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NOMENCLATURE

A - cross sectional area

b - width of plate

E - modulus of elasticity
13, Ty - angular flexibility
GAB, GBA - angular carry-over

h - depth of plate

I - moment of inertia

L - length of span

L, Lj’ Lk - length of segments i, j, and k
Mi’ Mj’ Mk - bending moments at points 1, j, and k

m - number of plates

n - number of segments

P - intensity of concentrated load
P - elastic weight

S - section modulus

w - intensity of load
DL - dead load

UL - uniform load

D
§

deflection

d
|

density of construction material

ftij’ '5ji - angular load functions
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CHAPTER I

INTRODUCTION

1-1 Discussion

The analysis of a continuous plate girder structure may be
solved by either the flexibility or stiffness approach. In this
thesis the flexibility method is considered with the three moment
equation adopted as the mathematical model for analysis.

Computing angular functions for a structure which possesses
numerous cross sectional variations, by conventional methods, is a
laborious process. Much current literature is advocating the use
of electronic computers for structural problems which are of a
repetitive nature. The primary benefits obtained are economy, in-
crease in productivity, solutions with greater accuracy, and opti-
mization of design.

Many highway departments have developed computer programs to
assist in the analysis and design of simple and continuous bridges.
A series of four reports on the analysis of continuous beam bridges
published by the School of Civil Engineering at Oklahoma State Uni-
versity (4, 7, 8, 10) is concerned with the complete analysis of a
parabolic haunched bridge by electronic computer. Exline (3) pre-
sented a computer program for angular functions for a member with
abrupt change in cross section but limited to members with a

maximum of three variations.



In this thesis three separate programs for the IBM 650 electronic
computer are developed in FORTRAN language utilizing floating point
arithmetic. These programs are for sectional properties, angular

functions, and deflections due to dead or uniform loading.

1-2 Fexibility Method

Having calculated the angular flexibilities, angular carry-over
functions, and angular load functions for a structure of variable cross
section by electronic computer, the three moment equation flexibility
matrix is obtained by substitﬁtion, By inverting the flexibility
matrix, a solution for final end moments may be obtained.

The three moment equation

G, . M, + FM + G M = -3
oL =13 kJ k Tj

may conveninetly be written for each redundant and placed in matrix

form.
IF_ G M 2T,
Goq ZFq Goy M 2T,
Gn-—2,n-‘l zFn—1 Gn,n—‘] Mn-1 2 T‘n—‘l
Gn_1 n ZFn . LMn | -Z ’{‘:n ]

Using abbreviated notation, equation (1) can be rewritten

[Fﬂ' (%} = (7)) o



where:

[Fj],—- flexibility matrix

{
Inversion of the flexibility matrix yields a solution for final

end moments.

My - ‘[Fj]-1 {Z T j} (3)

Programs for matrix inversions are readily available; thus, they have
not been developed in this thesis. Once final end moments are

known, final deflections may be obtained as developed in Chapter IV.



CHAPTER II

CROSS SECTIONAL PROPERTIES

2-1 Discussion

Determination of the sectional properties of each unigque cross
section along the span is necessary for the evaluation of angular
functions. Those properties considered and programed include:

Ay - cross-sectional area at section x

I, - moment of inertia at section x

h, - total depth at section x

Spyx = section modulus for top at section x
Spx — section modulus for bottem at section x

The moment of inertia I, is used directly in the evaluation
of angular functions (Chapter III). The cross sectional area Ay
is needed in the evaluation of angular functions for dead load.
Although the application of the sectional moduli Sqy and Spy, is
beyond the scope of this thesis, they are easily obtained and are
included for use in the possible extension of this thesis. The
total depth of each section is alse included for the designer's

convenience.

2-2 Derivation
A typical span AB (Fig. 2-1) of a continuous plate-girder of

variable cross section is divided into n segments. For segments
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of uniform cross section each change in cross section may be con-
sidered the termination and beginning of a segment. The ﬁidth and
depth of a typical plate at section x 1s designated as bxj and hxj
respectively (Fig. 2-2). The width and depth of a segment of non=
uniform cross section must be approximated by some appropriate
method. For example, the depth of a segment whose depth is not con-
stant may be approximated as the depth at mid-segment or as an aver-
age of the end depths. Numbering of sections begins with two to
more easily facilitate writing of the computer program for Ph;se IT
(Angular Functions). Each time a subscript designates a particular

segment, the cross section to the left of the subscript is inferred.

The cross sectional area of segment x is

m
Ay = 21 byj b (2-1)
J:

The distance from the bottom plate to the centroid of the sec-

tion (Fig. 2-2) may be evaluated as
m

, ; (g Bey) (T, )

T = o (2-2)
m .
2 Pxj By
3=1

is

]
&
i
'r\v/1 -
i
|
<

Bx - (2-3)



The distance from the centroid of the section to the centroid

of each plate is

xJ = YBx - YBx,j (2-4)

The moment of inertia of a typical section is

=

bxj hij : - 2:|
I = ;2; —5— by hyy T (2-5)

And the corresponding section moduli are

_ Iy
STX =
Yoy
and (2-6)
s = _x
Bx
YBX

2-3 Computer Program

2-3-1 Results of Program

The program presented (Fig's. 2-3,4 ) is written for the IBM
650 electronic computer using FORTRAN language and floating point
arithmetic. Notation of typical section x in the derivation has
been changed to section i in the computer program. The program
yields a solution for:
AREA(I) - the cross sectional area of section 1

EYE(I) - the moment of inertia of section i



SXTOP(I) - the section modulus for the top for section i
SXBOT(I) - the section modulus for the bottom for section i

DEPTH(I) - the total depth of section i

2-3-2 Data Required

The input data necessary for computing the desired sectional

properties include:

N - the total number of strip segments
M(I) - the total number of plates at section i
B(I,J) - the width of plate j at section i
H(I,J) - the depth of plate j at section i

2-3-3 Auxiliary Quantities

Other quantities integral in the program are denoted as:

YBOT(I) - the distance from the bottom to the centroid of
section 1
YTOP(I) - the distance from the top to the centroid of
section i
YBAR(I,J) - the distance from the bottom of section i to
the centrold of plate j
YPLAT(I,J) - the distance from the centroid of section i to

the centroid of plate j
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Flow Chart Phase I - Sectional Properties




PHASE ONE-EVALUATION OF CROSS

¢ 0000

¢ 0000 SECTIONAL PROPERTIES AREAs
C 0000 MOMENT OF INERTIAsDEPTHsAND
C 0000° 0 SECTION MODUL!

DIMENSION AREA(25)s EYE(25)0
YBOT(25) sYTOP(25)» SXTOP{25}s
SXBOT(25)s M{25)s B125+91}

0
o]
)
[¢]
<]
1
2
100 O DIMENSION H(25»9}s YBAR{25¢9)s
100 1 YPLAT{25¢9)» DEPTH(25}»
100 2 TYBOT(25}
2 0 READ» N
3 0.00 103 I=2sN
4 0 READ» M{I}
101 0 L = M{1}
102 0 DO 103 Je=lsL
103 O READs B{lsJ}e H{leJ)
C 0000 0 CALCULATE CROSS SECTIONAL AREA
5 0 D0 9 I=a2.N
6 0 AREA (1) = 0.0
70L =M1}
8 0 DO 9 JslsL
9 0 AREA(I) = AREA(I} + B{lsJi*
9 1 HilsJ}
C 0000 O CALCULATE DISTANCE FROM
€ 00001 BOTTOM TO CENTROID OF
C 0000 2 EACH PLATE - YBAR
10 0 DO 14 [=2,N
11 0 YBAR(I#l) = H{Isl}/240
12 0.L = M1}
13 0 DO 14 J=2sL
14 0 YBAR{IsJ)} = YBAR{IsJ=-1}
16 1 + HllsJ=11/240 + HI{19J}/240
C 0000 O CALCULATE DISTANCE FROM
C 0000 0 BOTTOM TO CENTROID .OF SECTION
15 0 DO 16. I =2sN
16 0 TYBOT(I) = 0.0
17 0-DO 21 I=2sN
18 0 =M{T}
19 0 DO 20 J=1lsL
20 O TYBOT{1l}) = (YYBOT!{(I)) +
20 1 ({B(IsJ)*H{TsJ)) * YBAR(I»J})
21 0 YBOT(1} = TYBOT{I}/AREA(I}
€ 0000 O CALCULATE DISTANCE FROM TOP
€ 0000 O TO CENTROID OF EACH SECTION
22 0 DO 27 I=2sN
23 0 DEPTH(I) = 0.0
24 0 L = M1} :
25 0 DO 26 J=I»t
26 0 DEPTHII) = DEPTH(I} + H{lsJ)
27 0 YTOP(1l) = DEPTH{I} - YBOT{1}
C 0000 O CALCULATE DISTANCE FROM
C 0000 1 CENTROID OF EACH PLATE TO .THE
C. 0000 2 CENTROID OF THE SECTION
C 0000 3 YPLATE
28 0 DO 31 | =2y
29 0 L = MU} 2N
30 0 D0 31 J=1.L
31 0 YPLAT(IsJ) = YBOT(I} =
31 1 YBAR{1,J) :
C 0000 0 CALCULATE MOMENT OF
C 0000 1 INERTIA ~EYE
32 0 DO 36 1s2,N
330 EYE(I} = 040
34 0 L = M{1)
35 0 DO 36 J=l,L
36 O EYE(I) = EYELI} + (B{lsJ} #
36 1 (HITsJ)%%34)) / 124 + BllsJ) #
36 2 HI1sJ) # {YPLAT(IsJ)uu2,}
€ 0000 O CALCULATE THE SECTION MODUL!
C 0000 1 SXTOP AND SX80T
37 0-DO 41 1a2,N
38 0 SXTOP(1) = EYE(1}/YTOP(I}
39 0 SXBOT{I} = EYE(1}/YBOT{1}
C 0000 O PUNCH RESULTS
40 O PUNCH» EYE(I}y AREA(I)
41 O PUNCH» DEPTHI(I)s SXTOP(I},
41 1 SXBOT(1}
42 0 GO TO 2
43 0 END

Figure 2-4

PROGRAM - Section Properties




CHAPTER III

ANGULAR FUNCTIONS

3-1_ Discussion
Angular functions (flexibilities, carry-over flexibilities, and

load functions) are end slopes duye to unit cause or due to loads
(Table 3-1).. Numerous procedures are available for evaluating these
functions:
1. Integral evaluation with unequal length segments.
2. Integral evaluation with equal length segments.
3. Conjugate beam method with unequal length segments.
. 4. Conjugate beam method with equal length segments.

It is the opinion of the author that an approach which yields not
only the angular functions, but with additional steps will yield de-
flections, is desirable. One such method is that of the conjugate beam
utilizing the string polygon (9). Advantages of using equal or unequal
length strip segments are unique with each method. Equal length seg-
ments are perhaps easier to program and possess the advantage of
allowing one to obtain deflections at - equal spacings along the span.
However, unequal length segments as determined by the cross‘sectional
variation will yield a more accurate solution as compared with equal

length segments, considering an equal number of segments to be
uaed in both methods. When additional points of deflection

11



VALUE FOR PHYSTCAL

NAME VALUE crSSNSTANT: MEANING ILLUSTRATION
ANGULAR " end slope of a () arre= D@
FLEXIBILITY x°d; Ly simple beam ij at j| —, T---- ﬂ.’("a
j L.2EI 3EI due to a unit b | 9
g J x — X
moment applied at
that end r Ly
M= 1
k 5 end slope of a (:r GE)
ANGULAR x'%dx Ly simple beam jk at j e
FLEXIBILITY L, 2EI 3ET, due to a unit Jk
x . l
j moment applied at X ; x!
that end Ly

CARRY-OVER
FLEXIBILITY

J.J L. end slope of a . @ Sy Sup—
1

xx'dx i simple beam ij at i Gy
LizEIx 6EI, due to a unit J '
X J moment applied at * *L““" x
the far end } T

i end slope of a

carry-ovar| [ ; simple beam jk at k @C‘T='?B _______ ©
xx'dx k due to a unit Gy

? ]

FLEXIBILITY L. 2RI 6EIk moment applied at:
the far end j

T 2




||

I
!

1 BM. xdx
,tjji ANGULAR X end slope of a ji
LOAD j L4EI simple beam ij at ] x ! x'
FUNCTION x due to loads L.
. 3
T 5 ANGULAR k _ end slope of a ®£ %‘—UT ---- %®
J LOAD X dx simple beam jk at j Jk
FUNCTION 3 LkEIX due to loads x ! x!
[ Ly

Table

Interpretation of

3-1

Angular Functions
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for the method of unequal segments are desired, auxiliary segments
can be included. The author has thus chosen to use the conjugate
beam approach utilizing the string polygon with unequal length seg-

ments.

3-2 Angular Flexibilities and Carry-Over Functions

3-2-1 Discussion

A typical span AB of a continuous beam of several spans is
considered (Fig. 3-1). Angular flexibility Fpp and angular carry-
over Gp) are obtained by applying a unit moment at A (Fig. 3-2).

The reaction of the conjugate structure at A is FAB and the reaction
at B is GBA‘ Likewlise, by applying a unit moment at B on the real
structure (Fig. 3-3), the reaction of the conjugate structure at B
is angular flexibility FBA and the reaction at A is anéular carry-
over GAB' By virtue of Maxwell's Reciprocal Theorem, the angular
carry-over at A is equal to the angular carry-over at B (GAB = GBA?'

Span AB may be divided into n unequal segments. Applying the
string polygon method (9), elastic weights for each segment are
evaluated and applied as loads to the conjugate structure.

A typical elastic weight is expressed in terms of the three

moment equation

The moment at various ordinates x due to either unit moment

at A or B is a linear function of x.



My = 1 —— :iiii% MB = 4
' —_— T e e )
| [ |
L ® ©® ©
o Ly ..i._Lj _.1__Lk _.i '
2 X5
X4 =¥ ; : xi' :
o g ] -
Xk : = Xk Vel
LAB =L :
Figure 3-1

Real Structure

[
[EEB Figure 3-2 GBA

Conjugate Structure - Unit Moment At A

Figure 3-3

Conjugate Structure - Unit Moment At B
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A 1 B
M, = 14 M=%
L L
1
v =X = X (3-2)
J L J L
B
M= e M=%k
L L
and the end slopes due to loads are zero
A ' B
=0 .Z-'O
ST >T,
Thus, from eq. 3-1
A
= x3! + x5 F. + x1G . -
L L L
and
P =M, s Nize G-
P ="1G,. +2iYF +7%k G . 3-4
J L 1) L 2 J L kj
where:
_A
Pj -~ elastic weight at section J due to a unit moment at A
_B
Pj - elastic weight at section ] due to a unit moment at B
Gij - angular carry-over flexibility of segment 1]
ij - angular carry-over flexibility of segment kj
ZP& = Fji + ij - sum of the angular flexibilities of

segments ji and jk
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The conjugate reactions are then

n
F_o= 2> Box
B = 5T
n (3-5)
Y -
G, = 2 Py X
BA j:’] J L
and n
B
Fo, = ;E p X
(3-6)
n
B 1
Gpp = ;E P 7]

3-2-2 Segment of Constant Cross Section

Considering typical segment ij (Fig. 3-4) of constant cross
section, the following refinements may be made for angular flexi-

bilities and carry-over functions (Eq's. 3-7).

® L 99,

Figure 3-4

Segment of Constant Cross Section

F..=F,, = F, = _Lj
oIt 3T
J (3-7)
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or,
LI
) El, 3Ly B,

(3-8)

where:
_ L.I
J LI,
G.' = Lon

J T.
6L 5

This assumption is reasonably justified for sections whose cross
section is not constant, provided average dimensions are taken for
the plate dimensioné.

Frém Eq's. 3-3, 4, the expression for a typical elastic

welght due to unit moment at A or B respectively, is

o= o1 % g0 o+ S G D R Gkﬂ
3 = | T 3 k
EI, | L L
(3-9)
-B - x X: 7]
P, = L |X 6 + X (Fr+FR'") + ZkG!
] BT, | T Y i J k T k|

From Eq's. 3-5, 6 , the end reactions of the conjugate beam

become
F,,= L F,.
B gf 4B
Fo, = _L Fg,' (3-10)
BA 5T BA
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3-3 Angular Load Functions

3-3-1 Discussion
By definition, angular load functions are end slopes due to

loads (Table 3-1). Mathematically stated:

B
j' BM% x'dx
A LEIX

T s

BM x dx
“c=f8_.___._x
BA A  LEI

X

where:

BM# = the bending moment at section x of the simple span
AB due to loads.

Those cases of loading considered in this thesis include:
1. Unit load applied at each cut-off ordinate (live load)
2. Uniform load

3. Dead load

3-3-2 Unit Load

The angular load functions due to a unit load at each cut—off
ordinate is useful not only for evaluating influence line ordinates
for live loads, but also for evaluating the angular load functions
due to uniform load and dead load.

The moment at any ordinate along span AB due to a unit moment
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at A (or B) is a linear function of that ordinate (Eg. 3-2).
The conjugate shear at A,ﬁlB,(Fig. 3-6) due to a unit moment

at A or B, respectively, is

-~ A n _ N
VAB = zi P? ik
J=1 L
= L P!
== "AB
EI,
and | (3-11)
- B L B 4 '
L/ R A # -
=1
= L Gpg
== VB
EI,

The conjugate shear at a typical ordinate,vj, (Fig. 3-6) due

to a unit moment at A or B, respectively, is

W=7 - P

J i i
=1 T
EI J
0
- . o i
P =P _-F
J 1 1
= L .V?'
EIo

which by virtue of the theory of the COnjugaté structure is equal to

the slope of the corresponding section of the real structure.

7 o= ejA

J
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e By e T S, -
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L
(a)

real structure

moment diagram due to MA =1
Figure 3-5
Real Structure With Moment Diagrams Due To Unit End Moments

A B K PRI

F‘l
O _ =
[ﬁlB (=) v

conjugate structure

=

conjugate moment diagram

Figure 3-6
Conjugate Structure With Shear And Moment Diagrams
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v =6°
J J

The conjugate bending moment at any ordinate,ﬁj,(Fig. 3-6) due

to a unit\homent«atjﬁ or B, respectively, can then be expressed

A A=A
M, M. v

= + R
i j LJ
EI, J
and ‘ (3-13)
T =X o+ Tr
J i T
-B
= 1 i
EIO

which by virtue of the theory of the conjugate structure is equal

to the deflection of the corresponding section of the real structure.

Thus,
-4
? - 0

From Maxwell's Reciprocai Principle, the deflection at section j

due to a unit moment at A (M, = 1) is numerically equal to the end

slope at A dﬁe to a unit force at section j. Thus,

Mo A = (T,
and | o - (3-1)

- B _
ARV A

BA']
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where: (’CAB) - angular load function (end slope) at A due to a
unit force applied at“gpctlon j

(1:BA) - angular load function (end slope) at B due to a
unit force applied at section j

3-3-3 Uniform Load
Typical span AB is loaded by a uniform load of intensity w

(Fig. 3-7).

Figure 3-7

Uniform Loading

For a typical concentrated load P?E one half the load of segments j
aﬁd k are considered to be concentrated at j.
gt
2 2
The angular load function for uniform load is obtained by
multiplying the equivalent concentrated loads by the corresponding
end slope influence line ordinakes (Eq's.-3—15).

s . (T 43);

j::‘] J



R4

(3-15)

where: w -~ uniform load intensity per‘unit length

UL
'“ - angular load function (end slope) at A due to uniform
load applied tn span AB

'T:UL - angular load function (end slope) at B due to uniform
BA" 1584 applied to span AB

3-3-4 _Dead Load

Typical span AB is loaded by dead load (Fig. 3-8). If typical
segment 1ij ié considered to be of uniform cross section (average
plate diménsions used for calculating cross sectional area), it

may be considered to be loaded by a uniform load of magnitude wj.

WD W, W W

Figure 3-8

Dead Load
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For a typical concentrated load Pj, one half the load of segments j

and k are considered to be concentrated at j.

P?L=erEﬁiEi+iEﬂ
Ay, 2 Ay, 2
The angular load function for dead load is obtained by multi-

plying the equivalent concentrated loads by the corresponding end

slope influence line ordinates (Eq's. 3-16).

DL _ e DL :
TAB - % Pj . (’EAB)J

H
-
e
o
-
=

(3-16)
DL

EI,
where: - @ - unit weight of construction material
DL
AB ~ angular load function (end slope) at A due to dead
load of span AB
DL

- angular load function (end slope) at B due to dead
BA  10ad of span AB .

A - reference area
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3-4 Computer Program

=4=-1 R ts o
The Phase II computer program (Fig's. 3-2, 10)is written for
the IBM 650 electronic computer using FORTRAN language and floating
point arithmethiec The program yields a solution for:
FABPM - angular flexibility coefficient at end A of span AB
FBAPM - angular flexibility coefficient at end B of span AB

GAORB - angular carry-over coefficient at either end A or B of
span AB

BMA(I) - conjugate moment coefficient at section i of the con-
jugate structure due to unit moment at A(M, = 1); also
the deflection coefficient of the real structure at i
due to unit moment at A; als» the angular load function
coefficient at A due to a unit force applied at sec-
tion i

BMB(I) - conjugate moment coefficient at section i of the con-
jugate structure due to unit moment at B (M; = 1); also
the deflection conefficient of the real structure at i
due to unit moment at B; also the angular load function
coefficient at A due to a unit force applied at sec-
tion 1

TABUL - angular load function coefficient at A due to uniform
loading

TBAUL - angular load function coefficient at B due to uniform
loading

TABDL - angular load function coefficient at A due to dead load

TBADL - angular load function coefficient at B due ton dead load

3-4~2 Data Required
The input data necessary for computing the desired angular

functions include:

N - total number of segments
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S(I) - distance from left end of span AB to the cut-off

point at i divided by the span length L (¥i)
L

EYE(I) - moment of inertia of segment i

ARFA(I) - cross sectional area of segment i

The quantities EYE(I) and AREA(I) are read directly from the re-

sults of the section properties program (Phase I).

3-4~3 Auxiliary Quantities

Other quantities integral in the program are denoted:

FPRIM(I)
GPRIM(I)

PRIMA(I)
PRIMB(I)
VBARA(I)
VBARB(I)

EYEO

AREAQO

flexibility coefficient of segment 1
angular carry-over coefficient of segment 1

individual elastic weight coefficient at i due to a
unit moment at A (My = 1)

individual elastic weight coefficient at i due to a
unit moment at B (MB = 1)

conjugate shear coefficient at section i of the con-
jugate structure due to unit moment at A (MA = 1)

conjugate shear coefficient at section i of the con-
jugate structure due to unit moment at B (MB = 1)

reference moment of inertia (taken as EYE(2) in
computer program)

reference area (taken as AREA(2) in computer
program)



START
DIMENSION:
I
READ:
N
READ o :
; S(1) TS LN
%.
READ: o
EYE(I), AREA(I) ¥3 I2’N
I
COMPUTE:
FPRIM(I), GPRIM(I
pRIMgEIgiLPanEIB
COMPUTE:
FABPM, FBAPM, GAORB
I
PUNCH:
FABPM, FBAPM, GAORB
I
COMPUTE: ypama(T), VBARB(I)
-
¥ ]
PUNCH: 3
_E&-ﬁ'
UNCH: -
: BMB(T) LA
i L ]
COMPUTE:
TABUL, TBAUL
¥
PUNCH:
TABUL, TBAUL
I
COMPUTE:
TABDL, TBADL
¥
FANCED TABDL, TBADL
T a |
PUNCH: =
FPRIM(T), GPRIM(I) : Jz’N

E &+ Phase III
Figure 3-9

Flow Chart

Phase II - Angular Functions
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C 0000
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PHASE 2

EVALUATION .OF ANGUUAR FUNCTION
ANGULAR FLEXIBILITIES AND
CARRY - OVER VALUES X
DIMENSION S{25)s EYE(25)s =~
FPRIM{25)s GPRIM(25)s
PRIMA(25)s PRIMB(25)» AREA(25)
s VBARA{25). VBARB(25)

sBMAL 25} BMB(ZS)

READ» N

READs {S(1)s I=1sN)

DO 5 I=24N

READs EYE(Y)» AREA(I}

EYEO = EYE{2) .

AREAO = AREA(Z)

DO -9 I=2sN

FPRIMIT) » ((S(I) ~ S(I-1)) *
EYEO) 7/ (3¢ % EYE(1))

GPRIM(I) = FPR[M([) 7/ 2

K = N=1

DO 13 I=29K

PRIMB(I) = S(I-1} # GPRXM(ll

+ SU1) # (FPRIM{I) + FPRIM{1+]
)+ Stl+1) # GPRIMI1+1})
PRIMA(E) a {14=S(I=1)) *GPRIM

-0
0
1
0
0
0
0
1
2
o]
13 1 (1) + {1e=S(1}) # (FPRIM(I) +
13 2 FPRIM(1+11). +(1s - S(I+11) *
13 3-GPRIM(I+1}
14 0 PRIMBI1) = S(2) # GPRIM(2)
15 0 PRIMA(1) = FPRIM(2) + (1e~5(2)
15 1 ) * GPRIM(2) )
16 0 PRIMB(N) = SIN-1)} *# GPRIM{N)
16 1 + FPRIM(N} ! ’
17 0 PRIMAIN} ‘= (le=S(N=1)) #
17 1 GPRIMIN)
18 0 FABPM = 040
19 0 FBAPM = 040
20 0 GAORB = 0.0
21 0 DO 24 I=1»N
22 0 FABPM = FABPM + (PRIMA(I} *
22 1 (1e=5(1)))
23 0 FBAPM = FBAPM + (PRIMB(I) +#
23 1 SUI)}
24 0 GAORB = GAORB + (PRIMB(I) #
24 1 (le=S(I1}))
25 0 PUNCHs FABPM» FBAPMs» GAORB
C 0000 O CASE OF UNIT LOAD
C 0000 O CALCULATE MODIFIED ANGULAR
C 0000 O LOAD FUNCTIONS DUE TO UNIT
C 0000 0 FORCE APPLIED AT SECTION 1le
C 0000 O ALSO MODIFIED DEFLECTION OF
€ 0000 0 SECTION ! DUE TO UNTT END
C 0000 O MOMENT
26 0 VBARA(Z) = FABPM =~ PRIMA(1}
27 0 YBARB(2) = GAORB - PRIMB{1)
28 0 DO 30 I=3N
29 0 VBARA(!) = VBARA(]-1] =
29 1 PRIMA({I=1}) :
30 0 VBARB{(I) = VBARB(I~1)}
30 1 - PRIMB(I~1)
31 0 BMA(1) = 040
32 0 BMB(1) = 040
33 0.D0 35 1=2,N
34 0 BMA(L]) = BMA(I-1} + (S5(1) =~
34 1 S(I~1)) * VBARA(I}
35 0 BMB(1) = BMBI(I-1) + (S(I)
35 1 - S(1-1)) # VBARB(1)
36 0 PUNCHs (BMA{I)s I=1laN)
37 O PUNCHs (BMBLI)s I=1sN)
C 0000 O CASE OF UNIFORM LOAD
C 0000 0 CALCULATE MODIFIED ANGULAR
C 0000 0 FUNCTIONS DUE TO UNIFORM LOAD
38 0 TABUL = 0.0
39 0 .TBAUL = 040
40 0 DO 42 I=2,K
41 0 TABUL = TABUL + ({SlI+]l) =
411 S(I~1)) "/ 240) * BMA(I)
42 0 TBAUL = TBAUL + ((S{I+]1) -
42 1 S(I-1)) /7 2+) = BMB(I})
43 0 PUNCH» TABULs TBAUL
C 0000 O CASE OF DEAD LOAD
C-0000 0 CALCULATE MODIFIED ANDULAR
C 0000 O FUNCTIONS DUE TO DEAD LOAD
44 O TABDL = 040
45 0 TBADL = 040
46 0 DO 48 I=2,K
47 0 TABDL = TABDL+(AREA(I)/AREAO *
47 1 (S(11=StI=1))/2.0 + AREA{I+1)
47 2 /AREAO # (S{I+1)=S(1}) 7 2.0}
47 3 BMAll)
48 0 TBADL = TBADL + IAREA(!)/AREAO
48 1 * (S(1)=S{I=~11) / 240 + AREA{
48 2 1+1)/ AREAO # (S{1+1)~S(I)) /
48 3 240) * BMB(I) .
49 0 PUNCHe TABDL»s TBADL
50 0 DO 51 I=2,N
51 0 PUNCHs» FPRIMIT)y GPRIM(I)
52 0 GO .TO 2
53 0 END
Flgure 3-10

FORTRAN PROGRAM - Angular Functlons
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CHAPTER IV

DEFLECTIONS

4=1_Discussion

The total deflection A, at any section x due to loads can be

expressed

Ay = BA, + M (,tAB)xJFMB ("'UBA)X (4-1)

where: [&X - total deflection at ordinate x due to loads

B 45:X - deflection at ordinate x of simple beam AB due to
loads

MA - bending moment at support A due to loads
Mﬁ -~ bending moment at support B due to loads

(W:AB) - deflection at ordinate x of simple beam AB due to

X —
MA = 1 '
(’CBA)X - deflection at ordinate x of simple beam AB due to
M, = 1
B

A numerical solution for deflection can be obtained only éfter
Phase II has been completed for angular functions. A solution for
the final end moments can be obtained by substituting into the three
moment equation. The simple beam deflections due to unit moment at
A or B are BMA(I) and BMB(I) respectively, from the computer program
for angular functions.

The simple beam deflection due to loads is developed as Phase

30
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III. ‘Two types of loading are considered:
1. uniform load

2., dead load

4=2 Uniform Load

Typical span AB is loaded by a uniform load (Fig. 4-1), causing
deflection of the real structure.

By virtue of the theory of the éonjugate beam, the simple begm
deflections due to uniform load can be evaluated as the magnitude of
the conjugate moment diagram.

A typical elastic weight is from Equation 3-1

UL i L i1
P, = M G, + M XF + M G + YU
h i ij J j k ki J

The bending moment diagram for a simple beam with uniform loading is
represented by a second degree parabola. A typical moment may be ex-

pressed as
M = W? [+ %G -]
8 L L

Thus a typical elastic weight is

~UL a X, X.
Py = [4 ~_L_;) Gy + AEl(Fj+Fk)(1—_L_;L)
+‘4: :] [’ wL 3 . WLk3:
2431 24ET, ]
UL —UL'
P o= 3 BE (4=2)
J . 24EI, I

The conjugate end shear (Fig. 4-2) is



moment diagram

B

deflection
Figure 4-1
Deflection Due To Uniform Load
=UL =L UL <UL UL
A M T S M DO
(a) '
—UL =UL

conjugate structure V.

(e)

conjugate moment diagram

Figure 4-2
Conjugate Structure Loading With Shear And Moment Diagrams
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Vpg = RGN (4-3)

and the conjugate shear at any section is

e

[ i ]

UL —UL"

V. = Wl 7. (4-L)
J RLET_

The conjugate moment at any section is then the simple beam

deflection due to uniform load.

UL —UL — -
BA . = M. =M[,JL+VI9LL_
] 3 1 J ]
1
Ba b = w4 Ba (4-5)
j 2,FI ]
(e}
4=3 Dead Load

Typical span AB is loaded by dead load (Fig. 4-3), causing de-
flection of the real structure. If typical segment ij is considered
to be of uniform cross section as in Chapters 2 and 3, the segment‘>
is loaded by uniform load of magnitude w. where

W . c 'Aj
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L
To calculate end shear VﬁB, the total uniform load of typical
segmént ij is considered concentrated at the center of the segment.

End shear Vig can then be evaluated.

.
s

n ' -
DL DL ,x.' L.
e = = P&+ Ly
=1 4 L 2L
DL LY L X! L,
Vg = L C 4, S A Lyl o+ ._.1)]
J=1 LA L L . 2L
(DL. _ L' , ,
-ViB =Le & VﬁB (4-6)
DL . .
where: Pj = ijj = @ Aj . Lj - total weight of segment 1]
¢ - unit weight of construction material
Aj - cross sectional area of segment ij
Aé - reference area

The moment at any ordinate j is equal in'magnitude to the
area of the shear diagram to that point. Although segment ij is
loaded by uniform 1oad.wj, the shear at ordinate j i1s equal to the

shear at section i minus the total load on section ij,lP?Lq

R .
j 1 j
. L L'
V= LA T (4-7)

And the moment at any ordinate-j is:

L _ 1. (DL L
ijn =M o+ Lyp +v]J?)

V]



lllﬁll [T
® O ® e
J

L
(a)
real structure with dead loading

n
momeﬁt diagram
ADL DL DL
< S
e €
deflection
Figure 4-3
. Deflection Due To Dead Load
=DL L -DL
[rad ol SaiE ShE LR
TAB _ 184 VEA]
conjugate structure loading
DL
L
g

conjugate moment diagram
Figure 4-4
Conjugate Structure Loading With Shear And Moment Diagrams
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EPL 2 «DL!
. = L A M, -8
J © 4, i (4-8)

A typical elastic weight due to dead load (Fig. 4~4) is then

from Equation 3-1

=D DI, , ! DL ' ' DL . DL
P, = L MY G, + MU (F. + F )+ G 'l + .
J T [ i "1 J ( J k ) " k] Z:ftﬁ
o - v
—DL 3 _pL!
P, = CAL" B, (4-9)
24ET
where:
DL _ DL DL
=T T. + 7T
J J k
3
= 400 L aen’
24E; 24ET,
AL’ 31 A, I
= 04 [fh (.If..'i) Lo+ _1;(51{_)3_9]
2481 LA, \L Ij A \L I
The conjugate end shear (Fig. 4-4) is
=DL no
Ty = > P X
=1 4 L
_DL An° D DL g
i = Lo > R
2LEI,  §=1 L
S '
-DL AL DL
Ty = ¢4, V,n | (4-10)

24EIo
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and the conjugate shear at any section is

-DL - =DL -DL
\ = V., - P

J 1 J
P oo eal’ Pt (4-11)
! 24ET !

The conjugate moment at any section is then the simple beam

deflection due to uniform load.

FEIN I

i b J

DL . QALY g DL (4-12)

BA © NP :
J R4ET J

44 _Computer Program

4=4~1_ Results Of Program

The program presented (Fig's. 4-5, 6) is written for the IBM
650 electronic computer using FORTRAN language and floating point
arithmetic.. The program yields a solution for:

BMUL(I) - deflection coefficient at ordinate i of simple span
AB due to uniform loading

BMDL(I) - deflection coefficient at ordinate i of simple span
AB due to dead loading

4=~4~2 Data Reguired
The input data necessary for computing these deflections are
N - total number of segments

S(I) - distance from left end of member AB to the cut-off



EYE(I)

AREA(I)

FPRIM(I)

GPRIM(I) -

38

point at i dividedby the span length L - *i
I

moment of inertia of segment i
cross sectional area of segment i
angular flexibility coefficient of segment i

angular carry-over flexibility coefficient of segment i

The quantities EYE(I) and AREA(I) are answers from Phase I (Sectional

Properties).

The quantities FPRIM(I) and GPRIM(I) are answers from

Phase II (Angular Functions). The program has been written so as to

take these answer cards directly as data for Phase III (Deflections).

=4=3 Auxili

tities

Other quantities integral in the program include:

PBRUL(I) -
VABPM -
VPM(I) -
BMPM(I) -

PBRDL(I) -

VABDL (I) -

VABUL(I) -
VDL(T) -
VUL(I) -

EYEO -

AREAO -

elastic weight coefficient due to uniform loading
end shear coefficient at A due to dead load

shear coefficient at section 1 due to dead load
moment coefficient at section i due to dead load

elastic weight coefficient at section i due to dead
load

conjugate shear coefficient at A due to dead load

conjugate shear coefficient at A due to uniform
load

conjugate shear coefficient at section i due to
dead load

conjugate shear coefficient at section i due to
uniform load

reference moment of inertia (taken as EYE(2) in
computer program)

reference area (taken as AREA(2) in computer program)



START
!
DIMENSION:
!
READ:
N
! |
READ: I=1,N
S(I) I
READ: I=2,N
EYE(I), AREA(I) |
|_._._..__=_'
: I
READ: T=2.0
FPRIM(I), GPRIM(I) |
;
COMPUTE:
PBRUL
I
COMPUTE:
VABPM, VPM(I), BMPM(I)
T
COMPUTE:
PBRDL
!
COMPUTE :
VABDL, VABUL
I
COMPUTE:
VDL(I), VUL(I)
T
COMPUTE:
BMDL(I), BMUL(I)
PUNCH: . |
BMDL (I) 1=2,8
—E— - —
PUNCH: I=o2oN
BMUL (I) | 2
|
Figure 4-5

Flow Chart Phase III- Deflections
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PHASE . 3

SIMPLE BEAM DEFLECTION

FOR DEAD LOAD AND UNIFORM LOAD
ELASTIC WEIGHT DUE TO UNIFORM
LOAD .

DIMENSION 5{25)s EYEL25)
FPRIM(25)s GPRIMI25},
AREA{25)s PBRUL(25)

DIMENSION VPM(25)s BMPM{25),
PBRDL(25)s VDL{25)s VULL(25)y
BMDLE25)» BMULI25)

READs N

READs (S{I)s [=1sK)
DO 6 I=2.N

READs EYE(T)s AREA(1)
DO. 8 I=2.N

READs FPRIM{I)s GPRIM(1)
EYEO = EYE(2)
AREAQ = AREA(2)

K = N-1

DO 11 I=24K

PBRUL(I) = {(44/34) * (SlI-1}) ¥
(le~S(I=1)) * GPRIM({I} + SUI}
* (1.-S(1)) * (FPRIM(I} +
FPRIM(T+1}) + S(l+1) »
(le=S{I+1)) * GPRIMII+1))}
PBRUL(I) = PBRUL(1) + (EYEO/

EYE(L)) * ({S(I} = S(I=1))#x3,
} + (EYEO/ZEYEU(I+1)) »
S{I+1)1-5(1))*x3,})

PEBRULIL) = (4e/36) % SL2} *
{le=8(2)) * GPRIMI2) + {EYEO/
EYE(2)) * (S(2)%¥34)

PBRULIN) = (4e/3e) * S(N-1) *
{le=S(N-1)) * GPRIM{N)+ (EYEO/
EYE(N)) # ({S{N) - S(N-1))
3,4

ELASTIC WEIGHT DUE TO DEAD
LOAD

VABPM = 040

DO 16 I=2+N

VABPM = VABPM + AREA(I)}/AREAOQ®
(SEI)-S(I-1)) * ((le-S(I)) +
{e5% (S{I)~S(I=1)1)1)}

VPM(1) = VABPM

DO 19 [=2sN

VPM(1) = VPM{I-1}) - AREA(Il} /
AREAC * {S{I1)-St1=-1))

BMPM(1} = 040

DO 22 1=2sN

BMPM({I) = BMPM{I=1) + <5 #*
(S{I)=S{I=1})) * (VPM{I~]) +
VPMI1})

DO 25 [=2,K

PBRDL(1) = AREA(1)/AREAO *((S
(1) -S(i-1)1%*3,) * (EYEO/EYE
(1)) +AREA(I+1)/AREAQ * ((S(I+
1)-S(I))*#%34 ) *(EYEO/EYE(I+1))
PBRDL(I) = PBRDL{I) + 244%
(BMPM{1~1} * GPRIM(I-1} +
BMPM(I) * (FPRIM{I} +. |
FPRIMII+1)) + BMPM{1+1}*GPRIM(
1+1)) ’
PBRDLI(1) = 24¢% BMPM(2} +
GPRIM{2)+AREA(2) /AREAO * (512)
**#3,) * {(EYEO/EYE(2))

PBRDL(N} = 244% BMPM(N=1l) #
GPRIMIN-1) + AREA(N)} 7 AREAO *
((SIN}=-S(N-1))#¥3,} » (EYEO /

EYEIN))

VABDL = 040

VABUL = 040

DO 32 I=1sN

VABDL = VABDL+(1le=SU)) #
PBROLI{1} .

VABUL = VABUL. + (1e=St{1)) *
PBRULI(T)

vOL{1} = VABOL

VUL(1) = VABUL

DO 37 [=2»N

vDL(1) = vDL(I-1} - PBROL(I)
VUL(l) = VUL(I-1} - PBRULLI)
BMDL{1) 0.0 .

BMULI1) = 040

DO 42 1=2,N

BMDL(I)} = BMDL{I-1) + {S(1) -
S(I-1)) * VvDL(I

BMUL(1) = BMUL(I=1) + {S(I} ~
SUI-1)) * VULLI}

PUNCHs (BMDL{I}s 1224N)
PUNCHs (BMUL(I)s I=2sN}

G0 TO 3

END

Figure 4-6

FORTRAN PROGRAM - Deflections



CHAPTER V
APPLICATION

5-1__ Introduction

One span from the five span‘continuous beam Benton Street
Bridge in Iowa City, Iowa (1,5) is considered (Fig. 5-1, 2). The
bridge, designed by Ned L. Ashton, is an all welded steel deck
girder highwa&'bridge completed in July, 1949.

Sectional properties, angular function coefficients, and de-
flection coefficients are computed using the FORTRAN programs from
Chapters 2, 3, 4. Available known results check favorably. Co-
efficients must of course be multiplied by the corresponding cén-

stants to obtain final angular functions or deflections.

5-2 Cross_Sectional Properties
Data is presented in inches or dimension-less quantities
and -are of ‘the form: |

N

M(I)
B(I,J), H(I,J), J =1, M(I) 1 I=2,8

A
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78"

Figure 5-1
Application Problem
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Figure 5-2

Cross Sectional Dimensions



1800000052+

8+

3+
1800000052+
5000000050+
1800000052+

5+
1700000052+
1800000052+
5000000050+
1800000052+
1700000052+

5+
1700000052+
1800000052+
5000000050+
1800000052+
1700000052+

5+
1700000052+
1800000052+
5000000050+
1800000052+
1700000052+

3+
1800000052+
5000000050+
1800000052+

3+
1800000052+
5000000050+

5+
1700000052+
1800000052+
5000000050+
1800000052+
1700000052+

1250000051+
4550000052+
1250000051+

3593750050+
1250000051+
4550000052+
1250000051+
3593750050+

5000000050+
1250000051+
4550000052+
1250000051+
5000000050+

5000000050+
1250000051+
4550000052+
1250000051+
5000000050+

1250000051+
4550000052+
1250000051+

2000000051+
4400000052+
2000000051+

7500000050+
2000000051+
4400000052+
2000000051+
7500000050+

Computed answers are of the form:

| EYE(I), AREA(T)

I =
DEPTH(T), SXTOP(I), SXBOT(I)i:}—

43



2851832055+
4800000052+
3566224355+
4871875052+
3851574855+
4900000052+
3851574855+
4900000052+
2851832055+
4800000052+
4166136955+
4800000052+
5681317755+
4950000052+

6775000052+
1188263354+
7996875052+
1464004854+
8475000052+
1572071354+
8475000052+
1572071354+
6775000052+
1188263354+
9400000052+
1735890454+
1195000053+
2295482054+

5-3 Angular Functions

1188263354+
1464004954+
1572071354+
1 57207.1 354+
1188263354+
1735890454+
2295481854+

Sectional properties, moment of inertia and area, are read as

data directly from Phase I (Cross-Sectional Properties).

required is of the form:

8+

2051282050+ 2307692350+ 4358974350+ 6410256450+ 8205

9166666650+ 1000000051+
2851832055+ 6775000052+
3566224355+ 7996875052+
3851574855+ 8475000052+
3851574855+ 8475000052+
2851832055+ 6775000052+
4166136955+ 9400000052+
5681317755+ 1195000053+

Computed answers are of the form:

FAB, FBA, GAORB

BMA(I), I = 2,8
BMB(I), I = 2,8
TABUL, TBAUL

TABDL, TBADL

The data

128250+



FPRIM(I), GPRIM(I), I

2941686450+
1128728049+

2828764747+
3279186749+
2633633251+
6837606649+
6834857348+
5062787849+
5062788149+
5982906049+
219399579+
1394351249+

2503127450+
4074204449+
2100000043+
390622287+
2804428041+

3287989649+

2654712951+
3418803342+
3417429048+
2531393949+
2531394143+
2991453049+
1096997949+
6971756048+

5=/ Deflections

Answer cards FPRIM(I) and GPRIM(I) from Phase II (Angular Functions)

are added to the data cards for Phase II to form data cards for Phase:

IIT (Deflections).

g+

9166666650+
2851832055+
3566224355+
3851574855+
3851574855+
2851832055+
4166136955+
5681317755+
6837606649+
6834857948+
50627878493+
50627881 49+
5982906049+
2193395743+
1394351249+

2051282050+
1000000051+
6775000052+
7996875052+
8475000052+
8475000052+
6775000052+
9/,00000052+
1195000053+
3418803349+
3417423048+
2531393949+
2531394149+
2991453049+
109699794+
6971756048+

2,8

1360281550+

4335788049+ 5173109449+ 4252934349+ 2383419349+
4333126947+ 6991551447+ 7645451547+ 5399194547+

S(I), I = 2,8

EYE(I), AREA(I), I = 2,8

FPRIM(I), GPRIM(I), I = 2,8

2307692350+ 4358974350+ 6410256450+ 8205128250+
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Computed answers are of the form:
BMDL(I), I = 2,8
BMUL(I), I = 2,8
1852873350+ 2043632050+ 2857046250+ 2718139550+ 1649428250+ 8127633249+
8560885643+

2145895749+ 2347367349+ 3368698442+ 3164053242+ 1203821642+ 2138638048+
1330000043+



CHAPTER VI

SUMMARY AND CONCLUSION

6-1__Summary

In this thesis three separate programs for the IBM 650 elec-
tronic computer have been developed in FORTRAN language utilizing
floating point arithmetic. The first program gives a solutinn for
the sectional properties of a typical span from a continuous var-
iable cross section structure. An upper limit of twenty five seg-
ments with nine plates per segment has been taken. The IBM 650
could handle a greater number of segments or plates if needed and
correctly dimensioned. The second program gives the solution for
angular functions for this span. The third program gives a solu-

tion for the deflections of this span due to dead and uniform load-

ing.

6-2 Conclusion

The analysis of a continuous structure of variable cross section
for cross sectional properties, angular functions, and deflections
proves to be quite adaptable to solution by electronic computer.
Once FORTRAN statements have been processed and an object program ob-
tained, very little machine time is required for a typical solution.

The derivation and application is best suited for a plate
girder type structure where the cross section is uniform between

cut-off points However, when the cross section between cut-off

L7
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points 1s not uniform, basic assumptions can be made for sectional
dimensions, ylelding very good results.

An unfortunate characteristic of obtaining deflections is that
only those deflections where elastic weights are applied may be cal-
culated. However;'when additional considerations of deflection are
desirable, additional elastic weights may be considered at these
locations.

It is felt by the author that this work can be extended in sub-
sequent research to include the evaluation of influence line ordi-
nates and the development of a design procedure using the electronic
computer. It is expected that this research would open the way for

the development of an optimum design approach.
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