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PREFACE 

The wide acceptance of the two-phase induction motor as a control 

element in the areas of instrumentation and small power has resulted 

in more precise designs of these motors. In order to realize the full 

benefit of these more precise designs, it is desirable that transfer 

functions which accurately represent these motors be available. 

Several methods of obtaining a transfer function from either 

the motor parameters or the response curve are discussed. The 

limitation imposed upon these methods by the non-linearities of the 

motor is also discussed. 

The author wishes to gratefully acknowledge the instruction, 

encouragement, and advice of his advisor, Professor Paul A. McCollum. 

It was through his interest in t4e subject that I initially became 
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CHAPI'ER I 

INTRODUCTION 

Applications of servosystems in the areas of instrumentation and 

small power frequently make use of two-phase a-c motors. The importance 

of these applications has caused many improvements to be made in two­

phase motors, resulting in more precise designs that are more nearly 

ideal motors than their early predecessors. 

The two-phase servomotor is basically a poly-phase induction motor 

which has two input windings spaced 90 electrical degrees apart. Under 

normal operating conditions, one of these windings is excited with a 

current of the correct magnitude and frequency. This winding is usually 

referred to as the reference winding. The other winding, usually 

referred to as the control winding, is then excited with a current 

90 degrees out of time phase with the current of the reference winding. 

These two currents are of the same magnitude for balance operation, 

but may be of different magnitude for unbalance operation. 

The fractional horsepower two-phase induction servomotor, having a 

squirrel-cage rotor, has the advantage over the fractional horsepower 

d-c servomotor, in being higher in reliability because it requires no 

slip rings or brushes, and usually being lower in cost due to the 

simplicity of the rotor. Also, the servosystem using a-c servomotors 

has the advantage of being able to utilize a-c amplifiers in the control 

circuit thereby avoiding the inherent drift problems associated with 
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d-c amplifiers. 

The two-phase induction servomotor has the disadvantage in that 

the control field power required for large torque applications becomes 

prohibitive. Therefore, two-phase servomotors are usually used in 

applications where the output torque requirements is small. 

The two-phase servomotor is inherently a non-linear device to 

some degree. Because of the non-linearity, mathematical analysis 

becomes somewhat difficult. During the past several years, a host of 

articles have appeared throughout the literature proposing various 

schemes and methods of analyzing two-phase motors. Most of these 

methods of analysis have the common fault in that linear operating 

conditions and servomotor characteristics are assumed. Due to these 

assumptions, transfer functions derived by these methods are only 

approximate and often insufficient for highly accurate design and 

synthesis work. However, these methods of analysis find numerous 

applications in preliminary design work. Due to their applicability, 

three of these methods will be discussed. 

Since transient tests are rapidly becoming standard engineering 

tools, several techniques for determining the transfer function of a 

two-phase servomotor from experimentally determined transient response 

curves are derived and demonstrated in this thesis. The accuracy 

obtainable by these methods is directly proportional to the accuracy 

of the transient response curve and the number of sampling points used. 

These methods have a possible disadvantage in that they often 

require relatively many calculations for an accurate transfer function. 

However, the calculations are of a type that can readily be performed 

on a digital computer. 
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The accuracy of the transfer function is dependent upon the 

accuracy of the experimentally determined transient response curve. 

A technique for determining the transient response curve is also 

developed in this thesis. 
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CHAP'IER II 

CHARAC'IERISTICS OF TWO-PHASE SERVOMarORS 

Two-phase servomotors can be considered as a special class of 

poly-phase induction motors. As such, many of the analysis techniques 

for poly-phase induction motors is applicable to two-phase servo-

motors. A brief summary of the characteristics of two-phase induction 

motors is given in this chapter. Differences in construction and 

operation between conventional two-phase motors and two-phase servo-

motors is also discussed. 

'!he induction motor derives its name from the fact that the currents 

flowing in the secondary member (usually the rotor) are induced by the 

action of the magnetic fields set up in the machine by currents flowing 

in the primary member (usually the stator). Most induction motors 

that are used as servomotors have squirrel-cage rotors for the secaidary 

member, because this type is lower in cost and higher in reliability; 

it requires no slip rings or brushes.1 

The two-phase induction motor has two input windings spaced 90 

electrical degrees apart (Figure 1). These windings are excited with 

currents, 90 degrees apart in time phase, which in tuin generate 

magnetic fields in the air gap. The -two components oT the magnetic 

lR. J. W. Koopman, "Operating Characteristics of Two-Hlase :Servo­
motors," American Institute of Electrical Engineers Transactions, 
Volume 68, 1949, pp. 319-28.~ 
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field are also in time and space quadrature. '!hey can be combined 
2 

vectorally, yielding the resultant magnetic field. In well designed 

poly-phase induction motors, the magnitude of the rotating field does 

not vary appreciably as it rotates. 3 This is usually not the case for 

a single-phase induction motor, however. 

that 

Control 
Winding 

Reference 
Winding 

0 

O Squirrel-
0 Cage 

Rotor 
0 

Figure 1. The Winding Arrangement for a Two-Fhase Motor 

The resultant magnetic field is rotating at a speed, Ns, such 

NS= 120 f/p, 

where f is the frequency of the applied voltage and pis the number of 

poles. 4 

2a. s. Brown and D. P. Campbell, Principles of Servomechanisms 
(New York, 1948). 

3R. J. W. Koopman, 11 0perating Characteristics of Two-Phase Servo­
motors, 11 American Institute of Electrical Engineers Transactions, 

4John G. Truxal, Control Engineers' Handbook (New York, 1958). 
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Since the motor must develop sufficient torque to overcome windage, 

friction, and certain parasitic torques as well as the load torque, 1 t 

cannot reach synchronous speeds. '!his difference between actual and 

synchronous speed is designated by a parameter known as slip, S, which 

is defined by the aqua ti on, 

s = (NS - Na)/Ns, 

where N8 = synchronous speed, and Na = actual speed. A value o:f' slip 

of 1/6 is usually considered typical for small servomotors operating 

under no-load conditions. 

A idealized two-phase induction motor would have performance 

characteristics such that the stall torque is proportional to control 

voltage, and the torque for any control voltage decreases at a definite 

uniform rate with speed (Figure 2 and 3}. 

Stall 
Torque 

Control Voltage/Rated Voltage 

Figure 2. Dimensionless Control Voltage--Stall Torque Characteristic .·.·. 



Torque 

N3 

Speed 

Actual Curve 

Ideal Curve 

Figure 3. Dimensionless Speed--Torque Characteristic 
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The transfer function of a linear motor having these characteristics 

will be analyzed using differential equations and operational methods in 

Chapter III. The ideali'zed induction motor characteristics cannot be 

achieved due to the inherent non-linearities of the windage and friction 

losses and the non-linearities of the magnetic path of the field. 

The parameters f or the performance characteristics of the two­

phase servomotors can be adjusted to approximate linear perfonnance by 

increasing the rotor resistance. Unfortunately, a compromise is 

necessary- in the degree of linearity that can be achieved because the 

straighter the speed-torque curve (higher rotor resistance), the less 

stall torque is available, which means that less power is delivered to 

the load, smaller initial acceleration, and sluggish servo response. 

The negative slope of the speed-torque curve (Figure 3) indicates 

internal damping which can be considered as viscous friction in the 



motor and can be calculated by 

where D = damping coefficient 

= slope of speed-torque curve (dyne-cn./rad./sec.) 

T = torque 

N = speed 
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Another performance characteristic parameter is the motor stiffness, 

Ke, which is defined as the ratio of the stall torque to the applied 

voltage, Ke = T/V. In well designed servomotors operating under 

balance conditions, the assumption that the motor stiffness, Ke, is 

constant will usually be valid over a relative wide range of applied 

voltages (Figure 2). 

Since a servomotor normally operates at a higher speed than is 

required for a given load, it is necessary to employ gearing. The 

high motor speed means high rotational energy plus the added loss in 

the gears. Since the speed of rotation of the motor is inversely 

proportional to the number of poles, the design technique for minimizing 

rotor inertial energy is to wind the motor with as many poles as is 

practical. 

The increased number of poles reduces the speed and provides a 

torque increase. However, the percentage torque gain is never as large 

as the speed reduction due to reduced efficiency. 

Because of the high speed, the kinetic energy of the rotor is an 

important parameter of the motor. To achieve fast response, servomotors 

are designed for a maximum ratio of stall torque to rotor inertia. 
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Since inertia varies as the fourth power of the rotor diameter while 

developed output torque varies as the square of the rotor diameter, 

servomotors are designed with a relative small diameter rotor for 

their frame size. 

The performance characteristics may also be improved by reducing 

the air gap and by reducing the windage and frictional losses. The 

reduction in the air gap and windage and frictional losses are 

associated with closer manufacturers tolerances which results in 

increasing the price of the servomotor. 

It may be desirable to operate a servomotor urider distinctly un-

balance conditions. That is, the main winding may be intentionally 

overenergized in order to obtain more output torque per control field 

watt. The above discussion of performance characteristics, as well as 

the majority of manufacturer's data, is limited primarily to balance 

operation. Sidney Tovis in his article, "Converting Ideal to Working 

Data for Application of 'lwo-F'hase Servomotors, 11 describes an analytical 

method for converting the conventional manufacturer's data (based on 

balance operat;on) into useful data for unbalance operation.5 Since 

this paper does -not analyze: the :op·eration ·of servcmotors from th.e. performance 

characteristics, the details of this method will not be discussed. 

Unfortunately, unbalance conditions tend to add to the non-linearities 

of the two-phase servomotors. 

5sidney A. Davis, "Converting Ideal to Working To.ta for Application 
of Two-Phase Servomotors," Electrical Manufacturing, Volume 58, Part I, 
September, 1956, pp. 110-~5. 



CHAPTER III 

OBTAINING 'IHE TRANSFER FUNCTION FROM 

'IlfE MGrOR PARAMETERS 

The most direct method for approximating the transfer function of 

two-phase servomotors is based upon the idealized motor. That is, a 

motor which has a stall torque proportional to the applied voltage, and 

a torque for any applied voltage that decreases at a definite uniform 

rate with speed (Figure 2 and 3). Any transfer function derived under 

these ideal conditions is restric·ted to the linear operating range of 

the servomotor. 

Assuming that the load is characterized by both inertia and 

friction and that the steady-state speed-torque curve sufficiently 

describes the motor operation under transient conditions, the idealized 

motor-torque expression is 

where T = the motor's developed torque m 

n = the motor's speed 

ei = the applied voltage , 

'lhe above expression shows the dependence of torque upon both voltage 

and speed. Sqme simplification in the torque expression results if 

10 
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several constants derived f'rom the speed-torque characteristics are 

defined. Let OT/ C n = -D, which is the slope of' the speed-torque 

curve (Figure 3) and CT/ C ei = Ke, which is defined as the motor 

stiffness (Figure 2). Substituting these constants into and transforming 

the resultant motor-torque expression yields 

The dynamic load-torque equilibrium equation is 

where T1 = load torque 

J = load inertia 

f = load friction • 

If' inertia and friction are referred to a common shaft, the above 

expression transforms into 

TL (s) = Js2 Gm (s) + fsOm (s) • 

Equating the load and developed torques yields 

Solving the above expression by relating the output motion to the 

voltage applied to the variable phase yields 

where Km= K6/(f + D) 

tb = J/(f' + D). 

= Km/s (tbs+ 1) 
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'lhe above analysis is based upon the assumption that an applicable 

set of characteristic curves for the servomotor are available. Since 

most manufacturers. supply the necessary curves for balance operation 

and since balance operation most nearly approaches the ideal motor, this 

method is applied most readily to balance conditions. 

The frequency response of such a system will have a 90 degree phase 

lag at low frequencies which will approach 180 degrees phase lag as the 

frequency increases (Figure 4). The amplitude response of such a system 

will decrease with increasing frequency, being asymptotic to a slope 

of -20 decibels per decade at low frequencie~ and approaching a slo~e 

of -40 decibels per decade at high frequencies (Figure 4). 

Gain 
(db) 

-20 db/Decade 

Frequency (Log Scale) 

-40 db/Decade 

Figure 4. Frequency Response of a Two-Phase Servomotor 

Phase 
Angle 

-90° 

-135° 

-180° 
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If the frequency response of a two-phase motor is measured 

experimentally, the response at low frequencies will ver;y- nearly match 

those given above. At high frequencies, however, the phase shift will 

increase beyond 180 degrees. Such a system must contain at least one 

more time constant. A more probable response to a step voltage input 

for the system would be 

Qm (s)/Ei (s) = H/s (ta s + 1) (tbs+ 1) • 

In his paper, 11Transfer Functions for a Two-Phase Induction Motor, 11 

Lloyd O. Brown, Jr. proposes an analytical method of analysis wh.ich 

results in a transfer function having two time constants.1 The 

magnitude of these time constants is determined from a knowledge of 

the inertia and friction of the load and motor plus the steady-state 

speed-torque characteristics. 

This analysis is based on the following asswnptions: the magnetic 

material of the paths within the machine has a constant permeability so 

that the magnetizing currents are proportional to the applied voltages; 

the currents of both the rotor and the stator are distributed over the 

entire surface; the current density of a single phase of the stator 

varies sinusoidally with angular displacement around the stator; and 

the self impedances of the stator windings are negligible when compared 

to the magnetizing impedances of the machine. 

First, a voltage of rated magnitude and frequency is applied to 

the reference phase of the machine. After the transients subside, a 

ltloyd o. Brown, Jr., nTransfer Functions for a Two-Phase Induction 
Servomotor, tt American Institute of 'Electrical Engineers Transactions, 
Volume 70, Part II, 1951, pp. 1890-93. 
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voltage of rated magnitude and frequency with the correct phase shift 

is applied to the control field. The transient velocity of the rotor 

and load is then obtained. 

For simplicity, the voltages applied to each phase of the machine 

will be assumed to be of a phase such that the simplest expressions 

will result throughout the analysis. These voltages are expressed as 

t > 0 

Vre = V cos (wt+ tan-1 wLm/Rm) 

Based upon the above assumptions, the magnetic flux density of the 

machine as a function of position and time referred to the rotor 

element will be 

where Pc= proportionality constant between stator current and flux 

density 

a = angle between the stator and rotor reference line as a 

function of time 

Gr = angle between an element of the rotor and the reference 

line of the rotor • 

14 

The instantaneous voltage in the rotor elements will be proportional 

to the magnetic flux cutting that element and the relative velocity 

between the element and the field. The corresponding instantaneous 

current will be of the same frequency as the applied voltage but 



shifted in phase due to the rotor inductance. It may be expressed as 

where Ai and A2 are defined by the equations 

or 

and 

In order to simplify the equations which define A1 and A2, the 

linearizing assumption that 

15 

is made. The constant C is evaluated by the initial conditions of the 

problem. 

The element torques are proportional to the product of the element 

currents and the flux density. The total torque of the rotor is the 

integral from O to 2'TT of the element torques with respect to Gr. 'lhis 

total torque is written as 

The total torque is then equated to the mechanical requirements of the 



motor and load such that 

J dwr/dt + fwr = K1 EXP. (-Rz. t/Lr) cos (wt - a) 

+ Kt,1 

The above expression when linearized reduces to 

An approximation to the transient velocity is then .round by . 

solving these equationl3 simultaneously. This approximation yields 

From the initial conditions of zero acceleration and velocity, 

the coefficients of the exponentials are evaluated in terms o.f the 

constant M1. This constant must be the final value of the velocity 

and can be expressed as the steady state torque divided by the 

coefficient of friction for the system. 

By applying the LaPlace trans.formation termwise to the transient 

velocity and collecting terms over a common denominator, the response 

of the system to a step input voltage become 

where w1 = reciprocal of the mechanical time constant o.f the system 

w2 = reciprocal of the electrical rotor time constant • 

Another effective way o.f approximating the transfer function of 

two-phase motors is based upon the equivalent circuit o.f a general 

two-phase induction motor. This c~rcuit is suitable for the analysis 

16 



of' either balance or unbalance operating conditions. 'Ille generalized 

form of' this circuit ·is 

rr r -r 
Xrisl X -lr l+v l+v 

1 : a 

0 
0 
ar 

Figure 5: -Equivaient' Circuit. for Analysis, of' Two-Phase''-Motor2 

where v1 = applied voltage on phase 1 

V2 = applied voltage on phase 2 

a = ratio of phase 2 effective turns to phase 1 ef'fect,ive turns 

: rs1· = stator resistance phasell 

rs2 = stitor resistance phase 2 

1:t.s1 = stator leakage reactanc'e 

Xls2 = stator leakage reactance 

r = m core loss resistance 

Xm = air gap reactance 

Zm = air gap impedance 

X1r = rotor leakage 

phase 

phase 

rr = effective rotor resistance 

l 

2 

v = ratio of actual speed to synchronous speed 

2 John G. Truxal, Control Engineers I Handbook (New York, 1958). 
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For operation under balance conditions, this generalized equivalent 

circuit reduces to 

X1-·· .. s X.1· .· ·r 

\: 

Figure 6. :Equivalent Circuit for Two-Phase Motor Operating Under Balance· 
Conditions3 . · 

The total power to the rotor equals 

Where m = number of stator phases 

Ir= rotor current. 

The power delivered to the load equals 

and the total torque equals 

T = (1352/N8 ) Prf 

where N8 is the synchronous speed. From these expressions, a tra11-sf'er 



function for the two-phase motor can be derived. 

Analysis based upon the equivalent circuit are applicable only 

over the range where the parameters are linear. This method of 

analysis if' often very tedious unless simplifying assumptions are 

made. It also depends upon the accuracy of determining the necessar,v 

parameters. 

19 



CHAPTER IV 

DETERMINING THE TRANSFER FUNCTION 

BY EXPERIMENTAL METHODS 

In order to be able to produce a more realistic design for a system, 

it is desirable that the actual measured transfer functions of the 

various components be available. Several techniques of measuring the 

transient response are well known, but most of these methods are 

hampered by the necessity of placing a load on the motor. Due to the 

relative low output torque obtainable from most two-phase servomotors, 

a small load applied by the measuring instrument may have an appreciable 

effect. The ideal response measuring instrument would be one that adds 

neither mass, compliance, or friction to the motor under test. A device 

which approximates this ideal response measuring device was developed 

and analyzed. The only additional load placed on the motor by this 

transient response measuring device is a small amount of mass and 

windage friction of a thin fiber disk which is mounted on the output 

shaft of the motor. This response measuring system reproduces the 

transient response of the motor tested, which has an output power in 

the neighborhood of 0.01 horsepower, within an estimated accuracy of 

:::, 5 percent. It can be calibrated with a pulse generator and it is 

applicable to a wide range of motor speeds (200 to 10,000 r.p.m.). 

After the transient velocity response to a step control voltage 

has been obtained, the second step is to represent the experimentally 

20 
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determined curve by a suitable functional expression in order that 

analytical operations may be performed. A representation of the 

experimentally determined transient response curve by an exponential 

function of time is desired for the transfer function analysis of 

two-phase servomotors. 'Ihis representation can be achieved by Legendre's 

Principle of Least Squares Curve Fitting.1' 2 This principle is used 

to determine the constant, a, of a selected exponential time function 

of the type, x = K (1 - e-at), by the criteria that the sum of the 

mean squared errors between the transient response curve and the 

selected function over the range is a minimum. If a simple exponential 

function of this type does not yield a suitable approximation, then an 

exponential function of the form, x = K (1 - Ae-at + Be-bt), should be 

selected because it should yield a more accurate representation. A 

representation of the experimentally determined transient time response 

curve as a function of frequency is also useful, since the frequency 

response technique of analyzing servosystems is often used to facilitate 
I 

both the general analysis and synthesis operations. This frequency 

representation can be produced from the time representation by using 

the Fourier transform, or it can be obtained directly from the 

experimentally determined transient time response curve by Samulon 1 s 

method} Samulon' s method yields a theoretically exact representation 

lF. B. Hildebrand, Introduction to Numerical Analysis {New York, 
1956). 

2 I. s. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and 
Modern Engineering (New York, 1958}. · · 

.3H. A. Samulon, "Spectrum Analysis of Transient Response Curves, n 
Proceedings of the Institute of Radio Engineers, Volume .39, 1951, pp. 175-186. 
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of the experimentally determined transient response curve as a function 

of frequency. 

After an exponential time function representation or a frequency 

function representation of the transient response curve has been 

obtained, the transfer function can be obtained by performing analytical 

operations on the time representation of the transient response or by 

performing graphical operations on the frequency representation of the 

transient response. 

For the exponential time response, these analytical operations 

are demonstrated by the following example: 

Assume that the time representation obtained was of the form 

x = K (1 - e-at) r.p.m. 

where K = steady state speed (r.p.m.). This expression is the 

representation of the response to a voltage step of rated magnitude, E. 

By normalizing this expression, the response to a unit step of voltage 

is obtained which is 

r.p.m./volt 

The response to a unit impulse of voltage is obtained by taking the 

time derivative of the unit step response. This operation yields 

aK -at 
= - e 

E 
r.p.m./volt-sec. 

The transfer function of the system is the Laplace transform of the 

unit impulse response. This ·1:;ransformation yields 

KG ( s) = ( K/E) / ( 1 + s /a) • r.p.m./volt-sec. 



This same procedure is applicable to more complex exponential time 

functions. 

Samulon's method yields a transfer function as a frequency 

representation which has not been normalized. The normalized transfer 

function can be obtained by dividing the frequency representation 

obtained from the experimental response by the magnitude of the step 

voltage applied. Since the resul't,s obtained by Samul on I s method are 

not in a form which is readily transformable, it is necessary to plot 

the frequency response. By using Bode diagram analysis techniques, 

the transfer function is obtained from the graph of the frequency 

response. 4, 5 

Frequently, it is desirable to operate servomotors with voltage 

23 

magnitudes other than the rated magnitude applied to the control winding. 

It would be convenient if the assumption that the transfer function 

derived from the step voltage of rated magnitude is applicable. For 

well designed servomotors, this assumption is usually valid for 

voltages from 20 percent to 100 percent of the rated magnitude. 

The transfer function obtained during the investigation at hand 

is restricted to small two-phase motors operating under no-load 

conditions. This transfer function will be modified by the addition 

of a load to the motor. As an example, consider the response function 

to a 20 volt. step voltage input obtained during the investigation at 

hand. This function is 

4aeorge J. Thaler and Robert G. Brown, Servomechanism Analysis 
(New York, 1953). 

5H. Chestnut and R. W. Mayer, Servomechanisms and Regulating System 
Design, Volume I (New York, 1951). 



G (s) = 1440/s (1 + 0.103 s) .,· r.p.m. 

If a load is applied to the system, this function can be considered as 

being modified by the load such that the modified function is 

G (s) = 1440/ [j (1 + 0.103 s) + Y (s)_:/ r.p.m. 

where Y (s) is the load function. 6 For a linear load containing 

both friction and inertia 

where K = proportionality factor 

J1 = load inertia 

r1 = load friction • 

By assuming that the speed-torque curve for the motor is also linear, 

K can be approximated by 

K = -(1/ ·~ T/ (j n) = ( +1/D) 

where D = the negative slope of the speed-torque curve. 

For non-linear loads, a appropriate representation of Y (s) might 

not be readily obtainable. An alternate method of analysis might be 

to obtain an experimental transient response of the motor and load 

combined. An approximate transfer function could then be obtained by 

the same methods used to analyze the transient response of the motor. 
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6aeorge J. Thaler and Robert G. Brown, Analysis and Design of Feed­
back Control Systems (New York, 1960). 



CH.APTER V 

EXPERIMENTAL TRA.NSIENT RESPONSE 

MEASUREMENTS 

The transient response of two-phase a-c servomotors can be 

measured in any one of several ways. For accurate results, it is 

imperative that the method used reproduces the transient response 

without loading the servomotor appreciably. 

The method used for t,his analysis meets the above criterion 

reasonably well. This method consists of the following functional 

elements arranged as sho1'm in Figure 7. 

A-C Reference Input 
Two- San--Speed-

Power Control Phase born 
Input 

A-C 
Voltage Model 

Source 90° Con- - 320 Re 
Motor verter corder 

Phase 

Shift 

Figure 7. Block Diagram of the Transient Response Measuring System 

The speed-voltage converter is designed so that a minimum amount of 

torque is required from the servomotor. The driving mechanism for the 

speed-voltage converter consists of a thin fiber disk, 4 inches in 
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diameter. This disk has 60, 1/16 inch holes drilled in it, and it is 

mounted to the shaft of the servomotor. A light source is mounted on 

the motor side of the disk, and a sensing circuit is placed on the 

opposite side of the disk. 'lll.e sensing circuit and light source are 

located such that they align with the holes in the disk (Figure 8). 

The only additional load applied to the motor by the driving mechanism 

of the speed-voltage converter is a small amount of inertia due to the 

disk plus the windage and friction losses of the disk. 

Light Source 

--S=-0- oo--, 

Two-Phase 

Servomotor 

Io '\ 
· I \ 
I \ 
\ I 
. I 
\ / 

...... 

Figure 8. Speed-Voltage Converter Driving Mechanism 

The circuit diagram of the speed-voltage converter is shown in 

Figure 9. This circuit contains six functional parts which are: a 

sensing element, a d-c amplifier, a pulse shaping circuit, a differentiator, 

a mono-stable multivibrator, and an integrator and filter. 

The sensing element is a Texas Instrument ttN-P-N Diffused Silicon 

Photo-Duo-Diode 11 , type lN 2175.1 The bias voltage applied to the 1N 2175 

is 5 volts d-c. With this bias voltage applied, the dark current is 

approximate]y O. 001 microamp when measured at 25° C. The light current 

111 'lll.e Photo-Du a-Diode: 'lll.e ory, Measurements of Parameters, and 
Operation," Application Notes, Texas Instruments, Inc., Iallas, Texas, 
April, 1961. 
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is directly proportional to the bias voltage, temperature, and light 

intensity. The pulse shape transmitted by the sensing element to the 

d-c amplifier stage is shown in Figure 10. 

Figure 10. Sensing Elements Pulse Waveform 
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'Ihe d-c amplifier consists of a common-collector stage followed 

by a canmon-emitter stage. Bias stability is assured by the use of a 

large emitter resistor in the connnon emitter stage which is bypassed 

for signal frequencies. 'lhe transistors used throughout this circuit 

are small signal communication types made of silicon with betas of 

approximately Bo. A 10,000 ohm potentiometer is placed in parallel 

with the 8,200 voltage divider resistor so that the d-c voltage level 

can be adjusted to compensate for the different types of drive signals 

used in the converter. This stage has a voltage gain of approximately 

50. 

The pulse shaping circuit is basically a d-c amplifier with an 

excessive amount of voltage feedback present. When the arrq;>lifier is 

overdriven, the effect of this excessive voltage feedback is to 

square the signal waveform. Since this amplifier is normally over­

driven, the output signal waveform of this stage is a square wave 
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independent of the input signal waveform. A limited amount of feedback 

between transistors in this stage increases the stability and reduces 

the sensitivity to output load changes which might occur. 

The next part of the circuit is a passive differentiator and 

clipper. Both a positive and negative pulse is generated when a square 

wave is differentiated, but due to the action of diode #1, the negative 

pulse is clipped. The time cons tant for the positive pulse is 

approximately equal to 26 microseconds. 

The next part is a mono-stable multivibrator. During the stable 

state of this multivibrator, tr-5 is cutoff and tr-6 is operating 

under saturated conditions. 'Ihe positive pulse reverses the states 

of the transistors until the R-C coupling network discharges sufficiently 

to allow the transistors to return to their stable states. This R-C 

discharge time is approximately equal to 172 microseconds. The diode 

D-2 prevents the reverse base to emitter voltage from destroying the 

transistor tr-6. 

The final part is a passive integrator and filter network. '!he 

time constants are choosen so that the output voltage is a d-c voltage 

directly proportional to the input pulse rate. 

The pulse width of the mono-stable multivibrator can be adjusted 

so that speeds up to 10,000 r.p.m. can be measured. It should be 

noted, however, that an increase in the maximum speed measurable will 

be associated with a proportional decrease in sensitivity. 

'Ihe rise time for the speed-voltage converter was measured at the 

full speed of the motor so that the maximum output d-c level and 

corresponding maximum rise time would be observed. 'Ihe circuit rise 

time, as measured on the Sanborn Model 320 recorder, was found to be 



30 

less than 50 millisec ends. 

The circuit is designed so that the d-c level of the output voltage 

is independent of the input signal waveform. 'Ihis design feature 

facilitated the use of an audio generator as a driver for calibration 

purposes. 'Ihe frequency of the audio generator is converted into 

equivalent r.p.m., and the associated calibration curve plotted as 

shown in Figure 11. 

The experimentally determined transient response curve for a 

Diehl Manufacturing Company, Type Fb-25, SS code 2, two-phase, 

60 cycles, 20 volts, a-c motor is shown in Figure 12. 
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CHAPTER VI 

CURVE FITTING BY THE METHOD OF 

LEAST SQUARES 

By approxi111ating the velocity transient response with an 

exponential function, the transfer function can be produced as 

previously described ( Chapter IV). 'Ihe least squares method of 

approxi111ation is generally suitable for this application. 'Ihis 

method is demonstrated below: 

The experimen·bally determined transient response curve f (t) .is 

to be fitted by a selected function, g (t). Since step control voltage 

response functions of the type 

G1 (s) = K/s (1 + Ts) and 

G2 (s) = K/s (1 + T1 s) (1 + T2 s) 

are desirable for the analysis of two-phase servomotors, the selected 

function G ( s) , which is ·the trans£ orm of g ( t) , is chosen so that 

G (s) = K/s (1 + Ts) and 

G (s) = K/s (1 + T1 s) (1 + T2 s) 

for the first and second approxi111ation respectively. 

For the first approximation, where 

G (s) = K/s (1 + Ts) 

33 
' 
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the corresponding time function is 

g (t) =KI):. - EXP. (-at)_7 

where a = 1/T ~ 

When the value of time becomes large, g (t) must approach K. Therefore, 

K must equal the steady-state gain of the servomotor, The unknown 

quantity now is the constant!· 

Next, a value of ! is chosen which will minimize the sum of the 

squares of the deviations of the observed values from the corresponding 

values of g (t) at i if computed from the chosen value of!• 

Let t 1, t 2, t 3, .•• tn be the observed values of! corresponding 

respectively to the observed values off (t), which are represented 

by Y1, Y2, Y3, ••• Yu· Under these conditions, n equations can be 

written which are: 

'Ille problem is to make all of the above equations as accurate as 

possible by the proper choice of~· This is done by minimizing the 

sum of the squares of their alleged inaccuracies. The sum of the 

squares of the inaccuracies can be represented by 

2 2 
$ = §1 - K (1 - EXP. - a1 t 1l7 + /j2 - K (1 - EXP. - a1t 2)J 

2 
+ -------------------------- /in - K (l - EXP. - a1tn)..J' . 



Taking the derivative of S with respect to a1 yields 

dS/da1 = -2K C(t1 EXP. (-a1\u /j1 - K + K EXP. (-a1t 1)J 

+ £:t2 EXP. (-a1t 1)J /j2 - K + K EXP. (-a1t 2)J 

+ ------------------------------------------------

If equal increments of time are chosen, the equation will reduce to 

dS/da1 = -2Kt LEXP. (-a1t)J LYi - K + K EXP. (-a1t)J 

+ 2 EXP. (-a1 2t) /j2 - K + K EXP. (-a1 2t)J 

+ ---------------------------------------------

+ n EXP. (-a1 nt) 5n - K + K EXP. (-a1 nt)J 
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Next, the observed val:ues of Yn, t, and K are substituted in the above 

expression and this expression is set equal to zero. 'lhe constant, a1, 

is then solved for by using algebraic methods. 

As an example, this method will be applied to the experimentally 

determined transient response curve for a Diehl Manufacturing Company, 

Type Fb - 25, SS code 2, two-phase, 60 cycles, 20 volt a-c motor. 

From steady-state conditions, K = 1440 r.p.m. (Figure 13). If time 

increments of 0.1 seconds are chosen, the corresponding value of 

Yi (i = 1, 2, 3, ••• n) in r.p.m. are: 

Yi = 865 

y 2 = 1245 
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Substituting these values into the equation for dS/da1 yields 

f (x) = 57.6 x7 + 43.2 x5 + 28.15 x3 - 1.95 X2 + 10.5 X - 5.75 = 0 

where X = EXP. (-O.la1), 

A root of this equation exists when X = 0.38. Therefore, 

a1 =-101n 0.38 = 9.67 

The response function to a step control voltage obtained is 

G (s) = 1440/s (l + 0.103 s), r.p.m. 

The transform of this function and the experimentally determined transient 

response are plotted in Figure 13. 

When the frequency of some high gain, fast response two-phase 

motors is measured experimentally, the response at low frequencies 

will be very nearly represented by this type of a response function. At 

high frequencies, however, the phase shift will increase beyond 180 

degrees. Such a system must contain another time constant. 

For the second approximation, the g (t) is represented by 

where '.a1 = l/T1 , which was determined by the first approximation to 

equal 9.67 

a2 = 1/T2 , 

The only unknown remaining in this expression is a2• 
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The procedure for minimizing the sum of the squares of the 

inaccuracies is repeated once again. 'lb.is time dS/aa2 must be obtained 

and set equal to zero to minimize the sum of the squares of the in­

accuracies of the adjusted g ( t). The value of a2 obtained is approximately 

equal to 250. Therefore; the adjusted response function is 

G (s) = 1440/s (1 + 0.103 s) (1 + 0.004 s), r.p.m. 

The extremely large value of a2 obtained in this example indicates that 

the particular servomotor investigated is closely represented by the 

first approximation. 



CHAPTER VII 

SA1"IDLON I S METH OD OF TRANSIENT ANALYSIS 

A theoretical exact technique for determining the transfer function 

of a two-phase servomotor from an experimentally determined transient 

response curve involves the use of Samulon I s method of spectrum 

analysis of transient response curves in conjunction with Shannon's 

sampling theorem and Bode diagrams. 1 ' 2' 3 , 1.i, 5 Samulon's method 

yields a representation of the transient response as a function of 

frequency. 

Shannon's sampling theorem states that if a function f (t) 

contains no frequencies higher than fco cycles per second, it can be 

completely described by sampling its ordinates at a series of points 

spaced l/(2fc 0 ) seconds apart. 

laeorge J. Thaler and Robert G. Brown, Servomechanism Analysis 
(New York, 1953). 

2H. Chestnut and R. W. Mayar, Servomechanisms and Regulating System 
Design, Volume I (New York, 1951). 

3c1aude E. Shannon, 11Communication on the Presence of Noise, 11 

Proceedings of the Institute of Radio Engineers, Volume 37, Part I, 1949, 
pp. 10-22. - - -

4H. A. Samulon, nspectrum Analysis of Transient Response Curves, 11 

Proceedings of the Institute of Radio Engineers, Volume 39, 1959, 
pp. 175-186.- -- -

-%3imon Ramo, M. Grabble, Dean Wooldridge, Handbook of Automation, 
Computation, and Control, Volume I (New York, 1956). 
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A mathematical proof showing that this is not only approximately 

but exactly true will be presented next. This proof starts with the 

Fourier integral theorem which is proven in most texts on operational 

mathematics. 6 This theorem states that 

+"° 
f (t) = l/27Tf F ( W) EXP. (j wt) dW 

- cf:, 

where F ( W) is the frequency spectrum off (t). Since it is assumed 

that no frequencies higher than fco cycles per second exist, the above 

equation reduces to 

f {t) • 1/2'l_+27r fco F { W) EXP. {j Wt) d W 

-2 7T fco 

By letting t = n/2fco where n is any integer, the preceding equation 

reduces to 

. 1+21T fco f (n/2fc 0 ) = l/21f 

- 2 'Tf fco 

F ( W) EXP. (j W n/2fc 0 ) d W . 
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Since the sampling points are spaced (l/2fc 0 ) seconds apart, f (n/2fc 0 ) 

are the values off (t) at the sampling points. 

The integral on the right will be recognized as the nth coefficient 

of the Fourier series expansion of the function F ( W), when the 

fundamental period is taken from +fco to -fco• This means that the 

values of the samples f (n/2fc 0 ) determine the Fourier coefficients 

in the series expansion of F ( W) • Thus they determine F ( W ) , since 

6Murray F·. Gardner and John L. Barnes, Transients· in Linear Systems, 
Volume I (New York, 1958). 



F ( W ) is zero for frequencies greater than f 00, and for lower 

frequencies F ( W) is determined if its Fourier coefficients are 

determined. Also F ( W) determines the original function f (t) 

completely, since a function is determined if its spectrum is known. 

There is one and only one function whose spectrum is limited to a 
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band fco, and which passes through the given values at sampling points 

separated l/2f00 seconds apart. This function can be reconstructed 

from the samples by using a pulse of the type sin (21T fc 0t)/2 7T f 00t. 

This pulse is unity at t = 0 and zero elsewhere. 

If at each sampling point a pulse of this type is placed whose 

amplitude is adjusted to equal that of the sample, thei sum of these 

pulses is the required function. Tnis process can be described as 

follows: 

Let An be the nth sample. The function f (t) is represented by 

+oO 

f (t) = I. An sin (2f00 t - n) 1T / 1T (2f00 t - n) 

n = -oC 

or 
-t- 00 

f (t) = ~ An sin 2 Tr fco (t - T)/2 Tr fco (t - T) 

n = 0 

where T = 1/2fco, 

Therefore, the Fourier spectrum of the nth term of the sum is 

+°'° 
g> ( W) = j F (t) EXP. (-j W t) dt 

-o0 

• j +=An /Jiin 2 7Tf00(t - T)/27T f 00(t - Tl7 EXP. (-jWt)dt 

- 0(:). 



Hence, the Fourier spectrum of the curve F (t) is 

00 

<!>Cw)= L. 
n = 0 

An EXP. (-jn u.J T/2f ) co 

In his article, "Spectrum Analysis of Transient Curves, 11 H. A. 

Samulon choose to write the Fourier spectrum of the transient response 

in terms of Bri where En= An - An_ 1 •7 By neglecting the constant 

time delay, the spectrum analysis transforms to 

00 

· ~ ( W ) = l/j4f sin 7r f/2fco L_ 
n = 0 

Since the measured curve is the response to an ideal step, the 

complex transfer function of the system is 

00 

H (W ) = ( 7r f/2f co)/sin ( 7r f/2fc 0 ) L "A EXP. (-jn 7rf/f ) 
""11 co 

n = 0 

which can be represented as 

d"> 
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G (j W) = ( 7r f)/sin ( 7r f/2fc 0 ) EXP. (j W T/2) r I\i EXP. (-jn WT) • 

n = 0 

This equation would be exact if the system response contained no 

frequency components greater than fco• 

A.s an example, this method of analysis is applied to the experimentally 

determined transient response curve used in Chapter VI. 

A cutoff frequency of 20 cycles per second or 125.6637 radians per 

second is assumed. Therefore, the value of T, the sampling time, is 

7H. A. Samulon, "Spectrum Analysis of Transient Response Curves," 
Proceedings of the Institute of Radio Engineers, Volume 39, 1951, 
pp. 175-156.- -- -



l/2fco = 0.02.5 seconds. The values of the transient response curve, 

An, which corresponds to the Sampling points, nT, are tabulated in 

Tables I to VI. 

The vectorial summation for judiciously chosen frequencies was 

performed with the aid of a desk calculator by resolving the vectors 

into their real and imaginary components. 'Ihese resolved vectors 

are tabulated and summed in Tables I to VI. 
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The corresponding ( 'TT w/2 W co)/sin ( 'TT W /2 W co) term can 

be considered as a magnitude correction term. For small values of w , 

this magnitude correction term will be negligible. As .uJ·approaches 

Wco, however, this term will have an appreciable effect upon the 

magnitude. 

'Ihe term EXP. ( j W T/2) can be considered as a phase correction 

· term. 'Ihe effect of this term is usually appreciable and should be 

taken into account. 

The magnitude ( in db) and phase of G ( j w) is plotted in Figure 14. 

The 3 db attenuation point occurred at approximately 9.67 radians per 

second. The corresponding G (s) term is 

G (s) = 1440/(1 + 0.1034 s) 

and the corresponding normalized open loop transfer function is 

HG ( s) = 72/(1 + 0.1034 s) • r.p.m./volt-sec. 

The derived formula for G (j W) is based upon the assumption that 

the spectrum of the response curve does not contain frequencies above 

a certain limit, fco· This assumption will never be fulfilled with 

full mathematical rigor for a practical network, however. It can be 
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shown that the amount of the error will be largest near to the assumed 

cutoff frequency. This condition is demonstrated in Figure 14 where 

as W approaches uJco' the error in the magnitude and the phase shift 

of the frequency response curve becomes appreciable. As an example, 

at W = 100 radians per second, the error in the magnitude of the 

frequency response curve is approximately 65 percent of the frequency 

response while the error at W = 50 radians per second is less than 

10 percent of the magnitude of the frequency response. For accurate 

results, the magnitude of the frequency response curve at fco should 

be attenuated at least 40 db. However, by assuming a cutoff frequency 

lower than the 40 db attenuation frequency, a close approximation for 

the lower frequencies will be obtained. 
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TABLE I 

VECTOR SUMMATION FOR THE COMPLEX TRANSFER FUI'JCTION (W = 1) 

O<:, 

nT An Bn L B EXP. (-j W nT) 
n = O n 

Imaginary Real 
+ + 

.025 304 304 7.60 303.90 

.050 536 232 11.60 231. 72 

.075 720 184 13,78 183.48 

.100 865 145 14.47 144.27 

.125 1,000 135 16.82 133,94 

.150 1,100 110 16,43 108.76 

.175 1.,185 75 13,05 73.85 
• 200 1,245 60 11.92 . 58.80 
.225 1,288 43 9.59 41.91 
.250 1,320 32 7,91 31.00 
.275 . 1,350 30 8.13 28.87 
.300 1,375 25 7.39 23.86 
.325 1,390 15 4.79 14.21 
.350 1,400 10 3.43 9.39 
,375 1,LtlO 10 3.66 .. 9,30 
.400 1.L24 14 5.45 12.89 
.L25 1,431 7 2.88 6.38 
,450 1,L36 5 2.17 4.50 
,475 I 1,438 2 0.91 1. 78 
.5oo 1,440 2 0.96 1. 75 

162.93 1,424.56 

00, 

L Bn EXP. (-jwnT) = 1433,99 EXP. (-j .114) 
n = 0 

.; . 

EXP. ( +j W T/2) = EXP. ( +j 0.0125) 

G (j W) = 1433,99 EXP. (-j 0.1015) 

= 1433.99 EXP. (-j 5.81°) 

20 log10 I G (j w } I = 63.1310 



TABLE II 

VECTOR SUMMATION FOR THE COMPLEX TRANSFER FUNCTION ( W = 5) 
I{' 

00 

nT An Bn E 
n = O % EXP. (-j W nT) 

Imaginary Real 
+ + 

.025 304 304 38.00 301.62 

.050 536 232 57.86 224.78 

.075 720 184 67.38 171.21 

.100 865 145 69.51 127.25 

.125 . 1.,000 135 78.97 109.47 

.15b 1.,100 110 74.97 80.48 

.175 1,185 75 57.56 48.bo 

.200 1,245 60 50.49 32.l.tO 

.225 1,288 43 38.79 18.54 

.250 1,320 32 30.37 10.08 

.275 1,350 30 29.43 5.83 

.300 1,375 25 24.94 1.75 

.325 1,390 15 14.98 

.350 1,400 10 9.84 

.375 1,410 10 9.54 

.400 1.,424 14 12. 72 

.425 1,431 7 5.95 

.450 1,436 5 3.89 

.475 1,438 2 1.38 

.5oo 1,440 2 1.19 

677. 76 1,176.41 

~ En EXP. (-j WnT) = 1363.16 EXP. (-j o.531) 
.n = O 

EXP. (+j W T/2) = EXP. (+j 0.0625) 

G (j W) = 1363.16 EXP. (-j 0.4685) 

= 1363.16 EXP. (-j 26.83°) 

20 log10 I G (j W) I = 62 .69 
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I. 
) 

o.85 
1.79 
3.00 
5.83 
3.70 
3.14 
1.44 
1.60 

21.35 
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TABLE. III 

VECTOR SUMMATION FOR THE COMPLEX TRANSFER FUNCTION ( W= 10) 

nT An 
Le,() 
n = 0 ~ EXP. (-j W nT) 

Imaginary Real 
+ + 

.025 304 304 75.20 294.54 

.050 536 232 111.22 203.60 

.015 720 184 ·125.41 134.63 

.100 865 145 122.01 78.30 

.125 1,000 135 128.11 42.56 

.150 1,100 110 109.72 7.70 

.175 1,185 75 73.79 13.41 

.200 1,245 60 54.54 25.00 

.225 1,288 43 33.43 27.03 

.250 1,320 32 19.13 27.90 

.275 1,350 30 11.40 27. 75 

.300 1,375 25 3.49 24. 75 

.325 1,390 15 1.65 14.91 

.350 1,400 10 3.52 9.36 

.375 1,410 10 5.73 8.19 

.400 1,424 14 10.61 9.13 

.425 1,431 7 6. 72 3.11 

.450 1,436' 5 4.89 1.05 

.475 1,438 2 2.00 0.08 

.500 1,440 2 1.91 o.57 

36.58 867.45 761.98 191.58 
c,o 

~ En EXP (-j n WT) = 1007 .23 EXP. (-j 0.97) 
n = O 

EXP. (+j W T/2) = EXP (+j 0.125) 

G (j W) = 1007 .23 EXP. (-j o.845) 

= 1007.23 EXP. (-j 48.42°) 

20 log10 I G (j w) I = 60.06 
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TABLE IV 

VECTOR SUMMATION FOR THE COMPLEX TRANSFER FUNCTION (W= 20) 

CP 

nT L . Bu EXP. (-j W nT) 
n = 1 1· 

Imaginary Real 
+ + 

.025 304 304 145.73 266. 79 

.050 536 232 195.23 125.35 

.075 720 184 183.54 13 •. 00 

.100 865 145 131.80 60.42 

.125 1.,000 135 80.62 108.28 

.150 1.,100 110 15.34 108.90 

.175 1.,185 75 26.42 70.19 

.200 1,245 60 45.46 39.14 

.2?5 1,288 43 42.05 8.99 

.250 1,320 32 30.55 .9.18 

.275 1,350 30 21.10 21.33 

.300 1,375 25 6.91 24.03 

.325 1:,390 15 3.27 14.64 

.J50 1,400 10 6.59 7.52 

.375 1,410 10 9.39 3.43 

.406 1.,424 14 13.84 2.10 

.425 1.,431 7 5.57 ·4.24 

.450 1.,436 5 2.04 4.56 

.475 1.,438 2 0.16 1.99 

.5oo 1,440 2 1.09 1.67 

173.74 792.96 485.27 409.48 
0() 

~ En EXP. (-j n WT)= 653.02 EXP. (-j 1.449) 
n = O 

EXP. (+j W T/2) = EXP. (+j .25) 

G ( j W ) = 653 • 02 EXP. ( +j 1.199) 

= 653.02 EXP. (-j 68. 7°) 

20 log10 I G (j w) I ·= 56.2982 



TABLE V 

VECTOR SUMMATION FOR THE COMPLEX TRANSFER FUNCTION ( W = 50) 

o<::> 

nT L BnEXP• (-j WnT) 
n = 1 

Imaginary 

.025 

.050 

.015 

.100 

.125 

.150 

.175 

.200 

.225 

.250 

.275 

.300 

.325 

.350 

.375 

.400 

.425 

.450 

.475 

.5oo 

c:;,c,, 

304 304 
536 232 
720 184 
865 145 

1.,000 135 
1.,100 110 
1.,185 75 
1.,24.5 60 
1., 288 43 
1.,320 32 
1.,350 30 
1,375 25 
1,390 15 
1.,400 10 
1.,410 10 
1.,424 14 
1.,431 7 
1,436 5 
1,438 2 
1,440 2 

+ 

105.41 
138.91 

4.o5 

32.88 
41.54 
1.92 

7.84 
9.73 
0.89 

2.48 
1.96 
0.24 

347 .85 

288 .49 
138.55 

103.29 
46.57 

27.84 
16.10 

12.83 
4.67 

638.34 

L Bn EXP. (=j W nT) = 309.27 EXP. (-j 1.91) 
n = 0 

EXP. (+j W T/2) = EXP. (+j 0.625) 

G (j W) = 309.27 EXP. (-j 1.285) 

= 309.27 EXP. (-j 78.63°) 

20 log10 I G (j W) I , = 49.8076 

Real 
+ 

95.85 

41.57 
134.94 
37.79 

11.09 
31.94 
11.15 

2.29 
9.96 
5.59 

o.4o 
2.00 

384.57 

186.09 
150.80 

58. 78 
50.19 

19.12 
12.78 

5.22 
4.34 

487.32 
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TABLE VI 

VECTOR SUMMATION FOR THE COMPLEX TRANSFER FUNCTION ( W = 100) 

oO 

nT An 2:: 
n = O Bo. EXP. (-j wnT) 

Imaginary 
+ + 

.025 304 304 181.54 

.050 536 232 222.26 66.51 

.075 720 184 172. 79 63.22 

.100 865 145 79.46 

.125 1.,000 135 8.10 134.73 

.150 1.,100 110 10.86 

.175 1.,185 75 73.01 17.16 

.200 1.,245 60 55.0l 23.95 

.225 . 1.,288 43 21.37 

.250 1,320 32 3.83 31. 77 

.275 1.,350 30 20.67 

.300 1.,375 25 24.62 4.25 

.325 1.,390 15 13.36 6.80 

.350 1,400 10 4.44 

.375 1,410 10 1. 79 9.84 

.400 1.,424 14 10.23 

.425 1.,431 7 6.95 • 77 

.450 1.,436 5 4.31 2.53 

.475 1.,438 2 0.78 

.500 1,440 2 o.47 1.94 

447.08 528.77 363.47 

oO z:: Bn EXP. (=j W nT) = 184.41 EXP (=j 2.6836) 
n = O 

EXP. (+j W T/2) = EXP (+j 1.25) 

G (j c..J) = 184.41 EXP. (-j 1.4336) 

= 184.41 EXP. (-j 82°) 

sin ( WT/201Tw/2W co) = .7592 

r a c j w > 1 = 243 • 4o 

20 log10 I G .(j W) I = 47. 7264 

Real 

243.84 

121.29 

84.52 

37.32 

21.75 

8.96 

9.55 

1.84 

529.07 

50 
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Figure 14 . Frequency Re sponse Curve Detenni ned by Samulon ' s Method 



CHAPTER vnr 

SIBvIMARY 

Methods of obtaining transfer functions of small two-phase servo­

motors were investigated, and one particular method was developed 

experimentally. 

In order to be able to better understand the factors effecting 

the transfer function, the operating characteristics of both the 

conventional two-phase motor and the two-phase servomotors were 

investigated. Differences between the conventional two-phase motors 

and two-phase servomotors have been discussed as well as factors 

affecting the non-linearities in the operating characteristics of the 

two-phase motors. During the investigation, the frequently used 

assumption that the torque for any control voltage decreases at a 

definite uniform rate with speed was found to be applicable only for 

a motor having a high rotor resistance and operating under balance 

conditions. This assumption, however, gives a valid approximation for 

most well designed servomotors operating under balance conditions. 

Three methods of obtaining the transfer function from the motor 

parameters was discussed. The first of these methods is based upon 

the idealized motor which is defined as a linear motor which has a stall 

torque proportional to the control voltage and which has a torque for 

any control voltage that decreases at a definite uniform rate with 

speed. A transfer function determined by this method is applicable 
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only to a servomotor operating under conditions such that it can be 

approximated by an ideal motor. The second method discussed is based 

upon the electrical transients of the circuit and a knowledge of the 

applied load. A transfer function analysis by this method proved to 

be quite tedious as well as involving a knowledge of the circuit 

parameters which is seldom known. This transfer function would only 

53 

be applicable over the range of operation where these circuit parameters 

are linear. 'lhe third method discussed is based upon the equivalent 

circuit of the servomotor. This method is applicable to both balance 

and unbalance operation. It is complicated and limited to the range of 

operation where the motor parameters are linear. 

Legendre's principle of least squares curve fitting and Samulon 1s 

method of transient analysis were discussed and demonstrated. This 

investigation indicated that the transfer function could be obtained 

from the transient response curve with little knowledge of the motor 

being tested. The transfer function obtained by these methods for the 

particular data at hand varied by less than l percent from each other, 

and the experimentally determined transient response curve for the 

motor tested was reproduced within 1 percent by Legendre's principle of 

least squares curve fitting (Figure 13). 

Since the calculations are based upon the transient response curve, 

an accurate response curve is desirable. Due to the relative small size 

of most two-phase servomotors, instrumentation is often a problem. 

Considerable time and effort was devoted to obtaining an accurate and 

yet relative straight forward method of determining the transient 

response curve for the system. The method developed for this investigation 

reproduces the transient response of a '.Diehl Manufacturing Company, 



'Iype Fb-25, SS code 2, 60 cycle, 20 volt servomotor within an 

estimated accuracy of.:!:. 5 percent. The external load applied to the 

motor was held to a minimum. 
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