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PREFACE 

This thesis is the result of the author's search for a method to 

look at engineering design from an analytical point of view. That the 

engineer's primary job is design 9 seems to be commonly accepted . Also, 

it seems to be commonly agreed that. there is no accepted general theory 

by which to study this process. 

The author was working with Professors Charles Fo Cameron and 

Daniel D. Lingelbach when a practical need for a general design procedure 

became necessary. The requirements of the problem indicated a need 

for general characterizations of quantities such as "physical system", 

"specification"• and "solution" o These quantities are a part of each design 

problem. In addition• these characterizations had to be quickly 

related to a particular mathematical model (e.g.• several functions of 

n real variables) . Yet, it was felt that the characterizations should 

not be associated with any particular mathematical model (e.g . linear 

equations, Boolean algebra models, statistical models, etc.). That is, 

a theory for design• relatively independent of the "state of the art", 

was desired. 

The reason for the engineer not having a separate theory is 

probably imbedded in his constant association with ordered sets . The 

ordering of a set is an important phase of the scientific process 

illustrated below: 

Assume the existence of the three distinct non-degenerate sets of 

iii 



elements as indicated. 

CLASS 1 CLASS 2 CLASS 3 

Assume that the three classes are logically related in some 

manner. The scientific process is concerned with the problem 

of finding a relation between these classes based on some 

"observable" criteria. 

An interesting assumption always seems to take place at the first 

stage of the above process. A common indexing set is chosen for the 

three distinct classes (i . e., the elements of each class are 

associated with some abstract set of "numbers" ) • This seems to be 

dictated by the "observable" criteria. This is where the order theory 

(relative value) seems to take control. If each of the above classes 

can be associated with a single set A which can be ordered, then a 

method of solving the problem is available (Le., if the "observable" 

criteria is converted to some ordering scheme, a method for deductive 

prediction is available). 

The point to be illustrated by the above is .that the classes do 

not seem to prefer which indexing sets are chosen. They do seem to have 

a preference when an indexing set and "observable" criteria are selected. -
This thesis leaves the indexing set arbitrary. Also, the indexing 

set is made disjoint from the indexed set . The separation of the 

abstract · common indexing set from the classes of interest allows a 
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general fo~dation for looking at all design problems. 

The author is indebted to the many who helped during his search 

for a formal way to look at the design problem of engineering. Many 

of the concepts of a theoretical system used in this thesis should be 

particularly vivid to John c. Paul who helped the author immeasurably. 

The encc,uragement and guidance of Professors Charles F. Cameron• 

Daniel D. Lingelbach 9 and William A. Blackwell to seek a theory for 

design helped make this thesis a reality. Also, the criticisms of 

Professor Jeanne L. Agnew greatly helped the author in the area of 

technical consistency and conceptual clarity. 

To the author 9 s wife, Rose, and sons, Charles, Bryan, and James, 

this thesis is dedicated. 
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CHAPTER I 

INTRODUCTION 

The design problems of the engineer are increasing in complexity 

at a rapid rate. The common term associated with this trend is that of 

the "system". Most of the engineering problems are now looked at from 

a systems point of view. (lh This being the case~ there have been 

attempts to generalize, in order to have a single abstract representation 

for all systems. (2). If this could be done 9 then a classification 

process t distinguishing the typical cases would be possible. 

Some of the more notable attempts to obtain general approaches to 

systems were presented in the last decade. These were the generalized 

energy equations and the linear graph theory characterizations of 

systems" ( 3 f 4 ). A strong trend at present is to look at systems from 

a statistical point of view. 

Exactly when the generalized system approach got started. the 

author cannot say. However• it seems to be sometime in the late 

1940 Q s, The reason for this trend is fairly clear. Until this "modern 

trend" in engineering was initiated, the engineer learned to design by 

studying particular systems (e.g., a motor). When the number of 

particular systems to be designed became large, it was no longer 

feasible to use this method. Hence• the search for a way to look at 

many systems was launched. 

This thesis is a result of looking at the original problem--that 
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of finding a more efficient way to design systems than the "case" 

approach. Once the author became interested in this problem. it was 

clear that many people were working in this area. (Sh A particular 

case is noted due to its "different" approach. A book entitled Systems 

Philosophy was published in 1962. ( 5). This book• which used terminology 

of modern mathematics, defined a system symbolically~ In addition. the 

design problem was defined symbolically. The actual de.finitions are of 

no importance here, but the fact that a symbolic (mathematical) definition 

was given is thought to be noteworthy. 

The fact that there are few general definitions of systems might 

seem questionable in view of what has previously been said. However, 

the only ones of interest and considered important are those which are 

symbolic definitions involving the tools of the engineer. That is, a 

system which is unrelated to the tools of the engineer is unlikely to 

yield positive results. 

This problem is approached from a rather fundamental point of view. 

Generally speaking. a system is thought of as a "real" or "abstract" 

set of interrelated objects. In either case there is the problem of 

defining a system. 

It appears to be commonly accepted in engineering that an "abstract" 

system is a "mathematical model" which represents a "real" system. Also, 

design is usually associated with the "real" system. Hence• in this 

thesis the concern is towards the "real" system rather than the "abstract" 

or "mathematical model". However, this is done from the point of view 

that every "real" system will be represented by some "mathematical -
model". Thus a "real" system formulation of the design problem must be 

directly related to available theories of mathematics. (These are the 



tools referred to earlier.) 

To accomplish the above with an established theory of mathematics 

would be desirable. However, the only general theory of mathematics 

is that of set theory. (6, 7). This approach to the. general design 

problem has been attempted. ( 8). Unfortunately, the. generality of set 

theory seems to be both its power and its weakness. The set notation 

is used extensively in this thesis. However, just the ability to 

formally abstract a set of elements is not considered powerful enough 

to gain a useful design theory. 

From set theory the particular areas of mathematics are developed 
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and can be classified as the "number theories" and the "operational 

theories". "Number theories" refer to the construction and classification 

of the types of "counting" theories (e.g., integers (I), reals (R), 

complex (C) 9 etc.). These "numbers" can all be thought of as indexing 

sets. (For example, to use the properties of a number theory, a set of 

objects must be indexed by these numbers.) In this thesis the terminology 

of the indexing set is used to imply that some number theory is available. 

The "operational theox,ies" are the investigations and classifications 

of operations. (For example, f (x, y) = z denotes some type of abstract 

operat ion involving the elements x and y.) The major concern is to 

insure that the operations have meaning. (9)0 Also the operations in a 

particular number system are made to conform to the properties of that 

number system. (For example, a• b = c + if a, bare reals, c is real 

and given by the natural order of reals.) This does not mean that other 

operations cannot be de.fined on the reals, just that they must conform 

to the properties of the reals. The ability to make the many 

different operations, which can be defined on a set of elements, 
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conform to the ones already defined is a primary concern in mathematics. 

Without this logical consistency• the formulas ( logically consistent 

operations) used in the applied sciences would be much less powerful. 

It is only because these formulas are definite that the approach used 

in this thesis can be applied. Also, it is the modern approaches to 

discussing mathematical relations which have discarded the formula as 

used in this thesis. However, from a practical (applied) point of view 

the formula offers a conceptual advant_age over the more abstract 

approach mentioned above. 

The formula, as seen and used by the engineer is a "relation" among 

disjoint sets. (For example, E = IR denotes a relation among the 

disjoint classes E, I• and R.) However, to state any particular relation 

in a precise manner, the disjoint property is abandoned for the "well 

defined" operations of some common indexing set. This process would be 

acceptable if a single indexing set could be used for all "relations" 

of interest. However, there is an increased application of finite 

indexing sets and transform methods (i.e., change of indexing set such 

as the Laplace transform commonly used in engineering). Thus, a 

practical system for the engineer should not involve a particular 

indexing set (e.g.• reals, complex, etc.) . 

This thesis develops a general_ system by reversing the process 

indicated earlier. That is, instead of looking at a "real" system by 

some particular indexing set, the freedom to "project" these disjoint 

sets onto any indexing set is reserved. This approach allows the 

properties of all "real" physical systems to be formulated "independent" 

of the indexing set which will be used in a particular mathematical 

model. 



The system 1 as defined in this thesis, can be thought of as a 

theory. These theories are based on a set of axioms called "unordered 

relations". These "unordered relations" are the result of having 

definite formulas on elements from disjoint sets. (6). These formulas 

are assumed because of the well defined mathematical operations 

discussed earlier. 
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The "unordered relation" used in this thesis is obtained by removing 

the ordered set restraints of the ordered relation theory used in 

mathematics . (6). In discussing functions of more than two variables , 

this formalism starts to become burdensome. This is illustrated as 

follows: 

Consider f (x11 x21 x3) = x4 a real valued function of three 

real variables. The fact that it is a function implies that 

for each x11 x2 , x3, each a real number 1 there is a unique x41 

a real number. Hence• the above symbolizes a method for taking 

three real numbers and looking at how these are related to a 

fourth. However, the above is defined in terms of the dyadic 

relation concept of ordered pairs. The fact that there were 

three real numbers used instead of one was immaterial in the 

above idea of a function. If 1 in the above function, x1 in 

terms of x2, x3, and x4 was of interest, a new discussion 

involving a binary relation g (x2 , x3 , x4 ) = x1 would be needed. 

Conditions for obtaining gin terms of the properties off are 

discussed in most mathematical analysis courses. (10). 

This illustrates a problem associated with trying to use the 

standard methods already developed. Conceptually. it is clear that 

several functions of n variables is "just" an extension of the ordered 



pair concept. However• this is seldom studied on a formal basis other 

than the concept of R1 x R2 x R3 • • • ~ representing the n-dimensional 

product space of ordered n-tuples (r1, r 2 , ••• rn). It is clear that 

to define quantities formally as done for the binary relations (e.g.• 

relations• mappings• converse relations• etc.) would be a tremendous 

job. This becomes quite evident when it is considered that the number 

of distinct orderings is n!. Hence, most of then variable work is 

done in terms of the ordered pair concepts. 

Formally, the ordered pair is not necessary when classifying 

relations. (6). This can be replaced by a "definite" formula . (The 

Appendix gives a more formal discussion of the ordered pair.) How-

ever, ordered pairs can be well defined in terms of a set of elements. --
(6). Thus, to relate a particular set of elements the ordered pair 

has been adopted in worl<:s dealing with the foundations of 

mathematics. 

To indicate the connection between the ordered and unordered 

relations, Chapter II develops the fundamental ideas of the unordered 

relation starting with the ordered n-tuple. The disjoint sets on which 

the unordered relations are defined are called parameters. The un-

ordered relation definitions parallel the ordered relation ideas where 

possible. The definitions are slanted towards systems (Chapter III) 

and the design theory of Chapter IV. The idea of a parameter model is 

introduced. These models have the basic properties of the systems 

which are used in engineering design. The results of Chapter II are 

used in Chapter III to develop the general system as viewed by this 

thesis. 

The system has a simple interpretation in terms of the terminology 
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constructed in Chapter II. Basically, each system is a theory defined 

on n parameters ( logic classes) in v "parts". The "par-ts" refer to the 

number of unordered relations which are involved in postulating a system. 

Each system can be viewed as a collection of unordered relations which 

has the potential of containing logical information. A piece of l .ogical 

information can be viewed in an order if "projected" into the ordering 

structure of its indexing set. In fact , the "projection II of a system 

into an indexing set returns the system concept of this thesis to the 

ordinary functional concepts of ordered relations. This seems to be a 

practical approach in engineering. This gives an engineering design 

theory which is relatively independent of the "state of the art". 

(This does not mean that design is independent of the "state of the art". 

On the contrary, any particular design solution is in terms of the 

"state of the art".) This design theory is able to look at all of 

these "state of art" models. 

Chapter IV makes use of the two preceding chapters in developing a 

theory for design . The contents of this chapter are based on the "tools" 

developed in Chapters II and III. There is one fundamental axiom which 

is used in this chapter. This axiom is called the real system axiom. 

The axiom assumes the existence of a particular type of system. 

Involved in this axiom is a uniqueness between systems relative to the 

"logical information" of a system. This approach allows the design 

theory to be applicable to the "best" available models. 

The final chapter indicates some of the areas of application of 

a design theory as developed in this thesis. In developing a basis 

for the design theory, many areas of application looked promising. The 

scope of the foundation work did not permit the author to give detailed 



exampleso Three major applica1:ions which look promii,d!lg are discussed 

in the final chapter. Throughout the thesis discussions concerning 

possible interpretations of the material are given. Also several 

examples are given which directly indicate areas of application. 

8 



CHAPTER II 

PARAMETERS AND UNORDERED RELATIONS 

The discussion of Chapter I indicated that the basic ingredients 

of a system. as viewed by this thesis. are the parameter and the 

relation. This chapter is devoted to the definition of these and 

related concepts. Motivation for many of the definitions and facts 

presented in this chapter sterns from ideas involved in engineering 

design. For this reason. some of the material in this chapter may 

seem unmotivated. When possible. reference is made to the area where 

the concept is to be used. 

In conjunction with this• and later chapters. an Appendix has been 

included covering the basic mathematical concepts repeatedly utilized. 

The discussion of binary relations presented in the Appendix is some­

what more extensive than the coverage of set theory concepts. The 

reason for this is that the general concept of a relation. as given in 

this chapter. is basic to that which follows. The discussion of the 

binary relation in the Appendix is slanted towards the approach taken 

in this thesis with unordered relations. 

Throughout the remainder of this thesis. the parameter is used to 

denote an indexed set with at least two elements called scalars. In 

engineering a quantity with these properties goes by the same name. 

D2- l ~ A set Pis called a parameter if and only if 
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(1) There is a set A 3 A n P = ¢> and ¥ a £ A 

..3 a unique Pa£ P and conversely, 

(2) A has at least two distinct elements. 
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The set A which is equivalent to P (1-1 mapping exists) is called 

the indexing set of P. An element of Pis called a scalar and denoted 

by Pa where ( a) denotes the element · of A which corresponds to (indexes) 

the element Pa£ P. For convenience, and unless confusion might arise, 

the indexing subscript will be dropped and p£P will be used to denote 

a scalar of P. The value of a scalar pis the element a of A which 

indexes P• 

Defining a parameter as in D2-l might seem unusual and unnecessary. 

Yet, when dealing with abstract quantities such as voltage (E), current 

(I), and gain (K), it is important not to confuse the scalars of (E) 

with those of (I), etc. This is so, even though the same indexing set, 

usually the real numbers, is used for each parameter. In other words, 

if E and I were said to be the same as their indexing sets, then E = I 

in a logical sense. But not only is E # I in a logical sense, they can 

be (and are) considered disjoint (no elements equal) in a set sense, by 

letting them be parameters (i.e.• P1 n P2 = 4> can follow from D2-l even 

though the indexing sets for P1 and P2 are the same). 

It is noted that since P and A are equivalent and A has at least 

two elements 9 a parameter has at least two scalars. Hence, every 

parameter has a proper subset. In connection with the set notation in 

this thesis 9 the definitions of DA-3 and DA- 5 of the Appendix are used. 

D2- 2 : P denotes a proper subset of a parameter P. 
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It is also noted that if a parameter P exists• then a parameter A 

exists which is disjoint from P. This follows from (l) of D2-lo 

Throughout the remainder of this thesis, parameters with. different 

subscripts (e~ g., P 1, P 2 , •••• ) will be considered disjoint unless 

otherwise stated. This does not mean their indexing sets are disjoint. 

On the contrary, their indexing sets will usually be the same. Also. 

capital letters will be used for sets and lower case for elements. 

In order to relate a set of parameters. the scalar n-tuple is 

defined. 

D2-3: Given the parameters P1 , P2 , ••• Pn• n > o, in the order 

Pli 9 P2i• ••• Pni• the set 1rni (p) = (pli' P2i• ••• Pni)• 

where pli & P li ... pni & Pni is called .a scalar n-tuple of 

order (i). (P 1i ••• Pni are not necessarily disjoint.) 

In D2-3 the subscripts refer to the parameters to which the scalars 

belong and have nothing to do with their indexing sets. Two n-tuples 

are considered the,same 1r. p = 1r. p' if and only if p 1• = p 1'., 01 DJ 1 J. 

P2 i = P2j • • • Pni = p~j • That is, scalars in identical "slots" must be 

identical even if they come from different parameters. Hence, if the 

parameters P1, ,, •• Pn are disjoint (each disjoint with th~ rest), there 

are n! distinct n-tuples for then scalars p 1, p2 ••• Pn• Each of the 

distinct n-tuples corresponds to an "order" (i). The n-tuple is called 

an ordered pair in the case n = 2. (6L It is notec;I. that another 

approach is available which uses ordered sets to define the n-tuple. 

(6). 

The n-tuple gives a. precise way of denoting a "relation" between a 

set of parameters. This is most conveniently done by using the product 



set for the order (i)~ 

D2='+i The totality of scalar n-tuples, denoted byIIni P 

representing the order P li • P ~d .. o Pni • is called the 

scalar product set .(Cartesian product) for the order (i). 

(P's not necessarily disjoint.) Sometimes rrni Pis 

denoted by P1 x P2 ••• x Pno 

12 

The prod,uct set is used to clefine ·the. graph of a relation.·· · As 

discusseo. in the Appendix, there is-, conceptually at least, a difference 

between a relation, and the graph c;,f a relationo In this work it is 

more convenient to consider the relation as the "formula" 4> which 

gE!nerates a graph. In the works dealing with foundations of mathematics, 

it is the graph which is called the relationo (6). 

The approach taken here is slanted. towards the application of 

mathematical formulas rather ~ban precise methods for constructing 

useful formulas. However. the connection between the formula and its 

graph is necessary in order to have a "precise" meaning of a formula. 

A formula is a logical concept used to separate objectso The 

logical properties all formulas must have is that of being "definite". 

(6). That is• let x be the set for which a formula 4> can be applied. 

Then for each x either 4> (x) is true or 4> (x) is false, but not both. 

The set x for which 4> (x) is true is called the graph of the formula 4>. 

From the above it is clear why a formula· cannot be separated from its 

graph. Also it shows the conceptual dif.ference between the two. 

D2=5 i A set Ri CPn), n > O is said to be a n parameter ordered 

graph of the relation 4> on the set {Pnl if 
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The formula $ is not allowed to involve the set i'. (6). 

From D2-5 the graph of every relation is a subset of a product set. 

For consistency wi:~h set theocy • the one parameter graphs (n = 1) • 

which are possible by D2-5 9 denote particular subsets of {P 1 } which are 

specified by$. (That is• from set theory the only relation p1 can have 

with P1 is "p 1 & P1"; and a collection of elements. each belonging to 

the same set 11 is called a subset DA-3.) . Note that if $ (x) ++ x & ~ is 

used for the relation, then its graph is the empty set. 

The theory of dyadic relations (n = 2) is that commonly found in 

the foundations work of mathematics. Polyadic relations are less 

common for reasons indicated in Chapter I. Also, they are theoretically 

obtainable from dyadic relations. (6). As mentioned earlier, the 

common approach to the relation is to let each distinct subset of a 

product set be a relation. The formula$ is used to denote a relation 

in this work. 

One advantage of this approach is that the "useful" formulas are 

independent of the order of the graphs they produc;:e. That is• the 

formulas 9 at least in a practical sense• usually produce more than one 

graph. This is illustrated in the following example: 

Consider the parameters P 1 and P 2 which are indexed by the 

real numbers (ioeo. X £ R Pix& '.Pl t Pix' = P +-+ x = x' ) and 
lX 

Consider the formula: $ [(Pix• P 2y>] ++ xp 1 = Yp2 2 and the 

graph of $ relative to P 1 x P 2 and P 2 x P 1• 



From· D2-3 and the fact that F 1 n P 2 = <1 the above graphs are 

completely disjoint, yet represent the same relation ~9 

between the parameters P1 and P2• 
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In the theory of dyadic relations, R1 and R2 would be converse to 

each other and equal only under special conditions. One obvious 

necessary condition is that P 1 (l P 2 # (J • excluding the empty relation. 

It is noted that the scalar values of Pix and P 2y are equal for the 

scalars P 11 and P 21 • This illustrates the distinction which has been 

made between the scalars and their scalar values. The formulas relating 

the scalars are usually given in terms of the indexing set (scalar 

values). Yet 9 there is no need to consider a parameter to have a unique 

indexing set. Indeed, many transformations used in_ the applied sciences 

are performed on indexing sets• not the parameters themselves (e_. g. • 

the Laplace transformation changes the indexing set of linear voltages 

from the real numbers to the complex numbers. However, voltage itself 

can be thought of as a parameter independent of the indexing set). 

This is a very convenient way of looking at quantities involved in 

engineering design. For example, it might be more convenient to think 

of voltages as parameters indexed with a set having only two elements. 

These voltages might then be related by the rules of Boolean algebra 

rather thc;lll ordinary algebra. 

To remove formally the order from.an n-tuple the following 

classification is convenient: 



D2=6i A relation$ on the set of parameters {Pn} n > l is 

said to be consistent if and only if 

(l) ¥ order of IIni P .:3 a graph Ri (Pn) of $. 

(2) ¥ i ¢ j 9 Ri (Pn) = Rju CPn) where j' represents an 

order permutation performed on then-tuples of 

Rj (Pn) to obtain then-tuples of Rj 1 (Pn), and 

order (i) = order (j'). 

(P's not necessarily disjoint.) 

D2=6 in effect says a relation is consistent if the graphs are 

equal when brought into corresponding order. This says that if the 

parameters are disjoint, then a consistent relation$ is not dependent 

on its graph's order. This definition conforms with the logical 

restriction for a consistent formula. 

T2-lg 

A relation $ is said to be independent of order if 

i = l 
II • P ~ $ (x) 
DJ. 

then $ (y) if y = x'. Here the prime denotes an 

interchange of order to give the n-tuple x the same 

order as the n-tuple y. 

A consistent relation $con the parameters {Pn} is 

independent of order if the P's are disjoint. · 

Proof: From D2-3, D2~6, and D2-7, the above follows. 
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The above theorem indicates that only the unordered sets {p 1 , •• •Pn} 

need be considered in $c when the parameters {Pn} are,disjoint. This, 
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of course; was the purpose of indexing a collection of disjoint sets. 

The indexed set can be any of the well-known counting sets (e.g.• R1 C9 

I g etc.),. The formulas can (as is common) be defined in terms of these 

indexing sets using well=defined operations. 

Since the operations used in most formulas are required to be 

consistent and these operations are classified in algebraic studies of 

mathematics i it seems appropriate to call consistent relations 9 algebraic. 

Also, it is required that the same set be used when discussing algebraic 

operations. Hence 9 for consistent relations on parameters indexed by 

the same set• the following classification seems appropriate. 

D2-8: Let <I> be a consistent relation on a set of parameters 

{Pn}• Let {An} be the indexing sets corresponding 

to {PnL Then if for some suitable ordering 

A1 v ;2 A2 9 ••• ~ ~ o 11 <I> is said to be algebraic. 

The importance of algebraic relations cannot be overemphasized. 

It is the common indexing sets which allow a relation to have a definite 

"value" meaning Cioeo, unless a common base [indexing set] can be 

found, such that each parameter of concern can be indexed by this 

set 9 a definite "value" relation seems impossible). The property of 

D2=8 is given to the relations considered in this thesis. 

As mentioned earlier, the main purpose for working with parameters 

is to remove the ordered set problems associated with classical relation 

theory. From T2=l it is natural to consider the unordered graph set 

R (Pn) which can be associated with any <f>c on {Pn}• (From now on, 

every relation will be consistent unless specified 9 and <I> will be used 

in place of <f>c•> 



D2=9: For the relation+. the set R (Pn) is called the 

unordered graph of + if and only if 

n 
R ( P n) = { x/ x c. U Pi and x = { p 1 e P 1 , • • • Pn e: P n } 

i = l 

and • ordering (i) of x. + (x)} 0 

An element of R (P0 ) will be referred to as an unordered n-tuple 

'ITn p 1• The graph R (Pn) = nn P corresponding to, + (x) + x e: nni P 

represents the totality of distinct unordered n-tuples which can be 

formed from n disjoint parameters. 

From D2-9 9 and the above remarks, each element of R (Pn) contains 

those and just those scalars which satisfy +. Also, each element of 

R (Pn) has one and only one scalar f:rom e.ach parameter of {P0 }. The 

next classification is to distinguish· the un.ordered projections which 

can be formed from R (Pn). Here {Pn d will be used to denote a subset 

of {Pn}• 

D2=l0: 

T2-2 & 

Given the relation cj> on {Pn} with graph R {Pn), the 

set Ro (Pnv> is called the unordered pr9jection 

relative to+, if and only if 

~ (Pn') = {x/x e: Il0 , P and 3 y e: R (Pn) of 

(l) Ro (Pn') = l\i (J;>v,) if and only if {Pn'} = {Pv, }. 

1The word ."unordered" will be attached only when copfusion might 
arise between the ordinary concept of graph and the unordered graph. 
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Both (1) and (2) follow from D2-9 1 D2-10 1 and nn P. The justification 

for calling~ (Pn,) a projection relative to$ ~s seen by considering 

the relation $son the disjoint set {P09 } as follows: 

where $s (x) _. J $ (y) ~ y & R (Pn) and X n y = Xo 

Using this, if$ is known, from the tmordered graphs of$ the un-
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ordered graph R~ (P0 ,) of $5 can be constructed. This graph is the same 

as that obtained by using the unordered graph of $ and D2-l0. Also note 

that $s must be consistent, algebraic, and independent if$ has these 

properties. From (l) of T2-2 there are 2n distinct projections. 

T2-3: , Given the disjoint set {P n l and the n parameter 

· relation $, there are exactly 2n unordered projections ,. 

relative to <11. (This includes no parameters as the '1 

graph.) 

It is noted that a projection, as given in P2-lO, is not the same 

thing as the subrelations which are usea to denote subsets of graph 

sets (i.e. 9 R9 (Pn) ~ R (Pn) is normally called a subrelation). The 

projections of$ as given here are the quantities which denote 

"specifications" in engineering design. Also, the complement of a 

projection set can be thought of as the "solution" set. These ideas 

are made clearer in discussing the following question: 

Given$ on {Pn}) R (Pn) 1 '1 and the set 



11, (Pnv>~~v P 0 {Pn,} ~ {PnL Is there a set 

Rs (P- ) s;. II-·· n v n' P 3¥ x e: RP (Pn,) '3 

y e: Rs (Pn') ;) x Uy e: R (Pn) ? 

The above question indicates the need for several conventions 

before discussing an answer. These are noted in D2-ll and T2-4. 

D2-llg {Pn 0 } will denote the complement of the subset 

{Pn 9 } of {Pn }. 

Using D2-ll and the definition of rrn P gives 

T2-4: 

(2) (x e:. rrn, P) U (ye: rrfi, P) = z e: rrn P. 

The above question is partly answered in the next theorem. 

T2-5g 

Proof: (l) All that (1) stat·es is that the "specification 

must involve parameters for which$ is defined. 

(2) This follows from D2-l0 and D2-ll. Note that 

this result holds even when n = n'. That is, 

it certainly is possible to specify an element 
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of n Pn which lies in R (Pn). The "chances" 

of doing this are usually considered small. 

(However, a notable e)<ception is when 

R (Pn) = n Pn.) 

(3) From (2) there is a contradiction if it is 

assumed~ y £ Un' P 3 x UY£ R (Pn) given 

x £ Iln' P. 

20 

The above conditions are formal facts which are usually taken for 

granted when working with the more common algebraic equationst For 

most design problems where the "system" is assumed, it is convenient 

to assume (3) when seeking "compatible specifications". These are 

discussed in Chapter IV. 

The previous classifications have involved looking at relations 

(projections) generated from ''higher dimensional" relations. The 

classifications so far are not unlike those discussed in an ordinary 

algebraic expression of n variables. 

The real advantage of the unordered relation approach is in 

looking at "higher dimensional" relations "generated" from two or more 

"lower dimensional" relations. These are the situations which are common 

iri engineering design. 

The projections which have been,. studied are not defined in a 

manner which 9 in general, allows the original relation to be deduced. 

The fact that a proper projection does not characterize R (Pn) is 

indicated by T2=5 (3) and can be seen from D2-l0 as fo+lows: 

Let {P n 9 } C {P n} • Then Rzi (P n,) is called a proper 

projection of R (Pn)• Let x1 = x2 £ Rn (Pn' ). Then if 



this does not indicate y 1 = y 2 e R (P n) , x1 C Y 1 , x2 ~ Y 2, 

~ (Pn 9 ) cannot completely characterize R (Pn). From 02.;.10 

x1 (1y 1 = x 1 and x2n y2 = x2 + x 1 (\Y 1 = x1 (\y2, but does 

not imply y 1 = y 2• 

The above indicates that the graph R (Pn) cannot be represented 

di:rectly by the projections. The following classification involves a 

"weak" connection of two arbit:r;iary relations which hints of a method 

for generating "higher dimensional" relations. 

D2-l2: Two relations <1> 1 and <1>2 are said to be connected if and 

only if J {P n, 1} ~ {P n 1} and {P n, 2 } G {P n2} 

3 ~l (Pn'l)n Rn2 (Pn'2) ¢ (J. 

The conditions placed on two relations for them to be connected 

are very weak. In fact, from a practical point of view, the above is 

equivalent to: 

If {Pn v l} n {Pn, 2 } °# (J + <l>l and <1>2 are connected.. The 

notation <1> 1 c 4> 2 will be used to symbolize that <1> 1 and 

4>2 are connected. 

21 

The ~bove condition suggests an unordered relation graph which can 

be constructed in the space nn P 9 where {Pn} = {Pnl} U {Pn2 }. Namely, 

a graph consisting of those scalars of nn P which are the union of a 

scalar of R (P01 ) and one from R (Pn2). Now this graph is well defined, 

since x i:: nn P has one and only one element from each of the parameters 

of {Pn}• The cases when {Pn 1} n{Pn 2} = (J are of no interest since from 

D2=l2 there is no connection between 4> 1 and 4>2 • However, even if <1> 1 c 4>2 , 



the suggested graph might be empty. 

D2-l3: Assume a collection {4,i} on the parameter sets {P ni}. 

Let {4,j} C {<jii} have the parameter sets {P nj}. Let 

{cl>-:}= {cj>.} - {cj>.} 9 and {p ,.} denote the parameter 
J 1 J nJ 

sets of {cl>-: lo 
J 

If there is no proper subset {cj>j}.;) 

(U {Pnjl).n(u {Pnjl) = ,,. Then the set n P/{cj>.} = n · 1 

{x/x £ nn P and x = U y1• and y. e R (P .)} are called 
. . 1 ni 

the natural points of {cj>i}• If there is a proper 

subset such that ( LJ {Pnj}) n ( U {Pnj l) = (6 • then 

~ P/{cj>i} is not defined. 

The idea of the natural point is the generalized concept of graph when 

dealing with "systems". In terms of one relation, the natural points 

are simply the graph R (Pn)• The set of natural points, for any 

arbitrary collection of relations, is the main concern of the engineer 

in the area of designo That is, given an abstract model which has 

natural points, what happens to the number of natural points when this 

"mathematical model" is combined with an arbitrary collection of 

relations? Also 9 how "deductive" is a given "model"? (In Chapter III 

these are called physical systems.) Facts concerning both of these 

questions are presented in the next theorem. 

T2-6: (l) {cl>,} i = 1 9 2, ••• V has a natural point only 
l. 

if cl>i c cl>j +3yi € R (Pni) andyj e R (Pnj) ~ 

Y1• n YJ• e R . ( P , . ) and R • ( P .• ) • Here n1 D1J DJ n1J 

{Pnij} = {Pni} n {Pnj}. 

(2) If {cj>i}, i = 1 9 2, ••• V are the relations 
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<l>i (x) + x e: rrni P for the graphs rrn 1 P o. o nnv P • 

and {<f>i} has one natural point. then IlnP/{<l>i} = 
V 

~P,Pn;: U {Pni}o 

i = 1 

Proof: Cl) Assume x e:. Iln P/{<l>i} and} Yi and yj of 

R (Pni) and R (Ppj) ~ yin Yj t Rni (Pnij) 

when 4>i c;: cj,j. Hence yj. l) Yj ¢ x & IIn P. 

Hence there is no x which can satisfy D2-13. 

(2) Let x e: nn P and assume x t IlnP/{<1>1}. 
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However .:3 y 1 & nn 1 P • y2 i:: nn2 P • H Yv e: nnv P :;) 

X n Yi = Yi,i = 1• 2, ••• V 1 by definition 

of nn Po Hence choose these Yi and ap~ly 

02-13 to obtain x e: nn P/{cj,i} which contradicts 

the above. Hence x e: nn P + x & nn P/{<l>i}. 

The converse follows from D2•13o 

T2-6 gives a simple• .necessary condition for· a natural point. Also a 

trivial, but interesting from the design point of view, sufficient 

condition is stated. 

The next classification distinguishes relations which have a 

"stronger" connection than just being connected. First• the relations 

{~i} for which nn P/{<l>i} 'I (1 are called consistent relation$. This 

classification follows f:r;,om the "consistent" equations studied in any 

of the operational settings of mathematicso 

D2=l4g The relations {<1>1} are said to be consistent if and 

only if {<l>i} has a natural point. 



D2-l5: Assume the relatiQils {tf,i} with graphs R (Pni) 3 if 

{P .• } = {P .. } n {PnJ"} ¢ ~. Then either 
n1J ni 

!\ii (Pnij) ~ l\ij (Pnij) or the reverse. 

A consistent set {4>1} with the above properties is said 

to be naturally eonnected. Any two which are naturally 

connected will be denoted by, ( 4>1 n~ 4>j) w)'lel'e i J;,efore 

j indicates the above inolµsion, 
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The above properties are some of the mo:re ~neral restrictive properties 

of a useful. "model". Tl)ese properties are present in all the ''physical 

systems" as class!fied in Chapter III. 

The conditions placed on the relations in D2·1~ a:rie still quite 

general from a "consistent model" point of view. That is, abstract 

models 9 generated for the pu:rpose of para,llelini "natural pheqomena" 

seem to have an inherent consi~teney. It is a 4sefui characterization 

of this consistency which is being sought. The following theorem 

indicates some of the pI'operties po$sessed by natu;rally connected sets. 

T2-7: (1) If {P .. } = {Pn1.} = {P .} and (~1- nc If,.), then nlJ . . nJ J 

R (Pni)ic; R (Pnj)jp 

Proof: (l) From 02 ... 1s C4>1· nc 4>·) + R • (P .• ) CR • (Pnl·J•)o 
1 ·n1 n1J ~ nJ 

From T2~3 R. (P .) = R (P .). ~ni ni n1 

Note that the conditions of T2 ... 7 result in the possibilities fox-

projections from "highex- dimensional" rielations being contained in a 

''lower dimensional" relci.tion. This II in geneI1al, is not the case. The 

common situation is when the reverse prevails, Even mor, common is the 



conditions of the fc;,llowing theorem. 

T2-8: Given {<f>i} i = 1 1 2. ••• v with {R (Pni)}. Assume 

{P . } has exactly one parameter for each i # k and 
nik 

U {P . } C {P k}. Let <Pk be an ontC> relation 
i # k DJ. n 

relative to U {P i} (i.-e. • Rnk (Pnk,) = TI k' P 
i # k n . n 

where Pnk, = U P . ) • Then ( q,1• nc <Pk) and 
i # k n1 

¥ y. E:: R (P . ) i # k _:l K e II P/{<f>,}:) x = ( LJ Yi) U Yk 
J. DJ. . n J. i # k 

Proof: The fact that {l' nk,} n {P nk} # (6, coml:>ined 

wtth the fact that R k (P 'k) :; P . when n ni ni 

i # k, gives (<Pinc <Pk). For the second part 

the fact that \ is onto relative to {Pnk'} 

gives t~e A~sired result. 
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The situation outlined in T2-a is used in connection with "compatible 

specifications", which are related to design "solµtions'' • ,These are 

discussed in Chapter IV. When thinking of e>rdinary "functions" of n 

variables (i.e.• y = f (x 1 •• 0 xn) ~ the above says yot,1 can choose 

x1 9 ••• ~ so there is y £; Y such that the above equation i$ satisfied. 

Hence~ T2-8 shows that single formula problems can be thought of as a 

function of n variable problem or an n + 1 relation problem. In fact 

the situation of T2~8 is usual+Y thought of as an n variable problem. 

However, the use of the natural point leads to simpler classifications 

in general. One of the impo:rtant concepts involved in "simultaneous 



equations" is that of independence and dependenc;e, Condit.i,ons for-

these properties are ~sual~y expressed in teX'Jlls of the algebraic 

operations associated with the variable, of intere:;.;t. (e.g., these are 

evident in vector space$, real and complex nuJDbers. etc.), This 

problem is looked at diff~rently by .the unordered relati~ approach, 

that is, the l.ogical concept involved can Pfili expressed a51 fQllows;. 

n2 .. 1s: The consistent sets {<1>11) ~d {11>12} are saS,.d to be 

dependent if and only if 

Cl) ~ Hi'l}~ {tf,il} and <<1>1 1 2}~ {<l>u) 

~ • x e nnil F/Ui,1}:J Y ~ \12 l?/hi 1 2} ·~ 

x<; Y~ 
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(2) • y' en, P/{(j,., } 3 z ~ n . 12 P/U., }U{4>n 2 } ~ y' c z. 
· r1..2 1 2 n1. :i. 1 ... - . 

The above definition req~ire• two con,iatent sets ~f relations which may 

seem undue restrictive. H~evel", ''logica,l dep~ndence" cJn be thought of 

as a ·11measu;re'' of how ntq.ny logical factlll one the~ry contains of another. 

The above restriction is only for the purpose of requiring some facts 

to start with, The followir:ig theorem$ are noted in thi~ eonnection: 

( 1) If 0 1} has a natl,.l,ral point• then ~very prQper 

subt:Jet {<l>i,} of {(j,i} :for which IIni' P is defined 

has a natural point, 

(2) IIn P/f<I>,} := <J .... n, P/Oi_}:;: 11 ¥ <<1>.1.!} = {cl,.1..} V Ujl• 
l. . n . 

W.ith T2 ... 9 the. definition D2•16 is seen to be sufficiently gene:ral for 

the logically consistent ~lgebraic formulas normally ~Jed in engineeringo 



One of the simplel:!t facts to obtc;lin and obsewe is as foJ,.;j.ows: 

T2-l0: 

D2-l 7: 

{~i} dependent+ 3 {,1 } and <,i} qontained in 

Ui} :J { V {Pnil} }(l{ U{Pnill} };>{ U {];'nil}} 

or 2 {l,J{P nia} } • 

Proof: Assume the opposite of the implied cfi)Ildi'lj:ions 

and ;t.1~t Ui} be depend.en'\;, From D2 .. lli? and 

definition of Iln P a QQP.tra<!iction b ol>taiped. 

Se~s {,i 1} and {~iz} are said to be ind~pen4ent if 

they are no~ depen4e~t, 
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Information concerning dependence among re~ations is of considerable 

importance in desi~ tbeoey ~ The mq1,in conceX"l1 in this chapter is to 

look for conditions relat,ive to cl,ependence wµich can be at:!S~gned to 

parameter "models" ~presenting "physical systems''• Natura.l connectedness 

is one property already attributed. to these "models". Even stronger. 
·-

the condition betw~~n the gr~phs pf naturally connected relations is, 

in this thesis, made an e().uality when either {Prii} or {Pnj} is equal to 

{P •• } • A useful 'theorem is ol:>tained l>y using these conditions a.long 
llJ.J 

with two others. . lnvo+veci in this theorem is the following set de ... 

composition process; 

D2-l8: A set of relations {~i} a~e said to be decompo~al>te 

· if the follQWing preee~s yieJ,.<;ls the empty 1;u~t; 



D2-l~: 

the pa:rameter set of cl>' 3 P' t to any of the 

pal;'amete:rs sets of {c1>5.} ,.. {cl>'}, NQW either 

Hi} - {cjiil} = '1 OX' not. If not, repeat the 

process us.i,ng {cj>.} "" {4>. 1} in place of {cji.}. If 
1 1 1 

sQ, the process is complete. If this process 

yields the empty set in a finite nu111Per ef steps• 

let { c!>iJ denote the last non.,.empty set. The 

SE;lt {cl>i} is called i,.ecomposal:>le with the n de .. 

compositi~ sets UiJ , A set is sdd to l;>e non• 

decompo~abl.e if it h net· decomposaQl!:I. 

A naturally connected set such that·cl>i nc cl>j..,.... cl>j nc cl>i 

is said to be normally connected, (cl>i nc ,j will be 

taken for nc;:,rmal~y con:ne~rt:ed unless othe:rwise sta"t;ed,) 

Some facts conce:mi:n.g ®oomposal>le ljlets are needed to look at the 

more important indepen4ence conditions. 

T2 .. ll: Let Oi} be a deco_mposaple normally coJlnected. indepemdent 

set. Then if {cJ,i} h~s a one element deco~ositicm class, 

it is the last. 

Proof: Assume thex,e is a one el~mient class not the last. 

Let {cf,ij} ;represent this class, Then 

{Pnij} .,;?{P'ni, j + l} where {P'ni, j + l} 

is a para~ter s~t of$!. 1 £ {$, J' + 1}• lJ t 1, 

If n9_t, thell cl>' e {cl> •• } by 02 ... 10, Now 
ij + l l-J 

if, •• nc 4>' by hyp. Hence they are 1,·· • • + , " 1, J + 

dependent by 1)2 ... lf). 
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T2•l2: 

T2-l3; 

Let {(!ii} be a non .. decoJlll'OSable set• Then 

3 {cl>I} '; {cl>i} 3 ( \J{P~U} ) = ( U {f ~:i-2}) 

where {P~il} refers to Ub}C:{lflI}, {p~i2 } 

refex-s to {<1>! 2 }C{$'.}, 
;L ' l. 

Proof: Assum~ the /il.bove NS\llts are fi!llse, Then 

:3 r ~ (l){P~i1>)1 P;. ( U{P~i2l) 

whi¢l giv~s ~ cont:radic1;ion by :02 ... ;1.a. (Note 

that aet~~+lY the other side of the s,t 

equality might nee~ be used,) 

Let {~i} be a nqn•de/Qomp0$able Ht 3 {Pni} ¢ {P nj} 

., i '¢ j • Then there is cme and only one {cl>!} with 
J, ,' 

tbe property that; 

Cl) {~1} - {cl>'} is e~tber ~ or a decQmposable 
i 

(2) There are at leaet two·- distinct subsets of 

Proof: Consider the set { <1>1} ~ { cl>i} where t+p is the 

set which ~main~ when the procedure in D2-l8 

fails to yield an empty SEJt. The fae,: that it 

must fail is given by hy~, Now if the pt'Ocess 

fail,s on the first try, then {<1>1} = Ui} and 

{4>1 } "" {cpl} = ti. Jf not• then the other co~dition 

of ( l). Now it is clear frf!lm P2"'!la that {<l>l} 

const:t:1µcted as above is uniCJ,ue. Hence, i.f ( 2) 

is satisfted by {4>i} • thet:1 the proof is c::omplet(;l. 
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If {4>i} ~ {,i} • then by r~•l2 alld the 

condi1;:ion {Pni} i {Pni} rf i. ; j th~ $et 

equality o~ (2) must bold for at least two 
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Another fact concE1:ms tne ''cove;,irig" propertie$ of t:qe decomposition 

sets. 

decompositiOJ'ls c:i.asseS' 
V 

U {Pn:; } ;: U {P • } ... ni J i ;; l . 

I 

Px-oof; Assqme :t P ~ .j.th dE:ce>rnpQsition set 31 P ;. i .,. l 

deeornp11>$ition set.· Hence .3,, e {4,ii} 3 4>' ¢ 

~'i. i,,,. il• Al.$0 ;la P• ~· {P~i} 3P•;. to 

any other pa,r,al!'le'tier relation set for j :r i • 
. I 

i + 1. , • • n Ji,y 02 ... ;i.e. Henc;e • by 1;he ¢onst:t>Q.ction 

proQ~SS of t)2~1$ ell' (lan f: Ui i .., l,} • 'l'p..is 
,. . 
Qontl!lad,icts the assumption above, · Hence Jt 

le,:tst ;;a hold$~ To see that only ::) can hold• 

n2 .. 1e again is used to get nc:;m .. d1:u;iompoiabili't;y 

· which contradlcts the hypothe$iSo Tqat L) 
5. ::; l 

{rni} ;:: {Pni 1} must fo;l.low from sta:rting 

wit\l a finite set of finite obje~ts i:,.nd p2 ... ;i.e. 

From T2,.l3 and T2 ... l4, it can be said that the~ is one and only one 

decomposition class fo;r> a deciornpos,al>le set which "cove:rs" the parameters. 

This fao1; along with th~ p:rope.r1;y of, b~ing consis1;:ept l$ads to 



inteX'esting properties when moN thi!Ul one decornpQsition c;J.ass is 

obtained. It is first l)oteo that: 

T2-15: For a consistent set {ci,i}witn d~cQmposition classes 

{ci,. } then when TI •• F/{cl>. } is defined 
in _ qiJ ij 

an (II • P/Uin}) > • • • > 01· (TI :uU.;1l>, nin • -- - n ... 
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Hence the "number" of natu;ral points tend to .i,narease as "Nst;i;,ietions" 

(relations) ai-ie removed. Al.$<1 1 for deconu,0$al:>le sets t-Q be dependent 

there mU$t be a cover.i,ng as by ~2 ... ;i.o. 

T2 ... 16; Let {cj,i} be an N dec:1omposable depe;ndent set s~ch that 

{Pni}'*O'nj} vi~ j. 'J'hen n > ~. 

Proof: . Assume n ;: l. From r2,..10 and 1)2"'18, there is 

cont:rac:1ictiori when the special conditions of the 

hyp. are used, 

independent. Also· i.t is noted that one relation sett!? i:lre independent• 

since D2-l6 cannot be satisfied with- jW;it one set, From 'f2-16 fllld 

D2-18, along with T2•l5, each de<;omp(?$ition cl-~ss of a ~onsistent 

T2 .. 17; Given a consisten"I: N deqomposal:>le set {h} with !1 {cj,in} l:t, 
then each {cl> •• } is ~ in de pendent set• 1J . -. -· . 

So fi!X' most o:f the independence and dependence aond,itions have been 

q~i te general iUld only required con~i.stency of the original ~et. The 



ne'ft theorem ~eals directly with dependence of no;r,mally corrected 

relation sets and indicates why the condhi.on {E>ni} <4- {Pnj} ¥ i , j 

is not unusual. 

T2-l8; If for the normally c~nected set {ipk} ~ 'Pi and 

'Pj• i;. j ~ {Pni} g.{Pnj}• 1;~en {cj)k} b dependent. 

Proof: By D2-l9 and 02 ... 1e. 
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The next definition is a key factpr when showi~g that it is necessa;ry to 

be ahl.e to decompose a set of independent reil,ations wl?,iQh represent a 

"physical system", 

02-20: A consistent ,et {ip.} with properties (l) • (2), and 
l. 

(3) is said to have property c. 

( l) {P ni} 1 U? nj} " i ;. j •. 

(2) If {cj)i? and {'Pi2 } such that ( l){Pnil}) = 

( U0'n12>> + nni,P/{lj)il}~ Jinil1Ui2}. 

( 3) { 4>1J is. n~~11:1lly connected. 

Using the above along with T2-13 and P2-rl9 gives: 

A set {q>i} wi:t;h property c. is independent only if 

it is decomposal;>le. 

Reviewing the conditions for independence and dependence of consistent 

sets, the following is noted; Sets of relations with property c can be 

checked for in<;l.ependence and dependence in rqany · cases l:>y looking at 

their decomposition classes. The main cases fol" which conditions have 
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not peen given are the decomposable sets with. moN th~ one decomposition 

class. This involves removing the equality for set inclusion of 

condition (2) in D2-io. Before discussing this possibility~ the 

essence of giving a model propex;:y c is discussed. 

The restriction imposed on a' modei by 02,..,2.o can l:>e thought of in 

terms of the undefined notations eall~d principles. A principle will be 

denoted by cfl. It is assumec:l that eacll set {4,~_} is obtained from a 

collection of principles {t1}, The restriction~ i~posed by D2-20 on a 

set {4>i} are in effect restrictin~ the set of principles which can be 

used to generate the set <,il• The primary restriction~ are those of 

(1) and (2). Ip effect (1) says that the principles used disallow 

generating twi;, indepenq.ent relat~on~ 4>i and ,j suah that {Pni} g; {Pnj}. 

Property (2) is the extension of ( :L) • · Nµmber C 3) :requires the "over.­

lapping" relations to have identical p?103ections. It is noted from (2) 

that the cQlle of ''ri, equations and 11 unknowns" is ruled out for models 

With property Co 

The above restrictions place4 on principles Q$ed for generating 

models do not seem to conflict with the general principle$ presently 

used in engineet>ing. :;tn addition• the follQWing property appear$ to 

fit the cla.$s of general principles used to obtain deductive models. 

D2-21: A set of :relations <,1 } ·which bas the :following 

properties is said to have property cc. 

(1) {4>i} has property c. 

(2) If {4> .. } and 0.k} are decomposition classes 
J. 'J l . . 

of {4>.} ~ l){P .j} C LJ{P .k}, then 
J. ni ni 

J y' e: Il .k P/{4'.k} i3 ¥ Z e: Il •• k P/{4> •• } U {4>.k}y' ¢.·Zo · · ·ni, + DJ.J l. J J. J ·. 



The essence of (2) in D2~2l oan be stated as follows. If the 

principles {ti} generate a model which decomposes. any two independent 

decomposition classes are also independent, (The fact that a de-

composition class is independent comes from T2-l7o) It is noted that 

(2) is just the opposite of condition (2) in D2·~6, the second 
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requirement for dependence, Hence. for sets with propert::y cc• the necessary 

and sufficient condition for independence is decomposability. 

T2-20: . : A set of relations {$i} with property cc is independent 

·. if and only if {tj,i} is decomposable. 

J;n terms of the "number" of natux-c;1l points, the models with property cc 

are required to have a strictly increas!.ng "number'' of ;natural points as 

the number of decomposition classes increase (see T2~15). 

Principles {ti} applied to the parameters {P0 } generating a model 

with property cc is said to fot?m a parameter model. This is formalized 

in the following definition. 

02 ... 22: A set of v relations {$i} generated by the principles 

{ti} with the properties (1), (2), and (3) is said to 

. be a parameter model. 
v 

( l) Each P e U {P • } is indexed by a subset of 
i = l n . .1, 

the set A. 

(2) {$.} has property cc. 
l. 

( 3) Let W(':t>e a single parameter of {P ni} • then 

R . (P!.) = rrn-·i· P. ni n.1, 
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It is noted that the principles Oi} indicated in 02-22 are not formally 

involved in the definition of a pa1/'a~ter model. However, it seelllS 

appropriate to include the ph:rase, "generated; by the principles {cl>.}". 
J. 

The idea of the principle is used in the following example: 

Example: Let {en} be a set of n distinct parameters called 

voltages. Assume the one principle cl> 1 called 

Kirchhoff's voltage law, relating the voltages 

about any closed path in a network. Th~n if 

{<j>i} is a parameter model generated by cl> when 

applied to the netw,otk with voltages {en}• {<1>i} 

has property cc and hence is a set of independent 

relc=i.tions if and only if {<j>i} is decomposable. 

The parameter models are used in this thesis as if they were the 

class of models used to deductively s'Olve engineering design problems. 

In this connection;parameters and :relations~ in more generality than 

parameter models• a,re introduced in the next chapter. 



CHAPTE:R III 

SYSTEMS 

The purpose of this chapter is to define and characterize systems 

which can be utilized in the area of engineering desJgn. 

D3-l: 

The idea of a system in this thesis is as follows: 

A collection of n parameters {P0 } and v relations 

{~v} are said to form a system Snv if and only if: 

(3) ¥ ~. e {$ }. ~. is algebraic (D2-8). 
J. V 1 

·cs) ¥ !$i 1} Chv}• {Pnil} (\ {Pni2 } ¢ 11 where 

{P0 i 2 } are the parameter sets of h) - {~il }. 

(6) Soo ++ n = v = O is called the "empty" system. 

Although a system Snv is quite general• it is also restrictive. 

The definition above includes the usual sets of v equations and n 

unknowns which are common in engineering. Also. it requires that any 

postulated system have certain basic properties. Mainly, that the 

quantities of interest be identified and some abstract connection be -
36 
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centered about these quantities (l), (2) 6 In addition. there must be a 

"logical" path established between the parameters. This is the 

requirement of (4) and (5). Number (4) requires that if two relations 

are set connected• then their common projections are "overlapping". 

Number (5) requires the necessary set conditions for having the natural 

points of a system defined. The property ( 3) is included based on the 

fact that the us~al mathematical formulas of the basic sciences are 

defined on a single set of elements. Hence, the above requirements are 

seen to be primitive, yet not at all trivial. 

One of the more interesting facts• and desirable one from a 

practical point of view, is the following: 

If 3 a set of parameters {Pn} 3 n > 0 and each Pi 

e {Pn} is indexed by the same set A, then 3 a system 

snv # Soo. 

Proofg Consider the relation~ (x) ~ x e rrn P. It 

is clear that properties 1-6 are satisfied. 

The above theorem is important in a design theory. When considering 

design techniques from a logical point of view, it is indeed practical 

to have at least one system. 

When dealing with system classifications and properties directed 

towards design, it is convenient to consider sets of parameters {P n} 

and relations {~v} which are not necessarily a system but do have some 

of the properties of D3-l. The sets will be denoted by Auv and are 

given as follows : 

n3 .. 2: A collection of parameters {Pn} and relations {~v} are 



said to form a partial system Anv if and only if 

the two collections satisfy properties 1 ... 3 and 6 of 

D3-l. 

The properties 1 ... 3 still require the identification of parameters 
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and algebraic relations. However, 1;hese relations may not be connected 

(6). In facti their parameters sets may not form a path (5)~ From T3-l 9 

it is clear that a non-empty partial system exists. The following 

facts are noted concerning A and S which are directly from D3-l and D3-2: 

T3-2g 

Just as in Chapter II, not much can be said about the elements of 

A and S until more properties are assigned. Most of the basic properties 

which are used to classify systems are a direct carry over from the 

chapter on unordered relations 0 When possible, the properties will be 

attributed to elements of A, understanding that if properties (4) and 

(5) are involvedi the definition only applies to the subsets which pelong 

to s. 

D3-3 g 

D3-4g 

D3-5 g 

A partial system ~vis said to be an algebraic system 

if and only if for each P of ~v• Pis indexed by a 

subset of the same indexing set. 

A partial system Anv is said to be connected if 

{Pni} n {pnj} 'I " ->- q>i c 4>j 0 

The set ITn P/{cj>i} • if it is defined 1 is said to be the 



D3=6 i 

D3-7g 

T3-3 i 

T3-4: 

T3-5i 

D3-8g 

D3-9 g 

natural points of ~v• (When dis~ussing natural 

points, it will be more convenient 1;0 use rrn P /Anv•) 

Anv is said to be consistent if IIn P/Anv ¥ (1. 

Given a partial system ~v with {~i}* then A!v is 

called a subsystem of A if and only if ' nv 
i 

¥ ~. of A , ~. E {~.} of Av• 
1 nv i 1 n 

If Anv is consistent, then each A!v which has rrni P/A!v 

defined is consistent. 

Proofg From T2-9. 

If :3 Ai of A which is not consistent, then A 
nv nv nv 

not consistent. 

Proof: From T2-9. 

If A is a connected I'artial system, then nv 

(l) 3 A 1 and A2 proper subsystems (i.e., A 1 ¥ nv. nv nv 

Av and A2 ¥ Av) .;i A 1 and A2 E S. ·n nv. ·n nv nv 

(2) Anv ¢ S ~:1~v and A~v=' ( U{Pnil}) n 
( U {P ni2}) ~ '1 • 

is 

A partial system A is said to be dependent if ?md 
nv 

A partial system Anv is said to be independent if it 

is not dE;!pendent. 

39 
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In looking for useful ways to classify the elements of A and S 

a simple equivalence relation is observed in the ordered pair (n • v) of 

A • nv 

T3-6: Let IXI denote the ordered pairs of integers. If 

a pair of integers is denotecl by (n• v), then the rule 

A ~ A ++ (n • v ) = (n , v ) is an equivalence 
n1v1 ·112v2 1 1 2 2 

relation~ on the set A. 

Proof: reflexive since (n • v) = (n • v) 

Since (n , v ) = (n , v ) ++ n = n and 
1 1 2 2 1 2 

vl = v2,"11v1 ~ An2v2' An2v2 ~ An3v3 + An1v1 ~ 
~ v + transitive. This follows as in the 

3 3 

proof of symmetric. 

Note that by T3~2 the same relation also reduces S to equivalence 

classes. Because. the above "basic size'' relation is produced by (n, v), 

these integers are given the names "order" (n) and "parts" (v). 

D3-ll: The order n of a partial system Anv denotes the 

number of parameters in {Pn} of Anv• The "parts" v 

of a system denotes the number of distinct relations 

(Where distinct means that if ~. and ~. have 
J. J 

the same parameters then R (P . ) . i R (PnJ· )J .• ) 
. DJ. J 

In the above classification i1; is noted that only distinct relations are 

considered when discussing the number of parts. In the remainder of 

this thesis, it is assumed that for ·Anv• · v denotes the number of parts. 



Prob.ably the most important .classifications from a design aspect 

are those of "physical system" 9 "specification"• and "solution". The 

"physical system" corresponds to a parameter mode.l. 

D3-12g ~vis said to be a physical system if and only if {$i} 

has the properties of a parameter model. 

The class of physical systems will be denoted by PS. From D2-2l 

the elements of PS :are also elements of s. Also, from T2 .. 20 the 

elements of PS have independent relations. This is stated after de-

composable systems are introduced. 

D3-l3: 

D3-l4g 

Anv is said to be decomposable if and only if {$v} 

of A is decomposable. nv 

Anv is said to be a fixed system if and only if 

~vis not decomposable. 

The term. fixed system, is used because of the properties of 

decomposability. (That is, when relations are added to a decomposable 

system until the system is no longer decomposable, the number of 
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natural points in most cases decreases. In any case it cannot increase 

by T2-9. Hence the term, fixed, refers to the possibility that there 

is only one natural point. This parallels the idea of possibly having 

a unique solution in ordinary algebraic systems of n equations and n 

unknowns.) However, it is noted• that a fixed system does not 

necessarily haven parameters and n relations or a single natural 

point. 

For decomposable systems, the subsystems corresponding to the 



decomposition classes of {,vl are called characteristic subsystems. 

These characteristic subsystems are ordered by the decomposition 

property of T2-l4. When the system is a parameter model and if the 

relations are related to some physical interconnection property (e.g., 

some electrical or mechanical network-of components), then the 

characteristic subsystems indicate the physical interconnection. This 

is illustrated below; 

Example: Consider the relations {,il of s9, 4 e PS induced 

by the Kirchhoff principle of voltages summing to 

zero in a closed loop. 

'1 (e • e • e ) 
l 2 3 

' (e ' e • e ) 
2 4 5 6 

,3 (e • e • e ) 
7 8 9 

' (e 1 • e • e ) 
4 5 9 

Now S 9 is decomposable with characteristic 
9 4 

subsystems U, 1, , 2 , , 3}, S
91 3) and C,4 , S31 ). 

· Assume that each , corresponds to traversing a 

geometrical closed path of components. ( One 

component for each parameter is ass.urned.) If this 

is the case, then it must be true that the components 

of, are connected in a loop which is imbedded in 
4 

the loops of the system S • A network with this 
9, 3 

property is shown in Figure 3-l. 

42 



D3-15: 

Figure 3-lo Four Loop Network 

If Anv is decomposable• the subsystem A!v which 

corresponds to the ith decomposition class of {$v} 

is called the ith characteristic subsystem. 

As mentioned earlier, the properties of T2-20 as extended to 

systems are given to the physical systems of this thesis. 

T3-7i If snv E PS, then 

(l) Snv is decomposable. 

(2) S ·~. {$ } where each$. is- the product relation 
nv v . 1 

( nni P) only if Snv is first decomposable. 

(3) S is independent. nv 

Proof: (1) and (3) come from D2-21 and T2-20. Number 

(2) comes from D2-21 and definition of IT P. 
n 

From D2-21 the principle for {~ } is that used 
V 

to define the product relation. However, if 

{~v} is not first decomposable, then property cc 

cannot hold since any cove;r,ing of a product 

relation by p;r,oduct relations would not be 
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independent • Also• from property c any 

product relation with parameters contained 

by some other product relation is ruled out. 

Hence, the product relation can only be used 

as a physical model when certain "restraints" 

are fulfilled. 
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The class of physical systems have been developed for the purpose 

of having an abstract mathematical model with properties in common with 

the ordinary systems studied in engineering. The systems which are 

commonly analyzed in engineering are formulated in one of "the ordinary 

number systems based on several principles which appear to give the 

parameter model properties (e.g •• amplifiers, motors, servo-systems, 

etc.). All of these common systems can be thought of as elements of 

PS as looked at in this thesis. 

The class of physical systems can be thought of as the general 

solution space for an engineering problem. In practic~ • it is known 

that a complete analytical model is seldom to be found which allows 

the given problem to be solved numerically. However, it is often the 

case that a "theoretical11 model can be found, although a complete set of 

operational formulas is not available. This being the case, the 

necessary ingredients for assuming the properties of PS al"e sometimes 

available. Also, it is often the case that more restrictive properties 

on the relations are available. 

Probably the most powerful deductive property that an abstract 

model can have is that of the being u 1 '." 111 • In terms of the ordered 

(binary) relations, this is expressed in terms of the first and second 
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elements of the ordered pairs. This requires the order of the relation 

to be considered in formal discussions. In the unordered approach there 

is no formal problem of this nature. The classifications concerning 

uniqueness of related scalars parallels those of ordered relations. 

D3=16 g cp on {Pn} is said to be a partial function relative 

to {Pn _ 1} j some n - 1 subset of {Pn} if and only if 

3 ~ 1 { P n - l} C { P n } 3 Y rrn - 1 P e Rn - l ( P n - 1) • 

There is exactly one ,r p e II P/cp 3 1T P n ,rn _ l P = 
n n n 

,r P• 
n - l 

In terms of an ordered binary relation, Rt the above implies that 

either R or R converse is a function. In terms of "higher dimensional" 

relationst the partial function defines a mapping from the ordered set 

IT 
( n 

p 
1)' 1 

p 
1). 

1 

into P~· 
n - .i. 

This is usually denoted by cp: 

~ P or f (P 9 ••• P ) = p .1 
~l 1 n-1 n-1 

The important 

thing is that the partial function parallels the function concepts of 

ordered relations. A complete function will denote the case when cp is 

a partial function relative to each n - 1 parameter subset. 

D3=17: cp is said to be a complete function on {Pn} if cp 

is a partial function on every distinct n - 1 

In the case of n = 2 9 the ordered relation name for a. complete 

function is one-to-one ( l - 1). It is clear that a complete function 

1 More correctly the partial function defines a mapping only when 
~ = l (Pn - 1> = rrn - 1 P. 



is a partial function but not necessarily the converse. 

The partial function is very common in the parameter models of 

engineering. Also• the often used linear models involve only complete 

functions (i.eo 1 models based on linear algebraic equations). These 

are the two basic function classifications of unordered ~lations of 

this thesis. However• it is noted that this approach suggests other 
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classifications which might be useful in constructing model properties. 

Some of these are indicated in Chapter IV when discussing general 

design solutions. 

The idea of a "solution" is inherent in the concept of a relation. 

Also 9 the idea of a function allows the idea of "unique solution". In 

design, it is a "solution" which is of primary interest. The concern 

for the "unique solution". is usually small. However• the properties 

of partial functions can become useful in design to indicate the non-. 

existence of "solutions". Using the definitions D2-10 and D2-ll, a 

"specification" and "solution" are defined. 

D3-18; Given <I> on {P0 } and Rn' (Pn,) £ Rn' (P0 ,) of 4>. 

Then R-. (P-,) = {x/x e: R-, (P-,) and x UY e; II P/4> n• n n n · n 

· and y e; R , (P ) } is called the solution for the 
. n nv ___ _.,. 

specification Rn' (P0 ,). 

It is again noted that the unordered concept of solution is the 

same as that of the ordered relation (i.e., basically a solution is 

relative to some "problem" where <I> can be thought of as the "problem 

domain" and the specifications as the ''probiem generator"). 

The solution as given by D3-l8 in general gives no information 

about existence or uniqueness. Some of the simple existence facts 



were stated in T2-5. Some of the simple uniqueness facts are listed 

in the next theorem. 

T3-8g Given cf> and the specification Rn, (P n,): 

(l) cf> a partial function relative to Pn, -+ 

¥ x £ Rn' (Pn,) 3 a unique y e::Pn' 3 ye: Rn' (Pn1). 

(2) If cf> is the product relation, then Rn' (Pn,) ¢ '1 

is unique if and only if (l) {Pn'} = {Pn} and 

(2) Rn, (P n,) has exactly one element. 
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The classifications involving partial functions, complete functions 9 

specifications• and solutions can be naturally extended to systems. The 

extension of the partial function and complete functions are delayed 

until Chapter IV when discussing types of "real" physical systems. The 

"system" specification and solution are given in this chapter aftE!r the 

concepts of the measurably rational, measurably irrational, and sum of 

two systems are introduced. 

D3-19 g 

T3-9: 

AnveA is said to be measurably rational (MRS) if and 

only if 

(l) Anv is algebraic. 

(2) ¥ Ai of A then either Ili P/Ai ¢~or not 
nv nv n nv 

defined. 

(1) A partial system Anv 3 Iln P/Anv ¢ '1 is 

measurably rational and connected. 

(2) ¥ S0 v e: PS ,snv is measurably rational. 
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Proof: These come directly from the definitions 

of PS and D3-20. 

The role of the measurably rational partial system in design is 

quite important. The name measurably refers to the fact that ~v is 

algebraic; hence • a common reference frame. The name• rational• refers 

to the fact that nothing is inferred to be· impossible by this class of 

A. This class represents the "specifications" for a deGign problem 

which have a possibility of l;>eing "satisfied" by some element of PS. 

An element of A which can satisfy (l) but not satisfy (2) of D3-l9 is 

said to be irrational. 

D3-20: Anv £ A is said to be measurably irrational (IRS) 

if and only if 

(l) Anv is algebraic. 

( 2) 3 AL · £ A 3 JI P' I A' = r,6. nv -"Ilv n nv 

The class IRS is at the other end of the spectrum when considering 

specifications. That is, no element of PS has the properties of IRS. 

Hence• from T3~4 • T3-l0 is obtained~ First, the sum of two systems 

is defined. 

D3-2l: Let A A £ A The sum of the part. ial -"JllVl 9 -112V2 • 

systems, An v • is denoted by~ v + An v = An v • 
· . 3 3 . 1 1 2 2 3 3 

. Where the set {P01 } = ( U {Pni }) LJ ( U{P • }) and 
3 1 n~2 

{<Pvi } = Uvi } L) Uvi } is the parameter set and . 
3 1 . 2 

relation set of A v. 
' --n.3 3 

T3-l0: If An v £IRS. then ii Sn v 1:: PS 3 rrn P/A v ,; (,6. 
1 1 ~ 2 2 3 -"Ilg 3 



D3-22: 

D3-23: 

Aov e: A is called a system specification if and only 

if ~v is algebraic. This class is ~noted by SA. 

(This is an equivalent definition of D3-3.) When 

CJ\iv of SA) e: MRS 9 <\iv is said to be feasible. When 

CAov of SA) e: IRS, Anv is said to be impossible. 

(2) ~ v e: SA. 
3 3 

(3) ~ v ¢ IRS. 
3 3 

J\i v is called a system solution for the system 
2 2 

specification~ v. 
, 1 l 
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Note that system solutions are relative to some system specification 

~lvl• Yet, as in other functions of more than two variables, the 

"solution variable'' can be held constant while the "specification 

variable" is changed. This fact is very necessary in a "correct" 

theory for design, since this "design process" is commonly used (i.e., 

very seldom is the model changed). Several facts which are quite 

simple to obtain yet useful in design are given in the next theorem. 2 

T3-ll: Given: An1v1 e: SA, J\i v e: PS such that An v + 
2 2 l 1 

(l) If An v is a soluti.on of~ v -+ ~ v and 
22 · 11 22 

2The distinction between system specification and specification 
will be omitted unless confusion might arise. ' ' ' 



An v are indexed by the same set. 
2 2 

(2) :I a solution for ~ v if and only if 
l l 

Proof: (l) This fol.:).ows from D3-23 • p3 ... 3 • 03 .. 22 • 

D3-24• 

(2) From T2-9 and D3-22 the necessary part .is 

obtained. From T3-l the relation 

4> (n) + x e: Iln P is always avail.able. 

Also. given any Anv of MRS• then 

PT A & MRS by properties of nv 

P• D3-19. and D3-17. 

The value of a system is defined in order to have another way of 

looking at the logical information of a system. 

D3-24: Given an element A of SA, the value of A is the · nv nv 
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set of natural points Iln P/~v if it is defined. If empty or 

not defined,. Anv is said to have a null value. 

The above definition closely parallels the or~ered version for an 

n variable formulao There is a distinct difference, however, which 

is, conceptually at least, important. There is no concept like the -
"picture graph" found with relt;1.tions on a set wh,i.cb is ordered (i.e., 

the concept "is P > P " is "meaningless" in unordered relation). This 1 
1 2 . 

in fact, characterizes the "unordered"· from the "ordered". However, 

it suggests a natural way to "project" a system onto a 11ca,librated" 

scale. 



D3=25g The ordered value of an algebraic element ~v is 

either empty when IIn P/~v- = (6 or the order of the 

scalar values of the elements of rrn P/IT P. Here no 

rrn P/ITno P denotes that each element of the unordered 

set ITJ'i P is ordered by the ordering structure of the 

indexing set. (Also, if the indexing set is not 

ordered, the o,:,dered value is said to be empty.) 

D3-26 indicates that rrn P/ITno P represents the ordinary graph.s 

which are used in engineering to obtain a ''measurable feel" for a 

particular system. Also, it clearly indicates why the ordinary graphs 

of some indexing sets are not used nearly as often as others. For 

example, Boolean algebra is defined on a set of two elements• say O • 
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l. Yet the graphs of foximulas of a Boolean algebra are seldom displayed. 

Note also that the ordering properties of o. l are limited indeed. 

That is, 0 < l, l > o. or l = 0 (trivial). Yet, the 13oolean algebra 

gives very useful formulas, since many parameters can be usefully 

in.dexed by only two elements. 

The above discussion indicates the possibility that algebraic 

systems can be projected into many indexing sets if they can be projected 

into one. Also. from D3-24 the value of a system is its natural points. 

However, the common way of discussing a system is in terms of its 

ordered value in some indexing set and the formulas so defined· in these 

sets. This procedure is useful in particular cases but conceptually is 

quite limited. The natural points indicate the "logical information" 

of a system. This being the case• any two systems which have a l - l 

correspondence between natural points are in a logical s.ense equivalent. 



Using the equivalence classes ~ and the "number" of system values• 

establishes an equivalence relation on the Class A., 

T3-l2 g 

(l) o(IIn P/Alvl> ;: o(II P/A ). "'ll · n "ll2V2 

(2) Au 1v 1 and An 2v 2 e: (Auv> an equivalence class 

B 
of "'• 

From the above it is cleax- that (l) the "amount" of logical 

information (natural points) must be the same in two systems for them 

to be equivalent and (2) the number of parameters and relations must 

be the same. The next theorem shows that when there is a l - l 

association between scalars of each parameter of {Pn} and {P~}, then 

there is a syst-em ~v ~ ~v• 

T3=13i Assume a system ~v with a natural point and 
V 

subsystems Ai ~ ( l Ai ;: ~v>• If T has the 
nv i ;: 1 nv 

then A!iv ;: 
i 

V 
• V ? A~v is equivalent to Anvq 

;: l -~ 

Proof~ First, it is noted tha·t if ( 'IT • p L) ,rnk p) e: 
. n1 

rrnik (Pni U Pnk)• then (T ,rni PUT ,rnk p)e: 

rrn' ik (T P ni U T P nk) t where ,rni P e: 'll'ni P 

i n of Anv• Now unless {Pni} {Pnk} ¢~.then 

'll'ni P U ,rnk P e: rrnik (P ni U P nk) • Hence, the . 

disjoint case is of no concern. Assume that 
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T ( trni P) U T ( trnk P) e: IIn' ik (T P ni LJ T P nk) • 

(Here T Pni refers to the P;i which each Pni 

is associated with in al - l manner.) But if 

tr • p l) tr k p ;. II 'k (Pni LJ p k) -+ 3 p e; tr . p n1 n • . n1 · n 1 n.1. 

and p' e; tr k p , p and p' C P1• t ( {P , } n {pnk}) 
1 n ;:7 1 l n+ 

~ p # p'. Therefore, by hypothesis Tp '# Tp'. 
1 1 1 l 

Hence, (Ttrni. p)lJ (Ttrnk p) ¢ II '"k (TP .UTP k). n 1 . . n1 n 

The above fact i~ used to show the l ~ l mapping 

T' between~ P/~v and IIn P'/A~v exists. 

Consider T' (nn P/Anv> = {x/x e: IIn, P and x = 
V . . 

l) T (tr . p) and LJtrni p e: trn P/Anv}• Now 
i = l .n.i 

T' (Jin P/~v) is al - l mapping between 11n P/~v 

and T' (~ "f/~v) <;;; ~ 'f''/A~v· The proof is then 

complete if it can be shown that II P' /A' C.T'. , . , . n nv -

(The fact that T' S IIn P' (A~v comes directly from 

the properties of T and T',) Assume x e: IIn P'/A' 
nv 

and x ¢ T' (IIn P/~v)• Therefore, 3 (Ttrn! p) U 

(T,rnk p) e: IIn'ik (TPni U TPnk) 3 (trni p) U 

(tr k p) ¢. II 'k (P . U Pnk>• 13ut by .the previous n n1 n1 
result, this assumption gives a contradiction. 

Hence, T' (IIn P/Av) ::, IIn P' /A' and A ~ A' • · ·n - nv nv .. nv 

The above theorem is quite unrestrictive when the normal systems 
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studied in engineering are considered. An ex.ample is given below which 

commonly makes use of the above fact. 

Exampleg Consider 4> of Sn an algebraic Sy$tem indexed . 1 1 



by t.he reals. generated · by the· real number formula 

x 1 = f ( x 2 • , , •. xn) , Cons idez, a tx,ans format ion of 

the type x +axon the reals where a is some positive 

integer. This isl• l of each Pi ontQ Pl• Hence, 

for each wn 1 p of rrn P/~ there is a unique wn p' 

which can be associated with wn 1 p, Hence, any 

transformation of the above type gives an equivalent 

system, 
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In the actual situations• care is · exercised in chang~ng the information 

between equivalent systems (i~e. • y :;: sin x and ay = sin ax are normally 

considered to be different when a# l). The above diScU$sion indicates 

that this nas nothing to do with the logical value of the two systems. 

The main classifications given in · this chapter are those which can 

be used in enginee:r:-ing design, In leaving this ohapte:-r the connection 

between design and systems c;;an be indi~ated as followi;;: 

Given a feasible specification <\, v (i.e.• A .., £ MRS)• 
1 1 n1 1 

then an;z system Sn . v , such that A v + Sn v is MRS I can 
2 2 -ll 1 1 2 2 

be thought of as a theoretical design solution~ 



CHAPTER IV 

FUNDAMENTALS FOR ENGINEERING DESIGN 

The "general design" pr~lem is formc1-lly indicated in 04i-lo That 

is, the ingredients for a problem are presented in this definition, 

Conceptually, the problem ~s no different from the following algebraic 

problem: 

Given : ~ +.+ b -t X .::, y X I y I b e: R. 

Find: X ;:: {x/x e: R• and ~ (x} a.pd y e I}. 

Now there are othe;r, possibilities which cou.ld be used in the above 

example. The point of the analogy is to discuss the "so)..ution". Unless 

each of the above terms wai;; we;J..l, defined, no procedure could be 

unambiguously outlined (not necessarily carried out) to give the answer 

or answers-. 

This last fact has been the main problem in developing a useful 

design theory. It was for this reason that Chapters II and III of this 

thesis were essential. The design problem, process, etc, is not unique 

to this thesis. It is the precise definitions of the elements used in 

this chapter which are unique• 

D4-l; The set DS is called the general solution of a design 

problem by the specifications of (l) if and only if: 

(1) The set {J\i v 1 ~ ••• ~ v } ~ each ~.v. e: SA. 
1 1 · 2v2 r r ii 
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V 

(2) DS = {x/x e: PS and x + l ~.v. ¢ IRS}. 
i-;;l 11 

The design problem as stated above is quite general, yet quite 

well defined. That is, each of the elements involved in the above 

definition can be traced back to the primitive concepts of a "set" and 
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"unordered re,l.ations". It is also noted that these unordered relations 

are directly connected to the ordered relations by the concept of 

indexing sets with ordering properties (value concept) and algebraic 

operations (useful formulas). Thus, the above definition relates a 

general system concept (unorde:r;ied relations) to particular system 

concepts of ordered relations. This allows the elements of the class 

of all possible MRS systems to be used as a theoretical solution space 

for design problems. 

Some results of the previous classifications are seen in the set 

DS. From ( 1) it is observed that more than one specification might be 

involved in finding a solution DS for the design problem. Note also 

that DS might be empty (i.e., from the results of Chapter II if 

A e: IRS, for some i, then DS is empty) 0 n. v. 
1 1 

T4-l: Given a specification set {An_ v }, then DS = () 
. ,:, r i 

if3 a subset {A } of {An,...v.) 3 t ~-v. e: IRS. 
ni vi .. ..- i' . J. i 

Proof: First, 

Also, 

i 

f, ~i I Vi I 

i 
when r 

i' 

must be algebraic or DS = <J. 

e: SA by T3-8 and T3•9, 

the conclusion follows. 

l." 

The extended version of T2-l0 also follows when l ~.v. e: MRS. 
i : l 1 1 



T4-2: Given a specification set {A } • then DS t, (J . nrvr 

if and only if }: '\. V• t MRS. 
J. J. 

From T4-l and T4-2 it is seen that definite boundaries can be 

placed· on the existence of any general solution for the class of 

unordered specifications. In light of the above I a collection of 

specifications can be considered as one partial system. That is 1 from -
T4-l if there is any single ~v which.£ IRS• then DS is empty (no 

physical system exists), Also 1 when the sum of all the specifications 

does not belong to IRS 1 at least one physical model exists. The one 
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model which is known to exist is~ P. In the J;"emainder of this thesis 

a specification will be represented by a single element of SA. 

While T4~1 and T4~2 are positive boundaries for a theo:t"etical 

design solution 1 only T4-l i~ immediately applicable to engineering 

design. If the conditions of .T4•l cari be shown to hold 1 then the 

search for a solution can be avoided. Unfortunately, the conditions of 

T4-2 are not as positive• in a practical sense. The existence of a 

model such as II P does not give any method of inferring additional 
n 

information. The model rrn P only indicates that anything is theoretically 

possible concerning scalars of the parameters {Pn} if (l) the set {Pn} 

is assumed and (2) impossible conditions have not already been imposed 

(T4-l). Hence, T4-2 only says that the conditions (l) and (2) hold. 

In engineering design the results of T4-l and T4-2 are probably 

the only generally-accept~d facts. Hence 1 the fact that these are the 

boundaries of the theoretical solution to D4-l indicates the logical 

methods of engineering design are paralleled by the methods for obtaining 

the set DS. 
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To outline a single process which would yield positive results for 

any design problem is beyond the scope of this thesis. The reference to 

positive results refers to the existence or non-existence of an element 

of PS other than IIn P which has a .s.et of natural points containing 

those of the specifications (i.e., given Aov does sn'v' E PS, 3 ¥ x E 

rrn P/Anv• 3. y E: rrn' P/Sn'v') x ~ y and~' P/Sn'v' # rrn, P). 

This theory for design only claims positive results when the 

conditions for T4-l are met (e.g., if a set of specifications~ (P) 
1 1 

and ~ ( P ) 3 ~ ++ p E P and ~ ++ p' E P 3 p 1 # p 1' , then this 
2 1 1 1 1 2 1 1 

theory claims that no solution exists). 

From a practical point of view, a useful physical system would be 

an element of PS which indicated a "definite" interconnection of the 

parameters involved. A particular logical interconnection would be 

observed by constructing order relations in the indexing set of the 

parameters where these constructions are based on principles ~i. These 

principles can be thought of as order-determining postulates or order-

determining experiments 9 whichever is the most convenient. From a 

design theory point of view they are considered as the necessary postulates 

to have the ingredients of a useful physical system. 

To ob~ain more deductive power for seeking solutions to the design 

equation 9 additional restrictions on PS and the specifications are 

needed (i.e.i the boundaries are too broad). The most simple type of 

specifications are those which each ~.v. involves only one scalar of a 
l. l. 

parameter. 

D4-2, A specification Av 3 cr({P .}) = l, i = l, 2 1 oo• v, ""n ni . 

a(II Pl~.) = 1 1 i = l, 2., ••• V is called a simple 
n l. 

specification. 
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A simple specification certainly belongs to MRS. Hence, from T4-2 

DS is not empty. However I as indicated above, the "real" physical 

systems are the only ones of practical interest to the engineer. These 

are the physical systems which are different from the relation cp ( x) -+ 

x £ II P. The real system axiom is a formal way of introducing these 
n 

models. 

D4-3: 

D4-4~ 

First the definition of a real physical system is given. 

A system S £ PS is called a real physical system nv 

RPS if and only if for each parameter set {Pni} of cpi 

(1) II . Pict>. c 11 . P unless cr {P . } = 1, then ni i ni ni 

11 . P/cp. = P .• ni i n.i 

t2) Every proper projection of cj>. is the product 
l. 

relation. 

V = V o 
1 2 

If Sn is a real system, then 11 P/S is called 
1v1 n n1v1 

the standard points of S • (Note, not all systems 
n1v1 

have standard points.) 

Real System Axiom~ For every finite set of parameters {Pn/ indexed 

by a common indexing set 3 a real physical 

The class of real physical systems plays the role of the best 

available mathematical models for a given set of parameters. These 

models usually become more reliable in a manner "proportional" to the 
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use of .the modelq However, design theory as developed in this thesis is 

considered to be independent of the "state of the art" in engineering 

science. (That is• this design theory only lists properties which a 

real physical system has; the conclusions are based on these properties. 

Whether or not a particular model has these properties is the problem 

commonly referred to as analysis.) 

By eliminating the formal barriers to a practical design theory, 

other problems are introduced. The one directly introduced by the real 

system axiom is that of uniqueness O , If there is always one solution, 

there may be many. In general there is. However, there is also a 

minimal real physical system for each set of physical parameters. This 

fact allows a practical method of standardization for the real physical 

systems which are considered worthy of preservation (e.g. • motors• 

amplifiers• relays 9 t:ransistors • etc.). 

To approach the problem of standardization, a special type of 

equivalence between systems is useful. From T3-l2 two systems are 

equivalent if they come from the same equivalence class of the size 

relation and the numbeJ;" of natural points is the same. Although this 

type of equivalence insures that two systems have an equivalent basic 

logic structure, T3-l3. showed that this is not very restrictive. To 

have a useful standard approach, a stronger equivalence than T3-l2 is 

needed. This is obtained by lettin.g the natural points of two systems 

be equal. When this is the case, the systems can, from a practical 

point of view, be considered equal. To strengthen the "equality" even 

more, the number of parts is made equal. 

T4--3: Let A . v and ~ v belong to A. 
-111 1 2 2 



~ v are said to be equal under the equivalence 
2 2 

relation(~ v ~ ~ v) if and only if 
l 1 2 2 

(2) V =Vo 
l 2 

Equal systems play the role of equating all of the possible ways 

of writing a set of equations which describe the same "quantity". 

Although the information is not changed, the rules for finding the 

information changes. However, all operational rules are necessarily 

assumed in an approach of this nature. Hence, the new rules for 

formula manipulation are known in a practical case. For this reason, 

a standard form for the system re lat ions can be chosen from any of the 

61 

many possibilities. It is noted that the rules of some trivial systems 

(Iln P) are so easy that the natural points can be obtained from any 

"form", independent of the parts v. It is for these cases and the 

dependent cases that the extra condition v = v is included. 
l 2 

The dependent cases have a "null" set of formulas that are included 

in the equivalence classes of ~. These different null classes are 

obtained by letting the number of parts vary but keeping (l) of T4-3o 

The number of dependent equations in an ~ class relative to some 

independent set VO can be thought of as the redundancy of an E class. 

The non-redundant :E: classes are those which are of primary interest 

in the solution of the design equation. The class of RPS are of this 

type. 
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Proof: From D4-3 and T4-3. 

From the above results a standard representation for a real 

physical system can be adopted. This representation does not have to 

be changed unless new standard points change the elements of the parameter 

sets. Hence, it gives, abstractly at least, the standard points of the 

parameters involved. 

The most restrictive elements of RPS are the exact systems. These 

are paralleled by the most re.stricti v~ equations which are studied in 

mathematics. A complete function <I> on ·{pn} (D3-l7) has the ability to 

yield a unique scalar for each unordered nn _ 1 p scalar tuple (e • g. , 

r xi= 0 each xi a real variable would generate a complete function if 

used to represent <I> of {P. } ) • 
l. 

D4-4: A system Anv :3 each <l>i is a complete function is 

said to be an exact system. 

Many of the models of engineering will not be exact systems. How-

ever 9 they usually can be considered as "partially exact systems". 

D4-5: A system ~v 3 each <l>i is a partial function is 

called a partially exact system. 

Although there are many classifications which could be placed in 

between D4-4 and D4-5, these are the typical cases considered. This is 

illustrated by considering a system of PS which is not of·D4-5. This 

being the case then 9 there is a relation <I> which is not a partial 

function. Hence, there is no unique correspondence between any of the 

n - l parameters and the complement parameter. Hence, there is no 
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strict "dependence" between any of the parameters. Altho.ugh these systems 

are becoming common in advanced engineering, the systems based on 

equations from basic sciences are usually composed of partial functions 

(i.e. 9 some two sets of parameters in each equation play, the role of the 

"independent" and "dependent" variables. For instance• e = sin wt, 

where e indexes voltage, w frequency, and t time gives a partial function 

but not a complete function. It is usually considered that for each 

time and frequency there is unique voltage. Thus, the voltage is 

"dependent" on time and frequency. 

The above discussion shows that 9 in general, a theory (system) 

which satisfies D4-5 has the ingredients of the theories developed in 

the basic sciences. 

Example: Consider Snv E _RPS such that Snv is an exact 

system. Then if P is "dependent" on P , the 
l l 

converse holds. This follows from D4-4 and RPS. 

Hence, in an exact system the choosing of "units" 

to be used in the scalar value indexing set is 

quite arbitrary. 

The next classification is for the purpose of finding useful conditions 

which allow determination of specifications which can be satisfied. 

D4=6 g A system \iv with parameteJ:ls {Pn} is said to be 

compatible with Sn v if and only if¥ x E Iln P 
1 1 

x + S E MRS 11 where x is the natural point of Sn 1 given 
n1V1 

by the formula~ and {Pn} which gives Snl ~ 

nn P/Snl = x ++ x E rrn P/Snivi • 
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The compatible specifications are the abstract classifications of 

systems denoting the parameters which can be arbitrarily restricted 

relative to the theory. 

The conditioIAs of D4-6 might seem severe. However 9 to strengthen 

conclusions based on the standard points of a system 9 the above type 

definition is useful. For all standard point models 9 unless the basic 

principles changei compatible specifications can be thought of as design 

problems which can always be solved by a particular model. Hence, a 

primary process of theoretical design, as irnbedded in this design 

theory, is the process of testing two systems of compatibility. In 

practice there are cases where a real physical system has to be 

constructed; in others they are available. 

In engineering the "device" systems are .for the purpose of satisfying 

a limited number of arbitrary specifications. The more general systems 

(linear circuit systems, etc.) have a quite large application. In 

advanced engineering, systems are derived from less tested principles 

than those of the basic sciences. Thusl) the need for a specification 

"test" independent of form becomes more important. (This is another 

way of looking at compatible specifications.) 

The interesting conclusion which is available with compatible 

specifications is that the standard points are relatively immaterial. 

Hence, only the fundamental principles are involved. 

That specifications are not compatible 11 in general, is well known. 

In fact 9 it can be done for real systems only if certain requirements 

are met. Howeveri there are specifications which are compatible in any 

RPS~ namely I) those which "map" th1,ough the "system structure". In terms 

of functions of n variables 9 this idea is like picking the sets of 
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variables which ~annot possibly contradict the set of function statements. 

( It was a technique for rapidly performing this process which led the 

author to investigate a theory for design.) (11, 12). 

The !!system st:r>ucture" refers to the "set interconnection" of the 

system relation parameter sets. This is a natural concept coming from 

the idea of systems being characterized by natural points which are 

logical sums of the natural points of subsystems. The "set structure" 

suggests geometrical representations of systems. For example, when a 

system has a natural point, it can be visualized quite easily as a net-

work of loops and brancbes. Letting a parameter be a "branch" and an 

unordered relation a "closed loop" of branches gives a natural 

representation for a system. l This idea is used often to denote physical 

interconnection of "components". In fact I this theory gives a natural 

way to characterize the "interconnection relation" for any set of 

"components" which has a physical interconnection. 2 An example of 

such a network was given in Chapter III. Other ways of visualizing set 

interconnections geometrically aX"e available. Probably the most notable 

is the Venn Diaga.!Jl. In fact, these diagrams are used extensively in 

solving system problems where the parameters are indexed by only two 

values~ A more useful and systematic way of looking at a system is by 

forming a matrix using the relations and parameters. This is illustrated 

in Chapter V. This form is analogous to the ordinary ordered n-tuple 

approach to n .;.. 1 variable equations.. Each relation is a column 

1This method of visualizing abstract systems was suggested by 
John C. Paul. 

2see D4-l6. 



66 

(n-tuple) and the rows are the parameters. Also, it is analogous to the 

linear graph theory concept of an incident matrix., ( 4). 

For arbitrary systems these representations are only conceptual 

crutches. For the systems with more structure, such as the class RPS, 

they become deductively useful, The property of the RPS systems which 

is most advantageoµs is their E equivalence. That is, any form contains 

the same information 'relative to a set of standard points. Hence, any 

''path" which establishes compatibility in one system automatically 

establishes compatibility in the whole E equivalence class. The only 

paths that cannot be readily established are those involving "indeter-

minate" specifications. These are specifications which give rise to 

"overlapping" relations., The above ideas are made more definite in the 

following definitions and theorems: 

D4-7: Let {Pni} be the parameter sets of Anv e: MRS. The 

set structure of ~vis the collection of parameter 

sets. Each {P • } will be denoted by (P • ) throughout 
ni ni 

the remainder of this thesis for the purpose of 

convenience. 

From D4-7 it. is clear that the set structure of a, system is set 

interconnected if and only if ~v has a value other than the null value. 

Some set properties of systems involving n and v are given below: 

V 

T4-5 g If A e: s, then n < l o( p • ) - (v - 1). nv - 1 ni 
i ;; 

V 

Proofg First note that 'n. - a( U (P . ) ) = 
i = 1 ni 

V 

l o(P .) -
i = 1 ni 

v-l Uv (l l o( [(Pnj) .·.· (Pni>J). 
i = l j = i + l 



This is obtained by starting with ailY parameter set and removing the 

number of parameter appearances which occur in each of the remaining 

sets. Continuing this process gives the above identity. Sincei n and 
V 

l a(P • ) are constant, the above is clearly independent of order. 
i = 1 Ill. 

This being the case, all that needs to be shown is that there is an 

order such that 

> V ,- lo ... 

If v = l, the above is satisfied. Hence, consider the cases v > l,, 

Consider the {(P . , ) } constructed in the' followl.ng manner: 
ni 

Choose 

if v > 1. These must exist by (5) of 03-1. 

Choose 

(Pni + 2 ,);) • either 

(P ni + 2 ') n (P ni + l') 1 rJ or 

(Pni>(l (Pni + 2') # r;. 

Continuing in this manner a set {(P .,)} can be found such that . n;i. 

Here the i' is not neces~a:dly. the same as used in the construction 
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demonstration. Using the same order as i' in the above expression 

gives the desired result, (It is noted that when the equality holds, 

the system st1:1uoture is neces!Sarily of a particularly simple "geomet;rieal" 

pattern.) 

D4-8: Let A v be a specification for S , 
""n1 l nv 

{Qi}= {{Pnl} n(PniH i = l, 2. , •• vis 

called the restricted sets of Snv :relative to 

A (The relative reference will only be 
·"n1V1 • 

used if confusion might a1:1ise.) 

From D4-6 and D4-3 the next theorem gives the simple facts about 

when a compatible solution can and cannot exist, These are paralleled 

in ordinary n variable functions by the same conditions. 

T4-6: Let S0 v £ RPS and {Qi} be the restricted sets 

of ~lvl• Then: 

(l) cr(Qi·) = cr(P . ) + A is not compatible. 
OJ. ""n l Vl 

(2) 0 < cr (Q.) < cr(P ) 
i ni 

cr(Q) = o otherwise 
i 

i = k }-"-,--,- A is compatible. 
""n l Vl 

T4-6 says that arbitrary specifications cannot be imposed on a 

system with the restrictive structure of RPS. (In fact, this will 

exclude all relations except the product :relation.) 

For the class Snl of RPS, there is still the freedom given by (2). 

This allows all 2n .. 2 distinct proper subsets of the parameters to be 

chosen arbitrarily. 

The first condition of T4-6 gives a condition for which compatibility 
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is easily observed in any system of RPS. To extend the second condition 

the set structure can be used to obtain sets of specifications which are 

compatible when vis greater than l. The complement of a restricted 

set is useful in this connection. 

D4-9: Let Q, be a restricted set of An v and Snv• Then 
1 l 1 

Qi = (Pni> .. Qi denotes the complement of the 

res~ricted set. 

Also the following parameter set decomposition is useful when 

discussing compatible specifications. 

D4-l0: Given Snv with a parameter set (Pni). The following 

decomposition of (P ni) into the sets {P0i + 1} is 

called the parameter set decomposition relative to 

Snv• Let Poi be the elements of(Pni) which do not 

appear in any of the remaining parameter sets. Let 

Poi + 1 be the elements of (P ni) which occur in only 

one other parameter set. This process can be 

continued out to the v - 1 other parameter sets. 

Hence• 

The above decomposition gives (Pni) in terms of disjoint sets. 

Hence. the number of parameters in a parameter set can be written as a 

sum of the number of elements in the decompo~ition classes, 

V - l 
T4-7: l a(Pn, .). 

j=O i+J 
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V V V 

(2) l cr(Pni) = l cr(PDi) + 1 o(P0 . + 1> + ••• 
i = 1 i = 1 i = 1 l. 

V 

l o(P0 , ). 
i = l l. + V - l 

It seems that (2) above could be. a convenient way for studying 

specification compatibility cmd systems. For example, a system is 

first decomposable if and only if the first sum on the right side of (2) 

is non zero for each i. This follows directly from the definition of 

system decomposition and D4-10. Also, the higher-order parameter de-

composition classes indicate strong possibilities for "overlapping" 

equations. This is also indicated by elements of Snv which have more 

than one characteristic subsystem. 

T4-8; Let Snv t RPS and S~v denote the kth characteristic 

subsystem, k > 1. Then if (P .) is a parameter set 
ni 

of s~ v, PO . . = 11 -+ j < k • 
l. + J 

This follows directly from the properties of decomposable systems 

and parameter decompositions. Thus, it is noted that the two types of 

decompositions are connected as in T4-8. The next theorem which 

follows directly from D4.-10 gives a simple condition for "overlapping" 

relations. 

T4-9: Given Anv with a non-empty parameter decomposition 

class P0i +. k, then if v' is the number of elements 

of this class, there are k distinct relations on v' 

distinct parameters. 

It is noted that if v 9 < k, then there are more "equations than 
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variables". 

To choose a set of compatible specifications. the important criteria 

is to leave one "degree of freedom" at all times (i.e., keep the 

condition of T4-6 (2) satisfied). The following process is for the 

purpose of choosing specifications which are compatible and, in addition• 

choosing a set which "fixes" the system. 

T4-l0: Given Snv ERPS, a specification "n v on the parameters 
1 1 

{Pn } which is equal to the set of parameters determined 
1 

below is a compatible specification. 

Proof: Let Pn be an arbitrary element of {Pn} of 
11 

Snv• Let (ffk } be the restricted complements 
l l 

of the sets o_ 3 o(n ) . = l determined by •. kl .... K 1 l 

Pn • (Note that the classes S will be 
11 11 

excluded from the discussion.) Now, either 

{~ } is empty or it is not. Assume it is not 
""k 1 1 

empty. Let { <l>k } be the relations of S which 
1 l nv 

correspond to the restricted complements {~ } • 
1 1 

Consider Sn v to be the new system which is . 11 11 

formed by removing the relations {<l>k 1 } 1 from Snv 

{q,k} ). Now v 
1 l 11 = 

V - 0 {q>k } 
l l 

and n 
l l 

= n - cr {q,k } by properties 
l 1 

of RPS. Consider the sets{~ } determined by 
2 1 

P n U {Qk } and Sn v 3 o(Qk ) = l. Repeat 
11 l 1 11 11 2 l 

the process as done above. This gives Sn v 
12 12 

such that 

V 
12 

: V -

n = n - o {<f>k } - o 
12 1 1 

{q,k } and 
2 l 

o {<j>k } - cr {<f>k } • ·Let S denote 
l 1 2 1 nljvlj 



the system obtained after repeating the process 

j number of timeso j is associated with each 

Pnli which gives a set {'s\j }i with the above 

properties. 

Now the process·above must terminate due to 

the finite properties of RPSo Alsop it can only 

terminate with the conditions that some {~. } = 
J l 

(1 or Sn J. v j = Soo. Assume it te:rminates with 
l l j j 

Soo. Hence, v = l a{cl>k· } 9 1n = l a{~.} + l, 
i = l 1 i : l 1 

or( CJ t'\.} LJ Pn = {Pn~which gives 9 since 
i : l 1 l 11 J 

each ~j must be distinct 9 by RPS v + l = n. 

Hence 9 there is only one more parameter than 

relations. Assume {1\,} =~and Sn v· ¢ Sooo 
J l i lj lj . 

This gives Sn • v • and Pn LJ ( l) {n. . } ) 
lJ lJ 11 i = l ?i l 

which does not give restricted complements as 

indicated. Choose a Pn from the parameters of 
12 

Sn . v. which will give the desired set of n lJ 

rest~icted complements. 

If this is not possible 9 choose P0 I) etc. This 
13 

process must yield results since Sn . vlJ' 1 Soo 
lJ 

and is finite. Let Pn be the parameter required 
l R. 

to obtain the above sets. Hence I) {Pn o o. Pn } U 
11 l R. 

{~J.} U {\.} is the parameter set used to find 
l J R. 

Sn v • Also 9 it is noted that each 
l.e, + l l.e, + l 

element of {Pn ••• P . } U { U ~.} U { U "nic.} 
11 IlJ J l J R. 
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must be distinct by the construction process 

and the properties of RPS. 

Hence 9 the number of elements in the above 

set must always remain less than no Also each 
V 

element 1r e U · ( {\ . } . ) must remove one and 
i ::: l J 1 

only one relation from S by construction and nv 

RPS., Hence, when ~oo is reached 9 this gives 

a [ lJ ( {7\,}.) 1. = Vo Also., each parameter 
i = l J l 

of {Pn} belongs 1to either {Pn ii} or the restricted 

complements9,, but not both. Hence 9 n = a {Pn .} + Vo 
11 

This is the generalization of the case when i = 1. 

Hence 9 the process needs n = v parameters to 

reduce Snv to Soo. A set of para.1JT1eters {Pn } and 
l 

Snv which corresponds to a set with the above 

properties is said to fix.the system., The fact 

that a set which fixes a system is compatible comes 

directly from the construction process and the 

properties of RPS. That is., the construction 

process insures that the set {Pn} only determines 
l 

projections of the relations of Snv• Also each 

relation is useq. on:ty ~ to check every 1rni p. 

This along with RPS forces compatibility. 
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The above process is easier to actually perform than to theoretically 

demonstrate o The performance is simple when using a matrix to represent 

a system (e.go 9 see Figure 5=1). Also 9 it is noted that the above 
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process always yields a compatible set of specifications which fix the 

syst~m independent of which parameter is used to start the process. 

Hence r, there is at least n distinct sets possible by the above pvocess. 

Actually the uppev bound for the number of distinct fixed specification 

sets is given by 

nR 
(n = vH v~ 

This is simply the number of distinct ways that n things can be chosen 

(n = v) at a time. The size of this number can be large with relatively 

few parameters. This indicates the need for having a method for looking 

at systems and specifications in a rapid manner. 

The fact that there is no "simple'' formula for finding the number 

of compatible specifications which fix a system is suggested by the 

systems studied using linear graph theory. (13). Here the number of 

"trees" which uniquely specify a graph corresponds to the number of 

distinct compatible specifications which fix a system. The correspondence 

is obtained by letting the ncircuits" be represented by unordered 

relations and the "branches" by parameters. The systems characterized 

by linear graphs are relatively simple (referring to the linear algebra 

which can be used to describe these gystems) ~ and yet a formula in terms 

of n, v~ and n = v has not been de·veloped to give the number of distinct 

"trees". (To the author 0 s knowledge this has not been done.) 

The process in TI.J=lO suggests that any specification set with more 

than n - v parameters will not have the compatible properties of the 

fixed-type specifications. The process of T4=10 can be utilized to 

indicate the validity of this idea. 



T4=ll~ Given Snv £ RPS and {Pn 1 }C {Pn} of Snv .3 CJ {Pn 1} > n - v. 

Then either 

(l) 3 o. = 91 o:r (ff.> = (nj > ::3 CJ (ffJ.) = 1 (and 
1 l. 

c2 > ;i· {rr. } , {rr.} 3 (n.} = (ff.} and CJ (ff) > l ¥ 
l. 1 J 2 1 l l. 2 - {Q.} {o. l c {ni } u fnj } > • Q £ or and i + j < CJ 

l. l J 2 1 2 

Assume that none of the conditions of (l) hold. Let 

P E {Pn } be used to start the process of T4=10. Now 
n11 1 

by the above assumption, there are no elements of {~.} 
J 1 

which are members of {P } - {Pn l. Instead of choosing 
n1 11 

element Pn as in T4~lo, choose P from {Pn } - {Pn }. 
12 n12 1 ,11 

Now if none satisfy the restricted complement criteria, 

then choose another and test for restricted complement set 

with desired properties. Now if the set {Pn} is exhausted 
1 

before the restricted complement criteria is satisfied• this 

gives the distinct sets {P n } LJ ( {\ . } ) • However, the 
l J 1 

following is noted about o {Pn } > n - v when the conditions 
l 

of (l) do not hold. Assume {Q,} relative to {P } is less 
J. n1 
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in number then v. Let {$i} be the relations whose restricted 

sets are empty :relative to {P n}. (The argument is carried 
I 

out based on first decomposable systems but is shown to be 

no weaker for any system of RPS.) Let Sn v vv be the system 

obtained by removing{$.}. Now nv ! n - r (r = v - v 9 ) by 
J 

properties of RPS and decomposability. Hence CJ{Pn} > n 9 - v 9 • 

Also, note that a{Pn } + CJ{Pn } = CJ {P 9 } a where {Pn } = 
1 1 n · 1 

· {P nu} = {p n 1}. Thus from the hypothesis o{P n 1} > n - v $ 



the above shows that o{Pnl} < V 9 • Now let (Q°i} b~ the 

restricted complements of {n. } • Then 01, C {P . } ¥ i 
1 - Ill, 

by definition of ni and {Pn l} o Hence• there are more 

relations than there are parameters for {Gi}. Also, 

there is 'ff~ =' ( U 'ffi - np = ( U Qi)• while cr(ffi} < vv. In 

case S is not first decomposable• an additional fact. 
nv 

must be considered. When any of. the elements of { ~. } 
J 

discussed above belong to decomposable classes (say the 

kth) 11 then its removal will not change n. However 9 it 

also was not consid.ered in the sets {Oi }. Hence 9 these 

factors have "equal" and "oppositeu' influence on the 
. . 

relation o{Pn 1 } < vv if these sets are includ~d .in {!ii}• 

This result along with properties of T4-l0 gives the 

desired result. (Le.• if it is assumed some Pn E; {P } 
· 11 n1 

satisfies the criteria of the constru.ction process, then 

eventually a condition of. (l) arises or the requirements 

for (2) as just discussed). 

The cases of (2) in T4-ll indicate the conditions for two sets of 

"overlapping equations" defined on the same variables. Deta.iled 

investigation of compatible solutions and "non-compatible" solutions 
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under more specialized conditions on Snv have not been carried out by the 

author.. However 9 a main characterization which can be used in further 

investigations is that of the fixed type specification. These can 

exist if and only if.the specification set is of size n - v. This 

follows from the result of T4-l0 and T4-ll. Also T4-ll gives three 

simple conditions for which a set of specifications are not compatible. 



D4-12: 

Tlf.-12; 

A specification ~ v is said to be incompatible 
l l 

with Snv if any of the following conditions prevail 

for the restricted complement sets. determined by the 

procedure of T4-ll using {Pn } of A v • 
l ""Ill l 

<1> =1 n. = rJ. l. 

(2) - - .3 Q. "# and o(ni) Q. = Q. fl. = 1. 
l. J l. J 

(3) - {P }. Q. = p E 
l. n1i . n1 

Let Snv & RPS and An v be specified for Sn • If 
l l V 

cr{P } > n - v and (2) of Tlf.-11 do not hold, then 
n1 

A is incompatible with S • ""Ilv · · nv 
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A specification and system which create the condition (2) of Tlf.-11 

will be called an indeterminate specification. Strictly speaking, the 

condition is relaxed to include the "overlapping relations" which can 

Dlf.-13: Let S e RPS and A be a specification which is 
nv n1v1 

not incompatible. Then if {Q} is the set determined 

by the procedure of Tlf.-11 and 3 a subset (ff. } C {O} ;) i 
l. -

~ a( U Qi) ~vis said to be an indeterminate 

specification. 

In the classification of types of solutions to the design problem 

the restrictions can be made finer and finer in order to increase the 

deductive properties. In this thesis three main classifications have 

been given. These seem to be a natural division of solutions for all 
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types of deductive models. 

A classification in the direction of system standardization would 

involve partitioning into what might be called applied and desigp 

parameters. These are parameters which, conceptually at least, separate 

the napplication" parameters from the "component" parameters. This is 

done to a large extent by the analytical studies which are performed on 

a particular model (e.g.• the amplifier system is usually analyzed 

relative to gain, bandwidth ( applied) vs. several parameters which are 

used in the amplifier circuit (design)). The author does not see a 

method of separating these two types of parameters relative to a system 

except by axiom. That is, these are partitions of (S) by parameters. 

Similarly, the real physical system was a partition largely by the 

logic properties of the unordered relations. The problem with the 

desigp and applied classifications is that they may not be different. 

Hence, an additional assumption is needed in order to partition (i.e., 

many "theoretical" problems must be looked at from every "angle". Hence, 

any "abstract" system relating the parameters of the problem should not 

be partitioned by the applied and desig;r classifications. On the other 

hand, a system representing a ''physical device" would seldom not be 

partitioned by the applied and desigp classifications). 

Axiom of parameter classification: 

If Snv e RPS, then 3 two subsets {P na} ¢ (1 and {P Ild} of 

{P0 } called the applied parameters and the desilk? parameters 

~ {Pna} U {Pnd} = {Pn}• In addition, there exists some 

elements of RPS, Snv 3 {Pnd} # (1 and {Pna} ¢ {Pnd} n {pna} '# <1 

{Pndl(l {Pna} ¢ {PndL, 
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When a system is partitioned by {Pna} and {Pnd}, it will be called 

a device. (Partitioned implies the restrictive conditions of D4-l3 hold.) 

D4=14i The class of PD C RPS such that each element of PD 

is partitioned is called the class of device systems. 

Now it is noted that PD is properly contained in RPS. This is 

because the class S 1v cannot possibly belong to PD. In fact, the above 

axiom of parameter classification says that a device system (the.cry) 

must have at least three parameters involvedo 

¥ Snv e: PD n;:. 3. This follows from.the conditions 

of the axiom of parameter classification. 

This agrees with the well-known .fact that to "measure" a c.omponent 

( describe) there must be at least two diffel;'ent (disjoint) parameters 

which can be related to the component. (1). Also, this is evident in 

the ingredients for a mathematical operation. (9). Here at least 

three elements are involved in order to have something more than a 

logical identity. In engineering the number of classes for the· systems 

of interest are usually much greater t.han three. The "simple" relay 

system indicated in Chapter V is an illustration. 

There are many systems which have a convenient relationship between 

the set structures of equivalent systems. The parts of these systems 

are already known to be equal as well as the parameters. In many 

systems an additional feature is present. In terms of ordinary 

mathematical equations, this feature is commonly noticed when solving 

for a variable in one equation and placing that variable in another 

equation. During this process. some of the variables other than the one 
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being replaced might be eliminated. For example, given 

(1) a b 2 = c e and 

(2) d b C = a, 

in ordinary algebra if (2) is used to eliminate (a) from 

(1) • then (c) is also eliminated. Hence• 

(3) a= db c and 

(4) d b 3 = e 

represent the same equations as (1) and (2). 

The above implies that there is only one independent relation 

between (a) and (c). If it was known otherwise. then the conditions of 

the next definition would apply; and the above operation could be done 

abstractly by using the set structure between (l), (2) and (3), (4). 

D4-l5 g Assume Snv ERPS. Let (Pni) and (Pnj) be elements 

of the set structure of Snv ) (Pni) n (Pnj) ¢ 11 and 

i ¥ j. Let P 9 E (Pni) n (Pnj). Then if 3 S~v ~ 

s~v ~ snv and 3 (P~i) of s~v 3 (P~i) = (Pni> U (Pnj> -

P9 !I) then Snv is said to be completely independent. 

Hence, for the class of systems which are completely independent. 

"equation solving" can be done using the set structure of the system. 

From the example and D4-l5 when the conditions of D4-l5 are paralleled 

except p' is more than one parameter II Snv is not completely in-dependent. 

This type of condition appears to be a characterization of "physical 
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interconnection". In a sense these systems seem to be very "dependent" 

on their set structure. In terms of equation solving this can be thought 

of as the strong form of D4-15. 

D4=16 i Assume Snv e RPS. Let (Pni) and (Pnj) be elements 

of the set structure of Snv 3 (Pni) n (P nj) 'l /), 

i 'l j. Then if 3 s~v 3 S~v ~ Shv and 3(P~i) of 

su 3(Pi,) = (P .)LJ (P .}- (P .)n(P .) 1 Snvis nv n1 n1 nJ · ni nJ 

said to be physically interconnected. 

The physically interconnected systems have nice properties as in 

D4-15. They are paralleled by the sets of equations which involve only 

addition or multiplication (i.e •• only one fundamental operation is 

involved). These types of systems appear to be similar to those studied 

in the linear graph theory. 

This chapter has included the basic structure of a design theory. 

A finer subdivision of this theory is not extended in this thesis 

because of the newness of the theory. Before extending the classifications~ 

the underlying principles and the "best" direction of investigation should 

be studied. Many of the classifications given in this thesis have not 

been explored with any detail. Some of the classifications, such as in 

D4-16~ seem to be characterizations of systems presently studied in terms 

of particular algebraic operations. This approach to systems offers a 

way to eliminate much of the duplication between analysis theory and 

design. The analysis phase of engineering deals with the particular 

number systems and formulas. That these studies are for the purpose of 

indexing a set of scalars is known. The design theory developed in this 

thesis assumes that the properties of these mathematical formulas are 
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known relative to the classifications given for unordered relations 

and parameters. This being the case, the large systems can be analyzed 

with much of the deductive power and simplicity of a single formula. 



CHAPTER V 

SUMMARY 

The body of this thesis was split into three parts as introduced in 

Chapter I. Before discussing applications and further investigations, a 

review of the body is given. 

In Chapter II the concept of the parameter is introduced. The para­

meter is a logic class of elements which is indexed by some·indexing set 

A. The parameter (set of scalars)·and the indexing set (set of scalar 

values) are disjoint sets. Once this concept is established• the idea 

of collections of disjoint parameters leads to the unordered relation 

concept. This is naturally connected to the ordered theory of mathematics 

by use of the indexing ,set. This is dqne by letting indexing sets of re­

lated classes be subsets of the same set (e.g., let each parameter be 

indexed by a subset of the reals). 

The unordered relations are introduced through the classical idea 

of the ordered n .. tuple used in mathematics. This was unnecessary, but 

seemed appropriate to indicate the problems which would be .involved in 

trying to develop polyadic (higher dimensional) relations by using 

ordered sets. Also, it allowed the ordered terminology to be naturally 

adapted to unordered relations. 

The unordered relations can be thought of as axioms which relate 

the elements from disjoint classes. The logic formula needed to indicate 

83 
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which elements are related and which are not is assumed. This is assumed 

because of the preciseness of the mathematical operations used by the 

engineer. 

The unordered relation is characterized by the unordered n-tuple. 

This is the ordered n-tuple with the order being removed by the use of 

the formula and disjoint parameters. This allows n variables (parameters) 

to be formally classified with the same ease as used in two variables 

(ordered pairs). The main concept in unordered relations is that of the 

natural point. These can be thought of as n elements 9 one from each 

parameter, which do not contradict any of the unordered relations (axioms). 

These are well defined in terms of the unordered n-tuples of the distinct 

relations. 

Most of the terminology in Chapter II, as in Chapter III t is directed 

towards Chapter IV on design. One of the important concepts in engineering 

des.ign is the mathematical model. The basic properties of these models 

are formulated.in Chapter II. These were called property c and property 
I 

cc. These properties are automatically given to an engineering model which 

abstractly relates certain classes of "observable" (the idea of a principle 

was used here) parameters. In terms of assumptions these are·not unduly 

restrictive. The only requipem~nts are ( l) the observables must sat;isfy 

the universal law of "xis x", and (2) the model must be formed by prin-

ciples (post~lates, rules, etc.) which "restri9t 11 natural points when 

applied. (The "restriction" applies only in certain cases given by property 

cc.) These properties, along with a decomposition process 9 give a simple 

method for testing a physical model for independence. The model is inde-

pendent if and only if it is decomposable. This is a set operation on the 
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parameters and is quite easily applied. 

~everal other,properties are given to these parameter models such 

as being a.lgebraic. An algebraic unordered relation is one whose 

parameters are indexed by a common indexing set. This implies that the 

unordered relation has its counterpart in some ordered relation on a 

set. This keeps the ordinary concept of value connecte,d to the relations. 

However• the normal concept of value.is not directly attached to the 

unordered relati~ps. (There does not seem to be a real problem in this 

respect. Th~ formulas in most actual engineering problems will be 

defined on the elements of some order.ad indexing set.) 

Chapter :):II ,.introduc;:es the system. The system is the "elements" 

with which the engineer works. These are collections of unordered 
; 

relations and parameters .with certain properties., The properties are 

quite unrestrictive, yet restrictive. ,There are two main classifications 

of systems~ the partial system (A), cµid the system (S). 

The main property of a system is to.have the basic structure of set 

connectedness. This is for the purpose of· having natur~!:Points~· .9;vstemf 

which have natural points represent theories which are logically.consistent. 

Those which do not, represent theories which are inconsistent. The system 

can be "naturally" classified in seve1;al ways. The first classification 

used ,in this thesis is by the "parts" (v) and the parameters (n). The 

"parts" represent the number of unordered relations (axioms). The ordered 

pairs of integers_ g.i ve an equivalence relation on ( A) o 

Another equivalence relation. ~iven· is that involving the natural 

. points of the_ systems. This equivalence is basically like that of set 

equivalence (i.e., same cardinality of natural points). The additional 
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restraint of being in the same "size class" (the equivalence relation above) 

is also required. This equivalence relation shows that logic systems can 

be "interchanged" at will if their natural .Points and class size are in 

1-1 c~rrespondence. 

Many of the classifications of systems are directly from those of 

unordered relations. The parameter model shows up as a physical system 

in Chapter III. The decomposition classes become characteristic sub­

systems. 'Two interesting classifications are the partially exact and 

exact systems. The partially exact system·is one in which each,unordered 

relation is a partial function relative to some n-l.subset of its n 

parameters. This shows.the ease of describing ordinary n variable ideas 

in terms of unordered relations. The.exact system is obtained by having 

each unordered relation .. be & complete function. The complete function 

is an unordered relation which is a partial function relative to each 

n .. l subset. These play the role of the highly .. restrictive systems. The 

functions of· n variables which have these properties play the same role 

in ordered theory (e.g., linear algebraic equations have these properties). 

A single unordered relation could.have been defined for a system by 

logically adding the parts of a system. This was not done since it does 

not appear to be practical (i.e., the parts are. given by formulas which 

are known ; hence• the development of system theory should. give the 

important relations between parts through their properties). However, 

this idea does support the viewpoint that equivalence of abstract systems 

basically involves only the number of classes and the number of natural 

points. 

The idea of a specification and solution is introduced by the use 
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of natural points and the concept of system addition. The addition of 

two systems is defined as the union of their respective parts and para­

meters. 

The physical system is defined to have the basic properties of a 

parameter model. It is this class of system which.is of primary interest 

in an .abstract design theory. These play a role in the general solution 

of the design problem. 

Chapter IV deals with the formulation of a theory for design. Although 

there is no. conceptual limitation to engineering design, this was the 

motivating area. Also t this is an area where many "definite" formulas are 

available. The design problem is formulated in a concise manner. Definite 

boundaries on the existence of general solutions are established which 

coincide with accepted principles. Unfortunately, only one of these 

boundaries gives useful information in a direct manner. This is the non­

existence of solution. The other boundary gives at least one theoretical 

model as long as nonexistence has not been shown. Unfortunately• this 

model is the "least" restrictive model. This being the product relation 

which in essence says• "You can assume it can be done if it has not been 

shown otherwise". The nonexistence criteria comes from contradictory 

specifications. These are those specifications for which it can be 

shown (without a model) there are no natural points. This fact gives 

an immediate nonexistence under the properties of systems. 

In order to obtain more deductive power on the positive (existence) 

side of the design solutioni more properties were established. These had 

to be assumed. 

To choose properties in any "absolute" sense was not thought to be 



88 

realistic. (That is, the physical principles seem to stay fairly stable 9 

but the application of these principles (projection into some indexing 

set) seems to result in an "unstable" set of natural points. This 

could be caused by a number of factors. One which is commonly accepted 

is that "ce.rtain assumptions have to be made". The stability of the 

natural points seems to be "proportional" to these assumptions. Also 9 

the indexing set which is used might ·not be "naturally" suited for the 

parameters (classes) of interest (i.e. 11 to partition a parameter finer 

than it can be "observed" (measured) can be thought of as an unnatural 

indexing set). The basic sciences offer a good example in the case of 

the indexing set of reals. There are no known meters which can measure 

this fine a partition. 

What is important is that there does appear to be indexing sets 

which allow the projection of these principles to the extend of being 

restrictive. These are the models which the engineer has available to 

solve design problems in a logical manner. This was the basic assumption 

Ufed to formulate the axiom of real physical systems. This axiom also 

assumed a "uniqueness" of parts relative to the natural points of two · 

systems. This "uniqueness" comes from making the number of parts the 

same when two systems have equal natural points. Also 9 it was assumed 

that each part (unordered relation) had some deductive power. In 

addition 9 it was required that each n - 1 projection of a part was 

onto. 

Although the real physical systElms are not necessarily the most ... 

restrictive, they do have many restrictive properties important in design. 

Probably the wost useful property is that of it equivalence. The real 

.. 



physical systems (RPS) which have equal standard points have the same 

number of parts. (The standard points refer to the natural points 

of a particular real physical system.) This allows a standard set 

structure for a system relative to a set of standard points. In 

fact, the same parts can be used for all the standard point models 
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which have these parts even though they might not be equalo This is the 

power of being abie to formally separate the indexing set from the para­

meter set. This approach gives the restrictive properties to the system 

value (natural points) rather than to some particular operations in a 

particular indexing set. That is, properties can be assigned to the 

natural points of the unordered relations and the deductive results 

shown independent of a particular mathematical model.. (This is similar 

to the mathematical studies in abstract algebra. (9). Here the operations 

defined in a set are classified independent of the set. This is adv an= 

tageous be9ause of .the deductive power of some of the common properties, 

for example, identity, inverse, associativity, etc.) 

The type of solution to the design problem considered the most 

important by this thesis is that associated with the compatible speci­

fications. These are specification systems whose values can be added to 

some real physical system and still be a measurably rational (logically 

consistent) system. This type of specification can be thought of as those 

for which the real physical system (RPS) is naturally compatible. The 

compatible specifications are those which can be satisfied by any RPS 

having the same number of parts and equal parameters in these parts 

(Le.~ the compatible specifications are "independent" of the functional 

form). 



90 

Some of tbe set condition.s which can be used to check rapidly 

for compatibility are given. Several of these are facts which are 

commonly used,a These show up in "simultaneous equation" studies of 

mathematics (e.g., in general the number of variables must be greater 

than or. equal to the number of equations, etc.). The set structure of 

a system is defined as the. collection of parameter sets of the unor­

dered relations. This gives an easy way to visualize some of the 

basic "interconnection" properties of systems. These become more 

realistic as the properties of RPS become more restrictive. In the 

case of parameters indexed by two elements• the RPS systems can be 

thought .of as logically consistent formulas on variables with two 

values. Hence, the tools of Boolean· algebra are available for 

problem solving. 

The set structure can also be used for the class of systems in 

which "equation solving" can be. paralleled by set operations. This 

allows the different equivalence classes to be obtained abstractly. 

This llby"."passes" the manipulations of the particular formulas. 

Classifications for the purpose of choosing systems . which can 

satisfy many specif_~cations are needed in engineering. This is for the 

purpose of being able to standardize useful engineering models by 

some practical 9 as well, as stable 9 criteria. Classifications for this 

purpose in terms of applied and design parameters arei given. These 

can play the role of the specifications which are given to the engi­

neer, and those which he must .choose relative to a given system. It 

is the sum of these two parameter sets which should be included in a 

practical model. 
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Applications for the design theory of this thesis seem to be in 

abundance. However. the foundations work excluded detailed investi-

gation~ for applications a For this reason I the indicated applications 

in the body were in the form of examples and conjectures. Most of these 

suggest broad areas of investigations (e.g.,, synthesis procedures, 

"interconnect ion" algebra$ etc. ) • 

An example of the matrix form of representing a system is given in 

Figure 5=1. This design "map" represents the system of a relay. The 

parameters are indexed by the reals in the formula below. (11) 0 

<I> 1 
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r,igure 5-1. Design Map of Relay System 
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q, -+ 
10 

+ k 

The above formulas can be put in many forms by using the indicated 

operations in a "correct" manner. In general• the "correct" manner 

for manipulation of formulas requires more knowledge than just the 

mathematical operations involved. 

The above refers to the onto aspect of the formulas and the "range" of 

the indexing set. The class of RPS is indexed by the same set and is, 

in addition, an onto relation. Hence, the range of each parameter 

must be preserved in any mathematical operations. 

Ex.amp le : o = 
ls ( 1 - e - Ct) gn O 6 3 7 ls ( 1 - e - a) gn 

1-..-...... -.-. ...... ..-...-_.._. __ ..... not o = ± 

N N 

The additional rules are usually necessary because the indicated 

operations are defined over the whole indexing set while the parameters 

are only indexed by a subset (i.e., algebraic does not require the indexing 

sets to be identical, just a subset relation must hold), 

It is noted that there are variables in the formulas which do not 

appear.in the system map. This points out one of the "conveniences" 

of design by theory. The variables 8, cr, a, gr, gn, a, can be thought 

of as "restricted" variables. Their ranges are very limited; however, 

they are theoretically parameters. This allows them to be used to 
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satisfy specifications. Alsoi they are definitely not applied parametersa 

Hence 11 they can be used to "change" the standard points in order, to satisfy 

incompatible or indeterminate specifications when the need arises. 

It is noted that the upper bound for the number of compatible 

specifications in the above system is given by 

lBi 
(8H 10i 

which is almost a maximum for a fixe.d number of parameters. The 

above type of representation for systems offers a general method for 

investigating engineering design problems. The theory behind the repre= 

sentation is that which can be developed by placing properties on the 

class of RPS as done in Chapter IV. 

The actual processes of design are paralleled by the steps involved 

in solving the general design equation. For these reasons the most 

immediate application of the design theory would be that of supplementing 

engineering analysis with design theory. This would allow a philosophy 

of engineering which could systematically correlate particular model 

studies in an area. The particular model studies will be used in a 

particular design when possible (i.e.i actual numerical relations are 

needed and available). Also~ in this thesis the requirements for finding 

a 0'newii system are seen to be quite definite. Hence i investigation of 

new models might analytically become a part of the engineering. These 

requirements are already imposed on the engineer i but principles seem to 
,i 

be lacJdng. 

This last suggestion for application is connected with synthesis 

studies for design problems o Assuming the properties of RPS~ there are 
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definite relations among the set structure which must hold in generalo 

For specifications which pertain to certqin types of physic~l inter­

connections (these are the class of RPS which have the simple set. 

operations paralleling the algebraic operations in the indexing set), 

these conditions i~dicate some useful configuration sy~thesis tech­

nfques might be obtainedo 

.The natural point equivale"Qce between systems suggests interesting 

possibilities of changing systems in order to work problems fastero 

This is presently done in linear systems through the use of the 

Laplace transformo Here the ~ystem is converted to the complex domain 

in order.to solve many problems fastero Also 9 the transforming of a 

system index set into two values automatically transforms a system 

into a simple type (Boolean) if the new standard points do not change 

the parts of the systemo These areas suggest design procedures which may 

be very efficiento 

The technical areas for future investigation should involve the 

foundations of this.thesiso The unordered ~elation appears to offer 

a practical method for studying problems with a large number· o:f variables 

and relationso If thii; is ,the case 0 the, classifications of this thesis 

should be examined for inconsistencies which might have been overlookedo 

Also 9 more useful classifications and facts might be developed usi_ng 

parameters a~d unordered ~lat ions o 



APPENDIX 

FUNDAMENTALS OF SETS AND RELATIONS 

The undefined concepts and terminol.ogy used in the body of this 

thesis9 w~ich might be unfamiliar, are presented below. Listed in 

Table I at .the end of this section are the common logic symbols and 

their definitiono 

The notation of a set and the associated ideas and terminology 

are t~e first to be presentedo Fqr a more extensive coverage of these 

topics the references 6, 7, 9, and 14 are. suggestedo 

DA-1~ P is called a set if and only if (++ ) there exists ( 3 ) 

an element x such that (:3)x belongs to (£ )P or P is empty 

(r,j)o This .is formalized by the symbols denoted above as g 

(a) P is a set ++ 3 x 3 x e P or P = <J • also 

(b) P = f.x 1 o o o } or P = 0' is used to den.ote the set Po 

The empty set (J is sometimes called the null seto Note that if P 

has any elementi then Pis!!£.! emptyo The notation used in (b) is 

common and suggests that the el~ments must be listed in order to 

confirm if Pis not emptyo This is not practical when many elements 
'" 

are invc;>lvedo For this reason a particular .set is postulated by a 

schema for separation using a formula <I>.' This method separates the 

distinct elements under consideration by using a common property which 

96 
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they 9 and only they, enjoy. . This A,d.om _Schema Method is given as : 

DA-2g When there is a set A and property cj> then, 

=f P 3 ¥(x)(x E P+-f- x £ A and cj>(x)) 

where cl> (x) does not involve Pilwhich is read, "There 

is a set P such that xis an element of P if and only 

if xis a member of A, and x has property cl>o This is 

also written in a more compact notation as: 

P = {x /x EA; cj>(x). 

Note that the above·Axiom Schema requ~res that a set A be known such 
1. ! 

that if x E P, then x e: A. Also, note that the formula cj> (property cj>) -
cannot involve P. This 1s to,avoid contradictory conditions which could 

be placed on P without this restriction. (6). 

The common.operations involving sets are those of union inter"'.' 

sect.Lon and complement. These are defined below.along with the set 

inclusion concepts. 

DA-3g 

DA-4g 

DA=5: 

Set P1 is said to be contained in ( S) set P2 if and only 

if for every x E P1 , x & P2 • If r1 S P2 , P1 is said to be a 

subset of P2 • Formally, the above can be written asg 

PCP++¥xEP+xe:P. 
l - 2 l 2 

P1 = P ++ P C: P and P c: P read, "set P equals 
2 1- 2 2- 1 1 

set P if and only if P c. P and P <.::: P 11 • 
2 1- 2 2 1 

P1 C P ++ P1 c P , and, P cl: P • 
2 - 2 2r 1 

If• in aqdition to the above, P1 '/. ~' 

a proper subset of r2 a 

then P 
1 

is said to be 
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The union of P and P is the set P U P of elements each of which 
l 2 l 2 

belongs to either P or P o 
l 2 

DA-6: P U P = {x/:x: £ P or x e; P }. 
l 2 l 2 

The union is easily extended to any number of sets as: 

DA-7: 

The intersection of two sets P and P is the set P n P of elements 
1 2 1 2 

each of which belongs to both P and P o 
l 2 

DA-8: P n P = {x/x € P and X £ P }. 
1 2 1 2 

Again, the above can be extended to any number of setso 

DA-9 i 

The complement (difference) of two sets 9 P relative to P , is denoted 
1 2 

by P - Po This set represents the elements of P which are not in 
2 1 2 

p 0 

l 

DA=lO: p - p : {X/X € p t X t p }o 
2 l 2 l 

p 
For a set P the distinct subsets of P is denoted by 2 • The reason for 

this notation is in the fact that for a finite set of elements (number 

n of distinct elements is finite) 11 the number of distinct subsets is 2N o 

DA=ll: 2P = {x/:x:C:. PL 

Some of the more commonly-used facts Ii) not already mentioned, are 

listed below: 

TA-1: (1J S P for all sets P. That is, the empty set is 
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a subset of every set. 

TA-2g P C P for all sets P. That is, every set is a 

subset of itself (not a member of itself). 

TA-3: ~ and P £ 2P. This follows from DA-11, TA-1, 

and TA-2. 

TA-4: P LJ (P - P ) = P • 
1 1 2 1 

TA-5 g p n (P - p ) = ~. 
1 2 l 

TA-6 g p LJ (P n p ) 
1 2 3 

= (P U p ) n (P LJr p ) • 
1 2 1 3 

TA-7: p n (P u p > = <P n p > u c p n p >. 
1 2 3 l 2 1 3 

The "number" of distinct elements in a set is referred to as the 

cardinality of the set. For finite sets "number" has a unique meaning 

in terms of a natural number (i.e., 1, 2, ••• n). However, for non-

finite cardinals the intuitive idea of number is somewhat less clear. 

However, even in these cases it is still clear that two sets can have 

the same number. Hence, two sets are said to be equivalent if there is 

a one-to-one correspondence between the elements. All the sets which 

are equivalent are said to have the same cardinality. In this thesis 

the cardinality of a set, P, will be denoted by q(P). 

In many cases it is convenient to denote the totality of ~lements 

involved in an abstraction (domain of. discourse). Some of the more 

familiar notations which are used in this thesis are: 

R = Set of real numbers 

C = Set of complex numbers 
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I = Set of integers 

P x P = Set of oi,dered pairs ( Cartesian product) 
. 1 2 

The notion of order is also a fundamental concept of mathematics. 

The formal definition of an ordered pair in terms of sets is: 

DA-12: An ordered pair of elements p & p and p & p 
1 l 2 2 

denoted by (p , p) is the set 
1 2 

{ {p } I {p t p } } a 

1 l 2 

(p 'p) = 
l 2 

{ x/x C: P U P and x = {p } or x = 
1 2 1 

{p. 
1 

p }}. 
2 

Using this definition, it is easy to show that (p, p) = (p', p 9 ) 
l 2 1 . 2 

if and only if p = p' and p = p', using the definition of set equality. 
1 l 2 2 

Chapter II of this thesis uses an extension of the above idea to 

define ordering of·, elements from more- than two sets. For two sets P 
l 

and P the totality of ordered pairs is denoted by P x P called the 
2 1 2 

Cartesian product of P and P. 
1 2 

DA-13: P x P = {x/x = (p , p) and p £ P and p £ P }. 
1 2 1 2 1 l 2 2 

Using the above set, relationships between two sets other than 

those of DA-12 and 13 can be defined. - A subset R of P x P is called 
1 2 

the graph of a relation,. This is defined as: 

DA-14~ R = {x/X £ P x P and , ( x)}. 
1 2 

The graph R of$ is always a subset of P x P. Also, note that 
1 2 

in the above form R is the result of applying the axiom schema of 

separation, with the assumption that P x P exists. Hence, every 
l 2 

abstract postulate,,, relating the sets P and P can be, theoretically 
l 2 

at least, exhibited in the form of·: a graph R. In fact,, the graph of a 
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relation is formally defined as the relation. (6). The above discussion 

indicates that the graph and the formula are equivalent in a logical· 

sense. The only logical problem which seems to appear while using DA-14 

is the fact that ~ (x) and ~ (x) as applied to P x P can yield the 
l 2 1 2 

same graph R. Hence• to remove this apparent ambiguity from formal 

logic, it appears that the graph of a relation is called the relation. 

However, in the engineering application of mathematical relations I it is 

the relation, <h (usually called a formula) which is of interest. For 

this reason and because of the role of the relation in this thesis, the 

above discussion is thought necessary. 

In order to remove the logical ambiguity of using DA-14 9 the 

"equivalence" of two relations, ~ and ~ is defined after an "equivalence 
1 2 9 

relation" is defined. 

In many instances it is desirable to define a relation among the 

elements of a set P. Hence•- in DA-14 P and P a~e taken to be. equal. 
l 2 

When this is the case, the concept of an equivalence relation arises 

quite naturally. Following the standard notation for binary relations 

on a set, the following definition is giveng 

pl Gi p2 +-+ (pl' p2) £ R. Read "p is in the relation 
1 

DA-15g 

R to p2 if and only if the ordered pair (p , p2 ) £ R". 
l 

DA-16 g A relation on P x P is called an equivalence relation 

denoted by (RST) _or "I, if and only if· 

( a) p 1 (R p 1• (R~;flexive) 

(b) p rD p + p 6<_ p • (Symmetric) 
1\f\ 2 2 l 

(c) p (R p and p ~ p + p a-( p • (Transitive) 
l 2 2 3 1 3 
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Probably the most commonly used and strongest RST relation is that of 

equality. 

Using the above definition• a one-to-one correspondence between a 

relation and its graph can be achieved. This is done a~er an example 

of an equivalence relation is given. 

Example: Consider the set of formulas t which relate the 

elements of the sets P and P. tis not empty, 
1 2 

since the formula for obtaining P x P is known. 
l 2 

Consider the sett x ~ and the graph R given by 

R = {x/x £ t x !fl and x = ( cj> . , cj> ) ++ ( cj> -+- A 
1 2 1 

and cj> + A and AC. P x P } • That is , R is the 
21 1 2 

set of ordered pairs each of which represents two 

formulas which yield the same graph when applied to 

P x P. Now cj> R cj> by definition of Rand If>. 
1 2 1 1 

Also, if ct> 1 R ct> 2 , then 4> 2 R ct> 1 since A= B = C 

implies C = B = Ao Finally 4> 1 R cj> and cj> R cj> -+-
2 2 3 

cj> R cj>, since A= 
l 3 

B = C and C:: D = E +A= B = E. 

Hence, the above relation is an equivalence relation 

on the set If>. 

The elements which a:re equivalent under an equivalence relation"' 

are said to form an equivalence class. These are defined as: 

DA-17g The set P = {x/x £ P and (x, P) £ "'~p x P} is 
1 l 

called an equivalence class of the equivalence 

relation "'• Note that the condition ""'~ P x P" 

signifies the above definition only has meaning when 
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an RST relation is involved. 

One of the fundamental theorems of binary relations shows that the 

totality of equivalence classes generated by "' are disjoint and that 

the union of the totality is the original set. (9). 

Considering the example given and the above discussion, let 'ibe 

the set whose elements are· the equivalences classes 1'. Now consider 

the set 2Pl x P2 which is the collection of distinct possible graphs of 

P x P by DA=l4. Hence r. if a e: 2P 1 x P 2 9 there is one and only one 
1 2 

element in 'i'which corresponds too. Conversely, for every element 

1 of i there is one and only one element of 2P 1 x P2 which corr~sponds 

to-;'. Hence, these sets are equivalent. 

If the elements"; of l' are used in the definition of a relation 

instead of~, then each graph (subset of P x P) can be associated 
1 2 

with a single "equivalence relation" -;. In this manner a l - l correspondence 

between a relation and the graph of a relation can be obtained. 

Returning to the classification of binary relations• probal;>ly the 

most celebrated classification is that of the function. 

DA=lB: A relation~ on P x P is said to be a function 
1 2 

if and only if (p 9 p ) and (p , p v) e: R -+ p = p v. 
1 2 1 2 2 2 

A function is called a single-valued mapping of P into P written~: 
1 2 

P -+ P if ¥ p e: P 3 ( p 9 p ) e: R 3 p = p 9 • 
l 2 l l 1' 2 1 1 

It is important to note 

that the uniqueness property expressed in DA-18 is one way only. For 

functional relations the notation f (P ) = P is often used to denote 
l 2 

the fact that for each first element of the graph set there is a single 

second element. When the above uniqueness property holds in both 
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directions 9 the functions are called one-to-one (l - l). This and 

several other common classifications are given below: 

DA=l9: 

DA=20 g 

DA-21: 

DA-22: 

A function f is said to be one-to-one (l - l) 

when (p 9 p ) and {p 9 p ) e: R 9 the graph of f + 
1 9 2 1 2 

A sin. gle-valued mappin. g cj,: P + P is said to be onto 
1 2 

if and only if ¥ p e: P 3 (P ; P ) e: R, the graph 
2 1 2 . 

of cf> , :) p = p • 
2 

A l - l mapping 4>: P + P is a 1 - l function 
l ·2 

which is a single-valued mapping. 

Al - l onto m~pping 4>: P + P is a l - l mapping 
1 2 

which is onto mapping. 

The above classifications are logically related in the inclusion 

diagram of Figure A-1. 

~ Dyadic Relations 

Functions 

l - 1 Functions 

Mappings 

Onto Mapping 

1 - l Onto Mapping 

l - l Mapping 

Figure A-l. Inclusion Diagram for Dyadic Relations 
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The idea of a binary relation between two sets is made precise by 

using the concept of the ordered pair. It is obvious that given any 

subset of P x P this defines a unique subset in P x P. Hence, for 
1 2 2 1 

each relation 4> there is a converse relation 4> • Also, it is apparent 
C 

that 4>cc = 4>o 

DA-23: 

TA-8: 

The relation 4>c is said to be the converse relation of 

the relation 4> if and only if the graph Re of 4>c and 

R of 4> satisfy: 

(b) Y (p, p) £ Rc3 (p, p) ER. 
. 2 1 l 2 

From DA-23 it is immediate that 4> = 4> 0 cc 

Notice the relation classification definitions where given in 

terms of the "first" element and the "second" element of the ordered 

pair. This being the case the conditions of a definition involving 4> 

and ~ are not necessarily satisfied. That is, 4> might be a function, 

but 4>0 might not. These and related facts which arise from the relative 

classifications are a part of m~thematical analysis studies. (14). 

However 9 as discussed in Chapter II, the concern with relations in this 

thesis is slanted in a different direction. 
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TABLE I. 

DEFINITION OF LOGIC SYMBOLS 

LOGIC SYMBOL DEFINITION 

( :3 (x) o. 0 0 ) (There exists an (x} ••• ) 

( "% (x) •• 0 ) (There does not. exist an (x) ••• ) 

(¥(X) ... ) (For ~ll (x) ooo ) 
' ' 

( ... -+, 0 0 0 ) ( If · o • • Then o • o ) 

( 000 ~ ... ) (If ••• Then 0 0 0 , and conversely) 

( • 0 • and 0 0 0) ( • • • and • o.) 

( ·,. 0 0 0 or ••• ) ( • • • or o •• ) 

( o o_ o 3 •• 0 ) ( oo• such that oo.) 
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