h z 1312 - l > 0 

2 - 2 
and h f3 2 - 1 < 0 .. Also let the observed response at 

..., - ... 
( h 13 1,. hf3 2 ) be larger than that predicted there so that y .,. y > O • 

Then 
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. 2 "' 2 2"' 2 
f3 11 ( h . f3 l - l ) + f3 22 ( h. f3 2 . - l ) > O · ( 3. 68 ) 

Further, if > 

f3 11 
> 

f3 22 

whereas if f3 22 < 0 

O , ( 3. 68 ) may be written 

• 

< 

2- 2 
1 h f3 2 -

h2 ..., '2 
f3 1 - 1 

h 2~ 2 2 .., l 

h2~12 -1 

( 3, 69 ) 

( 3, 70 ) 

Now the right side of ( 3. 69 ) and ( 3. 70 ) is positive so that in the 

fir st case it serves as a lower bound to the :ratio f3 1 / f3 22 while in 

the second case it serves as an upper bound to the ratio 13 11/f3 22 

2- 2 2"" 2 
Now consider the combination h 13 1 - 1 > 0 , h .13 2 - 1 > 0, 

-
f3 11 < 0 , and f3 22 

< 

< 0 Then ( 3, 68 ) leads to 

h2~22 1 

hz,;.f312 - 'l 
( 3. 71 ) 

Now: the right side of ( 3. 71 ) is negative while the left sid1:1 iEi positive 
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so that evidently this combination of signs ca;nnot occur. 

Now take ( h 2~ 1 2 - 1 ) > 0 ' ( h 4~ 2 2 .. l ) > 0 ' 

f3 11 > o, and f3 22 > 0, Then ( 3.68 ) leads to 

· 2"" 2 1 f3 11 
> 

h f3 2 
(3,72) 

f3 22 2- 2 
h f3 1 

Since it is known at the ou,tset that 

si,p.ce the right s:j.de is negative , 

1 

.,. 

f3 l l 

13 22 

l 

is positive and 

3, 72 ) yields .no new information. 

Denote 
h2f322 

by t, Let U ( t ) denote an 
1 

upper bound of t and U ( -t ) denote an upper bound of ~t. Let 

the symbol L ( 'f f ) be used in a simitc;1.r fashion. A lip o let. N 

indicate th.at no new information is avaHabLe and Let 1 indicate 

that a particular combinc;1.tion of signs ca:nnot occ::ur, With this 

' ;notation, table II summarizes all possible sign combinations for 

y > y. When y < y it is merely necessary to inter.change 

N with I and L with U . 

..A. knowledge of the ratio 13 11 / f3 22 can be usefu,l in some 

instances. If interactiop. is present tp.e a;xes of the contour system 

.f3 l 2 
· will be rotated through c1.n angle 9 where tan2.. e ~ _...,.,.......,.. __ 

1311 ... 1322 

If A. /A. is close to l, then 9 is close to 45° t-'ltt-122 or. 135° 
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depending on the sign of 13 12 . If the experi:i;nente r feels that no inter

action is present then 13 12 = 0. In this case it can be shown that the 

eccentricity, p , of the elliptical contours is given by p = "1 ld2 _ 1 I 
where d = 13 11 / 13 22 . Hence a measure of the degree of elongation 

of the contour system is available. 

TABLE II 

UPPER AND LOWER BOUNDS FOR 13 11/13 22 

2"' 2 1 y .. y h 13 1 - 2"' 2 
13 22 h 13 2 ~l 13 11 
-· -.-.. 

+ + + + + 
+ + + + 
+ + + + 
+ + + 

+ + + + 
+ +- + 
+ + + 
+ + 

+ + + + 
+ + + 
+ + + 
+ + 

+ + + 

+ + 
+ + 

+ 

13 u/ :13 22 

N 

u ( -t) 
L ( ~t) 

I 

L ( t ) 

N 

I 

u ( :t 

UP) 
I 

N 

L ( t 

I 

L ( -t ) 

u ( -t ) 

N 

In the case where 13 12 = 0 , e©1uation ( 3. 74) gives the equation 

of the line from the origin to the true maximum as 
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An estimate of the ratio 13 1 /13 22 can be used to adjust the slope 

.... .... 
13 ~/13 1 of the path of steepest ascent. 

Gradient Properties 

Consider the response~ y :;: 11 + e where 

Now 

and 

0 11 

o x 1 

If these are set equal to 

results 

= 

and 

= 

0 and solved for 

4 j3 11 j3 22 

213 2 13 11 ~ 13 1 j3 12 

1312 4 13111322 

and 

( 3. 73 ) 

x , there 
.2 

( 3. 74 ) 

which are the coordin.ates of the maximum of 11· Since the coordinates 

of the maximum will often be referred to 1 let it be agreed to denote 

tb,em by ( ~<: 
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The path in the factor space which leads to the coordinates 0£ the 

true maximum is along the line 

* 
2 

x 1, provided [3 12 - 4!3 uf3 22 f o. 

The gradi~nt path is normal to the factor space contours at the or~gin 

and has the equation x 2 = f3 2/[3 1 x 1 . Unfortunately, only in very 

special instances will the gradient pass throug4 the coordinates of the 
I 

maximum. Evidently these paths will coincide wheneve.r 

2f32f3u - f31f312 
- . 

2 f311322 - f32f312 

which reduces to 

2 2 
f312 ( f31 - f3 2 ) :;: 0 ~ 

This is satisfied whenever 

::; ~ 2 J ( a ) f3 22 = f3 11 and 

( b ) f3 22 = f3 11 and f3 12 :;:, Q , O!t° 

( c ) j3 2 = 0 and f312 = O ' 

( 3. 75 ) 

( 3. 76 ) 

In e<).ch of these cases, it is geometr:i.cally evi9-ent that the grcidient 

line at the origin passes through the center of the contour system. 

In ( a ), the line X = 2 
passes through the center of the 

system and the line x 2 = x 1 is tangent at the origin. In case 

( b), the conto1,1r system is circular while in case ( c L the center is 

on the x1 axis . 
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In general, the factor space contour system w:i.ll not be one of 

the special cases discussed in the previous paragraph, The experimenter 

would indeed be extremely fortunate if the contour system were such 

that the maximum on the line was close to the true 

maximum .. In accordance with the steepest ascent technique, experi-

mentation may be continued at the points of a second grid, the cer,i.ter of 

whic;h is located at the maximum of the first steepest ascent path. 

;Further experimentation is then performed along the line d,eterrnined 

from the second grid. It is relevant therefore to fin~ an expression 

for the maximum resl?onse attainable on the gradi(,mt and for the 

coordinates of the point where this maximum occu,rs. It is also 

relevant to find the equation of the gradient at this maximu,m point. 

Theorem 3. 6 . ·· The maximum value of l'J subject to x 2 = mx1 

occurs at the point 

.· ... and is given by 

where 

a = 13 1 + 

_ · ma 
Xz - -21>' 

l') = 13 0 -

ml3 2 and b = 

( 3. 77 ) 

2 
a 

2b ( 3. 78 ) 

1311 + ml312 
2 

+ m ~ 22 · ( 3. 79 ) 

Proof: On substituting mx 1 for x 2 in ( 3, 73) , there re.suits 
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= ( 3. 80) 

· Then finding and setting it equal to 

2 = l3 1 + •. m l3 2 + . Z ( ·ij 11 + ;r.p ~ 12 + l3 2 zrt:l ) X 1 = O 

so tJ;iat 

xl 

m( 13! +·:tnl3z) 

there by verifying ( 3. 77 ) ~ Using ( 3. 80 ) , 

2 2 a a 
11=130-~+~-b 

4b 

thereby establishing ( 3, 78 ) : 

2 a 
= 13 0 .,. ·2b ( 3.81} 

In particular, the line x 2 . = mx1 is the gradient lin~ when 

In this case the mc;1.xi:tri:um response occurs at the point 

2 2 
131(131 +132 ). 

( 3. 8 2) 

and is giv~n by 
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= 
(j3 2 + A 2) 2 

1 t-' 2 
( 3. 83 ) 

Theorem 3. 7 . Th.e gradient line at the point on the line 

x 2 = mx1 where 11 is maximized, is perpendicular to the line 

Proof: Th-e maximum point may be shifted to the origin by the 

translation 

= 

= 
where 

h = 
a 

and 
2b 

xl - h 

X2 - k 

ma 
k= ~ lb.....,.,_ 

( 3. 84 ) 

( 3. 85 ) 

are the coordinates of the maximum point as given in theorem 3. 6 . 

Then equation (3. 73) transforms to 

where j3 1 1 and j3 2 1 are given by 

Hence the gradient line at the o:6gin in the z space is 

j3 2 + j3 12h + 2 13 22 k 

131 + 2j3llh + 1312k 

( 3. 87 ) 

( 3. 88 ) 



U s~:ng ( 3. 85 ) and ( 3, 79 ) , the :q.umerator of this· equation may be 

written 

-
213 2b - a 13 12 - 2ma 13 22 

2b 

213 22:rmi 

2b 
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2 
2 13 2 ( 1311 + mf3,l2 + 13 22m ) - (131+:rni32) 1312 - Zm(l3 .1+ml32> 13 22 

2b 

(2.13' 213 11 + ml3 zl3 12 - 13 11312 -· 2ml3 2213 1) 

2b 

The denomi;nator of ( 3. 88 ) may l;>e written 

= 

213 11 a 
13i----

2b 

213 1 b - 213 11a - i~ 12ma 

2b 

. 2 
2131(1311 +mi312+ 1322m > - 21311(131 +ml3z)-ml312(131+mi32> 

2b 

= 
m ( 13 113 12 + 213 l 13 2 2m - 213 213 11 - m 13 z 13 12) 

2b 

Therefore equation ( 3. 88) becomes 

213 z 13 11 + m 13 z 13 12 - 13 113 12 - 2m 13 22 131 

-m ( 213 21311 + ml3 zi3 12 - 13 113 12- Zml3 2213 l) 

and provided the denominator is not zero, 

1 

( 3. 89 ) 

{ 3. 90 ) 
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'rhe condition tha,.t the denominator is not zero implies that m 'f O . and 

m f 
1311312 - 21321311 

13 21312 - 213113 22 
As m _. 0, 

1 
- oo, sothatthe 

m 

gradient lines approach perpendicula,.rity. As may be 'se~n by ( 3. 75 ), 

if m = 
13 >···l?·-- -

1 12 
, then the line goes through 

the true maxim-u:m. _ Substituting and as given by ( 3. 84) 

in ( 3, 90 ) , there results 

1 
( 3. 91 ) ...,..._ 

m 

Sinc;::e the slope of this line and the line x 2 = mx1 are negative 

reciprocals, the lines are perpendicular. 

In particular I theorem 3. 7 applies when m 
13 2 

= ~ , so that 
t-' l 

the .s·ec ond gradient line is perpendicular to the first, 

- An examination of equation ( 3. 75 ) has shown that only under very 

special circumstances will the grc\-dient at the origin pass through 

the true maxim'J.m. Now· the same can be said of any other point, and 

in particular, the point where the response is maximized on the 

gradient Line through the origin,, the coordinates of which, are given by 

( 3, 77 ) . Hence, .a second gradie:nt line at the ma:x;in:mm of the first 

could be expected to pass through the true maximum only under special 

conditions. 

It may be asked if there are points on the gradient line through the 
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origin wh,ere a second gradientLine.passes through the true maximum, 

That the answer is in the affirmative can be seen from figure 2, 

Evidently1 there are two such points, those two points where thEl 

gradient line intersects the axes of the elbptical contour system, 

X I 
1 

Figure 2. Inter se\:tion of the Gradient With the Axes of the 
Con tour System , 

If a point on the gradient be denoted by ( hp 1, h~ 2 ) , then the 

sLope of the line joining this point to tlw true maximum may be 

equated to the slope of the gradient at the point ( hP 1, hP 2 ) The 

resulting qµadratic eeiuation when solved £or h gives 

X l 

(P n +P 22, "t J<f3 u - f3 22) 2 + f3 122 
h = ... . ... -2~-~------..------ ( 3. 9 2 ) 

f312 - 4 f311f322 
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Xn general, the gradient line at the mr3-ximum point of the gradient 

line through the origin, c;loes not pass through the true rnajdmum. Is 

there any line such that the gradient at the maximum passes through 

the true maximum? That there are thr,ee such lines is the content of 

theorem 3. 8 

Theorem 3. 8 . * Let ( x 1 be the coordinates of the 

maximum response attai;qable on the line If the 

gradient c1,t ( x 1 ¥./') passes through the coordinates of 

the true maximum, then m has one of the values 

or 

m 
1 

21311132 - 1312131 
= ~~......,.,.~-· ·-~ ......... ~ 

213 2213 l "' 13 1213 2 

(1322 -1311) + J(l3u-1322) 2 + 1312 2 

13 12 

(1322 - 1311) - .)(1311 - 1322 ) 2 + 13122 

13 12 

( 3. 93) 

( 3. 94 ) 

('3.95) 

Proof: In accordance with. ( 3. 77 ) , the maximum response 

attainable on the line x 2 = mx1 occurs at the point 

a 
- Zb 

ma 
- -2b 

According to theorem 

where a and b are given by ( 3. 79 ) . 
,, ' 

3. 7 ) , tp.e gradient at the point (x1 ,:,, x/") 

is perpendicular to the line x 2 = mx1. The equation of the line 

perpendiculc1.r to the line at the point 
a · ma 

-2b'-~ 



has the eql.lation 

x,! = -
1 
m 

a( m 2 + 1) 

2mb 

If this line is to pass through the true maximum, t..11.en the point 

* X = 2 
21321311 - 1311312 

2 
13lz - 4 13111322 
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( 3. 96 ) 

;mu~t satisfy ( 3. 96 ) . Imposing this condition and substituting in the 

val1,1es of a and b, there results .,,;,_, 

m [ 4 

0 

* * Consid€lr the line q.etermined by ( O, O ) and ( x 1, · x 2 ) 

( 3. 97 ) 

Obviou13ly the coordinates of the maximum on this line are the coordi-

nate 13 of the true maximum so that trivially the gradient at this point 

goe$ through the true maximum. Hence one of the roots pf ( 3. 97 ) is 

m 1 ,;1.s given in ( 3.93). Using m 1 in the synthetic division process 

yield a the depressed, equation 

2 
13 12m + 2( 13 11 - 13 22 ) m - 13 12 = O, ( 3.98) 
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the roots of which are · m . 2 a,;nd m 3 as given by ( 3. 94) and ( 3. 95 }. 

Sinc;:e :r13i is the alope of the line from the origin to the true 

maximum in the factor space, it is natural to expecf m 2 , and . m 3 

to qave geometrical significance. It is easily verified that m 2m 3 = -1 

perpendicµ.lar. Since the axes of the contour system in the factor space 

are also mutually perp~ndicular, it is reasonable to look for some 

relationshiJ? between the axes of the contour system and th~ lines which 

have slopes m 2 
and m 3. The relatiqnship is given in theorem 3. 9. 

Now 

and 

TheoJ:.'em 3. 9 . T}ie· lines and 

&.re parallel to the a;xes of the contour system. 

Proof: By analytic gepmetry the angle of rotation of a conic is 

given by : 

tan e ,:; 

tan.ZS= 

sin 28 = 

1 - cos 2 e 
sin,· 2 e 

!3 l 2 

( 3. 99 ) 

( 3, 100) 
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cos 28 z 
.13 11 - 13 22 

( 3.101. ) 
,(. A.11 2 2 "I r' - 13 22) + 13 12 

Sul:!etituting ( 3. 100 ) a.nd ( 3. 101) in ( 3. 99 ) there results 

13 22 " 13 11 + J(l3u-1322l 2 
t~n 8:; --.--~------------.-----------------------~------------,...._.. 

13 12 

Since m 2 has t}:i.e same slope as one of the axes, :m 3 must have 

the same s\ope as the ot4er . 

ThE;J ge ometricil significance of the roots of the cubic equation 

( 3. 97) now becomes clear. The roots m 2 . and m 3 are the slopes 

of lines passing through the ot"igin which are parallel toth~ axes of the 

c;pntour sy~tem. The maximum response is attained at the point of 

intersectio:q. of th~ line with an axis of the contour system. The gradi-

ent ie coincident with the axis and hencf;l passes through the center of 

the contour system. The situation i!;l illustrated in figure 3. 

· An int!;lresting 1;1ituation arises when the axis of rofation passes 

through the origip. ·· Suppose that the contour system in figure 3 is 

rotated until x' 
l 

c oint; ides with the Line 

coincide. Further,- since the x1• axis passes through the origin 

and is normal to the contours, it must coincide with th~ gradient at 

the origin. Hencet 13 2/ 13 1 ;:: rn 2 ;:: m 1 . These statements, which 

are geometrically evident 1 may readily be verified by the methods of 

analytic geometry. 



Figure 3. ReLationship Between m 11 m 2, m3' and 
the Contour System Axes . 
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CHAPTER !V 

THE CHOlCE OF SCALE 

The most important decision that must be made by an exr>eri-
1 

menter using the steepest ascent technique occurs at the very outset 

of the investigation. He mu.st ,decide where to run the experiments. 

'l'he seemip.gly trivial nature of this statement may ace ount in part 

for the laek of attention that it has recE:Jived. 

For purpos<;:s of illustration, suppose it is felt that the maximum 

yield obtained ip a Gertain chemical proce1;1s depends upon the control-

lablt;i operating condttions of temperature and pressure. Obviously, 

the combinationa of temperature and pressure should be chosen so 

tha..t d,ifferences in the responses will be large enough· to be dearly 
· ...... 

recogr:i,ized, It is to be expected that, since investigators are human 

a:p.d possess varying degrees of experience, they wiU make different 

9hoices of the factor levels for the initfa:l experiments. Unfortunately, 

a.1:1 will be shown later, each different choice of factor leV1els le<;Lds 
,l'. 

to a q,ifferent pa.th for further experimentation . 
. -. ., 

Once the levels are chosen, the pressure and temperature vari:'" 

ables are toded so that the rectangular array of experimentaL points 

map into the corner poin,ts of a unit grid. Hence the initial choice of 

level!:! determines the coding. The pa.th of steepest ascent is calcu

lated in terms of the coded variables. It is then decoded and written 

in terms of temperature and pressurE;l. The investigator then proceeds 
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to vary the temperature and pres~ure in additional experiments 

along the c!.ecoded:_path. This, in effect, is the procedure used in 

the fii;ild and is outlined by Box and Wilson ( 1 ), Davies ( 2) , and 

Cochran and Cox'·( 3) . Th.e crucial nature of the choice of levels 

and the effect of further expedmentation along. the decoded patp. 

is treated in the foUowing discussion. 

The Lack of Scale Invariance of the 

Steepest Ascent Path 

" 
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Definition 4. l . The space of the uncoded variabLes in wh.ich the 

expedments are performed will be called the process space and 

will be denoted by P . 

In th.is section the following notation will be used: 

z = ( z 1, z 2, , , . , zp) will denote a point in P, 

z 

z ·z 

will denote the design: matrix of the model, 

will denote the design matrix of the initial experimental points, and 
! 

will denote the design ma,trix of an additional ~xperimental point or 

additional experimental points. 

As an example,. suppose that the response in P is 

This may be written as 



+ e 

= Z A + e. 

If the initiaL e~:perimental points in P are ( -2, - 3 ),. ( - 2, 3 ) , 

( 2, - 3 ) a.nd ( 2, 3 ) , t'.Q.en 

1 ~2 -3 

l -2 3 

l 

l 

2 -3 

2 3 

If an additional experiment is run at z = ( 5~ 6 ) , then 

= ( 1, 5, 6 ) . 
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Definition 4. 2 . T];le space of the coded procef'lS space variables 

will be called the design space and will be denoted by D. 

'rhe symbols x,. X, x1 and x 2 will be used in D in the 

same fashion as the symbols z, z. zl' and Z 2 are used in P. 

In order to map the point~ of a p-dimen:;;ional rectangle in :p 
I 

into a 1,1nit grid, who~e center is at the origin in D, a translation 

foUowEJd by a change of scale must be used .. No loss of generality 
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wiU oc<;:ur if it is asi=rnmec;l that the center of the rectangle in P 

has already been translated to the origin in P. With this assumption 

the :,:napping of the rectangular grid in P to the unit grid in D 

can be accomplished by a. change in scale alone. 

Pefinitiop 4. 3 . The transformation which maps the unit grid 

points of D into the gdd points of P will be denoted by T 1. 

As an example suppose that p = 2 and that the process points 

are ( ... 40, -20 ) ; ( -40, 20 ), ( 40, -20 ) and ( 40, 20 ), then the 

mapping. required to transform the unit grid points in.to the process 

points is repreeiented by the equation 

(~ 0 

z~l ( 1, z1, z 2 ) = { 1, x1, ;x:2) 40 In this example 
0 

is the matrix (i 0 

2~) J' 1 40 It is to be noticed that Tl is 
0 

associated with tp.e- dee oding and iE! specified at the moment that the 

experimenter chooseei the process space grid points. 

Whereas Ti will l;>e used with the 1. x p + l matrices x1 

a~d Zi, T will be used with the l x q matrices X and Z. 

For example, suppose that 

e 

;;: X 13 + e. 

In this casE;) the transformation Z = . XT may be written out as 



Evidently the matrix T 1 determines the matrix T. 

It is necessal'y to distinguish between the steepest ascent Une 

!itted to the unit grid, in D, its map in . P, and the steepest ascent 

line in P cal<;:ulated £rpm the process grid points. 

Definition 4. 4 . The steepest ascent line cakulated in D 

from a unit g:dd wilL be denoted by Ld . The transform of Ld 

will be denqted by Lt. The :steepest ascent line in P calcu~ 

lated from the experimental grid points will be denoted by L. 
p 
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It is indeed µnfortunate thi:1-t it i1;1 generally necessary to distinguish 

between Lt and L. 
p 

That this is true is the co:p.tent of theorem 4. l. 

Theorem 4. L A neces·sary and slJfficient condition that Lt = LP 

is that 

Tl = diag. ( l, t I } 
p 

( 4. l ) 

Proof: In order to prove necessity let the response in D be 

given by 

y = X-!3 + e 

Now Ld is determined by the equations 
A 

!3 . 
x. -

J 
J 

!3 1 

x 1, j = 2, 3, . , . ·, l?, 

According to ( 4.1), x. = z./t., 
J J J 

j = 0, 1, . . . , p 

~othi:1-t (4.3) becomes 

( 4. 2 ) 

( 4, 3 ) 
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.., 
z. 13 • :Z\ t. 13 . 

....L J J -+ j 2, 3, ( Ll·, 4 :!!: ;;;,,- or z. - ......- zl = ' p 
t. 13 1 \ 

J 
tl 13 1 J 

Eq-uation ( 4. 4 ) d,ete rmine s the line Lt . It is necessary to find the 

expression for L. 
p 

Since Z "' XT, X = ZT-l 

s1,1bstituted in ( 4. 2 ) to ol?tain 

-1 
y=ZT l3+e ::;zA+ 

which may l;:>e 

( 4. 5 ) 

where A = T- l 13 , It is de sired to find . A in the equation 

y ::: z A ( 4. 6 ) 

... 
where Z is 1 x; p + 1 and A is p + 1 x; 1. Ac;cordi:ng to least 

~quc;1.res, 

.... 
A::;: 

= 

::: ( NT 2 ) r- l T X I Y = 
1 1 1 1 

where N = zP Then t}J.e line L i$ determined by the equations 
p 

.,.. 
13 • 

J 
t. tl 13 j 

z. J 
zl ;:: 

zl' j = 2, 3, P· ( 4. 8) . J X . ' 
13 1 tj 13 1 

tl 

) 

Hence if the line L is to be the same as the line 
p 

Lt' then by ( 4. 4) 

and, ( 4. 8 ) , 



.... ... 
t. 13 • tl 13 • 
J J J ~ -::;:-- :;; ,A j ::; 2. 3, . . , , p 

t1 13 1 t. 13 
J 1 

which implies that 

.•. ' . = t . 
p 

That Tl = clii;i.g, ( t, t I ) 
p 

is a sufficient condition follows from 

equations ( 4. 4 ) and ( 4. 8 ) . 

lt is instructive to examine the steepest ascent proceq.1,1.re in the 

light qf theorem 4.-- l. The experimenter determines T 1 at the 

pµtset, Jn tl+eory, experimentation along the path of steepest af;!cent 

is an attempt to proceed in a direction wh,ich is normal to the factor 

space cc;:m,tpurs at the center of the experiment. Now the lines L 
p 

anq Lt cannot both be normal to the contours i;i.t the sc;1.roe point in 

P. A little reflection co:ri.yinces one that it is the line LP which is 

trying to estimate the gradien.t at the center of the rectangle in P. 

However, the method of steepest ascent calls for further experime.nta;.. 

tion on Lt' The situation is shown in figure 4, 

Experimentation Alon,g the Transformed 

Path of StE;iepest Ascent 

The iack of scale invariance exhibited by the steepest aE;1cent line 

and the invariance property of the steepest ascent line, previously 

examined in c;hapter III , combine in the present instance to :make 

matters still more bizarre. 
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:Figure 4. The Effec;t of a Chc;1.nge of Scale on the Stl;}epest 'Ascent 
Patb,. 

It is known from c;hapter III that if an addition.c1.L point is run on 

the lip.e i,d and a new path calc;:ulated, the new path will still be the 

line L 
d 

Th,e additional point on Ld maps by Tl to an additional 

point on Lt, Suppose that in P a second steepest ascent path is 

calculat~d by use of the process points and the additior:i.al point on Lt. 

Wh~t ii;, fue new steepest ;;i,scent line in the space P? In order to 

answer this q,uestion it is necessary to examine the .property of 

i:n,varia:n,ce using a p.,.dimensiona.l rectangular grid instead .of a 

:p '1' di:rnensionc:1.l ur:i.H grid as in chapter III. 

Theo~em 4, 2 . The 13teepest ascent line L is invariant i:f the 
p 
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Proof: The additional point on Lt is the map of an additional 

point on Ld . Let the point on Ld be written in matrix.·form as 

..,. .... 
X 2 ;:: ( 1, h(3 1 , ... h (3P) ;:: ( l, h Bi'). ( 4. 9 ) 

The i:!.dditional point is mapped from D to P by 

( 4, 10 ) 

may be partitioned as 

Tl " ( ~ 0 

( 4. ll ) diag. ( t, 

Substituting x 2 as given in ( 4. 9 ) in ( 4. 10 ) and partitioning T 1 

as in ( 4. 11 ) , th~l'.'e results 

( 1 . 0 ) = ( l, hB 1 ' T 11 ) . 

0 T 11 

(';1-.12) 

As iIJ. theorem 4. 1 , the equation y = X!3 + e in D bee ome s 

the equation y = Z .6. + e in P where 

Let 

6 
0 

6 l 

.6. = 

.... 
6 

p 

= 

.6. = 
~l 

T 13 . 

(~o) be calculated from the iqitial experimental 



"' points. Let a = 
a· . 1 

a 
p 
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( AA ... 10) = be tfue revision of A 

based on the initial experimental points and the additional point Z 2 

on Then accorc;ling to ( 3. 11 ) , 

a = A + }' G Q ( 4. 13 } 

where the symbols J,. G, and Q are used <;1.s in theor,e;r;n \3, 7 . 

By ddinition 

Now Z I Z }-l 
l . l 

so that 

l ::;:._... .......... _ 
N 

-1 
J' .,.. ( zl' .zl ) 

= 

0 

2 
(TU } 

(Tlz}-1 

N 

-~ where Na zr 

( 4. 14 ) 

( 4, 15 } 

Substit11ting the expression for Z 2 as given in ( 4. 12 } and the 

expression for ( z1• z1 )""
1 as given in ( 4.15} into the expression for 

J' as given in ( 4.14 }, there rl;)sults 

J' = 1 

N 

( ~. 16 } 
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Substituting the value of J' as given in ( 4. 16) into the expression 
... 

for· a give!). in ( 4.13) and noting that G Q is a scalar, there 

results 

(::) = (~o) 
It follows that 

... GQ 
Al = 41 + Al = 

Nh 

where the scalar k = 1 + 

+ GQ 
N 

Al ( 1 + 

GQ 

Nh 

(h :J ( 4;17 ) 

GQ ... 
') = kiAt 

Nh 
(4,18)· 

... ' 
Hence A 1 ist a scalar 

multiple of A 1- so that the path LP remains unchanged 

The theorem 4 .. 2 generaiizes so that the line L 
p 

rema:i,,ns 

in.variant. regardless of how ma;iy additional points are taken on Lt. 

Theorem 4. 3 . The steepest c1,scent line LP is invariant if N 2 

additional points are taken on Lt . 

Proof: The' N 2 additional points on Ld, writ1;en }n matrix 

notation as 
..,. 

' . h A I 

l,-,P 

l ' . 
, (W o· HB1' ) , 

1 



map to N 2 

Let a. and 
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additional points on Lt. This may be written as 

( 4. 19 ) 

A be as in theorem 4. 2. Then 

(~ 0 

(:!:~) J' ( Z1' Zl) 
~l Z I 1 

(T 2) -1) = ..., 
2 N 

11 

1 (~;~IB') ;;: °N ( 4. 20 ) 

-Sul:istituting this expression for J' into the equation a. = A+ J'G Q, 

there results 

Hence 

1 
¥' GQ, 

Now ;H'G Q is a scalar so that ( 4. 22) becomes 

::;: 

H 1 GQ 
N 

. H'GQ 
A 1 ( l + N 

l + fl' Y:<.Q 
l , .. N . 

.., 
::;: k ,6: 

l 

( 4. 21 ) 

( 4. 2~ ) 

( 4. 23 ) 

where k .z l + H'G Q 

N 
Hence A 1 is a scalar multiple of A 1 

and the path L p 
remains unchanged. 



The Choice Between the Lines a.nd L 
p 

rt is cle~r h:o:m the preceding, theorems that in P 1 the patri. 

of steepest ascent a,nd the path upon which the experiments a.re being 

r'Uni are generally distinct. Since experi:i;nentation along the path Lt 

is customary rather than mandatory, it is· fair to ask which path 

comes closest to the tr1.1e maximum. The cl,nswer depends upon the 

struct~re of 11 in the equ,i;l.tion y = 11 + e. The c o:rnplexHy of 
.,.,. •, 

,. 
the problem in,creases with the dimension p and the degree of 11 ;-

In order to shnplify the problem and visualize the ge o:metr y invo~ved, 

let ,, b«;: of !;ieGond degree in the variables and 1'z . 

Under the transformation 

the response in - D,- which is wdtten 

is written in ;I? as 

The coordinates of the maximum of 11 · in P are by ( 3. 74) , 

78 
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;:: ( 4. 24 ) 

* ,:-: 
The equ;:i.t:ion of the line joining ( 0, 0) to ( z 1 1 z 2 ) is then 

and 

z ;:: 
2 

. ........,, ____ _ 
( 4. 25 ) 

Definition 4. 5 . Let the line joining the origin to t]i.e point in 

the p space where the response is maximized be called L 
m 

There have been three lines defined in P, the lirg~s Lt' LP, and 

Lrn Their equations in terms of the 13 1 s are 

L: ' t 

L 
p 

L 
m 

t2 132 
z = ... zl ' 2 

\ 13 1 

tl 132 
z2 :;:;:~-... -.- zl' 

t2 f3 1 

t2 ( 213 21311 - 1311312) 

tl ( 2 13 113 2 2 - 13 213 12 ) 

( 4. 26 ) 

( 4. 27 ) 

( 4, 28 ) 

The various angles that these lines ma,ke with one another may 

be f pund by use .9f the formula 

tan, e ;:: where e, rril , and m 2 c1.re the 

coi;wentional symbols of analytic geometry. One might be incliI1;ed to 

choose the path for which the angle between the path and the line to th.e 
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maximu:m is minimized, Alternatively, with the aid of equation ( 3. 78), 

a comparison could be made between the rna;ximum value of n attain-

able on Lt and the maximum value of n attainable on L , Each 
p 

of the above approaches are algebraically involved and shed little 

light upon the strategy that the experimenter shot:1.ld adopt. For this 

reason the discussion will be of a geometrical nature taking full 

advantage of the simplicity of a two dimensional factor space. 

Frequently the investigator will feel that he knows, in a genera.! 

way, the orientation of the contot;1.r system. Naturally he will choose 

the initial experimental points to be in harmony with his conject1,1re. 

Thus, if the ~xperirnenter 's conception of the contour system is as in 

figure 5, he would be quite likely to feel that the rec::tangular grid 

shown there is appropriate._ 

z 

1 

Figure 5, An Appropriate Grid for Horizontal Elongated Contours. 



The mapping of the unit grid points in D to the rectang~e in 

P may be written 

z = 2 

where 1 in accordance with figure 5, t 1 

Let the true maximum of a horizontal elongated contour system 

b~ in the first quadrant an.cl assume that the slope of the major axis 

is positive. Under these conditions there are four distinct cases which 

may arise. The first case is shown in figure 6. 

z 

Figure 6. The Slope of 
for a Decision. 

L 
p 

L II 

t 

L is Positive;There,is no Basis 
p 
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The line Lt can'have either of the positions indicated in figure 6 

by Lt' or Lt 11 • The choice a,s to ·which path to t;;Lke ii:? left to the 

judgement of the experimenter. 

In fig"Ure 7 the line L 
p 

lies between the line to the true 

m,,pdrnum and the line Lt Hence, the experimenter should choose 

the line L for further experimentation. 
p 

m 

L 
p 

Figure 7. The Slope of 
be Chosen . 

L is Positive; the Line L Should 
p 

;I:n ~he third case, the slopes of the lines 

negative as shown in figure 8 . 

p 

and L 
p 

are both 
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L 
p 

L. 
m 

Fig\l.re $. The Slope of 
be Chosen .. 

L is Negative; the Line 
p Lt Should 

The line Lt should be chosl:ln as a path for furt:b.er experimentation 

since it lies between L 
p 

and L 
m 

+n figure 9 the slopes of Lt and L 
p 

are negative. L 
p 

should be cho!:len as a path for further experimentation since it lies 

between Lt and L 
.m 

Similar analyses are applicable to the various other orientations 

9£ tlie c9ntour system axes which the experimenter may 

suspect, 
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m 
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Figure 9 . The Slope of L is negative; t4e Line L Should be 
Chosen P P 

The foregoing remarks c\,re applicable to a p-dimensional 

£actor space. Should information regarding the orientation of any 

o:ne of the p axes become available, the preceding arguments 

rernain valid. 



CHAPTER V 

SUMMARY 

The method of steepest ascent is part of a general technique 

which has been propo!;led to locate a maximum, :rriinimurn, or stationary 

point in the factor space. The use of the steepest ascent method is often 

accompanied by scant knowledge of its properties. Ip this study variou!;l 

properties of the steepest ascent path are investigated. Particular 

attention is given to the estimation of the coefficients of the fitted plane 

whic;h determine_ the path of steepest ascent, the direction of additional 

paths calculated by the use of points on the first path, and th.e behavior 

of the steepest ascent path when subjected to a change of scale. 

Conclusions 

In chapter II several theorem!:! are presented which are concerned 

wHh the coefficients of the plane fitted to a quadratic response function. 

This plane is fitted by the method of least squares from a rectangular 

grid in the factor space. It is shown that the linear coefficeints of the 

fitted plane are unbias<;id estimates of the first order partial derivatives 

of the response function evaluated at the center of the grid. 

It is shown that, in the absence of experimental error, a 

p-dimensional hyperplane passes through the responses at the zP 

points in the fac;tor space provided that there are no c;r·oss prod-uct 
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terms in the quadratic response function. This surprising fact is 

used to divide the factor spac:e into three . ..:-point. sets, the, set where, 

the predicted response y equals the observed response y, the 

set where y > y , and the set where y < y . 

Also it is sh,own that decreasing the variance of 13 1 or 13 2 by 

increasing the design size results in an increas¢ in the bias of these 

estimators. Since mea..n squq.re error is dependent on both bia,s and 

variance, a study is made of the relationship between design size 

and mea..n equare error. A design size is given which will mini'mize 

the mean square error in the case where a quadratic respons,e model 

is chosen, when in truth, the response function is cubic. 

In chapter III it is shown that the revised path of steepest 

ascent, calculated by means of the inHial grid and additioti.al points 

on the initial steepest ascent line, is the same as the initial path of 

steepest ascent, This property of the steepest a,scent line, termed 

inva,.riance, is ihown to hold when an arbitrary numl;>er of additional 

poi;nts are added to the inHia..l steepest ascent line. It is shown that 

th!;l three conditions, invariance, location on the path; of steepest 

ascent, and the use of a square grid~ are so related· that any two of 

them im]?LY the third. These resu,lts make it impossible 

to obtain a different path of steepest ascent by this approach. / 

An e"pression is obtained for Yz in terms of y 1 and y 

where Yz is the response predicted on the basis of N + l points, 

y 1 is the response predicted on the basis of N points, and y is 

the observed respop.se. It is shown lh.3rt y 2 is a convex combination 



of ... y ~nd 

If the contours are elliptic and a point exists in the factor space 

where the response is maximized, a method is given whereby upper 

and lowel;' bounds to the ratio !3 1 / !3 22 may be estimated. Some 

properties o~ the gradient line are examined. The coordinates of the 

maximum response attainable on the gradient line and the value of'the 

rei;;ponse at that point are given. 

Ch,apter IV deals with the behavior of the steepest ascent line 

when it is subjected to a change of scale. Necessary and sufficient 

conditions are given for the steepest ascent line to be invariant under 

a chang~ of scale. 

It is shown that if points along the transform of the steepest 

ascent path, iii the space of the coded variables are UEH~d, together 

with the initial experimental points, to calculate a revised path of· 

steepest ascent, the revised path will be the same as the initial path. 

E:xamples are given which demonstrate the manne,r in which 

prior knowledge of the general orientation of the contour system 

may be used in making a choice between the transform of the coded 

steepei;;t ascent line and the steepest ascent line in the unco1:].ed 

variables. 

Areas for Future Research 

As additional expe rim en ts are performed along the path of 

steepest ascent, the transformed path of steepest ascent, or indeed 

any line, additional information becomes available at each point.' 
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This information is, of course, contained in the value of the observation 
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at the additional point. A reasonable strategy would be to use this 

information to revise the path before proceeding to the next point. 

Although the unexpected invariance property seems to be an obstacle 

to such a strategy, further work should be done in this area. 

Instead of experimenting along some path believed to be desirable, 

it might be Just as well to estimate all of the unknown parameters 

initic1.lly and proceed along the path to the maximum calculated from 

the e~timated parameters, )ror example, in the case of. a quadratic 

response in two variables, the six unknown parameters could be 
. . 

estimated by means of an initial six point design in the factor space. 

As a competing strategy, the unknown parameters could be l':)stimated 

by means of the initial de sign points and points along the line of 

steepest ai::;cent. In the example of the six unknown parameters, the 

full quadratic could be estimated upon the completion of the second 

experiment on. the steepest ascent line. The difficulty lies in finding 

an aq.equate basis for comparing these strategies. 

' 
Th,e discussion in chapter IV concerning the choice between 

the lines LP and Lt was restricted severely. The more general 

case, in which the location of the true maximum and the orienfation of 

th,e contour system are arbitrary, needs attention. This problem 

should be analyzed both from an algebraic and a geometric viewpoint. 
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