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CHAPTER I 

INTRODUCTION 

Viscosity is a physical property of fluids which characterizes the 

resistance of a fluid to· flow. More specifically, it is the transport 

property expressing the transport of momentum across a velocity gradient. 

The effects of viscosity are evident in simple flow situations such as 

forced convection in a pipe and flow over a flat plate; the no-slip 

requirement at the surface together with the viscosity characteristics 

of the fluid determine the shape of the velocity gradient. The con­

version of mechanical energy into thermal energy by the shearing action 

is called the viscous dissipation of energy. This is a familiar term 

in the fields of fluid mechanics and heat transfer and is often thought 

of as "heat generation." This terminology is poor from two standpoints 

first, it see~ to indicate a violation of the first law of thermodynamics; 

an4 second, it implies the transfer of heat across a boundary. 

The relative importance of the viscous dissipation of energy depends 

upon the fluiq medium and the flow patterns •. Generally, its quantita­

tive contribut:j.on is small. In many cases it is difficult to detect 

viscous dissipation in the fluid by temperature measurements, but its 

presence <;:an be established in some cases by determining the decrease 

in mechanical energy~ more coIIJIIlonly called pressure drop. 

In the development of the energy eq~ation for the fluid element, 

the shearing ,!!.ct ion is found to have two e-ffects on the fluid elelI\ent. 

1 
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The viscous forces produce mechanical work, (i.e., compressing or expand-

ing the fluid element) as well as increase internal energy. The 

general energy equation contains four individual sets of terms represent-

ing the energy stored in the element, the energy transf~rred by convec-

tion, the energy transferred by conduction and the viscous dissipation 

of energy, Since the quantitative contribution of the last set of terms 

is usually small as compared to the other terms, the viscous dissipation 

function has received little attention and is usually neglected altogether. 

Its inclusion in the energy equation complicates the mathematical solu-

tion significantly. 

According to Lamb(]) 1, the viscous dissipation of energy can be 

evaluated independently of the energy equation by the relation 

(I-1) 

where¢ is the dissipation function as it appears in the general energy 

equation. If the viscous dissipation function is to result in a signifi-

cant quantity relative to the conduction and convection terms, the change 

in mechanical energy must be substantial. The magnitude of the dissipated 

energy is a function of the velocity gradients, so that flow situations 

having as a characteristic large velocity gradients should be investi-

gated. 

Two-dimensional flow situations having large changes in mechanical 

ehergy are the flow of f luids through restrictions. Using an analytical 

model, equations are developed to describe the viscous dissipat ion of 

energy for the case of free boundary expansions downstream of restric-

tions. These expressions furnish a means of determining the distributions 

1Numbers in parentheses indicate references in the Bibliography 
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of the dissipated en,rgy in both the axial and radial directions. The 

effects of the various physical situations may be considered by changing 

the input parameters in the expressions. The results are compared to the 

values obtained from a thermodynamic system approach. 



CHAPTER II 

THE THERMODYNAMIC ROLE OF VISCOUS'DISSIPATION 

In order to illustrat;:e the impo;rtant role of the viscou,s dissipa-

tion qf energy in satisfying the fundamentals of classical thermodynamics, 

the steady flow of a fluid through a restrict;:ion may be considered. The 

steady-flow energy equation is 
~ _z 

fF~,. itf r ft~ -If= f~A?:1-f( Jz -fft~ 1-vVK ~ (II-1) 

The necessary conversion factors are not shown in the relations presented. 

If the thermodynamic system or the control volume is selected as shown 

in Figure 1 in such a manner that the kinetic and potential energy terms 

may be neglected, and if there is no work or heat involved, the steady-

i 
flow energy equation reduces to 

Using the definition of enthalpy and differentiating yields, 

(II-2) 

In the event that the working fluid is of an incompressible naturey then 

the term containing the specific volume variation may be omitted so that 

the expression simplifies to 

(II-3) 

when h ~ constaht~ 

4 
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1 

Figµre 1, Flow Through a Restriction 

By let.ting 

and integrating the above equation assuming cv = constant or an average 

speciHc heat ·. • 

-,ev-(7;-~J = t (/l-r,') 

(II-4) 

The internal· enel;'gy of the fluid may be expressed as the' function 

E-/(1;7) 
but since the dependence on pressure is negligible for the incompress-

ib 1 e. fluip, the internal energy level of; the fluid is proportional to 

the bulk fluid temperature, which is defined by the relation 

ff TTLd-4 T- , · (II-5) - Jjud4 
where T and u are the local fluid temperature and velocity, respectively. 
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Therefore, for a case of an incompressible fluid, the bulk fluid tempera­

ture incl;'~a~·e is directly proportional to the pressure drop. This is 

presented graphically in Figure 2 for MIL-H-5606A hydraulic fluid. 

It is t;hia mechanism for the·conversion of energy which is of 
.• 

interest from a fluid mechanics and heat transfer standpoint. Bird, 

Stewart and Lightfoot (2) call this mechanism the "irreversible degra-

dation" of mechanical energy into thermal energy. The steady-flow 

en~rgy equatio\'l for the non-adiabatic case in the absence of kinetic ,. ':." . 
- l. 

and potenti,al energy considerations is obtained from the condition: 

Decrease in Mechanical Energy= Increase 1n Thermal Energy+ 

Heat Transferred 

(II-6) 

Bennett and.Myers (3) refer to the conversion of flow energy into inter-

nal energy and perhaps t;o heat.transfer to the surrat,lndings as "lost 

work." 

Fo:r a compressible fl,uid, the term involving the change in specific 

VQlume must be considered~ In this case, the relation is 

(II-7) 

Since both the pressure and the speci,fic v9lume are variables, it is 

necessary to eatablish how one is dependent on the other. In the case 

of a compressible fluid, the Joule-Thomson coefficient characterizes 

_a throttling process. the Joule-Thomson coefficient is defined as 

(II-8) 
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Figure 2. Temperature and Pressure Changes for Adiabatic 
Flow of Hydraulic Fluid 

For a perfect gas, it can easily be shown that µJ" is equal to zero, 

7 

Jones and Hawkins (4) show the variation in the Joule-Thomson coefficient 

for air at various pressures and temperatures, as shown in Figure 3. 

Using the i;lpproximat:ion 

(II-9) 

it can be seen that when µ3 is positivey a decrease in pressure results 

in a decrease in temperature. This can be explained by the fact that 
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the viscous dissipation of energy contributes to the increase in the 

energy level of the fluid; however, the expansion work in the case of 

9 

a compressible fluid decreases the thermal en.ergy level of the fluid by 

a greater amount. Thus, the decrease in temperature with a corresponding 

decrease in pres1mre for a compressible fluid is the result of an expan­

sion process, The viscous dissipation, function does not account for 

the expansion work in a compressible fluid. 



CFI_APTER III 

ADVANCES IN FREE TURBULENT FLOW ANALYSIS 

Sinoe the turn of the century considerable attention has been given 

to analytical solutions describing the free turbulent flow phenomena. 

There are three basic types of free turbulent flow situations - the jet 

boundary, the wake, and the free jet - as illustrated in Figure 4. 

Solutions of each of these types of flow are similar in nature. Free 

turbulent flow situations have been described by three basic theories -

first, the momentum transfer theory; second, the vorticity theory; 

and third, the vorticity theory with symmetrical turbulence, 

The Momentum Transfer Theory 

?he momentum transfer theory is based on Prandtl's mixing length 

theory (6) for the evaluation of the relation 

(III-1) 

The quantity f, is a distance term appearing in the analytical model 

and illustrated in Figure 5. Suppose that a fluid element is located 

at some arbitrary location r from the x axis and that the fluid element 

has an average velocity u in the x direction. If, ,ou-e tt:u niixing/Tt::he 

element relocates to a new position r±t and at the same time retains 

the same average velocity, then the average velocity of the fluid in 

10 
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v; r 

r 
f-1 

Figure 5. Prandtl' ~· ":M,fxfng-Length Model 

the n~w 1ocation may be ~xpressed as 

$0 that the turbul~nt ;fluctuation velocity is 

(III-2) 

By assuming the turbulent fluctuation velocity in the radial direction 

is proportional to th~ turbulent ~luctuation velocity in the axial 

d~rection, then 

(IH-3) 

Prandtl's technique of analysis is based on the conservation of momentum 

in the turbulent mixing process. Prandtl stipulates the following 

restrictions on qis mixing length theory; 

a. £2 is proportional to the width of the flow pattern 
~ta sufficient distance downstream 
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b, ~~ is constant across any section 

The Vorticity Theory 

The vorticity theory is based on the supposition that the vorticity 

is independent of position •.. According to Taylor (6), the effe.cts of 

the variation of static pressure in the axial direction may have such an", 

effect on the momentum balance technique of Prandtl that the u' will 

not average to zero. Therefore, Taylor proposes a conservation of vor­

tic:i,ty. The fundamental assumption in the vorticity theory is that 

the vorticity rema:lns constant throughout the mixing process. 

Taylor develops the vorticity theory after studying the data of 

the temperature distribution in the wa~e of a cylinder. Using the 

similarity principle between the momentum transfer theory and the tem­

perature profil~ the experimental data exhibits a spreading tendency 

which is not described by the analytical profile. The profiles obtained 

by Taylor's vorticity theory present a better correlation, 

The Vorticity Theory with Symmetrical Turbulence 

The vorticity theory with symmetrical turbulence for axially sym­

metrical flow is proposed by Goldstein (7); The theory is based on 

symmetrical eddy velocities. In this approach, a more general mixing 

length is employed which is a function of the radii of the sections 

and is not assumed to be a constant across any particular section. 

:Further Developments in Free Flows 

Rayleigh (8) discuss1::s the results and reasoning of experimental 
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work of his contemporaries concerning the flow phenomena of jets issuing 

from various shaped openings. The effect of head pressure on the jet 

characteristics is among the results cited. The work represents the 

state of advancement just after the mid-nineteenth century, 

Chaplygin (9) makes an early contribution in the analysis of jets; 

his analysis considers ideal gas jets and employs the treatment of potential 

flow theqry. 'l'he velocity potential and the stream function ate presente.d 

in the form of series, and the series are investigated for convergence. 

Chaplygin considers the problem of outflow of a gas from an infinite 

vessel with plane walls. He describes the phenomena of a gas jet im-

pacting a plate. 

Tollmien (10) is among the first to study analytically the jet ex-

pansion process employing the momentum transfer theory with Prandtl 0 s 

mixing length theory as given by 

z Jl/. I JjrZ/. I z: :;:: PL -
~r \. J,r 

(III-4) 

Certain li,miting assumptions are employed to simplify the equation of 

motion~ namely that the axial velocity is large as compared to the 

radial velocity and the derivatives with respect to x are small as com-

pared to those with respect tor. The equation of motion reduces to 

Appendix A presents the general equations of motion. Tollmien presents 

an analysis for the mixing of an air stream with adjacent still air, 

a two~dimensional jet" exp;msion, a.nd a rotationally symmetrical jet 

expansion. The reduction of the partial differential equation to an 



ordinary differential equation is accomplished by defining the dimension-

less distance~ as 

and by using the stream function~ as 

/oc 1&ft1_) 
By employing a dimensional analysis technique to the stream function 

expressions, a simplified equation of motionJ and a momentum expression, 

the part;i.al differential equation is transformed into the ordinary dif-

ferential equation. For the two-dimensional jet, the equation of motion 

is reduced to 

I Z. / II f 
j=",,F'- c tC ( ,F J = 0 (III-6) 

where 

(III-7) 

and for the case of the rotationally symmetrical jet, the equation of 

motion reduces to 

(III-8) 

where in th;i.s case 

(HI-9) 

.. 
Forthmann (11) obtains experimental data for an open jet using 

air as the working fluid; he points out that there are "minor systematic 

discrepancies" from the ve,locity distributions predicted by Tollmien. 

Kuethe (12) extends the work of Tollmien to incl·µde the mixing 

phenomena of two parallel streams at different velocities. The equation 

of mot ion :i,s reduced to an, ordinary di£ferential equation similar to 
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that of ToUmien. Kuethe divides the jet expansion into three separate 

regions as illustrated in Figure 6. These regions are based on the 

axial distance from the orifice opening. 

Region A is characterized by an annular mixing region surrounding 

the core of potential flow. In Region B the entire jet is the mixing 

region. In Region C the center-line velocity is inversely proportional 

to the Mstance from some point near the mouth of the orifice and all 

profiles are similar. Kuethe points out that T~llmien 1 s analysis is 

valid in Region C for an axial distance of approximately eight orifice 

diameters downstream of the orifice opening. 

Howarth (13) determines the velocity profiles for symmetrical jets 

using each of the three basic approaches independently.· Each approach 

starts with an equation of motion of 

(III-10) 

where"/( is defined by equation (III-1). The momentum transfer theory 

uses?(' from equation (IV•J) ;, in which case, the equation of motion reduces 

to the ordinary differential equation., 

(III-11) 

where 

(III-12) 

This equation is similar to that of Tollmien (10) for the rotationally 

symmetrical jet. The vorticity theory modifies the equation by treating 

7( as a constant; then 

Ja . v-Jl!.. _ r d f ~J u JJ? -1- or - r Jr r lr (III-13) 
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where K is defined as 

(III-14) 

The modifi~d vorticity theory results in an ordinary differential equation 

(III-15) 

where F il:l th~ same as defined above. '.['he vortic.ity theory with sym-

metrical turbulence reduces the equation of motion to 

rrf (r)~ _ 

1~ 

and for this case 

e ..,,1. e I' z 
,/=y(?)J: ~? Jt I 

(III-16) 

The results of these independent analyses are shown in Figures 7 and 

8. The temperature profiles are established on a similarity principle 

between the temperature and velocity distributions. Howarth compares 

the various analytical solutions to the experimental results of Ruden (14) 

and finds that the momentum transfer theory provides the best correlation 

for the velocity distribution and that the vorticity theory provides 

the best correlation for the temperature distribution. The temperature 

distributions for the three analyses are shown in Figure 9. 

Bickley (15) pl;'esents some modifications on an early publication 

of Schlichting for the case of the plane jet, . Bickley performs a direct 

integration 1;:o obtain an exact solution for the equations of Schlichting. 

frandt1 (16) - as an introduction to th~ presentation of G~rtler (17) -

presep.ts a new fornrulation for the exchange coefficient for the free 
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turbulence application~ Ip. this new formulation, the quantity 

(III-17) 

is t;eplaced by 

(III-18) 

wheie c1 is a consj;:ant, bis the width of the mixing zone at a partic-

ular section and U and u " are the values of u at the section. 
max min .. 

Gortler applies the new fol;'~lation of Prandtl to several free turbulence 

problems, Jfe considers the mixing of two parallel streams of different 

average speeds. Using Prandtl 's new evaluation, K is propo r t ional to 

x. For the plane jet, 'J.:: is proportional to /x and a more rounded pro-

file near the center of the jet is obtained than that of Tollmien (10). 

Squi~e (l8) presents a su~ry of his results for several types 

of free tu:r:bulei:i.t situations including circular and plane jets. 'I'he 

results are qualitative ip. nature since the constants are not evaluated,. 

ti'?/"'- -fir: 
/(1f) = f t?-,,;j /(71_1 l>t_ 

() 

(rn-19) 



Squire's Circular Jet 

J?( )11 I d /. ""T",) 
1112 r rr,..=-F1r,ru ?i 

j r/rdr-c <W.5/""T 

.,~ l[ f v-ff= _.L J 1r zr77' 
~~;it ar r dr"' I 

j1LTrdr= co,Js;,wr 
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U= 1 fr??) T--1/11) 

v'zr1::=t-1/ ,r,p. 
(III-20) 

,r11)= ! /t1f A-11) 4 

In the above relations, the constant Band B1 control the spread of the 

jet. Squire believes that the existing theories of free turbulence are 

unsatisfactory and th~ distinction between physical analysis and dimen-

sional analysis is not definite. He points out that heat spreads rad.:i.,a.lly 

faster tha.n momentum. This fact is first stated by Tay~or (6). 

Squire and Trouncer (19) extend the work of Kuethe for the axially 

synunetrical jet; they investigate each of the flow regimes independently 

and fit the solutions at the interfaces. The authors consider a 

general case where the jet issues ;into a parallel stream which has a. 

velocity in the axial direction of u . The solutions can be simplified 
0 

in the case whe~e the jet issues into a fluid at rest. The velocity 

at the orifice opening is assumed to be constant and equal to u. The 

velocity of the fluid in the core remains constant as the core itself 

diminishes, As the core decreases, the mixing annulus increases in size. 

When the core has disappeared, the apex of the cone of the core signals 

the end .of Region A. Prandtl's mixing theory is 
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(III-21) 

for this region where r 0 is the edge of the jet and r 1 is the edge of 

the col;"e~ ThE:l &xial velocity distribution in the mixing annulus is 

'7J - tt.. f.1 ~ Y,; - ,,. JU zt = ·~ -/- -VL--· -· - CoS JT--',ca, -
~ z . ~-~ 

(III-22) 

which reduces to 

(III-23) 

for the case where u i::: 0, The jet boundaries are established by use of 
0 

the momentum relation. 

In Region B - where the central core has disappeared - the velocity 

along th~ axis begins to decr~ase. In this region, the velocity distri­

bution is assumed to be of the'form 

and for the case where u = 0 becomes 
0 

!t(: ~(/-1-~sf.{') 
The rµixing lengt;l:). rela;t;:ion for Region B is given by 

(III-24) 

~ (III-25) 
...,/=~/.i 

which ;is identical to that foi- Region A with the core absent. The 

velocity on the axis in Region Bis a function of x. At a point approxi-

mately e:ight diameters downstream of the orifice, the profiles become 

similar and this signals the entrance to Region c, the fully-developed 

region. 
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Accordi.ng to a review l;)y E~ons (20) of a presentation of Lin (21), 

soluti.ons of laminar and turbulent, two-diimensional and axially symmet­

rical jets are presented. The method of approach is similar to that 

of other investigations, It is found that the width of the jet is 

proportional to x for the laminar case, and for the turbulent case it 

is proportional to x f9r the two-dimensi.onal jet; for the axially sym­

metrical jet, the width is proporti.onal to x for both the laminar and 

turbulent cases. 

Ri.nze and Van der aegge Zijnen (22) prese~t the results of some 

interesti.ng measurements of circular fully-developed jets. The primary 

fluid is air. The velocity profile is presented in Figure 10. Results 

indicate that the point source theol;'etical analysis seems to be valid 

downstream of the orifice beyond eight diameters. ~he temperature pro­

file is show1;1 in Figure n. Measurements of llinze, and Van der Hegge 

Zijnen for the temperature di.stribution in the axial direction with 

r:;;, 0 are shown in Figure 12, Temperature measurements are made with 

a bare chromel-alumel thermocouple. 

The significa1;1.t result of these e~periments is that the diffusion 

process for matter is very similar to the heat transfer process. The 

diffusion process is investigated by the injection of a foreign gas 

into the air stream. In the free jet a pressure probe is used to 

extract gas samples for F1nalysis; as a result of these tests, it seems 

evident; that the heat trapsport process or temperature profile is closely 

associa~ed with the diffusion process or concentrat;ion profile. 

Cqrrsin and UJ,eroi (23) perform experiments with turbulent cir­

cular jets of air and find that the rate of spread of the jet increases 
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with a !iecrease in the density of the jet relative to downstream sur-

rqundings. This change in density is obtained by heating the jet gas. 

:Pai (24) publishes a text dealing with the general subject of the 

dynam;i.cs of jets. Pai compiles information from many different sources 

many of which are included in this review. 

Schlichting (25) presents a comprehensive collection of free tur-

bulence info-rmation collected through man>7 years of direct association 

with the problems, He suggests the following relations for describing 

the flow for the fully developed plane and circular jets: 

Schl~chting's Plane Jet 

ti=~ {;-,',,,r'1)"' f 3.,~A, ( /- /i,,,,r( ) 
v-=9-[.21t(1-~1J.1..,,1J=I-: J;f :i~ <1-.,.<V (Ill-ZG) 

t~-A~ . -~A1 
Schlichting 1s Circular Jet 

( 
I -~ ..?K ( / 2 )-Z 

t-= f 4 -7'!~ =-8'9tlt ~ I~ 4?/. / 

-. _ff ?(-I?/~ A~J..1 ?/--J7t-v l 
1) = ~ (1~-'~~3P = VM; r Jt ( 1~ j ?Z.:)z-] (III-27) 

1=1" ;y I~ ~~ f 
The coefficient·B may be expressed in terms of the coefficient A as 

(III-28) 

The ~tis t4e turbulent viscosity which - according to the presentations 

of Schlichting - remains constant over the entire jet, _The quantity K 

is the mass momentum as defined by the relation 
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j::. L'/T f u 'rdr 
0 

(III-29) 

In the development of the equations of motion for free jets, the pressure 

drop in the axial direction downstream of the orifice is assumed negli-

gible. Therefore, the mass momentum is also assumed to be a constant in 

this area. Since the velocity distribution in the orifice is assumed 

constant and equal to u, it is convenient to evaluate the mass momentum 

at this point by 

{III-30) 

Since the flow rate is givea by 

(III-31) 

the mass momentum is expressed as a function of the flow rate by 

(III-32) 

The velocity distribution for a circular jet is shown in Figure 13 

based on Schlichting's relations. The relations presented by Schlichting 

for the description of the phenomena downstream of a circular and plane 

orifice are representative of those in the literature survey. Several 

authors present identical relations and others present similar relations. 

The expressions presented above will be chosen as those to be used in 

determining the viscous dissipation of energy in free turbulent jets for 

the fully-developed jet. 
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CHAPTER IV 

T:HE ENERGY EQUATioN INCLUDING VISCOUS DISSIPATION 

The generd energy equation is developed by performing an energy 

balance on a smiall element of fluid undergoing change, Appendix B 

presents a sununary of the forms of the general energy equation. Solving 

the r~sulting part;ial differential equation provides information con-

cerning the distribution of energy in the moving fluid. 

There ~re four basic assumptions which predominate in the litera-

ture in obtaining solutions of the general energy equation: 

1, Simplification of the specific flow situation may be accom­
plished by reducing the flow pattern to a two-dimensional 
pattern or even in spf\cial cases to a one-dimensional pat­
tern. 

2. The similarity principle is assumed valid in establishing 
a relationship between the temperature and velocity distri­
butions. This technique is valid for a fluid such as air 
where the l?randtl Number is ,;1.pproximately unity. However, 
for a fluid which has a Prandtl Number significantly dif­
ferent from unity, the temperature profile is no longer simi­
lar to the velocity profile. 

3. Relations used in solving the energy equation usually consider 
all properties of the fluid to be constant and a Newtonian 
fluid is specified. A Newtonian fluid is one which ol:>eys the 
relation 

(IV-1) 

Many fluids can be considered to be Newtonian fluids. 

There has been some attempt at solving the energy equation for 
variable viscosity for the simple case of flow in a pipe. For 
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example, Wilson and Mitchell (26) consider the dependence of 
viscosity on temperature using the relation 

-/3 T 
A= Ao e · 

31 

(!V-2) 

Toor (27) presents a solution for both the Newtonian and non­
Newtonian fluids obeying the relation 

. ti-I ¥r "Ah·). 

where n = 2 for tqe Newtonian case. 

4. Most solutiori.s of the'energy equation assume the viscous dis­
sfpation of energy to be insignificant. The viscous action 
may be a significant factor.where a highly viscous fluid is 
involved and where there is capillary :f;'low. Brinkman (28) 
presents an analysis for capillary flow. An energy balance 
technique is employed and a term for the viscous dissipation 
is included. !he ~nalysis considers constant fluid properties 
and a Poiseille velocity distribution. · 

Wilson and Mitchell (26) analyze the flows by considering a 
special fluid element with viscous action at the fluid-wall 
interface. Several types of laminar flow situations are 
considered - first, flow between stationary plates; second, 
flow between one stationary plate and one moving plate; and 
third, flow in a c:ircular tube. 

Several presentatioJ:S solve special cases of internal "heat 
~eneration" without specifying the type of "heat generation," 
Sparro"7 and Seigel (2;9) present several types of heat 
sources for laminar flow. A uniform constant heat source, a 
parabolic radtal source, and an arbitrary radial and longi­
tudinal source ·are developed, Tao (30) develops a highly 
mathematical approach to laminar flow with internal heat 
sou~ce, However, these references do not discuss how the 
viscous dissipation of energy can be accurately evaluated 
and substituted into these solutions. 
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For the study of the circular free jet, the cylindrical coordinate 

system applies. For the twp-dimensional case, i.e., disregarding all 

terms involving angular notation, the energy equation is 

The following assumptions are imposed: 

a. p:, c , k, and µ. are constant:, v 

b. . the fluid is a Newtonic;1.n fluid, 

c. the two-dimensional cas~ is specified; 

and stipulating the further limitations; 

d. steady state operation is considered, 

(IV-4) 

e. conduction in the a4ial direction is small compared with con-

duction in the radial direction. 

The energy equation reduces to 

(IV-5) 

A.1;1.d, in a $im;Uar manner, the energy eqt:1ation reduces to 

(IV-6) 

for the two-dimensional plane jet in the rectangular coordinate system 

notation, In each of the above equations describing the energy processes, 

the dependent variables are: 
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Circular Jet Plane Jet 

/.:/(1'¥) ,{"=f(0~) 

ti= tt (/i%) ti,:~ (f;Jt) 

V=r(t;Jt) ?r,=7/i ( ~J?) (IV-7) 

ri~p(1'JI) Pt~/? (y;-;?) i 

The equations may be wdt;:ten in the general form as 

(IV-8) 

The difficulty in applying the general equation results not from the 

physical limitations in the de't"ivation of the equation but rather from 

the limitation o:1; solving the resulting part;i.·al differential equation. 

Since the solµtion of the partial differential equation is not inunediately 

obvious, a comprehensive literature survey was conducted to ascertain 

if this type of equation had been solved previously. No solution was 

found. 

The solution for the case of the free jet is complicated by the 

fact that the boundaries of the flow pattern are functions of the i1P--

dependent variables. Since a solution for the partial differential 

equat:ioµ for the free ~et; with viscous dissipation considerat!ions does 

not;: e:icist, alternate aJproaches may establish the distribution of 

energy in ~he free_ jet] This additional criterion is established by 

the evaluatioq. of the viscous dissipation function as suggested PY 

Lamb (1), 



CHAP'I'ER V 

THE VISCOUS DISSIPATION OF ENERGY IN A FULLY-DEVELOPED 

l'WO~DIMENSIONAL CIRCULAR JET 

'l'he flow chamber downstream of a restriction is sQown in Figure 14. 

l'he jet is assumed t:o originate from a point source located upstream 

of the mouth of the orifice. The radius of the orifice is R and the 
0 

r,3.dius of the downstream chamber is R. As the jet of f11.,1id expands 

;in a lip.ear manner, the outer boundary of the jet increases according 

to the expression 

(V-1) 

The ~elations describing the axial velocity in the circular jet as 

presented by Schlichting (25) are valid in the range where the veloc-

i ty profiles are similar in nature as bounded by t:he region 

(V-2) 

where x1 is specified to be 

When the boundaries of the jet approach the wall of the downstream 

chamber at: X a=; L, the fr~e t4rbulent flow analysis is no longer valid. 

The viscous dissipation of energy is neglected downstream of this point. 

'l'he axial velocity is given as 

(V-4) 



,;v-
Figure 14. ~the~tical Model for Free 

Jet Ana,lysis 

wh~;re tlle dimens ionles-s parameter Tl is defi,ned by 

R 

The viscous dissipation of energy can be evaluated from the 

simplifi~~ ~xpression 

i =AJJj[ m-/ u(JJj.1//, 
I/ 

'l'he vQlume element is of the ring form, and tts volume is 
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(V-5) 

(V-7) 

..• 
In order to evaluate the integral after substitutions, the variables 

will be expressed in terms of the .two independent variables x and r 

rather than the dimensionless parameter Tl• This is necessary since the 

integran9 cannot be expressed entirely in terms of Tl• 
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The follqwing quantities wiU aid in the performing of the differen-

ti~ting process: 

(V-8) 

(V-9) 

'raking de-rivatives of the axial velocity first with respect to the radial 

(V-10) 

and then with respect to the axial coordinate gives 

Sq1,1aring eq.es~ qua1;1.tities and substituting into Equation (V-6) yields 

J;, ~ jj j {~/1<:V~.vtlr,vlr:Orfl'r;J f 1Jit1J} df/, 
y 

This equation is integrated mathematicaUy in Appendix C. The results 

of this evaluation show that the increase in the energy of the fluid is 

proportional to the inverse ... square of the axial distance. Upon integra-

tion; th~ numerical value of the viscous dissipation of energy is expressed 

as 

~ ~;r_j./1.H·rt:11'f'C4')(~ -j_) (V-13) 

=c-(~-)) (V-14) 

Referring to the definitions expressed by Schlichting concerning the 

velocities ~n the circular jet, it can be shown that 

(V-15) 
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where ,(=; ,f- (j/J; )I! then the expression 

b ec: c;>J.p~s 

(V-16) 

Schlichting f;ltates that the velocity expressions are·valid for 

either the lamiµar or turbulent jet with the proper value for the kine-

matic viscQsity in each case; therefore, the above relation describes 

each case. Since "A" is defined in Equation (III .. 47) and K is given 

in Equation (lll·32), then 

}lc,wever, in th.e laminar jet, the ki11,ematic viscosity is. a constant; so 

that the viscous diss~pation of energy may be written as 

ii= e0 ( t~/f ,(;,, a S'/3 (-;t;. )"iz ( ~ JJM-1) (V-17) 

Pi',t-eij}{i,-t) (V-18) 

According to this relation, the viscous dissipation of energy in the 

l~min~r free jet is a function of the flow rate raised to the second 

and fou rt:h pc,wers • 

ln the turbulent j~t, the kinematic viscosity is not a constant. 

Accord:l.ng to Schlicq.ting,· the eddy viscosity is a function of the mass 

IIl9~ntum as expressed by 

Therefore, in the turbulent free jet, the viscous dissipation of energy 
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is given by 

(V-20) 

Using ~quation (V .... 19) along with the definition of mass momentum, Equa-

tion (III~32), Equation (V-20) reduces to 

so that in this case the viscous dissipation terms are related to the 

cube of the flow rate. 

Ih~ tact that th~ eddy viscosity in the turbulent range is a variable 

m.akefil:,it ,use:ful as ,a method of identifying the type of jet present under 

V!lrious flqw condiHons. A possible criterion for the distip,ction may 

be the point where the eddy viscosity is larger than the kinematic vis-

cqs:lty 

so that a relation may ~e found in terms of the mass momentum 

R ~ CoNS7A-1J T (V-23), 

or flow rate and orifice opening according to 

(V-24) 

An interesting point concerning the transition between the laminar 

and turbulent jet is that a transition ~one is present due to the change 

in the trpe 9f flow, A discontinuity is apparent in the velocity relations 

as well as in the viscous dissipation relations. For example, for the 

laminar circular jet, the velocity distribution is expressed as 
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(V-25) 

and the corresponding dissipated energy is 

j; .. (c;j~1-c,;4J(k,-1.) 
For the turbulent jet where vt is a function of flow rate, 

(V-26) 

and 

(V-27) 

Therefo:re, since the influenc·e of flow rate on u and qf undergoes a 

change in the transition from laminar to turbulent flow regimes, a 

transition zone must be present, 

As a result of performing the analytical evaluation of the viscous 

dissipation of energy, it was found that the term which contributed to 

nearly the entire numerical value was the term representing (oU!Jr-} 
from the i:,revious evaluation, the results show the increase in the energy 

level of the fluid as a function of the axial coordinate, but the results 

do not describe the behavior of the process as a function of the radial 

coordinate, Therefore, another expression may be developed to provide 

thil:I information., In order to maintain simplicity where possible, only 

those terms representing the ( JU/Jr) contribution will be considered. 

Thirrefore, the viscous dissipation o;f energy for an element of fluid 

(V-28) 
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which may be simplified to 

(V-29) 

This e:xpression is valid between the limits 

~.:;: ~ 1-IJ;e~((o-1-i")e ~ Jt ~ L 

o-:. r~ 'itc.%4 
The above e:xp:re1;1sion and the correspon,ding limits or poundaries are 

used in a computer evaluation technique to determine the distributions 

of the visc1;me dissipation of energy. These reults are present~d in a 

later section, 



CHAPTER VI 

THE VISCOUS DISSIPATION OF ENERGY IN REGIONS A. AND B 

The e~pressions describing free turbulent flows are valid for dis­

tances greater than eight diameters downstream of the orifice; in the 

vicinity of the orifice tile velocity profiles are not similar in nature 

but are in th,e developing stage, The fluid disch,at;"ges from the face 

of the orifice with a constant velocity u and further downstream enters 

the fully-developed region with an establisqed profile. In the case 

of duct flows, this phenomenon is called the "entrance region." A simi­

lar nomenclature for the jet exp11nsion process will be designated as 

the "exit regi01;1.." 

The exit region is important in the study of the viscous dissipa­

tion phenomena. This importance I11B-Y stem from two facts, First the 

quantitative contribution of the viscous dissipation of energy in the 

exit regio.n is a significant portion of the total viscous dissipation 

of energy in the entil;·e expansion process. Second, when the character­

istic dimension of the opening is not much smaller than the char,g.cter .. 

istic dimension of the downstream chamber, the exit region may describe 

the enti:t:'e expansion process. Considering these facts, the viscous 

dissipation function is evaluated iri the exit :t;'egions. 

According to K.uethe (12) the exit region is actually comprised 

of two separate t;"egions. In the region nearest the orifice, the core 

of the fhlid diminisbes to a point. as the mixing region enlarges. The 
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velqcity in the core is a constant u. In the second region, the core 

of the Uuid has disappeared and the entire jet is the mixing region. 

42 

Squire and Trouncer (19) presen,t an analysis to describe the veloc­

ity distributions in these exit regions for the case of the orifice~ 

l'he solutions are ;fitted ;3.t the interface throt,1gh momentum and velocity 

considerations. In the region nearest the orifice, Region A, the velo­

city ~istr;i.bution is 

(VI-1) 

The quantities r 0 and 1;1 designate the locations from the axis of the 

edge of the jet and the edge of the core. In the second region, Region 

B, the entire jet i$ the mixing l;'egion and the velocity distribution is 

1t=f 1<x (1rc..s '/T). cvr-2) 

These velocity dis.tributions are illustrated in Figures 15 and 16, The 

center-line velocity in Region Bis a function of the axial coordinate 

as $howp. ;i.n figure:'17. The bou,ndaries of the jet and core are also func­

tions of t;b,e axial c;:oordinate as shown in Figure 18. S.ince the velocity 

distribut;ions are to be employed in the analytical evaluation of the 

visc01,1s dissipation function, the variations of r 0 , r 1, and ux will be 

assumed to be linear and given analytically for Region A as 

(VI-4) 

and for Region Bas: 
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FIGURE 15 

VELOCITY DISTRIBUTION FOR EXIT REGION A IN A CIRCULAR JET 

u 

FIGURE 16 

VELOCITY DISTRIBUTION FOR EXIT REGION B IN A CIRCULAR JET 
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(VI-5) 

(VI-6) 

For both e~it r.egions, the axial cooroinate is measured from the face 

o~ the orific;:e. 2 The quantity c is a parameter related to the mixing 

length t 2 by the expressions: 

(Region A) (VI-7) 

(Region B) (VI-8) 

which may be related to tpe shearing stress by 

(VI-9) 

ln evaluating the viscous dissipation of energy in these exit 

regions, it is necessary for the turbulent ~iscosity µt to remain under 

the integral sign since it is a variable. The general expression of. 

the viscous dissipation of energy for the simplified cases is 

fl 1f f A[(t /fc(fj /].1~ (VI-10) 

J/ 
EXIT REGION A 

In order to evaluate the viscous dissipation of energy, it is necessary 

to evaluate ~he partial derivatives of the velocity distributions for sub-

stitution purposes. Using the velocity distributions suggested by Squire 

and Trouncer (19), the axial velocity in Region A is 

--
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(VI-11) 

Takin~ the partial derivative with respect to the radial coordinate yields 

(VI-12) 

Taking the partial derivative with respect to the axial coordinate is 

(VI-13) 

It has been previously pointed out that r and r 1 are functions of x only; 
0 . 

and upon simplification 

. / --) c:/K / ~J tJI~ 
J JG-r)= t~0d¥ +c1;_-r)cJ2 

Ji, {.fi-1'; / ( ro-1; )~ (V:J;-14) 

Substitution of this result int~ the partial derivative gives 

and squaring produces 

(Vl-16) 
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which expands to 

and rearranging terms 

ln order to simplify the expression, the following substitutions will be 

made; 

/c:/1'; ' di[ )z 
r?~J:::; (n: -7i I 

If(~)= (/¥-If)~~-'[~) 

If Ms (lfjf- t:1{) . 
(VI-20) 

The general expression for the viscous dissipation of energy may now 

be wr:Ltten as 

J f ff A/(~)~.2{fr-f(r.-~f2f r'rM 

y .,< .:ir,7(r) 1'5(7/JJ tlY (VI-22) 

and since the turbulent viscosity is 

(VI-23) 
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then 

'I'he elemenl!: of volume i.s given as a ring exl?ressed by 

(VI-25) 

then 

In Rijgion A the boup,dat:;ies of the jet and of the ~ore are 

K .;:r:o l!lz f- 6z J? (VI-27) 

I:',:;: q 'ft 4 .¥ (VI-28) 

and the derivative of; the::ie e~pressions ils,.·c 

(VI-29) 

The functions. of x defined earlier become for these boundaries: 



;?~):= (4, ... 4)~ Cf:'#$,T4PT 

C(p:;):;:: (i-:""'h ){i,az -haa,):= 6:;,JSTAAfT 

?(r);:;./<. (4tti-i<:a,):::i ¢f'OtVS7"AI-IT, 

Using the fQllqwing val1.,1,es of the c:onstan:ti;; ~rom Figu:re 18: 

q;re. 

4 =:.fJ.1,ez 

so 

2 and Squi:i::"ij an!;l Trouncer sugg~st a va,lu~ q;f i;:: ;;:; ~0067; the ~unctions 

of N: become; 

/7~) :;. C), /#..$ 

1f?'1/) ~ -a /4/S~ 
. . ~ 

If"(?/):;:: 6? #/$ ~ I 

){;;:~ r=r:; 

~='1!%'$.z-/~f~<-1 .. 1.·· .. · . . t ... · f,,;"'1 .. ,r~-C).{ I l/J (~ ~If) .. \ ~ ~ -l'i /l 
f::rc /"'":;:/; 

(VI-30) 

(Vl~31) 

(VI-32) 

This equi;lt: ion represents t:h,e viscous diss ipat: ion of energy in Exit 

Regiop. A. ';['his relation wiU bE;I us~d iu determining t:he distribution of 

the viscous dissipa~ion of energy across the jet in the jirst region, 
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R.ijG l:()N B 

(VI-34) 

where 1.1 a~d t'· a1;e f\lP.et;:l.on., c;iJ to, ~~ial coo;rd:i,l'l.at\e o~ly:. 'I;'b.e partial . ~ 0 . . 

de.dv:~tives must aho l;)e ~valua.tf\!d fol;' S\.1,1:>S.~it~tiq·n p1,1rpo~es.. !,aking the 

Jv 1!, r /ff) _J_ I 7r. r)· · 11 u r I cr) · J? ~ - z ..1µ.1 l r. / ;r v~;; ;;:,; ~ ?'~ "JI J/;4), '7t" 

and. with t'eS.pijc;:t to· th~ a:x:i.aJ ~Qc:,';1'.'d,it11,ate givEMi 

~ .. ~ fi,( lr<os 1ff)1-f {11-c:s f!)it 
,,,_, k(!!) A ('if) rt(1t-e~ fO~ 

(Vl.-35) 

~ $r ~ J;u l.tp'J.fZ51- / !1.f ~.U-·) 6 
e:, re> ·. ( ',. /(?'~ 'i. { 1 . , . /,o/ ~ ( (Vl-36) 



Substituting the tu~bulent vtsc~sitr 

into the generd e:Jlc)?ression for the enar&Y gives 

p -e~JJJ,/{(Jftj,u(fXIJ)c111 
V 

Since t'0 and u~ are variables as desc;:ril?ep by 

52 

(VI-38) 

(VI-41) 

(V'.1>42) 

(VJ:-43) 
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(V:C.-44) 

The above exprei;;s :i.on rep~esent:s t;'h~ vi~<H>VS dis!:! :i.p~tion o:1; eqergy in 

r~lation for Exit Reg:i.on A~ the d:i.stril;n~tion of t'he viscous diss ip,;;1.tion 

of energy is est.abHshep. 



the slit opening is sc;, cqmmon an; occui;:17.enc.e ;ln prc1lct:Lcal application to 

fluid flow sit1,1ation§, it i& necH~$sary t;p estabHsn. the similarities 

between the pbn~ j~t and the circula:i:- jet with fi!. change in the notation 

from r toy, The hei~ht:of' th~ siip c:ipen:i.~g is ¥0 ,;1nd the height of the 

chambe:t:' ii; Y, The jet; is assumed t;o expand in a linear manner with the 

boundary of th~ jet peing de$cribed by th~ rela!:i<::>1;1 

The velocity distributions for the plane jet are similar in shape to 

in terms o:f hyperbc;,1:i,c f1,1nctions, The axial velocity 9-:i.stribution is given 

as 

(VU-2) 

by Scp.licht;;lng (25) ,;1nd Pai (24), ':Vlle di.:!Ilen&ionless pa1;ame;it;¢r .~ is given 

as 

1-.''' ,,,4, ..ft.' ·.. ' , I~ 

, 54 
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The slit;: opening is assumliltd to be long fl.nd slender so that the problem 

ma,y be considered, two~dimensional in nat1,1re thus neglecj:ing all terms in the 

(VII-4) 

;fo'r thi:: simplifie(;I. case ig;nelj:i.ng all veloc;i,ties in the y direction, The 

element of V©lume ;i.s a rectangu~a't' e~eme~~ giv(iln simply as 

(V:J:I,-5) 

(VII-.6) 

tities wifl be useful; 

(VII-7) 

Ta~in~ derivatives of the axial veloc;itry w;ith respect to they direction 

yields 

and with respect to the x directi9n gives . ~~z. 

#f 2 -ff k,17.£eA'7 ~ - f (1-J,,-,6t)Jt 

-? ./e,i'1 (,11£,,,.( 7-i) (VII-10) 



Sp 

'l;'he resulting 

(VII-12) 

From this analysis :i,.t is. evic;lent t;ha.t; the qual:Ltat:i.ve descript;ion of the 

plane jet bsuing from a slit; 9penin~ is simUar f;:Q th~ i;l.escription of 

obtained by studyiqg ~he ~ir~ular j~t ~y Qe a,pplie,d to the plane jet 

situa,t;io~. Tp.e ori;fice is studied in gttate:i, d~tail since there is more 



CFLA:e'TEJ,i vnr 

'r!JE '.Q!S'!RIBU':J:ION OF '.L'HE V!SCOUS DISSIPA'l':tON OJ; ENERGY IN A fREE 

C;I:RCULAR J:f:;T 

'I,'he relations derived for determining the viscous dissipation of 

energy in the t;hvee ;regions of ,a circula'I'.' jet i!lre evaltiated by means 

of computer techniques. '.rh,e results of these calculations prov;i.de radial 

as well as axial distributions of this energy conversion process. The 

infortm,;1ction is presented in normalized manner. Figt1rE;lS 19, 20, and 21 

describe the distribution of the viscous dissipation of energy in Exit 

Region A, Exit Region Band the Fully~Develaped Region, respecHvely. 

In each of these regions the rad:i.al distribution is shown at different 

axJal locations in each region. The no'.l;'malization technique presents 

the local distribution divic).ed by the ma:ic;i.mum value for each particular 

regioµ and the radiµs in terms of the orifice radius. 

'l'hese graphical representations are basec;l on·previously derived 

express ior,.s .., eq\li;i,J;i<ms (VI~3J), (Vl·44) and (V•29). The programs 

used in the evaluation pr<;>cess on the 1620 Computer are shown in Appen· 

dix E, 

In Region A as ill'ustrated in figure 19 the local quantitative value 

of the viscous dissipation of energy does not va~y significantly with 

the axial distance. As Jhe fluid discharges frow the orifice, the energy 

conversion occurs nea:i;- the edge of the Jet; as the Uuid continues down· 
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stream, the conversion of energy occurs over a larger annulus to the 

point that at the end of Region A, the viscous dissipation of energy is 

occurring over the entire cross section of the jet except at the axis 

of the jen and the edge of the jet. 

ln Region B the viscous dissipation occurs over the entire jet 

between the center and the edge of the jet. The shape of the distribu-

tion across the radius of the jet is symmetrical and is similar to a 

sine-cosine function. 

is similar to that in 

In the F'ullf-Developed RegionJ the distribution 

Region B exc~pt that the distribution seems to 
I 

spread more in a radial direction near the edge of the jet. 

'l'he relative importance of the exit regions is strikingly illu.stra= 

ted in Figure 22 where the ax;ial distribution of the viscous dissipation 

of energy is shown as an increase in the bulk fluid temperature, Even 

for the case where R/R is quite large (R/R = 10), 89% of the increase 
0 0 

of the bulk fluid temperature occurs in this region and only 11% occurs 

in the fully-developed region. 

If this conversion of mechanical energy into internal energy is 

to result in a change in the temperature of the fluid then the distri-

bution of the temperature is also changed. The temperature distribution 

of a jet based on the similarity principle is shown as the solid line 

in Figure 23, This represents the solution of the energy equation of the 

fo1;m 

(IV-5) 

The energy equation including the viscous dissipation function is of the 
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form 

(rv ... 6) 

'I'aking the solution of equat;ion (J:V ... 5) and superimposing the results of 

evaluating the viscous dissipation function as shown in dotted line, 

certain qualitative conclusions may be formed. laylor (6) found that 

a discrepancy existed in the temperature measurements of free-flow 

expe;riments which led him to develop a theory ... -the Vorticity Theory. 

Taylor finds that the temperature distribution spreads radially faster 

tlian descdbed by the simila:rity principle based on the momentum trans-

fer theory. Hi13 vorticit!)7 theory produces a profile which agrees with 

the experimental data on temperat;ure distributions, 

According to Figure 9, Taylor's vorticity theory is substantiated 

by experimental data; Taylor believes that the reason heat spreads 

radially faster than momentum is due to the added conductivity of the 

fluid. Squire (18) points out that this difference is not possible on 

the basis of the similarity principle. Squire also states that the 

difference is well established by experimental data, but he states that 

it is just by "chance," 

Reviewing this information, the auth9r suggests tqat the key linking 

these two theories - thus €\~plaining why the vorticity theory bE:1st des-

cribes the temperature distributia~ and the momentum transfer theory best 

describes the velocity distribution - lies in the consideration of the 

viscous dissipation of energy. When the similarity principle is employed 

establishing the temperature profile from the velocity profile based on 
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the momep.tµm t:i;-anshr ~heory, the effec~s pf viscous dissipation are not 

considered, When the local dissipated energy is considered by a super­

position techniqueJ the net di$tr;i..bution is a temperature dist1:ibution 

which spreads radially as described by the vorticity theory, Since each 

axial location has energy transported into an increase in the bulk fluid 

t(:;mperiiture) a true profile of a pa:i;-ticula,r axial location must take 

this previousty converted energy into account. In o'(der to obtain an 

accurate des~ription of the local ~emperature distribution ;i..n a jet, it 

is necessacy that the energy equation be solved with the inclusion of the 

viscous dissipation function, If this were possibleJ the temperature 

distribution would then accurately account for the dissipated energy as 

well as any influence of the 9-iss ipated er.argy on the conduction and 

convection processes. Also i£ this equation were solvedJ fluids with 

P:randtl Numbers other than unity could be studied 1 



CHAPT~R :r:x 

T~ INFLUENC~ OF ?HE INPUT ~ARAMETERS 

Addit;ic:>l'l.al information which a:i,ds ip th~ ttnderst1:mding of the 

energy conversion process can be obJ;;ain~d by consic'\e:ring the effect:s 

of the input pa:J;:"aIJ1et;ers. The vario'l,ls 1.-nput pa'l;am,eters are; 

Flow Rate~ q 

Dens;i.ty - ~ 

R,ad:i,Qs Rfl,tio - R/R 
0 

2 Empiric;c;1,l Constants - c;: ; A 

These input paraweters are studied indep~ndeRtly of e~ch other in order 

tq isolate the influe1;1ce of each parameter on the conversion pl;'ocess. 

The viscous c;liss;i.p~t;;i.on of energy ;i.n E~it Regiop. A may be written in 

where r 0 and r 1 are functions of the axial coo:rdinate. In Exit Region B 

the viscous c;lissipatiol;'l of ei;i.er~y is given by equatioµ (Vl~44). S1.ibstitu,-

ting the definitiqn of u from equation (VI-42) into equ~tion (Vl-44) and 
X 

rewriting in a different form gives 

66 
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where r is a function of the a:ldal coordinat;~. ;For the fu1ly•developed 
0 . . 

region, the vis(lous dj.ssipation 0£ eqeigy from equatrlon (V·29) may be 

written as 

(IX-3) 

',I'he three expreuions d.escrib~ the cc:mveJ:"sion of energy by the action 

of viscou$ dissipation, . 'l'he input p/;l.rameters appear i,n these expt"essions 

in different ways so that they must be cQnsidered independently. 

Flow Rate And.Density 

The flow rate ~nd ~ensity app~ar in each of tqe expressi?ns for the 

viscous diss ipat;ion of enet'gy iµ a s imilA:r ~np.er. The fiow rate appears 

to the third power. In determiniµg the·in~'l;'ease in the l;)ulk fluid teI1.1-

perature due to the viscouf'! dissip,;1.tiqn of enErrgy, it ;ii;! necessary to 
• 

divide each express ion by th~ qu1;1.µt;ity (q~), Upoµ performing this 

indicated division, thE:l bulk fluid temperrature increase is found to be 

? funct;i.on of the f19w rate squared. Agreem,;mt is thep:i estabU.shed with 

the approach of thermpdynamics, which specifies that the bul~ fluid 

temperature inc;rease is proportio,;id t1;1 the pressu:i:-e drop which is in 

turn a function of the flow rate squ~red, The~efore, the £tow rate 

effects of the yiscoµs dissip~tiop of entr$Y ~pp~ar as a constant multiplier. 
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Radius Ratio 

The radius ratio est;;abti,shes the regions which descripe the expan-

sion process. When the radius ratip is stnqll, the entire expansion 

· p);qcess may oc;.cur in a port::ion of the Urst; a1:1d secon<i r~gion,, i.eq 

Exit; Regions A and B, As the :i:;-a.dius r,11t;iQ inc1:"eas~1:1, more regions 

a specif;i.c input para.meter in the ~xpr,assions, this rat;:io does estal:>l:tsh 

process completely1 

~h~re are two empirical constants in the expressions for the dissi­

pation of energy in a free circular j~~; one constant is c2 appearing 

in the exit regiop. exp:t,"essions and the Pt!h~r is 111\.11 appearing in the 

expression for t;;he fully .. developed reg;i.op.. 
2 

~ value for c · for air is 

givE:1.n by ~qu:i..;i;e and ',l'rouncer (19) as O~OQ(:>7 ! ~ased on the experimental 

determina.tions in a later s~9t,:;ion where M:IL-M-5606,A. J;i,ydrai.ilic fluid 

at a temperature of 801: is emptC!ye4, · thi value. of cz decreases in this 

case to 0.00538. 

The fact that the CQnst~nt decreases for a more dense, more viscous 

fluid may be e:x:plain~d 'by consi<;l.~ring t;h~ 1arger potential difference 

in the form of preasure <;lrop. ~his inGrfu~.aec;l pressul;'e <1,ifference rep-

resents a gre,a,ter d~iving pot;ential wh:i.~h r~sults.in a decrease in 

the 1-'ate of sp'l;:'ead of the jet, :Figi.J;re 24 sqows the a~ial distribution 

of the dissipated ener~y i.n a Gircuh.r jet for two 9.ifferent values of: 
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THE AXIAL DISTRIBUTION OF THE DISSIPATED ENERGY 
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2 
c ; eacl1. curve is fol;' th~ same orifice ,;a.Mus, the same radius ratio, and 

the same flow rate. S:i,nce the riil-d;iusi rat:io ;i.s ;i.c;ientic{3.t in e1ach case, 

2 the rad;i.al spread of the j~t: i1:1 decreased for t;he lowei value of e 

since a lf;mger ,axial d;i.sta.nce is requir~,;l tp attain the same1 rad;ius. 

Also frotn Figure 24, t;he lower value of o2 ~fi!oreases thfiii rate of dissi .. 

piil,ted energy; however, even thougq. t1;u~ '.!'.'ate is lesi:i, the a~ial distance 

of expansion is more i;q that;; the net efhct :ts to increase t;he dissipated 

(ilnergy. 

The 9rifice radius h~s a very pronounced effect on th'i\ viscous 

dissipation of enet:"gy, J:n the e;x:press:i,on1;1 d~sc'J::"ibii;,.g the viscous dissi-

in each expressien in a ~ifferent m4nner. ~n the ~xpressions for Exit 

Region ~ and t;he fully .. Pev~loped REl~ion, ~he ori:fiice radius is a con• 

stant multiplier .. However, in equation (IX-t) for ~x;it Region A, the 

or:i;fice radius a,ppea:rs in several lpQations ir,. the ~xp;t:"ession. Figure 

25 shows the ~ffect of the ori:f:i.ce l;'ag,i\Ui on t!he visc~us dil:$Sipation 

of ep.ergy; ~a.ch curve is {or a d;if:fe;l;'ent; pr:l,fic~ r;!.dius b1,1t for the 

this figure, it is c1¢arly evident; t;;hat; smi;iU ori;fice diameters are 

characterized by 1a·:rge viscous di,ss ipatd.op,, Tb,is iEl a result of the 

sign;i.:l;icant v~locity gradiep.'!;s (Qr t;'J;ie smaPet ori:J;i,.ce openings. 

The various input parameters appearing in the e~pressions describing 

the viscous diss;i.pation of energy in a ci:r;,cular jet have been investi~ 

gated indep~ndently. Tb.efile pa;i;;amet~:i;s iu;~ functions of the geometrical 
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flow situation as well as the characteristics o( ~he fluid. In addition 

to investigating :these pa:rameters, it is n~cessary to estal?lish the 

1;mmerical ag;r::eement between the resut ts obtc;1.:h1,ed trhrougl;l. t;he evaluation 

of the dissipation function and the re$ults obtain~d by tl:termodynamic's. 



In a practical s ;i.tuat;i.op the press1,1re <;ll;'qp is µsually known and 

estal;>lished from the t;he',1:."modynamiq re~at;i~ns. The e~nsideration of 

the viscous oiss:i.pation fu11cti9n has established a means of physically 

describing the procl;:!ss fcp; the conv,t;"sion of mi;::;chanical energy into 

thermal energy, lt i.s necessai;iy to esta'bHs.h ~he quantitative agree­

ment between t;h,e r~sults obta'inec;l ;f;:'r9m viscoµs d,issipation c;onsidera-

tions with the :resqll;:s obtained l?r ~he;rmodyl'),aµd,c relations. 

From the e~perim~ntal results.presei;,.ted in a lc1-ter section fc>r 

a working Uuid of MI:j:.,-l{'!'5606A hydtauli~ fluid, the foUowing situation 

may t,e c11>ns idered: 

' q = 0.0142 £1?/sec 

R ;;::; 0.004165 ft 
0 

R :::: 0.02~37 :ft . 

.dP = 795 psi. 

From therIJ1adynamic ccinsi<;leJ;a.tions sl;lc,wn graphica!iy in Figure 2, the 

cort'espono,ing increase in the bulk flt1id temp~,;atu1;e is 6. oF;. 

Applying the rr:sults. foUnd by eval4atic;m o:f the viscous dissipation 

function for the situ,1;ltion corr~eppnding to: 
. 3 . 

q = 0.0142 ft /sec 
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Ro ::,; 0.004165 ft 

R ,;:;: 0.0287 ft 

2 0.0()53$· C :;:;· 

the resul Ung increase in the l,uU~ fluid t;eI11p~ratzure is 4. SF, ;(n the 

evaluation, it is not;ed that the e;xpansion proces$ occurs only in 
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Exit Reg;i.on1:1 A and :S, The i:esult is base!!! 1,,1pon the empiricai comitant 

determined from t:he e;"K:perimentpl data fc;:,r hydr~ul:i.c fluid as discussed 

in a later section. The comp,;1,risop.,:a.0£ results sh<:!!ws · that the visc9qs 

d:i.ssipat:lon approai;:h lj?;:ives resµltl'l 20% l,,el!i.?W tp.at determ:i.ned from 

thermodynamics. This consie!l;vative v~lt,rn ;ti3 a resvU o:f the many 

limiting assumptions· in tb,e develppment of t;he expresi;,ions. l'he two 

most significant limitations ip the development are; 

(1). The neglecting of aU te:rms in the dissipation function 

cbntaining; flow no{mal tq the a~;i.s qf the jet. 

(2). The neglect in~ c:>f aU flc;,w patterns upstream of Ehe restr:i.c,::.· 

tion. The tatter of these Umita~ions :is of si~piificant importa:p.ce. 

Since a large amount pf fluid ;is pa~sin~ th:1;9ugh F smaU cr9ss~seqtional 

i:lrea, the velocity gri:Ldient;s ~n the .entt'anc.e 1:;1e~ion of the orifice could 

be ii;npol:'tat'l.t aµd easH:y account foli the c1:>ns~rwat;ive v1,1lu~ determ:i,ned 

by considering the flow pat;terns <;l9wpst::r~,;tm of th~ res~rictiqn alone~ 

No suit:1,1ble analytical model is ava:llal;>le to qe1;10:t;';ibe the flow patterns 

upstream of the orif;i,cei 



CALCULArr'lON OF TtIEJ AXlAL DlSTJ,U'BU'J;'lON OF TFIE S'l'ATIC PRESSURE 

Using the results of the visqous diss ipa,ti<;m 9f energy as determined 

by evc!,luat:ion of thEl q.iss ipation :EtmctiQl"l,, the c\umge in t;he. average 

static pressure of the Jet can be expressed c1s a function of the axial 

coordinate. l'his ev<;1.luation is ba~;ed on trhe assumption that; the 

decrease in the stat;ic pl,"essure is.proportiona.l tp the increase in the 

bulk fluid temJ?erature at each axial location'. Jfigur~ 26 presents the 

axial di.str:lbt.ttion 9f the incl;'e,;1.se in the bulk fluid temperature for 

the case of a circular jet of MIL~H~S606A hydrat.tlic fluid. Expressing 

the e:nerg:y in term$ of a local static pressure decrease produces the 

axial distribu'J:;io11 of the st;;aj;:ic p:iressure in the jet. Comparing the 

anal;Ytical r~e,aJlJis tq the experimep.~al. results in the previous chapter, 

a 20% difference is shown, ;r£ this Vl:lb.1e is consiclere4 to be accounted 

for in the area upstrre/'im of t;:he restriction where the analytical model 

is neglected, t;q.e s~1!ltic presst1,:t:e distr:iblltiori. may be E;xtrap<Hated cl-S 

indicated by the dotted line Qn Figu1:1e 26. It should be emphasized 

that the static pressure r~preaented in Figure 26 i.s evaluated from 

the di~sipation function and does not accouqt for ~tneqic energy changes. 

The energy equation from 'thermodynamics for a fluid element for 

the case of; a fluid flowing s1;;e'9-ciily l!hrough a restriction may be written 

as 

(XI-1) 
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in the absence of potential energy cqnsiderations, paddle-wheel work, and 

heat transfer. Using the definition qf enthalpy and d,ilffere<tU\:itt·tring,;g:ives 

(XI-2) 

:For the case of an incompressibie fluid the expression reduces to 

(XI-3) 

and since 

then 

(XI-4) 

Therefore in a throttling prooess, trhe kinetic energy considerations 

can affect the local bulk fluid temperatul:'e as well as the local static 

pressure of the fluid, In order to establish the exact; nature of the 

distribution of the pressure it would be necessary to establish the 

exact behavior of the two properties - temperature and pressure. In 

the absence ot such information, the distribution of the pressure in 

the jet is shown from the dissipation funi;:tion in:fj'ormation. 



CHAP7'ER :XH 

lj:~PERIME~TAL DETERMINATIONS 

The p1,1rpose of the experimental invei;;tigat;ions is to determine 

the validity of the velocit;y distribµtions employed in the evaluation 

of the viscous dissipation £1,1nctio11,. 'l'hese free,.,.flow relations have 

peen verifi,ed ex:perimentally by a numl;:>er of previous investigators 

using air as the working fluid and the empirical constants are 

evaluated from this data.. the verification undertaken in this study 

:involves the use of a fluid other than air. The fluid selected is 

MlL-R-560(,A Hydraulic Fluid, This selec):ion :is based on the fac;t 

thc;1.t the viscous dissipa.t~on of energy is an important factor in 

fluid power systems presently in operation. 

Description of the Test Section 

The function of t;he test section is to p~J:'mit the experimental 

investigation of the turbulent; flow phenomena downstream of a restric­

tion. Cast &:ryrlic Resin rod is chosen for the material for containing 

the fluid downstream 0£ the restriction. l'he material permits visual 

observation of the flow phe.nomena and the measuring devic.es. The 

material is also a good insulc;1.tor thus s;Lmulating adiabatic flow condi­

tions. It is also resistant to the action of mc;1.ny chemical compoun~s 

including petroleum-base Qils. A list o:I: the properties of Cado Cast 

7'f? 
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Acrylic Resin materials "' as provided by the manufi:tcturer - is presented 

in Table r. 

l'he 1:>asic design 0£ the test section is established. by satisfying 

two needs: first, to pll'ovide a means qf creating the desired turbul~nt 

action; and second, to provide a means of measuring the flow phenomena 

in this tllrbulent region. 

The test $ection has three basic components; (1) the fluid inlet 

section, (2) the restriction insert, and (3) the downstream flow section. 

The first section provides a means a£ receiving the fluid with a minimum 

amount of e.ntrance effects.. ItJ. this first section is located an upstream 

static pressure tap and an o~ring seal on the upstr~am side of the insert, 

The ipsert s:i,mply pl;"ovides the restriction to be investigated. The third 

section is perhaps the most important. It provides a means of viewing 

the flow pehnomena, a suppo'l:'t for measuring devices, and a seal against 

fluid losses. Since failure of the plastic section is most likely to 

occur in longitudinal tension, this component is supported in longitudinal 

compression by means of two plates and four rod~. 

Details of the test section are provided in Figures 27 and 28. The 

provisions for the meas1,1ring devic;es are discussed in the next section. 

Measurements and rnstrumenta,tion 

ln order to be able to describe the flow phenomena downstream of 

a rest'l::"iction, it is necessary to establish the characteristics of the 

velocity in this region. 

On the O\ltside of the plastic cylinder, a surface is carefully pre­

pared for the location of a smooth, flat steel plate. The plate is, 



'l'AJ3LE I 

PROPERTIES OF CADO CAST ACRYLIC RESIN 

· PROPE;RT):" 

Thermal Conductivity 

Specific Fi:eat 

Coefficient of Linear Thermal 
Expansion per F 

Heat Distortion 
Temperatµre 

264 psi 
66 psi 

Tensile Strength 

-70F 
77F 

170F 

Ii;,.dex of Refraction 

Specific Gravity 

Vfi.LUE 

2.3 

0,35 

49 (LO) - 5 

160 
170 

14,300 
7,000 
2,900 

1,49 

1.18 

UNITS 

BTU in 
1+R ;ftZ 0 F' 

psi 
psi 
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80 
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D 648-45T 

D 638-46'1' 

P 542-42 
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Figure 27. Details of the Test Section - I 
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Fi$ure 28, Petail~ of the Test Sec~ion ~ II 
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attached to the p1/:l.stic surface by an epoxy compound, 'rhis steel plate 

supports the measurin~ probe, 

The probe <;levice as shown in Figure 29 receives the information for 

determ:i,ning the veloc;ity profile in the region. '.l;'he probe consists of 

a 0.058" (17 gage) diamete:t;' hypo(lerJ;"mic· tubing with a Q.018" diameter 

hole in one side to record the pressure, This probe traverses across 

the path of the fluid recording the to~al pressure profile, It is im­

portant to ~now accurately the location of ~he total pressure tap; to 

accomplish this, a modi:l:ied depth ga~e is E1mployed, 

The depth gage is a Brown and Sharpe model 605. ';rhe small measuring 

rod in the original depth gage is replaced by a 0.095" (13 gage) diam­

eter hypodermic tubing, '!he diamet;er of the steel tubing is a,lmost 

identical to that of the original rod, The base pf the depth gage is 

removed and replaced by a new base built for mounting purposes, The 

vernier $cale mechanism is unaltered c;tnd it ,allows for the accurate 

movement of the probe across the diameter of the fluid path in a very 

exacting manner. The d:i.yisions on t;he vernier scale are in 0.05" :i.nter­

vals, 

!he steel tube is positioned with the total pressure probe always 

located in an upstream position, To obtain information at different 

axial dist;\ant locations from the restrictionJ the probe is removed and 

repos ;it ioned. 

In order to establish the velocity profile, a static pressure tap 

is provided in the side of the pl~stic cylinder. 
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DETAILS OF SENSING ~OBE . 

. r-~ ........ 

F·igu,re 29. D~tails df the Sensing Probe 
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Presentation of Expetimental Data 

Downstream of the circular orifice, total t~averses are performed 

across the radius of the section and data are recorded at ,01-inch inter-

vals. By using the static pressure measurement at the same axial location, 

the axial velocity can be computed for the incompressible fluid by the 

relation 

For a particular section, i,e., a particular axial coordinate location, 

data i.s shown for various flow rates and pressure drop situations. 

the fluid media is MIL-H-560QA hydraulic fluid. 

The sensing probe is located a di~tance of .0468 feet downstream 
' 

of the orifice. The exit region model of Squire and Trouncer (19) 

indicates the probe t;o be in Exit Region B. The velocity in the axial 

direction in this region is given analytically as 

(XII-2) 

The velocity ratio may be then exp~essed ~s 

cxu .. ;3) 

where r is a function of the axial coordinate and contains in its 
0 

definition the empirical constant c2 • Figure 30 presents the velocity 

ratio as determined from the experimental data. Using the technique sug-

gested by Squire and Trounder, the empirical constant is evaluated for 

the case of hydraulic fluid to be ,00538 as compared to a value of: .• 0067 
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for air. The. method of determining c2 involves the solving of the 

momentum flux expression and the velocity expression along with the 

25 

physical measurement of the radial. location corresponding to a velocity 

ratio of 0,5, 

!he characteristics of the test orifice with hydraulic oil as the 

working fluid are shown in Figure 31 where pressure drop is shown as a 

function of the flow rate. 
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Experimental Observations 

In studying the flow phenomena downstream of an orifice using MIL-H-

5606A Hydraulic Fluid as the wor~ing fluid, the presence of gas bubbles 

is detected. The appearance of the 1:>ubbles is a fu1;1ction of the degree 

of turbulence, the pressure drop, and the flow rate; these three factors 

are dependent variables. In the case of low flow rates, no bubbles are 

present and no visible flow patterns a~e evident. As the flow rates are 

increased, the presence of gas bubbles near the orifice is detected and 

the outline of the flow pattern becomes evident as illustrated in Figure 

32. Downstream the bubbles seem to redissolve into the liquid. At the 

maximum flow rate corresponding to a pressure drop across the orifice 

of approximately 800 psi, not all the gas 1:>ubbles redissolved in the 

liquid but some remain suspended in the liquid and are carried downstream. 

These bubbles are generally known as cavitation bubbles, The visible 

bubbles are a result of the release of gases which have been dissolved in 

the liquid. A smaller bubble, which may not be visible, is the vapor 

of the liquid. A fluid such as MIL-H-5606A hydraulic fluid is capable 

of dissolving a volume of air for every 110 psi increase in pressure 

according to LeRoy and Leslie (31). However, in a hydraulic circuit a 

considerably less amount of gas is usually present because systems are 

designed to remove the gases. 

The presence of the gas bubbles in the region downstream of the re­

striction is important since the fotmation and expansion of these cavita­

tion bubbles represents a sink, All the energy of viscous dissipation 

does not result in an internal energy increase but a portion ,of,.that 
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energy must be transported to the bubbles. 



CHAPTER XIII 

CONCLUSIONS AND RECOMMENDATIONS 

The analysis provides a tool for describing the physical process 

of converting mechanical energy into thermal energy by the action of 

viscous dissipation. It has been shown that as the fluid discharges 

from the face of the orifice, the dissip~tion process occurs in a narrow 

annulus near the edge of the jet; further downstl!eam, the' dissipation 

of energy occurs in a larger annulus with the maximum dissipation 

occurring near the midpoint between the edge of the jet and the axis 

of the jet. 

Ey the evaluation ol the viscous dissipation function, the maxinrum 

rate of increase of the bulk fluid temperature is found to be in the 

second region, Region B, approximately 3 to 4 diameters downstream of 

the face of the orifice, The importance of considering the first and 

second regions in the evaluation of the viscous dissipation of energy 

is illustrated by considering the situation where R/R ~ 10 and air 
0 

is the fluid medium; all three regions nn.ist be considered in describing 

the expansion process. Uowever, 89% of the dissipation of energy 

occurs in the first and second region, i.e., in the ;first eight diam~ters 

downstream of the orifice, Most of these parameters are established by 

2 the physical flow situation; however, the empirical constants, c and A, 

are determined by the fluid medium. These empirical constants have been 

established,for air as the working fluid by previous investigators. 
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Experimental tests employing M~L-H-5606A h,ydraulic fluid at a temperature" 

of approximately 80F show that the value of c2 is 0.00538 for this sit-

uation. The value for air is 0.0067. The influence of the empirical 

constants on the dissipation process cannot be established by simple 

investigation of the equations; for example, a smaller value of c2 

reduces the rate of increase of the bulk fluid temperature but does not 

necessarily decrease the total change in the bulk fluid temperature. 

For the same radius ratio the increase in the bulk fluid temperature 

may be larger for the smaller c2 due to the incre;3.sed axi,al distance 

in the expansion process. The viscous dissipation of energy is consider-

ed only in the expansion process and not beyond the point of contact 

of the wall. 

Comparison of the results of the viscous dissipation of energy with 

the results of thermodynamics shows that the Mssipation function value 

is 20% lower than the thermodynamic value. This comp,arison is made on 

the basis of experimental tests ~mployi,ng hydrauli,c fluid at a tempera-

ture of SOF, The empirical constant used in the evaluation process is 

also evaluated for this data, The conservative results are believed 

to be primarily due to the fact that all flow patterns upstream of the 

restriction are neglected. In this entrance region, the velocity gradients 

could increase the numerical value of the dissipated energy by nearly 

20%. 

By using the relations for the plane jet, the viscous dissipation 

process for the flow of a fluid ttirough a slit-type restriction is shown 

to be similar in nature to the circular jett In the analytical evalua-

tion of the circular jet and the plane jet, the predominant term in the 
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evaluation process in the (ou/or) con~ribution. Even for these situations 

where the (~u/dx) is significant, the corresponding contribution is 

small in comparison. 

In order to obtain the exact temperature distribution in a free 

jet, the energy equation including the viscous dissipation function must 

be solved. A review of the existing mathematical solutions for partial 

differential equations of this type reveals no solut;ion presently avail­

able, It is hoped that this endeavor may be extended by solving the 

equation by a fin~te difference technique. Additional experimel(ltal 

investigation is also suggested, These investigations should concen­

trate on the exit regions near the face of the restriction and the 

regions near where the jet boundaries contact the wall. Fltiids other 

than air should be employed. In a.ddition to verifying the theoretical 

velocity distributions, a complete investigation of the empirical 

constants should be undertaken. These investigations should be con­

cerned with the physical situations of fluids passing ~h:rnugh restric­

tions. 
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APPENDIX A 

THE GENERAL EQUATIONS OF MOTION 

The equations of motion are valid for Newtonian fluids with constant 

density and viscosity. 

Re~tangular Coordinates (x,y,z) 

x-component 

y-component 

z component 

Cylindrical Coo~dinates (r,9,z) 

r-component 
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e ... component 



Al?l'END!:X B 

THE GENERAL ENERGY ijQVATIONS 

·. The e1;u~rgy equations are vali;d j:or Newtonian fluids with c~nstant 

density, viscosity and th~rmal conquctivity. 

Rec~angular Coprdinates 

where 

~-.z f fr: }+(ff}'+ (~~j r (~ r1fl& r ff}~ rf(/ 
Cylindrical Coordinates 

where 

. (\ ' 
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I APPE~Dl:K C 

DETAILS 0~ EVALUATION Of TUE TWO-DIMENSIONA~ CIRCULAR JET 

The equation to be analytically ~v~luated is 
I . 
I 
i . 

JI ~Jf Jf 2:lf ;J~ ~r}~~f f!~t 4;f z/(; j dY 

y I . 

Jl=L ra ,t; • 

=~r9:IJ f t?f i +~1/c~llw ~,;;;r144;;;Jr-Jrd¥ 
~.:::¥, .·r=O L; ....l; .z; -4 (C-1) 

The integration is the su~ of four in;egrals; the first integral may 

be w;ritten as 

J/=L r:,,4 

L; =~Y11), j ;;;.~tflrd,;: 
J/,=t, (":O 

· = ~~efiJ<: f 1.)jdrdJ( 
frY, ('i:~ 

Substituting for~ gives 
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]4=L r=L; 

L, =~~{; j {11.iz)-;rdrly. 
Z="¥, r=o (C-2) 

The integration with respect to 4 involves the substitution 

(C-3) 

then 

Ther~fore, when N = -4 

L = 2:rAJ::(-_{jz2[Nt,J~ :=fY 
l'= "/I; . 

r..o 
7/=L 

= ..2/Pt £z~ ! ) r _J_ {(1-1- gz r~ 1) J 
AZ \-3 / J "(t~ 4L~ I ... c?)! 

JI'"%, 
~:;L 

a Bz/(. ,4~ ~ f-J lj d¥ 
=-s~,4,. If 4L') -/ j "K,' 

Kc: "{t, 

L= c; ( _j_ - ..i) 
J4 L (C-5) 

where 
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(C-6) 

T.he second integral may be writte11 as 

7/~ r:.-1; . 

..k - .,~ 1~ 1711711) /(71).:inlrd;t 

-V=Y, r.,,o 

(C-7) 

Let w = r 2 and dw z 2rdr, then 



Let 

Then 

1j=L 

1/·t..1. _ JI ff)Z-3 _!.!J &)' -11 r Jr 
=-~t ,,4~ IZ. 3 ( /,t 4L~ f 4 \If 4Lz. Jj Jt~ 

t: lit 

=~t4,4J."f/;-/(!11))314 {l,ijf J]-t,'--t) 

The third integral may be iptegrated next 

'jt~L r;J; 

..z; =.?P,; gf ;j f It; .2.r.lrd~ 

t::~ r~o 
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(C-10) 
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(C-11) 

2 . '. 
Again let w = r and dw = 2rdr, then 

2 { I .,4t .z ).J I A'2. 2. _ _,. 

_z.;-= /.?d'~: 1l -s' ,/f ?f. / ,t ,/ \ /;.. 4L.~) 
=4 

I ,4z..t' 2- ... s d~ -s(!,1-4?)} 1£' 

$=~ 
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Let 

~ ~ /c&~Jzf -1. ... ..! 'l,t~)z ~f .i //,4£!2 r·4 ,! /If~ f] 
.4z [.3o 3 (/ 4Lz z (/ 4Lz / .:> \' 4L2) 

Then 
I' (C-13) 

µnd substituting for~ gives 
Y.:,L r=~ 

L=~ e:,"'{J.Jrz .:m.lr. dy. 
;¢ . l J }!6 ( /I- ,1'~· i-3 

,~1, r~o ·.· . 41 /. 

{C-14) 
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(C-15) 

where 

Therefore the i~tegration is the sum of the four integrals 

(C-17) 

If the edge of the jet is arbitrarUy estabU.shed to be the point 

where the a.xial velocity has reduced to 0,05 of its ll!4Xilllllm value, then ' 

from the relation 

. . ( ;-e U . I c: 

t,tMf,r' = I -1- 4 7/ · (C~l8) 

the corresponding value of 11 at the edge of the j~t is denoted as 11 
. 0 

and has a value of 3. 725; the arbitrary value of 0.05 was selected as 

corresponding to the accep1!ed Vo!;l.lue in entrance ef.fects. Sparrow, HaU-

man, and Siegel {~2) define an entrance length as the length required 

to obtain conditions within 5% of fully-developed condi~ions. The 

equation (C-18) is shown in Figure 33. 

Applying this technique to the,free jet analysis, 110 is a constant 

value when x ~Land when r = R 

1o~1.e=J.lc5 cc-19) 

Since the quantity ( /-1- Z,) appears frequently in the results of the 

integration and since it cap. be evaluated in terms of a constant, 110 , 

the values are given in tabular form where 
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FIGURE 33 

VELOCITY RATIO DISTRIBUTION FOR 
SCHLICHTING'S CIRCULAR JET. 



then 

a :a:: 4.47 

1/a4 :. o.0501 

1/a3 "" 0.01121 

1/a4 = 0.00251 

1/a5 :a:: 0.000562 

Equation (C-1) is evaluated to be 

9 == C I .L - .L)·= h .§.. 't. I:;. i l / 1 I ) ii · Lt, L. ~ ':4z l':g-1a/f~A Jl i, ... L/ 

~-t :f{ (!.fJ,t.a??eA2_j(i -!) 

=-~~K/i.~~aS?fAJ({-)) 

where K is the mass momentum given as 
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(C-20) 

(C-21) 

(C-22) 

(C-23) 



APPENDIX D 

DEl'A!LS Of EVALUATION OF THE TWP-DIMENSIONAL PLANE JET 

The retation to be evaluated analyti~ally is given as 

J, = ,~J(~f;~[f .J:!<7,. - l J;.-,1$"2 f .J_ 14} ]JJ [ Jt ~.s,i Jt ~h '1 /Ip Cs~ '*'I . 
// 

(D-1) 

The integration is the sum of foul!' integrals. The first iritegral is 
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(D-3) 

Letting c1 be defined as 

(D-5) 

then 

.L, = c; (f,- -/) 

(D-6) 



llO 

(D-7) 

The integration with respect toy is of the form 

(D-8) 

Letting 

Cz=- ~2'.t f :(1?~5~(4!):1-/ /-1_(~9 

-: tAJ, ~'?} ('(D,10) 



. Then 

then 

( .L - L) 
2;= q It '-/ 

The last integral may be considere~ 

. 2, 'Z,. i ~I';/ ~ ~ _;;NA.; 1 
_z; = 44~A ~ t:e>5./ 1. 

:74 '!=;.,; 

111 

(D-11) 

{D-13) 
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The integration with respect toy is Qf the form 

Then 

(D-17) 

. So that the entire integration is 

(D-18) 
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Introducing the arbitrary edge of the jet as the point corresponding 

to U/Uma:it,,. Q~OS as in the case of the circular jet, the plane jet value 

for the corresponding ~o may be found for the expression 

~ 

l</'f h1AX ::: / - ft11nh 1 (D-19) 

where~ is found to have a value of 2~19. 1he above velocity ratio is 
0 

shown in Figure 34. The hyperbolic constants may b~ evaluated for~:;;: ~o = 

AR/L as 

2.19 

Ccsh f o 

4,524 

-1-"a.nA J/0 

0.975 

Using this information, the coefficients appearing in the integration 

ter1,11s become 

(D ... 20) 

Combining these results, the viscous dissipation of energy is given as 

(D-21) 



1.0---~------------
0.9 

u. . 2 
0.8- - -- = 1-tanh '7 
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:E 
~ 0. 5-· -- ---'-",---+----1--------1 

::s 
0 .4 ~-- -----+------"--1-------1 
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FIGURE 34 
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VELOCITY RATIO DISTRIBUTION FOR 
SCHLICHTING'$ PLANE JET. 
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APl'ENDIX E 

COMPUTER PR(X;RAMS ~OR THE DETERMINING OF 

THE VISCOUS DISSIPATION OF ENERGY 

The flow diagrams appearing on the following pages represent the 

calculation procedure for the evaluation of equations (VI,-33), (VJ; .. 44) 

and (V,.29). These expressions when evaluated over the entire jet 

provide the quantitative valu«;;i of the dissipated energy in a circular 

jet. 

Each computation represents the amount of energy dissipated in a 

fluid element with a volume of 

,dJ/=elrle 4,e AX 

At each particular axial location, the dissipated energy is calculated 

in intervals of 4/; across the radius of the jet at that particular 

axial location. When the evalUl tion i$ complete at one axial location 

the next axial location is considered, 
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EXrT REGION A 

REA.D; Flow Rat~, Orifice Radius, Density 

CALCULATE; X 
m.ax' X 

Let: X:;;:Q+&.X 

AR CALCULATE: R • R . 
min' max' 

,. 

I Let, R""R m~n. 

CALCULA'.I;'E: Dissipated Energy 

I RECORD: X· 
' R; Diss ipat;ed Energy 

~R. R<R max m1.n 
' I -· 

~ Let: R::;=R+L:.R I Let: X::;=X+AX I 
. 

_,,.,,.. . x~x X:5:X ~ 

rnax min 

1 · END I 
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EXIT REGION B AND THE FULLY•DEVELOPED REGION 

- :READ: Flow Rate, Ori;fice Radius, Density 

CALCULATE: X max~ 
X . 

min' 
/J::,.X 

LET: XzX 
01in 

CALCULATE: R . 
01ax' 

/J::,.R 

' 

I Let: R""O+/J::,.R I 
: CALCULATE: Dissipated Energy I 

r RECORD: X· 
' 

R· Dissipated Energy ' ' 

R<R R:;;:R 
max max 

I y Let: R=R+AR I Let: X""X+/J::,.X I 
X>X X:5:X -max max 

r 
END 
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