By
JACK MILFRED WALDEN
4
Bachelor of Science
South Dakota School of Mines and Technology
Rapid City。South Dakota

1944

Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

August, 1962

AN INVESTIGATION OF A TWIN-TRIODE BALANCED MODULATOR CIRCUIT

Thesis Approved:

PREFACE

This thesis reports work preformed in an investigation of the potentialities of a twin-triode modulator circuit. The investigation included linear and nonlinear theoretical analysis, and experimental verification of predicted characteristics of the circuit.

The prediction of the performance of a modulator, in anything but the most rudimentary circuits, is a difficult problem, since it must inherently be based on nonlinear circuit analysis techniques. For many years, the approach to such analyses has been through the "powerseries" representation of a nonlinear function. In any but the most simple circuits, this approach quickly results in highoorder algebraic polynomials in several variables which require simultaneous solution.

This investigation introduces a possible alternate approach by the "perturbation" of selected circuit parameters in such a manner as to retain physical interpretations of the various quantities. As the need for simplifying assumptions arises, they can be based on an evaluation of the physical importance of the individual quantities.

In the process of this investigation, it was discovered that linear circuit analysis, which can tell nothing of the capabilities of a circuit as a modulator may reveal other fundamental properties of a circuit which are of importance. This is particularly true in the analysis of the inherent "carrier cancellation" properties' of a balanced modulator.

The author would like to express his sincere gratitude to his advisor, Professor Paul McCollum, for his constant interest and
encouragement, from beginning to end of this project,
I would also like to express my gratitude to Mr. Robert Morris, Technical Consultant for the American Broadcasting Company, who suggested the original circuit which was the subject of this investigation. I am also indebted to the American Broadcasting Company, since this thesis topic grew out of work performed on an $A B C$ project.

Appreciation is also expressed to Dr. William $L_{\text {。 }}$ Hughes, Head. OkIahoma State University, School of Electrical Engineering, whose suge gestions on the nonlinear analytic techniques were invaluable。

Last, but certainly not least, the never-failing encouragement and understanding of my wife, Nancy, and our family during these "trying times" is gratefully acknowledged.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. THEORY OF MODULATION 6
Amplitude Modulation 6
Suppressed-Carrier 8
Frequency Changing and Demodulation 11
III. MODULATION DEVICES AND CIRCUITS 13
General Considerations 13
Nonlinear Circuit Elements 14
Vacuum Tubes as Nonlinear Elements 19
Carrier Suppression Techniques 21
Modulation by Sampling with Switching Devices 22
IV. A TWIN-TRIODE MODULATOR CIRCUIT 26
General Circuit Features 26
Linear Analysis 30
Nonlinear Analysis 32
V。 EXPERIMENTAL INVESTIGATION 38
Preliminary Work 38
Correlation of Experimental and Theoretical Studies 40
Circuit Modifications 45
Miscellaneous Observations 50
VI。 SUMMARY AND CONCLUSIONS 54
SELECTED BIBLIOGRAPHY 56
APPENDIX A: DETAILED LINEAR ANALYSIS 57
APPENDIX B: DETAILED NONLINEAR ANALYSIS 62
APPENDIX C: EXPERIMENTAL MEASUREMENTS 68

LIST OF FIGURES

Page
Figure

1. Amplitude Modulation Signal 2
2. Amplitude-variation and Frequency-spectrum 3
3. Color Television Video Signal with Carrier Reference Burst 。 4
4. Basic Modulator Schematic Diagram 26
5. Linear Equivalent Circuit of Modulator 28
6. $r_{p}=i_{b}$ Relationship for Typical Triode 33
7. Schematic Diagram of Test Circuit 40
8. Carrier=balance Shift with Modulation 44
9. Modulation Linearity 46
10. Sidebandecarrier Amplitude Relationship 47
11. Modified Modulator for High-impedance Signal Sources 48
12. Modified Modulator for Pentodes 49
13. Voltage Waveforms, Low Modulation 51
14. Voltage Waveforms, Medium Modulation 51
15. Voltage Waveforms, High Modulation 52
16. Voltage Waveforms, No Modulation, Modulator Unbalanced 52

CHAPTER I

INTRODUCTION

Modulation is a part of almost every system which requires the transmission of information from one point to another．As a generalized process，it can be considered as the alteration of some characteristic of the transmission medium to represent the information to be transmitted．

Electrical energy provides a convenient medium for this transmission in many systems．Whether the transmission is through space or guided by conductors it is necessary to＂modulate＂the electrical signal with the information signal．

The basic electrical signal which is modulated is commonly called the＂carrier＂．In the most general case，this carrier might not be sinusoidal in formo However，regardless of the carrier waveform。 if it is periodic。 it can be＇represented by an equivalent Fourier series of sinusoidal terms．Thus，we can consider modulation，in electrical terms， as the aiteration of some characteristic of a sinusoidal electrical sig－ nalowand understand that，if the need arises，each term of a series must be properly treated．In the same way，we can consider the modulating signalosthe informations－to be sinusoidal in form。

The characteristics of any specific electrical signal，then，can be described by the basic parameters of a sine（or cosine）waveform． Three parameters serve to completely define such a signal：the amplio tude，the frequency，and the phase．Modulation systems are classified
in three categories: ampiitude modulation, frequency modulation, and phase modulation-odepending on which of the basic parameters is varied. However, it is possible to have modulation which varies more than one of the parameters of the carrier.

Television, as a communication system, is capable of transmitting a vast amount of information in any given time interval. Because of this large information handling capacity, the system places some strin gent requirements on the modulation process. The color television system, which handles even more information than the monochrome (black-andwhite) system is even more critical. This investigation will be concerned with some of the problems in such TV modulation systems. In the generation of the composite video signal, amplitude modulation is used so only this type of modulation will be considered.

For sinusoidal carrier and sinusoidal modulation=-to which all other cases can be reduced-othe output of an amplitude modulation syso tem would appear as in Figure 1 。

Figure 1. AmplitudeeModulation Signal

In this signal。 the variation of the amplitude of the carrier has an "envelope" which is the modulation signal.

Analysis of an amplitude modulated signal shows that such a process creates two new signals. They are equally spaced, in frequency, above
and below the carrier frequency by the amount of the modulation frequency, and vary in amplitude according to the amplitude of the modulation. In this process the carrier signal is left unaltered in amplitude or frequency. Thus, we might visualize the process as in Figure 2, where the "varying amplitude" and the "frequency-spectrum" representations are depicted for the same signal.

Figure 2. Amplitude-variation and Frequency-spectrum Representation of Amplitude-modulated Signal

It is possible to use this property of amplitude modulation=: that the carrier remains unalteredmoto advantage. Since the carrier is not changed by modulation。 it cannot contain any of the information. Therefore, it is unnecessary to transmit the carrier. If it can be re* moved without affecting the other two signals, the information handling capacity of the system will not be affected.

The two signals which are created in the process of amplitude modulation are called "sidebands"。 A system which transmits only these sidebands is called "suppressed carrier amplitude modulation". This mode of transmission is used to transmit the color information in a color video signal.

Suppressed-carrier AM (amplitude modulation). which does not require the carrier for transmission of the information, does require the carrier at the receiving end of the system, if the information is to be
recovered from the sidebands．The carrier must be reinserted into the signal in its original position if the information is to be recovered by a process known as＂demodulation＂．The requirements for this reino serted carrier are very stringent．It must be the exact frequency and phase of the original carrier or the recovered signal will be a badly distorted version of the original．

In the color television system，the information necessary to＂reo create ${ }^{9}$ the carrier for the demodulation process is handled separately。 in time，from the picture information．There is a period during the scanning processoothe＂sync＂intervalooin which no picture information is transmitted。 This time is used。 in part，to transmit a＂reference＂ signal from which the carrier can be generated．This reference signal is called the color burst．Figure 3 depicts how it is transmitted as part of the composite color video signal．

Figure 3．Color Television Video Signal with Carrier Reference Burst

Since the carrier information is transmitted separately from the actual color information the presence of any carrier＂leak－through＂in the supposedly suppressedocarrier signal is destructive。 Such a signal appears to be part of the information signal，and after demodulation serves to distort the information from its original form．Thus if the suppressedocarrier system of transmission is used it is necessary that the carrier be truly suppressed．

If low-frequency information signals are to be handled by the systeme= which is a requirement in TVoothe sidebands generated are very close in frequency to the carrier. Because of this proximity it is almost impossible to suppress the carrier by selective filtering. Normally, the only successful technique for removal of the carrier is cancellation by the addition of another signal exactly out of phase and equal in amplitude to the existing carrier signal. This process can be accomplished in a "balanced modulator" which is actually two modulators connected together in such a way that the carrier signals from them cance 1_{0} and the sideband signals add。

This investigation will be concerned with a cirquit suggested by Mr. Robert Morris, which seems to offer considerable promise as such a balanced modulator. The circuit will be investigated for two of the prime characteristics of such a balanced modulator: the efficiency of generation of sideb and signals, and the degree of suppression of the carrier attainable with reasonable operation and adjustment procedures.

THEORY OF MODULATION
 Amplitude Modulation

The basic carrier signal can be represented mathematically in the form

$$
\begin{equation*}
e_{c}=E_{c} \cos \left(\omega_{c}{ }^{t+\phi}\right) \tag{1}
\end{equation*}
$$

where the subscript \subseteq is used to identify carrier parameters. Similarly the information signal can be represented in the form

$$
\begin{equation*}
\left.e_{m}=E_{m} \cos (0)_{m} t+\theta\right) \tag{2}
\end{equation*}
$$

with the subscript m identifying modulation parameters. Since only amplitude modulation is to be considered, the time-reference will be selected so that the phase angles ϕ and θ are zero, and the basic signals then become

$$
\begin{equation*}
e_{c}=E_{c} \cos \left(w_{c} t\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{m}=E_{m} \cos \left(\cos _{\mathrm{m}} \mathrm{t}\right) . \tag{4}
\end{equation*}
$$

Choice of the cosine signal has not reduced the generality of the representation since, if necessary, a phase angle can be introduced to re* move this restriction.

In the process of amplitude modulation, a restriction is placed
upon the process so that a referencelevel of carrier is transmitted when no modulation signal is present． Also_{8} the change in amplitude of the care rier caused by the modulating signal is restricted to avoid a negative care rier－－which infers a 180° phase shift when this occurs．Mathematically． these restrictions are stated by expressing that the amplitude variations of the carrier are represented by

$$
\begin{equation*}
1+k_{m} E_{m} \cos \left(\omega_{m} t\right)_{0} \tag{5}
\end{equation*}
$$

where k_{m} is a constant such that

$$
\begin{equation*}
\left.k_{m} E_{m(\max }\right)=1_{0} \tag{6}
\end{equation*}
$$

With k_{m} set in value as in［6］。 it is evident that the＂amplitude－ variation ${ }^{2 \%}$ as stated at［5］，will vary from a maximum of 2 to a minio mum of 0 as the modulation signal goes through one complete cycle。 at its maximum amplitude。

Introducing the amplitude－variation term at［5］so that it multiplies the amplitude of the carrier signal at［3］yields

$$
\begin{align*}
& e_{c}=E_{c}\left(1+k_{m} E_{m} \cos \omega_{m} t\right) \cos \omega_{c} t_{0} \\
& e_{c}=E_{c} \cos \omega_{c} t+k_{m} E_{m} E_{c} \cos \omega_{m} t \cos \omega_{c} t_{0} \tag{7}
\end{align*}
$$

By aid of the trigonometric identity

$$
\cos \alpha \cos \beta=1 / 2[\cos (\alpha+\beta)+\cos (\alpha-\beta)]_{1}
$$

［7］can be converted into a form with more physical meaning．

$$
\begin{align*}
& e_{c}=E_{c} \cos \omega_{c}{ }^{t} \tag{8}\\
& +\frac{k_{m} E_{m} E_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t+\frac{k_{m} E_{m} E_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t_{0}
\end{align*}
$$

In [8] there is present an unaltered carrier term, and two additional terms, indicating that the process of amplitude modulation has created two new signals. These signals are at frequencies above and below the carrier frequency, spaced from it by the frequency of the modulation. These signals are the sidebands, and they constitute all of the infore mation-bearing portion of the amplitude modulated signal, since the carrier term is unchanged.

Since the multiplefrequency result at [8] was developed purely by mathematical operations it is logical to question the actual existence of separate signals. It is not difficult, with selective measuring equipment, to show that the signals indicated by [8] actually do exist, that their frequency is that predicted, and that they vary in amplitude as predictedooincluding that the carrier term is unaltered by modulation.

The investigations of this report are primarily concerned with suppressed-carrier amplitude modulation, so that no further treatment of straight AM will be included here. Introduction at this point has been for the purpose of clarification of the statement that the modulated information is contained solely in the sidebands, and that the carrier is not necessary for the transmission of information by ampli. tude modulation.

Suppressed-carrier Amplitude Modulation

Removal of the carrier term from the "complete" AM signal is normally accomplished by the addition of an out-of-phase carrier term, with amplitude and phase adjusted so that the sum of the two signals is always zero. In practice, this process is usually performed by a
balanced modulator-which is actually two separate modulators-which not only serves to cancel the carrier but also to increase the amount of sideband signal generated.

One of the two modulators which combine to make such a circuit operates with two input signals exactly as shown at [3] and [4]。 so that its output is

$$
\begin{align*}
e_{c}= & E_{c} \cos \omega_{c} t \\
& +\frac{k_{m} E_{m} E_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t \\
& * \frac{k_{m} E_{m} E_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t_{0} \tag{9}
\end{align*}
$$

The second modulator is identical. except that the input signals have been inverted from those at [3] and [4], so that
and

$$
\begin{equation*}
e_{c}{ }^{\eta}=-E_{c} \cos \omega_{c} t \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
e_{m}^{0}=-E_{m} \cos \psi_{m} t_{0} \tag{11}
\end{equation*}
$$

With these inputs, the output of the modulator r_{8} by a process identical to that by which [8] was developed is

$$
\begin{align*}
e_{c}^{t}= & -E_{c} \cos \omega_{c}^{t} \\
& +\frac{k_{m} E_{m} E_{c}}{2} \cos \left(w_{c}+\omega_{m}\right) t \\
& +\frac{k_{m} E_{m} E_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t_{0} \tag{12}
\end{align*}
$$

With the outputs of the two modulators comnected so that the signals at [9] and [12] add, the combined output of the balanced modulator becomes

$$
\begin{align*}
e_{0}= & k_{m} E_{m} E_{c} \cos \left(\omega_{c}+\omega_{m}\right) t \\
& +k_{m} E_{m} E_{c} \cos \left(\omega_{c}-w_{m}\right) t_{0} \tag{13}
\end{align*}
$$

In [13]. it is apparent that the desired cancellation of the carrier term has taken place. It should be noted that the amplitude of the sidebands generated by the balanced modulator is twice that for a single amplitude modulator as shown at [9] or [12].

Thoughtful consideration of the two terms remaining as the output of a suppressedocarrier amplitude modulation system leads to an intero esting conclusion-aeither sideband, by itself, contains all of the nec= essary information about the modulation signal。 $\dot{x}_{0} e_{0}$ its frequency and amplitude. Thus it would appear that it is necessary to transmit only one of them to convey all of the information. On the basis of this conclusion。 it is possible to have two suppressed-carrier modulation systemsoodouble sideband, or single sideband. Both of these systems are practical and are in use in many different types of communications systems. Single sideband has the unique advantage that all of the : information can be transmitted using half of the frequency-spectrum (band-width) required by the double sideband or full AM system.

In either of the suppressed-carrier systems it is necessary that the carrier be recreated at the receiving end if the modulation information is to be recovered. The carrier requirements are equally stringent for either system if undistorted reproduction of the original inc formation is to be achieved. Full $A M$, with the carrier transmitted, possesses the advantage that it is not necessary to recreate the carrierooit is already present as an inherent part of the received signal.

Frequency Changing and Demodulation

In the derivation of the results of amplitude modulation。 no restriction has been placed on the relative values of the frequencies of the carrier and modulation. If the sideband products that are created by the process are considered from the viewpoint of being "sum" and "difference" frequencies of the two input signals. some interesting conclusions resultwoit is possible to "change" the frequency of a signal to any other desired frequency by the process of amplitude modulation. with proper choice of a second input signal to the modulator. This process of frequency-changing is commonly known as "heterodyning", and forms the basis for many useful communications circuits.

One interesting application of this process is in demodulation. Consider as one input to the "frequency-changer" the single-sideband signal previously discussedmefor instance ${ }_{b}$

$$
\begin{equation*}
e_{1}=k_{m} E_{m} E_{c} \cos \left(\omega_{c}+\omega_{m}\right) t_{0} \tag{14}
\end{equation*}
$$

For the second input, use the "recreated" carrier required for demoduc lation.

$$
\begin{equation*}
e_{2}=E_{c} \cos \omega_{c} t_{0} \tag{15}
\end{equation*}
$$

With a balanced modulator, and these two input signals。 the output sigo nals will appear on two frequencies-one the sum, the other the difference. That is, they will be
and

$$
\left(w_{c}+w_{m}\right)+w_{c}=2 w_{c}+w_{m}
$$

$$
\begin{equation*}
\left(w_{c}+w_{m}\right)-w_{c}=w_{m} \tag{16}
\end{equation*}
$$

The first signal is of little interest and is a spurious product of the process. But, the second signal, [16], is the original modulation. Thus, by the process of modulation, demodulation has been achieved. This process is, in fact, a practical means of demodulation, and is referred to as "productodetection".

CHAPTER III

MODULATION DEVICES AND CIRCUITS

General Considerations

In the consideration of general modulation theory, several assumptions were made, with little-oif any-ojustification or support. Perhaps the most fundamental of these is related to the statement made in developing the basic equation representing an amplitude modulated sige nal. namely: "Introducing the amplitudevariation term at [5] so that it multiplies the amplitude of the carrier signal-o-->-0"... In this statement, the word multiplies has been underlined to emphasize its importance. The implications of multiplication of one electrical signal by another are far-reaching, and may not be readily apparent.

An inkling of the consequences of such an assumption is seen in a statement by Mason and Zimmermann [1]:

In a linear system superposition applies; the output due to two simultaneously applied inputs is the sum of the outputs due to each input acting alone. To say the same thing another wayo the component response of the system to each input signal is independent of the presence of other inputs.

The underlining is not that of the authors of this statement, but is introduced for emphasis.

Since multiplication of one electrical signal by another is certainly a dependency between them ${ }_{8}$ the statement above infers that multiplication ($i_{0} e_{0}$ modulation) cannot occur in a linear system. Modulation。 then, is inherently a nonlinear process, requiring a
nonlinear electrical device or circuit. The analysis of such circuits in a mathematicallymconcise "closed form" is usually not possible. At its best, the result is, hopefully, a close approximation whose validity can only be determined by experimental verification.

The nonlinear devices used to achieve modulation take many forms-a inductors , capacitors, resistors, vacuum tubes, semiconductor diodes, or transistors. Any such device is characterized by a fundamental parametercoinductance, capacitance, resistance-which does not remain constant, but is a variable function of the voltage or current of the device.

Nonlinear Circuit Elements

To obtain an understanding of how multiplication (and thus modulation) occurs when a nonlinear circuit element is involved, consider the general mathematical statement of the voltageccurrent relationship for a resistance-othe simplest electrical element-anamely,

$$
\begin{equation*}
E=F(I)_{0} \tag{17}
\end{equation*}
$$

where $F(I)$ is the arbitrary statement which is the characteristic of the device. In the restricted case of linear circuit theory, this relation= ship reduces to

$$
\begin{equation*}
E=I R_{\theta} \tag{18}
\end{equation*}
$$

where R is a constant not dependent on I 。
The relationship at [17] could equally well be stated inversely

$$
\begin{equation*}
I=f(E) \tag{19}
\end{equation*}
$$

For any given nonlinear resistance the functional relationship. $\mathrm{F}(\mathrm{I})$ or $\mathrm{f}(\mathrm{E})$ 。 may not be known in concise mathematical form. Most fre quently, this functional relationship is known only from experimental data, and is presented graphically as a "characteristicocurve" relating the current and voitage.

However, whether this relationship is known mathematically or experimentally, with appropriate restrictions, it may be expressed in the form

$$
\begin{equation*}
E \equiv A+B I+C I^{2}+D I^{3}+E I^{4}+\cdots O \tag{20}
\end{equation*}
$$

oro alternatively

$$
\begin{equation*}
I=a+b E=c E^{2}+d E^{3}+e E^{4}+\cdots \circ 0 \tag{21}
\end{equation*}
$$

With the E-I relationship expressed as at [21], the results of the application of two simultaneous electrical signals can be investigated. Representing the applied voltage as

$$
\begin{equation*}
E=E_{m} \cos w_{m} t+E_{c} \cos w_{c} t_{\nu} \tag{22}
\end{equation*}
$$

substituting [22] into [21] gives

$$
\begin{align*}
I= & a+b\left[E_{m} \cos w_{m} t+E_{c} \cos w_{c} t\right] \\
& +c\left[E_{m} \cos w_{m} t+E_{c} \cos w_{c} t\right]^{2} \\
& +d\left[E_{m} \cos w_{m} t+E_{c} \cos w_{c} t\right]^{3} \\
& +\cdots \theta_{0} \tag{23}
\end{align*}
$$

Expanding the terms of [23] yields

$$
\begin{align*}
I= & a+b E_{m} \cos w_{m} t+b E_{c} \cos w_{c} t \\
& +c E_{m}^{2} \cos ^{2} w_{m} t+c E_{c}^{2} \cos ^{2} w_{c} t \\
& +2 c E_{m} E_{c} \cos w_{m} t \cos w_{c} t \\
& +d E_{m}^{3} \cos ^{3} w_{m} t+d E_{c}^{3} \cos ^{3} w_{c} t \\
& +3 d E_{m}^{2} E_{c} \cos ^{2} w_{m} t \cos w_{c} t \\
& +3 d E_{m} E_{c}^{2} \cos w_{m} t \cos ^{2} w_{c} t+0,0 \tag{24}
\end{align*}
$$

The terms in [24] involving the square, cube, and product of cosine functions has little physical meaning. By aid of the trigonometric identities:

$$
\begin{aligned}
& \cos ^{2} \alpha=1 / 2[\cos 2 \alpha+1] \\
& \cos ^{3} \alpha=1 / 4[\cos 3 \alpha+3 \cos \alpha] \\
& \cos \alpha \cos ^{2} \beta=1 / 4[2 \cos \alpha+\cos (\alpha-2 \beta)+\cos (\alpha+2 \beta)]
\end{aligned}
$$

[24] may be written in the form

$$
\begin{aligned}
& I=a+b E_{m} \cos w_{m} t+b E_{c} \cos w_{c} t \\
& +\frac{\tilde{E}}{\frac{E}{2}} E_{m}^{2}\left[1+\cos 2 u_{m} t\right]+\frac{c}{2} E_{c}^{2}\left[1+\cos 2 W_{c} t\right] \\
& +C E_{m} E_{c} \cos \left(w_{c}+w_{m}\right) t+c E_{m} E_{c} \cos \left(w_{c}-w_{m}\right) t \\
& * \frac{d}{4} E_{m}^{3}\left[3 \cos w_{m} t+\cos 3 w_{m} t\right]+\frac{d}{4} E_{c}^{3}\left[3 \cos w_{c} t+\cos 3 w_{c} t\right] \\
& +\frac{3 d}{2} E_{m}^{2} E_{c} \cos w_{c} t+\frac{3 d}{2} E_{m} E_{c}^{2} \cos w_{m} t \\
& \Rightarrow \frac{3 d}{4} E_{m}^{2} E_{c} \cos \left(\omega_{c}-2 \omega_{m}\right) t+\frac{3 d}{4} E_{m}^{2} E_{c} \cos \left(\omega_{c}+2 \omega_{m} t\right) \\
& * \frac{3 d}{4} E_{m} E_{c}{ }^{2} \cos \left(2 \omega_{c}-\omega_{m}\right) t+\frac{3 d}{4} E_{m} E_{c}{ }^{2} \cos \left(2 \omega_{c}+\omega_{m}\right) t+\cdots o .
\end{aligned}
$$

Collecting the terms of [25] as coefficients of the various cosine functions yỉelds

$$
\begin{align*}
I= & +\frac{c}{2} E_{m}^{2}+\frac{c}{2} E_{c}^{2} \\
& +\left[b E_{m}+\frac{3 d}{4} E_{m}^{3}+\frac{3 d}{2} E_{m} E_{c}^{2}\right] \cos w_{m} t \\
& +\frac{c}{2} E_{m}^{2} \cos 2 w_{m} t+\frac{d}{4} E_{m}^{3} \cos 3 \omega_{m} t \\
& +\left[b E_{c}+\frac{3 d}{4} E_{c}^{3}+\frac{3 d}{2} E_{m}^{2} E_{c}\right] \cos \omega_{c} t \\
& +\frac{c}{2} E_{c}^{2} \cos 2 w_{c} t+\frac{d}{4} E_{c}^{3} \cos 3 w_{c} t \\
& +c E_{m} E_{c}\left[\cos \left(w_{c}-w_{m}\right) t+\cos \left(w_{c}+w_{m}\right) t\right] \\
& +\frac{3 d}{4} E_{m}^{2} E_{c}\left[\cos \left(w_{c}-2 w_{m}\right) t+\cos \left(w_{c}+2 w_{m}\right) t\right] \\
& +\frac{3 d}{4} E_{m} E_{c}^{2}\left[\cos \left(2 w_{c}-w_{m}\right) t+\cos \left(2 w_{c}+w_{m}\right) t\right] \\
& +000 \quad \tag{26}
\end{align*}
$$

From [26] it is apparent that the application of two sinusoidal voltages to a nondinear resistance results in the creation of many new signalso These new signals are related to the original voltages by the sums. differences and harmonics of their frequencies. of particular interest is the pair of terms at the two frequencies $\left(w_{c}+w_{m}\right)$ and $\left(w_{c}-w_{m}\right)_{0}$ since they represent the sidebands encountered in the general theory of modulation. From the presence of these two terms. it is apparent that the application of two sinusoidal signals to a nonlinear circuit element does produce the normal products of modulation.

In the expression for the amplitude modulated signal components at [8] since $k_{m} E_{m}=\mathbb{1}_{0}$ it is seen that the sideband amplitude is $1 / 2$ that
of the carrier. This, of course, is for "full" (100%) modulation, when the maximum amplitude of E_{m} satisfies the condition just mentioned. An examination of the coefficients of the carrier and sideband components in [26] reveals that their relative magnitudes are determined by the coefficients b, c_{0} and d. The coefficient d introduces some unusual conditions, causing variation of the carrier output amplitude with carrier input amplitude, $\mathrm{E}_{\mathrm{c} 0}$ and modulation amplitude, E_{m}. This latter variation, controlled by $\mathrm{E}_{\mathrm{m}}{ }^{2} \mathrm{E}_{\mathrm{c}}$ is not a normal one for amplitude modulation ${ }^{\text {i }}$ in which the carrier amplitude is not a function of the modulation signal. Thus, "ideal" AM cannot be obtained from a nonlinear device. In fact, further expansion of the series to higher-order terms in E would show that the coefficients of all odd-order terms would similarly effect the carrier amplitude。

For ideal AM modulation from a nonlinear device, to avoid this variation in E_{c} with E_{m} it would be necessary that all higher-order terms not exist. Under such restrictions, the characteristics of the device would assume the form

$$
\begin{equation*}
I=b E+c E^{2} \tag{27}
\end{equation*}
$$

If b and c were related properly to make the sideband amplitude $1 / 2$ that of the carrier term for the maximum allowable value of E_{m} full 100% modulation would be attained. However, even under these conditions, the output would contain extraneous terms--the modulation itself, DC components, and second harmonics of both the carrier and modulation. Fortunately, these products are widely separated from the carrier and sidebands in frequency, and can be removed by adequate filters.

Other terms which enter because of the higher-order terms in E are
perhaps more destructive than the carrier variation outlined above。 These terms will cause the generation of second－order sidebands around the carrier at frequencies of $\left(w_{c}+2 w_{m}\right),\left(w_{c}-2 w_{m}\right),\left(w_{c}+3 w_{m}\right)_{0}$ $\left(W_{c}=3 W_{m}\right)_{0}$ and so on．These products will be close in frequency to the desired carrier and first－order sidebands．and thus cannot be re－ moved by filtering．They will be transmitted along with the desired signals，will be demodulated along with them。 and will appear as＂har－ monic distortion ${ }^{\circ}$ of the recovered information signal．

Vacuum Tubes as Nonlinear Elements

In one of the earliest published works on the mathematical re＝ presentation of vacuum tubes，Carson［2］used a＂power series＂of the form used at［21］for the general nonlinear resistor．However，the plate current in a vacuum triode is a function of both the grid and plate potentials．Carson took account of this second variable by in troduction of a voltage term of the form

$$
E=\left(\mu e_{c}+e_{b}\right)_{0}
$$

where e_{c} is the instantaneous grid potential．e_{b} is the instantaneous plate potential（both with reference to the cathode），and μ is a para－ meter of the tube relating the relative effectiveness of the grid and plate voltages in changing plate current．μ is known as the＂amplifi－ cation factor ${ }^{n}$ of the tube。

In the power－series expansion of a function of two variables by Taylor＇s Theorem，the partial derivatives of the dependent variable with respect to the two independent variables are encountered in the coefficients of the various terms．In the vacuum tube，these partials
appear as derivatives of plate current with respect to both grid and plate potential, second derivatives with respect to the potentials, and so on o Two of these derivatives have been defined as fundamental parameters of the tube. The derivative of the plate current with respect to plate voltage is defined as the "dynamic plate conductance" ${ }^{\circ}$ oor, as more commonly used, the reciprocal of this is defined as the dynamic plate resistance ${ }_{0}$ The first derivative of the plate current with respect to the grid voltage is defined as the dynamic transconductance of the tube. These derivatives appear in the first power terms of the series. The second and third derivatives, which appear in higher-power terms, are interpreted as the rate of change of the two parameters, and so on.

This fundamental analytic treatment of the vacuum tube, as developed by Carson, has become the accepted approach, and is encountered in almost every treatment of the vacuum tube by means of an equivalent mathe matical model.

For simplified "1inear" analysis, Carson"s treatment is still ap. plicable, but the transconductance and plate resistance are considered to remain constant. This says, in effect, that the higher derivatives do not exist, and the power-series representation is reduced to the first-order terms. This "linearization" of the analysis is very ef. fective for small-signal conditions, allows superposition to be used. and simplifies the mathematics involved.

However, this linear simplification cannot be used in the analysis of modulation circuits, since it is the higher-order terms in the series which contribute the "product" terms necessary for the creation of the sideband components.

Carrier Suppression Techniques。

It has been shown that two modulators with the proper input sig． nals can have their outputs combined so as to cause cancellation of the carrier signal．The actual operation of such a circuit using a nonlinear element can be verified by use of the power－series represen－ tations of the devices．

For one of the two elements，consider the input voltage to be of the form

$$
E=+\left(E_{c} \cos \omega_{c} t+E_{m} \cos \omega_{m} t\right)_{0}
$$

and for the second element，consider the input voltage to be of the form

$$
E \equiv-\left(E_{c} \cos u_{c} t+E_{m} \cos U_{m} t\right)
$$

For the first input（positive），the output from the element is shown at（26）．For the second，the output from the device is

$$
\begin{aligned}
& I=a+\frac{C}{2} E_{m}{ }^{2}+\frac{C}{2} E_{c}{ }^{2} \\
& +c E_{m} E_{c}\left[\cos \left(\omega_{c}-\omega_{m}\right) t+\cos \left(w_{c}+w_{m}\right) t\right] \\
& =\frac{3 d}{4} E_{m}^{2} E_{c}\left[\cos \left(w_{c}-2 w_{m}\right) t+\cos \left(w_{c}+2 w_{m}\right) t\right] \\
& =\frac{3 d}{4} E_{m} E_{c}{ }^{2}\left[\cos \left(2 w_{c}-w_{m}\right) t+\cos \left(2 u_{C}+w_{m}\right) t\right] \\
& \text { * } 0000 \text { 。 }
\end{aligned}
$$

By comparison, it is seen that the expression at [29] contains the identical terms found in [26]。 the only difference being the algebraic sign on some of the terms.

Considering the outputs of the two nonlinear elements to be connected together so that their output signals add algebraically, the combined output is obtained by adding [26] and [29]. This yields

$$
\begin{align*}
I= & 2\left[a+\frac{c}{2} E_{m}^{2}+\frac{c}{2} E_{c}^{2}\right] \\
& * c E_{m}^{2} \cos 2 W_{m} t+c E_{c^{2}}^{2} \cos 2 W_{c} t \\
& +2 c E_{m} E_{c}\left[\cos \left(\omega_{c}-\omega_{m}\right) t+\cos \left(\omega_{c}+W_{m}\right) t\right] \\
& * 000 . \tag{30}
\end{align*}
$$

In [30], it is seen that the carrier and all odd harmonics cancel each other but that all even harmonics and the sidebands add. Thuso two identical nonlinear elements, with proper input signals can be combined to form a "balanced modulator" which will provide suppressedecarrier amplitude modulation.

It must be emphasized that the assumption of identical elements infers that all coefficients in the power series $a_{8} b_{0} c_{8} d_{0} \ldots 000$ must be exactly the same for both elements. In actual elements this is seldom achieved, so that complete balance is seldom attained.

Modulation by Sampling with Switching Devices

It is possible to obtain the normal products of modulation (side= bands) by the use of "sampling" techniques.

The sampling device frequently used for this purpose is a diode (either semiconductor or vacuum) which is switched on and off by the
carrier signal．The carrier voltage applied is of relatively high amplia tude，so that the device is driven either into hard conduction（a low o resistance state）or is highly reverse－biased（a high－resistance state）。 By proper circuitry，this action can be used to switch the modulation voltage on and offo－at a carrier rate．This switching action，in effect， multiplies the signal by 0 or 1_{0} at carrier rate．When two such circuits are connected ${ }^{\text {＂b }}$ back－to－back＂。 the effect is to multiply the modulation signal by $\$ 1$ or -1 。

Analytically，this switching function is a squarewave symmetrical about the voltage axis，switching between the states +1 and -1 ．Mathemat－ ically，the Fourier－series representation of this switching function is

$$
\begin{align*}
E= & \frac{2}{\pi} \cos w_{c} t-\frac{1}{\pi} \cos 2 w_{c} t \\
& +\frac{2}{3 \pi} \cos 3 w_{c} t-\frac{1}{2 \pi} \cos 4 w_{c} t \\
& +\frac{2}{5 \pi} \cos 5 w_{c} t=\ldots 0 . \tag{31}
\end{align*}
$$

Multiplying this series by the modulation voltage yields

$$
\begin{align*}
E= & \frac{2}{\pi} E_{m} \cos w_{m} t \cos w_{c} t=\frac{1}{\pi} E_{m} \cos w_{m} t \cos 2 w_{c} t \\
& +\frac{2}{3 \pi} E_{m} \cos w_{m} t \cos 3 w_{c} t-\frac{1}{2 \pi} E_{m} \cos w_{m} t \cos 4 w_{c} t \\
& +\frac{2}{5 \pi} E_{m} \cos w_{m} t \cos 5 w_{c} t-\cdots 0 . \tag{32}
\end{align*}
$$

By aid of the trigonometric identity for the product of cosine terms． this can be put into a more meaningful form

$$
\begin{align*}
E= & \frac{1}{\pi} E_{m}\left[\cos \left(w_{c}-w_{m}\right) t+\cos \left(w_{c}+w_{m}\right) t\right] \\
& =\frac{1}{2 \pi} E_{m}\left[\cos \left(2 w_{c}-w_{m}\right) t+\cos \left(2 \omega_{c}+w_{m}\right) t\right] \\
& +\frac{1}{3 \pi} E_{m}\left[\cos \left(3 w_{c}-w_{m}\right) t+\cos \left(3 \omega_{c}+w_{m}\right) t\right] \\
& =\frac{1}{4 \pi} E_{m}\left[\cos \left(4 \omega_{c}-w_{m}\right) t+\cos \left(4 \omega_{c}+w_{m}\right) t\right] \\
& +\cdots 0 . \tag{33}
\end{align*}
$$

In [33]. it is apparent that the "sampling" action of the switching function has created the normal sideband products of amplitude modulation. Since this is a symmetrical (balanced) switching function。 the carrier does not appear in the output, nor do any of its harmonics. However, sidebands are produced for each of these harmonics, as, though they were the carrier.

Since the pairs of sidebands created in this process are separated from other pairs by a relatively large frequency difference \circ the carrier frequency-it is possible to select any desired pair of sidebands by nor mal filter techniques.

Switching circuits, analytically at least, seem to provide the ideal approach for the generation of suppressed carrier amplitude modu= lation. However, a number of assumptions have been made in the analytic treatment which are difficult to achieve in practical circuits.

First, it has been assumed that the switching function generated by the carrier and diodes is a perfect square-wave-absolutely symmetrical。 and with zero rise time. Such a square-wave is difficult to generate! Any deviations from this perfect switching function will cause the crea* tion of undesirable product terms in the output.

Second, for perfect performance, it is necessary that all diodes have exactly the same characteristics. And, we have assumed that these characteristics are "ideal"-wero forward resistance, and infinite back resistance. These, too, are difficult to achieve in practical devices. However o_{o} in spite of these practical difficulties, the diode "switching ${ }^{18}$ modulator is an excellent device for the generation of suppressed carrier amplitude modulated signals.

CHAPTER IV

A TWIN-TRIODE MODULATOR CIRCUIT

General Circuit Features

A circuit suggested by Mr. Robert Morris was selected for theoretical and experimental investigation. This circuit is shown schematically in Figure 4。

Figure 4. Basic Modulator Schematic Diagram
*
The circuit seemed to offer some unique advantages as a balanced modulator circuit-oif its performance as such a device was adequate. In particular carrier cancellation was of importance.

The unique advantage of this circuit is that it requires only "sino gle-ended ${ }^{p p}$ input signals. All previous discussions have concerned devices which require "push-pull" (double-ended) input signalso-that is, a pero fectly matched pair of input signals, one positive, the other negative for both the carrier and modulation. The circuit of Figure 4 does not
require these signals for cancellation, but applies the single input voltage to the grid of one tube and to the cathode of the other, simultaneously, The opposing effect on the grid-to-cathode potential of the two tubes increases the plate current in one, and decreases the plate current in the other. With the outputs combined in the common plate-load resistor, R_{B} the two changes cancel each other--thus providing inherent cancellation of the two input signals in the output.

The advantage of this signal-voltage requirement is not immediately apparent, until an investigation is made of the means for generating "push-pull" signals for the conventional balanced modulator. The two most common approaches to this problem are the use of a dual-secondary transformer, or a vacuum-tube "phase-inverter" circuit.

The difficulties of constructing an adequate balanced transformer are almost insurmountable. It is required that the two windings have identical self-inductance, mutual inductance, and stray capacitance. And, if the transformer is to handle a TV video signal as the modulating voltage, this must be true over a frequency range from a few cycles to several megacycles.

The vacuum-tube phase inverter is inherently an unbalanced device, dynamically. If it uses two tubes, the plate current excursions in one will be up while the excursions in the other are down-opposite directions on a "curved" characteristic. Thus, while they may be opposite outputs in phase, they cannot be identical in amplitude because of this "curvature". If a single tube is used in the popular "split-load" phase inverter, one output is taken from the cathode of the tube, the other from the plate. Looking back into this circuit for the equivalent source internal impedances, it is found that they are radically different for the
two connections, so that the dynamic performance cannot be identical.
Performance of the circuit of Figure 4 as a modulator will inherently depend on the presence of nonlinear elements--in this case, the two vacuum tubes. The actual circuit has been used as a frequency-conversion heterodyne mixer in practical systems. Performance in these applications has indicated that the nonlinear "mixing" action is very good. Since this is a form of amplitude modulation, the performance of the circuit in this respect was already well established. However, the carrier-rejection capabilities of the circuit were unknown. This investigation will entail a verification of modulator action, and a study of the inherent carriercancellation capabilities of the circuit.

A number of "equivalent circuits" for analysis were developed for the actual circuit of Figure 4. It was discovered that the adequacy of these circuits depended entirely on the introduction of input-signal equivalent generators of the correct form。 It was only after considerable experimental work was done, indicating the importance of the generator internal impedance, that it was possible to arrive at an equivalent circuit which provided a realistic account of actual circuit performance. The
final equivalent circuit used in the analysis is shown in Figure 5.

Figure 5. Linear Equivalent Circuit of Modulator

In this equivalent circuit, the grid return resistors have been omitted, since they are some 50 times greater than any other resistance present in
the circuit.
It should be noted that this circuit is shown with the usual linear (small-signal) equivalent voltage generator, $\mu \mathrm{e}_{\mathrm{gk}}$, in series with internal impedance. $r_{p_{0}}$ representing the tube. In the light of previous contentions that modulation is inherently a nonlinear process, and that linear analysis cannot tell anything about modulation--this would seem to be foolhardy.

Several attempts were made to approach the analysis of this circuit by the conventional techniquesoureplacing each tube, analytically, by the power series representation of a nonsinear element. However, in every case the algebra encountered in the process of analysis became so complicated as to defy further progress. In most cases, it was required to solve two simultaneous equations in two unknownsowith each equation containing cubic or quartic terms in each of the two unknowns. and crosseproducts between themorattempts to simplify these equations failed because simplifications could not be made because physical mean ing was obscure.

It was felt that linear analysis. which was not too difficult. should give some meaningful results for the inherent carrier-cancellation capabilities of the circuit. Direct carrier terms appear in the output primarily from first-order terms, in the power-series representation. Thus, linear analysis, using just the first-order terms, should be indicative of the carrier cancellation possibilities.

Dr. William $L_{\text {。 Hughes }}$ suggested that nonlinear analysis might be successfully accomplished by the introduction of nonlinearities into appropriate terms in the results of the linear analysis. With this approach it would be possible to keep identification of various terms
with their physical meaning. If simplifications were required they could be based on assumptions about individual terms for which physical intere pretation was not completely obscure。

Linear Analysis

Linear analysis of the circuit was performed by conventional methods. Current-node and voltage-loop equations were written to obtain a set of seven independent equations in seven unknowns-othe seven currents indicated in Figure 5. Two auxiliary equations including the voltages egkl and $e_{g k 2}$ were written so that these two voltages could be eliminated in the equations which involved the equivalent generators, $\mu e_{g k 1}$ and $\mu e_{g k}{ }^{\circ}$ 。

The seven independent equations were solved for I_{1} and I_{2}, which are ${ }_{0}$ in reality, the plate currents of the two tubes. An expression for the output voltage was obtained from these, since their sum passes through the common plate-load resistor, R_{o} This final output-voltage expression is

$$
\begin{align*}
& e_{0}=\frac{b R}{R_{2}^{2}=\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{1}\right)}[{\left[(\mu+1) r_{p 2}-\mu r_{p 1}+(2 \beta+1) b R g\right] e_{1} } \tag{34}\\
&\left.+\left[(\mu+1) r_{p 1}-\mu r_{p 2}+(2 \mu+1) b R g\right] e_{2}\right] .
\end{align*}
$$

where

$$
\begin{align*}
& R_{1}=R+(\mu+1) b R_{\theta} \\
& R_{2}=R=\mu b R g_{\theta} \quad \text { and } \quad b=\frac{R_{k}}{R_{g}+R_{k}} .
\end{align*}
$$

In this expression for the output voltage, the assumption has been made that the μ of the tubes is the same. It is felt that this is a realistic assumption, since the amplification factor of a tube is its most constant basic parameter.

It is apparent from [34] that, even with the assumption of identical tubes $\left(\mu_{1}=\mu_{20}\right.$ and $\left.r_{p 1}=r_{p 2}\right)$, there is some component of the input voltages present in the output, indicating that carrier-cancellation is not inherently complete in this circuit.

However, in the experimental model the circuit could be adjusted so that carrier cancellation was good. In order to ascertain what conditions in the circuit would make this true, the coefficient of one of the input voltage terms was equated to zero. Assuming the carrier is represented by the voltage generator e_{10} equating the coefficient of the e_{1} term in [34] to zero yields
or。

$$
\begin{aligned}
& (\mu+1) r_{p 2}-\mu r_{p 1}+(2 \mu+1) \frac{R_{g} R_{k}}{R_{g}+R_{k}}=0 \\
& \mu r_{p 1}=(\mu+1) r_{p 2}+(2 \mu+1) \frac{R_{g} R_{k}}{R_{g}+R_{k}}
\end{aligned}
$$

from which

$$
\begin{equation*}
r_{p 1}=\frac{\mu+1}{\mu} r_{p 2}+\frac{2 \mu+1}{\mu} \frac{R_{g} R_{k}}{R_{g}+R_{k}} \tag{36}
\end{equation*}
$$

Thus, in [36], on the basis of a linear analysis, we have stated the requirement for a basic unbalance in the circuit for carrier cancella tion to occur.

If the μ of the tubes is high* the first term will contribute little to this required unbalance. However, it is observed that the second term involves both tube parameters and circuit components. If μ is high, the coefficient of this term is approximately 2 . The circuit components appear as the parallel-equivalent resistance of the generator internal resistance $\theta_{g} R_{g}$, with the cathode resistor, R_{k} 。 Since R_{k} is relatively high, this requires that R_{g} should be quite low if the
contribution of this second term to the required unbalance is to be minimized．

The implications of this requirement are not apparent unless a slightly different outlook on the basic circuit is used．Upon inspec tion of the circuit。 it is found that a positive－feedback loop exists around the entire circuit－هfrom the grid of V 1 to the cathode of Vl_{0} thence to the grid of $V 2_{0}$ to the cathode of $V 2_{s}$ and then back to the grid of $V 1$ ．The feedback around this loop is positive ${ }^{\text {b }}$ but since the input－output for each tube is gridocathode，the total gain is appreciably less than one．However，even though the loop gain has no possibility of causing self＝oscillation。 it should have an appreciable regenerative effect．From this viewpoint，the requirement that R_{g} must be low is in effect，a requirement that this feedback loop be＂broken＂。

Nonlinear Analysis

The linear analysis of the preceding section will be extended to a nonlinear analysis by the＂perturbation＂of appropriate parameters of the tubes．

From the fundamental definition of the μ of a tube ${ }_{0}$

$$
\begin{equation*}
\mu=\frac{\partial e_{b}}{\partial e_{c}} \tag{37}
\end{equation*}
$$

theoretically at least，there is no variation of the μ with changes in current．An examination of the characteristics of an actual triode shows that over a quite wide range of current this is essentially true。 Only near cutoff（very 1 ow current）does the μ of a practical triode change appreciably．On this basis，the linear analysis will not be perturbed
for changes in $\mu_{\text {。 }}$.
An examination of the relationship between r_{p} and current in a trio ode reveals that, theoretically, the plate resistance varies inversely with the cuberoot of the current in the tube [3]. An examination of the actual characteristics of a practical triode as shown in Figure 6, reveals that, at least in form, this variation is approximately correct,

Figure 6。 $r_{b}=i_{b}$ Relationship for Typical Triode

At very low current the plate resistance is very high, and, as the plate current increases, the plate resistance drops appreciably. On this basis it will be assumed that the plate resistance, $r_{p o}$ varies inversely with plate current, as a"perturbed ${ }^{09}$ value. Specifically, the variation is assumed to be
and

$$
\begin{align*}
r_{p 1} & =r-k I_{1} \tag{38}\\
r_{p 2} & =r-k I_{2} \tag{39}
\end{align*}
$$

where $\underset{\sim}{r}$ is the plate resistance at the quiescent-point of operation (nosignal), and k is the slope of the $r_{p}=i_{b}$ curve at that point. Since the $r_{p}=\dot{i}_{b}$ curve is not a straight line of negative slope ${ }_{0}$ this assumption is only an approximation. However, it does give a reasonable approximation over a fair range of tube current. With the assumption of any other form of variation, higher-order terms enter into the analysis,
and the same difficulty is encountered as in the full nonlinear analysis. In the linear analysis the expressions obtained for I_{1} and I_{2} are

$$
\begin{equation*}
I_{1}=\frac{\mu_{2} b R_{2}+\left(\mu_{1}+1\right) b\left(r_{p 2}+R_{3}\right)}{R_{2} R_{4}=\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{3}\right)} e_{1}-\frac{\left(\mu_{2}+1\right) b R_{4}+\mu_{1} b\left(r_{p 2}+R_{3}\right)}{R_{2} R_{4}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{3}\right)} e_{2} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\frac{\mu_{1} b R_{4}+\left(\mu_{2}+1\right) b\left(r_{p 1}+R_{1}\right)}{R_{2} R_{4}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{3}\right)} e_{2} \infty \frac{\left(\mu_{1}+1\right) b R_{4}+\mu_{2} b\left(r_{p 1}+R_{1}\right)}{R_{2} R_{4}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{3}\right)} e_{1} \tag{41}
\end{equation*}
$$

where $R_{10} R_{2}, R_{3}, R_{4}$ and b are constants involving the μ of the tubes and circuit components, introduced only for algebraic convenience.

The necessity for a simplifying assumption arises at this point. When I_{1} changes, $r_{p 1}$ changes. But since [40] involves $r_{p 10}$ changes in $r_{p 1}$ cause changes in $I_{1}=\infty$ an immediate involvement in higher-order terms in both current and r_{p}. In order to simplify this situation, the as sumption is made that the changes in current which cause a change in r_{p} result only from the appiied voltages e_{1} and e_{2}. Stated mathemat $=$ ically, [40] and [41] assume the form

$$
\begin{equation*}
I_{1}=k_{1} e_{1}-k_{2} e_{2} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=k_{1} \epsilon_{2}-k_{2} e_{1 。} \tag{43}
\end{equation*}
$$

where the constants k_{1} and k_{2} are evaluated by using the value of $r_{\text {, }}$ as defined at [38] and [39]. for $r_{p 1}$ and $r_{p 2}$.

Substitution of [42] and [43] into [38] and [39] gives

$$
\begin{align*}
& r_{p 1}=r=k\left(k_{1} e_{1}-k_{2} e_{2}\right)=r-k_{3} e_{1}+k_{4} e_{2} \tag{44}\\
& r_{p 2}=r=k\left(k_{1} e_{2}-k_{2} e_{1}\right)=r=k_{3} e_{2}+k_{4} e_{1} \tag{45}
\end{align*}
$$

which are the "perturbed" values of $r_{p 1}$ and $r_{p 2}$ which are to be introduced into the results of the linear analysis.

With [44] and [45] introduced into the expression for e_{o} at [34]. analysis becomes merely an extended exercise in algebra. The final result of this process is

$$
\begin{align*}
e_{0}=\frac{b R}{k_{5}} & {\left[k_{9} e_{1}+k_{9} e_{2}\right.} \\
& +\left(k_{11} \circ k_{9} k_{12}\right) e_{1}^{2}+\left(k_{11}-k_{9} k_{12}\right) e_{2}^{2} \\
& +\left(k_{10}-2 k_{9} k_{12}\right) e_{1} e_{2} \\
& +k_{15} e_{1}^{2} e_{2}+k_{15} e_{1} e_{2}^{2} \\
& +k_{16} e_{1}^{3}+k_{16} e_{2}^{3} \\
& +\ldots \ldots \tag{46}
\end{align*}
$$

where the k "s are constants dependent on "mean" tube parameters, the rate-ofechange of r_{p} with changes in i_{b} and the various circuit compos nents。

It is now convenient to represent e_{1} and e_{2} as the normal carrier and modulation sinusoids

$$
\begin{equation*}
e_{1}=E_{c} \cos w_{c} t_{\theta} \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{2}=E_{m} \cos w_{m} t_{0} \tag{48}
\end{equation*}
$$

By aid of the trigonometric identities [4]:

$$
\begin{aligned}
e_{1}^{2} & =\frac{E_{c}^{2}}{2}\left[\cos 2 w_{c} t+1\right] \\
e_{2}^{2} & =\frac{E_{m}^{2}}{2}\left[\cos 2 w_{m} t+1\right]_{0} \\
e_{1} e_{2} & =\frac{E_{c} E_{m}}{2}\left[\cos \left(w_{c}-w_{m}\right) t+\cos \left(w_{c}+w_{m}\right) t\right]_{0} \\
e_{1}^{3} & =\frac{E_{c}^{3}}{4}\left[3 \cos w_{c} t+\cos 3 w_{c} t\right]_{0} \\
e_{2}^{3} & =\frac{E_{m}^{3}}{4}\left[3 \cos w_{m} t+\cos 3 w_{m} t\right]_{0} \\
e_{1}^{2} e_{2} & =\frac{E_{c}^{2} E_{m}}{4}\left[2 \cos w_{m} t+\cos \left(2 w_{c}-w_{m}\right) t+\cos \left(2 w_{c}+w_{m}\right) t\right]_{0}
\end{aligned}
$$

and

$$
\begin{equation*}
e_{1} e_{2}^{2}=\frac{E_{c} E_{m}^{2}}{4}\left[2 \cos w_{c} t+\cos \left(w_{c}-2 w_{m}\right) t+\cos \left(w_{c}+2 w_{m}\right) t\right] \tag{49}
\end{equation*}
$$

The final expression for e_{o} becomes

$$
\begin{align*}
& e_{0}=\frac{b R}{k_{5}}\left[\left(k_{11}-k_{9} k_{12}\right)\left(\frac{E_{m}}{2}+\frac{E_{c}^{2}}{2}\right)+\left(k_{9} E_{m}-k_{16} \frac{3_{m}^{3}}{4}-k_{15} \frac{E_{c}^{2} E_{m}}{2}\right) \cos w_{m} t\right. \\
& +\left(k_{11}-k_{9} k_{12}\right) \frac{E_{m}^{2}}{2} \cos 2 w_{m} t-k_{16} \frac{E_{m}}{4} \cos 3 w_{m} t \\
& +\left(k_{10}-2 k_{9} k_{12}\right) \frac{E_{m} E_{c}}{2}\left[\cos \left(w_{c}-w_{m}\right) t+\cos \left(w_{c}+w_{m}\right) t\right] \\
& -k_{15} \frac{E_{m}^{2} E_{c}}{4}\left[\cos \left(w_{c}-2 w_{m}\right) t+\cos \left(w_{c}+2 w_{n}\right) t\right] \\
& +\left(k_{9} E_{c}-k_{16} \frac{3^{E_{c}^{3}}}{4}-k_{15} \frac{E_{c} E_{m}^{2}}{2}\right) \cos w_{c} t+\left(k_{11}-k_{9} k_{12}\right) \frac{E_{c}^{2}}{2} \cos 2 u_{c} t \\
& \left.-k_{15} \frac{E_{m} E_{c}^{2}}{4}\left[\cos \left(2 w_{c}-w_{m}\right) t+\cos \left(2 w_{c}+w_{m}\right) t\right]-k_{16} \frac{E_{c}^{3}}{4} \cos 3 w_{c} t+\ldots \ldots 0\right] . \tag{50}
\end{align*}
$$

The result of this analysis at [50] contains all the terms that would be expected in the consideration of modulation by a power-series expansion of the characteristics of a nonlinear element.

The coefficients of the various terms assume the normal relationships
to amplitudes of the two input signals，as comparison of［50］with［26］ will reveal．

By the presence of the carrier term in the output signal，it is apparent that inherently this circuit does not provide carrier cancel－ lation as the normal balanced modulator does．Furthermore，as a result of the third term in the coefficient for the carrier term。 it is apparent that the carrier feed－through is not constant with a constant level of carrier，but also varies as the modulation amplitude， E_{m} ，varies．Even if the circuit is deliberately unbalanced to provide carrier cancellation， as indicated in the linear analysis，the carrier cancellation will not be stable $e_{\text {b }}$ will vary with modulation．This is highly undesirable in any suppressed－carrier system．

Although the circuit does not provide complete carrier cancellation． the carrier component in the output is very low．Thus，the coefficient of the carrier term

$$
k_{9} E_{c}-k_{16} \frac{3^{E_{c}^{3}}}{4}-k_{15} \frac{E_{m}^{2} E_{c}}{2}
$$

must，in actual numerical evaluation，be a small number relative to the other terms．Thus， $\mathrm{k}_{90} \mathrm{k}_{15}$ 。 and k_{16} must be small individually。

CHAPTER V

EXPERIMENTAL INVESTIGATION

Preliminary Work

An experimental model of the circuit of Figure 4 was constructed early in the sequence of this investigation. The circuit showed some promise as a balanced modulator. However, it did not inherently balance for carrier cancellation, and no adjustment for exact balance was provided。

A period of "tinkering" followed, in the search for a modification of the original circuit which would allow precise adjustment for carrier cancellation with a minimum number of adjustments and controls. At the same time general observation of the many circuit variations served to give a better understanding of the performance to be expected under various conditions, and of the relative effect of the different circuit components. This experience proved invaluable in the evolution of the final equivalent circuit shown in Figure 5 。

At one time during this period of experimentation, every resistor in the circuit had been replaced by a potentiometer-so that a wide range in control of the operating point and of effective circuit values and their interrelationship could be obtained. One by one, reasonably optimum values for various components were determined, with emphasis on ease and precision of adjustment for carrier cancellation, while maintaining reproducible results with various tubes of the same type.

Simultaneously with this experimental work, the theoretical analysis was developing-owith the two analyses complementing each other. As an example of thiswowhen the theoretical analysis indicated that the amount of unbalance between the operating point of the two tubes would seemingly be improved by the use of higher μ tubes, this point was investigated. There exists a series of four tubes, all dual triodes, similar in general characteristics, with different amplification factors. These are:

$$
\begin{aligned}
& \text { 12AY7 } \cdots \cdots \cdots=\cdots=-\cdots=40 \text {, } \\
& \text { 12AT7 }=\cdots \cdots \cdots A_{0} \\
& 12 \text { AX7 } \ldots \ldots \ldots \ldots=100 \text { 。 }
\end{aligned}
$$

and

The circuit was altered to accommodate these various tubes, and circuit performance checked. It was, indeed, found that the higher μ tube gave better carrier balance, with closer agreement in the static operating point. At the same time, it was discovered that the balance adjustment became very critical and unstable with the high μ tube, so that a compromise, the 12AT7, was used in the final circuit version.

One major modification was made in the original circuit on the basis of experimental findings. Early in the investigation it was dis covered that carrier cancellation was seriously affected by the modulaw tion level. At the same time, it was observed that there was a fairly large shift in the Q-point with modulation level. It was felt that a portion of this $Q \circ$ point shift could be overcome by the use of fixedobias on the tube grids. rather than obtaining the operating bias by returning the grid resistor to a tap on the cathode resistor. When tried, this did seem to improve the circuit balance stability, and this mode of bias is included in the final circuit. This also turned out to be an improved way to adjust the circuit for carrier cancellation-all adjustments became
$d_{0} c_{0}$ controls, rather than variables in the signal circuits. However, this modification did not eliminate the variation of carrier feed through with change in modulation=owhich later turned out to be a basic characteristic of the circuit, when the nonlinear analysis had been completed.

The final version of the circuit which was evaluated theoretically and experimentally is shown in Figure 7.

Figure 7. Schematic Diagram of Test Circuit

This circuit was tested extensively after the linear and nonlinear analysis had been completed. The data from these tests is compiled in Appendix C_{0}

Correlation of Experimental and Theoretical Studies

The requirement for carrier balance, as determined in the linear analysis, was generally verified. It was found that a very low value
of generator internal impedance was required for carrier cancellation. The signal generator used had an internal impedance of approximately 10 ohms. With the generator connected directly to the input terminals only a minor unbalance of the two tubes was required for carrier cancellation. The addition of resistance as low as 10 ohms in series with the generator required a radical change in the operating point of the adjustable-bias tube, to provide the proper r_{p} for carrier cancellation. Under such conditions, although the circuit could be balanced statically, the general characteristics of the two tubes were so different that very poor performance was obtained when modulation was applied.

By [36], it is required that the plate resistance of the tube V1 must be larger than that for V 2 when the carrier is applied to the grid of V1 and the cathode of V2, if carrier cancellation is to take place. Since r_{p} varies inversely with plate current, this would require that V1 be operated with a lower current than V2. This condition was experimentally verified (see data groups 1 and 2, page 75, Appendix C)。 It was also observed that a series resistance in the generator lead required even further unbalance of tube current in this same direction。 as would be expected, from [36]. These conditions, while recorded for only one tube, were observed to be true for four different tubes of the same type-wwith one exception. This one tube required almost equal plate current in the two sections for carrier cancellation. When checked in a mutual-conductance tube checker, this tube was found to exhibit a wide difference in the characteristics of the two sections. The other three tubes were closely balanced between the two sections.

For preliminary signal analysis, the circuit was operated with a carrier frequency of 14 kilocycles per second and a modulation frequency
of 240 cycles per second. The choice of these frequencies was determined by the equipment on hand. It was desired to operate the circuit at a carrier frequency such that the third harmonic of the carrier would be less than 50 kilocycies, so that available spectrummeasuring equipment could be used. The exact carrier frequency selected was determined by the availability of a band-pass filter for a pass-band of $12.5-15.7$ kilocycles, which could be used to filter the double-sideband signal from the other frequency-components for observation. It was felt that, if preliminary investigations warranted, the circuit could later be. tested with video modulation and a carrier frequency of 3.58 megacycles= as it would be used in color TV balanced modulator service.

Using the spectrum analyzer, measurements were made for most of the signal components indicated to be present in the output by the theoretical analysis. These measurements are tabulated in Appendix C.

With the final experimental circuit as shown in Figure 6_{0} tube type selected, and circuit components adjusted to final values, the coefficients of the various signal terms in [50] could be numerically evaluated. The final result for e_{o} with all constants evaluated, is

$$
\begin{aligned}
e_{0}= & 3.75\left(E_{m}^{2}+E_{c}^{2}\right)=9.09\left(25 E_{m}+0.64 E_{m}^{3}+0.002 E_{m} E_{c}^{2}\right) \cos \omega_{m} t \\
& +3.75 E_{m}^{2} \cos 2 \omega_{m} t-1.88 E_{m}^{3} \cos 3 \omega_{m} t \\
& -7.50 E_{m} E_{c}\left[\cos \left(\omega_{c}-\omega_{m}\right) t+\cos \left(\omega_{c}+\omega_{m}\right) t\right] \\
& -0.01 E_{m} E_{c}\left[\cos \left(\omega_{c}-2 \omega_{m}\right) t+\cos \left(\omega_{c}+2 \mu_{m}\right) t\right] \\
& =\left[0.227 E_{c}+0.0058 E_{c}^{3}+0.018 E_{m}^{2} E_{c}\right] \cos \omega_{c} t \\
& +3.75 E_{c}^{2} \cos 2 \omega_{c} t \\
& -0.009 E_{m} E_{c}^{2}\left[\cos \left(2 \omega_{c}-\omega_{m}\right) t+\cos \left(2 \omega_{c}+\omega_{m}\right) t\right] \\
& -0.019 E_{c}^{3} \cos 3 \omega_{c} t \\
& +000 .
\end{aligned}
$$

Insertion of actual magnitudes of carrier and modulation voltages, E_{c} and $E_{m \theta}$ into this expression will yield the theoretically-predicted magnitudes of the various components. Since measurements were made of all components for $\mathrm{E}_{\mathrm{c}}=1$ volt (rms) and $\mathrm{E}_{\mathrm{m}}=1$ volt (rms), these magnitudes were selected for comparison of theoretical and experimental results.

The terms of greatest interest--the first-order sidebands--with $\mathrm{E}_{\mathrm{c}}=\mathrm{E}_{\mathrm{m}}=1$, are predicted to be 7.5 volts. Experimentally, (see data group 3. page 71. Appendix C) it is found that the measured signal on these two frequencies is 0.46 volts. This discrepancy of more than 10 to 1 is disappointing。

The second term of any significance in the output is the second harmonic of the carrier. With the stated input conditions, this is predicted to be 3.75 volts. It was actually measured to be 6.1 volts. The agreement here is greatly improved over that for the carrier term.

Other components were checked, and the comparison of theoretical and experimental values, generally, lies in the range of a discrepancy of from 5 to 10 times. However, one encouraging point is that the relative magnitudes of the various components--one compared to another--is quite reasonable. The only component which was found to be far out of line was the second-order sideband-- $\left(w_{c}+2 u_{m}\right)--$ which is less than ten percent of the value predicted. In fact, with one volt inputs, the predicted value was 0,01 volts, but experimentally it was far lower than this, and could not be measured-wwich means that it was considerably lower than one millivolt.

For the third harmonic term, which should increase as the cube of the applied carrier voltage amplitude, the amplitude varies approximately as the cube of the applied voltage for only very low values.

At carrier amplitudes of approximately 2 volts or more, the increase "levels off" very rapidly. This would seem to indicate that the analysis has no application for large-signal conditions, and can only be applied under small-signal conditions.

Particular investigation of the carrier-balance condition with changing modulation voltage was made, to attempt a verification of the conditions predicted by the theoretical analysis. It was found that carrier could be balanced to about the same suppression level for any given modulation voltage. However once balanced for that particular modulation voltage, any change , up or down, in the modulation voltage caused an increase in the carrier feed-through signal. If the carrier voltage is fixed, the theoretical investigation, based on the last term of the coefficient of the carrier signal, predicts that this feed-through should change as the square of the modulation voltage. In practical application. it would be necessary to balance for carrier cancellation with the modulation voltage at zero. In Figure 8, the variation of the carrier feed through voltage with variation of the modulation voltage is shown。 under the condition of carriermbalance with modulation voltage zero。

Figure 8. Carrier balance Shift with Modulation

In Figure 80 it is seen that，although the feedothrough of carrier does not increase as the square of the modulation voltage，the relation－ ship is not first－order eithermperhaps somewhere between $3 / 2$ and 2 ．

Under average operating conditions the carrier suppression could be adjusted to be about $38-40 \mathrm{db}$ 。 below the side－band signal level at maximum undistorted modulation．If balanced under maximum modulation－ voltage conditions，this suppression ratio could be improved to ap－ proximately 45 db 。 at maximum modulation．However，the carrier signal， under these conditions，would rise on the order of 15 db ．as modulation voltage was reduced．Since this is an impractical adjustment procedure in any event，it is of little concern－except as an indicator of chang－ ing balance conditions in the circuit．

The data obtained was plotted to indicate＂linearity＂of modula－
 tion amplitude．This was found to be extremely linear over a very wide range of modulation voltage $-\infty$ to 20 volts（ mms ）in fact．

The sideband amplitude was also plotted against carrier amplitude for various modulation voltages，and found to be quite linear up to ap proximately 1.5 volts（rms）of carrier．Above that point，the sideband amplitude rapidly＂flattened out＂。 and above 2.5 volts，very little in ${ }^{\text {o }}$ crease was found．However，in this＂saturated＂range for carrier－voltage variations，the modulationsideband relationship remained linear．

These relationships are shown in Figures 9 and 10 。

Circuit Modifications

The limitation of this circuit to extremely low values of generator internal impedance was recognized as a serious problem for any practical

use. A modification of the circuit to alleviate this was constructed and tested briefly。

The concept of the modification was to provide "built-in" cathode followers to drive the cathodes of the two tubes in the modulator circuit. Coupling from the cathode followers to the cathodes of the modulators was achieved through the use of a common cathode resistor. This circuit mods ification is shown in Figure 11.

Figure 11. Modified Modulator for High-impedance Signal Sources

The performance of this circuit, in general ${ }_{8}$ was quite similar to that of the circuit of Figure 6 。 Balance adjustment was very critical. with the controls as shown in Figure 11. In a practical circuit, it would be necessary to provide "vernier" controls on both of the balance adjustments. Once adjusted, the circuit exhibited good stability of
balance adjustment．The circuit achieved the desired result of isolating the cathode circuit from any direct effect from the generator impedance Average carrier suppression was in the range of $35=38 \mathrm{db}$ 。 down from max imum sideband amplitude．The range of linear modulation was greatly rea duced and the circuit could easily be overloaded．

A second modification of the original circuit was constructed，to investigate the use of pentodes instead of triodes．In the early phases of the theoretical analysis，there was an indication that carrier sup－ pression might be improved by the use of extremely high r_{p} tubes．This， logically，led to the use of the pentodeotype of tube，with its extremely high $r_{p o}$ On this basis，the circuit of Figure 12 was constructed and tested briefly。

Figure 12．Modified Modulator for Pentodes

General performance of the circuit was much the same as the triode version．Carrier balance did not seem to be improved．At least in the version tested，carrier balance was difficult to attain。 and was not
stable. On the basis of these indications, the circuit was abandoned, and investigation limited to the triode circuit of Figure 6 .

Miscellaneous Observations

The waveforms generated in the output circuit of the test modulator were very interesting. A very large second harmonic component was present-oas predicted from the theoretical analysis. There seemed to be very little distortion of the waveform of this second harmonic signal when the circuit was properly balanced for carrier suppression. This condition is verified in the analysis, where harmonics above the second are found to be of very small amplitude.

Upon the application of modulation voltage, alternate cycles of this second harmonic signal were increased, and the remaining alternate cycles were decreased. The "envelope" of these increased and decreased cycles followed the form of the modulation voltage. This variation in the amplitude of alternate secondeharmonic swings introduced a fundamental component into the output which was of the proper phase to create the normal double-sideband envelope.

Typical examples of these waveforms, at the common plate terminal of the two modulator tubes, are shown in the photographs of Figures 13-16. Photographs mounted side . by-side are for the same conditions. with oscilloscope sweep normal and expanded. The lower waveform of each photograph is the corresponding double-sideband envelope output from the bandopass filter ($12.5-15.7 \mathrm{kc}_{0}$) , whicho with a carrier frequency of 14 kilocycles, allowed only the upper and lower sidebands to pass. attenuating all other signal components.

Figure 13. Low Modulation. $e_{m}=1$ volt, $e_{c}=1$ volt.
$10 \mathrm{v} / \mathrm{cm}$. top trace, $0.05 \mathrm{v} / \mathrm{cm}$. Iower.

Figure 14 . Medium Modulation. $e_{m}=5.6$ volts, $e_{c}=2.5$ volts. $50 \mathrm{v} / \mathrm{cm}$ top trace, $\quad 0.5 \mathrm{v} / \mathrm{cm}$ lower.

Figure 15. High Modulation. $e_{m}=15$ volts, $e_{c}=2.5$ volts. $100 \mathrm{v} / \mathrm{cm}$. top trace, $2 \mathrm{v} / \mathrm{cm}$ lower.

Figure 16. No Modulation. $e_{m}=0$ volt, $e_{c}=2.5$ volts. $50 \mathrm{v} / \mathrm{cm} .0 .05 \mathrm{v} / \mathrm{cm}$. Modulator unbalanced.
No quantitative tests were run, but a number of observations on the "mixing" or frequency-changing ability of this circuit were made. For the input=signal frequency range of 1 to 40 kilocycles, any combination of frequencies which gave a sum or difference frequency of 14 kilocycles provided a sizable output from the filter, which was approximately the same for any frequency combination in this range. The ampli.tude of these sum or difference frequencies was approximately the same as the sideband signals produced when the circuit was used for normal modulation. As a frequency doublers the circuit performed throughout the range of 100 cycles to 25 kilocycles, although the waveform of the second harmonic component tended to distort at the lower frequencies.

SUMMARY AND CONCLUSIONS

The results of this investigation, in general, indicate that the circuit investigated is not suitable for use as a balanced modulator in any system where extreme carrier suppression is of importance. Howo ever, general performance of the circuit as a modulator is good. In an application where extreme carrier suppression is not required, it would seem to be a valuable circuit. On this basis, use of this circuit in frequency converter or product detector applications would be recommended. Although it does not provide adequate carrier suppression for critical applicationso the degree of carrier cancellation is remark able for a circuit which does not require pushopull inputs. On this basis alone it is useful in many applications.

The performance of the circuit as a frequencyodoubler is amazing, in that very high second harmonic output of good waveform is ob tained-owithout the use of tuned circuits. This feature would seem to have intriguing possibilities at audio frequencies, where frequencydoubling with good waveform is a problem。

General results of the nonlinear analysis were disappointing. How ever several assumptions were made in the deviopment of this analysis which undoubtedly contributed the majority of this error. Probably the most serious of these was the assumption that the only changes in r_{p} re sulted from input voltage effectswoignoring the secondoorder effects of
r_{p} itselfo. It is the feeling of this investigator that the general approach utilized in this analysis offers promise in the analysis of nonlinear electrical devices and circuits-oparticularly those involving vacuum tubes. The selected perturbation of appropriate parameters in a linear analysis offers the advantage of relatively direct identification of terms with their physical significance in the circuit. Thus, simplie fications, as required for algebraic solution, can be based on the physical significance of the items involved. The analysis in this report is a first attempt at this approach-and gave results which left much to be desired. However, with some experience to serve as a guide-particularly in the matter of appropriate and realistic simplifications and assumpo tions-oit is felt that the method offers some promise. On the basis of no more than an "intuitive guess" this method might prove to be a successful approach for use with "iteration" techniques on a digital come puter. by which simplifications could be held to a minimum.

SELECTED BIBLIOGRAPHY

［1］Mason。So Jo and Zimmermann，H_{0} Jo Electronics Circuits，Signals， and Systems．New York，John Wiley G Sons 1960
［2］Carson，J．Ro＂A Theoretical Study of the Three Element Vacuum Tube。＂Proceedings of the IRE．Volume 7 （1919）。pp。187－200。
－＂The Equivalent Circuit of the Vacuum－Tube Modulator．＂Proceed－ ings of the IRE．Volume 9 （1921）。pp．243－249。
－＂Notes on the Theory of Modulation．＂Proceedings of the IRE． Volume 10 （1926）。pp．57064．
［3］Chirlian。 $P_{0} M_{0}$ and Zemanian，$A_{\circ} H_{0}$ Electronics．New York，McGraw $=$ Hill，1961。
［4］Hughes，W．L．Nonlinear Electrical Networks．New York，Ronald Press： 1960°
［5］Chaffee，E．L．Theory of Thermionic Vacuum Tubes．First Edition。 New York：McGraw－Hill 1933．
［6］Glasgow，$M_{0} S_{0}$ Principles of Radio Engineering，First Edition． New York，McGraw－HIII T936．
［7］Gray．$T_{0} S_{0}$ Applied Electronics，Second Edition．New York John Wiley \＆ons． 1954.
［8］Hartley，$R_{0} V_{0} L_{0}$＂Relations of Carrier and Sidebands in Radio Transmission。＂Bell System Technical Journal。 Volume 2 （1923）。 pp 。 $90=112$.
［9］Llewellyn。 F_{0} ．B_{0}＂Operation of Thermionic Vacuum Tube Circuitso＂ Bell System Technical Journal．Volume 5（1926），pp．433－462．
［10］Reich．$H_{0} J_{0}$ Theory and Applications of Electron Tubes，Second Edition．New York McGraw－liili，194
［11］Van der Bij1．$H_{0} J_{0}$ The Thermionic Vacuum Tube and Its Applica－ tions．New York。McGraw－Hill 1920.

APPENDIX A

DETAILED LINEAR ANALYSIS

The linear equivalent circuit to be analyzed is duplicated here for convenience。

Figure Aol. Modulator Equivalent Circuit

For this circuit the following current-node and voltage $=100 \mathrm{p}$ equations can be written:

$$
\begin{align*}
& I_{1}+I_{3}=I_{5} \tag{1}\\
& I_{2}+I_{4}=I_{60} \tag{2}\\
& I_{1}+I_{2}=I_{7} \tag{3}\\
& -e_{1}+I_{3} R_{g}+I_{5} R_{k}=0 \tag{4}\\
& -e_{2}+I_{4} R_{g}+I_{6} R_{k}=0 \tag{5}\\
& I_{5} R_{k}+I_{7} R+I_{1} r_{p 1}-\mu_{1} e_{g k 1}=0 \tag{6}\\
& I_{6} R_{k}+I_{7} R+I_{2} r_{p 2}-\mu_{2} e_{g k 2}=0 \tag{7}\\
& e_{g k 2}-I_{4} R_{g}+e_{2}-e_{1}+I_{3} R_{g}=0 \tag{8}\\
& e_{g k 1}-I_{3} R_{g}+e_{1}-e_{2}+I_{4} R_{g}=0 \tag{9}
\end{align*}
$$

The first seven equations of this group form a linearly independent set in the seven current variables．The last two equations will be used to eliminate the＂dependent＂voltage generators，$e_{g k 1}$ and $e_{g k 2}$ from the independent set．

Solving［8］and［9］for the $\mathrm{e}_{\mathrm{gk}}{ }^{9} \mathrm{~s}$ in terms of the other variables yields

$$
\begin{align*}
& e_{g k 2} \cong e_{1}-e_{2}+I_{4} R_{g}-I_{3} R_{g} \tag{10}\\
& e_{g k 1}=e_{2}-e_{1}+I_{3} R_{g}=I_{4} R_{g} \tag{11}
\end{align*}
$$

Substituting［10］and［11］into［6］and［7］gives

$$
\begin{align*}
& I_{5} R_{k}+I_{7} R+I_{1} r_{p 1}=\mu_{1} e_{1}+\mu_{1} e_{2}-\mu_{1} I_{4} R_{g}+\mu_{1} I_{3} R_{g}=0 \tag{12}\\
& I_{6} R_{k}+I_{7} R+I_{2} r_{p 2}-\mu_{2} e_{2}+\mu_{2} e_{1}-\mu_{2} I_{3} R_{g}+\mu_{2} I_{4} R_{g}=0 \tag{13}
\end{align*}
$$

These two equations along with equations［1］through［5］comprise the independent set。

Substituting equations［1］。［2］。 and［3］into［4］．［5］。［12］。 and ［13］to eliminate the variables I_{5}, I_{60} and I_{7} gives

$$
\begin{align*}
&-e_{1}+I_{3} R_{g}+I_{1} R_{k}+I_{3} R_{k}=0 \tag{14}\\
&-e_{2}+I_{4} R_{g}+I_{2} R_{k}+I_{4} R_{k}=0 \tag{15}\\
& I_{1} R_{k}+I_{3} R_{k}+I_{1} R+I_{2} R+I_{1} r_{p 1}=\mu_{1} e_{1}+\mu_{1} e_{2} \\
&-\mu_{1} I_{4} R_{g}+\mu_{1} I_{3} R_{g}=0 \tag{16}\\
& I_{2} R_{k}+I_{4} R_{k}+I_{1} R+I_{2} R+I_{2} r_{p 2}=\mu_{2} e_{2}+\mu_{2} e_{1} \\
&-\mu_{2} I_{3} R_{g}+\mu_{2} I_{4} R_{g}=0 \tag{17}
\end{align*}
$$

Solving［14］and［15］for I_{3} and I_{4} ，respectively，gives

$$
\begin{aligned}
& I_{3}\left(R_{g}+R_{k}\right)=e_{1}-I_{1} R_{k} \\
& I_{4}\left(R_{g}+R_{k}\right)=e_{2}-I_{2} R_{k}
\end{aligned}
$$

$$
\text { or, } \begin{align*}
\quad I_{3} & =\frac{e_{1}-I_{1} R_{k}}{R_{g}+R_{k}} \tag{18}\\
I_{4} & =\frac{e_{2}-I_{2} R_{k}}{R_{g}+R_{k}} \tag{19}
\end{align*}
$$

Rearranging [16] and [17] by collecting terms in the I's yields

$$
\begin{aligned}
& I_{1}\left(R_{k}+R * r_{p 1}\right)+I_{2} R+I_{3}\left(R_{k}-\mu_{1} R_{g}\right)+I_{4}\left(\mu_{1} R_{g}\right)=\mu_{1} e_{2}-\mu_{1} e_{1} \\
& I_{1} R * I_{2}\left(R_{k}+R+r_{p 2}\right)+I_{3}\left(\mu_{2} R_{g}\right) * I_{4}\left(R_{k}-\mu_{2} R_{g}\right)=\mu_{2} e_{1}-\mu_{2} e_{2}^{[20]}
\end{aligned}
$$

Substituting [18] and [19] into [20] and [21] gives

$$
\begin{align*}
& I_{1}\left(R_{k}+R+r_{p 1}\right)+I_{2} R+\left(e_{1}-I_{1} R_{k}\right)\left(\frac{R_{k}-\mu_{1} R_{g}}{R_{g}+R_{k}}\right) \\
& +\left(e_{2}-I_{2} R_{k}\right) \frac{\mu_{1} R_{g}}{R_{g}+R_{k}}=\mu_{1} e_{2}-\mu_{1} e_{1} \tag{22}\\
& I_{1} R+I_{2}\left(R_{k}+R+r_{p 2}\right)+\left(e_{1}-I_{1} R_{k}\right)\left(\frac{\mu_{2} R_{g}}{R_{g}+R_{k}}\right) \\
& +\left(e_{2}-I_{2} R_{k}\right)\left(\frac{R_{k}-\mu R_{2} R_{g}}{R_{g}+R_{k}}\right)=\mu_{2} e_{1}-\mu_{2} e_{2} \tag{23}
\end{align*}
$$

Collecting terms and simplifying, [22] and [23] become
$I_{1}\left[r_{p 1}+R+\left(\mu_{1}+1\right) \frac{R_{g} R_{k}}{R_{g}+R_{k}}\right]+I_{2}\left[R-\mu_{1} \frac{R_{g} R_{k}}{R_{g}+R_{k}}\right]=\mu_{1} \frac{R_{k}}{R_{g}+R_{k}}-\left(\mu_{1}+1\right) \frac{R_{k}}{R_{g}+R_{k}} e_{1}$
$I_{1}\left[R_{-} \mu_{2} \frac{R_{g} R_{k}}{R_{g}+R_{k}}\right]+I_{2}\left[r_{p 2}+R+\left(\mu_{2}+1\right) \frac{R_{g} R_{k}}{R_{g}+R_{k}}\right]=\mu_{2} \frac{R_{k}}{R_{g}+R_{k}} e_{1}-\left(\mu_{2}+1\right) \frac{R_{k}}{R_{g}+R_{k}} e_{2}$.

Let:

$$
\begin{align*}
R_{1} & =R+\left(\mu_{1}+1\right) \frac{R_{g} R_{k}}{R_{g}+R_{k}} \tag{26a}\\
R_{2} & =R-\mu_{1} \frac{R_{g} R_{k}}{R_{g}+R_{k}} \tag{26~b}\\
R_{3} & =R+\left(\mu_{2}+1\right) \tag{26c}\\
R_{4} & =R-\mu_{2} \frac{R_{g} R_{k}}{R_{g}+R_{k}} \tag{26d}\\
b & =\frac{R_{k}}{R_{g}+R_{k}}
\end{align*}
$$

Substituting [26] into [24] and [25] gives

$$
\begin{align*}
& I_{1}\left[r_{p 1}+R_{1}\right]+I_{2} R_{2}=\mu_{1} b e_{2}-\left(\mu_{1}+1\right) b e_{1} \tag{27}\\
& I_{2} R_{4}+I_{2}\left[r_{p 2}+R_{2}\right]=\mu_{2} b e_{1}-\left(\mu_{2}+1\right) b e_{2} \tag{28}
\end{align*}
$$

Solving [27] and [28] for I_{20} equating the resulting expressions. and rearranging gives

$$
\begin{gather*}
I_{1}\left[R_{2} R_{4}=\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{3}\right)\right]= \\
{\left[\mu_{2} b R_{2}+\left(\mu_{1}+1\right) b\left(r_{p 2}+R_{3}\right)\right] e_{1}} \\
-\left[\mu_{1} b\left(r_{p 2}+R_{3}\right)+\left(\mu_{2}+1\right) b R_{2}\right] e_{2} \\
o r_{0} \quad I_{1}=\frac{\mu_{2} b R_{2}+\left(\mu_{1}+1\right) b\left(r_{p 2}+R_{3}\right)}{R_{2} R_{4} a\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{3}\right)} e_{1} \\ \tag{29}
\end{gather*}
$$

Similarly, it is found that

$$
\begin{align*}
I_{2}= & \frac{\mu_{1} b R_{4}+\left(\mu_{2}+1\right) b\left(r_{p 1}+R_{1}\right)}{R_{2} R_{4}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{3}\right)} e_{2} \\
& =\frac{\left(\mu_{1}+1\right) b R_{4}+\mu_{2} b\left(r_{p 1}+R_{1}\right)}{R_{2} R_{4}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{3}\right)} e_{1} . \tag{30}
\end{align*}
$$

If it is assumed that

$$
\mu_{1}=\mu_{2}=\mu_{0}
$$

it is found that

$$
\begin{aligned}
& R_{1}=R_{3} 0 \\
& R_{2}=R_{4}{ }^{\circ}
\end{aligned}
$$

Inspection of the equivalent circuit gives

$$
\begin{equation*}
e_{0}=-I_{7} R=-\left(I_{1}+I_{2}\right) R_{0} \tag{32}
\end{equation*}
$$

Substituting [29] and [30] into [32]。 with the assumptions set forth in [31]。 yields

$$
\begin{align*}
e_{0} & \frac{b R}{R_{2}^{2}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{1}\right)} \\
& {\left[\left[(\mu+1) r_{p 2}-\mu r_{p 1}+R_{1}-R_{2}\right] e_{1}\right.} \\
& \left.+\left[(\mu+1) r_{p 1}-\mu r_{p 2}+R_{1}-R_{2}\right] e_{2}\right] . \tag{33}
\end{align*}
$$

From [26]. the value of $\left(R_{1}-R_{2}\right)$ may be simplified to

$$
R_{1}-R_{2}=(\mu+1) \frac{R_{g} R_{k}}{R_{g}+R_{k}}+\mu \frac{R_{g} R_{k}}{R_{g}+R_{k}}
$$

$$
\begin{equation*}
\text { or, } \quad R_{1}-R_{2}=(2 \mu+1) \frac{R_{g} R_{k}}{R_{g}+R_{k}}=(2 \mu+1) b R_{g} \tag{34}
\end{equation*}
$$

Substituting [34] into [33] yields the final form of the expression for the output voltage e_{0} namely

$$
\begin{align*}
\epsilon_{0}= & \frac{b R}{R_{2}^{2}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{1}\right)}\left[\left[(\mu+1) r_{p 2}-\mu e_{p 1}+(2 \mu+1) b R_{g}\right] e_{1}\right. \\
& \left.+\left[(\mu+1) r_{p 1}-\mu r_{p 2}+(2 \mu+1) b R_{g}\right] e_{2}\right] . \tag{35}
\end{align*}
$$

APPENDIX B

DETAILED NONLINEAR ANALYSIS

The nondinear analysis of this circuit will be based on a "perturbed" extension of the linear analysis of Appendix A_{0} As explained in the body of the report, the "perturbation" will be introduced by representing the plate resistances of the tubes in the form

$$
\begin{equation*}
r_{p}=r=k I_{0} \tag{1}
\end{equation*}
$$

in which r is the plate resistance of the tube at the quiescent point, and k is the slope of the $r_{p}-i_{b}$ curve at that point.

From [1] the two $r_{p}{ }^{\prime} s$ of the circuit may be represented in the form

$$
\begin{equation*}
r_{p 1} \cong r=k I_{1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{p 2}=r-k I_{2} \tag{3}
\end{equation*}
$$

since the tubes are assumed to be identical.
Since the tubes are assumed to be identical, and the μ is very little changed by changes in plate current, equations [29] and [30] of Appendix A may be written in the form

$$
\begin{align*}
I_{1} & =\frac{\mu b R_{2}+(\mu+1) b\left(r_{p 2}+R_{1}\right)}{R_{2}^{2}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{1}\right)} e_{1} \\
& =\frac{(\mu+1) b R_{2}+\mu b\left(r_{p 2}+R_{1}\right)}{R_{2}^{2}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{1}\right)} e_{2} \tag{4}
\end{align*}
$$

and。

$$
\begin{align*}
I_{1} & =\frac{\mu b R_{2}+(\mu+1) b\left(r_{p 1}+R_{1}\right)}{R_{2}^{2}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{1}\right)} e_{2} \\
& =\frac{(\mu+1) b R_{2}+\mu b\left(r_{p 1}+R_{1}\right)}{R_{2}^{2}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{1}\right)} e_{1} \tag{5}
\end{align*}
$$

since $\mu_{1}=\mu_{2}=\mu, R_{3}=R_{1}$, and $R_{4}+R_{2}$ 。
As can be seen, since [4] and [5] involve $r_{p 1}$ and $r_{p 2}$ direct substitution of these relationships into [2] and [3] will introduce higher= order terms in the $r_{p}{ }^{9} s$. Further analysis along these lines is difficult, since it requires simultaneous solution of two quadratic equations in two unknowns.

Thus, a most important assumption will be made concerning the ex pressions at [4] and [5]. It will be assumed that the only variations in I_{1} and I_{2} expressed by [4] and [5] will result from the signal voltages e_{1} and e_{20} and that the $r_{p}{ }^{\prime} s$ in [4] and [5] will remain constant, at value r_{o} This assumption is expressed mathematically by writing [4] and [5] in the form

$$
\begin{equation*}
I_{1}=k_{1} e_{1}-k_{2} e_{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=k_{1} e_{2}=k_{2} e_{1} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{1}=b \frac{\mu R_{2}+(\mu+1)\left(r+R_{1}\right)}{R_{2}^{2}-\left(r+R_{1}\right)^{2}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{2}=b \frac{(\mu+1) R_{2}+\mu\left(r+R_{1}\right)}{R_{2}^{2}-\left(r+R_{1}\right)^{2}} \tag{9}
\end{equation*}
$$

Substituting [6] and [7] into [2] and [3], respectively, yields

$$
\begin{equation*}
r_{p 1}=r-k\left(k_{1} e_{1}-k_{2} e_{2}\right)=r-k_{3} e_{1}+k_{4} e_{2}, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{p 2}=r-k\left(k_{1} e_{2}-k_{2} e_{1}\right)=r-k_{3} e_{2}+k_{4} e_{1} . \tag{11}
\end{equation*}
$$

where

$$
\mathrm{k}_{3}=\mathrm{kk}_{17} \text { and } \mathrm{k}_{4}=\mathrm{kk}_{2} .
$$

The expressions for the "perturbed" values of $r_{p 1}$ and $r_{p 2}$ at [10] and [11] can now be introduced into the output equation developed by linear circuit analysis.

The output of the circuit is

$$
\begin{align*}
e_{0}= & \frac{b R}{R_{e}^{2}}\left[\left[(\mu+1) r_{p 2}-\mu r_{p 1}+(2 \mu+1) b R_{g}\right] e_{1}\right. \\
& \left.+\left[(\mu+1) r_{p 1}-\mu r_{p 2}+(2 \mu+1) b R_{g}\right] e_{2}\right] \tag{12}
\end{align*}
$$

where

$$
R_{e}^{2}=R_{2}^{2}-\left(r_{p 1}+R_{1}\right)\left(r_{p 2}+R_{1}\right)
$$

As a first step in this analysis, it is convenient to evaluate $R_{e}{ }^{2}$ with the "nonlinear" r_{p} 's at [10] and [11] introduced.

Carrying out the multiplications indicated in the equation for Re^{2} yields

$$
R_{e}^{2}=R_{2}^{2}-r_{p 1} r_{p 2}-R_{1} r_{p 1}=R_{1} r_{p 2}-R_{1}^{2}
$$

or

$$
\begin{equation*}
R_{e}^{2}=\left(R_{2}^{2}-R_{1}^{2}\right)=R_{1}\left(r_{p 1}+r_{p 2}\right)-r_{p 1} r_{p 2} \tag{13}
\end{equation*}
$$

Substituting [10] and [11] into [13] gives

$$
\begin{aligned}
R_{e}^{2}= & \left(R_{2}^{2}-R_{1}^{2}\right)-R_{1}\left(r-k_{3} e_{1}+k_{4} e_{2}+r-k_{3} e_{2}+k_{4} e_{1}\right) \\
& =\left(r-k_{3} e_{1}+k_{4} e_{2}\right)\left(r-k_{3} e_{2}+k_{4} e_{1}\right)
\end{aligned}
$$

or

$$
\begin{align*}
R_{e}^{2}= & \left(R_{2}^{2}-R_{1}^{2}-2 R_{1} r-r^{2}\right)+\left(k_{3}-k_{4}\right)\left(R_{1}+r\right) e_{1} \\
& +\left(k_{3}=k_{4}\right)\left(R_{1}+r\right) e_{2}+\left(k_{3}^{2}+k_{4}^{2}\right) e_{1} e_{2}=k_{3} k_{4} e_{1}^{2}-k_{3} k_{4} e_{2}^{2} \tag{14}
\end{align*}
$$

For algebraic convenience, [14] may be written in the form

$$
\begin{equation*}
R_{e}^{2}=k_{5}+k_{6} e_{1}+k_{6} e_{2}+k_{7} e_{1} e_{2}+k_{8} e_{1}^{2}+k_{8} e_{2}^{2} \tag{15}
\end{equation*}
$$

where
and

$$
\begin{aligned}
& k_{5}=\left(R_{2}^{2}-R_{1}^{2}-2 R_{1} r-r^{2}\right) \\
& k_{6}=\left(k_{3}-k_{4}\right)\left(R_{1}+r\right) \\
& k_{7}=\left(k_{3}^{2}+k_{4}^{2}\right), \\
& k_{8}=-k_{3} k_{4}
\end{aligned}
$$

Introducing [10] and [11] into.[12] yields

$$
\begin{align*}
e_{0}=\frac{b R}{R_{e}^{2}}[& {\left[(\mu+1)\left(r-k_{3} e_{2}+k_{4} e_{1}\right)=\mu\left(r-k_{3} e_{1}+k_{4} e_{2}\right)\right.} \\
& \left.+(2 \mu+1) b R_{g}\right] e_{1} \\
& +\left[(\mu+1)\left(r-k_{3} e_{1}+k_{4} e_{2}\right)-\mu\left(r=k_{3} e_{2}+k_{4} e_{1}\right)\right. \\
& \left.\left.+(2 \mu+1) \cdot b R_{g}\right] e_{2}\right] . \tag{16}
\end{align*}
$$

After expanding, simplifying, and rearranging terms in the brackets, [16] becomes

$$
\begin{align*}
e_{0}=\frac{b R}{R_{e}^{2}}[& {\left[\left(\mu k_{3}+\mu k_{4}+k_{4}\right) e_{1}-\left(\mu k_{3}+\mu k_{4}+k_{3}\right) e_{2}\right] e_{1} } \\
& +\left[r+(2 \mu+1) b R_{g}\right] e_{1} \\
& +\left[\left(\mu k_{3}+\mu k_{4}+k_{4}\right) e_{2}=\left(\mu k_{3}+\mu k_{4}+k_{3}\right) e_{1}\right] e_{2} \\
& \left.+\left[r+(2 \mu+1) b R_{g}\right] e_{2}\right] \tag{17}
\end{align*}
$$

Rearranging the terms of [17] as coefficients of various functions of e_{1} and e_{2} gives

$$
\begin{align*}
e_{0}=\frac{b R}{R_{e}^{2}} & {\left[\left[r+(2 \mu+1) b R_{g}\right] e_{1}\right.} \\
& +\left[r+(2 \mu+1) b R_{g}\right] e_{2} \\
& =2\left[\mu k_{3}+\mu k_{4}+k_{3}\right] e_{1} e_{2} \\
& +\left[\mu k_{3}+\mu k_{4}+k_{4}\right] e_{1}^{2} \\
& \left.+\left[\mu k_{3}+\mu k_{4}+k_{4}\right] e_{2}^{2}\right] \tag{18}
\end{align*}
$$

[18] may be written in the form

$$
\begin{equation*}
e_{o}=\frac{b R}{R_{e}^{2}}\left[k_{9} e_{1}+k_{9} e_{2}+k_{10} e_{1} e_{2}+k_{11} e_{1}^{2}+k_{11} e_{2}^{2}\right] \tag{19}
\end{equation*}
$$

where
and

$$
\begin{aligned}
& k_{9}=\left[r+(2 \mu+1) b R_{g}\right], \\
& k_{10}=-2\left[\mu k_{3}+\mu k_{4}+k_{3}\right] .
\end{aligned}
$$

$$
k_{11}=\left[\mu k_{3}+\mu k_{4}+k_{4}\right]
$$

Substituting the value of Re^{2} at [15] into [19] yields

$$
\begin{align*}
& e_{0}=b R\left[\frac{k_{9} e_{1}+k_{9} e_{2}+k_{10} e_{1} e_{2}+k_{11} e_{1}^{2}+k_{11} e_{2}^{2}}{k_{5}+k_{6} e_{1}+k_{6} e_{2}+k_{7} e_{1} e_{2}+k_{8} e_{1}^{2}+k_{8} e_{2}^{2}}\right], \\
& e_{0}=\frac{b R}{k_{5}}\left[\frac{k_{9} e_{1}+k_{9} e_{2}+k_{10} e_{1} e_{2}+k_{11} e_{1}^{2}+k_{11} e_{2}^{2}}{1+k_{12} e_{1}+k_{12} e_{2}+k_{13} e_{1} e_{2}+k_{14} e_{1}^{2}+k_{14} e_{2}^{2}}\right] \tag{20}
\end{align*}
$$

where

$$
k_{12}=\frac{k_{6}}{k_{5}}, k_{13}=\frac{k_{7}}{k_{5}}, \text { and } k_{14}=\frac{k_{8}}{k_{5}} .
$$

By a process of simple division, [20] may be obtained in the form

$$
\begin{aligned}
e_{0}=\frac{b R}{k_{5}}[& k_{9} e_{1}+k_{9} e_{2}+\left(k_{10}-2 k_{9} k_{12}\right) e_{1} e_{2} \\
& +\left(k_{11}-k_{9} k_{12}\right) e_{1}^{2}+\left(k_{11}-k_{9} k_{12}\right) e_{2}^{2} \\
& =\left[k_{9}\left(k_{13}+k_{14}\right)+k_{12}\left(k_{10}+k_{11}-3 k_{9} k_{12}\right)\right] e_{1}^{2} e_{2} \\
& =\left[k_{9}\left(k_{13}+k_{14}\right)+k_{12}\left(k_{10}+k_{11}-3 k_{9} k_{12}\right)\right] e_{1} e_{2}^{2} \\
& =\left[k_{9} k_{14}+k_{12}\left(k_{11}-k_{9} k_{12}\right)\right] e_{1}^{3} \\
& =\left[k_{9} k_{14}+k_{12}\left(k_{11}-k_{9} k_{12}\right)\right] e_{2}^{3} \\
& +\cdots 00 \text { higher order terms }] .
\end{aligned}
$$

or

$$
\begin{align*}
e_{0}=\frac{b R}{k_{5}}[& k_{9} e_{1}+k_{9} e_{2}+\left(k_{10}-2 k_{9} k_{12}\right) e_{1} e_{2} \\
& +\left(k_{11}-k_{9} k_{12}\right) e_{1}^{2}+\left(k_{11}-k_{9} k_{12}\right) e_{2}^{2} \\
& +k_{15} e_{1}^{2} e_{2}+k_{15} e_{1} e_{2}^{2} \\
& +k_{16} e_{1}^{3}+k_{16} e_{2}^{3} \\
& +000 \text { higheroorder terms }] \tag{21}
\end{align*}
$$

where

$$
k_{15}=-\left[k_{9}\left(k_{13}+k_{14}\right)+k_{12}\left(k_{10}-2 k_{9} k_{12}\right)+k_{12}\left(k_{11}-k_{9} k_{12}\right)\right]
$$

and

$$
k_{16}=-\left[k_{9} k_{14}+k_{12}\left(k_{11}-k_{9} k_{12}\right)\right] .
$$

[21] is the final result of the nonlinear analysis, into which signal voltages of any desired form can be introduced.

APPENDIX C

EXPERIMENTAL MEASUREMENTS

Data collected by experimental measurements was in three major categories. They are:

1. Spectrumanalysis. Measurement of the signal voltage (rms) present on the various frequencies (harmonic and sideband) at and above the carrier frequency, for a variety of applied carrier and modulation voltage levels. Measurements were made with the Hewlett-Packard Type 302A Wave Analyzer, using the Hewlett-Packard Type 200AB Audio Oscillator for carrier and modulation voltage generators.
2. Electrode DC Potentials. Measurement of the doc. voltages present on the various electrodes of the two tubes in the modulator circuit for a variety of applied carrier and modulation voltage levels. Measurements were made with the Hewlett-Packard Type, 412A VacuumळTube DC Voltmeter, using the Hewlett-Packard Type 200AB Audio Oscillator for carrier and modulation voltage generators.
3. Carrier Signal Leak=through. Measurement of the signal voltage (xms) present on the carrier frequency, for a variety of applied carrier and modulation voltage levels. under various conditions of initial balance for minimum carrier leakothrough. Measurements made with the H-P

Audio Oscillators, as in Data Group 1.
Visual observation of the plate waveform (output) and the filtered ($12.5-15.7 \mathrm{kc}_{\mathrm{o}}$) doublewsideband output of the modulator were made at the time of the voltage measurements. A number of these waveforms were photo graphed, typical examples having been presented in the body of this report. As a part of the measurement and observation devices, a cathode-follower stage was constructed to drive the band-pass filter (600 ohm input and output impedance) and provide isolation of these measurements from the unfiltered output (at the plate connection) of the modulator. Data, as coilected in sections $i_{8} 2$, and 3 , is presented in Tables 1. 2 , and 3 of this Appendix.

TABLE I
SPECTRUM ANALYSIS

All readings are in $r_{0} m_{0} s_{0}$ volts.

1. Modulation voltage input $=0$ volts.

Carriex	Output							
Input	UC	Wextm	$0 c^{+24 m}$	$14 c^{+340}$	2 m	$24 \mathrm{c}+4 \mathrm{~m}$	$3 w_{c}$	$3{ }^{3} \mathrm{c}+4 \mathrm{~m}$
0.5	0.67				1.60		0.02	
1.0	0.82				5.60		0.11	
2.0	0.27				17.0		0.23	
3.0	0.23				25.5		0.65	
4.0	0.54				31.0		0.83	
5.0	0.90				35.0		1.00	
6.0	1.20				38.0		1.10	
7.0	1.50				39.5		1.20	
8.0	1.80				40.5		1.30	
9.0	1.88				42.0		1.4*	
10.0	2.10				42.5		1.55	

§o Moduldtion voltage input $=0.5$ volts.

0.5	0.62	0.12			1.5				
1.0	0.76	0.24			5.7	0.005			
2.0	0.21	0.44			17.0	0.020			
3.0	0.22	0.51			26.0	0.025			
4.0	0.43	0.54			100	0.025			
5.0	0.79	0.54			115	0.025			
6.0	1.10	-			120				
7.0	1.40	$=$			-				
8.0	1.65	$=$			-				
9.0	1.85	-			-				
10.0	2.05	\cdots			\bigcirc				

TABLE I (Continued)
3. Modulation voltage input -1.0 volts.

Carrier Input	Output							
	We	4 mec	$w_{c}+2 u_{m}$	$4 e^{+34 m}$	2 mc	$2 \mathrm{ll}_{C}+19 \mathrm{~m}$	3415	$34 \mathrm{lac}+4 \mathrm{~m}$
1.0	0.32	0.46	\cdots	0.0025	6.1	0.007	0.11	0.008
1.5	0.45	0.70	-	0.0035	12.0	0.015	0. 15	0.021
2.0	0.25	0.85	-	0.004	17.0	0.035	0.24	0.065
2.5	0.21	0.93	-	0.0047	22.0	0.045	0.49	0.095
3.0	0.22	1.00	\bigcirc	0.005	25.5	0.050	0.67	0.110
3.5	0.32	1.05	-	0.005	28.5	0.050	0.76	0.110
4.0	0.48	1.05	-	0.005	32.0	0.053	0.85	0.120
4.5	0,66	1.05	\bigcirc	0.005	34.0	0.053	0,92	0.120

4. Modulation voltage input $=1.5$ volts.

1.0	0.77	0.68	\cdots	0.003	6.0	0.012	0.115	0.012
1.5	0.42	1.05	-	0.005	12.0	0.025	0.150	0.035
2.0	0.21	8.25	-	0.006	17.0	0.050	0.240	0.100
2.5	0.23	1.40	-	0.007	22.0	0.065	0.500	0.140
3.0	0.22	1.45	-	0.007	26.0	0.073	0.650	0.160
3.5	0.26	1.50	$=$	0.007	29.0	0.080	0.770	0. 165
4.0	0.42	1.52	∞	0.007	31.0	0.080	0.830	0.170

5. Modulation voltage input -2.0 volts.

1.0	0.82	0.90	-	0.004	6.1	0.015	0.110	0.016
1.5	0.44	1.40	\bigcirc	0.007	12.0	0.035	0.160	0.045
2.0	0.23	1.65	$=$	0.008	17.0	0.070	0.240	0.130
2.5	0.21	1.85	\cdots	0.009	22.0	0.090	0.480	0.190
3.0	0.22	1.95	\cdots	0.009	25.5	0.100	0.650	0.210
3.5	0.31	2.00	-	0.009	28.5	0.105	0.770	0.220
4.0	0.47	2.00	$=$	0.010	31.0	0.110	0.860	0.250

TABLE I (Continued)
6. Modulation voltage input - 2.5 volts.

Carriex Input	Output				
	W_{5}	$4{ }_{4}+46$	$w_{c}+2 u_{m}$	$2 u_{c}$	$3 \mathrm{U}_{\mathrm{c}}$
0.5		0.52			
1.0		1.10			
1.5		1.70			
2.0		2.20			
2.5		2.30			
3.0		2.40			
3.5		2.48			
4.0		2.53			
4.5		2.55			

7. Modulation voltage input - 3.5 volts.

0.5		0.73			
1.0		1.62			
1.5		2.40			
2.0		2.90			
2.5		3.20			
3.0		3.40			
3.5		3.50			
4.0		3.60			

8. Modulation voltage input - 5.0 volts.

0.5	0.57	1.05	0.011	1.40	0.009
1.0	0.75	2.25	0.020	5.30	0.040
1.5	0.41	3.50	0.013	11.20	0.105
2.0	0.19	4.20	0.008	17.0	0.330
2.5	0.16	4.50	0.008	21.5	0.470
3.0	0.20	4.90	0.010	25.0	0.530
3.5	0.31	5.00	0.011	28.0	0.540
4.0	0.45	5.10	0.013	31.0	0.550

TABLE I (Continued)

9. Modulation input 6.0 volts.		10. Modulation input 7.0 volts.	
Carrier Input	Output $\mathrm{w}_{\mathrm{c}}+\mathrm{OHm}_{\mathrm{m}}$	Carrier Input	Output $\mathrm{W}_{\mathrm{c}+\mathrm{Wm}_{\mathrm{m}}}$
0.5	1.15	0.5	1,35
1.0	2.70	1.0	3.10
1.5	4.10	1.5	4.80
2.0	5.00	2.0	5.80
2.5	5.40	2.5	6.40
3.0	5.80	3.0	6.80
3.5	6.00	3.5	7.00
4.0	6.10	4.0	7.10
11. Mod	ion input olts.	12. Mod	input ts.
0.5	1.60	0.5	1.80
1.0	3.50	1.0	4.00
1.5	4.40	1.5	6.20
2.0	6.60	2.0	7.50
2.5	\%.40	2.5	8.30
3.0	7.70	3.0	8.70
3.5	8.00	3.5	9.00
4.0	8.10	4.0	9.20
13. Modu	ion input volts.	14. Modu	input ts
0.5	1.90	0.5	2.20
1.0	4.40	1.0	4.90
1.5	6.80	1.5	7.40
2.0	8.20	2.0	9.00
2.5	9.00	2.5	10.00
3.0	9.60	3.0	10.70
3.5	10.00	3.5	11.00
4.0	10.10	4.0	11.40
15. Mod	ion input volts.	16. Modu	input 1ts.
0.5	2.3	0.5	2.55
1.0	5.2	1.0	5.6
1.5	8.0	1.5	8.5
2.0	10.0	2.0	10.9
2.5	11.0	2.5	12.0
3.0	11.7	3.0	12.7
3.5	12.0	3.5	13.0
4.0	12.3	4.0	13.3

TABLE I (Continued)

17.		18. Modulation input 15.0 volts.	
Carrier Input	Output $\mathrm{W} \mathrm{c}+\mathrm{llm}_{\mathrm{m}}$	Carrier Input	Output $\mathrm{w}_{\mathrm{c}}+\mathrm{u}_{\mathrm{m}}$
0.5	2.75	0.5	2.95
1.0	6.1	1.0	6.7
1.5	9.4	1.5	10.1
2.0	11.5	2.0	12.3
2.5	12.9	2.5	13.8
3.0	13.5	3.0	14.5
3.5	14.1	3.5	15.0
4.0	14,3	4.0	15.3
18. Mod	input 1ts.	19. Mod	input lts.
0.5	3.2	0.5	3.5
1.0	7.1	1.0	7.3
1.5	10.7	1.5	11.4
2.0	13.0	2.0	14.0
2.5	14.6	2.5	15.6
3.0	15.4	3.0	16.4
3.5	16.0	3.5	17.0
4.0	16.4	4.0	17.3
20. Mod	input lts.	21. Mod	input lts.
0.5	3.6	0.5	3.8
1.0	7.6	1.0	8.4
1.5	12.0	1.5	12.7
2.0	14.7	2.0	15.5
2.5	16.2	2.5	17.0
3.0	17.1	3,0	18.1
3.5	17.9	3.5	18.8
4.0	18.2	4.0	19.0
22. Modulation input - 20.0 volts.			
Carrier Output			
0.5	. 2		
1.0	. 6		
1.5	. 2		
2.0	. 0		
2.5	. 0		
3.0	. 1		
3.5	. 8		
4.0	. 1		

ELECTRODE DC POTENTIALS

1. Carrier voltage, 1.0 volts, injected atpin 8 . No balance resistor.

2. Carrier voltage 2.0 volts, injected at pin 8 。 No balance resistor.

106	198	198	202
2	23.2	23,0	21,3
3	26,8	26,6	25.2
7	22,9	22,7	20.2
8	26,6	26.2	24.3

3. Carrier voltage, 1.0 volts, injected at pin 8. Balance resistor (330 ohm) in pin 1.

$1-6$	202	202	201
2	23,3	23.3	23.4
3	26.0	26.2	26.3
7	21.0	21.0	21.0
8	24.0	24.0	24.2

4. Carrier voltage, 2.0 volts, injected at pin 8 . Balance resistor in pin 1.

106	198	198	202
2	23.3	23.0	21.2
3	26.7	26.6	25.0
7	22.8	22.6	20.2
8	26.4	26.2	24.3

TABLE II (Continued)
5. Carrier voltage, 1.0 volts, injected at pin 3. No balance resistor.

Tube pin \#
Modulation input voltage
ovolts 00 volts 20 volts

$1-6$	198	198	198
2	23.4	23.4	23.3
3	26.2	26.3	26.4
7	23.5	23.5	23.4
8	26.0	26.1	26.2

6. Carrier voltage, 2.0 volts, injected at pin 3. No balance resistor.

$1-6$	197	197	197
2	23.3	23.2	21.8
3	26.9	26.9	25,7
7	23.7	23.6	22.0
8	27.0	26.9	25.7

7. Carrier voltage, 1.0 volts, injected at pin 3 . Balance resistor in pin 1 。

$1-6$	199	198	199
2	23.4	23.4	23.4
3	26.3	26.3	26.4
7	23.2	23.2	23.2
8	25.7	25.8	26.0

8. Carrier voltage, 2.0 volts, injected at pin 3. Balance resistor in pin 1 .

$1 \infty 6$	197	198	199
2	23.5	23.5	21.8
3	27.0	27.0	25.7
7	23.8	23.7	22.1
8	27.0	27.0	25.8

TABLE III

CARRIER SIGNAL LEAK - THROUGH

1. Carrier voltage, 1,0 volts, injected at pin 3. Balanced for carrier signal minimum at modulation voltage of 0 volts.

Modulation Voltage	Carrier leakathrough amplitude volts $d b$ 。
0	0.038
2	0.040
4	0.047
6	00.064
8	0.084
10	0.115
12	0.150
14	0.195
16	0.230
18	0.280
20	0.330

2. Balanced for carrier minimum with modulation 10 volts

0	0,105
2	0,100
4	0,090
6	0,075
8	0.060
10	0.053
12	0,067
14	0.095
16	0.135
18	0.180
20	0.230

3. Balanced for carrier minimum with modulation 20 volts

0	0.280	-9.0
2	0.280	-9.0
4	0.270	-9.5
6	0.250	-10.0
8	0.230	-11.0
10	0.200	-12.0
12	0.160	-13.0
14	0.140	-15.0
16	0.110	$-17,0$
18	0.095	-18.0
20	0.105	-17.0

TABLE III（Continued）

4．Carrier voltage， 2.0 volts，injected at pin 3 。 Balanced for carrier minimum with modulation 0 v．

Modulation Voltage	Carrier leak through amplitude volts	db

5．Balanced for carrier minimum with modulation 10 v 。

0	0．180	－12．5
2	0.170	－ 13.0
4	0．150	－14．0
6	0．120	－16．0
8	0.080	-20.0
10	0.080	-20.0
12	0.140	－15．0
14	0.205	－11．5
16	0.260	－9．5
18	0.280	－9．0
20	0.270	-9.0

6．Balanced for carrier minimum with modulation 20 v 。

0	0.540	-3.0
2	0．540	－3．0
4	0.500	－4．0
6	0.460	-4.5
8	0.400	－6．0
10	0.300	－8．0
12	0.205	－ 12.0
14	0．140	-15.0
16	0.140	－15．0
18	0.170	－13．0
20	0．190	-12.0

Jack Milfred Walden Candidate for the Degree of
 Master of Science

Thesis: AN INVESTIGATION OF A TWIN-TRIODE BALANCED MODULATOR CIRCUIT
Major Field: Electrical Engineering
Biographical:
Personal Data: Born in Sheridan, Wyoming, July 1, 1922, the son of George Mo and Mary R Walden。

Education: Graduated from Sheridan High School, Sheridan, Wyoming, June, 1940; received the Bachelor of Science Degree from the South Dakota School of Mines and Technology, with a major in Physics, in June, 1944; completed requirements for the Master of Science Degree, with a major in Electrical Engineering, in August. 1962 .

Professional Experience: Employed as Assistant Chief Engineer, Black Hills Broadcast Co., Rapid City, South Dakota, December, 1942 to April, 1945, supervising installation of 5 KW transmitter; Assistant Chief Engineer, Midnight Sun Broadcasting Company, Fairbanks, Alaska, April, 1945 to January, 1948; Chief Engineer, Midnight Sun Broadcasting Company, Anchorage, Alaska, January, 1948 to August, 1953, supervising installation and construction of 5 KW radio station; Vice President and Technical Director, Northern Television, Inc., Anchorage and Fairbanks, Alaska, August, 1953 to August, 1960, responsible for installation and operation of stations in both cities; Consulting Engineer on the installation of one television and seven radio stations in the State of Alaska in addition to above, December, 1949 to August, 1960; State Director for Radio Amateur Civil Emergency Service, State of Alaska, June, 1957 to August, 1960; Chairman, Cooperative Interference and Allocation Committee, IRE sponsored, Greater Anchorage Area, June, 1958 to August, 1960; Instructor, Electrical Engineering, Oklahoma State University, September, 1960 to present.

Honor Societies: Sigma Tau, Eta Kappa Nu, Sigma Xi, Phi Kappa Phi。
Professional Organizations: Senior Member, Institute of Radio Engineers.

