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PREFACE

This thesis is the result of the author's search for a method to
look at engineering design from an analytical point of view., That the
engiﬂeer's primary job is designg seems to be commonly accepted. Also,
it seems to be commonly agreed that there is no accepted general theory
by which to study this process.,

The author was working with Professors Charles F, Cameron and
Daniel D, Lingelbach when a practical need for a general design procedure
became necessary. The requirements of the problem indicated a need
for general characterizations of quantities such as "physical system",
"specification", and "solution". These quantities are a part of each design
problem, In addition, these characterizations had to be quickly
related to a particular mathematical model (e.g.,, several functions of
n real variables), Yet, it was felt that the characterizations should
not be associated with any particular mathematical model (e.g. linear
equations, Boolean algebra models, statistical models, etc.). That is,
a theory for design, relatively independent of the "state of the art",
was desired,

The reason for the engineer not having a separate theory is
probably imbedded in his constant association with ordered sets. The
ordering of a set is an important phase of the scientific process
illustrated below:

Assume the existence of the three distinct non-degenerate sets of
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elements as indicated,

™,

CLASS 1 \) CLASS 2 CLASS 3

ey

Assume that the three classes are logically related in some

manner. The scientific process is concerned with the problem

of finding a relation between these classes based on some

"observable" criteria,

An interesting assumption always seems to take place at the first
stage of the above process. A common indexing set is chcsen for the
three distinct classes (i.e., the elements of each class are
associated with some abstract set cf "numbers" ). This seems to be
dictated by the "observable" criteria. This is where the order theory
(relative value) seems to take control, If each of the above classes
can be associated with a single set A which can be ordered, then a
method of solving the problem is available (i.e., if the "observable"
criteria is converted to some ordering scheme, a method for deductive
prediction is available).

The point to be illustrated by the above is that the classes do
not seem to prefer which indexing sets are chosen. They do seem to have
a preference when an indexing set and "observable" criteria are selected.

This thesis leaves the indexing set arbitrary. Also, the indexing
set is made disjoint from the indexed set. The separation of the

abstract common indexing set from the classes of interest allows a
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general foundation for looking at all design problems,

The author is indebted to the many who helped during his search
for a formal way to loock at the design problem of engineering. Many
of the concepts of a theoretical system used in this thesis should be
particularly vivid to John C, Paul who helped the author immeasurablya
The encouragement and guidance of Professors Charles F., Cameron,
Daniel D, Lingelbach, and William A, Blackwell to seek a theory for
design helped make this thesis a reality, Also, the criticisms of
Professor Jeanne L. Agnew greatly helped the author in the area of
technical consistency and conceptual clarity,

To the author's wife, Rose; and sons, Charles, Bryan, and James,

this thesis is dedicated,
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CHAPTER 1
INTRODUCTION

The design problems of the engineer are increasing in complexity
at a rapid rate, The common term associated with this trend is that of
the "system", Most of the engineering problems are now looked at from
a systems point of view. (1), This being the case, there have been
attempts to generalize, in order to have a single abstract representation
for all systems. (2). If this could be done, then a classification
process, distinguishing the typical cases would be possible,

Some of the more notable attempts to obtain general aﬁproaches to
systems were presented in the last decade. These were the generalized
energy equations and the linear graph theory characterizations of
systems. (3, 4), A strong trend at present is to lock at systems from
a statistical point of view,

Exactly when the generalized system approach got started, the
author cannot say. However, it seems to be sometime in the late
1840°%s, The reason for this trend is fairly clear. Until this "modern
trend" in engineering was initiated, the engineer learned to design by
studying particular systems (e.g., a,motor); When the number of
particular systems to be designed became large, it was no longer
feasible to use this method. Hence, the search for a way to look at
many systems was launched.

This thesis is a result of looking at the original problem~-that
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of finding a more efficient way to design systems than the "case"
approach, Once the author became interested in this problem, it was

clear that many people were working in this area, (5) A particular

case is noted due to its "different" approach. A book entitled Systems
Philosophy was published in 1962, (5). This book, which used terminology

of modern mathematics, defined a system symbolically. In addition, the

design problem was defined symbolically., The actual definitions are of
no importance here, but the fact that a symbolic (mathematical) definition
was given is thought to be noteworthy.

The fact that there are few general definitions of systems might
seem questionable in view of what has previously been said. However,
the only ones of interest and considered important are those which are
symbolic definitions involving the tools of the engineer. That is, a
system which is unrelated to the tools of the engineer is unlikely to
yield positive results,

This problem is approached from a rather fundamental point of view.
Generally speaking, a system is thought of as a "real" or "abstract"
set of interrelated objects. In either case there is the problem of
defining a system.

It appears to be commonly accepted in engineering that an "abstract"
system is a "mathematical model" which represents a "real" system, Also,
design is usually associated with the '"real" system., Hence, in this
thesis the concern is towards the "real" system rather than the "abstract"
or "mathematical model", However, this is done from the point of view
that every "real" system will be represented by some "mathematical
model". Thus a "real" system formulation of the design problem must be

directly related to available theories of mathematics, (These are the



tools referred to earlier.)

To accomplish the above with an established theory of mathematics
would be desirable, However, the only general theory of mathematics
is that of set theory, (6, 7). This approach to the general design
problem has been attempted., (8). Unfortunately, the generality of set
theory seems to be both its power and its weakness. The set notation
is used extensively in this thesis, However, just the ability to
formally abstract a set of elements is not considered powerful enough
to gain a useful design theory.

From set theory the particular areas of mathematics are developed
and can be classified as the "number theories" and the "operational
theories". "Number theories" refer to the construction and classification
of the types of "counting" theories (e.g., integers (I), reals (R),
complex (C), etc.). These "numbers" can all be thought of as indexing
sets, (For example, to use the properties of a number theory, a set of
objects must be indexed by these numbers.) In this thesis the terminology
of the indexing set is used to imply that some number theory is available,

The "operational theories" are the investigations and classifications
of operations., (For example, f (x, y) = z denotes some type of abstract
operation involving the elements x and y.) The major concern is to
insure that the operations have meaning. (9), Also the operations in a
particular number system are made to conform to the properties of that
number system, (For example, a * b = ¢ + if a, b are reals, c is real
and given by the natural order of reals.) This does not mean that other
operations cannot be defined on the reals, just that they must conform
to the properties of the reals. The ability to make the many

different operations, which can be defined on a set of elements,



conform to the ones already defined is a primary concern in mathematics,
Without this logical consistency, the formulas (logically consistent
operations) used in the applied sciences would be much less powerful,

It is only because these formulas are definite that the approach used
in this thesis can be applied. Also, it is the modern approaches to
discussing mathematical relations which have discarded the formula as
used in this thesis, However, from a practical (applied) point of view
the formula offers a conceptual advantage over the more abstract
approach mentioned above.

The formula, as seen and used by the engineer is a "relation" among
disjoint sets, (For example, E = IR denotes a relation among the
disjoint classes E, I, and R.) However, to state any particular relation
in a precise manner, the disjoint property is abandoned for the "well
defined" operations of some common indexing set. This process would be
acceptable if a single indexing set could be used for all "relations"
of interest. However, there is an increased application of finite
indexing sets and transform methods (i.e., change of indexing set such
as the Laplace transform commonly used in engineering). Thus, a
practical system for the engineer should not involve a particular
indexing set (e.g., reals, complex, etc.).

This thesis develops a general system by reversing the process
indicated earlier. That is, instead of looking at a "real" system by
some particular indexing set, the freedom to "project" these disjoint
sets onto any indexing set is reserved, This approach allows the
properties of all "real" physical systems to be formulated "independent"
of the indexing set which will be used in a particular mathematical

model,



The system, as defined in this thesis, can be thought of as a
theory. These theories are based on a set of axioms called "unordered
relations". These "unordered relations" are the result of having

definite formulas on elements from disjoint sets., (6). These formulas

are assumed because of the well defined mathematical operations
discussed earlier.

The "unordered relation" used in this thesis is obtained by removing
the ordered set restraints of the ordered relation theory used in
mathematics, (6), In discussing functions of more than two variables,
this formalism starts to become burdensome. This is illustrated as
fellows:

Consider f (x%;, X,, X3) = X, a real valued function of three

real variables. The fact that it is a function implies that

for each x,, X,, X;, each a real number, there is a unique X,
a real number, Hence, the above symbolizes a method for taking
three real numbers and looking at how these are related to a
fourth., However, the above is defined in terms of the dyadic
relation concept of ordered pairs. The fact that there were
three real numbers used instead of one was immaterial in the
above idea of a function. If, in the above function, X, in

was of interest, a new discussion

terms of Xys X34 and X,

involving a binary relation g (xz, X3 xh) = X, would be needed.
Conditions for obtaining g in terms of the properties of f are
discussed in most mathematical analysis courses., (10).

This illustrates a problem associated with trying to use the

standard methods already developed. Conceptually, it is clear that

several functions of n variables is "just" an extension of the ordered



pair concept, However, this is seldom studied on a formal basis other
than the concept of R; x R, X R; +4s R, representing the n-dimensional
product space of ordered n-tuples (r;;, r,, .oc ry). It is clear that
to define quantities formally as done for the binary relations (e.g.,
relations, mappings, converse relations, etc.) would be a tremendous
job, This becomes quite evident when it is considered that the number
of distinct orderings is n!, Hence, most of the n variable work is
done in terms of the ordered pair concepts.

Formally, the ordered pair is not necessary when classifying
relations, (6). This can be replaced by a "definite" formula. (The
Appendix gives a more formal discussion of the ordered pair.) How=-
ever, ordered pairs can be well defined in terms of a set of elements.
(6). Thus, to relate a particular set of elements the ordered pair
has been adopted in works dealing with the foundations of
mathematics,

To indicate the connection between the ordered and unordered
relations, Chapter II develops the fundamental ideas of the unordered
relation starting with the ordered n-tuple. The disjoint sets on which
the unordered relations are defined are called parameters, The un~-
ordered relation definitions parallel the ordered relation ideas where
possible, The definitions are slanted towards systems (Chapter III)
and the design theory of Chapter IV, The idea of a parameter model is
introduced, These models have the basic properties of the systems
which are used in engineering design. The results of Chapter II are
used in Chapter III to develop the general system as viewed by this
thesis.

The system has a simple interpretation in terms of the terminology



constructed in Chapter II., Basically, each system is a theory defined
on n parameters (logic classes) in v "parts". The "parts" refer to the
number of unordered relations which are involved in postulating a system,
Each system can be viewed as a collection of unordered relations which
has the potential of containing logical information. A piece of logical
information can be viewed in an order if "projected" into the ordering
structure of its indexing set. In fact, the "projection" of a system
into an indexing set returns the system concept of this thesis to the
ordinary functional concepts of ordered relations. This seems to be a
practical approach in engineering. This gives an engineering design
theory which is relatively independent of the "state of the art".

(This does not mean that design is independent of the "state of the art".
On the contrary, any particular design solution is in terms of the
"state of the art",) This design theory is able to look at all of

these "state of art" models.

Chapter IV makes use of the two preceding chapters in developing a
theory for design. The contents of this chapter are based on the "tools"
developed in Chapters II and III, There is one fundamental axiom which
is used in this chapter, This axiom is called the real system axiom,
The axiom assumes the existence of a particular type of system.

Involved in this axiom is a uniqueness between systems relative to the
"logical information" of a system, This approach allows the design
theory to be applicable to the "best" available models,

The final chapter indicates some of the areas of application of
a design theory as developed in this thesis., In developing a basis
for the design theory, many areas of application loocked promising. The

scope of the foundation work did not permit the author to give detailed



examples, Three major applications which look promising are discussed
in the final chapter. Throughout the thesis discussions concerning
possible interpretations of the material are given. Also several

examples are given which directly indicate areas of application.



CHAPTER II
PARAMETERS AND UNORDERED RELATIONS

The discussion of Chapter I indicated that the basic ingredients
of a system, as viewed by this thesis, are the parameter and the
relation, This chapter is devoted to the definition of these and
related concepts. Motivation for many of the definitions and facts
presented in this chapter stems from ideas involved in engineering
design. For this reason, some of the material in this chapter may
seem unmotivated., When possible, reference is made to the area where
the concept is to be used,

In conjunction with this, and later chapters, an Appendix has been
included covering the basic mathematical concepts repeatedly utilized,
The discussion of binary relations presented in the Appendix is some-
what more extensive than the coverage of set theory concepts. The
reason for this is that the general concept of a relation, as given in
this chapter, is basic to that which follows., The discussion of the
binary relation in the Appendix is slanted towards the approach taken
in this thesis with unordered relations,

Throughout the remainder of this thesis, the parameter is used to
denote an indexed set with at least two elements called scalars, In

engineering a quantity with these properties goes by the same name.

D2-1: A set P is called a parameter if and only if
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(1) There is aset AD A(|P = ¢ and v ac A
3 a unique P_e P and conversely,

(2) A has at least two distinct elements,

The set A which is equivalent to P (1-1 mapping exists) is called
the indexing set of P, An element of P is called a scalar and denoted
by py where (a) denotes the element of A which corresponds to (indexes)
the element p_e P, For convenience, and unless confusion might arise,
the indexing subscript will be dropped and peP will be used to denocte
a scalar of P, The value of a scalar p is the element a of A which
indexes p,

Defining a parameter as in D2-1 might seem unusual and unnecessary.,
Yet, when dealing with abstract quantities such as voltage (E), current
(I), and gain (K), it is important not to confuse the scalars of (E)
with those of (I), etc, This is so, even though the same indexing set,
usually the real numbers, is used for each parameter. In other words,
if E and I were said to be the same as their indexing sets, then E = I
in a logical sense, But not only is E # I in a logical sense, they can
be (and are) considered disjoint (no elements equal) in a set sense, by
letting them be parameters (i.e., PI(W P, = ¢ can follow from D2-1 even
though the indexing sets for P, and P, are the same).

It is noted that since P and A are equivalent and A has at least
two elements, a parameter has at least two scalars. Hence, every
parameter has a proper subset. In connection with the set notation in

this thesis; the definitions of DA-3 and DA-5 of the Appendix are used.

D2-2: P denotes a proper subset of a parameter P,
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It is also noted that if a parameter P exists, then a parameter A
exists which is disjoint from P, This follows from (1) of D2-1,
Throughout the remainder of this thesis, parameters with different

subscripts (e.g., P, P s000) Will be considered disjoint unless

29
otherwise stated. This does not mean their indexing sets are disjoint.
On the contrary, their indexing sets will usually be the same, Also,
capital letters will be used for sets and lower case for elements.

In order to relate a set of parameters, the scalar n~tuple is

defined.

D2-3: Given the parameters Py, P,y ooo Poyn > 0, in the order
Plig PZi’ 800 Pnig the set “ni (P) = (pli, pzig %00 pni)g
where P ;€ Pli so0 D € P,; is called a scalar n~tuple of

order (i), (Pli sso Ppi are not necessarily disjoint.)

In D2-3 the subscripts refer to the parameters to which the scalars
belong and have nothing to do with their indexing sets. Two n-tuples
: . = L i = p!
are considered the.same ™ P ﬂnj p' if and only if Py pljf
= V\1 500 . = ) N 3 3 3 1 1"t 7"
Pys p2j Ppni pnj That is, scalars in identical "slots" must be
identical even if they come from different parameters, Hence, if the

parameters Py, ... P are disjoint (each disjoint with the rest), there

n
are n! distinct n=tuples for the n scalars Pys P, seo Ppo Each of the
distinet n-tuples corresponds to an "order" (i), The n-tuple is called
an ordered pair in the case n = 2, (6)., It is noted that another
approach is available which uses ordered sets to define the n-tuple,
(6),

The n-tuple gives a,precise.way of denoting a "relation" between a

set of parameters, This is most conveniently done by using the product
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set for the order (i),

D2-k3 The totality of scalar n-tuples, denoted by I ;. P

P,s s0s Ppiy is called the

representing the order Pli' 21

scalar product set (Cartesian product) for the order (i),
(P's not necessarily disjoint,) Sometimes Hni P is

denoted by P1 X P2 ses X Ppo

The product set is used to define the graph of a relation.. As
discussed in the Appendix, there is, conceptually at least, a difference
between a relation-and the graph of a relation. In this work it is
more convenient to consider the relation as the "formula" ¢ which
generates a graph, In the works dealing with foundations of mathematics,
it is the graph which is called the relation. (6).

The approach taken here is slanted towards the application of
mathematical formulas rather than precise methods for constructing
useful formulas, However,‘the connection between the formula and its
graph is necessary in order to have a "precise" meaning of a formula.

A formula is a logical concept used to separate objects. The
logical properties all formulas must have is that of being "definite",
(6), That is, let x be the set for which a formula ¢ can be applied,
Then for each x either ¢ (x) is true or ¢ (x) is false, but not both,
The set x for which ¢ (x) is true is called the graph of the formula ¢.
From the above it is clear why a formulé-éannot be separated from its

graph, Also 1t shows the conceptual,différénce between the two.

D2-5¢ A set R; (Pp), n > 0 is said to be a n parameter ordered

graph of the relation ¢ on the set {P,} if



13
Ry (Py) = {x/x ¢ I; P and ¢ (%) is truel,

The formula ¢ is not allowed to involve the set X, (6).

From D2-5 the graph of every relation is a subset of a product set.
For consistency with set theory, the one parameter graphs (n = 1),
which are possible by D2-5, denote particular subsets of {Pl} which are
specified by ¢. (That is, from set theory the only relation p, can have
with P, is "p, € Pl"; and a collection of elemeﬁts, each belonging to
the same set, is called a subset DA-3,) Note that if ¢ (x) +> x ¢ ¢ is
used for the relation, then its graph is the empfy set.,

The theory of dyadic relations (n = 2) is that commonly found in
the foundations work of mathematics, Polyadic relatioﬁs are less
common for reasons indicated in Chapter I. Also, they are theoretically
obtainable from dyadic relations., (6), As mentioned earlier, the
common approach to the relation is to let each distinct subset of a
product set be a relation, The formula ¢ is used to denote a relation
in this work,

One advantage of this approach is that the "useful" formulas are
independent of the order of the graphs they produce. That is, the
formulas, at least in a practical sense, usually produce more than one

graph, This is i1llustrated in the following example:

Consider the parameters P, and P, which are indexed by the

. : _ ~ ot
real numbers (i.e., x € R Py € Pl’ Pigt = P ¥ x =X ) and
Py[)P, = 0

° . - 2
Consider the formula: ¢ [(Plx’ sz)] > Xp) = Ypy and the

e

graph of ¢ relative to P1 X P2 and P2 X P1
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vl
~
g
)
n

{x/x e P, x P, and ¢ (x)}

d
—~
jav)
—r
]

{x/x € P2 X Pl and ¢ (x)}

From D2-3 and the fact that PI{P\PZ = ¢ the above graphs are
completely disjoint, yet represent the same relation ¢,

between the parameters P; and on

In the theory of dyadic relationms, R1 and R2 would be converse to
each other and equal only under special conditions. One obvious
necessary condition is that Pl(] P2 # @, excluding the empty relation.

It is noted that the scalar values of Plx and P__ are equal for the

2y

scalars P11 and P

21° This illustrates the distinction which has been

made between the scalars and their scalar values, The formulas relating
the scalars are usually given iﬁ terms of the indexiné set (scalar
values). Yet, there is no need to consider a parameter to have a unique
indexing set. Indeed, many transformations used in the applied sciences
are performed on indexing sets, not the parameters themselves (e.g.,

the Laplace transformation changes the indexing set of linear voltages
from the real numbers to the complex numbers. However, voltage itself
can be thought of as a parameter independent of the indexing set),

This is a very convenient way of looking at quaﬁtities involved in
engineering design, For example, it might be more convenient to think
of voltages as parameters indexed with a set ha;ring only two elements.
These voltages might then be related by the rules of Boolean algebra
rather than ordinary algebra.

To remove formally the order from an n-tuple the following

classification is convenient:
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D26 A relation ¢ on the set of parameters {P,} n > 1 is
said to be consistent if and only if

(1) v order of I, P 5 a graph Ry (P,) of ¢,

(2) # i,# js Ry (B)) = ij

order permutation performed on the n-~tuples of

(P,) where j' represents an

Ry (P,) to obtain the n-tuples of Rj,(Pn), and
order (i) = order (j').

(P’s not necessarily disjoint,)

D2=6 in effect says a relation is consistent if the graphs are
equal when brought into corresponding order. This says that if the
parameters are disjoint, then a consistent relation ¢ is not dependent
on its graph’s order, This definition conforms with the logical

restriction for a consistent formula,

D2=7: A relation ¢ is said to be independent of order if
!
¥ X € T:P>¢ (x)

1

o]

He
[H

then ¢ (y) if y = x', Here the prime denotes an
interchange of order to give the n-~tuple x the same

order as the n-tuple y.

T2=1: A consistent relation ¢, on the parameters {Pn} is
independent of order if the P's are disjoint,

Proof: From D2-3, D2-6, and D2-~7, the above follows,

The above theorem indicates that only the unordered sets {pl, noopn}

need be considered in ¢, when the parameters {Pn} are-disjoint. This,
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of course, was the purpose of indexing a collection of disjoint sets,
The indexed set can be any of the well~known counting sets (e.g., R, C, -
I, etc.). The formulas can (as is common) be defined in terms of these
indexing sets using well-defined operations.,

Since the operations used in most formulas are required to be
consistent and these operations are classified in algebraic studies of
mathematics; it seems appropriate to call consistent relations, algebraic.
Also, it is required that the same set be used when discussing algebraic
operations. Hence, for consistent relations on parameters indexed by

the same set, the following classification seems appropriate.

D2-8; Let ¢ be a consistent relation on a set of parameters
{P,}. Let {Ap} be the indexing sets corresponding
to {Ph}. Then if for some suitable ordering

0= Byy oo 2 Ao, ¢ is said to be algebraic.

The importance of algebraic relations cannot be overemphasized.

It is the common indexing sets which allow a relation to have a definite
"value" meaning (i.e., unless a common base [indexing set] can be

found, such that each parameter of concern can be indexed by this

set, a definite "value" relation seems impossible). The property of
D2-8 is given to the relations considered in this thesis.

As mentioned earlier, the main purpose for working with parameters
is to remove the ordered set problems associated with classical relation
theory. From T2-1 it is natural to consider the unordered graph set
R (P,) which can be associated with any ¢, on {P,}. (From now on,
every relation will be consistent unless specified, and ¢ will be used

in place of ¢,.)



D2=9: For the relation ¢, the set R (Pp) is called the

unordered graph of ¢ if and only if

n
R (P,) = {x/xC k) P; and x = {p; & Py oeo Py € P}
i=1

and % ordering (i) of x, ¢ (%)},

An element of R (P,) will be referred to as an unordered n-tuple

T pl, The graph R (Py) = II, P corresponding to, ¢ (x) + x e I3 P
represents the totality of distinct unordered n-tuples which can be
formed from n disjoint parameters,

Erom D2-9, and the above remarks, each element of R (Pn) contains
those and just those scalars which satisfy ¢. Also, each element of
R (Pn) has one and only one scalar from each parameter of {P,}. The
next classification is to distinguish- the unordered projections which

can be formed from R (Pn)° Here {Pn'} will be used to denote a subset

of {Pn}o

D2-10: Given the relation ¢ on {P,} with graph R (P.), the
set Ry (P, ¢) is called the unordered projection

relative to ¢, if and only if
R.n (Pn') = {»/x € an P and 3y € R (P,) of
¢ 3x [y = x},

T2-23 (1) Ry (Pyv) = Ry (Pys) if and only if {P_,} = {P .},

'The word "unordered" will be attached only when confusion might
arise between the ordinary concept of graph and the unordered graph.
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(2) Ry (P) = R (B),

Both (1) and (2) follow from D2-9, D2-10, and NI, P, The justification
for calling R, (P, y) a projection relative to ¢ is seen by considering

the relation ¢S on the disjoint set {Png} as follows:
R, (Pye) = {x/x € M.+ P and ¢S (x)
where ¢5 (%) <> ¢ (y) 5y e R(Py) and x|y = %

Using this, if ¢ is known, frombthe unordered graphs of ¢ the un-
ordered graph Rﬁ (PnV) of ¢; can be constructed. This graph is the same
as that obtained by using the unofdered graph of ¢ and D2-10, Also note
that ¢, must be consistent, algebraic, and independent if ¢ has these

properties, From (1) of T2-2 there are 2" distinct projections,

T2-33 - Given the disjoint set {Pn}-and the n parameter
relation ¢, there are exactly 2P unordered projections
relative to ¢, (This includes noc parameters as the ¢

graph, )

It is noted that a projection, as given in D2-~10, is not the same
thing as the subrelations which are used to denote subsets of graph
sets (i.e.; R’ (P)) g;I{(Pn) is normally called a subrelation). The
projections of ¢ as given here are the gquantities which denote
"specifications" in engineering design. Also, the complement of a
projection set can be thought of as the "solution" set., These ideas

are made clearer in discussing the following question:

Given ¢ on {P;} 3> R (P) # @ and the set
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R, (Po) STy P {P s} S {Py}. Is there a set
Ry (P;u) ST=y POv¥ xce¢ Rp (Pn') i~

y € R (P=;) 2 xUy e R (P) 2

The above question indicates the need for several conventions

before discussing an answer., These are noted in D2~11 and T2-4,

D2-113 {PE”} will denote the complement of the subset

{Pn\]} of {Pn}o
Using D2-11 and the definition of Hn P gives

7.

T2-h: (1) (x e o P)((y € T, P)

L]

(2) (x ,E_Hn' P) (J(y ¢ =y P) z‘e m, P.
The above question is partly answered in the next theorem.
T2=5¢ Given ¢ on {P;} > R (P,) # $#and x e ;¢ P,
then (VA v e Tgo P 3 x Uy € R (Fy) if (7'} (iry} # B 01
(2) x e Ry (Pp) »dy e R (P5)2 xUy e R (P,
(3) {Phe} C{Py}, Ry (Pyy) =M, P*+Jyel= P 2

XpyeR (Pn)9 xell , P,

Proof: (1) All that (1) states is that the "specification
| must involve parameters for which ¢ is defined.

(2) This follows from D2-10 and D2-11. Note that

this result boldé even when n = n', That is,

it certainly is possible to specify an element
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of I P, which lies in R (P,), The "chances"
of doing this are usually considered small.
(However, a notable exception is when

R (Py) = T P.)

(3) From (2) there is a contradiction if it is
assumed$ y ell=y P Ox Uye R (Pn)_ given
%€l P

The above conditions are formal facts which are usually taken for
granted when working with the more common algebraic equations, For
most design problems where the '"system" is assumed, it is convenient
to assume (3) when seeking '"compatible specifications", These are
discussed in Chapter IV,

The previous classifications have involved looking at relations
(projections) generated from "higher dimensional" relations. The
classifications so far are not unlike those discussed in an ordinary
algebraic expression of n variables,

The real advantage of the unordered relation approach is in
looking at "higher dimensional" relations "generated" from two or more
"lower dimensional" relations, These are the situations which are common
in engineering design,

The projections which have been studied are not defined in a
manner which,; in general, allows the original relation to be deduced,

The fact that a proper projection does not characterize R (P,) is

indicated by T2~5 (3) and can be seen from D2-10 as follows:

let {an}(j_{Pn} « Then R, (Pn,) is called a propeéer

projection of R (Pp), let x; = X, € Ry (Py1). Then if
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this does not indicate y, =Y, € R (Pn)’ X) Cyl, %, C_;yz,

R, (Pnﬂ) cannot completely characterize R (Pn)a From D2~10

X, nyl = x, and xzﬂ Y, =%, xl(\y1 = X ﬂyz, but does

not imply Yy = Y,

The above indicates that the graph R (Pn) cannot be represented
directly by the projections, The following classification involves a
"weak" connection of two arbitrary relations which hints of a method

for generating "higher dimensional" relations.

D2-12: Two relations ¢, and ¢, are said to be connected if and

only if 3 {P.: }C {Pnl} and {P_, 1C {Pnz}

n']

> By (Bpi) (| Ray (Pyry) # 9.

n'2

The conditions placed on two relations for them to be connected
are very weak, In fact, from a practical point of view, the above is

equivalent to:

If {Pya,} (]{Pngz} 70~ ¢, and ¢, are connected, The
notation ¢1 c ¢2 will be used to symbolize that ¢1 and

¢2 are connected.

The agbove condition suggests an unordered relation graph which can
be constructed in the space I, P, where {P_} = {P YU {p_,}. Namely,
n nl n2
a graph consisting of those scalars of I, P which are the union of a
scalar of R (Pnl)'and one from R‘(Pn2)° Now this graph is well defined,
since x € I, P has one and only one element from each of the parameters
of {Pn}o The cases when {Pn1} (]{Pnz} = ¢ are of no interest since from

D2-12 there is no connection between ¢1 and ¢2, However, even if ¢1 c ¢2,
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the suggested graph might be empty,

D2-13: Assume a collection {¢;} on the parameter sets (P ;1)
Let {¢j} (C {¢;} have the parameter sets {Pnj}a Let
{¢§} = {¢i} = {¢j}, and {Png} denote the parameter
sets of {¢5,-}° If there is no proper subset {¢j} D
(L){Pnj}){](t){Png})= g, Then the set I P/{¢i} 5
{x/x% ¢ I, P and x = U y; and y; € R (Pni)} are called

the natural points of {¢i}° If there is a proper

subset such that (U {Pnj })ﬂ (U {Pn-]:'})= @, then

i P/{¢i} is not defined,

The idea of the natural point is the generalized concept of graph when
dealing with "systems"., 1In termsvof one relation, the natural points
are simply the graph R (Pn)° The éet of natural points, for any
arbitrary collection of relations, is the main concern of the engineer
in the area of design, That is, given an abstract model which has
natural points, what happens to the number of natural points when this
"mathematical model" is combined with an arbitrary collection of
relations? Also, how "deductive" is a given "model"? (In Chapter III
these are called physical systems.) Facts concerning both of these

questions are presented in the next theorem,

T2=6¢ (1) {¢i} i=1, 2, oo Vhas a natural point only
if ¢; c ¢j +Jy; € R(P ;) and ¥y e R (Pnj) S
Vi ﬂyj € R (Pnij,) and R_. (Pnij)° Here

J
Posg} = ;1) (250

(2) If {¢;}, 1 =1, 2, «so V are the relations



23

¢ (x) »x e I, P for the graphs TP .00 N, P,

and {¢;} has one natural point, then HnP/{¢i} =

v
m, P, P, = U {p ;)

Proof: (1) Assume x e P/{¢i} andjj y; and yj of
R (Pni) and R (Pnj) o yiﬂ v5 £ Rni (Pnij)
when ¢; ¢ ¢j. Hence y, ij ¢x e I, P,

Hence there is no x which can satisfy D2-13,

(2) Let x ¢ I_ P and assume X £ np/{s:},
However J y, ¢ Hn1 Pyy, € an Posoy, el P
xy; = yi)i = 1,2, iso Vv, by definition
of Hn P, Hence choose these y; and apply
D2-13 to obtain x e M P/{¢i} which contradicts
the above, Hence x ¢ I P> x e I B/{¢;}.

The converse follows ‘from D213,

T2-6 gives a simple, necessary conditi@n for a natural point., Also a
trivial, but interesting from the design point of view, sufficient
condition is stated.,‘

The next classification distinguishes relations which have a
"stronger" connection than just being connected., First, the relations
{Ei} for which N P/{¢;} # ¢ are called consistent relations, This
classification follows from the '"consistent" equations studied in any

of the operational settings of mathematics.

D2=14: The relations {¢i} are said to be consistent if and

only if {¢;} has a natural point,
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D2-153 Assume the relations {¢;} with graphs R (P ;) 3 if
{Pnij} = {P;} (\{Pnj} # ¢, Then either

Rt (Pnij) c an (Pnij) or the reverse.

A consistent set {¢;} with the above properties is said
to be naturally conhected° Any two which are naturally
connected will be denofed by:(¢i ne ¢j) where 1 before

j indicates the above inclusion,

The above properties are some of the more general restrictive properties
of a useful "model". These properties are present in all the "physical
systems" as classified in Chapter III,

The conditions placed on the relations in D2-15 are still quite
general from a "consistent model" point of view. That is, abstract
models, generated for the purpose of paralleling "natural phenomena'
seem to have an inherent consistency. It is a useful characterization
of this consistency which is being sought. The following theorem

indicates some of the properties possessed by naturally connected sets.

T2=73 (1) If {P_ ..} = {P
nij

nil © {Pnj} and (¢; ne ¢j). then

R (Ppy); &R (o),

)o

Proof: (1) From D2-15 (¢; nc ¢;) = R . (Pnij)§; Rag (Pnij

From T2""3 %i (Pni) = R (Pni)°

Note that the conditions of T2-7 result in the possibilities for
projections from "higher dimensional” relations being contained in a
"lower dimensional™ relation. This, in general, is not the case, The

common situation is when the reverse prevails, Even more common is the
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conditions of the following theorem,

T2=8¢ Given {¢;} i =1, 2, 4, vwith {R (P ;)}. Assume
{p 'k} has exactly one parameter for each i # k and
ni

i’}Jk{Pni} C:{Pnk}° Let ¢, be an onto relation

relative to iyk{P“i} (ioeo, Rnk'(Pnk,) =1 .. P

where P, = ig)k P i)+ Then (¢; nc ¢) and

vy; e R (P

Yi#kIxen P/{o;} 3 x=( E} y1) U vy
: i#k

where yj € R, (Pz).

Proof: The fact that {P_,}() {Pnk} # #, combined

with the fact that Rn when

x Pnix) 7 Pni
i#k, gives (¢i nc ¢k), For the second part
~the fact that ¢k is onto relative to {Pnk'}

gives the desired result.

The situation outlined in T2-8 is used in connection with "compatible
specifications™, which arevrelated to‘design "solutions”., :These are
discussed in Chapter IV, When thinking of ordinary "functions" of n
variables (i.e., y = £ (X; ++o %), the above says you can choose
Xys oeo X, SO there is ;g? such that the above equation is ‘satisfiedo
Hence, T2-8 shows that single formqla problems can be thought of as a
function of n variable probiem or an n + 1 relation problem, In fact
the situation of T2-8 is usually thought of as an n variable problem.

However, the use of the natural point leads to simpler classifications

in general, One of the important concepts involved in "simultaneous
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equations" is that of independence'and dependence, Conditions for
these properties are usually expressed in terms of the algebraic
operations associated with the variables of interest (e.g., these are
evident in vector spaces, real and complex numbers, etc.), This
problem is looked at differently by the unordered relatioen approach,

that is, the logical concept involved can be expressed as follows;

D2-16: The consistent sets’{¢i1}and {#;,} are said to be
dependent if and only if
(1) 3 {¢i,1}g; {¢i1} and {cbi,z‘}g{cbiz}
3 wxel ., P/o, 3 ye T, P/os,,03
XCYQ ‘

——

(2) » y' e LI P/{¢i,2} Jzen,, P/{fbi.l}U{d)i,z} 2y' €z

i

The gbove definition requires two cénsistent sets of relations which may
seem undue restrictive. However, "logical dependence" can be thought of
as a "measure" of how many logical facts one theory contains of another.
The above restriction is only for the purpose of requiring some facts

to start with, The following theorems are noted in this connection:

T2~9¢ (1) If {¢;} has a natural point, then every proper
subset {¢;,} of {¢;} for which M,y P is defined
has a natural point,

(2) T, P/{6;} = 9~ 1, B/{0i} = @ v {45} = {653 U {3},
Proof:  These fbllow directly from D2-13 and T2-6.

With T2-9 the definition D2-16 is seen to be sufficiently general for

the logically consistent algebraic formulas normally used in engineeriﬁgo
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One of the simplest facts to obtain and g¢bserve is as follows:

T2«10: {¢i} dependent + 3 {6} .and {¢z} contained in
o35 { Uirgy INTULR 1, Ipi Uty ) )

or 2 hJ{Pniz} g

Proof: Assume the opposite of the implied conditioms
and let {¢i} be dependent, From D2-~16 and

definition of I, Pa contradiction is obtained.
Also it is easy to see that {¢i} and {tbi} are not "independent",

D2-17: Sets {¢i1} and {¢;,} are said to be inde?endent if

they are not dependent,

Information concerning dependence among relations is of considerable
importance in design theory, The main concern in this chapter is to
look for conditions relative to dependence which can be assigned to
parameter '"models" représenting "phfsical systems", Natural connectedness
is one property already attributed to these "moﬁels". Even stronger,
the condition between the graphs Qf-nafurally connected relations is,
in this thesis, made an equality when either {Pni} or {Pnj} is equal to
{Pnij}° A useful theorem is qbtained by using these conditions along

with two others. Involved in this theorem is the following set de-

composition process:

D2-18: A set of relations'{¢i} are said to be decomposable

"if the following process yields the empty set:.

Consider'{¢i1}§;:{¢i} 29" e {95} «TP' ¢ {Pi}
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the parameter set of ¢' 5 P' £ to any of the
parameters sets of {¢i} ~ {¢'}, Now either

{¢;} - {¢i1} = ¢ or nots If not, repeat the
process using {¢i} - {¢il} in place of {¢i}. If
so, the process 1s complete, If this process
yields the empty set in a finite number of steps,
let {¢ig denote the last non-empty set., The

set {¢;} is called decomposable with fhe n de~
compositiqp sets.{¢i3 + A set is said to be non-

decomposable if it is not decomposable.

D2~19: A naturally connected set such that'¢i ne ¢j > ¢j ne ¢i
is'said to be normaiky connected, (¢i ne ¢j will be

taken for normally connected unless otherwise stated,)

Some faets concerning decomposablé sets are needed to look at the

more important independence conditions,

T2-11: Lét {¢i} be a decomposable normally connecfed independent
set, Then if {¢i} has a one element decomposition class,
it is the last.

Proof: - Assume there is a one element class not the last,

Let {¢ij} represent this class, Then

{Pnij} EP{P'ni.vj + l} where {P' }

ni, j +1

3 ]
is a parameter set of ¢ij ‘1 € {¢i, 3+ l}.

If not, then ¢! € {¢..} by D2-18, Now
v ij + l 1]

¢.. nc ¢! | by hyp. Hence they are

i i, 54 Y P y

dependent by D2~18.



T2-+12:

T2-13:

Let {¢;} be a non-decomposable set, Then
3 611 & {3 5 ( k){p;il} )= (UL,
where {P;il} refers to {¢£1}C:{¢i}, {P;iz}
refers to {¢' }C {¢'.}.

iz2° | 1

Proof: Assume the above results are false, Then
P P! ) P ¢ '
JPe (U{ WER RN U{Pnlzl]
which gives a contradiction by D2-18. (Note
that actually the other side of the set

equality might need be used.)

Let {¢;} be »a nqn—degomposable set D {P .} ¢ {Pnj}
v i # 3j, Then thepe is one-and only one {¢'} with
i
the property that !
(1) {¢i} - {¢;} is either ¢ or a decomposable

Set.

(2) There are ai: lehast twoi distinet subsets of

topp 2 {Utry; 3} = (Udry;,1) = (Uter 1),

Proof: Consider the set'{¢i}§; {¢i} where {¢i} is the
set which remains when the procedure in D2-18
fails to yield ap empty set. The fact that it
xﬁust fail is given by hyp, Now if the process
fails on the first try,’then{¢i} = {¢i}and
{¢i} - {¢i} = §, If not, then thebother condition
of (1), Now it is clear from D2-18 that wi}
constructed as above is unique. Hence, if (2)

is satisfied by{¢£}, then the proof is complete,

29
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If {¢i} = {¢;} , then by T2-12 and the
condition {Pni} gg{Pni} v 1 # j the set
equality of (2) must hold for at least two

distinct subsets,

Another fact concerns the "covering" properties of the decomposition

sets.

T2=-14: If {¢i} is an N decomposable set ¢f V relations with
decompositions classes {¢in} ,» then

{pgt = U{Pnil} 2 ;U{Pniz}.?@ e D u{Pnin}“';,

v

i1

Proof: Assume 3 P ¢ ith decomposition set 3P ¢ i - 1
decomposition set. Hence J¢' & {¢ii} 34" ¢

' z ' ¢ {P'.} DP' ¢ 1
i, 1- l}' Also Ja P! ¢ {Pni} DP' ¢ to
any other pavameter relation set for j = i,
i+ 1, ,os nby D2-18, Hence, by the construction
process of D2~18 ¢' can ¢ {¢. . }.. This
_ Tl 1 - ]
contradicts the assumption above, Hence at
least D holds, To see that only can hold,

D2-18 again is used to get non~decomposability

‘which contradicts the hypothesis, That Ey
v : : i=1
{Pni} = {'Pnil} must follow from starting

with a finite set of fihite objects and D2-18.

From T2-13 and T2~14, it capn be said that there is one and only one
decomposition class for a decomposable set which "covers' the parameters,

This fact along with the property of being consistent leads to.
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interesting properties when more than one decomposition class is

obtained. It is first noted that:

T2-15: For a consistent set {¢i} with decomposition classes
{6, } then when I_,, P/{¢,  } is defined
in nij ij

on (Hnin P/{¢in}) 3_ see ?_ 0'1 (Hn P/{¢il})?

Proof: This is an extension of T2~9,

Hence the "number" of natural points tend to increase as '"restrictions"
(relations) are removed. Also, for decomposable sets to be dependent

there must be a covering as by T2~10,

T2-16; Let {¢i} be an N decomposable dependent set such that

{Pni}sé{Pnj} ¥ 1 #3j, Thenn > ],

Proof: Assume n = 1, From T2~10 and D2-18, there is
contradiction when the special conditions of the

hyp. are used,

From T2-16 any set of relations which is first decomposable is
independent. Also it is noted that one relation sets are independent,
since D2-16 cannot be satisfied with just one set, From T2-16 and
D2-18, along with T2-15, each decomposition class of a consistent

decomposable set is independent,

T2-17: Given a consistent N decomposable set {¢;} with %{¢in}§g

then each {¢ij} is én independent set,

So far most of the independence and dependence conditions have been

quite general and only required consistency of the original set. The



32

next theorem deals directly with dependence of normally corrected

relation sets and indicates why the condition {Pni} %L{Pnj} vigij

is not unusual.

T2-18; If for the normally connected set {¢k} g ¢; and

Proof: By D2-19 and D2-18,

The next definition is a key factor whén showing that it is necessary to
be able to decompose a setkqf independent relations which represent a

"physical system",

D2-20: A consistent set {¢i} with properties (1), (2), and

(3) is said to have property c.

(1) Ry Prg} wi # 3.

(2) 1f {¢;} and {¢;,} such that ( J{F ;. D) =
JUILII RS R 2O 1= SR T N

(3) {¢;} is normally connected.

Using the above along with T2-13 and D2-19 gives:

T2~19: A set {¢i} with property ¢ is independent only if

it is decomposable.,

Reviewing the conditions for independence and dependence of consistent
sets, the following is noted: Sets of relations with property c can be
checked for independence and dependence in many cases by looking at

their decomposition classes. The main cases for which conditions have
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not been given are the decomposable sets with more than one decomposition
class. This involves removing the equality for set imclusion of
condition (2) in D2-20, Before discussing this.possibility; the

essence of giving a model property c¢ is discussed,

The restriction imposed on a model by D2~20 can be thought of in
terms of the undefined notations called principles, A principle will be
denoted by ¢, It is assumed that each set {¢i} is obtained from a
collection of principles {¢i}, The restrictions imposed by D2-~20 on a
set {¢;} are in effect restricting the set of principles which can be
used to generate the set {¢i}. The primary restrictions are those of
(1) and (2). In effect (1) says that the principles used disallow
generating two indgpendent relations ¢; and.q>j such that {Pni}S;{Pnj}.
Property (2) is thé extension of (1), Nunber (3) requires the "over-
lapping" relations to have identical projectioms. It is noted from (2)
that the case of "n equations and n unknowns" is ruled out for models
with property c.

The abqve restrictions piaced_on-principles used for generating
models do not seem to conflict with the general principles presently
used in engineering. In addition, the following property appears to

fit the class of general principles used to obtain deductive models,

D2-21: A set of relations {¢i}'which has the following
properties is said to hévebproperty cC,

(1) {¢i} has property c.

(2) If {¢ij} and {¢ik} are decomposition classes
of {¢;} 3 L){Phij} c Utp 1, then

By e Mgy PAeg Y 2 va e Typ P85 Ulegdy' doa
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The essence of (2) in D221 can be stated as follows, If the
principles {¢;} generate a model which decomposes, any two independent
decompoéition classes are also independent, (The fact that a de-~
composition class is independent comes from T2-~17.) It is noted that
(2) is just the opposite of condition (2) in D2-16, the second
requirement for dependence, Hence for sets with property cc, the necessary

and sufficient condition for independence is decomposability.

T2-20: A set of relations {¢;} with property cc is independent

if and only if {¢;} is decomposable.

In terms of the "number" of natural points, the models with property cc
are required to have a strictly increasing "number" of natural points as
the number of decomposition classes increase (see T2-15).

Pfinciples {¢i}vapplied to the parameters {P,} generating a model
with property cc is said to form a parameter model. This is formalized

in the following definition.

D2-223 A set of v relations {¢i} generated by the principles
{2;} with the properties (1), (2), and (3) is said to

. be a parameter model,
(1) Each P ¢ ; Q l{Pn,i.} is indexed by a subset of

the set A,
(2) {¢i} has property cc.

(3) Let %%fﬁm a single parameter of {Pni}, then

R . (PL)=1I-.P,
ni ( nl) ni
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It is noted that the principles {¢i} indicated in D2~22 are not formally
involved in the definition of a parameter model., However, it seems
appropriate to include the phrase, "generated by the principles {¢i}"°

The idea of the principle is used in the following example:

Example: Let {e,} be a set of n distinct parameters called
voltages, Assume the one principle ¢, called
Kirchhoff's voltage law, relating the voltages
aﬁdut any closed path in a network. Then if
{¢i} is a parameter model generated by ¢ when
applied to the network with voltages {en},'{¢i}

has property cc and hence is a set of independent

relations if and only if {¢;} is decomposable.

The parameter models are used in this thesis as if they were the
class of models used to deductively solve engineering design problems.
In this connection, parameters and relations, in more generality than

parameter models, are introduced in the next chapter,



CHAPTER III
'SYSTEMS

The purpose of this chapter is to define and characterize systems
which can be utilized in the area of engineering design.

The idea of a system in this thesis is as follows:

D3-1: A collection of n parameters {Pn} and v relations

{¢,} are said to form a system Snv if and only if:
(D vPelp)Io e lo)3pe (p,h
(2) » ¢, ¢ {9} and ¥ P e‘{Pni}, Pe {P},
(3) ¥ ¢, € {6,}, 6, is algebraic (D2-8),
() {fnj}’ﬂ (g} #9 > 65 ¢ o (b2-12).

(5) f {¢il} C:{¢v}, {Pnil}(\{Pniz} # ¢ where

{Pniz} are the parameter sets of {¢ } - {¢i1}‘
(6) Soo «+n = v = 0 is called the "empty" system.

Although a sjstem S,y is quite generai, it is also restrictive,
The definition above includes the usual sets of v equations and n
unknowns which are‘common in engineering, Also, it requires that any
postulated system have certain basic properties. Mainly, that the

quantities of interest be identified and some abstract connection be

36
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centered about these quantities (1), (2), In addition, there must be a
"logical" path established between the parameters. This is the
requirement of (4) and (5), Number (4) requires that if two relations
are set connected, then their common projections are "overlapping".
Number (5) requires the necessary set conditions for having the natural
points of a system defined. The property (3) is included based on the
fact that the usual mathematical formulas of the basic sciences are
defined on a single set of elements. Hence, fhe above requirements are
seen to be primitive, yet not at all trivial,

One of the more interesting facts, and desirable one from a

practical point of view, is the following:

T3=1: If 3§ a set of parameters {Pn} 3 n > 0 and each P;
3 {Pn} is indexed by the same set A, then J a system

Snv # Soo,

Proof: Consider the relation ¢ (%) + x ¢ I, P. It

is clear that properties 1-6 are satisfied.

The above theorem is important in a design theory., When considering
design techniques from a logical point of view, it is indeed practical
to have at least one system,

When dealing with system classifications and properties directe& ’
towards design, it is convenient to consider sets of parameters {P,}
and relations {¢,} which are not neéessarily a system but do have some
- of the properties of D3-1, The sets will be denoted by A,, and are

given as follows:

D3-=2: A collection of parameters {P_ } and relations {¢v} are
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said to form a partial system Anv if and only if
the two collections satisfy properties 1-3 and 6 of

D3-1,

The properties 1-3 still require the identification of parameters
and algebraic relations, However, these relations may not be connected
(6)s In fact, their parameters sets may not form a path (5), From T3-1,
if is clear that a non-empty partial system exists. The following

facts are noted concerning A and S which are directly from D3-1 and D3-2:

T3-2: (1) » 8, € 8, 5 €A,

()3 A, ehA>A_£S.

Just as in Chapter II, not much can be said about the elements of
A and S until more properties are assigned., Most of the basic properties
which are used to classify systems are a direct carry over from the
chapter on unordered relations, When possible, the properties will be
attributed to elements of A, understanding that if properties (4) and

(5) are involved, the definition only applies to the subsets which belong

to S,

D3-33 A partial system A, is said to be an algebraic system
if and only if for each P of A,,, P is indexed by a
subset of the same indexing set.

D3~k A partial system A, is said to be connected if

3] (g # 8> 4y c 45

D3=5¢ The set I, P/{¢;}, if it is defined, is said to be the



D3-6:

D3-7:

T3-3:

T3=4¢

T3-53

D3~8:

D3-9:

natural points of ALyo (When discussing natural

points, it will be more convenient to use n, P/Anv.)

Anv is sald to be consistent if Hn P/Anv #F 0.

- . ] ) i .
Given a partial system A _ with {¢i}, then Anv is
called a subsystem of Ahv if and only if

i .
v ¢; of Anv, 9; € {¢i} of A e

If A _ is consistent, then each A* which has Hni P/AIJ;v

nv nv

defined is consistent.
Proof: From T2-9,

If 3 A of A which is not consistent, then A is
nv nv nv

not consistent,
Proof:  From T2-9.

If A, is a connected partial system, then

1 . 2 : 1
(13 A, gnd Anv proper subsystems (i.e., Anv #

2 1 2
Ay and Anv‘# Any) D Anv and A% € S,

> 1 ‘
(2) A ¢S +3A] and A_gv > U {..D N
(U, =0,

A partial system Anv is said to be dependent if and

only if {¢il}and {¢i2} of {¢V} of A, are dependent,

A partial system Anv is said to be independent if it

is not dependent.

39
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In looking for useful ways to classify the elements of A and S
a simple equivalence relation is observed in the ordered pair (n, v) of

A,
nv

T3-6: Let IXI denote the ordered pairs of integers, If
a pair of integers is denoted by (n, v), then the rule
B . .
A <> (n,v)=( , v ) is an equivalence
nyvi v My, 1’1 2’ 2 4

relation R on the set A;

L B » e -
Proof: Anlvl Y Anlvl + reflexive since (n, v) = (n, v)

B - ' > i
Anlvl ~n An2v2 Anzvz.\,Anlvl symmetric,
Since (n ,v)=(n,v)<+>n =n and
. 1 1 2 2 1 2
v = v A A A -+
1 2Mv v Anpvy Apvs v Pagvs T Ay v
An3v3 + transitive, This follows as in the

proof of symmetric,

Note that by T3~2 the same relation also reduces S to equivalence
classes, Because- the above "basic size" relation is produced by (n, v),

these integers are given the names "order" (n) and "parts" (v).

D3-11: The order n of a partial system Anv denotes the
number of parameters in {P,} of A ,o The "parts" v
of a system denotes the number of distinct relations
{¢i}o (Where distinct means that if ¢; and ¢j have

)

the same parameters then R (Pn.

5 7 R (By)

je
In the above classification it is noted that only distinct relations are

considered when discussing the number of parts. In the remainder of

this thesis, it is assumed that for A , Vv denotes the number of parts.



Probably the most important classifications from a design aspect
are those of "physical system", "specification'", and "solution", The

"physical system" corresponds to a parameter model,

D3=12: A, 1s said to be a physical system if and only if {¢i}

has the properties of a parameter model.

The class of physical systems will be denoted by PS. From D2-21
the elements of PS.are also elements of S, Also, from T2~20 the
elements of PS have independent relations., This is stated after de~

composable systems are introduced,

D3-13: Ay is said to be decomposable if and only if {¢v}

of Anv 1s decomposable.

D3-1hs AL, is said to be a fiked system if and only if

Anv is not decomposable.

The term, fixed system, is used because of the properties of
decomposability, (That is, when relations are added to a decomposable
system until the system is no longer decomposable, the number of
natural points in most cases decreases. In any case it cannot increas
by T2-9, Hence the term, fixed, refers to the possibility that there
is only one natural point., This parallels the idea of possibly having
a unique solution in ordinary algebraic systems of n equations and n
unknowns.,) However, it is noted, that a fixed system does not
necessarily have n parameters and n relations or a single natural
point.

For decomposable systems, the subsystems corresponding to the

4l

e
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decomposition classes of {¢v} are called characteristic subsystems.
These characteristic subsystems are ordered by the decomposition
property of T2-14%4, When the system is a parameter model and if the
relations are related to some physical interconnection property (e.g.,
some electrical or mechanical network -of components), then the
characteristic subsystems indicate the physical interconnection, This

is 1llustrated below:s

Example: Consider the relations {¢i} of Ss’u ¢ PS induced
by the Kirchhoff principle of voltages summing to

zero in a closed loop.

4 (el’ 50 e3)

¢ (e e ,e)

2 4’ s’ e

(e , e ,€)

.¢3 A L

(e ye , e )

¢u T1* Ts' g

Now Sg’ L is decomposable with characteristic
subsystems ({¢1, ¢2, ¢3}, Sg’ 3) and (¢u’ 831).
Assume that each ¢ corresponds to traversing a
geometrical closed path of components. (One
component for each parameter is éssumedo) If this

is the éase, then it must be true that the components
of ¢u are connected in a loop which is imbedded in
the loops of the system S9 5 A network with this

?
property is shown in Figure 3-1,



Figure 3~1, Four Loop Network

D3-15: If Anv-is decomposable, the subsystem A:v which
corresponds to the ith decomposition class of {¢v}

is called the ith characteristic subsystem.

As mentioned earlier, the propebties of T2-20 as extended to

systems are given to the physical systems of this thesis,

T3=7: If Snv e PS, then

(1) s, is decomposable,

(2) Snv-+ {¢V} where each ¢i is. the product relation

(I,; P) only if S,y is first decomposable,
(3) Snv is independent;

Proof: (1) and (3) come.from D2-21 and T2-20, Number
| (2) comes from D2-21 and défiﬂition of m P
From D2-21 the principle for {¢V} is that used
to define the product relation., However, if
{¢,} is not first decomposable, then property cc
" cannot hold‘since‘any covering of a product

relation by product relations would not be
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independent, Also, from property c any
product relation with parameters contained
by some other product relation is ruled out.
Hence, the product relation can only be used
as a physical model when certailn "restraints"

are fulfilled.,

The class of physical systems have been developed for the purpose
of having an abstract mathematical model with properties in common with
the ordinary systems studied in engineering, The systems which are
commonly analyzed in engineering are formulated in one of the ordinary
number systems based on several principles which appear to give the
parameter model properties (e.g., amplifiers, motors, servo-systems,
etc.). All of these common systems can be thought of as elements of
PS as looked at in this thesis,

The class of physical systems can be thought of as the general
solution space for an engineering problem, In practice, it is known
that a complete analytical model is seldom to be found which allows
the given problem to be solved numerically. However, it is often the
case that a "theoretical" model can be found, although a complete set of
operational formulas is not available. This being the case, the
necessary ingredients for assuming the properties of PS are sometimes
available, Also, it is often the case that more restrictive properties
on the relations are available,

Probably the most powerful deductive property that an abstract
model can have is that of the being "1 - 1", In terms of the ordered

(binary) relations, this is expressed in terms of the first and second
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elements of the ordered pairs, This requires the order of the relation
to be considered in formal discussions., In the unordered approach there
is no formal problem of this nature, The classifications concerning

uniqueness of related scalars parallels those of ordered relations.

D3=163 ¢ on {Pn} is said to be a partial function relative
to {P, _ 1}, some n - 1 subset of {P } if and only if

Jo#e _JciElswvd | PeR

1 n -1 (P

n - l)°
There is exactly one m pe I P/¢ > 7 p (]“n -1PF

In terms of an ordered binary prelation, R, the above implies that
either R or R converse is a function. In terms of "higher dimensional"

relations, the partial function defines a mapping from the ordered set

n P into P —° This is usually denoted by ¢:

( bo! = l)i n -

n P ->P or £ (P eso P = P »} The important
{(n - 1) =1 1’ n - 1) n-1 P

thing is that the partial function parallels the function concepts of
ordered relations, A complete function will denote the case when ¢ is

a partial function relative to each n - 1 parameter subset,

D3-17: ¢ is said to be a complete function on {P_ } if ¢
is a partial function on every distinet n - 1

subset of {Pn}o

In the case of n = 2, the ordered relation name for a complete

function is one-to-one (1 - 1), It is clear that a complete function

1 More correctly the partial function defines a mapping only when
Rh-1 (Pn - l) =0, .1 F
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is a partial function but not necessarily the converse,

The partial function is very commeon in the parameter models of
engineering, Also, the often used linear models involve only complete
functions (i.e., models based on linear algebraic equations). These
are the two basic function classifications of unordered ﬁelations of
this thesis., However, it is noted that this approach suggests other
classifications which might be useful in constructing model properties,
Some of these aré indicated in Chapter IV when discussing general
design solutions,

The idea of a "solution" is inherent in the concept of a relation.
Alsoy, the idea of a function allows the idea of "unique solution", 1In
design, it is a "solution" which is of primary interest. The concern
for the "unique solution" is usually small, However, the properties
of partial functions can become useful in design to indicate the non-
existence of "solutions", Using the definitions D2-10 and D2-11, a

"specification" and "solution'" are defined.

D3-18: Given ¢ on {Pn} and Rh“ (an)gg an (Pn,) of ¢,
Then R;, (PH,) = {x/% ¢ R;, (PH’) and x LJy £ Hn P/é
~and y ¢ th (P r‘)} is called the solution for the
' n

-specification an (Pn')o

It is again noted that the unordered concept of solution is the
same as that of the ordered relatiqn (i,e,, basically a solution is
relative to some ﬁprobl.em" where ¢ can be thought of as the "problem
domain" and the specifications as the "problem generator"),

The solution as given by D3-18 in general gives no information

about existence or uniqueness. Some of the simple existence facts
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were stated in T2-5, Some of the simple uniqueness facts are listed

in the next theorem,

T3-8s Given ¢ and the specification R+ (P ;):
(1) ¢ a partial function relative to Pp¢ -

¥ X € Rh' (Pn,) - a ugique y.eqPE1 3y € Rn (Pﬁj)o

(2) If ¢ is the product relation, then R51 (Pﬁ1) 74
is unique if and only if (1) {P ,} = {P_ } and

(2) Ry (P_,) has exactly one element,
n n'

The classifications involving partial functions, complete functions,
specifications, and solutions can be naturally extended to systems. The
extension of the partial function and complete functions are delayed
until Chapter IV when discussing types of "real" physical systems. The
"system" specification and solution are given in this chapter after the
concepts of the measurably rational, measurably irrational, and sum of

two systems are introduced,

D3=19 ¢ A, tA is sald to be measurably rational (MRS) if and
only if

(1) Ay, is algebraic,

(2) #» Al of a then either I P/A* # ¢ or not
nv nv n nv

defined,

T3-9: (1) A partial system A, > Hh P/A,, # ¥ is

measurably rational and connected,

(2) # 8,, € PS,S_, is measurably rational,
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Proof: These come directly from the definitionms

of PS and D3-20,

The role of the measurably rational partial system in design is
quite important. The name measurably refers to the fact that ALy is
algebraic; hence, a common reference frame. The name, rational, refers
to the fact that nothing is i;ferred to be impossible by this class of
A. This class represents the "specifications" for a design problem
which have a possibility of being "satisfied" by some element of PS,

An element of A which can satisfy (1) but not satiéfy (2) éf D3-19 is

said to be irrational.

D3-20¢ Ahy € A is said to be measurably irrational (IRS)
if and only if

‘(l) A, is algebraic,
i, ' =g,
(2) 3 & e Aoy TP/ = 0.

The class IRS is at the other end of the spectrum when considering
specifications, That is, no element of PS has the properties of IRS.
Hence, from T3~4, T3-10 is obtained. First, the sum of two systems

is defined.

D3=-21: Let An1V1° An2v2 € A, The sum of the partial
systems is denoted by. + = o
4 1S o An3V3’ ‘ y Anlv1 An2V2 An3v3
- Where the set {Pnia} = ( L){Pnii}) LJ( (J{Pniz}) and
{¢Via} = {¢vil}() {¢Viz} is the parameter set and
relation set of .

T3-10:  If Ay, eIRS, then A5, . PS DI P/AL L ¥ 0.
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D3-22: Ayy € A is called a system specification if and only
if A, is algebraic, This class 1s denoted by SA,
(This is an equivalent definition of D3-3.) When
(A,, of SA) e MRS, A , is said to be feasible. When

(A,, of SA) e IRS, A, is said to be impossible,

D3=23: Assume e SA, A € PS, A of A, Then if
11 * "nyvy ’ 3

n3v
(1) Anlvl ¥ Anz"z - A“a"s ¢

is called a system solution for the system
2V2 Y

specification An1V1°

Note that system solutions are relative to some system specification

A

Ny vy Yet, as in other functions of more than two variables, the

"solution variable" can be held constant while the "specification
variable" is changed, This fact is very necessary in a "correct”
theory for design, since this "design process" is commonly used (i.e.,
very seldom is the model changed). Several facts which are quite

simple to obtain yet useful in design are given in the next theorem,?

T3-11: Given: A £ SA ¢ PS such that +
nvy ’ An2V2 Anlvl
An,v, - A“3"3"

1) If is a solution of - nd
( A“z"z : An1"1 A“z"z @

2The distinction between system specification and specification
will be omitted unless confusion might arise,
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Anzvz are indexed by the same set,

(2) 4 a solution for Anlvl if and only if

An]vl € MRS.

Proof: (1) This follows from D3-23, D3-3, D3-22,

D3-24,

(2) From T2~9 and D3-22 the necessary part is
obtained, From T3-1 the relation
¢ (n) » x ¢ Hn P is always available.
Also, given any Anv of MRS, then
n, P+ Anv £ MRS by properties of

M, P, D3-19 and D3-17.

The value of a system is defined in order to have another way of

looking at the logical information of a system,

D3-24: Given an element Anv of SA, the value of Anv is the
set of natural points‘Hn P/A , if it is defined. If empty or

not defined, A,y is said to have a null value.

The above definition closely parallels fhe ordered version for an
n variable formula, There is a diétinct differénce, however, which
is, conceptually at least, important. There is no concept like the
"picture graph" found with relations on a set which is ordered (i.e.,
the concept "is P1 > P2" is "mganingless" in unordered relation), This,
in fact, characterizes the "unordered" from the "ordered", However,
it suggests a natural way to "project" a system onto a "calibrated"

scale.
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D3=25: The ordered»value of an algebraic element AL, is
| either empty when I, P/A,, = @ or the order of the
scalar values of the elements of I, P/IIno P, Here
n, P/IIno P denotes that each element of the unordered
set II; P is ordered by the ordering structure of the
indexing set. (Also, if the indexing set is not

ordéred, the ordered value is said to be‘empty.)

D3-26 indicates that Hn P/HnQ P represents the ordinary»graphs
which are used in engineering to obtain a "measurable feel" for a
particular system., Also, it clearlyvindicates why the ordinary graphs
of some indexing sets are not uéed nearly as often as others. For
example, Boqlean algebra is defined: on a set of two elements, say 0,

1. Yet the graphs of formulas of a Boolean algebra are seldom displayed.
Note alsoithat the ordering prbperties of 0, 1 are limited indeéd,

That is, 0 < 1, 1 >0, 0rl1=0 (tri§ial)a bYet, the Boolean algebra
gives very useful formulas, since maﬁy parameters can be usefully
indexed by only two elements,

The above discussion indicates the possibility that'algebraié
systems can be projected into many indexing sets if they can be projected
into one. Also, from D3-24 the value of a system is its natural points.
However, the common way of discussing a system is in terms of its
ordered value in some indexing set and the formulas so defined in these
sets, This procedure is useful in particulaf cases but conceétually is
~quite limite.d° The nétural points indicate the "logical information"

- of a system. This being fhe case, aﬁy two systems which have a 1 - 1

correspondence between natural points are in a logical sense equivalent.



Using the equivalence classes E and the "number" of system values,

establishes an equivalence relation on the Class A,

T3=12: A

N
nyvy v A“2"2 -~

(1) U(Hn P/Anlvl) = q(Hn P/An2V2)°

(2) Anlvl and An2v2 e (A ,) an equivalence class

of Eo

From the above it is clear that (1) the "amount" of logical
information (natural points) must be the same in two systems for them
to be equivalent and (2) the number of parameters and félations must
be the same, The nékt theorem shows that when thefe isal-1
association between scalars of each parameter of {P } and {Pé}, then

there is a system A}, § Alye

T3-13: Assume a system A, with a natural point and
. voo.
ubsystems At At =g « IfFTh
subsyste nva (i Z v ALy) | £ as the

property that T P . +> P;i fo? every P . e {P }of ALy

V L
then Agv‘= . 2 . A;L is equivalent to A _,

Proofs First, it is noted that if (=n_. p L)n‘k ple
4 : . ni n.
Mo (Png UPpyds then (T n; pUT my ple
Mhoge (T PniL) T Pnk), where m . p e m; P
i ‘
of Anva Now unless {Pni} (\{Pnk} # ¢, then
T P (/™ P € nnik (Pniu Pnk)Q Hence, the
disjoint case is of no concern. Assume that

T3 P L)wnk p £ Hnik (Pni(j Pnk) and
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T (mys D) U T (myp p) & Myogye (TR ;UT RS
' .
(Here T Pni refers to the Pni which each Pni

is associated with in a 1 ~ 1 manner.) But if

P

Thg P UMy P ’5 L (P ; U P) > 3 P ey

’ ' . ;
and P €My PSP and Py € P; € ({Pni} (]{Pnk})
=) p1 7 p;,l Therefore, by hypothesis Tpl # Tp1°
Hence, (Tmy; p) L)(Tvnk p) ¢ Hn'ik (TPni\) TPnk)°
The above fact is used to show the 1 ~ 1 mapping
T' between I, P/Anv and 1 P'/Ar']v exists.,

. . - -
Cons;der‘T (Hn P/AL) = {x/x € Hn' P and x

\'4
. E}l T (ﬁni p) and Jm;; p £ T P/A ,}. Now

T! (Hn P/A ) is a 1 - 1 mapping between I, P/A
and T' (Hn P/Anv)EEHn Pf/AAV, The proof is then
complete if it can be shown that Hn P'/A;)v cT
(The fact that T! EE-]II1 P'/Agv comes directly from
the properties of T and T!,) Assume x € m P'/AI']v
and x ¢ T' (I P/A ). Therefore, E| (Tvni p) U
(Tryge P) € 0,0 (TR JTR D (m oYU

(“nk p) ¢ 1 (Pni‘J P,x)e But by the previous

nik
result, this assumption gives a contradiction,

N
[} ] T 4
Hénces T (Hn P/AL,) 2T, P /Anv and Anv ~v v’

The above theorem is quite unrestrictive when the normal systems
studied in engineering are considered, An example is given below which

commonly makes use of the above fact,

an algebraic system indexed

Example: Consider ¢1 of Snl
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by the reals‘generatedvbylfﬁé'real number formula

xl = f (xz, P xn). Consider a transformation of
the type x + ax on the reals where a is some positive
integer. This is 1 - 1 of each P, onto Pi, Hence,
for each Ty P of I, P/¢ there is a unique 7 p'
which can be associated with Thy Pe Hence, any

transformation of the above type gives an equivalent

system,

In the actual situations, care is exercised in changing the information
between equivalent systems (i,e., y = sin x énd ay = sin ax are normally
considered to be different when a # 1), The above discussion indicates
that this has nothing to do with the logical value of the two systems.

The main classifications given in this chapter are those which can
be used in engineering design., In leaving this chapter the connection

between design and systems can be indicated as follows:

Given a feasible specification Anlvl (i.e.y A € MRS),

nivi

then any system Snzvz’ such that Anlvl + Sn2v2 is MRS, can

be thought of as a theoretical design solution,



CHAPTER 1V
FUNDAMENTALS FOR ENGINEERING DESIGN

The "general design" problem is formally indicated in D4~1l., That
is, the ingredients for a problem are presented in this definition,
Conceptually, the problem is no different from the following algebraic

problem:

Given: ¢ «++b + X >y X,y¥,Db e R,

Find: X = {x/x ¢ R, and ¢ (x) and y e I},

Now there are other possibilities which could be used in the above

example. The point of the analogy is to discuss the "solution". Unless

each of the above terms was well defined, no procedure could be
.unambigUQusly outlined (not necessapily cafried out) to give the answer
or answers,

This last fact has been the main problem in developing a useful
design theory., It was for this reason that Chapters II and III of this
| thesis were essential, The design problem, process, etc, is not unique
to this thesis, It is the precise definitionsbof the elements used in

this chapter which are unique.

Duy~1l:  The set DS is called the general solution of a design
problem by the specifications of (1) if and only if:
(1) The set {Anlvl’ An2v2 cos Anrv}} 3 each Anivi € SA,

55
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' v
(2) DS = {x/x € PS and x + )

IRS},
b o

1

The design problem as stated above is quite general, yet quite
well defined. That is, each of the elements involved in the above
definition can be traced back to the primitive concepts ofva "set" and
"unordered relations"., It is also noted that these unbrdered relations
are directly cdnnected to the ordered relations by the concept of
indexing sets with ordering properties (value concept) and algebraic
operations (usefﬁl formulas). Thus, the above definition relates a
general system concept (unordered relations) to particular system
concepts of ordered relations, This allows the elements of the class
of all possible MRS systems to be used as a theoretical solution space
for design problems.,

Some results of the previous classifications are seen in the set
DS, 'From (1) it is observed that more than one specification might be
involved in finding a solution DS for the design problem., Note also
that DS might be empty (i.e., from the results of Chapter II if

A, y. € IRS, for some i, fhen DS is empty).
i'i

Th-1: Given a specification set {An-v }, then DS = ¢
rl -

: : i
if ubset £ IRS.
1£d asubset (A} of thyu} 35. Py

i
Proof: First, 2 A, . must be algebraic or DS = ¢,
o PirVie »

i v E
Also, when 2 A € SA by T3~8 and T3-9,
v BirVie

the conclusion follows.

ne~— "

The extended version of T2-10 alsd follows when An.v € MRS,
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Tuy=2: Given a specification set {A }, then DS # @
OpVr

if and only if § Any, © MBS,

From T4«1l and T4~2 it is seen that definite boundaries can be
placed on the existence of any general solution for the class of
unordered specifications. In light of the above, a collection of
spécifications can be considered as one partial system. That is, from
T4-1 if there is any single ALy which ¢ IRS, then DS is empty (no
physical system exists), Also, when the sum of all the specifications
does not belong to IRS, at least one physical model exists, The one
model which is known to exist is Hn P. ‘In the remainder of this thesis
a specification will be represented by a single element of SA,

While T4-1 and T4~2 are positive boundaries for a theoretical
design solution, only Tu-~1l is immediately applicable to engineering
design. If the conditions of Tu-1l can be shown to hold, then the
search for a solution can be avoided. ‘Unfortunately, the conditions of
T4-2 are not as positive, in a practical sense. The existence of a
model such as Hn P does not give any method of inferring additional
information. The model Hn.P’only indicates that anything is theoretically
possible concerning scalars of the parameters {Pn} if (1) the set {Pn}
is assumed and (2) impossible conditions have not already been imposed
(T4-1), Hence, T4-2 only says that the conditions (1) and (2) hold.

In engineering design the results of T4~l and T4-2 are probably
the only genefally-acceptéd facts., Hence, the fact that these are the
boundaries of the theoretical splution to Di~1l indicates the logical
methods of engineering design are paralléled by the methods for obtaining

the set DS,
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To outline a single process which would yield positive results for
any deéign problem is beyond the scope of this thesis, The refefence to
positive results refers to the existence or non-existence of an element
of PS other than I, P which has a set of natural points containing

those of the specifications (i.e., given Ay, does S e PS, Dv x ¢

n'v!
m P/Anv’ 3 yve I+ P/Speys D xgy and Ie P/S 4 # I, P)

This theory for design only claims positive results when the
conditions for T4-1 are met (e.g., if a set of specifications ¢1(P1)
and ¢2 (Pl)'a ¢1 > P, € P1 and ¢2++'p; € P1 =) P, ¥ p;, then this
theory claims that no solution exists). |

From a practical point of view, a useful physical system would be
an element of PS which indicated a "defiﬁite" interconnection of the
parameters involved., A particular logical interconnection would be
observed by constructing order relations in the indexing set of the
parameters where these constructions are based on principles ¢;. These
principles can be thought of as order-determining postulates or order-
determining experiments, whichever is the most convenient. From a
design theory point of view they are considered as the necessary postulates
to have the ingredients of a useful physical system,

To obtain more deductive power for seeking solutions to the design
equation, additional restrictions on PS and the specifications are
needed (i.e.,, the boundaries are too broad). The most simple type of
specifications are those which each Aniv. involves only one scalar of a

i
parameter,

Dh=2 ¢ A specification A, 3 c((Pni}) = 1,12 1,2, 000 V,
c(Hn P/¢i) =1,i=1,2, ... Vis called a simple

specification,
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A simple specification certainly belongs to MRS, Hence, from Ti-2
DS is not empty. However, as indiéated above, the "real" physical
systems are the only ones of practical interest to the engineer; These
are the physical systems which are different from the relation ¢ (x) +
X € Hn P, The real system axiom is a formal way of introducing these

models, First the definition of a real physical system is given,

D{~3: A system Snv € PS is called a real physical system

RPS if and only if for each parameter set {Pni} of ¢,

© (1) s P/¢i<:_nni P unless o {Pni} = 1, then

Mg B/¢; = Ppje

(2) Every proper projection of ¢4 is the product

relation,

| =TI P
(3) 1fs  and S, , eRPS 5T P/S,, =M P/S, , >
V=V,
1 2
Dy=-4s If Snlvl is a real system, then Hn P/Sn1v1 is called

the standard points of Snlvlo (Note, not all systems

have standard points,)

Real System Axiom: For every finite set of parameters {Png-indexed
by a common indexing set J a real physical

system S 3'{Pn1}c_;{Pn}°

The class of real physical systems plays the role of the best
available mathematical models for a given set of parameters. These

models usually become more reliable in a manner "proportional" to the
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use of the model, However, design theory as developed in this thesis is
considered to be independent of the "state of the art" in engineering
science, (That is, this design theory only lists properties which a
real physical system has; the conclusions are based on these properties.
Whether or not a particular model has these properties is the problem
commonly referred to as analysis,)

By eliminating the formal barriers to a practical design theory,
other problems are introduced, The one directly introduced by the real
system axiom is that of uniqueness, If there is always one solution,
there may be many. In general there is. However, there is also a
minimal real physical system fof each set of physical parameters. This
fact allows a practical method of standardization for the real physical
systems which are considered worthy of preservation (e.g., motors,
amplifiers, relays, transistors, etc.). |

To approach the problem of standardization, a special type of
equivalence between systems is useful, From T3-12 two systems are
equivalent if they come from the same equivalence class of the size
relation and the number of natural points is the same. Although this
type of equivalence insures that two systems have an equivalent basic
logic stfucture, T3-13 showed that this is not very restrictive. To
have a uséful standard approach, a stronger equivalence than T3-12 is
needed. This is obtained by lettingnthe natural points of two systems
be equal, When this is the case, tﬁe systems can, from a practical
point of view, be considered equal, To strengthen the "equality" even

more, the number of parts is made equal,

Th-3s Let Anlvl and An2v2 belong to A, Then Anlvl and
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An2v2 are said to be equal under the equivalence

relation (Anlvl E Anzvz) if and only if

(1) Tn, P/Anlvl = an P/Anzvz‘
(2 v. = v ,
1 2

Equal systems pléy the role of equating all of the possible ways
of writing a set of equations which describe the same "quantity".
Although the information is not changed, the rules for finding the
information changes. However, all operational rules are necessarily
assumed in an approach of this nature. Hence, the new rules for
formula manipulation are known in a practical case. For this reason,

a standard form for the system relations can be chosen from any of the
many possibilities, It is noted that the rules of some trivial systems
(I, P) are so easy that the natural points can be obtained from any
"form", independent of the parts v. It is for these cases and the
dependent cases that the extra condition v1 = v2 is included.

The dependent cases have a "null" sét of formulas that are included
in the equivalence classes of Eo These different null classes are
obtained by letting the number of parts vary but keeping (1) of Tu-3,
The number of dependent equations in an ﬁ class relative to some
independent set Vo can be thought of as the redundancy of an E class,
The non-redundant E classes are those which are of primary interest

in the solution of-the design equation. The class of RPS are of this

type.

Th=1 Snyvy® Snyv, € RES DM Py /Sy = TPy /8,
E

S S o
nvy, v °n,v,
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Proof: From Du-~3 and Tu-3,

From the above results a standard representation for a real
physical system can be adopted., This representation does not have to
be changed unless new standard points change the elements of the parameter
sets., Hence, it gives, abstractly at least, the standard points of the
parameters involved.

The most restrictive elements of RPS are the exact systems., These
are paralleled by the most restrictive equations which are studied in
mathematicso A complete function ¢ on {P,} (D3~17) has the ability to

yleld a unique scalar for each unordered L p scalar tuple (e.g.,

-1
I %, = 0 each x; a real variable would generate a complete function if
used to represent ¢ of {P.}),
Di-l s A system Ay D each ¢; is a complete function is

said to be an exact system,

Many of the models of engineering will not be exact systems. How=-

ever, they usually can be considered as "partially exact systems".

Dy=5¢ A system Anv 3 each ¢i is a partial function is

called a partially exact system,

Although there are many classifications which could be placed in
between Du-4 and D4-5, these are the typical cases considered. This is
illustrated by considering a system of PS which is not of ‘D4~5, This
being the case then, there is a relation ¢ which is not a partial
function, Hence, there is no unique correspondence between any of the

n - 1 parameters and the complement parameter. Hence, there is no
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strict "dependence" between any of the parameters. Although these systems
are becoming common in advanced engineering, the systems based on'
equations from basic sciences are usually composed of partial functions
(i.e., some two sets of parameters in each equation play the role of the
"independent” and "dependent" variables. For instance, e = sin wt,
where e indexes voltage, w frequency, and t time gives a partial function
but not a complete function. It is usually considered that for each
time and frequency there is unique voltage. Thus, the voltage is
"dependent" on time and frequency,

The above discussion shows that, in general, a theory (system)
which satisfies Du~5 has the ingrédients of the theories developed in

the basic sciences,

Example: Consider S, e RPS such that S,y 1s an exact

v
system, Then if P1 is "dependent" on P2 , the
converse holds, This follows from Du-4 and RPS.
Hence, in an exact system the choosing of "units"

to be used in the scalar value indexing set is

quite arbitrary,

The next classification is for the purpose of finding useful conditions

which allow determination of specifications which can be satisfied.

D=6 ¢ A system A, with parameters {Pn} is said to be
compatible with Snlvl if and only if # % ¢ Hn P
X + Snlvl € MRS, where x is the natural point of Sn, given

by the formula ¢ and {P,} which gives S, 3

I, P/S,; = x <> x el P/Snlvl o
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The compatible specifications are the abstract ciassifications of
systems denoting the parameters which can be arbitrarily restricted
relative to the theory.

The conditions of D4-6 might seem severe, However, to strengthen
conclusions based on the standard points of a system, the above type
definition is useful, For all standard point models, unless the basic
principles change, compatible specifications can be thought of as design
problems which can always be solved by a particular model. Hence, av
primary process of theoretical design, as imbedded in this design
theory, is the process of testing two systems of compatibility. Im
practice there are cases where a real physical system has to be
constructed; in others they are available,

In engineering the "device" systems are for the purpose of satisfying
a limited number of arbitrary specifications, The more general systems
(iinear circuit systems, etc.) have a quite large application. In
advanced engineering, systems are derived from less tested principles
than those of the basic sciences. Thus, the need for a specification
"test” independent of form becomes more important., (This is ;nother
way of looking at compatible specifications.)

The Interesting conclusion which is available with compatible
specifications is that the standard points are relatively immaterial,
Hence, only the fundamental principles are involved,

That specifications are not compatible, in general, is well known,
In fact, it can be done for real systems only if certain requirements
are met, However, there are specifications which are compatible in any
RPS | namely, those which "map" through the "system structure", ‘In terms

El

of functions of n variables, this idea is like picking the sets of
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variables which cannot possibly contradict the set of function statements.
(It was a technique for rapidly performing this process which led the
author to investigate a theory for design.) (11, 12).

| Thev"system structure" refers to the "set interconnection" of the
system relation parameter sets, This is a natural concept coming from
the idea of systems being characterized by natural points which are
logical sgms of the natural points of subsystems. The "set structure"
suggests geometricél representations of systems, For example, when a
system has a natural point, it can be visualized quite easily as a net-
work of loops and branches. Letting a parameter be a "branch" and an
unordered relation a "closed loop" of branches gives a natural

representation for a system,}

This idea is used often to denote physical
interconnection of "components'", In fact, this theory gives a natural
way to characterize the "interconnection relation" for any set of

"components'" which has a physical interconnection,?

An example of
such a network was given in Chapter III, Other ways of visualizing set
interconnections_geométrically are available, Probably the most notable

is the Venn Diagram, In fact, these diagrams are used extensively in

solving system problems where the parameters are indexed by only two
values, A mérevuseful and systematic way of loocking at a system is by
forming a ﬁatrix using the relations and parameters, This is illustrated
in Chapter V. This form is analogous to the ordinary ordered n-tuple

approach to n - 1 variable equations. Each relation is a column

IThis method of visualizing abstract systems was suggested by
John C. Paul, ‘

25e¢e Duy-~16,
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(n-tuple) and the rows are the parameters. Also, it is analogous to the
linear graph theory concept of aﬁ incident matrix, (4),

For arbitrary systems these representations are only conceptual
crutches, For the systems with more structure, such as the class RPS,
they become deductively useful, The property of the RPS systems which
is most advantageous is their E equivalence. That is, any form contains
the same information relative to a set of standard points., Hence, any
"path" which establishes compatibility in one system automatically
establishes compatibility in the whole E equivalence class. The only
paths that cannot be readily established are those involving "indeter-
minate" specifications, These are specifications which give rise to
"overlapping" relations, The above ideas are made more definite in the

following definitions and theorems:

D=7 Let {Pni} be the parameter sets of A & MRS. The
set structure of A , is the collection of parameter
sets, Eéch {Pni} will bé aenoted by (Pni) throughout
the remainder of this thesis for the purpose of

convenience.

From D4-7 it is clear that the set structure of a system is set
interconnected if and only if A, has.a value other than the null value.

Some set properties of systems involving n and v are given below:

_ v .
Th=53 If A, €8, thenn < ; Z o(Pni) - (v-1).

v
Proof: Fipst note that n. = o (J (Pni)) =

i 1
) T U Ne1)
o(P_.) - o tee.) () ee.)1).
i=1 ni i=1 j=1i+1 ™ n
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This is obtained by starting with any parameter set and removing the

number of parameter appearances which occur in each of the remaining

sets, Continuing this process gives the above identity. Since n and
) % lU(Pni) are constant, the above is clearly independent of order.

is=

This being the case, all that needs to be shown is that there is an

order such that

et

i

KAV )

al CPps) [ [ (P :)]) > v~ L.

1 §Ti+1 ni o

If v = 1, the above is satisfied, Hence, consider the cases v > 1,
Consider the {(Pni')} constructed in the following manner:
Choose

(P,;) and (P )£ 0

i 1) 2 () (¢

ni + 1!
if v > 1. These must exist by (5) of D3-1,
Choose

(p é,) D, either

ni +
| (Pni + 2,) ()(Pni s 1) FOor
o) 1, . L0 70,

Continuing in this manner a set'{(Pni‘)} can be found such that
(Pni')ﬂ(Pni' + l) # qi Jj" = l’ 2. ese V = lg

Here the i!' is not necessarily the same as used in the construction
Yy
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demonstration, Using the same order as 1i' in the above expression
gives the desired result, (It is noted that when the equality holds,
the system structure is necessarily of a particularly simple "geometrical"

pattern,)

Du-8: Let Anlvl be a specification for Snv‘
(9 = {2} [y} 1= 2,2, v v is

called the restricted sets of §, relative to

v
Anlvl. (The relative reference will anly be

used if confusion might arise,)

From Di~6 and D4~3 the next theorem gives the simple facts about
when a compatible solution can and cannot exist, These are paralleled

in ordinary n variable functions by the same conditionms,

Thet: Let S, € RPS and {Qi} be the restricted sets
of . Then:
Aﬂl"l ©
(1) o(Q3) = o(Py ;) ~ A vy is not compatible.

(2) 0 <0 (9) <o(P_,) 1=k
ni

. > A, is compatible,
Vs

o( ) = 0 otherwise -} R

i

Ty~6.says that arbitrary speCifications cannot be imposed on a
system with the restrictive structure of RPS, (In fact, this will
exclude all relations except the pfoduétwrelation.)

For the class S.nl of EPS, there is still the freedom given by (2).
This allows all 2% < 2 distinct proper subsets of the parameters to be
chosen érbitrarilye

The first condition of Tu~6 gives a condition for which compatibility
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is easily observed in any system of RPS, To extend the second condition
the set structure can be used to obtain sets of specifications which are
compatible when v is greater than 1, The complement of a restricted

set is useful in this connection,

D4~9: Let 2, be a restricted set of Anlvl and Spy. Then
3} = (Ppi) - Q; denotes the complement of the

restricted set,

Also the following parameter set decomposition is useful when

discussing compatible specifications.

Dy-10: Given Sp, with a parameter set (P ;). The following
_ decomposition of (Pni) into the sets {PDi + l} is
called the parameter set decbmposition relative to
Spye Let Pp; be the elements of (P, ;) which do not
appear in any of the remaining parameter sets. Let
PDi +1 be the elements of (Pni) which occur in only
one other parameter set. This process can be

continued out to the v - 1 cher'parameter sets,

Hence,
v-l

(Pni) = U PDi"' j°
. 550
The above decomposition gives (P .) in terms of disjoint sets.
Hence, the number of parameters in a parameter set can be written as a
sum of the number of elements in the decomposition classes,

v 1

Tl=73 (1) o(Py3) =

-1

o

c(PDi + j). -
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) ) ) |
(2) o(P_.) = o(P,.) + o(Pp. ) B S
121 PYogzg Dbty o, Dl

o(P
1 Di+V-l

¢

He-1<

He

It seems that (2) above could be a convenient way for studying
specification compatibility and systems., For example, a system is
first decomposable if and only if the first sum on the right side of (2)
is non zero for each i. This follows directly from the definition of
system decomposition and Di4-10, Also, the higher-order parameter de-
composition classes indicate strong possibilities for "overlapping"
equations. This is also indicated by elements of Shv which have more

than one characteristic subsystem,

Ty-8: Let Snv € RPS and Sﬁv denote the kth characteristic
subsystem, k > 1, Then if (Pni) is a parameter set

_of Sk

nvs Fp; 3 = g + 3 <k

This follows directly from the properties of decomposable systems
and parameter decompositions., Thus, it is noted that the two types of
decompositions are connected as in T4-8, The next theorem which
follows directly from Du-10 gives a simple condition for "overlapping"‘

relations.

Tu-9: Given A,, with a non~empty parameter decomposition
class PDiv+Ak’ then if v' is the number of elements
of this class, there are k distinct relations on v!

distinct parameters.

It is noted that if v' < k, then there are more "equations than
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To choose a set of compatible specifications, the important criteria

is to leave one "degree of freedom" at all times (i.e., keep the

condition of Tu-6 (2) satisfied). The following process is for the

purpose of choosing specifications which are compatible and, in addition,

choosing a set which "fixes" the system,

T4-10:

Given S, € RPS, a specification Anlvl on the parameters

{Pnl} which is equal to the set of parameters determined

below is a compatible specification,

Proof:

Let Pnll be an arbitrary element of {P_ } of

S

nve Let {5k1} ) be the restricted complements

of the sets o(% ) = 1 determined b
Qe D ol ) y

P, .. (Note that the classes § will be

11 : 11

excluded from the discussion,) Now, either

{le}lis empty or it is not, Assume it is not

empty., Let {d)kl}1 be the relations of Snv which

correspond to the restricted complements {5k1}1,

Consider Snllvll to be the new system which is

formed by removing the relations {¢kl}1 from S,

(i.es; S,y = Snllvll

+ {¢k1}1)o Now v, T

V-0 {¢k1}1 and n,=n-0 {¢k1}1 by properties
of RPS, Consider the sets {ka}1 determined by
Pay, k){ﬁkl}l and Shllvll =) o(ﬁkz)l - 1, Repeat
the process as done above, This gives Sn12v12
such that n12 =ne-o {¢k1}1 -0 {¢k2}1 and

=veof{¢ } -0 {$p } . Let S denote
V12 I %, n135v13
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the system obtained after repeating the process
j number of times. Jj is associated with each
Pnyg which gives a set {ﬁkj}i with the above
properties,

Now the process  above ﬁust terminate due to
the finite properties of RPS., Also, it can only

terminate with the conditions that some {ﬁkj}l =

g or S, : v : = Soo, Assume it terminates with
1] "1] 5 3
Soo, Hence, v = |} o{¢, s m = ool b+,
i=1 1 i=1 1t

j e
or( U {Qki}ltv)Pnll = {Pnbwhich gives, since

i=1
each ﬁkj must be distinect, by RPS v + 1 = n.
Hence, there is only one more parameter than
relations. Assume {{..} = ¢ and S ' So0,
Qk:] 1 ¢ s nlj' Vlj #

This gives S_ . . and P ( ( { }
& M3 Y13 n11U 5 Ul ?ki 1)

which does not giQe restricted complements as
indicated. Choose a Pn12 from the parameters of
Snlﬁ V.3 which will give the desired set ?f
restricted complements, Also, Pn12 ¢ [iQ;,l{Qki}lo

If this is not possible, choose Pnlas etc, This
process must yield results since Snlj V1 # Soo
and is finite. Let Pnl be the parameter required
to obtain the above sets, Hence, {Pnll voo Pnlz}t}
{?&j}n U {ﬁ%j}z is the parameter set used to find
S » Also, it is noted that each

Plg o+ 1 Vig 4y
element of {Pnllooo Pnj}\J { L}ij}l U { L)ij}l
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must be distinct by the construction process
and the procperties of RPS,

Hence, the number of elements in the above
set must always remain less than n. Also each

v
element 0 ¢ (fﬁkj}i) mist remove one and
Y1

i
only one relation from Snv by constyuction and
RPS, Hence, when Soo is reached, this gives

v
o ({% .3, J = v, Also, each parameter
i=J1 s 9 d

of {P,} belongs to either {Pnni} or the restricted
complements, but not both. Hence, n = ¢ {Pn1i} + v,
This is the generalization of the case when i = 1,
Hence, the process needs n - v parameters to

reduce S, to Soo. A set of barameters {Pnl} and
Spv which corresponds to a set with the above
properties 1s said to fix the system, The fact
that a set which fixes a system ié compatible comes
directly from the construction process and the
properties of RPS, That is, the construction
process insures that the set {Pnl} only determines
projections of the relations of Sy ;. Also each
relation is used gglzyggggﬁtd check every w,; P

This along with RPS forces compatibility.

The above process is easier to actually perform than to theoretically
demonstrate, The performance is simple when using a matrix to represent

a system (e.g., see Figure 5-1), Also, it is noted that the above
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process always yields a compatible set of specifications which fix the
system independent of which parameter is used to start the process,
Hence, there is at least n distinct sets possible by the above process,
Actually the upper bound for the number of distinet fixed specification
sets is given by

n!
. -
(n = v)! v!

o

This is simply the number of distinct ways that n things can be chosen
(n = v) at a time. The size of this number can be large with relatively
few parameters. This indicates the need for having a method for looking
at systems and specifications in a rapid manner,

The fact that there is no "simple" formula for finding the number
of compatible specifications which fix a system is suggested by the
systems studied using linear graph theory, (13), Here the number of
"trees" which uniquely specify a graph corresponds to the number of
distinct compatible specifications which fix a system. The correspondence
is obtained by letting the "circuits" be represented by unordered
relations and the "branches" by parameters. The systems characterized
by linear graphs are relatively simple (referring to the linear algebra
which can be used to describe these systems), and yet a formula in terms
‘of ny, v, and n = v has not been developed to give the number of distinct
"trees", (To the author's knowledge this has not been done.)

The process in Tui=10 suggests that any specification set with more
than n -~ v parameters will not have the compatible properties of the
fixed~type specifications., The process of T4-10 -can be utilized to

indicate the wvalidity of this idea,



Th=11l:

75

Given S, € RPS and {Pnl}g{Pn} of S,y D0 {Pnl} >n - Vv,
Then either
(13 Q. = ¢ or () = (szj) S0 (Qj,) = 1 (and

Q; # Qj) or Q; = P ¢ {Pnl} or
(2) 3 {Qi}l, {95}2.3 {Qi}l = {Qi}2 and 0 (Q) > 1 ¥

e (@) or (G5} and i+3 <o (@) U@ ).
Assume that none of the conditions of (1) hold., Let

Pnll € {Pnl} be used to start the process of T4-10, Now

by the above assumption, there are no elements of {ﬁkj}l

which are members of {Pnl} - {Pnu}o Instead of choosing
element P, as in T4-10, choose P from Py } = (P, I
P12 ‘ 12 1 '11
Now if none satisfv the restricted complement criteria,
then choose another and test for restricted complement set

with desired properties, Now if the set {Pnl} is exhausted

before the restricted complement criteria is satisfied, this

gives the distinct sets {Pnl} U({ﬁ;cj,}l)o However, the

following is noted about ¢ {Pnl} > n - v when the conditions
of (1) do not hold., Assume {Qi} relative to {Pnl} is less
in number then v. Let {¢;} be the relations whose restricted
sets are empty relative to {Pn}° (The argument is carried
out based on first decomposable syétems but is shown %o be

no weaker for any system of RPS.,) Let Shtyt be the system

4
obtained by removing {¢j}° Nown' <n=-r(r=v-=-v')by
properties of RPS and decomposability. Hence o{Pn} >n' - v,

Also, note that G{Pnl} + G{Pnl} = o {P ;}, where {Pnl} =

'{Png} - {Pn1}° Thus from the hypothesis O{Pnl} >n - v,
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the above shows that d{?;l} <v', Now let {ﬁ}} be the
restricted complements of {Qi}° Then 3&§5 {ﬁ;i} v i

by definition of 3} and'{af;)l}° Hence, there are more
relations than there are parameters for {3}}0 Also,
there ié 3} 3 ( L}ﬁ} - ﬁ}) = ( L)ﬁ})g while 0{5}} < ;Ua In
case snv is not first decomposable, an additional fact
must be considered. When any of the elements of {¢j}
discussed above belong to decomposable classes (say the
kth), then its removal will not change n., However, it
also was not considered in the seté'{aﬁfi_}o Hence, these
factors Have "equal" and "oppésite" influence on the
relation o{ﬁ;l}v< v' if these sets‘are included in {ﬁ}}o
This result along with prpperties of T4~10 gives the
desired result (i.e., if it ié assumed some Pnlg € {Pnl}
satisfies the criteria of the construction process, then
eventually a condition of (1) arises or the requirements

for (2) as just discussed),

The cases of (2) in Tu=1l indicate the conditions for two sets of
"overlapping equations” defined on the same variables, Detailed
investigation of compatible solutions and "non-compatible" solutions
under more specialized conditions on Snv have not been carried out by the
author, However, a main characterization which can be used in further
investigations is that of the fixed type specification. These can
exist if and only if the specification set is of size n - v. This
follows from the result of T4~10 and.Tuull° Also Ti-1ll gives three

simple conditions for which a set of specifications are not compatible.
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A specification A, , 1is said to be incompatible
171

with S, if any of the following conditions prevail

v
for the restricted complement sets-determined by the

rocedure of Tu4~11 using {P. } of o
P g 1 ny’ o Aoy

(LI =0,
(2) ?z"i = 's'z"j e # szj and o(?z'i) = 1..,
(3) 9, = Pnli‘e {Pnl}°

Let S, € RPS and An1v1 be specified‘for Spye I
U{Pnl} >n - v and (2) of T4-11 do not hold, then

Anv is incompatible with Snv“

A specification and system which create the condition (2) of Tu-11

will be called an indeterminate specification, Strictly speaking, the

condition is relaxed to include the "overlapping relations" which can

occur for U{Pnll = n - V,

D4-13:

Let S € RPS and A be a specification which is

nv nivi
not incompatible, Then if {8} is the set determined
by the procedure of Ti-11 and 3 a subset {‘s'z'i} c{aai
< of U 5}) A, is said to be an indeterminate

specification.,

In the classification of types of solutions to the design problem

the restrictions can be made finer and finer in order to increase the

deductive properties, In this thesis three main classifications have

been given, These seem to be a natural division of soluticns for all
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types of deductive models,
A classification in the direction of system standardization would

involve partitioning into what might be called applied and design

parameters, These are parameters whicﬁ, conceptually at least, separate
the "application" parameters from the "component" parameters. This is
done to a large extent by the analytical studies which are performed on
a particular model [eogo, the amplifier system is usually analyzed
relative to gain, bandwidth (applied) vs. several parameters which are
used in the amplifier circuit (design))° The author does not see a
method of separating these two types of parameters relative to a system
except by axiom, That is, these are partitions of (S) by pérameters°
Similarly, the real physical system was a partition largely by the

logic properties of the unordered relations. The problem with the

design and applied classifications is that they may not be different.

Hence, an additional assumption is needed in order to partition (i.e.,
many "theoretical problems must be looked at from every "angle", Hence,
any "abstract" system relating the parameters of the problem should not

be partitioned by the applied and design classifications. On the other

hand, a system representing a "physical device" would seldom not be

partitioned by the applied and design classifications),

Axiom of parameter classification:
If S,, € RPS, then J two subsets-{?na}:¢ ¢ and {Pnd} of
{Pn}'called the applied parameters and the design parameters
3 {py} L}{Pnd} = {P,}. In addition, there exists some
elements of RPS, S 3 Py} # ¢ and {Py,} # {Pya} () (B, 3 # 0

{Pnd}ﬂ '{Pna} 7 {Pnd}"
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When a system is partitioned by {Pna} and {Pnd}, it will be called

a device, (Partitioned implies the restrictive conditions of D4~13 hold.)

Dh=1b¢ The class of PD (C RPS such that each element of PD

is partitioned is called the class of device systems,

Now it is noted that PD is properly contained in RPS. This is
because the class Slv cannot possibly belong to PD. In fact, the above
axiom of parameter classification says that a device system (theory)

must have at least three parameters involved.

The12¢ ¥ Snv € PD n > 3, This follows from the conditions

of the axiom of parameter classifiecation,

This agrees with the well-known fact that to ''measure"™ a component
(describe) there must be at least two different (disjoint) parameters
which can be related to the component. (1), Also, this is evident in
the ingredients for a mathematical operation. (9)., Here at least
three elements are involved in order to haversomething more than a
logical identity. In engineering the number of classes for the-systems
of interest are usually much greater thén three, The "simple" relay
system indicated in Chapter V is anvillustrationu

There are many systems which have a convenient relationship between
the set structures of equivalentISystens; The parts of these systems
are already known to be equal as well as the parameters. In many
systems an additional feature is present., In terms of ordinary
mathematical equations, this feature is commonly noticed when solving
for a variable in one equation and placing that variable in another

equation., During this process, some of the variables other than the one
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being replaced might be eliminated. For example, given
(1) ab?2 = c e and
(2 dbec = a,

in ordinary algebra if (2) is used to eliminate (a) from

(1), then (c) is also eliminated, Hence,
(3) a=db c and

(4) 4 bé = e

represent the same equations as (1) and (2).

The above implies that there is only one independent relation
between (a) and (c), If it was known otherwise, then the conditions of
the next definition would apply; and the above operation could be done

abstractly by using the set structure between (1), (2) and (3), (4).

Du-153 Assume S, € RPS, Let (P, ;) and (Pnj) be elements
of the set structure Of,snv 3 (Pni) (‘(Pnj) # ¢ and
i#3. letP' e (P ) ﬂ(Pnj)o Then if JS! 3
SSV E snv and (Péi) of S%v 5)(Pﬁi) = (Pni) LJ(Pnj) -

P, then S, is said to be completely independent,

Hence, for the class of systems which are completely independent,
"equation solving' can be done using the set structure of the system,
From the example and D4-15 when the conditions of D4-15 are paralleled

except p' is more than one parameter, S_ . is not completely independent.,

nv

This type of condition appears to be a characterization of "physical
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interconnection, In a sense these systems seem to be very "dependent"
on their set structure. In terms of equation solving this can be thought

of as the strong form of Di-15,

D416 Assume Snv e RPS, Let (Pni) and (Pnj) be elements
of the set structure of Snv_a (P,3) (‘(Pnj) 0,
i#3. Then if 38! 958! E s and A(p};) of

SIVIV 3 (Pf;i) = (Pni) U (Pnj)‘ - (Pni)-n (Pnj)' Spv is

said to be physically interconnected.

The physically interconnected systems have nice properties as in
D4~15, They are paralleled by fhe sets of equations which involve only
addition or multiplication (i.e., only.one fundamental operation is
involved), These types of systems appear to be similar to those studied
in the linear graph theory.

This chaﬁter has included the basic stfucture of a design theory,

A finer subdivision of this theory is not extended in this thesis

because of the newness of the theory., Before extending the classifications,
the underlying principles and the "best" direction of investigation should
be studied. Many of the classifications given in this thesis have not
been explored with any detail, Some of‘the classifications, such as in
Di~16, seem to be characterizations of systems presently studied in terms
of particular algebraic operations; This approach to systems offers a
way to eliminate much of the duplication between analysis theory and
design., The analysis phase of engineering deais with the particular
number systems and formulas., That these studies are for the purpose of
indexing a set of scalars is known, The design theory developed in this

thesis assumes that the properties of these mathematical formulas are
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known relative to the classifications given for unordered relations
and parameters, This being the case, the large systems can be analyzed

with much of the deductive power and simplicity of a single formula,



CHAPTER V
. SUMMARY

The body of this thesis was split into‘three parts as introduced in
Chapter I, Before discussing applications and further investigations, a
review of the body is given.

In Chapter II the concept of the parameter is introduced. The para-
meter is a logic class of elements which is indexed by some' indexing set
A, The parameter (set of scalars) and the indexing set (set of scalar
values) are disjoint sets, Once this concept is established, the idea
of callections of disjoint parameters leads to the unordered relation
concept. This is naturally connected to the ordered theory of mathematics
by use of the indexing set, This is done by letting indexing sets of re-
lated classes be subsets of the same set (e.g., let each parameter be
indexed by a subset of the reals),

The unordered relations are introduced through the.qlassical idea
of the ordered n-tuple used in mathematics., This was unnecessary, but
seemed appropriate to indicate the problems which would be involved in
trying to develop polyadic (higher dimensional) relations by using
ordered sets. Also, it allowed the ordered terminology to be naturally
édapted to unordered relations,

The unordered relations can bé thought of as axioms which relate

the elements from disjoint classes, The logic formula needed to indicate

83
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which elements are related and which are not is assﬁmed, This is assumed
because of the preciseness of the mathematical operations used by the
engineer,

The unordered relation is characterized by the unordered n-tuple,

This is the ordered n-tuple with the order being removed by the use of

the formula and disjoint parameters, This allows n variables (parameters)
to be formally classified with the same ease as used in two variables
(ordered pairs). The main concept in unordered relations is that of the
natural point, These can be thought of as n elements, one from each
ﬁarameter, which do not contradict any of the unordered relations (axioms).
These are well defined in terms of the unordered n-tuples .of the distiﬁct
relations,

Most of the terminology in Chapfer II, as in Chapter III, is directed
towards Chapter IV on design., One of the important concepts in engineering
design is the mathematical model. The basic properties of these models
are formulated in Chapter II, Thesg were called property ¢ and property
ccs These properties are_automatically‘given to an engineéring model which
abstractly relates certain classes of "observable" (the idea of a principle
was used here) parameters., In terms of assumptions these are not unduly
restrictive, The only requipemqnts are (1) the observables must satisfy
the universal law of "x is x", and (2) the model must be formed by prin-
ciplés (postulates, rules, etc.) which "restrict" natural points when
applied. (The "restriction" applies only in certain cases given by property
ccos) These properties, along with a decomposition process, give a simple
method for testing a physical model for independence, The model is inde~

pendent if and only if it is decomposable, This is a set operation on the
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parameters and is quite easily applied.

Several other properties are given to these parameter models such
as being algebraic. An dlgebraic unordered relation is one whose
parameters are indexed by a common indexing set, This implies that the .
unordered relation has its counterpart in some ordered relation on a
set. This keeps the ordinary concept of value connected to the relationms.,
However, the normal concept of value is not directly attached to the
unordered relations. (There does not seem to be a real problem in this
respects The formulas in most actual engineering problems will be
defined on the elements of some ordered indexing set,)

Chapter III introduces the system. The system is the "elements"
with which the engineer works. These are collections of unordered
relations and parameters with certain propefties, The properties are
quite unrestrictive, yet restrictive, There are two main classifications
of systems: the partiai system (A), and the system (S).

The main property of a system is to have the basic structure of set
connectedness. This is for the purpose of-having natural.peints. Systems
which have natural points represent theories which are logically consistent.
Those which do not, represent theories which are inconsistent. The system
can be "naturally"” classified in several ways. The first classification
used in this thesis is by the "parts" (v) and the parameters (n). The
Yparts" represent.the number of unordered relations (axioms), The ordered
pairs of integers give an equivalence relation on (A),

Another equivalence relationlgiven:is that involving the natural
points of the systems. This equivalence is basically like that of set

equivalence (i,e., same cardinality of natural points), The additional
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restraint of being in the same "size class" (the equivalence relation above)
is also required. This equivalence relation shows that logic systems can
be "interchanged" at will if their natural points and class size are in
1.1 coprespondenceo

Many of the classifications of systems are directly from those of
unordered relations. The parameter -model shows up as a physical system
in Chapter III, The decomposition classes becomeé characteristic sub-
systems, ‘Two interesting classifications are the partially e#acf and
exact systems, The partially exact system is one in which each.unordered
_ relation is a partial function relative to some n-l subset of its n
parameters, This shows the ease of describing ordinary n variable ideas
in terms of unordefed relations., .The exact system is obtained by having
each unordered relation be a complete function, The complete function
. is an unordered relation which is a partial function relative to eéch
n-1 subset. These play the role of the highly restrictive systems. The
functions of 'n variables which have these properties play the same role
in ordered theory (e.g., linear algebraic equations have. these properties).

A single unordered relation could have been defined for a system by
logically adding the parts of a system, This was not done since it does
not appear to be practical (i.e., the parts are given by formulas which
are known 3 hence, the development of system theory should give the
important relations between parfs through their properties). However,
this idea does support the viewpoint that equivalence of abstract systems
basically involves only the number of classes and the number of natural
points.,

The idea of a specification and solution is introduced by the use
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‘of natural points and the concept of system addition. The addition of
two systems is defined as the union of their respective parts and para-
meters,

The physical system is defined to have the basic properties of a
parameter model, It is this class of system which.is of primary interest
in an abstract design theory. These play a role in the general solution
of the design problem.

Chapter IV deals with the formulation of a theory for design., Although
there is no conceptual limitation to engineering design, this was the
motivafing area. Also, this is an area where many "definite" formulas are
available, The design problem is formulated in a concise manner. Definite
boundaries on the existence of general solutions are established which
coincide with accepted principles, Unfortunately, only one of these
boundaries gives useful information in a direct manner., This is the non-
existence of solution. The other boundary gives at least one theoretical
model as long as nonexistence has not been shown, Unfortunately, this
model is the "least" restrictive model, This being the product relation
"which in essence says, "You can assume it can be done if it has not been
shown otherwise', The nonexistence criteria comes from contradictory
specifications. These are those specifications for which it can be
shown (without a model) there are no natural points. This fact gives
an immediate nonexistence under the properties of systems,

In order to obtain more deductive power on the positive (existence)
side of the design solution, more properties were established, These had
to be assumed,

To choose properties in any "absolute" sense was not thought to be
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realistic, (That is, the physical principles seem to stay falirly stable,
but the application of these principles (projection into some indgxing
set) seems to result in an "unstable" set of natural points, Tﬁis
could be caused by a number of factors. One which is commonly accepted
is that "certain assumptions have to be made". The stability of the
natural points seems to be "proportional" to these assumptions. Also,
the -indexing set which is used might not be "naturally" suited for the
parameters (classes) of interest (i,e., to partition a parameter finer
than it can be "observed" (measured) can be thought of as an unnatural
indexing set). The basic sciences offer a good example in the case of
the indexing set of reals, There are no known meters which can measure
this fine a partition,

What is important is that there does appear to be indexing sets
which allow the projection of these principles to the extend of being
restrictive, These are the models which the engineer has available to
solve design problems in a logical manner. This was the basic éésﬁmption
used to formulate the axiom of real physical systems., This axiom also
a;éumed a "uniqueness" of parts relative to the natural points of two
systems, This "uniqueness" comes ffom making the number of parts the
same when two systems have equal natural‘po.ints° Also, it was assumed
that each part (unordered relation) had some deductive power. In.
addition, it was required that each n - 1 projection of a part was
onto. |

Although the real physical systems are not necessarily the most
restrictive, they do have many restrictive properties important in design.

Probably the most useful property is that of K equivalence, The real
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physical systems (RPS) which have equal standard points have the same
number of parts. (The standard points refer to the natural points

of a particular real bhysical system,) This allows a standard set
structure for a system relative to a set of standard points. In

fact, the same parts can be used for all the standard point models

which have these parts even though they might not be equal. This is the
power of being able to formally separate the indexing set from the p‘ara--=
meter set. This approach gives the restrictive properties to the system
value (natural points) rather than to some particular operations in a
particular indexing set. That is, properties can be assigned to the
natural points of the unordered relations and the deductive results
shown independent of a particular mathematical model, (This is similar
to the mathematical studies in abstract algebra., (9)., Here the operations .
defined in a set are classified independent of the set, This is advan=
tageous because of the deductive power of some of the common properties,
for example, identity, inverse, associativity, etc.)

The type of solution to the design problem considered the most
important by this thesis is that associlated with the compatible speci-
fications. These are specification systems whose values can be added to
some real physical system and still be a measurably rational (logically
consistent) system, This type of specification can be thought of_as those
for which the real physical system (RPS) is naturally compatible., The
compatible specifications are those which can be satisfied by any RPS
having the same number of parts and equal parameters in these parts
(i,e., the compatible specifications are "independent" of the functional

form),
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Some of the set conditions which can be used to check rapidly
for compatibility are given, Several of these are facts which are
common ly usedgv These show up in "simultaneous equation” studies of
mathematics (e.g., in general the number of variables must be greater
than or equal to the number of equations, etc.), The set structure of
a system is defined as the collection of parameter sets of the unor-
dered relations. This gives an easy way to visualize some of the
basic "interconnection' properties of systems. These become more
realistic as the properties of RPS become more restrictive., In the
case of parameters indexed by two elements, the RPS systems can be
thought of as logically consistent formulas on variables with two
values., Hence, the tools of Boolean algebra are available for
problem solving.

The set structure can also be used for the class of systems in
which "equation solving" can be paralleled by set operations, This
allows the different equivalence classes to be obtained abstractly.
This "by-passes" the manipulations of the particular formulas,

Classifications for the purpose of choosing systems which can
satisfy many specifications are needed in engineering. This is for the
-purpose of being able to standardize useful engineering models by
some practical, as well as stable, criteria, Classifications for this
purpose in terms of applied and design parameters are given., These
can play the role of the specifications which are given to the engi-
neer, and those which he must choose relative to a given system, It
is the sum of these two parameter sets which should be included in a

practical model.
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Applications for the design theory of this thesis seem to be in
abundance., Howevef, the foundations work excluded detailed investi-
gations for applications., For this reason, the indicated applications
in the body were in the form of examples and conjectures, Most of these
suggest broad areas of investigations (e.g., synthesis procedures,
"interconnection" algebra, etc.).

An example of the matrix form of representing a system is given in
Figure 5-1, This design "map" represents the system of a relay., The

parameters are indexed by the reals in the formula below. €11),
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The above formulas can be put in many forms by using the indicated
operations in a "correct" manner, In general, the "correct" manner
for manipulation of formulas requires more knowledge than just the
mathematical operations involved.

The above refers to the onto aspectlof the formulas and the "range" of
the indexing set. The class of RPS is indexed by the same set and is,
in addition, an onto relation. Hence, the range of each parameter

must be preserved in any mathematical operations,

) %637 s (1-B-a)g o, /6371 (1-8-0)g,
\/ N N

The additional rules are usually necessary because the indicated

Example: §

operations are defined over the whole indexing set while the parameters
are only indexed by a subset (i.e., algebraic does not requiré the indexing
sets to be identical, just a subset relation must hold).,

It is noted that there are variables in the formulas which do not
appear .in the system map. This points out one of the "conveniences"
of design by theory. The variables B, o0, o, g,, g, @, can be thought
of as "restricted" variables. Thelir ranges are very limited; however,

they are theoretically parameters. This allows them to be used to
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satisfy specifications. Also, they are definitely not applied parameters.,
Hence, they can be used to "change" the standard points in order to satisfy
incompatible or indeterminate specifications when the need arises,

It is noted that the upper bound for the number of compatible
specifications in the above system is given by

181
(8)! 10%

which 1s almost a maximum forﬁa'fiked number of parameters., The

above type of vepresentation for systems offers a general method for
investigating engineering design problems, The theory behind the repre-
sentation is that which can be developed by placing properties on the
class of RPS as done in Chapter 1V,

The actual processes of design are paralleled by the steps involved
in solving the general design equation. For.these reasons the most
immediate application of the design theory would be that of supplementing
engineering analysis with design theory. This would allow a philosophy
of engineering which could systematically correlate particular model
studies in an area., The particular model studies will be used in a
particular design when possible (i.e., actual numerical relations are
needed and available)., Also, in this thesis the requirements for finding
a "new" system are seen to be quite definite, Hence, investigation of
new models might analytically become a part of the engineering. These
requirements are already imposed on the engineerg‘but principles seem to
be lacking.

This last sugggstion for application is connected with synthesis

studies for design problems. Assuming the properties of RPS, there are
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definite relations among the set structure which must hold in general.,
For specifications which pertain to certain types of phjsical inter-
connections (these are the class of RPS which have the simple set
operations paralleling the algebraic operations in the indexing set),
these cdnditions'indicate some useful configuration synthesis tech-
nigues might be obtained.

‘The natural point equivalence between systems suggests interesting
possibiliﬁies of changing systems in order to work problems faster.
This is presently done in linear systems through the u$e of the
Laplace transform, Here the system is converted to the complex domain
in order to solve many problems faster, Also, the transforming of a
system index set into two Qalues automatically transforms a system
into a simple type (Boolean) if the new standard points do not change
the parts of the system. These areas suggest design procedures which may
be very efficient,

The technical areas for future investigation should involve the
foundations of this thesis. The unordered relatibn appears to offer
a practical method for studying problems with a large number of variables
and relations., If this is,the case, the classifications of this thesis
should be examined for inconéistencies which might have been overlooked.,
Also, more useful classifibations and facts might be developed using

parameters and unordered relations,



APPENDIX
FUNDAMENTALS CF SETS AND RELATIONS

The undefined concepts and terminqlogy used in the body of this
thesis, which might be unfamiliar, are presented below., Listed in
Table I at the end of this section are the common logic symbols and
their definition.

The notation of a set and the associated ideas and terminology
are the first to be presented. For a‘more extensive coverége of these

topics the references 6, 7, 9, and 14 are suggested.

DA=1¢ P is called a set if and only if () there exists (3 )
an element x such that (3)x belongs to (€)P or P is empty
(). fhiszis formglized by the symbols denoted above as:
(a) Pisasetﬁaxaxs Por?P =¢g , also

(b) P = B<1°°° } or P = ¢ is used to denote the set P.

The empty set ¢ is sometimes called the null set., Note that if P
has any element, fhen P is not empty. The notation used in (b) is
common and suggests‘that the glements must be listed in order to
confirm if P is not empty. This is not practiqal when many elements
are involved. ‘For this reason a particuiar_set ié postulated by a
schema for separation using‘a formulé $. This method separates the

distinct elements under consideration by using a common property which

96
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they, and only they, enjoy. This Axiom Schema Method is given as:

DA=2:

When there is a set A and property ¢ then,

J P 3 v(x)(x e P+* x € A and ¢(x))
where ¢ (x) does not involve P ,which is reéd, "There
is a set P such that x is an element of P if and only
if % is a member of A, and x has property ¢. This is
also written in a more compact notétion as:s

P=1{x/xehA; ¢$(x).

Note that the above' Axiom Schema requires that a set A be known such

that iﬁ x € P, then x € A, Also, note that the formula ¢ (property ¢)

cannot involve P. This is to avoid contradictory conditions which could

be placed on P without this restriction. (6).

The common operations involving sets are those of union inter-

segtion and complement. These are defined below along with the set

inclusion concepts.

DA=3:

DAéHS

DA=5:

Set P, is said to be contained in (&) set P if and only
if for every xEPl_, xequ If Plg Pz’ Pl is said to be a
subset of Péo Formally, the above can be written as:

PC P «* = xe P > xe P,
1— 2 1 2

P =P «* P < P and P<= P read, "set P equals
1 2 1= 2 2 1 1

set P if and only if P <« P and P &= P ¥,
2 1 2 2 1

P+ PP l ¢ P .
e F 1 E 5 and BEFR
If, in addition to the above, P # ¢, then Pl is said to be

a proper subset of P2 0
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The union of P1 and P 1is the set Pllj P of elements each of which
2 2 )

belongs to either P1 or P,
2

DA-6: P{jP ={x/xeP orxeP}
1 2 1 2
The union is easily extended to any number of sets as:

DA=7: Pni ={{x/x € P ; for some Pni e {Ppil},

The intersection of two sets P1 and P is the set PI{W P of elements
2. 2

each of which belongs to both P1 and Pza
DA-8: P (} P = {x/x ¢ P and x € P },
1 2 1 2
Again, the above can be extended to any number of sets,

DA-9 Ps = {x/% € P,; for all B, e {P ;}}.

The complement (difference) of two sets, P1 relative to P2, is denoted
by P2 - P19 This set represents the elements of P which are not in
, ThtE

P .
1

DA=10: P «-P ={x/xeP ,x¢P}
2 1 2 1

For a set P the distinct subsets of P is denoted by 2Po The reason for
this notation is in the fact that for a finite set of elements (number

n of distinect elements is finite), the number of distinct subsets is oN,
DA-11: 2F = {x/x<= P},

Some of the more commonly-used facts, not already mentioned, are

listed below:

TA=1: § C P for all sets P, That is, the empty set is
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a subset of every set,

TA-2: PC P for all sets P, That is, every set is a

subset of itself (not a member of itself).

TA-3: g and P ¢ 2F, This follows from DA-1l, TA-1,
and TA-2,
TA=U: P U(P «P) =P,
1 1 2 1
TA=5: P (p -P) =4,
1 n 2 1

A=B 3 P P P P P P P ),
T lu<2ﬂ 3) (® U z)ﬂclu )

13

TA-73 P, (\(Pzg) P)=(? f]P) L?(PI{] P

The "number" of distinct elements in a set i1s referred to as the
cardinality of the set. For finite sets "number" has a unique meaning
in terms of a natural number (i.e,, 1, 2, .., n), However, for non-
finite cardinals the intuitive idea of number 1is somewhat less clear,
However, even in these cases it is still clear that two sets can have
the same number. Hence, two sets are said to be eguivalent if there is
a one~to-one correspondence between the elements, All the sets which
are equivalent are said to have the same cardinality. In this thesis
the cardinality of a sety, P, will be denoted by o(P),

In many cases it is convenient to denote the totality of elements
involved in an abstraction (domain of discourse). Some of the more

familiar notations which are used in this thesis are:

)
H

Set of real numbers

(@]
i

Set of complex numbers
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Set of integers

H
t

P xP
1 2

f

Set of ordered pairs (Cartesian product)

The notion of order is also a fundamental concept of mathematics,

The formal definition of an ordered pair in terms of sets is:

DA-12: An ordered pair of elements p1 € P1 and p2 € P2
denoted by (pl, p2) is the set {{pl}, {pl, pz}}n

= c = = e
(plg pz) {:-:/x__,P1 U P2 and x {pl}or X {pl, pz}}

Using this definition, it is easy to show that (pl, p2) = (p;, p;)
if and only if p1 = p; and p2 = p;, using the definition of set equality,
Chapter II of this thesis uses an extension of the above idea to
define ordering of:elements from more than two sets., For two sets P1
and P2 the totality of ordered pairs is denoted by P1 X P2 called the

Cartesian product of Pi and on

DA=13: P 2P = {x/x=( ) and e P and e P},
1 2 / Po Py P 1 P, 2

Using the above set, relationships between two sets other than
those of DA-12 and 13 can be defined, A subset R of P1 X P2 is called

the graph of a relation ¢, This is defined as:
DA=143 R = {x/x¢€ P1 X P2 and ¢ (x)},

The graph R of ¢ is aiways a subset of P1 X qu Also, note that
in the above form R is the result of applyiﬁg the axiom schema of
separation, with the assumption that P1 X P2 exists, Hence, every
abstract postulate, ¢, relating the sets P1 and P2 can be, theoretically

at least, exhibited in the form of:a graph R. In fact;, the graph of a
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relation is formally defined as the relation, (6)., The above discussion
indicates that the graph and the formula are equivalent in a logical
sense, The only logical problem which seems to appear while using DA~1u
is the fact that ¢1 (%) and ¢2 (x) as applied to P1 X P2 can yield the
same graph R, Hence, to remove this apparent ambiguity from formal
logic, it appears that the graph of a relation is called the relation,
However, in the engineering application of mathematical relations, it is
the relation, ¢, (usually called a formula) which is of interest. For
this reason and because of the role of the relation in this thesis, the
above discussion is thought necessary.,

In order to remove the logical ambiguity of using DA-1l4, the
"equivalence" of two relations, ¢1 and ¢2, is defined after an "equivalence
relation" is defined,

In many instances it is desirable to define a relation among the
elements of a set P, Hence, in DA-1lu P1 and P2 are taken to be equal,
When this is the case, the concept of an equivalence relation arises
quite naturally. TFollowing the standard notation for binary relations

on a set, the following definition is given:

DA-15; > ( € R, Read "p 1is in the relation
P, ® P, P, P) P,

R to p 1if and only if the ordered pair (p1° P ) e R,
2 2

DA-16: A relation on P x P is called an equivalence relation

denoted by (RST) or ~ if and only if-
(a) » (Reflexive)
PR P (Re
(b) > . (Symmetric)
p.®P,>p,Kp. (5

() and > . (Transitive)
» Ro, pzﬂ p,>p R o,



Probably the most commonly used and strongest RST relation is that of

equality,
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Using the above definition, a one-to-one correspondence between a

relation and its graph can be achieved. This is done after an example

of an equivalence relation is given.

Example:

Consider the set of formulas ¢ which relate the

elements of the sets P1 and on ¢ is not empty,

sinee the formula for obtaining P1 X P2 is known,

Consider the set ¢ x ¢ and the graph R given by

R={x/xe ®x ¢ and x = (¢1, ¢2) > (¢1 >

A

and ¢21 -+ A and AS"_:;P1 x P}, That is, R is the
2

set of ordered pairs each of which represents two

formulas which yield the same graph when applied to

P1 X on Now ¢1 R ¢1 by definition of R and ¢.

Also, if ¢ R ¢ , then ¢ R ¢ since A = B
1 2 2 1
implies C = B = A, Finally ¢1 R ¢2 and ¢2

¢1 R ¢3, since A= B=Cand C=D=E > A

Hence, the above relation is an equivalence relation

on the set &,

-
=

R

C

-y
¢3
B =E,

The elements which are equivalent under an equivalence relation ~

are said to form an equivalence class,

DA=17:

The set ?} = {x/x € P and (x, Pl) e vEP xP}i
called an equivalence class of the equivalence

relation ~, Note that the condition ""& P x P"

S

These are defined as:

signifies the above definition only has meaning when
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an RST relation is involved,

One of the fundamental theorems of binary relations shows that the
totality of equivalence classes generated by ~ are disjoint and that
the union of the totality is the original set. (9),

Considering the example given and the above discussion, let 3 be
the set whose elements are the equivalences classes?;’o Now consider
the set 281 ¥ P2 yhich is the collection of distinct possible graphs of
P1 X P2 by DA-1#, Hence, if o ¢ oP1 x P29 there is one and only one
element in ¢ which corresponds to o, Conversely, for every element

P1 x Py which corresponds

Esof % there is one and only one element of 2
to ?; Hence, these sets are equivalent,

If the elements $’of'3 are used in the definition of a relation
instead of ¢, then each graph (subset of P1 x Pz) can be associated
with a single "equivalence relation" $. In this manner a 1 - 1 correspondence
between a relation and the graph of a relation can be obtained.

Returning to the classification of binary relations, probably the

most celebrated classification is that of the function,

DA-18: A relation ¢ on P1 X P2 is said to be a function

if and only if (p , p ) and (p , p') e R>p = p',
1 2 1 2 2 2

A function is called a single-valued mapping of P1 into P written ¢:
2
P +P ifwp eP J(p’, p)eRDp =p'. It is important to note
1 2 1. 1 1 2 1 1
that the uniqueness property expressed in DA-18 is one way only. For
functional relations the notation f (Pl) = P 1is often used to denote
2
the fact that for each first element of the graph set there is a single

second element, When the above uniqueness property holds in both
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directions, the functions are called one-to-one (1 - 1), This and

several other common classifications are given below:

DA-19: A function f is said to be one~to-one (1 - 1)
‘when (p;9 pz) and (p19 pz) e Ry the graph of f »

P, = P.o

?
1 1
DA-20: A single=valued mapping ¢3 Pl + P 1is saild to be onto
. ‘ ) 2
if and only if # p ¢ P2 3 (-Pl, P ) ¢ R, the graph
” ‘

of ¢, D p = pzn

DA=21: A 1l - l'mapping ¢: P1 > P2 is a 1 - 1 function

which is a single-valued mapping.

DA=-223 Al - 1 onto mapping ¢: P1 > P2 is a 1 - 1 mapping

which is onto mapping.

The above classifications are logically related in the inclusion
diagram of Figure A-1,

Ar””“-—‘”’/’)ﬂ- Dyadic Relations

Functions

1 - 1 Functions
Mappings
Onto Mapping

~1 - 1 Onto Mapping

l1-1 Mapping

Figure A-l, Inclusion Diagram for Dyadic Relations
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The idea of a binary relation between two sets is made precise by
using the concept of the ordered pair. It 1s obvious that given any
subset of P1 x P this defines a unique subset in P x Plo Hence, for

2 2

each relation ¢ there is a converse relation ¢c° Also, it is apparent

that ¢.. = ¢.

DA-23: The relation ¢, is said to be the converse relation of
the relation ¢ if and only if the graph R, of ¢, and

-R of ¢ satisfy:
(a) #» (pl, p2) € R'E](pzj Pl) e R,

(b) » (pz, pl) e R, J (pl, pz) € R

TA-8: From DA-23 it is immediate that ¢ = ¢,
cec

Notice the relation classification definitions where given in
terms of the "first" element and the'"sécond" element of the ordered
palr. This being the case the conditions of a definition involving ¢
and ¢, are not necessarily satisfied. That is, ¢ might be a function,
but ¢, might not, These and related facts which arise from the relative
classifications are a part of mathematical analysis studies. (14),
However, as discussed in Chapter II, the concern with relations in this

thesis is slanted in a different direction,



TABLE I.

DEFINITION OF LOGIC SYMBOLS

LOGIC SYMBOL DEFINITIQN

(3 &) .. ) (There exists an () ... )

( ;j () oo ) (There does not exist an (x) ...)
(+(x) vo0 ) (For all (x) .. )

( 600 + 000 ) ‘ (If ..o Theﬁ seo )

( ooo®> ooo ) (If ... Then ..., , and conversely)
( ooo @and coo) ( coo @and o4.)

( ooo OP 400) ( o0 OP 0o0)

(o006 D ooo ) ( oo. such that ...)



1.

10,

11,

12,

13,

14,
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