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NOMENCLATURE 

A - cross sectional area 

b - width of plate 

E - modulus of elasticity 

FAB, FBA - angular flexibility 

GAB, GBA - angular carry-over 

h - depth of plate 

I - moment of inertia 

L- - length of span 

Li, Lj' Lk - length of segments i, j, and k 

Mi, M.' 
J I\ - bending moments at points i, j, 

m - number of plates 

n - number of segments 

P - intensity of concentrated load 

P - elastic weight 

S - section modulus 

w -. intensity of load 

DL - dead load 

UL - uniform load 

A - deflection 

~ - density of construction material 

"'tij' ~ji - angular load functions 

viii 

and k 



CHAPTER I 

INTRODUCTION 

1-1 Discussion 

The analysis of a continuous plate girder structure may be 

solved by either the flexibility or stiffness approach. In this 

thesis the flexibility method is considered with the three moment 

equation adopted as the mathematical model for analysis. 

Computing angular functions for a structure which possesses 

nwnerous cross sectional variations, by conventional methods, is a 

laborious process. Much current literature is advocating the use 

of electronic computers for structural problems which are of a 

repetitive nature. The primary benefits obtained are economy, in­

crease in productivity, solutions with greater accuracy, and opti­

mization of design. 

Many .highway departments have developed computer programs to 

assist in the analysis and design of simple and continuous bridges. 

A series of four reports on the analysis of continuous beam bridges 

published by the School of Civil Engineering at Oklahoma State Uni­

versity (4, 7, 8, 10) is concerned with the complete analysis of a 

parabolic haunched bridge by electronic computer. Exline (3) pre­

sented ·a ·eomputer program for angular functions for a member with 

abrupt change in cross section but l i mited to members with a 

maximum of three variations. 

1 



In this thesis three separate programs for the IBM 650 electronic 

computer are developed in FORTRAN language utilizing floating point 

arithmetic. These programs are for sectional properties, angular 

functions, and deflections due to dead or uniform loading. 

1-2 Flexibility Method 

Having calculated the angular flexibilities, angular carry-over 

functions, and angular load functions for a structure of variable cross 

section by electronic computer, the three moment equation flexibility 

matrix is obtained by substitution •. By inverting the flexibility 

matrix, a solution for final end moments may be obtained. 

The three moment equation 

Gi. M. + L F .M + G M = - 2:: ,,.., 
J 1 J j kj' k ~j 

may conveninetly be written for each redundant and placed in matrix 

form. 

I:F o·G1o M 
0 I 'to 

Go1 !F1 G21 M1 l 't1 
• • 

Gij IFj Gkj M, 
J 

= (-1) I 'tj (1) 

• .. • • 

G n-2,n-1 IFn-1 G 
n,n-1 

M n-1 l: 't'n-1 

G n-1,n IF Mn L 't'n n 

Using abbreviated notation, equation (1) can be rewritten 

= (-1) (2) 
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where: 

[ F j J - fiexibilty matrix 

Inversion of the flexibility matrix yields a solution for final 

end moments. 

(3) 

Programs for matrix inversions are readily available;, thus·, they have 

not been developed in this thesis. Once final end moments are 

known, final defleqtions may be obtained as developed in Chapter IV. 



CHAPTER II 

CROSS SECTIONAL PROPERTIES 

2-1 Discussion 

Determination of the secti0nal properties of each unique cross 

section along the span is necessary for the evaluation of angular 

functions. Those properties considered and programed include: 

Ax - cross-sectional area at section x 

Ix - moment of inertia at section x 

hx - total depth at section x 

STx - section modulus for top at section x 

SBx - section mod'Ulus for bottom at section x 

,,, ... :, ...... , .. 

The moment of inertia Ix is used directly in the evaluation 

of angular functions (Chapter III). The cross sectional area Ax 

is needed in the evaluation of angular functions for dead load. 

Although the applicat.ion of the sectional moduli Srx and SBx is 

beyond the scope of this thesis, they are easily obtained and are 

included for use in the possible extension of this thesis. The 

total depth of each section is also included for the designer's 

convenience. 

2-2 Derivation 

A typical span AB (Fig. 2-1) of a continuous plate-girder of 

variable cross section is divided into n segments. For segments 

4 
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of uniform cross section each change in cross section may be con-

sidered the termination and beginning of a segment. The width and 

depth of a typical plate at section xis designated as °bxj and hxj 

respectively (Fig. 2-2). The width and depth of a segment of non-

uniform cross section must be approximated by some appropriate 

6 

method. For example, the depth of a segment whose depth is not con-

stant may be approximated as the depth at mid-segment or as an aver-

age of the end depths. Numbering of sections begins with two 
1
to 
I 

more easily facilitate writing of the computer program for Phase II 

(Angular Functions). Each time a subscript designates a particular 

segment, the cross section to the left of the subscript is inferred. 

The cross 

Ax= 

sectional area of segment xis 
m 

L bxj hxj 
j=1 

(2-1) 

The distance from the bottom plate to the centroid of the sec-

tion (Fig. 2-2) may be evaluated as 
m 

I 
j=1 

(bxj h .)(YB .) XJ X, J 
(2-2) YBx = 

The distance from the top plate to the centroid of the section 

is 

m 

Yrx = I (~l (2-3) 

j=1 



7 

The distance from the centroid of the section to the centroid 

of each plate is 

y · = 1Bx XJ YB . x, J 

The moment of inertia of a typical section is 

And 

and 

m 
Ix = L 

j=1 

the corresponding 

STx = Ix 
--.:.:~, 

YTx 

8Bx = Ix 

YBx 

2-3 Computer Program 

2-3-1 Results of Program 

section moduli are 

(2-4) 

(2-5) 

(2-6) 

The program presented (Fig's. 2-3,4 .) is written for the IBM 

650 electronic computer using FQRTRAN language and floating point 

arithmetic. Notation of typical section x in the derivation has 

been changed to section i in the computer program. The program 

yields a solution for: 

AREA(I) - the cross sectional area of section i 

EYE(I) - the moment of inertia of section i 
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SXTOP(I) - the section modulus for the top for section i 

SXBOT(I) - the section modulus for the bottom for section i 

DEPTH(I) - the total depth of section i 

2-3-2 Data Required 

The input data necessary for computing the desired sectional 

properties include: 

N - the total number of strip segments 

M(I) - the total number of plates at section i 

B(I,J) - the width of plate j at section i 

H(I,J) the depth of plate j at section i 

2-3-3 Auxiliary Quantities 

Other quantities integral in the program are denoted as: 

YBOT(I) - the distance from the bottom to the centroid of 
section i 

YTOP(I) - the distance from the top to the centroid of 
section i 

YBAR(I,J) - the distance from the bottom of section i to 
the centroid of plate j 

YPLAT(I,J) - the distance from the centroid of section i to 
the centroid of plate j 
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START 

~ 

DIMENSION: 

l 
READ: 

N 

~ 

READ: I I = 2,N I 
M(I) 

• l 
READ: I J=1 ,M(I) I B(I,J), H(I,J) 

I 
-

COMPUTE: 
Ax 

~ 
COMPUTE: 

YBx j 
' ' 

YBx 

l 
COMPUTE: h -

x, YTx 

1 
COMPUTE: -

y . 
XJ 

L 

COMPUTE: 
Ix 

l 
COMPUTE: 

8Tx, 8Bx 
l 

PUNCH: 
I Ax X., 

1 
PUNCH: 

h x, s'F x., 8Bx 

Phase II 
Figure 2-3 

Flow Chart Phase I - Sectional Properties 



C o.oo·o O PHASE ONE;.EVALUAfiON OF CROSS 
C 0000 0 .SECTIONAL PROPERTIES AREA,. . 
C 0000 0. MOMENT OF INERTIA1DEPTH1AND 
C 0000· 0 SECTION MODULI . 

1 0 DIMENSION AREAl25J, EVEl251, 
11 YBOTl251tYTOPl2511 .SXTOPIZ5li·. 
1 2 SXB0Tl25I, Ml251, B125,91 

100 0 DI MENS ION HI 25 ,91, VBARl2519 It 
100 1 YPLATl25,9l, DEPTHl251, 
100 2 TYB0Tl25I 

2 0 READ, N 
3 O.DO 103 1=2tN 
it O READ·, Ml JI. 

101 0 L • Ml II 
102 0 DO 103 J•l,L 
103 0 READ, Bll,JI, Hll,Jl 

C 0000·0 CALCULATE CROSS SECTIONAL AREA 
·5·0 DO 9 1•2,N 

6 0 AREA I 11 • 0 .o .. 
70L•·MIII 
8 0 DO 9 J•l,L. 
9 0 AREAIII. • AREAIII + BlltJI* 
9 1 HU,JI . 

C 0000 0 CALCULATE DISTANCE FROM 
t 0000 l BOTTOM TO CENTROID OF 
C 0000 2 EACH PL.ATE - YBAR 

10 0 .. DO 14 1•2 ,N 
11 0 YBARll~ll • Hlt,11/2,0 
120L=MIII 
13 0 DO 14 J•2,L 
14 ·o ·veARI I ,JI ... YBARI ltJ-11 
lit l + Hll,J-11/2,0 + HlloJl/2,0 

C 0000 0 CALCULATE DISTANCE FROM 
C 0000 0 BOTTOM TO CENTROID .OF SECTION 

15 0 DO 16. I ·=2,N 
16 0 TYBOTIII • 0,0 
17 0 DO 21 1=2,N 
18 0 L =Ml II 
i9 0 DO 20 J•lt.L 
20 0 TYBOTI JI. • I TYBOT 1111 + 
20 l I.IBll,Jl*HIJ.,JI) * YBARll,JII 
21 0 YBOTIII • TYBOTIII/AREAIII 

C 0000 0 CALCULATE DISTANCE FROM TOP 
C 0000 0 TO CENTROI.D OF EACH SECTION 

22 0 DO 27 1•2.oN 
23 0 DEPTHIII • 0,0 
240L•·MIII 
25 0 DO 26 J•1,L . · · 
26 0 DEPTHIII • DEPTHIII + Hll,JI 
27 0 YTOPI II • DEPTHI II - YBOT.111 

C 0000 0 CALCULATE DISTANCE. FROM 
C 0000 l CENTROID OF EACH PLATE TO .THE 
C.0000 2 CENTROID OF THE SECTION 
C 0000 3 YPLATE .. 

28 0 DO 31 i •2,N 
29 0 L • MIii 
30 0 DO 31 J=l,L 
31 0 YPLATl(,JI • YBOTIU -
31 l VBARlloJI 

C 0000 0 CALCULATE.MOMENT OF 
C 0000 l INERTIA -EYE 

32 0 00 36 ·1•2,N· 
33·0 EYEIII • O,O 
3it0L•MIII 
35 0 DO 36 J•l,L 
36 0 EYEIII • EYEIII + IBlltJI * 
36 1 IHll,Jl**3oll I 12, + 811,JI • 
36 2 Hll,JI * IYPLATll1Jl**2•1 

C 0000 0 CALCULATE THE SECTION MODULI 
C 0000.1 SXTOP ANO SXBOT 

37 0 DO 41 1•2,N 
38 0 SXTOPlll • EYEIII/YTOPIII 
39 0 SXBOTIII • EYEIII/YBOTIJI 

C 0000 0 PUNCH RESULTS 
40 0 PUNCH, EYEIII, AREAIII 
41 0 PUNCH, DEPTH I 11,. SXTOPI 11, 
41 l SXBOTll 1 
42 O GO TO 2 
43 0 END 

Figure 2-4 

FOR'I'lU:,: ?ROGRAM - Section Properties 
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CHAPTER III 

ANGULAR FUNCTIONS 

3-1 Discussion 

Angular f'un~tions (flexibilities, carry-over flexibilities, and 

load . £.unctions) ara . ..am...alopas diµ3 to unit cause or due to loads 

(Table 3-1) •. Numerous preeedures are. available for evaluating these 

functions.: 

1. Integral . evaluation with unequal length segments. 

2. Integ.ral evaluat.ion with equal length segments. 

3.. .Conjugate . beam method with unequal length segments • 

. _4._ Co.njugate be~ method with equal length segments. 

It is .. the opinion ,of .the.,a.utti,or . that an approach which yields not 

only the angular . .functions.,. but ,Mith . . additional steps will yield de­

fle.ctions . ., is desirable. One sueh method is that of the conjugate beam 

utilizing .the . string .. polygon (9) ,,, Ad:vantages of using equal or unequal 

l .eng.th strip .segments , are., umq1,1e . with each method. F.qual length seg­

ments are perhaps. easier. to program and possess the advantage of 

allowing .one _to ob-tain deflectlons at , equal spacings along the span. 

Howeve~, unequal length .segments as determined by the cross. sectional 

variation. wilLyi~ldc a .. more accurate solution as compared w;t th equal 

. length sagmants,~ cans1rler1ng an equal number of segments to be 

~~ in both methods. When additional points of deflection 

11 



VALUE FOR PHYSICAL ILLUSTRATION NAME VALUE cR8g!8~m MEANING TERM 

M 1 

G)e--------~~ ANGULAR r end slope of a F .. 
2 1. simple beam ij at j 

~Lj~ 
J 1. FLEXIBILIT X dA _J_ 

due to a unit L 2EI 3Eij j X 
moment applied at 
that end 

M 1 
end slope of a ©G--- -'A (0 

k 

"°:~~k---J. 12dx ~ simple beam jk at j Fjk ANGULAR X -
due to a unit 

~:k~ 
12EI JEik FLEXIBILITY k X 

moment applied at J 
that end 

M 1 

@~ -~ t ='dx 

end slope 0f a ~---- -L. simple beam ij at i l-±1:ij ~ CARRY-OVER __J_ G .. 
1,2EI 6Eij due to a unit 1.J FLEXIBILITY 

• 1 X 
moment applied at 1. ... 

the far end j 

M 1 
end slope of a GG- ----0i,/£;~ <0 f ='dx 

simple beam jk at k 
~j CARRY-OVER ~ due to a unit 

~Lk_j FLEXIBILITY L 2EI 6Eik moment applied ~-4 k k X the far end j 

__. 
N 



~ll~(D G)=e_~~~J 
Lji 

ANGULAR Ji BMxxdx end slope of a 
'tj· ~ LOAD j LjEix simple beam ij at j l_±:j x' FUNCTION due to loads 

~ll!It! k end slope of a CD~--~® ANGULAR l='tjk~ 1jk LOAD J ~'dx simple beam jk at j 
x' FUNCTION j LkEI'X due to loads 

Lk 

Table 3-1 

Interpretation of Angular Functions 

_,, 
\;J 
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for the method of unequal segments are desired, auxiliary segments 

can be included. The author has thus chosen to use the conjugate 

beam approach utilizing the string polygon with unequal length seg-

men ts. 

3-2 Angular Flexibilities and Carry-Over Functions 

3-2-1 Discussion 

A typical span AB of a continuous beam of several spans is 

considered (Fig. 3-1). Angular flexibility FAB and angular carry­

over °'BA are obtained by applying a unit moment at A (Fig. 3-2). 

The reaction of the conjugate structure at A is FAB and the reaction 

at Bis GBA• Likewise, by applying a unit moment at Bon the real 

structure (Fig. 3-3), the reaction of the conjugate structure at B 

is angular flexibility FBA and the reaction at A is angular carry­

over GAB· By virtue of Maxwell's Reciprocal Theorem, the angular 

carry-over at A is equal to the angular carry-over at B (GAB= GBA). 

Span AB may be divided into n unequal segments. Applying the 

string polygon method (9), elastic weights for each segment are 

evaluated and applied as loads to the conjugate structure. 

A typical elastic weight is expressed in terms of the three 

moment equation 

+ MJcl"- • + L t' . -kJ J (3-1) 

The moment at various ordinates x due to either unit moment 

at A or Bis a linear function of x. 



---------LAB = L _______ ____. 

1 

Figure 3-1 

Real Structure 

Figure 3-2 

l 

Conjugate Structure - Unit Moment At A 

l l 
Figure 3-3 

Conjugate Structure - Unit Moment At B 

15 

t 
~ = 1 

J 



A X; I 
M. = . i 

]. -
L 
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(3-2) 

and the end slopes due to loads are zero 

I't ~ = o 
J 

Thus, from eq. 3-1 

and 

where: 

_A 
P • = xi· 1 G. • + x . ' X F. + ;x:k· , GkJ' 

J : l.J ~ . J 
(3-3) 

L L L 

B 
P = xi G .. + _:j_ 1: F + ~ GkJ' 

j L l.J L j L (3-4) 

A 
P. - elastic weight at section j due to a unit moment at A 

J 

_B 
P. - elastic weight a~ section j due to a unit moment at B 

J 

Gij - angular carry-over flexibility of segment ij 

Gkj - angular carry-over flexibility of segment kj 

I Fj = F .. + F 'k - sum of the angular flexibilities of 
Jl. J segments ji and jk 
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The conjugate reactions are then 

n 

F AB = L ~ ~· j=1 J L 

n (3-5) 

GBA = L -A x. P. -1 
j=1 J L 

and n 

L -B 
~ FBA = p 

j=1 j L 

n (3-6) 

GAB= L -B x.' p -1 j=1 j L 

3-2-2 Segment of Constant Cross Section 

Considering typical segment ij (Fig. 3-4) of constant cross 

section, the following refinements may be made for angular flexi-

bilities and carry-over functions (Eq's. 3-7). 

0 

Figure 3-4 

Segment of Constant Cross Section 

(3-7) 
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or, 

F. = _1_ Ljio = _1_ F.1 
J EI0 311, EIO J 

J 

(3-8) 

Gj = _1_ Ljio = _1_ G.' 
EIO 6Lij EIO J 

where: 

F.' = L.I 
:.L.Q J· 31Ij 

G.' L.I = _J_Q 
J 6Lij 

This assumption is reasonably justified for sections whose cross 

section is not constant, provided average dimensions are taken for 

the plate dimensions. 

From Eq's. 3-3, 4, the e~pression for a typical elastic 

weight due to unit moment at A or B respectively, is 

-A 
[xt' 

x.' (F. I + F 1) + xk' G ~ p·, = -1__ G.' + _J_ 
J J J k - k 

EIO L L . 
(3-9) 

-B 
[~i ~ (Fj' + Fk') xk 

Gk'] P, = -1__ G.' + + 
J EIO J L L 

From Eq's. 3-5, 6 , the end reactions of the conjugate beam 

become 

F = L F I 

AB EI AB 
0 

(3-10) 



3-3 Angular Load Functions 

3-3-1 Discussion 

By definition, angular load functions are end slopes due to 

loads (Table 3-1). 

"'t'BA = 

where: 

Ma.thematically stated: 

BM x dx 
X 
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BM = the bending moment at section x of the simple span 
x AB due to loads. 

Those cases of loading considered in this thesis include: 

1. Unit load applied at each cut-off ordinate (live load) 

2. Uniform· load 

3. Dead load 

3-3-2 Unit Load 

The angular load functions due to a unit load at each cut-off 

ordinate is useful not only for evaluating influence line ordinates 

for live loads, but also for evaluating the angular load functions 

due to uniform load and dead load. 

The moment at any ordinate along span AB due to a unit moment 



at A (or B) i~ a linea~ funcifion of that ordinate (F.q. 3-2). 

The conjUgate sliear at A, VAB'(Fig. 3-6) due to a unit moment 

at A or B,respectively, is 

- .A n 
?. ~ VAB = L 

j=1 J L 

= ...1.. F I 

EIO AB 

20 

and (3-11) 
.,...B n -B x' V .· L pj _j_ AB j=1 L 

= ...1.. G I 

EI0 
AB 

The conjugate shear at a typical ordina ta, V j, 

to a unit moment at A or B,respectively, is 

and 

= ...1.. ·?, 
EI j 

0 

7B =-_B _-B v-. v-: p. 
J 1 1 

=__L_ ~' 
EIO 

(Fig. 3-6) due 

(3-12) 

which by virtue of the theory of the conjugate structure is equal to 

the slope of the corresponding section of the real structure. 

i = 8.A 
J J 



X· 1 

I 

CD 
I 

CD 

L 
(a) 

real structure 

(b) 

moment diagram due to MB= 1 

(c) 

moment diagram due to MA= 1 

Figure 3-5 

Real Structure With Moment Diagrams Due To Unit End Moments 

-I 12 l 

V 

-p. r 
(a) 

conjugate structure 

conjugate shear diagram 

conjugate moment diagram 

Figure 3-6 

1 

--- - -=:? 

..... 

Conjugate Structure With Shear And Moment Diagr ams 

21 
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-B eB V -
j - j 

The bonjugate bending moment at any ordinate,Mj,(Fig. 3-6) due 

to a unit,moment at:A or B,respectively, can then be expressed 

and 

-A, -A 
M. + V. L. 

J. J J 

'--A 
M' 

j 

"."'"_B. -B -B 
K: = M:- + Vj L. 

J J. J 

2 -B 
= L M' 

EI j 
0 

(3-13) 

which by virtue of the theory of the conjugate structure is equal 

to the deflection of the corresponding section of the real structure. 

Thus, 

~ = 6~ J J 

t. = 6~ J J 

From Maxwell's Reciprocal Principle, the deflection at section j 

due to a unit moment at A (MA= 1) is numerically equal to the end 
('-

slope at A due to a unit force at section j. Thus, 

-A A ~; = /\: = J Wj . 

and (3-14) 

?('. = 
j 



where: ('"t'AB)J. - angular load function (end slope) at A due to a 
unit force applied a~~ction j 

('t'BA)j - angular load function (end slope) at B due to a 
unit force applied at section j 

3-3-3 Uniform Load 

Typical span AB is loaded by a uniform load of intensity w 

(Fig. 3-7). 
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Figure 'J-7 

Uniform Loading 
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For a typical concentrated load P~ one half the load of segments j 

and k are considered to be concentrated at j. 

P~ = w [~ + Lk] 
J 2 2 

The angular load function for uniform load is obtained by 

multiplying the equivalent concentrated loads by the corresponding 

end slope influence line ordinates (Eq's. 3-15). 
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't UL' 

AB 
(3-15) 

n 

~ 
j=1 

UL 
L = wl3 

BA EI 
0 

1:' 
UL' 

BA 

where: w - uniform load intensity per unit length 
,,_.. UL 
. ~ AB - angular load function (end slope) at A due to uniform 

load applied to span AB 

't' UL - angular load function (end slope) at B due to uniform 
BA load applied to span AB 

3-3-4 Dead Load 

Typical span AB is loaded by dead load (Fig. 3-8). If typical 

segment ij is considered to be of uniform cross section (average 

plate dimensions used for calculating cross sectional area), it 

may be considered to be loaded by a uniform load of magnitude wj". 

~ w. -~ ~ 

l I lll l!trn11lllllUlilllmm mm DJ1 ll l l ll II 
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1 t jj k 
in ! J ! ! ! l J 

@ ® 
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0© CB 
Figure 3-8 

Dead Load 
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For a typical concentrated load Pj, one half the load of segments j 

and k are considered to be concentrated at j. 

The angular load function for dead load is obtained by multi-

plying the equivalent concentr~ted loads by the corresponding end 

slope influence line ordinates (Eq's. 3-16). 

1:DL n DL 
= 2 p ('tAB)j AB j=1 j 

(>A 3 DL' = oL 't EIO AB 

(3-16) 
DL n DL 

LBA 
= L ·P ('°t BA) j 

j=1 j 

~AoL3 DL' = . 'tBA 
EIO 

where: e - unit weight of coristructio:n niat~rial 
.,._DL 
vAB - angular load function (end slope) at A due to dead 

load of span AB 

't'DL - angular load function (end slope) at B due to dead 
BA load of span AB 

A0 - reference area 
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3-4 Computer Program 

3-4-1 Results of Program 

The Phase II computer program (Fig's. 3-9 , 10)is written f or 

the IBM 650 electronic computer using FORTRAN language and floating 

point arithmeth,ic The program yields a soluti0n for: 

FABPM - angular flexibility coefficient at end A of span AB 

FBAPM - angular flexibility coefficient at end B of span AB 

GAORB - angular carry-over coefficient at either end A or B of 
span AB 

BMA(I) - conjugate moment coefficient at section i of the con­
jugate structure due to unit moment at A(MA = 1); also 
the deflection coefficient of the real structure at i 
due to unit moment at A; also the angular load function 
coefficient at A due to a unit force applied at sec­
tion i 

BMB(I) - conjugate moment coefficient at section i of the con­
jugate structure due to unit moment at B (MB = 1); also 
the deflection coefficient of the real structure at i 
due to unit moment at B; also the angular load function 
coefficient at A due to a unit f orce applied at sec­
tion i 

TABUL - angular load function coefficient at A due t o uniform 
loading 

TBAUL - angular load function coefficient at B due t o uniform 
loading 

TABDL - angular load function coefficient at A due to dead load 

TBADL - angular load function coefficient at B due to dead l oad 

1-4-2 Data Required 

The input data necessary for computing the desired angular 

functions include: 

N - total number of segments 



S(I) - distance from left end of span AB to the cut-off 
point at i divided by the span length L (Xi) 

L 
EYE(I) - moment of inertia of segment i 

AREA(I) - cross sectional area of segment i 

The quantities EYE(I) and AREA(I) are read directly from the re-

sults of the section properties program (Phase I). 

1::4.::3 Auxiliary Quantities 

Other quantities integral in the program are denoted: 

FPRIM(I) - flexibility coefficient of segment i 

GPRIM(I) - angular carry~over coefficient of segment i 

PRIMA(I) - individual elastic weight coefficient at i due to a 
unit moment at A (MA= 1) 

PRIMB(I) - individual elastic weight coefficient at i due to a 
unit moment at B (MB= 1) 
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VBARA(I) - conjugate shear coefficient at section i of the con­
jugate structure due to unit moment at A (MA= 1) 

VBARB(I) - conjugate shear coefficient at section i of the con­
jugate structure due to unit moment at B (MB= 1) 

EYEO - reference moment of inertia (taken as EYE(2) in 
computer program) 

AREAO - reference area (taken as AREA(2) in computer 
program) 
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START 

l 
DIMENSION: 

1 

READ : 
N . I 

READ: l r= 1,NI S(I) 
- I . I 

READ: I I = 2,N I EYE(I), AREA(I) 
I 

• 
COMPUTE:FPRIMfI~ GPRIMfI~ 

PRIMA I' PRIMB I 
. 1 

COMPUTE: 
FABfM, FBAPM, GKORB 

" PUNCH: 
FABPM. FBAPM. 'GAORB : 

.. ~ 

COMPUTE: VBARA(I), VBARB(I) 
J 

COMPUTE: BMA(f) ) BMB(I ) 
• I 

PUNCH: 
BMA(I) II =1,N I 

I . I 
PUNCH: 

BMB(I) I I = 1 ,N I 
I 

' -
COMPUTE: I TABUL, TBA UL 

" PUNCH: 
TABUL , TBA UL 

J 

COMPUTE: 
TABDL, TBADL 

" PUNCH: 
TABDL, TBADL 

. 

-• I 
PUNCH: 

FPRIM(I), GPRIM(I) I I = 2,N I 
I -

L..- Phase III 
Figure 3-9 

Flow Chart Phase II - Angular Functions 



C 0000 0 PHASE 2 
C 0000 O EVALUATION OF ANGULAR FUNCTION 
C 0000 0 ANGULAR FLEXIBILITIES AND 
C 0000 0 CARRY OVER.VALUES 

1 0 DIMENSION 51.251, EYEl251t 
1 1 FPRIMl25), GPRIMl25), 
1 2 PRIMAl251o PRIMBl251o AREAl251 
1 3, ~BARA1251o VBARB1251 
l 4 ,BMAl25)o BMBl251 
2 0 READ, N 
3 0 READ, 15111, l•l,NI 
4 O DO 5 I •2 ,N 
5 0 READ, EYErtlt AREAIII 
6 0 EYEO = EYEl21 

AREAO • AREAl21 
7 O DO 9 I •2 ,N . 
e O FPR IM I 11 • 11 S II I - SI 1-111 • 
8 1 EYEOI I 13,·* EYEIIII 
9 0 GPRIMIII • FPRIMIII I 2, 

10 0 K • N-1 
11 0 DO 13 1•2,K 
12 0 PR I MB 111 • S I I- H * GPR IM 111 
12 l + SI 11 * IFPRIMI II + FPRIMCl+l 
12 2 II + SI 1+11 * GPRIMI 1+11 
13 0 PRIMAIII • 11,-511-111 *GPRIM 
13 l Ill+ 11,-51111 * CFPRIMIII + 
13 2 FPRIMll+lll icll, - 511+111 * 
13 3 GPRIM( 1+11 
14 0 PRIMBlll • 5121 * GPRIM(21 
15 0 PRIMA(ll = FPRIMl21 + 11,-5121 
15 l I* GPRIM121 
16 0 PRIMBINI • SIN-11 * GPRIM(NI 
16 l +FPRlM(NI 
17 O P.IMAINI • ll,-SIN-111 * 
17 l GPRIMINI 
18 0 FABPM c 0,0 
19 0 FBAPM = 0,0 
20 0 GAORB = 0,0 
21 0 DO 24 I=l,N 
22 0 FABPM = FABPM + IPRlMAII I * 
22 l 11,-S(llll 
23 0 FBAPM = FBAPM + (PRIMS( 11 * 
23 1 SI 111 
24 0 GAORB = GAORB + (PRIMB(ll * 
24 1 (l,-5(1111 
25 0 PUNCH, FABPM, FBAPM, GAORB 

C 0000 O CASE OF UNIT LOAD 
C 0000 0 CALCULATE MODIFIED ANGULAR 
C 0000 0 LOAD FUNCTIONS DUE TO UNIT 
C 0000 O FORCE APPLIED AT SECTION I, 
C 0000 0 ALSO MODIFIED D.ffLECTION OF 
C 0000 0 SECTION I DUE TO UNIT END 
C 0000 0 MOMENT , 

26 0 VBARAl21 • FABPM - PRIMAlll 
27 0 VBARB121 • GAORB - PRIMB!ll 
28 0 DO 30 1=3,N 
29 0 VBARAIII • VBARAIJ-11 -
29 l PRIMAll~ll . 
30 0 VBARBIII = VBARBll-11 
30 1 - PRIMB(l-11 
31 0 BMAlll • 0,0 
32 0 BMB(ll = O,O 
33 0 DO 35 1•2,N 
34 0 BMA I II • BMA I 1-11 + ( 5 I 11 -
34 l 5(1-111 * VBARAIII 
35 0 BMB( II = BMBI 1-11 + ISIII 
35 l - Sll-111 * VBARBIII 
36 0 PUNCH, IBMAI 11, l•l ,NI 
37 0 PUNCH, IBMBI II, l=loNI 

C 0000 0 CASE OF UNIFORM LOAD 
C 0000 0 CALCULATE MODIFIED ANGULAR 
C 0000 0 FUNCTIONS DUE TO UNIFORM LOAD 

38 0 TABUL • 0,0 
39 0 ,TBAUL • 0,0 
40 0 DO 42 1•2,K 
41 0 TABUL c TABUL + 1(511+11 -
41 l S ( I -11 I I . 2, 0 I * BMA I I I 
42 0 TBAUL = TBAUL + 11511+11 -
42 1 Sll-111 I 2,1 * BMB(II 
43 0 PUNCH, TABUL, TBAUL 

C 0000 0 CASE OF DEAD LOAD 
C 0000 0 CALCULATE.MODIFIED ANDULAR 
C 0000 0 FUNCTIONS DUE TO DEAD LOAD 

44 0 TABDL • 0,0 
45 0 TBADL = 0,0 
46 0 DO 48 l•Z,K 
47 0 TABDL • TABDL+(AREAIII/AREAO * 
47 1 ISIII-SCl,-1))/2,0 + AREAll.+11 
47 2 /AREAO * ISll+ll-SIIII I 2,01* 
473BMAIII 
48 0 TBADL • TBADL + IAREAIII/AREAO 
48.1 * (5(11-S(l~lll I 2•0 + AREAi 
48 2 1+11/ AREAO * ISll+ll-51111 I 
48 3 2, O I * B.MB I 11 . 
49 0 PUNCH, TABDL, TBADL 
50 0 DO 51 1=2,N 
51 0 PUNCH, FPRIMl114 GPRIMII) 
52 0 GO TO 2 
53 0 END 

Figure 3-10 

FORTRAN PROGRAM - Angular Functions. 
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CHAPTER IV 

DEFLECTIONS 

4-1 Discussion 

The total deflection ~x at any section x due to loads can be 

expressed 

where: 

A = 8x 

~ - total deflection at ordinate x due to loads 
X 

(4-1) 

B ~ - deflection at ordinate x of simple beam AB due to 
x loads 

MA - bending moment at support A due to loads 

M:s - bending moment at support B due to loads 

("tAB) - deflection at ordinate x of simple beam AB due to 
x MA= 1 

("tBA)x - deflection at ordinate x of simple beam AB due to 
MB= 1 

A numerical solution for deflection can be obtained only after 

Phase II has been completed for angular functions. A solution for 

the final end moments can be obtained by substituting into the three 

moment equation. The simple beam deflections due to unit moment at 

A or Bare BMA(I) and BMB(I) respectively, from the computer program 

for angular functions. 

The simple beam deflection due to loads is developed as Phase 

30 
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III. Two types of loading are considered: 

1 . uniform 1 oad 

2. dead load 

J.-2 Uniform Load 

Typical span AB is loaded by a uniform load (Fig. 4-1), causing 

deflection of the real structure. 

By virtue of the theory of the conjugate beam, the simple beam 

deflections due to uniform load can be evaluated as the magnitude of 

the conjugate moment diagram. 

A typical elastic weight is from Equation 3-1 

-UL UL 
P. = M. G 

J J. ij 
UL 

+ M LF 
j j 

UL 
+ M G 

k kj 
+ 

The bending moment diagram for a simple beam with uniform loading is 

represented by a second degree parabola. A typical moment may be ex-

pressed as 

MUL = wL2 [4 ~ (1 - :.i)J 
j 8 L L 

Thus a typical elastic weight is 

P~ = wL2 [4 xi (1 - xi) Gj 
8 L L 

+ 4 ~(1 - xk) GJ +[ wL,3 wL 3. 
.. ,] + 

2~E¥k] L L 24Eij 

-UL 
w13 -UL' 

P. = P. 
J 24EIO J 

(4-2) , 

The conjugate end shear (Fig. 4-2) is 
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shear diagram 

(c) 
moment diagram 
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Figure 4-1 

Deflection Due To Uniform Load 
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Figure 4-2 
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Conjugate Structure Loading With Shear And Moment Diagrams 
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-UL n -UL I 

~ 
X, 

VAB = P. ......1. 
j=1 J L 

-UL 
wL3 

n I -UL' 
VAB = ~ :.i P. 

24EI j=1 L J 
0 

-UL 
wL3 -UL' 

VAB = VAB 
24EI 

0 

(4-3) 

and the conjugate shear at any section is 

-UL -UL -UL 
vj = vi - Pi 

-UL 
wL?._ 

-UL' 
V. = V 

J 24EI j 
0 

(4-4) 

The conjugate moment at any section is then the simple beam 

deflection due to uniform load, 

UL -UL M~ v1!1 L B .6 = M = + 
j j l J j 

B .6 
UL 

= w14 B.6. UL' (4-5) 
,j 24EI j 

0 

4-3 Dead Load 

Typical span AB is loaded by dead load (Fig. 4-3), causing de-

flection of the real structure. If typical segment ij is considered 

to be of uniform cross section as in Chapters 2 and 3, the segment 

is loaded by uniform load of magnitude wj where 

wj = ~ Aj 
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To calculate end shear /~, the total uniform load of typical 

segment ij is considered concentrated at the center of the segment. 

End shear vD~ can then be evaluated. 
f 

~~ 
n 

~L (X' I L·) = L 1 + ....:.J. 
j=1 J 1 21 

·rn:,. .. n 1. (X.l I ::.i)) VAB = 1 (: Ao ~[~ . _J + 
1 1 . 2L 

if!1 = 1 e A .;,1 I (4-6) AB 0 AB 

where: P~1 = wf j = ~ Aj • 1j - total weight of segment ij 

f - 'Unit·. weight of Oonstru-ction: material 

Aj - cross sectional area of segment ij 

A0 - reference area 

The moment at any ordinate j is equal in magnitude to the 

area of the shear diagram to that point. Although segment ij is 

loaded by uniform load wj, the shear at ordinate j is equal to the 

shear at section i minus the total load on section ij, 111 , 

v°_L = ~L _ pDL 
j . i j 

11 = L f A 
J. 0 

;?_L' 
AB 

And the moment at any ordinate,j is: 

(4-7) 
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(c) 

moment diagram 

~) ~tL =7 

l 

deflection 

Figure 4-3 
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Conjugate Structure Loading With Shear And Moment Diagrams 
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if.1 = 12 e A M~1 ' 
J O J 

(4-8) 

A typical elastic weight due to dead load (Fig. 4-4) is then 

from Equation 3-1 

-D1 
P. 

J 

-D1 
P. 

J 

where: 

= ~A 13 -D1 1 
_....;::o .... P. 
24EI0 J 

't' ~1 + ~ D1 
J . k 

= Aj (>1j3 

24Eij 

= 

+ 

The conjugate end shear (Fig. 4-4) is 

-D1 n PDL x., \ 

VAB = 2: . -L 
j=1 J 1 

-D1 3 n -D1 1 x' 
VAB = (Mo~ 2 P. _j_ 

24EI0 j=1 J 1 

3 
-D1' -D1 (>A 1 

VAB = _.Q._ VAB 
24EI 

0 

(4-9) 

(4-1 o) 
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and the conjugate shear at any section is 

-DL -DL -DL 
V. = V. P. 

J 1 J 

3 
fL -DL' 

= f?A0L V. (4-11) 
J J 24EIO 

The conjugate moment at any section is then the simple beam 

deflection due to uniform load. 

Bf::::. DL 
j 

BC:-:. DL 
j 

= rtL 
j 

!£=.!tr.... ComQuter Program 

k-4-1 Results Of Program 

= ifL 
]. 

-DL 
V. 

J 
L. 

J 

(4-12) 

The program presented (Fig's. 4-5, 6) is written for the IBM 

650 electronic computer using FORTRAN language and floating point 

arithmetic •. The program yields a solution for: 

BMUL(I) - deflection coefficient at ordinate i of simple span 
AB due to uniform loading 

BMDL(I) - deflection coefficient at ordinate i of simple span 
AB due to dead loading 

4-4-2 Data Required 

The input data necessary for computing these deflections are 

N - total number of segments 

S(I) - distance from left end of member AB to the cut-off 



point at i divided, by the span length L - xi 
L 

EYE(I) - moment of ine~tia of segment i 

AREA(I) cross sectional area of segment i 

FPRIM(I) - angular flexibility coefficient of segment i 

38 

GPRIM(I) - angular carry-over flexibility coefficient of segment i 

The quantities EYE(I) and AREA(I) are answers from Phase I (Sectional 

Properties). The quantities FPRIM(I) and GPRIM(I) are answers from 

Phase II (Angular Functions). The program has been written so as to 

take these answer cards directly as data for Phase III (Deflections). 

4-4-3 Auxiliary Quantities 

Other quantities integral in the program include: 

PBRUL(I) - elastic weight coefficient due to uniform loading 

VABPM - end shear coefficient at A due to dead load 

VPM(I) - shear coefficient at section i due to dead load 

BMPM(I) - moment coefficient at section i due to dead load 

PBRDL(I) - elastic weight coefficient at section i due to dead 
load 

VABDL(I) - conjugate shear coefficient at A due to dead load 

VABUL(I) - conjugate shear coefficient at A due to uniform 
load 

VDL(I) - conjugate shear coefficient at section i due to 
dead load 

VUL(I) - conjugate shear coefficient at section i due to 
uniform load 

EYEO - reference moment of inertia (taken as EYE(2) in 
computer program) 

AREAO - reference area (taken as AREA(2) in computer program) 
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START 
1 

DIMENSION: 

I. 

READ: 
N 
~ I 

READ: 1 I = 1 ,N I 
S(I) I 

• I 
READ: I I = 2,N I 

EYE(I), AREA(I) I . 
I 

READ: I I = 2,N I FPRIM(I), GPRIM( I) 
I 

• 
COMPUTE: 

PBRUL 
! 

COMPUTE: 

VABPM, VPM(I) , BMPM(I) 
I. 

COMPUTE: 
PBRDL 

L 

COMPUTE: 
VABDL, V ABUL 

.L 

COMPUTE: 
VDL(I), VUL ( I) 

.L 

COMPUTE: 
BMDL(I) , BMUL(I) 

. 
I 

PUNCH: I I = 2,N I BMDL (I) 
I .. I 

PUNCH: I I = 2,N I BMUL(I) 
I 

L- END 
Ftl.gure 4-5 

Flow Chart Phase III- Deflections 



C 0000 0 PHASE 3 
C 0000 0 SIMPLE BEAM DEFLECTION 
C 0000 0 FOR DEAD LOAD AND UNIFORM LOAD 
C 0000 0 ELASTIC WEIGHT DUE TO UNIFORM 
C 0000 0 LOAD 

1 0 D1MENSION SC251, EYEt251, 
1 1 FPRIM1251, GPRIMl251, 
1 2 AREAC25J, PBRULC251 
2 Q DIMENSION VPMC251, BMPMC251, 
2-1 PBRDLl251, VDLC25l, VULC25l~ 
2 2 BMDLl251, BMULl25l 
3 0 READ, N 
4 0 READ, (Sill• l=l,Nl 
5 0 DO 6 I •2 ,N 
6 0 READ, EYECII, AREACII 
7 0 DD. 8 1=2,N 
8 0 READ, FPRIMCllt &PRIMCII 

EYEO = EYE121 
ARE AO • AREA C 2 l 
K = N-1 

9 0 DO 11 1•2,K 
10 0 PBRULI 11 • 14,/3, I * C Sll-11 * 
10 1 Cl,-511-111 * GPRIMIII + SIii 
10 2 * I 1, -SC II I * C FPR IM I 11 + 
10 3 FPRIMll+lH + 511+11 * 
10 4 11,-SCl+lll * GPRIMll+lll 
11 0 PeRULCll = PBRULCll + CEYEO/ 
11 1 EYEII.IJ * ICSIII - SCI-111**3, 
11 2 I+ CEYEO/EYEll+lll * IC 
11 3 Sll+ll-SClll**3,I 
12 0 PBRULlll • (4,/3,1 * Sl2l * 
12 1 11,-51211 * GPRIM121 + CEYEO/ 
12 2 EYEC211 * CSC21**3,I 
13 0 PBRULINI = 14,/3,I * SIN-11 * 
13 l Cl,-SIN-111 * GP-RIMCNI+ (EYED/ 
13 
13 

C 0000 
C 0000 

14 

2 EYECNII * (CSINI - SCN-111 
3 
0 
0 
0 
0 
0 
l 
2 
0 
0 
0 
1 
0 
0 
0 
l 
2 
0 
0 
l 
2 
3 
0 
1 
2 
3 
4 
0 
l 
2 
0 
1 
2 
3 
0 
0 
0 
0 

15 
16 
16 
16 
17 
18 
19 
19 
20 
21 
22 
22 
22 
23 
24 
24 
24 
24 
25 
25 
25 
25 
25 
26 
26 
26 
27 
27 
27 
27 
28 
29 
30 
31 
31 l 
32 0 
32 1 
33 0 
34 ·o 
35 0 
36 0 
37 0 
38 0 
39 a 
40 0 
41 0 
41 l 
42 0 
42 1 
43 0 
44 0 
45 0 
46 0 

**3•) 
ELASTIC WEIGHT DUE TO DEAD 
LOAD 
VABPM • 0,0 
DO 16 1•2,N 
VABPM = VABPM + AREA(ll/AREAO* 
15111-Sll-lll * CCl,-51111 + 
!,5* (SC II-SCI-11111 
VPM ( 11 = VABPM 
DO 19 1=2,N 
VPMCII = VPMCl-11 - AREACII 
AREAO * CSCII-SCl-111 
BMPM( 11 = 0,0 
DO 22 1•2,N 
BMPM(II = BMPMII-11 + ,S * 
CSCII-SCl-111 * IVPMCl-11- + 
VPMCIII 
DO 25 1=2,K 
PBRDLIII = AREACII/AREAO *ICS 
Ill -511-111**3,I * CEYEO/EYE 
Clll +AREAlltll/AREAO * ((SCI+ 
ll-SCl11**3,l*IEYEO/EYECl+lll 
PBRDLIII = PBRDLCII + 24,* 
IBMPMC 1-11 * GPRIMI 1-11 + 
BMPMCII * IFPRIMCII + . 
FPRIMll+lll + BMPMll+ll*GPRIMI 
1+111 
PBRDLlll = 24,* BMPM(21 * 
GPRIMl21+AREAC21/AREAO * 15121 
**3,1 * IEYEO/EYEl2ll 
PBRDLCNl • 24,* BMPMIN-11 * 
GPRIMIN-ll + AREACNI I AREAO * 
CCSCNI-SIN-111**3,I * CEYEO I 
EYE IN 11 
VABDL = 0,0 
VABUL = 0,0 
DO 32 l•l,N 
VABDL = VABDL+ll,-SC'lll * 
PBRDLC I l 
VABUL = VABUL + 11,-SCIII * 
PBRUL C 11 
VDLI 11 = VABDL 
VULI 11 = VABUL 
DO 37 1•2,N 
VDLIII = VDLCI-11 - PBRDLCII 
VULCll = VULCl-11 - PBRULIII 
BMDLCll = 0,0 
BMULC 11 = 0,0 
DO 42 1•2,N 
BMDL I 11 . BMDLI 1-11 + CS ( 11 -
511-111 *VDLIIJ 
BMULCII • BMULll-11 + 15111 -
511-lll * VULIII 
PUNCH, IBMDLIII, 1=2,NJ 
PUNCH, ( BMUL I 11 t I• 2, NI 
GO TO 3 
END 

Figure 4-6 

FORTRAN PROGRAM - Deflections 
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CHAPTER V 

APPLICATION 

5-1 Introduction 

One span from the five span continuous beam Benton Street 

Bridge in Iowa City, Iowa (1,5) is considered (Fig. 5-1, 2). The 

bridge, designed by Ned L. Ashton, is an all welded steel deck 

girder highway bridge completed in July, 1949. 

Sectional properties, angular function coefficients, and de­

flection coefficients are computed using the FORTRAN programs from 

Chapters 2, 3, 4. Available known results check favorably. Co­

efficients must of course be multiplied by the corresponding con­

stants to obtain final angular functions or deflections. 

5-2 Cross Sectional Prouerties 

Data is presented in inches or dimension-less quantities 

and are of'the form: 

N 

M(I) 

B(I,J), H(I,J), 
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8+ 
3+ 

1800000052+ 1250000051+ 
500000005o+ 4550000052+ 
1800000052+ 1250000051+ 

5+ 
1700000052+ 3593750050+ 
1800000052+ 1250000051+ 
500000005o+ 4550000052+ 
1800000052+ 1250000051+ 
1700000052+ 3593750050+ 

5+ 
1700000052+ 500000005o+ 
1800000052+ 1250000051+ 
5000000050+ 4550000052+ 
1800000052+ 1250000051+ 
1700000052+ 5000000050+ 

5+ 
1700000052+ 5000000050+ 
1800000052+ 1250000051+ 
5000000050+ 4550000052+ 
1800000052+ 1250000051+ 
1700000052+ 500000005o+ 

3+ 
1800000052+ 1250000051+ 
500Q00005o+ 4550000052+ 
1800000052+ 1250000051+ 

3+ 
1800000052+ 2000000051+ 
5000000050+ 4400000052+ 
1800000052+ 2000000051+ 

5+ 
1700000052+ 7500000050+ 
1800000052+ 2000000051+ 
5000000050+ 4400000052+ 
1800000052+ 2000000051+ 
1700000052+ 750000005o+ 

Computed answers are of the form: 

EYE(I), AREA(I) ~ 
I - 2, 8 

DEPTH(I), SXTOP(I), SXBOT(I) 



44 

2851832055+ 6775000052+ 
4800000052+ 1188263354+ 1188263354+ 
3566224355+ 7996875052+ 
4871875052+ 1464004854+ 1464004954+ 
3851574855+ 8475000052+ 
4900000052+ 1572071354+ 1572071354+ 
3851574855+ 8475000052+ 
4900000052+ 1572071354+ 1572071354+ 
2851832055+ 6775000052+ 
4800000052+ 1188263354+ 1188263354+ 
4166136955+ 9400000052+ 
4800000052+ 1735890454+ 1735890454+ 
5681317755+ 1195000053+ 
4950000052+ 2295482054+ 2295481854+ 

2.::1... An~ular Functions 

Sectional properties, moment of inertia and area, are read as 

data directly from Phase I (Cross-Sectional Properties). The data 

required is of the form: 

N 

S(I), I= 2,8 

EYE(!), AREA(!), I= 2,8 

8+ 
205128205o+ 230769235o+ 435897435o+ 641025645o+ 820512825o+ 

916666665o+ 1000000051+ 
2851832055+ 6775000052+ 
3566224355+ 7996875052+ 
3851574855+ 8475000052+ 
3851574855+ 8475000052+ 
2851832055+ 6775000052+ 
4166136955+ 9400000052+ 
5681317755+ 1195000053+ 

Computed answers a.re of the form: 

FAB, FBA, GAORB 

BMA(I), I = 2,8 

BMB(I), I = 2,8 

TABUL, TBA:UL 

TA:BDL , TBADL 



FPRIM(I), GPRIM(I), I = 2,8 . 

294168645o+ 250312745o+ 136028155o+ 
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4074204449+ 4335788049+ 5173109449+ 4252934349+ 2383419349+ 
1128728049+ 2100000043+ 

3906222847+ 4333126947+ 6991551447+ 7645451547+ 5399194547+ 
2828764747+ 2804428041+ 
32791867 49-f:. -3287989649+ 
2633633251+ 2654712951+ 
6837606649+ 341880334~+ 
6834857948+ 3417429048+ 
5062787849+ 2531393949+ 
5062788149+ 2531394149+ 
5982906049+ 2991453049+ 
2193995749+ 1096997949+ 
1394351249+ 6971756048+ 

5-4 Deflections 

Answer cards FPRIM(I) and GPRIM(I) from Phase II (Angular Functions) 

are added to the data cards for Phase II to form data cards for Phase· 

III (Deflections). 

8+ 

N 

S(I), I= 2,8 

EYE(I), AREA(!), I= 2,8 

FPRIM(I), GPRIM(I), I= 2,8 

205128205o+ 230769235o+ 435897435o+ 6410256450+ 8205128250+ 
9166666650+ 1000000051+ 
2851832055+ 6775000052+ 
3566224355+ 7996875052+ 
3851574855+ 8475000052+ 
3851574855+ 8475000052+ 
2851832055+ 6775000052+ 
4166136955+ 9400000052+ 
5681317755+ 1195000053+ 
6837606649+ 3418803349+ 
6834857948+ 3417429048+ 
5062787849+ 2531393949+ 
5062788149+ 2531394149+ 
5982906049+ 2991453049+ 
2193995749+ 1096997949+ 
1394351249+ 6971756048+ 



Computed answers are of the form: 

BMDL(I), I= 2,8 

BMUL(I), I = 2,8 

46 

1859873350+ 204363295o+ 2857046250+ 271813955o+ 1649428250+ 8127633949+ 
8560885643+ 
21458)5749+ 2347967349+ 3368698449+ 3164053249+ 1903821649+ 1138638048+ 
1330000043+ 



CHAPTER VI 

SUMMARY AND CONCLUSION 

6-1 Summary 

In this thesis three separate programs for the IBM 650 elec­

tronic computer have been dev.eloped in FORTRAN language utilizing 

floating point arithmetic. The first program gives a solution for 

the sectional properties of a typical span from a continuous var­

iable cross section structure. An upper limit of twenty five seg­

ments with nine plates per segment has been taken. The IBM 650 

could handle a greater number of segments or plates if needed and 

correctly dimensioned. The second program gives the solution for 

angular functions for this span. The third program gives a solu­

tion for the deflections of this span due to dead and uniform load­

ing. 

6-2 Conclusion 

The analysis of a continuous structure of variable cross section 

for cross sectional properties, angular functions, and deflections 

proves to be quite adaptable to solution by electronic computer. 

Once FORTRAN statements have been processed and an object program ob­

tained, very little machine time is required for a typical solution. 

The derivation and application is best suited for a plate 

girder type structure where the cross section is uniform between 

cut-off poipts However, when the cross section between cut-off 
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points is not uniform, basic assumptions can be made for sectional 

dimensions, yielding very good results. 

An unfortunate characteristic of obtaining deflections is that 

only those deflections where elastic weights are applied may be cal­

culated. However, when additional considerations of deflection are 

desirable, additional elastic weights may be considered at these 

locations. 

It is felt by the author that this work can be extended in sub­

sequent research to include the evaluation of influence line ordi­

nates and the development of a design procedure using the electronic 

computer. It is expected that this research would open the way for 

the development of an optimum design approach. 
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