By

MYRON DEAN SIMONS
4
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

1961

```
Submitted to the faculty of the Graduate School of
    the Oklahoma State University
        in partial fulfillment of the requirements
        for the degree of
        MASTER OF SCIENCE
            May, }196
```

$$
\begin{aligned}
& \text { Thesis } \\
& 196 z \\
& S 6 \| f \\
& \text { cop. }
\end{aligned}
$$

FIELD MACHINERY SELECTION USING STORED PROGRAMS

Thesis Approved:

PREFACE

The work reported in this thesis resulted from the development of two stored programs to be used with a digital computer for solving problems of field machinery cost analysis and field machinery selection. The purpose of these stored programs is to provide a simpler and more accurate approach to problems of this type.

The author is grateful to Professor Jay G. Porterfield, the thesis adviser, for his encouragement and counsel during the study. His appropriate comments and suggestions in the writing of this thesis are acknowledged.

Appreciation is expressed to Associate Professor O. L. Walker of the Department of Agricultural Economics for his helpful comments and suggestions.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. OBJECTIVES AND LIMITATIONS 4
III. REVIEW OF LITERATURE 5
A. Factors Affecting Farm Machinery Selection and Cost Analysis 5
B. Methods of Calculating Annual Farm Machinery Costs. 17
C. Methods of Farm Machinery Selection 18
IV. CALCULATION OF ANNUAL FIELD MACHINERY COSTS 21
A. General Procedure for Calculating Annual Field Machinery Costs 22
B. Calculation of Fixed Costs 27
C. Calculation of Variable Costs 36
V. FIELD MACHINERY SELECTION: 41
A. Selection of Implement Widths 42
B. Selection of Power Sizes. 4.8
C. General Procedure for Field Machinery Selection 51
D. Calculation of Widths for Self-propelled Implements 57
E. Selection of Number and Sizes of Tractors 60
F. Calculation of Widths for Tractor-drawn Implements. 63
G. Checking Allowable Widths of Tractor-drawn Implements 68
VI. ANALYSIS AND DISCUSSION 71
VII. SUMMARY AND CONCLUSIONS 87
BIBLIOGRAPHY 91
APPENDIX A. 92
APPENDIX B. 121
Table Page
I. Estimated Implement Life and Costs in Percent of Implement Purchase Price 10
II. Average Tractor Fuel and Oil Consumptions in Gallons Per Hour 13
III. Force Factors and Field Efficiencies 16
IV. Timeliness Factors 45
V. Data for Examples 1 and 2 75
VI. Timeliness Data for Operations in Example 1 76
VII. Solutions for Example 1 77
VIII. Allotted Time for Operations in Example 2 80
IX. Solutions for Example 2. 81
X. Data for Calculating Annual Costs for Implements Selected in Example 2 84
XI. Annual Costs for Implements Selected in Example 2. 86
Figure Page

1. Flow Diagram of General Procedure for Calculating Annual Field Machinery Costs 23
2. Flow Diagram of Procedure for Calculation of Fixed Costs 35
3. Flow Diagram of Procedure for Calculation of Variable Costs 38
4. Flow Diagram of General Procedure for Field Machinery Selection. 52
5. Flow Diagram of Procedure for Calculation of Widths of Self-propelled Implements 58
6. Flow Diagram of Procedure for Selecting Number and Sizes of Tractors. 61
7. Flow Diagram of Procedure for Calculation of Widths of Tractor-drawn Implements 65
8. Flow Diagram of Procedure for Checking Allowable Widths of Tractor-drawn Implements 69

CHAPTER I

INTRODUCTION

An organized approach to the problems of farm machinery selection and cost accounting becomes more important as the size of farms continues to increase and the total capital investment in farm machinery continues to rise. Farmers realize they must manage their financial affairs and investments in much the same manner as that of any other large business.

In earlier times the need for efficient machinery selection was not so apparent. The major problem was more likely that of obtaining sufficient labor to meet the requirements of a particular farm. Power and machines continue to be substituted for labor in order to increase productivity. This addition of power and machines now represents such a large portion of the capital expense of farming that skilled planning in their selection and application may often mean the difference in profit or loss. Personal judgement has always played a major role in the selection of farm machinery but may be expected to become less important in the future Future decisions on farm machinery selection will be based more upon economic considerations than personal preference.

The number of operations and variety of equipment used on most farms presents machinery selection problems unlike those faced by other businesses of comparable size. In addition farm machinery use is seasonal. Total annual use may be only a few days each year. This presents a
different type of selection problem as contrasted to the problem of selection of industrial machinery. Because of these and other factors, the efficient selection of farm machinery is a long tedious operation. In fact, simplifying assumptions to reduce the tedium of the calculations has often been a more important factor in the choice of a method for the systematic selection of farm machinery than has the accuracy of the results. Simplifying assumptions are usually made to reduce the amount of effort required to perform the necessary calculations for selecting farm machinery on an economic basis. Even with such assumptions the required computational procedure is often quite lengthy and complex when analyzing machinery selection or cost problems.

The digital computer is admirably suited to solve many problems which are characterized by the tedious manual calculations required to arrive at the desired solutions. Computer programs may be developed to receive the data for complex problems and then perform the desired calculations. These programs, when entered on punched cards, are of a permanent nature and may be stored for future use when similar problems arise. Increased usage of these stored computer programs is made possible by making them as general as practical in order to fit a wider range of problem types and data to a single program. It was the purpose of this study to develop such stored computer programs which could be used to solve a wide range of problems dealing with farm machinery cost calculations and efficient farm machinery selection based on system economics.

The programs that have been developed were written for use with an IBM 650 magnetic drum data-processing machine and appropriate peripheral equipment. A minimum of computer operating knowledge is required
for anyone desiring to use these programs. Familiarization with the required forms for input data and with the computer output data in order that the results may be analyzed is required. In the event that an operator for the computer is not available, the procedures for preparing and processing the data cards are easily mastered.

OBJECTIVES AND LIMITATIONS

The objectives of this study were to:
A. Develop a stored program which could be used to solve problems dealing with the calculation of annual costs for field machinery.
B. Develop a stored program which could be used to solve problems dealing with efficient field machinery selection for a given farm based on system economics.

These stored computer programs are valid only for those machinery cost and selection problems which deal with field machinery and field operations. The annual amount of use for any machine must be determined from the annual acreage covered by the machine. No provision was made within the programs for machines that are used for stationary or nonfield operations or for machines that are used for hauling or transport purposes where the amount of use is determined from the distance traveled rather than the acreage covered.

Limitations concerning the choices of computational procedure which may be used are discussed in the following chapters. Limitations concerning the nature and amount of data which may be handled for any single problem are explained in Appendixes A and B.

REVIEW OF IITERATURE

Much has been written about farm machinery costs and methods of farm machinery selection. Most of these articles discuss the significance of the various factors affecting farm machinery, costs. A recommended method of calculation along with suggested values for the pertinent factors affecting farm machinery costs is included in most of these discussions. This chapter briefly reviews some of the previous approaches which have been made to problems of farm machinery costs and selection.
A. Factors Affecting Farm Machinery Selection and Cost Analysis

A discussion of the various factors which affect farm machinery costs and some recommended procedure for calculating the various items of fixed and variable costs was presented in nearly all of the literature reviewed. Most of these discussions also presented values for the items affecting costs. These could be used in the event that more exact information was not available. For many of the factors, only one method of approach is presented herein for each factor.

1. Depreciation. Depreciation is defined as the loss in value and/or service capacity of a machine which results from natural wear, obsolescence, accidental damage, abuse, rust, corrosion, and weathering.
(1) Numerous methods have been purposed for calculating depreciation
costs for farm machinery. Some of the more common methods are:
a. Straight-1ine
b. Constant percentage
c. Declining balance
d. Sum-of-the-digits
e. Compound interest, or sinking fund

Of the methods listed above, the straight-line method enjoys the widest use largely because of its simplicity. The straight-line method is found to be undesirable for the reason that it depreciates a machine less during the first years of a machine's life than the resale value would indicate. This error is usually not considered to be significant if the assumption is made that a machine will be kept for its entire useful life, thus spreading the total loss in value over the years of use. In fact a charge for depreciation which is the same each year is desirable for estimating the average annual machinery cost over a period of years.

Constant percentage, declining balance, and sum-of-the-digits methods of calculating depreciation tend to give realistic values of the resale value of a machine. The major disadvantage of these methods is that during the period of ownership of a machine the depreciation cost varies from year to year depending upon the age of the machine. While this is the pattern followed by the actual depreciation of the machine, indicated by the resale value, it may be more desirable to have an equal charge for each year to estimate the average annual costs which will be incurred.

The compound interest or sinking fund method of calculating depreciation charges provides for the payment of an equal amount each year into a sinking fund, which if invested at compound interest together with
the trade-in value would be equivalent to the first cost of the machine at the end of the period of the machine's useful life. (2) This method depreciates a machine less during the earlier years of its life and more toward the end. While the depreciation by this method does not represent that which the resale value would indicate, it does more nearly represent the present worth of the machine to perform the services for which it was purchased. The principal objection to the sinking fund method of depreciation is the difficult nature of the required calculations for determining the annual depreciation costs.
2. Interest on investment. Money invested in farm machinery cannot be used for other enterprises such as livestock, bonds, or other investments returning dividends or interest. For this reason interest on investment should be considered a cost of machine ownership whether the owner has actually borrowed the money to buy the machine or not.

Due to depreciation, the amount invested in a machine during earlier years is actually greater than the amount invested as the machine grows older. Since the investment becomes smaller, the actual charge for interest will also decrease as the machine ages. Most of the literature suggests the desirability of average annual machinery costs which are the same for each year of machine ownership. To accomplish this, most references recommended calculating an annual interest charge on the average investment in a machine over its full life.
3. Taxes. Considerable variation exists among states as to the valuation of farm machinery for tax purposes. Additional variation in tax rates for different townships and school districts within a state is also common. For these reasons the setting of an exact figure for taxes
on farm machinery is dependent upon the particular locale where the machinery is to be used. In general, property tax can be expected to average from 0.4 to 1.0 percent of the original cost of the machine over the machine's expected life.

Depending upon the percent sales tax charged within a state and the expected life of the purchased machine, sales tax will amount to from 0.1 to 0.3 percent of the original cost annually when averaged over the life of the machine.

Total charges for all taxes will vary from 0.5 to 1.3 percent of original cost per year in most localities with the figure of about 1.0 percent of first cost annually, the preferred assumption if exact information is not available.
4. Insurance. A charge for insurance should be included when figuring machinery costs whether the owner carries insurance or elects to carry the risk of loss or damage himself. Insurance rates vary among locations and companies and the type coverage desired. Rates will also vary depending upon whether the coverage for machinery is separate or part of a larger "blanket" policy covering several types of risks. The rates vary also depending upon the method of premium payment and the amount of coverage.

Insurance charges for farm machinery will usually range from 0.25 to 1.0 percent of the original cost per year. If more exact information is unavailable a figure of 0.25 percent of the original cost annually is commonly used.
5. Shelter. Charges for shelter vary from 0.5 to 2.0 percent of original cost per year for farm machinery. The higher rate is appropriate
where special buildings are erected and maintained expressly for the shelter of farm machinery. Lower rates are often possible if machinery is sheltered in unused animal shelters or driveways. A charge of 1.0 percent of original cost per year is regarded as a good estimate for most cases.
6. Machine life. Since depreciation is dependent upon both time and the amount of use, the expected life of a given machine may be estimated in years or in hours of use. The useful life of a machine is usually measured in years. The expected years of life being the time when the machine will have to be replaced because of obsolescence if not replaced earlier due to wear or other reasons. The useful life of a machine may be determined by use measured in hours. This method is generally preferred for machines where a high annual use rate is anticipated causing the machine to wear out before becoming obsolete.

The most common method of expressing machine life found in the literature reviewed was to simply use an average expected life in years for all machines of a given type. This average expected life was assumed to represent the life of the machine regardless of the type of use. These figures were usually obtained as the result of surveys of farmers who owned the different pieces of machinery.

The expected machine life in both hours and years for some of the more common farm machines is listed in Table I.
7. Repairs. Considerable difference of opinion exists over whether repairs should be treated as a fixed or variable cost when solving farm machinery cost problems. Some investigators have chosen to express annual repair costs as a fixed percentage of the initial cost of the

TABLE I

ESTIMATED IMPLEMENT LIFE AND COSTS IN PERCENT OF IMPLEMENT PURCHASE PRICE

Implement	Life in years	Life in hours	$\frac{\text { Total }}{\text { repair }}$ costs	$\frac{\text { Annual }}{\text { repair }}$ costs	$\begin{aligned} & \text { lubrication } \\ & \text { costs } \end{aligned}$	$\frac{\text { Total }}{\text { annual }}$ fixed costs
Baler	12	2500	40	3.0	0.8	14.6
Binder, Grain	12	1000	40	2.5	1.0	10.5
Binder, Row crop	12	1000	40	2.5	1.0	10.3
Blower, Forage	12	2500	25	2.5	0.5	13.5
Combine	10	2000	40	3.0	0.5	17.0
Cultivator	12	2500	40	3.5	0.3	13.0
Drill, Grain	20	1200	25	1.5	0.7	11.0
Endgate Seeder	20	800	30	1.0	0.3	10.5
Ensilage Cutter	10	1200	30	3.0	0.5	10.8
Forage Harvester	12	2000	60	5.0	0.5	14.5
Grinder, Feed	15	2000	25	2.0	0.5	12.0
Harrow, Disk	15	2000	30	3.0	0.5	12.0
Harrow, Spike-tooth	20	2500	30	1.0	0.1	10.0
Harrow, Spring-tooth	20	2000	40	2.0	0.1	10.0
Lister	15	2000	60	5.0	0.5	12.0
Loader, Hay	12	1200	25	1.5	0.5	10.5
Manure Loader	10	2000	25	2.5	0.5	13.5
Manure Spreader	15	2500	25	1.5	0.5	10.5
Mower, Sickle	12	2000	70	3.5	0.7	12.0
Mower, Rotary	12	2000	35	3.0	0.6	11.0
Picker, Cotton	10	2000	55	5.5	0.5	17.0
Picker, Corn	10	1500	30	3.0	1.0	15.0
Planter, Row crop	20	1200	30	2.0	0.5	10.5
Plow, Moldboard	15	2000	80	7.0	0.5	17.0
Plow, One-way	15	2000	50	5.0	0.5	15.0
Rake, Side Delivery	15	1500	50	2.0	0.5	12.5
Rod Weeder	15	2000	30	2.0	0.4	12.0
Roller	25	1500	10	0.5	0.2	7.0
Rotary Hoe	15	1500	20	1.5	0.4	12.9
Sprayer, Field	10	1500	30	5.0	0.4	15.0
Stripper, Cotton	10	2000	30	3.0	0.7	16.5
Swather	12	1200	35	4.0	0.7	16.0
Tractor - Gasoline	15	12000	50	3.5	0.7	15.5
- Diesel	15	12000	60	4.0	0.7	16.0
- LPG	15	12000	45	3.0	0.7	15.0

References (1, 3, 4, 5, 6)
particular machine. (1, 3,) Others have preferred to express total repair costs for the entire life of the machine as a percentage of the initial cost. (6) When the figure for total repair costs for the machine's life is divided by the expected machine life in hours, an hourly repair cost expressed as a percentage of the initial cost may be found. When treated in this manner annual repair costs become a variable depending upon the hours of use.

Since repair costs may increase with use, the first method mentioned, that of a fixed yearly repair cost, is suitable only when the machine is kept for its entire useful life and above normal yearly use doesn't occur. This is true because the figure is an average over the life of the machine with the actual repair costs being lower during the first years and higher in the later years of the machine's life. The method of assuming fixed annual repair costs as a percentage of inftial cost is probably best suited to cases where the useful life of a machine is determined by time rather than the amount of use. Some flexibility may be given this method if the figure from Table I is adjusted upward in cases of higher than average yearly machine use and is decreased for machines that are not to be kept for their entire useful life.

Repair costs figured on the basis of hours of use are usually more accurate for machinery with high annual usage or for machines whose expected life is determined by wear instead of time. Again the actual repair costs would be expected to become higher as the machine ages and hourly repair costs should be reduced for machines that will not be retained for their entire useful life. This method is probably less suitable for machines with low annual usage and where repairs tend to be seasonal in nature regardless of use.

Mention should be made of the fact that both the methods presented for calculating repair costs are intended to give figures representative of average conditions. Repair costs vary depending upon the nature of use, care, and maintenance given each machine. For some cases it may be desirable to alter the listed figures to allow for special conditions.

Repair costs for various farm implements are listed in Table I both in the form of a fixed percentage of new cost yearly and as total repair costs over the life of the machine in percent of new cost. The repair charges include both the materials and labor required to make the repairs.
8. Lubrication. Lubrication costs for farm machinery are considered to include the cost of the lubricants, the labor required for lubricating the machines, and lubrication equipment. Since this cost is small when compared with other items of machinery cost, little error is incurred by calculating lubrication costs on the basis of a fixed percentage of the machine's initial cost yearly. Suggested values for estimating annual lubrication costs for farm machinery by this method are listed in Table I.
9. Fuel and oil. The cost of fuel and oil is a major operating expense for any machine that has a power unit. All engine powered machine operations will have fuel and oil costs either for the tractor pulling the equipment or for the machine itself in the case of selfpropelled equipment. Some machines which are equipped with auxiliary engines must be charged with fuel and oil expenses both for the tractor and the machine's engine. Fuel and oil costs for the machines are dependent upon two functions, the rate of machine consumption of fuel
and oil, and the local price for these items. Since local prices may be easily found for most situations, the problem when determining machine fuel costs is that of determining fuel and oil consumption. Two principle methods are commonly used to arrive at estimates of fuel and oil consumption. Consumption may be computed by using hourly figures for fuel and oil consumption or by figures relating fuel and oil consumption to the amount of work that the machine does.

Hourly estimates of fuel and oil consumption may be known from experience or by observation on similar machines. Hunt (7) estimates that for full load conditions the following amounts of fuel will be consumed for each 10 horsepower exerted by a tractor:

$$
\begin{aligned}
& \text { Gasoline - } 1.0 \mathrm{gal} . / \mathrm{hr} \\
& \text { Diesel }-0.8 \mathrm{gal} . / \mathrm{hr} \\
& \text { LPG }-1.2 \mathrm{gal} . / \mathrm{hr} . \\
& 1 \mathrm{gal} . \text { oil per } 100 \text { hours for all } 3 \text { types }
\end{aligned}
$$

Fuel and oil consumption on an hourly basis may be found from Table II which represents average values for tractors in different power ranges.

TABLE II
AVERAGE TRACTOR FUEL AND OIL CONSUMPTIONS IN GALLONS PER HOUR

Max. Belt HP Classification	Gasoline		L. P. Gas		Diesel	
	Fuel	$0 i 1$	Fuel	Oil	Fuel	Oil
10-20	. 99	. 008				
20-30	1.53	. 009	2.72	. 010	...	
30-40	2.02	. 010	2.88	. 010	1.59	. 014
40-50	2.47	. 012	3.14	. 011	1.98	. 016
50-60	2.96	. 017	3.75	. 012	2.16	. 025
60-70	3.66	. 016	4.84	. 011	2.81	. 022

Hunt: (4)

When the horsepower requirement is known for a machine operation, fuel consumption may be estimated by using the average fuel consumption
for the power unit in pounds per horsepower-hour or by using horsepowerhours obtained per gallon of fuel for the engine. Estimates of fuel consumption using this method may be made by using the following figures:

$$
\begin{aligned}
& \text { Gasoline - } 8.25 \mathrm{hp} .-\mathrm{hr} . / \mathrm{gal} . \\
& \text { Diesel }-11.75 \mathrm{hp} .-\mathrm{hr} . / \mathrm{gal} . \\
& \text { LPG } \quad-6.75 \mathrm{hp} .-\mathrm{hr} . / \mathrm{gal} .
\end{aligned}
$$

More exact information may be obtained from tractor tests. Test figures may be used for a particular tractor or an average value found from several tractors that have been tested.

Fuel and oil consumption for self-propelled machines and machines with auxiliary engines may be estimated on the basis of $8.5 \mathrm{hp} .-\mathrm{hr} . / \mathrm{gal}$. for gasoline engines. Oil consumption may be figụred as approximately 3% of the fuel consumption. (2,8,) Hourly fuel and oil consumption rates for machines with individual power units may also be used.
10. Labor. Whether the farm operator actually hires extra labor or operates his machinery himself, he should charge each operation for the amount of labor required. Prevailing local rates are regarded as acceptable when calculating labor costs for machinery operation. Charges for labor are usually expressed as cost per hour.
11. Consumable items. Consumable items are considered to be those items exclusive of fuel and oil which are used up during the operation of a machine. These items may or may not be included when figuring machinery costs since it is often questionable as to whether these items represent machinery costs or other costs of production. The preferred practice would be to include necessary items such as baler wire, twine, etc. that may be included in custom charges in order that accurate comparisons
with custom rates may be made. Production costs such as seed, fertilizer, etc. should not be included when figuring machinery costs. Charges for consumable items are generally operating costs dependent upon the quantity of crop materials handled or acreage covered.
12. Power requirements. The problem of machine selection involves the use of power requirements for the various machines to be selected. Machine power requirements, particularly those of tillage implements, vary considerably from one location to another. Estimates of the speed and draft of an implement may be used to calculate an estimated power requirement when more exact information is unavailable. Draft is usually estimated on a unit width basis in pounds per foot. When the implement width is known, the total draft may be calculated. Hunt (7, 9,) includes the rolling resistance of the implement and tractor with the draft to obtain the total force requirement. This force when expressed on a unit width basis is called a force factor. Effective force factors may be estimated for pto-operated and harvesting implements to facilitate calculations. Table III gives the usual ranges of force factors for some of the more common farm implements.
13. Field efficiency. Knowledge of the field efficiency of machinery is necessary in order to evaluate the expected effective field capacity. Machine field efficiency is dependent upon the percent of machine width utilized and the percent time los encountered in the field. Exact values. for field efficiency vary among the different field operations. Field efficiency for a given operation is in turn dependent upon actual field conditions and the skill of the machine operator. Field efficiencies for some of the more common farm operations will usually fall within

TABLE III
FORCE FACTORS AND FIELD EFFICIENCIES

Machine	Normal range of force factors (pounds per foot of width)	```Normal range of field efficiency (%)```
Tillage:		
Plow	600-1200	75-85
Lister	200-320	75-85
One-way disk	175-375	75-85
Single disk harrow	75-150	75-90
Tandem disk harrow	100-180	75-90
Heavy duty tandem disk harrow	190-240	75-90
Spike-tooth harrow	50-90	75-90
Spring-tooth harrow	120-200	75-90
Roller	40-80	75-90
Field cultivator (spikes)	120-180	75-90
Field cultivator (sweeps)	70-260	75-90
Noble blade	160-330	75-90
Planting:		
Grain drill	50-130	65-85
Row crop planter	80-120	55-75
Cultivating:		
Rotary, hoe	40-100	80-90
Row crop cultivator	80-190	70-85
Rod weeder	90-120	75-85
Harvesting:		
Mower	80-140	75-90
Grain binder	75-150	65-80
Combine	300-450	60-75
Corn picker	690-720	50-75
Baler	310-500	75-90
Forage harvester	400-1000	55-75
Cotton picker	1100-1400	55-70
Rake	80-100	60-90
Sprayer		55-70

References (6, 7, 8, 10)
the ranges given in Table III. Values from this table may be used to estimate field efficiency if more exact information is not available.
14. Custom Rates. Custom rates for machinery operations vary among different locations and. sometimes from season to season. Custom rates are usually known or can be easily found for a given location. Some information may be available as a result of surveys of custom rates over a statewide or local area.

Custom rates are of interest in problems of machinery selection because a comparison may be made between machinery costs when owned and operated by the farmer and the unit cost for custom work. Ownership of some machinery may be undesirable if custom rates are lower. Such comparisons are possible only in cases where custom machine work is available.
B. Methods of Calculating Annual Farm Machinery Costs

The usual procedure for calculating annual machinery costs consists of determining the amount of each of the items of fixed costs and variable costs for a year then adding all of the items up to arrive at the total cost. The difficulty of this procedure is dependent upon the methods used to calculate the various items of cost. If no simplifying assumptions are made the procedure may be long and tedious. In most instances, the persons performing the calculations are willing to sacrifice some degree of accuracy by making simplifying assumptions to reduce the computational requirements.

The most common approach found in the literature reviewed consisted of calculating depreciation charges and interest on the basis of straight-line depreciation and estimating other items of fixed costs
as constant annual percentages of the machine's purchase price. Operating costs were calculated on an hourly basis for fuel, oil, and labor. The total annual hours of use was found by dividing the total acres covered annually by the effective field capacity of the machine in acres per hour.

Several sources advocated the calculating of total annual fixed costs as a fixed annual percentage of the initial machine cost with operating costs calcułated on an hourly basis. This approach was the simplest and shortest procedure suggested for estimating annual machinery costs. Suggested values for calculating the annual fixed costs of a machine in this manner are listed in Table I.

To reduce the computational requirements for estimating annual machinery costs, several of the sources reviewed had included helpful aids. Nearly all references provided tables to assist individuals in estimating the various items of cost. Hunt (7) presented a simple "cost per acre" equation for calculating the costs of machinery operation. Larson, Fairbanks, and Fenton (1) provided alignment charts for calculating machinery costs.

Bookkeeping and accounting are the major difficulties encountered with most approaches to finding machinery costs. The required calculations, while not complex, may be quite numerous and lengthy for large operations with many machines. The more complex approaches to machinery cost calculation involving sinking fund depreciation and compound interest are almost completely rejected in favor of simplet methods which do not involve such laborious computations.

C. Methods of Farm Machinery Selection

The problem of efficiently selecting field machinery is one of
adjusting the factors of implement performance, power availability, labor, timeliness, and costs until an optimum return results. (9). The efficient selection of field machinery is a complex problem at best, since many different types of machinery may be required for a single farm. Most field machinery receives power from a tractor which also supplies power to a number of other implements. Such an arrangement means that the entire group of implements must be considered during the selection process since a change in one tractor-implement operation may affect other implement sizes within the system.

Few of the sources of literature reviewed presented any organized procedure for methodically selecting an efficient array of implements for a given farming operation. Some sources suggested that a tentative selection of machinery be made, the total annual costs calculated, and then the costs minimized as much as possible by adjusting the sizes of the selected machines. This approach usually amounted to calculating total annual costs for several alternate setups and choosing the least cost arrangement.

One method of approach was to list the various operations to be performed along with the total annual acreage that each operation would cover and the allotted time that was permitted to complete these operations. Implement sizes were selected which would complete the required operations within the allotted time periods. The required power was found by examining the different implements to find the one requiring the greatest amount of power.

Hunt (7, 9,) and Link (11) developed systematic approaches to the problem of selecting field implements and power sizes. Equations were developed to provide a method of determining the most effici-
ent width for each machine in an operation as well as the most efficient power size. Using these equations an efficient system of machinery can be selected for any given situation. Since the annual hours of use for the power must be estimated.. at the beginning of the problem, several sequences of calculations may be necessary before a satisfactory trial and error solution is found. The required calculations may be somewhat tedious for systems containing many different implements but the procedure does have an orderly systematic approach which gives it an advantage over most other methods. Another desirable feature of this method is the inclusion within the developed equations of a provision for considering the value of timely operations because of the seasonal requirements of crops.

Pfundstein (5) developed equations for the calculation of farm tractor costs using different type fuels. The equations were programed for solution with a computer. The principal use of this computer program was to provide data for tables indicating the annual hours of operation required to amortize the higher initial costs of LPG and diesel tractors as compared with gasoline models.

This review of literature indicates that limited information on systematic machinery selection was available. The methods which have been developed are often tedious and.long if exact solutions are desired. There is definite need for a simpler approach which would either eliminate some of the required manual calculations or allow them to be performed by some computational aid such as a computer.

CHAPTER IV

CALCULATION OF ANNUAL FIELD MACHINERY COSTS

One of the objectives of this study was to develop a stored program which could be used with a digital computer to solve problems dealing with the calculation of annual costs for field machinery. This program :was not intended to solve problems of field machinery selection but is to be used to calculate the annual field machinery costs for operations where the number and types of machines that are either being used or that will be required is known.

The stored program that has been developed was intended to be of a general nature in order that several different appronches to the problem of calculating field machinery costs could be handled within the same program. Such flexibility was considered desirable in order that the program would have a wide range of possible uses rather than be limited to problems of any one particular type. The possible choices for handling machinery: cost data are determined entirely by the form of the input data so that the person using the program is able to change the method of calculation from problem to problem without disturbing the internal order of the stored program.

In Chapter III, it was noted that often the approach which is used to calculate annual machinery costs is determined by the extent of the required calculations. Methods which require tedious manual calculations are usually rejected in favor of simpler ones. The use of digital
computers for solving machinery cost problems renders such considerations unimportant and the method used should be the one which will give the most accurate solutions regardless of the complex nature of the required calculations. For this reason the various factors affecting farm machinery costs have been re-examined and an attempt has been made to provide for some of the more complex approaches as well as the simple in the stored program. In some areas new approaches are suggested. The reasons for these are presented in the discussion of the appropriate items.

Flow diagrams have been included to illustrate the procedure followed by the computer in arriving at the desired solutions. Equations which were used are included and explained. It should be realized that although some methods would be extremely long and difficult, no calculations were included which would be impossible to perform manually. Essentially the same procedure as outlined on the flow diagrams and in the discussion could be followed for manual calculations. The great advantage of computer usage lies in the ease, speed, and accuracy with which solutions to all types of field machinery cost problems may be obtained.
A. General Procedure for Calculating Annual Field Machinery Costs

The flow diagram for the general procedure followed by this stored program is illustrated in Figure 1.

The input data for all machines included in the problem is entered on a basic three card form. These cards are read into the computer in groups of three in order to provide data for the machines one at a time. These three cards may be in any order, but if all three cards are nat for the same machine, the computational procedure is halted. This step prevents possible errors due to mixed data cards from different machines.

Figure 1. Flow Diagram of General Procedure for Calculating Annual Field Machinery Costs.

The data is then examined to determine if it represents a tractor or an implement. If the data is for a tractor, a check is made to see if this is the first tractor data that has been read in. If it is, the tractor data is placed on file for future reference. If data for a previous tractor has been read in, the appearance of a second tractor indicates that all implements drawn by the tractor on file have been read in. In this event the tractor data which has just been read in is placed in storage and the tractor data on file is picked up for the calculation of tractor fixed costs.

If the examined data is found to be an implement, a check is made to see if the implement is pulled by the tractor on file. If it is, the annual hours of use may be calculated. If the implement is not drawn by the tractor on file, a check is made to determine whether or not the implement is self-propelled. If it is, the annual hours of use may be calculated. If not, the procedure will halt since the implement data has not been placed behind the proper tractor. One of the requirements for reading in the data is that the data for all implements pulled by a particular tractor must be read in after the tractor data and before a different tractor's data is read in.

The annual hours of use for an implement is determined from the following equation:

$$
\begin{align*}
& h=\frac{825 A}{S W E} \tag{4.1}\\
& \text { Where, } h=\text { annual hours of use } \\
& A=\text { annual acres covered } \\
& S=\text { implement speed (mph }) \\
& \mathrm{W}=\mathrm{implement} \text { width (ft.) } \\
& \mathrm{E}=\text { implement field efficiency (\%) }
\end{align*}
$$

The annual hours of use is added to a grand total which at the end of the problem will indicate the total annual machine hours required for the entire operation.

The fixed costs for the machine are calculated and added to a grand total for all machines. A check is then made to determine if the machine is a tractor. If it is, the remaining calculations for the tractor and all implements drawn by it may be completed. Discussion on this procedure starting at point A in Figure 1 will follow.

If the machine is not a tractor the variable costs are calculated. Variable costs for tractors are calculated with the implements pulled by the tractors then totaled to find the annual variable costs incurred by each tractor. It is at this point that reference is made to the tractor data on file for such information as fuel consumption rates, fuel prices, etc. Labor is considered a variable cost incurred by the operation performed by an implement and is not:included as a tractor variable cost but is placed with the implement drawn by the tractor.

After the calculation of the variable costs a check is made to see if the implement is self-propelled. If self-propelled, the various costs are totaled, the cost per hour and cost per acre are found, and the answers obtained. A check is then made to see if any more data remains to be read in. If the implement is not: self-propelled, the annual hours used and the tractor variable costs incurred while pulling the implement are added to totals for the tractor on file. The partially completed calculations for the implement are then stored to await the calculation of tractor fixed costs. The check for additional data is then made.

If more machine data is waiting to be read in, three more cards
are brought in and the procedure starts over again. If no more data remains to be read in, a check is made to see if any implement data is waiting in storage for the calculation of tractor fixed costs. If no implement data is in storage, the next step is at point B of Figure 1.

If implement data is still in storage, the tractor data on file is picked up for the calculation of tractor fixed costs.

At point A of Figure : 1 after the calculation of tractor fixed costs, the tractor fixed cost per hour is found. The various tractor costs are then totaled and the answers obtained. The partially completed calculations for an implement drawn by the tractor are removed from storage and the tractor fixed cost per hour is multiplied by the annual hours of use for the implement. This gives the share of tractor fixed costs which should be charged to the operation performed by the implement. The various costs for the implement are then totaled, the cost per hour and cost per acre are calculated, and the answers made available. A check is then made to see if more implement data is still in storage, if so data for another implement is picked up and the procedure repeated until all the implement data is removed from storage.

When no more implement data is in storage, a check is made to determine whether or not data for another tractor has been read in and is in storage waiting to be placed on file. If it is, the tractor data is placed on file and three more data cards are read in. If no tractor data is waiting in storage, the only other condition which could have caused the calculations for the tractor data on file and the data for implements drawn by it to be completed would be the end of data for the entire problem. The next step would be at point B of Figure 1 .

At point B of Figure 1 the overall costs for the entire problem
are totaled and the grand totals are available. This marks the end of the computational procedure for the problem of calculating the annual field machinery costs.

B. Calculation of Fixed Costs

1. Depreciation. In Chapter III some of the more common methods of calculating depreciation costs were discussed. Some of the advantages and disadvantages of each of the methods : were discussed. Two desirable features for any method of depreciation to be used were considered to be the assessment of an equal charge for depreciation each year and that the undepreciated value of a machine at any time should represent the actual resale value of the machine. No single method combined both of these desirable features. The usual procedure was to assume that a machine would be kept for its entire useful life. With this assumption a method which would provide equal yearly charges was more desirable than a method which could be used to estimate the approximate resale value at any time during the life of the machine.

From a practical viewpoint it should be realized that many machines are not kept for their useful life and for economic or other reasons are disposed of before the end of their useful service life. For problems where this earlier trade-in time can be anticipated, a method of estimating the approximate value of the machine at the time of tradein is desirable. With this figure the basis for calculating the annual machine depreciation charge would be machine's loss in value from the purchase price to the estimated trade-in value for the years of machine ownership. This approach would yield a much more accurate estimate of actual depreciation charges for the years of ownership than would be
found if the annual depreciation cost was considered to be the same as for a machine which is kept for its entire useful life and depreciated to salvage value.

Since the constant percentage method of calculating depreciation costs is considered to give a good indication of the actual resale value of a machine, a combination of the constant percentage method and the straight line method for calculating depreciation costs would appear desirable. The annual depreciation charges could be calculated on a straight-line basis for the loss in value between the purchase price and the trade-in value. The trade-in value at any time within the machine's expected life could be estimated by use of the constant percentage method. The fallacy of this approach lies in the assumption that charges for depreciation are either paid each year and forgotten or deposited in a replacement fund which draws no interest.

In an actual situation it is much more realistic to assume that the charges for depreciation which are subtracted from gross income each year are put to use where they will produce a return. An efficient operator would certainly not let this money lie idle but would probably invest it in some type of enterprise to allow it to draw interest, or he might invest it in some other portion of his overall operation where again it should bring some type of return. In either event the interest or income from the depreciation charges should be compounded periodically. In this manner it may be seen that early depreciation charges will actually earn money which may be used to offset later depreciation charges resulting in an actual lower average depreciation cost to the owner because the depreciation fund is actually helping to pay part of the machine's loss in value.

The compound interest or sinking fund method of calculating depreciation charges provides for the payment of an equal amount each year into a sinking fund, which if invested at compound interest together with the trade-in value would equal the purchase price at the end of a machine's service life.(2). Equation 4.2 may be used for calculating the actual depreciation cost per year by the compound interest method.

$$
\begin{align*}
& D=(C-V)\left[\frac{i}{(1+i)^{n}-1}\right] \tag{4.2}\\
& \text { Where, } \mathrm{D}=\text { annual depreciation charge } \\
& \text { C = purchase price } \\
& V=\text { trade-in value } \\
& i=\text { interest rate } \\
& \mathrm{n}=\text { total years of expected ownership }
\end{align*}
$$

The constant percentage method may be used in combination with the sinking fund method to find the trade-in value (V) of a machine that is not: kept for its entire useful life. Equation 4.3.is used to determine the rate of percentage necessary to reduce the original value to the salvage value at the end of the machine's useful life.

$$
\begin{align*}
& \mathbf{r}=1-\sqrt{\frac{L}{C}} \tag{4.3}\\
& \text { Where, } \mathbf{C}=\text { purchase price } \\
& \mathbf{S}=\text { salvage value } \\
& \mathbf{L}=\text { years useful life } \\
& \mathbf{r}=\text { percentage of annual rate of depreciation }
\end{align*}
$$

The value (V) at any age (n) during the useful service life of the machine may be found from Equation 4.4.

$$
\begin{equation*}
V=c(1-r)^{n} \tag{4.4}
\end{equation*}
$$

In the event that a machine is kept until the end of its useful life, the constant percentage method is not needed since the trade-in value (V) would be equal to the salvage value (S) and (n) would be equal to (L). It should also be noted that the lower the interest rate (i) used in the sinking fund method, the more nearly the values calculated approach those that would be found by using the straight-line method of depreciation. If zero interest is charged for the sinking fund the equation is invalid in the form that has been presented. The actual depreciation charge, however, would be equal to that found by the straight-1ine method.

The following example will illustrate the use of the proposed combination method of compound interest and constant percentage:

$$
\begin{aligned}
\mathrm{C} & =\$ 10,000 \\
\mathrm{~S} & =\$ 1,000 \\
\mathrm{~L} & =10 \text { years } \\
\mathrm{i} & =5 \% \\
\mathrm{n} & =5 \text { years (machine is traded in before end of useful 1ife) }
\end{aligned}
$$

First the trade-in value of the machine at the end of 5 years must be found.

$$
\begin{aligned}
r= & 1-\sqrt[L]{\frac{S}{C}}=1-\sqrt[10]{\frac{1000}{10000}}=1-(0.1)^{0.1}= \\
V= & C(1-0.794=0.206 \\
& 10000(0.316)=\$ 3160 .
\end{aligned}
$$

Now the annual sinking fund payment over the first five years may be found.

$$
\begin{aligned}
D & =(C-V)\left[\frac{i}{(1+i)^{n}-1}\right] \\
& =(10000-3160)\left[\frac{0.05}{(1.05)^{5}-1}\right] \\
& =6840\left[\frac{0.05}{.276}\right]=6840(0.181)=\$ 1240 .
\end{aligned}
$$

The total loss in value for the machine over the five year period is $\$ 6840.00$. The five equal annual payments of $\$ 1240$ were charged as the cost of depreciation to the owner each year for a total cost of $\$ 6200$ over the five year period. The remaining. $\$ 640$ loss in value was derived from the interest on the sinking fund.

Equation 4.5 could have been used to calculate the annual depreciation charges for the five year period using the straight-line method:

$$
\begin{equation*}
\mathrm{D}=\frac{\mathrm{C}-\mathrm{V}}{\mathrm{n}} \tag{4.5}
\end{equation*}
$$

$$
\text { Where, } \begin{aligned}
\mathrm{D} & =\text { annual depreciation charge } \\
\mathrm{C} & =\text { purchase price } \\
\mathrm{V} & =\text { trade }-\mathrm{in} \text { value } \\
\mathrm{n} & =\text { years of expected machine ownership }
\end{aligned}
$$

For the example:

$$
D=\frac{(10,000 .-3160)}{5}=\frac{6840}{5}=\$ 1368
$$

It is of importance to note that if the trade-in value at the end of five years had not been found and straight-line depreciation had been assumed for the entire useful life of the machine, the annual yearly
charge for depreciation would be $\$ 900$.
The compound interest and straight-line methods of calculating depreciation charges along with the constant percentage method for estimating trade-in values are included in the stored program which has been developed.
2. Interest on investment. In order to arrive at average machinery costs which are the same for each year of machine ownership, interest charges for the total life of a machine must be found. This figure is then divided by the years of machine life to arrive at an average figure for interest on investment. When using the compound interest or sinking fund method of depreciation, the remaining value must be found at the end of each year and the interest rate applied to this value. This procedure is then repeated for each year of machine ownership and all the yearly interest charges are then summed and divided by the years of ownership to arrive at an average annual charge for interest. If it is desirable to compound the interest, as may be the case when comparing the income that the money would provide if invested in bonds, livestock, etc., the interest found for each year's machine investment would be added to the previous interest that has been paid. This total is then added to the machine value for the next year for the purpose of calculating the interest on that year's investment.

The value of a machine at any year (x) when using the sinking fund depreciation method may be found from Equation 4.6.

$$
\begin{equation*}
Y=(C-v)\left[\frac{(1+i)^{n}-(1+i)^{x}}{(1+i)^{n}-1}\right]+V \tag{4.6}
\end{equation*}
$$

Where, $Y=$ undepreciated value of machine at year (x)

$$
\begin{aligned}
& C=\text { purchase price } \\
& V=\text { trade-in value } \\
& i=\text { interest rate (sinking fund) } \\
& n=\text { total years of machine ownership } \\
& x=\begin{array}{l}
\text { year for which the undepreciated value of } \\
\\
\text { the machine is sought }
\end{array}
\end{aligned}
$$

For problems using straight-line depreciation and simple interest, an equal yearly charge for interest on investment may be found from Equation 4.7.

$$
\begin{align*}
& I=\frac{(C+V) r}{2} r \tag{4.7}\\
& \text { Where, } I=\text { annual charge for interest on investment } \\
& C=\text { purchase price } \\
& V
\end{aligned} \begin{aligned}
& \\
& r=\text { trade-in value of interest on investment }
\end{align*}
$$

3. Taxes, insurance, and shelter. These costs are grouped together and calculated as an annual fixed percentage of the initial machine purchase price.
4. Repairs. To insure the greatest accuracy, some method which will combine the advantages of the fixed annual cost and hourly cost methods of calculating machinery repair costs is desirable.

The approach used in the stored program is to compute annual repair charges as a fixed percentage of the initial machine cost. The percentage is adjusted upward whenever the life of a machine allowed by wear or use is shorter than the life allowed by time or obsolescence. Equation 4.8 is used to achieve this result.

$$
\begin{equation*}
M=N \quad \frac{T_{t}}{T_{W}} \tag{4.8}
\end{equation*}
$$

$\mathrm{N}=$ average repair charge in percent of initial cost
$T_{t}=$ years of expected life due to time
$T_{W}=$ years of expected life due to wear
5. Lubrication. Annual charges for lubrication are calculated on the basis of a fixed percentage of the initial machine purchine price. For machines with high annual use rates this percentage is adjusted upward by using figures for lubrication instead of repairs in Equation 4.8.

A flow diagram indicating the procedure followed for calculating fixed costs within the stored program is shown in Figure 2. All formulas which are used as part of the computational procedure have been presented in the previous discussion.

The first step in the calculation of fixed costs is to determine the years of machine life which would be allowed by wear. This figure is found by dividing the total hours of machine life allowed by wear by the annual hours of use for the machine. This machine life allowed by wear is now compared with the average expected machine life or the machine life allowed by obsolescence. The smaller of these two values is retained as the expected useful life for the machine.

If the machine is to be traded in before the end of its useful life, a trade-in value is found using the constant percentage method for depreciation. This trade-in value is used to replace the salvage value for use in further calculations.

Figure 2. Flow Diagram of Procedure for Calculation of Fixed Costs.

A check is made to determine if the interest rate on the sinking fund is zero. If zero, depreciation is calculated using the straightline method. If the sinking fund interest rate is not zero, the compound interest or sinking fund method of depreciation is used.

Charges for interest on investment are calculated after depreciation costs have been determined for both the straight-1ine and sinking fund methods of depreciation. Since the undepreciated value must be found at the end of each year for the purposes of calculating interest charges, the approach used for calculating interest charges depends upon the type of depreciation method used. Either simple or compound interest may be calculated for either case.

Following the calculation of charges for interest on investment, the costs for taxes, insurance, and she1ter are calculated. A check is then made to see if the expected useful machine life was shortened due to wear or high annual usage. If so, the annual charges for repairs and lubrication are increased accordingly. The annual costs for repairs and lubrication are then calculated.

The various items of fixed costs are now totaled and the calculation of annual fixed costs for a machine is complete.
C. Calculation of Variable Costs

1. Fuel. Fuel costs for both tractors and implements are calculated on the basis of fuel consumption rate as measured in gallons per hour or by the amount of work obtained per gallon of fuel. The hourly rate is used unless the force factor and the ground speed of an implement are known. If these items are known, the total horsepower-hours of work accomplished by a machine during a year may be calculated. This
figure divided by horsepower-hours obtained per gallon of fuel consumed gives the annual gallons of fuel used for an operation. Hourly fuel consumption rates are always used for tractors pulling implements equipped with auxiliary engines.
2. Oil. Oil costs for both tractors and implements are calculated on the basis of consumption in gallons per hour.
3. Labor. Labor costs are calculated for implements only on the basis of cost per hour.
4. Consumable items. In the event that any consumable items are to be included as machinery costs they are calculated on the basis of cost per acre covered.

The flow diagram indicating the procedure followed for calculating variable costs is shown in Figure 3 .

At the beginning of the calculation of variable costs a check is made to determine whether or not the implement is self-propelled. If so, the next step is at point A of Figure 3. If the implement is not self-propelled, a check is made to determine whether or not the implement has an auxiliary engine. This fact is indicated by the absence or presence of fuel and oil data for the implement. If the implement has an auxiliary engine the fuel costs incurred by the tractor pulling the implement: are calculated on an hourly basis.

If the implement has no auxiliary engine, a check is made to see if a force factor for the operation to be performed by the implement is given. If no force factor is given, the annual fuel costs incurred by the tractor while pulling the implement are calculated on an hourly basis. The hourly fuel consumption rate for the tractor is multiplied

Figure 3. Flow Diagram of Procedure for Calculation of Variable Costs.
by the annual hours of use for the implement. This figure is then multiplied by the fuel price to obtain the annual tractor fuel costs incurred while pulling the implement.

When a force factor is given, the annual fuel charges for the tractor for the operation performed are found from Equation 4.9.

$$
\begin{align*}
& Q=\frac{\mathrm{S} \text { W h ff } \mathrm{F}}{375 \mathrm{R}} \tag{4.9}\\
& \text { Where, } \quad \begin{aligned}
\mathrm{Q} & =\text { annual fuel cost in dollars } \\
\mathrm{S} & =\text { implement speed (mph) } \\
\mathrm{W} & =\text { implement width (ft.) } \\
\mathrm{h} & =\text { annual hours of implement use } \\
\mathrm{ff} & =\text { force factor (lb/ft) } \\
\mathrm{F} & =\text { fuel price (\$/gal.) } \\
\mathrm{R} & =\text { horsepower-hours per gallon of fuel }
\end{aligned}
\end{align*}
$$

Following the calculation of tractor fuel costs the tractor oil costs are calculated and another check is made to see if the implement has an auxiliary engine. If so, the next step is at point A of Figure 3. If the implement has no engine the next step is at point B of Figure 3.

At point A of Figure 3 the procedure for calculating the annual fuel and oil costs for an implement begins. This procedure is used for self-propelled implements and tractor-drawn implements with auxiliary engines. A check is made to determine if a force factor is given. If so, fuel costs are calculated using Equation 4.9. If not, implement fuel costs are calculated on an hourly basis. Implement oil costs are then calculated on an hourly basis. The next step is at point B
of Figure 3 .
At point B of Figure 3 the annual labor costs for the implement are calculated. Costs are calculated for any consumptive items that are used. The various items of variable costs for the operation performed by the implement are then totaled and the calculation of annual variable costs is complete.

The rules and procedures for using this stored program for the calculation of annual field machinery costs are explained in Appendix A. An analysis of the answers which the stored program provides to field machinery cost problems is presented in Chapter VI.

CHAPTER V

FIELD MACHINERY SELECTION

The principal objective of this study was to develop a stored program which could be used with a digital computer to solve problems dealing with field machinery selection. This program does not calculate the annual costs for the machinery; selected but supplies adequate information concerning the optimum machinery sizes for a given operation so that an efficient selection of machinery may be made in sizes that are commercially available. Once the final selection is made, the calculation of annual costs for the selected machines may be performed through use of the stored program discussed in Chapter IV.

This stored program is intended to solve machinery selection problems in which the types of implements and the acreage to be covered by each type is known. Equipped with this information the stored program is able to solve the problem for the optimum sizes of both implements and power for the overall farming operation. To provide flexibility within the stored program, two general approaches are included. Provision for a selection based on a combination of the two methods is also included. The method of solution chosen is dependent upon the nature of the input data. No changes within the stored program are necessary to accommodate the various methods of solution.

The principal reason for developing a stored program of this type was to relieve the tedious and involved procedure required to make
efficient machinery selections using manual calculations. The methods of approach included within the stored program have been chosen because they are considered to give the most accurate solutions. The procedures and equations outlined in the following discussion could be followed using manual calculations to obtain the same solutions that would be provided by using the stored program with a digital computer. The difference lies in the speed, ease, and accuracy of obtaining solutions.

A. Selection of Implement Widths

The size or capacity of all implements selected is represented by the effective width of the implement. An effective width of action is assumed for such implements as balers. The same basic equation is used to determine the least-cost widths of implements for all problems solved using the stored program. Different approaches are used for determining the additional width of implement justified because of the need for timely field operations.

Hunt (7, 9) developed an equation which may be solved for the least-cost width of implement in a given system. The derivation of this equation is based on the following formula for determining the total annual costs for an implement:

$$
A C=F C \% p \cdot W+\frac{825 A}{S W E}(L+0+F+T)
$$

Where, $A C=$ annual cost for the implement's use, \$/year
FC\% = annual fixed costs for implement in \% of purchase price, (decimal form)
$\mathrm{p}=$ purchase price of implement, $\$ /$ foot

$$
\begin{aligned}
& \mathrm{W}=\text { effective implement width, feet } \\
& \mathrm{A}=\text { total acres covered annually } \\
& \mathrm{S}=\text { forward speed, miles per hour } \\
& \mathrm{E}=\text { implement field efficiency, percent } \\
& \mathrm{L}=\text { cost of labor, } \$ / \text { hour } \\
& 0=\text { cost of engine oil, } \$ / \text { hour } \\
& \mathrm{F}=\text { cost of fuel, \$/hour } \\
& \mathrm{T}=\text { power fixed cost charge, } \$ / \text { hour }
\end{aligned}
$$

This formula was differentiated with respect to W and set equal to zero. When solved for W, Equation 5.1 was developed.

$$
\begin{equation*}
W^{2}=\frac{825 \mathrm{~A}(\mathrm{~L}+\mathrm{T})}{\mathrm{FC} \% \mathrm{P} \mathrm{~S} \mathrm{E}} \tag{5.1}
\end{equation*}
$$

The following assumptions are made with respect to Equation 5.1:
a. That oil and fuel usage are linearly related to W and therefore not significant in the selection process
b. That E and FC\% are constants independent of W
c. That power fixed cost charges may be proportioned on the basis of the time the power source is used
d. That the unit width purchase price, p, is constant over a range of W Values
e. That the forward speed, S, is the maximum value that does not reduce the effectiveness of the operation
f. That S and E are the same for all operations performed by the implement

Equation 5.1 is used to calculate the least-cost width for all implements selected by the stored program. Since the timely performance of field operations has an economic value in most instances, a method for selecting an implement size which will take into account the value
of timely operations is desirable. By using such a method an implement width may be selected which will yield maximum profit rather than leastcost.

Hunt (7, 9) expanded Equation 5.1 to include a procedure for considering the value of timely operations when selecting field machinery. This was done by developing a series of timeliness factors which are considered to be the reduction in value of a crop for each hour required by the operation. These timeliness factors when multiplied by the total value of a crop are considered an hourly cost along with the labor and power costs indicated in Equation 5.1. Equation 5.2 includes this cost for timeliness.

$$
\begin{align*}
& W^{2}=\frac{825\left[A(L+T)+\sum\left(A_{i} K_{i} Y_{i} V_{i}\right)\right]}{F C \% \operatorname{PE}} \tag{5.2}\\
& \text { Where the added symbols are: } \\
& \qquad A_{i}=\frac{\text { acres for each crop }}{\left(\sum A_{i} \text { must equal } A, \text { total acres }\right)} \\
& K_{i}=\text { timeliness factor, } 1 / \text { hours } \\
& Y_{i}=\text { potential total crop yield, bushels, tons, etc. } \\
& V_{i}=\text { crop values, } \$ / \text { bushel, } \$ / \text { ton, etc. }
\end{align*}
$$

Suggested values for K are listed in Table IV. Equation 5.2 is used to select optimum implement sizes whenever the timeliness factors for the various operations performed by the implement are known. Unfortunately however, such information for evaluating timeliness is unavailable for many crops and farming areas. Quite often implements must be selected for operations where no timeliness data is available. Because of this fact, provision has been made within the stored program for selecting implements of optimum size by an alternate method.

TABLE IV

TIMELINESS FACTORS

A more common approach to the problem of field machinery selection has been to select implement sizes which will furnish adequate capacity to complete field operations within an allotted time period. Nearly all farm operators have some estimate of the time which they consider allowable for the completion of various operations in their farming area. These estimates are usually based on past observations of crop yield as related to planting dates, harvest dates, etc. While such information may be inaccurate, the use of such a method is considered to be better than ignoring the value of timeliness altogether.

Allotted time for field operations is usually given in days. Difference in the length of working days among different operators tends to make this method difficult to use in machinery selection problems. A better method is to state the allotted time for a given field operation in hours. This approach more accurately indicates the available field time for each operator. By this method, the operator who is willing to work longer hours or work at night when possible, will have more time available to him than will the operator who prefers to work only during the daylight hours. Total hours of allotted time available are dependent upon the same factors as working days available times the daily hours kept by the individual operator. Operators who prefer not to work during all possible hours must pay for the privilege by owning larger machinery in order to have the larger field capacity needed to complete the job in less hours over the same period of days

When an allotted time is given for an implement, Equation 5.3 is used within the stored program for determining the implement size required to complete an operation with the allotted time.

$$
\begin{equation*}
\mathrm{W}=\frac{825 \mathrm{~A}}{\mathrm{Sh} \mathrm{E}} \tag{5.3}
\end{equation*}
$$

$$
\text { Where, } \begin{aligned}
\mathrm{W}= & \text { effective implement width, feet } \\
\mathrm{A}= & \text { total acres covered annually } \\
\mathrm{S}= & \text { ground speed, miles per hour } \\
\mathrm{h}= & \text { allotted time for completing all } \\
& \text { operations, hours } \\
\mathrm{E}= & \text { field efficiency, percent }
\end{aligned}
$$

In order to determine the total allotted time, h, for all operations performed by the implement, the allot ted time for the individual operations must be totaled. Since the required capacity for some operations may be larger than for others, use of this method may select an implement which does not have the required capacity to complete some of the operations within their allotted time period. For example, it may be desired to harvest 500 acres of wheat during the summer within a period of 100 hours and 100 acres of grain sorghum in the fall over the same length of time. When totaled this would give a total allotted time of 200 hours to harvest 600 acres. The required field capacity would be 3 acres per hour, too low for the wheat harvesting operation. The usual procedure for such problems is to select an implement with adequate field capacity to complete all operations within their allotted time periods. For the example used, the required capacity for wheat harvesting is 5 acres per hour. This capacity when divided into the total annual acres covered gives a total allotted time of 120 hours for use in Equation 5.3. Another approach would be to determine a weighted average field capacity required for all operations performed by the implement. For the example used this would be:

$$
\frac{(500 \text { acres } \times 5 \text { acres } / \text { hour })+(100 \text { acres } \times 1 \text { acre } / \text { hour })}{600 \text { acres }}=4.33 \frac{\text { acres }}{\text { hour }}
$$

This weighted average field capacity divided into 600 acres gives a total allotted time of 138 hours for all operations.

These methods of determining the total allowable time, h, are not included within the stored program since the determination of the allotted time is largely a matter of individual choice and the calculations, if necessary, are quite simple. The purpose of this discussion is to indicate the possible errors which could result in selected implement sizes if proper attention is not given to the total allotted time as an item of input data for the implement being selected.

When an allotted time is given for the operations performed by an implement, the least-cost width is first calculated using Equation 5.1. The width required by the allotted time is then calculated using Equation 5.3. If the least-cost width is larger than the width found using Equation 5.3, it is selected as the desired width of implement. If the 1east-cost width from Equation 5.1 is smaller than the width found from Equation 5.3 the width given by Equation 5.3 is selected as the desired width. By this approach the values found using the least-cost method may be adjusted for timeliness as measured by allotted time.

A combination of methods may be used within the program if desired. If timeliness factors and allotted time are both given in the input data for an implement, this combined approach is used. The implement width found from Equation 5.2 is compared with the implement width found from Equation 5,3. The larger of the two widths is accepted as being the desired implement width for the operations to be performed.
B. Selection of Power Sizes

Two methods for selecting the total amount of power required are
included within the stored program. Which method used is determined by the type of timeliness data provided for the implements for which power is to be furnished. Consideration of the value for timely operations is equally important for the selection of power sizes as for the selection of implement widths. Power sizes are represented by horsepower in much the same manner as implement sizes were represented by width. The horsepower selected by the methods contained within the stored program is considered to be the usable horsepower of a tractor or group of tractors. This usable horsepower is defined as 75 percent of a tractor's maximum drawbar horsepower as determined by the Nebraska Tractor Tests.

1. Method A. This method is used to select the total amount of power required for a system of implements when the timeliness requirement for the implements is measured by allot ted time. The amount of power selected is equal to the maximum power required by any one implement to complete its operations within the allotted time given. Equation 5.4 is used to determine the amount of power required by each implement.

$$
\begin{align*}
& H P=\frac{.022 f f A}{h E} \tag{5.4}\\
& \text { Where, } H P=\text { required horsepower } \\
& f f=\text { force factor for implement, pounds/foot } \\
& A=\text { total annual acres covered by the implement } \\
& h=\text { total allotted time in hours } \\
& E=\text { implement field efficiency, (decimal form) }
\end{align*}
$$

This procedure consists of examining all implements within the
system and determining the required horsepower for each using Equation 5.4. The maximum horsepower required by any one implement is considered to be the amount of power required for the overall operation.
2. Method B. This method is used to select the total amount of power required for a system of implements when the timeliness data for the implements is given in the form of timeliness factors of the type listed in Table IV. The equation used for selecting power sizes by this method was developed by Hunt (7, 9) in the same manner that Equation 5.2 was developed for selecting implements of optimum widths. Where acreage expressed the amount of implement use, total energy requirement is adopted for expressing tractor use. An equation for calculating annual power costs was minimized and solved to obtain a relationship for selecting an optimum amount of power for a given system.

Equation 5.5 which was derived is used within the stored program to select:power size using Method B.

$$
\begin{equation*}
\mathrm{HP}^{2}=\sum \frac{022 \mathrm{ff}}{\mathrm{FC} \% \mathrm{t} \mathrm{E}}\left[\mathrm{~A}(\mathrm{~L})+\sum\left(\mathrm{A}_{\mathrm{i}} \mathrm{~K}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}\right)\right] \tag{5.5}
\end{equation*}
$$

Where, $t=$ purchase price per usable horsepower, $\$ / \mathrm{HP}$ (Other terms are previously defined)

The following assumptions are made with respect to Equation 5.5.
a. That fuel and oil consumption are directly related to HP
b. That t is constant over a wide range of purchase values
c. That $\mathrm{FC} \%$ is a constant independent of HP
d. That all non-field operations performed by the tractor or tractors are of a type that any tractor could do regardless of size

The procedure for using Method B within the stored program consists of performing the calculations indicated within Equation 5.5 for all operations within the system which will require tractor power and then summing the figures and solving for the optimum amount of power required.
C. General Procedure for Field Machinery Selection

A flow diagram indicating the general procedure followed within the stored program is illustrated in Figure 4. Additional flow diagrams and discussion are included later to explain in greater detail some of the steps shown in Figure 4.

At the start of the procedure followed within the stored program, the data for one machine is read. The data is examined to determine whether or not a total fixed cost percentage of initial cost is given. If not, a fixed cost percentage is calculated using the same procedure illustrated in Figure 2 of Chapter IV. The only changes are that an average life in years for the machine is used and no consideration is given the expected machine life allowed by wear. Since the machine sizes are not known, the annual hours of use cannot yet be calculated. Repair and lubrication costs are included with taxes, insurance, and shelter as fixed annual percentages of initial cost. The total fixed costs are calculated using the unit purchase price of the machine as the initial cost and 10 percent of the unit purchase price as the salvage value. The total fixed cost is then divided by the unit purchase price to obtain the fixed cost percentage.

After the determination of a fixed cost percentage a check is made to determine whether or not the data is for tractors. If so, the

[^0]tractor data is placed on file for future reference. If not, any timeliness data for the implement is processed and totaled. The value for $\sum\left(A_{i} K_{i} Y_{i} V_{i}\right)$ to be used in Equation 5.2 is determined at this point. If no timeliness data of this nature is present, a zero is recorded as the value of $\sum\left(A_{i} K_{i} Y_{i} V_{i}\right)$ for the implement. The implement data is then placed on file for future reference.

A check is now made to see if any more data remains to be read. If so, data for another machine is read. If not, the data is checked for self-propelled implements. The optimum widths for all self-propelled implements are calculated at this point. Following the calculation of widths for self-propelled machines, a check is made to see if all implements in the system are self-propelled. If all implements are selfpropelled, the next step is at point A of Figure 4 . If all implements are not self-propelled, the tractor-drawn implements are examined to determine whether or not an allotted time is given for any of the tractordrawn implements. If an allotted time is given, a check is made to determine whether or not an allotted time is given for all tractordrawn implements. If so, the amount of power required for the system is determined by Method A. If not, the procedure halts. One of the requirements for the input data of all tractor-drawn implements is that if an allotted time is given for one tractor-drawn implement, an allotted time must be given for all tractor-drawn implements. Such data is essential for the calculation of required power by Method A.

If no allotted time is given for any of the tractor-drawn implements, a check is made to determine if timeliness data is given for all tractor-drawn units. If so, the amount of power required for the system is determined by Method B. If not, the procedure is halted since ade-
quate data for calculating required power size by either Method A or Method B is not available.

After the total amount of power required has been determined, the number and sizes of tractors are determined. The maximum width of each type of implement within the system which may be pulled by the total amount of power available is calculated along with the width that can be pulled by each size of tractor selected. The implement width that can be pulled by a given amount of power is calculated from Equation 5.6.

$$
\begin{equation*}
\mathrm{W}=\frac{375 \mathrm{HP}}{\mathrm{ff}: \mathrm{S}} \tag{5.6}
\end{equation*}
$$

Where, $W=$ implement width permitted by available power, feet

HP = amount of power available, horsepower
$\mathrm{ff}=$ force factor for the implement, pounds/foot S = ground speed, miles per hour

These widths of implements allowed by the available power are filed for future reference.

If Method B was used to select the total amount of power required, the number of tractors that will be required for each type of implement to be selected is assumed along with the total annual hours of use for the power sources. The procedure of the stored program is to assume that one tractor will be used for each operation and that the total annual hours of use for the power sources will be 500 hours. An assumption of the number of tractors used per operation is necessary in order to calculate the total labor costs, L, in Equations 5.1 and 5.2 for tractor-drawn implements.

If Method A was used to select the total amount of power required,
the number of tractors required for each operation is estimated by dividing the power required to complete each operation within the allotted time period by the maximum size of tractor used. The power required to complete each operation within the allotted time has been previously calculated as part of the procedure of Method A for calculating total required power. The implement widths required by allotted time are then calculated using Equation 5.3. These calculated widths are filed for future reference. The total allotted hours for all operations to be conducted by tractor-drawn implements are then totaled to be used as an estimate of the annual hours of power use.

After the number of tractors required for each operation and the total annual hours of use for the power are estimated, the optimum widths for all tractor-drawn implements are calculated. Following the calculation of optimum widths, a check is made to determine whether or not Method B was used to calculate the total required power for the system. If so, an additional check is made to determine if more tractors are needed for any operations than was last assumed when solving Equation 5.5. The number of tractors used per operation must be known when using Equation 5.5 in order to determine the correct value for labor, L, to be used. If more tractors are needed for any operations, the procedure reverts back to point B of Figure 4 where the total required power is recalculated using Method B. The steps following the calculation of required power by Method B are then repeated using the new figure for total power.

If no changes are made in the number of tractors assumed for each operation, or if Method A was used to determine total required power, a check on the maximum allowable widths for all tractor-drawn implements
is conducted. When the allowable widths have been determined the selection of a system of tractors and implements is complete and the next step is at point A of Figure 4.

The calculation of implement width, W, by the procedures followed within the stored program produces a very precise solution. Since the calculated width selected is seldom available in a commercial implement size, a commercial size must be chosen which will match the calculated optimum width, W, as closely as possible. Since implements that are slightly over-sized are usually considered preferable to under-sized implements, the first commercial implement size available which is larger than the calculated width, W, is usually acceptable.

To facilitate the selection of implements in commercially available sizes, Hunt (9) developed Equation 5.7 to calculate a range in the selected implement width, W, which is allowable for a preselected difference in annual cost.

$$
\begin{equation*}
\mathrm{W}_{1,2}=\mathrm{W}+\frac{\mathrm{d}}{2 \mathrm{FC} \% \mathrm{p}}+\sqrt{\frac{\mathrm{d}}{\mathrm{FC} \% \mathrm{p}} \quad\left(\mathrm{~W}+\frac{\mathrm{d}}{4 \mathrm{FC} \% \mathrm{p}}\right)} \tag{5.7}
\end{equation*}
$$

Where previously undefined terms are:

$$
\begin{aligned}
\mathrm{d}= & \text { the selected number of dollars which is } \\
& \text { judged insignificant when compared with the } \\
& \text { minimum annual cost for the operation }
\end{aligned}
$$

$\begin{aligned} \mathrm{W}_{1,2}= & \text { the double answer obtained which defines a } \\ & \text { range in implement widths wherein the annual } \\ & \text { costs of operation are approximately the same }\end{aligned}$

If the annual cost for an operation is allowed to vary 5 to 10 dollars above the minimum ($\mathrm{d}=5-10$), a range in W may be calculated which will nearly always allow the selection of a commercially available implement size of a width which will fall between the two acceptable limits. For
a given value of d, the range in W will be much larger for lower cost implements than for high cost implements.

Following the calculation of an acceptable range in implement widths all data which will be of importance for the selection of commercial implement sizes is gathered and the answers are written. This finishes the procedure followed by the stored program for selecting optimum sizes of field machinery.

The procedure for analyzing the output data and selecting commercially available machine sizes is presented in Chapter VI.

Further discussion and expanded flow diagrams of some of the more detailed steps of the machinery selection procedure outlined by Figure 4 are now presented.

D. Calculation of Widths for Self-propelled Implements

The procedure followed by the stored program for calculating the optimum widths of self-propelled implements is illustrated by the flow diagram in Figure 5.

Since self-propelled implements do not share a common power source with other implements, the selection of an optimum width may be accomplished independently without consideration of any of the other machines within a system. The calculation of optimum widths for self-propelled implements takes place within the program as soon as all data has been read. Once the optimum widths for all self-propelled implements have been determined, no further consideration is given the self-propelled machines until the computational procedure reaches point A of Figure 4.

One of the requirements of the input data is that operations for which self-propelled implements are desired must be so designated before

[^1]the start of the selection procedure. No provision is made within the stored program for arbitrarily selecting either a self-propelled or tractor-drawn implement to perform a given operation. The selection equations used would tend to discriminate against self-propelled machines if such a procedure was followed since no economic value for the convenience and possible increased efficiency of self-propelled implements is given.

The first step for calculating the optimum widths of selfpropelled implements consists of checking the implement data to determine if an allotted time for completing the operations to be performed by the implement is given. If an allotted time is given, the required implement width for completing the operations within the allotted time period is calculated using Equation 5.3. After the calculation of the implement width required by the allotted time is finished or after the allotted time check, if no allotted time is given, the number of implements needed to supply the total required implement width is estimated. In the procedure followed by the stored program, one unit is assumed at this point.

The optimum width for the implement is now calculated using Equation 5.1 or if timeliness data is available, Equation 5.2. Following the calculation of the optimum width a check is made to determine if a maximum allowable width is given for the implement. If a maximum allowable width is not given, it is assumed that the required width for the implement may be included in one unit. If a maximum allowable width is given, the calculated width is divided by the allowable width per unit to determine the number of units required. If more units are required than last assumed, the procedure reverts back to point A of Figure 5 where the optimum implement width is recalculated using a different value for
labor, L, since labor for more units is needed.
When the optimum size and number of units required to make up the optimum size is finally determined, another check is made to see if an allotted time is given. If so, the width required to meet the allotted time period, which has been previously calculated, is compared with the width calculated using Equation 5.1 or 5.2 . If the optimum width calculated is larger than the width required to meet the allotted time, or if no allotted time was given, the calculations for determining the total width and number of units for the self-propelled implement are completed.

If the width required by allotted time is larger than the previously calculated optimum width, the desired width for the implement is assumed to be equal to the width required by the allotted time. The number of units required for the width required by allotted time is calculated and the selection of implement width and number of units is complete.

E. Selection of Number and Sizes of Tractors

The procedure followed by the stored program for calculating the number and sizes of tractors to be used in a system is illustrated by the flow diagram in Figure 6 .

Once the amount of total power required for the system has been calculated using either Method A or Method B, the number and sizes of tractors must be found. The first step in this procedure is to compare the total required horsepower with the horsepower of the minimum allowable tractor size. If the total required horsepower is less than that of the minimum allowable tractor size, one tractor of minimum allowable

size is selected to fulfill the power requirements for the system. The next step is at point A of Figure 6.

If the minimum size tractor will not meet the total power requirement, a check is made to see if the total power requirement may be met by a tractor of the maximum allowable power size, if so, one tractor with a power size equal to the total power required for the system is selected. The next step is then at point A of Figure 6.

If the total power requirement exceeds the power available with the maximum allowable tractor size, more than one tractor must be selected. The total number of tractors required, n, is found by dividing the total power requirement for the system by the horsepower of the maximum allowable tractor size. This figure is then increased to the next whole number to represent the number of tractors required in the event that the number does not come out even after division.

Once the number of tractors to be used within the system is known, two procedures are available within the stored program for dividing the total required power into the proper number of tractors. The choice of the two methods must be indicated in the input data before the start of the selection procedure for the system.

One method is to select all tractors for the system in equal sizes. These sizes are determined by dividing the total required power by the number of tractors to be used. This procedure produces (n) tractors, all of which are equal in size. The principal advantage of this approach is the flexibility of the final selection since any of the tractors could be used with any implements selected. After completion of this step the next step is at point A of Figure 6 .

If the tractors are not selected in equal sizes, the alternate
method consists of selecting ($n-1$) tractors of the maximum allowable size and satisfying the remainder of the total power requirement with a tractor of smaller size. This method has the advantage of possibly providing a smaller tractor for some of the operations requiring less power. Selection by this method should generally be the cheapest from a cost viewpoint since the maximum tractor sizes will permit the performance of more operations with a minimum labor cost. A disadvantage of this approach is that the flexibility provided by equal power sizes may not be present if only 2 or 3 tractors are selected. This factor may not be important if numerous conflicting operations are not encountered. Following the calculation of numbers and sizes of tractors the final step in the procedure occurs at point A of Figure 6.

The horsepower of all tractors which have been selected has been defined as the usable horsepower of the individual tractors. To facilitate the selection of tractors which are commercially available, the usable horsepower of the tractors is converted to the maximum drawbar horsepower for each of the selected tractors. This is accomplished by dividing the usable horsepower for each tractor by 0.75.
F. Calculation of Widths for Tractor-drawn Implements

The calculation of optimum widths for tractor-drawn implements is the most involved process in the entire procedure of machinery selec* tion followed by the stored program. This section also requires the major portion of all calculations necessary to efficiently select field machinery for a given system. The selection of tractor-drawn implements is difficult because all of the implements require power from another source. For this reason the entire system of implements must
be selected as a group. Any change in the size of one implement results In a change of the total annual hours of use for the power. Since this change in turn affects the tractor fixed cost per hour, T, which is used in Equation 5.1 and 5.2 for selecting implement widths, a change in the size of one implement will bring about a change in the size of all other implements in the system.

The procedure followed within the stored program for calculating the widths of tractor-drawn implements is illustrated in Figure 7.

After the total annual hours of use for the power required by the system has been estimated, an initial estimate of the power fixed cost per hour, T, is made.

At point A of Figure 7, the widths for all tractor-drawn implements are calculated using Equation 5.1 or Equation 5.2 if timeliness data is given. The hours required for the operations performed by each implement to be completed using the implement width calculated are found from Equation 5.8.

$$
\begin{equation*}
h=\frac{825 A}{S W E} \tag{5.8}
\end{equation*}
$$

$$
\text { Where, } \begin{aligned}
h= & \text { annual hours required to complete operations } \\
& \text { using calculated implement width } \\
A & =\text { annual acres covered by the implement } \\
S & =\text { ground speed, miles per hour } \\
W & =\text { calculated implement width } \\
E= & \text { field efficiency, percent }
\end{aligned}
$$

The annual hours found for all tractor-drawn implements in the system are then totaled and the hourly fixed cost charge for power, T, is recalculated. This value for T is compared with the last estimate used

Figure 7. Flow Diagram of Procedure for Calculation of Widths of Tractor-drawn Implements.
for T, if. a difference exists between the two values, the procedure reverts back to point A of Figure 7 where the widths for all tractordrawn implements are recalculated using the new value for T. This cycle is continued until the two estimates for T are equal. To prevent needless cycling at this point the two values for T are considered equal when the first four significant figures at the left are the same.

After the values for T are found to be equal the implements are examined one at a time at point B of Figure 7 to determine whether or not the calculated widths are adequate for meeting an allotted time period if given. The implement width required by allotted time has been previously calculated and may be compared with the calculated implement width found using Equation 5.1 or Equation 5.2. If the implement width required by allotted time is larger, this width is assumed to be the desired width of implement. The procedure then reverts back to point A of Figure 7 where the widths of all other implements are recalculated since a new T value will result after the change in size of one implement. A "freeze" notation is attached to the implement for which the size was increased to meet allotted time requirements. This notation signifies that the width for that particular implement is to be considered constant for the time being and that the width for the implement is not to be recalculated at point A of Figure 7.

If no allotted time is given or if the calculated implement width will meet the allotted time requirement, a check is made to determine if the implement width which has been calculated can be pulled by the total amount of power available. The implement widths allowed by total power have been previously calculated and may be compared with the implement width found using Equation 5.1 or Equation 5.2. If the width
allowed by power is smaller than the calculated width, the width of the implement is reduced to a size which may be pulled by the total power available. A "freeze" notation is attached to the implement for which the size was reduced because of power limitations and the procedure reverts back to point A of Figure 7 for the recalculation of the widths of other implements.

If the calculated width for an implement should meet both the allotted time requirement and the power limitations a check is made to see if the data for all implements has been examined for conformance to these conditions. If all implements have not been examined, the data for another implement is examined. If all implements have been examined and meet the restrictions, the implement widths are temporarily settled.

The "freeze" notation is now removed from any implements for which it has been imposed. The data for the implements is again checked one at a time and the horsepower required to pull the implement width which has been selected is calculated using Equation 5.9.
$H P=\frac{S W \mathrm{ff}}{375}$
(A11 symbols are previously defined)

The number of tractors required to pull the total implement width selected is determined by dividing the horsepower required to pull the selected implement width by the horsepower of the largest tractor available. A check is made to determine if the number of tractors required for the implement is greater than was last assumed. If so, the procedure reverts back to point A of Figure 7 since the change in number of tractors will
change the value of L in Equations 5.1 and 5.2 resulting in the calculation of a different implement size for the other implements.

If no change in the number of tractors used with one implement has occurred, the data for another implement is checked. When the data for all implements has been checked and no additional tractors are added for any of the implements, the procedure for calculating the widths of all tractor-drawn implements within the system is completed.

G. Checking Allowable Widths of Tractor-drawn Implements

A flow diagram indicating the procedure followed by the stored program for checking the allowable widths of tractor drawn implements is illustrated in Figure 8.

Although many tractor-drawn implements may be connected in series so that there is actually no limit to the size that may be pulled by a tractor with adequate power, it is often desirable to limit the size of implement to be pulled by any one tractor. For some implements which cannot be connected in series, there is a maximum commercial size available which may be pulled by one tractor.

The first step indicated in Figure 8 is a check to determine if a maximum allowable width for an implement is given. If not, the procedure is completed. If a maximum allowable width is given, a check is made to see if this width is larger than the width of implement that the largest tractor in the system will pull. If so, the allowable width has no bearing on the problem and the procedure is complete. If the allowable width is smaller than the width which may be pulled by the largest tractor, the total allowable width which may be pulled by the tractors available is calculated.

The total allowable width which may be pulled by the number of tractors which are to be used with the implement is calculated following the procedure shown in Figure 8. The total allowable width which may be pulled by using all tractors which have been selected for the system is then calculated. These calculations complete the procedure.

The data calculated at this point is used to aid in the selection of commercially available implement widths later. The range of permitted implement widths calculated from Equation 5.7 will usually permit the selection of an allowable total width which may be pulled by the available number of tractors.

Large differences in calculated widths and maximum allowable widths should never occur. The selection of maximum allowable horsepower per tractor as an item of input data should be based on the consideration of the maximum size of implements that will be available or that will be desired for the operations to be performed.

The rules and procedures for using this stored program for the selection of field machinery are explained in Appendix B.

ANALYSIS AND DISCUSSION

The stored program which has been developed for solving problems of field machinery selection does not select implement widths which are available in commercial sizes. The purpose of the stored program is to provide sufficient information so that an efficient selection of implements in sizes which are commercially available may be made. Since the sizes which will actually be used for a given system are not yet known at the completion of the selection procedure followed by the stored program, the calculation of the annual costs for the selected system cannot be achieved within the same program.

When the data provided by the machinery selection program has been analyzed and implement sizes which are available have been selected, the calculation of annual machinery costs may be performed by the stored program discussed in Chapter IV. In this manner complete information concerning the expected annual costs for a selected system of implements may be found.

The following items of information are provided by the stored program for selecting field machinery:

1. The optimum width of the implement in feet which has been calculated by the procedure followed within the stored program.
2. An allowable range in implement width whịch extends on either side of the optimum implement width. This range is to
allow the selection of a commercial size of implement which will result in approximately the same annual costs that would be incurred if the optimum width of implement were used.
3. The implement width which can be pulled by the maximum amount of power which is available within the system. This item is intended as a check to prevent the selection of an implement width within the allowable range which cannot be pullea by the available power. If this width is equal to the optimum width, the optimum width selected was probably restricted by the total amount of power available.
4. The number of tractors used to pull the total selected implement width. The number of tractors denotes the number of individual implements which will be selected to make up the total required implement width.
5. The horsepower required by the optimum implement width. This item is included largely as a matter of interest to determine which implements require the most horsepower. It may also help to determine the tractor size needed to pull the implement.
6. The implement width required by an allotted time period if given. This item may be compared with the optimum width to determine which implement sizes were determined by the allotted time requirement.
7. The maximum width of implement which can be pulled by the largest tractor selected.
8. The maximum width of implement which can be pulled by the smallest tractor selected. Items 7 and 8 are important for determining the widths of the individual implements which may be chosen to
make up the total required implement width. It should be remembered in the selection process that if (n) tractors have been selected by the unequal size method, that there will be (n-1) large tractors and only one small tractor. There is no smaller tractor to consider if the tractors were all selected in equal sizes.
9. The maximum width of implement which is available as a single commercial unit. This item was also an item of input data but is included here to guard against the selection of implement units which are not available.
10. The maximum width which may be pulled by the number of tractors selected for use with the implement being considered. If the width per mit is limited, this item indicates the total width which can be pulled by the assumed number of tractors. This is a limitation due to available size of individual units not the available power. Generally this total available width will fall within allowable range of widths given by item 2 .
11. The maximum width which may be pulled by all tractors selected for the entire system for situations where the available implement width per unit is limited. This item may be referred to if the width indicated by item 10 does not fall within the allowable range. If the total number of tractors in the system are already being used with this type of implement, the maximum widths given by item 10 and item 11 will be the same. Items 9-11 are usually zero since in most instances consideration of a maximum available width which is smaller than the width permitted by power is not necessary.

For self-propelled implements, only items $1,2,4$, and 6 are given.

Item 4 lists the number of units which are to make up the total required width for self-propelled implements.

The information provided for tractor selection is:

1. The total number of tractors selected for the system.
2. The total usable horsepower selected for the system.
3. The usable horsepower of the largest tractor selected.
4. The actual horsepower of the largest tractor. This item indicates the maximum drawbar horsepower of the tractor and is included to aid selection of a commercial size.
5. The usable horsepower of the smallest tractor selected.
6. The actual horsepower of the smallest tractor selected. Items 5 and 6 for tractors are zero if equal sized tractors are selected.

To illustrate the type of selection which may be made from the data furnished by the stored program, two examples are presented. The basic data for the two examples is the same and is listed in Table V. For Example 1 the implements and power were selected using timeliness data. The tractors were chosen in equal sizes. For Example 2 the implements and power were selected using an allotted time period for the operations performed by each implement. The tractors were chosen in unequal sizes.

Timeliness data for Example 1 is listed in Table VI. The solutions for Example 1 which were provided by the stored program are listed in Table VII. The following selection of implement widths in commercially available sizes was made for Example. 1 using the data provided in Table VII:

TABLE V

DATA FOR EXAMPLES 1 AND 2

Machine	Speed (mph)	Force factor ($1 \mathrm{~b} / \mathrm{f} \mathrm{t}$)	Field efficiency (\%)	Purchase price ($\$ / \mathrm{ft}$)	Years life	Rep., lub taxes,ins shelter (\%)	Labor (\$/hr)	Sinking fund interest (\%)	Interest on invest ment (\%)	Max. avail. width (ft)
P low	4.5	900	80	120	15	8.5	1.25	4	3	---
Harrow	6.0	170	90	15	15	3.5	1.25	4	3	---
Grain drill	5.0	115	70	75	15	4.0	1.25	4	3	26.67 (8 row)
Cultivator	5.0	135	75	40	12	5.0	1.25	4	3	26.67
Planter	5.0	110	65	55	15	4.0	1.25	4	3	16.00
*Combine	4.0	375	75	400	10	6.0	1.50	4	3	---
Mower	5.0	130	85	50	12	6.0	1.25	4	3	---
Rake	5.0	80	90	60	15	4.0	1.25	4	3	---
Baler	3.0	405	80	350	12	6.0	1.25	4	3	---
Tractor	---	---	---	\$100/hp	12	7.0	---	4	3	---

*Self-prope11ed
Allowable cost range for implements (d) - $\$ 10$.
Maximum allowable tractor size - $52.5 \mathrm{~h} . \mathrm{p} .($ usable) - $70 \mathrm{~h} . \mathrm{p}$. (actual)
Minimum allowable tractor size - $15.0 \mathrm{~h} . \mathrm{p}$. (usable) - $20 \mathrm{~h} . \mathrm{p}$. (actual)

TABLE VI

TIMELINESS DATA FOR OPERATIONS IN EXAMPLE 1

Implement	Wheat		Oats		Grain Sorghum		Hay		Total Annual Acres Covered
	Timelinss			Timeliness		Timeliness		Timeliness Factor	
	Acres	Factor	Acres	Factor	Acres	Factor	Acres		
Plow	500	. 00005	100	. 00005	300	. 00005	---	---	900
*Harrow	1500	. 00001	200	00001	600	. 00001	---	---	2300
Grain drill	500	. 0005	100	. 0005	---	---	---	---	600
*Cultivator	---	---	---	-	900	. 0005	---	---	900
Planter	---	---	---	-	300	. 0005	-	---	300
Combine	500	. 0005	100	. 0007	300	. 0005	---	--	900
Mower	---	---	-	---	---	---	150	. 001	150
Rake	---	-	---	---	---	---	150	. 001	150
Baler	---	-	---	---	---	---	150	. 001	150

*Acres covered more than 1 time.

$$
\text { Total Crop Values }\left(Y_{i} V_{i}\right)
$$

TABLE VII

SOLUTIONS FOR EXAMPLE : 1

Implement	Number	Size	Tractors Used
Plow	2	4-14	2
Harrow	2	$18 \mathrm{ft}$.	2
Drill	4	20×8	2
Cultivator	2	8 row	2
Planter	2	6 row	2
Combine	2	12 ft .	-
Mower	2	9 ft .	1
Rake	2	$8 \frac{1}{2} \mathrm{ft}$.	1
Baler	1	-	1
Two tractors were also selected with a maximum drawbar horsepower of			
69 each.			

Several interesting observations may be made for the data produced by the stored program. The widths of three of the implements which were selected, plow, harrow, and cultivator, were restricted by the total power available. This is indicated by the fact that the selected optimum widths for these implements are equal to the widths permitted by the total available power. Also the power required to pull these widths is equal to the total available power, 103.70 horsepower. Two units are coupled together to meet the required width for mower and rake. These double units are both pulled by one tractor. Since eight-row equipment is the largest available size for row crop work the optimum width of 57.6 feet for the cultivator cannot be met using only two tractors. The allowable width of 53.3 feet obtained by using two eight-row cultivators with the tractors selected is easily within the allowable range in width however. The required width for the baler is 8.67 feet. Since this is usually within the width covered by a
single swath picked up by a baler, one baler is chosen to meet the requirement.

On the basis of a $\$ 10$ variation in annual cost a much larger range in allowable width is permitted for implements such as the harrow and cultivator which have a low unit cost, p, than is permitted for higher cost implements like the combine and baler.

The data for Example 2 is identical to the data used for Example 1. with the exception that an allotted time period for the completion of all operations performed by each implement is given instead of the timeliness data. Tractors are selected in unequal sizes. The allotted times permitted for the implements to be selected in Example 2 are listed in Table VIII.

The solutions for Example 2 which were provided by the stored program are listed in Table IX. The following selection of implement widths in commercial sizes was made for Example 2 using the data provided in Table IX:

For the large tractor:
For the small tractor:
1-4-14 plow
1-18 ft. harrow
$2-16 \times 8$ drills
1-8 row cultivator
1-6 row planter
1 - baler (large capacity)

$$
2-14 \mathrm{ft} . \text { combines }
$$

After checking the solutions for Example 2 in Table IX, several factors may be noted. While an allotted time was given for all implements, the width required for meeting the allotted time requirement was

TABLE VIII
ALLOTTED TIME FOR OPERATIONS IN EXAMPLE 2

Implement	Total annual acres covered	Total allotted days	hrs./day	Total allotted hours
Plow	900	18	$* 20$	360
Harrow	2300	23	10	230
Dril1	600	12	10	120
Cultivator	900	15	10	150
Planter	300	6	10	60
Combine	900	9	10	90
Mower	150	4	10	40
Rake	150	4	10	40
Baler	150	4	10	40

$\%$ Plowing is conducted day and night to reduce required capacity

TABLE IX

SOLUTIONS FOR EXAMPLE 2

Implement	Optimum width	Allowable range	No. of tractors	Width allowed by total h.p.	H.P. required by opt. width	Width req. by allotted time
Plow	6.25	4.63-8.43	2	6.25	67.5	5.73
Harrow	24.82	14.77-41.67	2	24.82	67.5	15.28
Drill	22.56	17.76-28.66	1	44.02	34.60	11.78
Cultivator	37.50	29.85-47.11	2	37.50	67.5	13.20
Planter	19.33	14.30-26.13	1	46.02	28.36	12.69
Combine	27.5	25.46-29.70	2 (units)) ---	---	27.50
Mower	10.84	7.53-15.61	1	38.94	18.79	7.28
Rake	11.12	7.61-16.26	1	63.28	11.86	6.88
Baler	12.89	11.35-14.63	1	20.83	41.77	12.89

Implement	A.llow. width for large tractor	Allow. width for small tractor	Available width per tractor	Available width for tractors used	Available width for total tractors selected
P 1ow	4.86	1.39	---	---	---
Harrow	19.30	5.51	---	---	---
Drill	34.24	9.78	---	---	---
Cultivator	29.16	8.33	26.66	35.00	35.00
Planter	35.80	10.23	26.66 per	26.66	36.89
Combine	---	---	16.00 (unit)	---	---
Mower	30.29	8.65	---	---	---
Rake	49.21	14.06	---	---	---
Baler	16.20	4.63	---	--	---

Total power required - 67.5. Total no. tractors selected - 2 . Usable h.p. of large tractor - 52.5 . Usable h.p. of small tractor - 15. Actual h.p. of large tractor - 70.0. Actual h.p. of small tractor - 20.
the determining factor for only two implements, the combine and the baler. For all other implements the calculated width which would produce minimum costs was larger than the width required by allotted time. The widths for the plow, harrow, and cultivator were restricted by the power available.

The selection of commercial sizes using the data provided by Table IX provides about the same number of implements for each of the two tractors. The baler is assigned to the large tractor since a pto baler receiving power from the tractor was assumed during the calculations. The small tractor is unable to furnish adequate power for the baler. If a baler with an auxiliary engine were selected, it could be pulled by the small tractor. A 9 foot mower was selected for the small tractor although the calculated width which is allowed for the small tractor due to available power is slightly smaller, 8.65 feet. It was felt that the sizes were close enough that a serious power shortage would not result. Matching the mower with the small tractor was considered a better choice than placing the mower with the large tractor. A 7 foot mower could be used with the small tractor although 7 foot is slightly outside the allowable range in widths.

Some striking differences are noted when the solutions for Example 1 are compared with the solutions for Example 2. Both selections were made for the same crops and acreages. All of the basic data is the same with the exception of the timeliness data for Example 1 and the allotted time data for Example 2. The calculated optimum widths and selected power for Example 1 are much larger than for Example 2. For some implements the optimum width found in Example 1 is more than double the width found in Example 2. The only implements which are larger in

Example 2 are the combine and baler.
Since the allotted times used in Example 2 are approximately equal to those generally assumed in actual practice, it would appear that the value for timely operations is much greater than is generally recognized. In fact when the reduction of crop value is considered an hourly charge, this cost is often considerably greater than the total hourly costs for both labor and power when the optimum implement width is calculated.

The advantages of each of the methods for selecting tractor sizes is indicated by the two examples. In Example 1 , maximum flexibility is possible since either of the equal size tractors may be used to pull any of the selected implements. In Example 2, a small tractor is selected for use with some of the implements requiring less power. When the maximum size tractor is used, some operations may be performed with one tractor where two tractors would be required if equal sized tractors had been selected for Example 2.

The annual costs for the system of implements selected in Example 2 were calculated using the stored program discussed in Chapter IV. The data used for calculating these annual costs is listed in Table X. For the purposes of calculating annual costs gasoline tractors are used since this was the type tractor considered when, t, the tractor cost per usable horsepower was estimated for the purposes of power selection. Since the costs for the implements pulled by each tractor are calculated separately, the total acreage covered for each operation is divided up and the acreage covered by each implement is assumed proportional to the implement width. This is done for the plowing, harrowing, and cultivating operations where two tractors are used.

TABLE 类

DATA FOR CALCULATING ANNUAL COSTS FOR IMPLEMENTS SELECTED IN EXAMPLE 2

Machine	Purchase price*	Salvage value	Repairs	Lubrication	Taxes, ins., and shelter	Life in hours
70 h.p. tractor	\$ 5500	- $\$ 500$	3.5\%	0.7\%	2.5\%	12000
4-14 plow	600	60	7.0	0.5	1.5	2000
18 ft . harrow	350	40	2.0	0.1	1.0	2000
2-16x8 drills	1800	150	1.5	0.7	2.0	1200
8 row cultivator	- 1150	100	3.5	0.3	1.5	2500
6 row planter	1400	140	2.0	0.5	2.0	1200
*Baler	2200	250	3.0	0.8	2.5	2500
$20 \mathrm{~h} \cdot \mathrm{p}$. tractor	2100	300	3.5	0.7	2.5	12000
1-14 plow	180	30	7.0	0.5	1.5	2000
5 ft . harrow	100	15	2.0	0.1	1.0	2000
2 row cultivator	300	50	3.5	0.3	1.5	2500
9. ft. mower	450	45	3.5	0.7	2.0	2000
$8 \frac{1}{2} \mathrm{ft}$. rake	700	100	2.0	0.5	2.0	1500
2-14 ft. combines	12000	1000	3.0	0.5	2.5	2500

* Estimated

Implement speed, field efficiency, years life, sinking fund interest, interest on investment, and labor charges which were indicated in Table V are used again for the calculation of annual costs.

Hourly fuel and oil consumptions for the tractors are taken from Table II.
Fuel consumption per combine - $2.5 \mathrm{gal} / \mathrm{hr}$. Oil consumption per combine - $0.01 \mathrm{gal} / \mathrm{hr}$. Fuel price-\$.20/gal. (gasoline). Oil price - $\$ 1.25 /$ gal.

The annual costs calculated by the stored program are listed in Table XI. At this point accurate comparisons of the costs of using the different implements selected may be made with charges for custom work. If the decision is made that custom hiring would be preferable to machine ownership, the implement performing that particular operation may be eliminated.

If the most efficient selection of a system of implements is desired, the machinery selection procedure should be repeated if any implements are removed because custom hiring is chosen. This is relatively simple using the stored program for machinery selection since the data cards for the implements which have been eliminated are removed from the input data and the remaining cards fed into the computer once more.

Since assumptions are made that field efficiencies and unit costs are the same over all ranges of sizes, when in fact they are not, it may be desirable in some cases to run the selection procedure over again using more accurate values for these items once the approximate sizes of implements that will be selected are known.

The form of the output data which has been discussed in this chapter and the order in which it is listed on the punched cards removed from the computer after the calculations have been performed is explained in Appendix A and Appendix B.

TABLE XI
ANNUAL COSTS FOR IMPLEMENTS SELECTED IN EXAMPLE 2

Grand total operating costs $=\$ 2843.99$
Grand total fixed costs $=\$ 4218.00$
Total annual machinery cost $=\$ 7061.99$
(1) Represents charge for labor only unless implement has auxiliary engine
(2) Includes that portion of tractor fixed costs charged to the operation

CHAPTER VII

SUMMARY AND CONCLUSIONS

Two stored programs have been developed to solve problems of field machinery selection and cost analysis. One of these stored programs may be used to calculate the annual field machinery costs for operations where the number and types of machines are known. The other stored program may be used to make efficient selections of field machinery for operations where the types of implements desired and acreage to be covered are known.

The stored program for the calculation of annual field machinery costs was discussed in Chapter IV. Provision was made for calculating annual depreciation charges by either the sinking fund or straight-line methods. A trade-in value may be calculated for use in fixed cost calculations for a machine that is to be disposed of before the end of its useful life. Interest on investment may be calculated as either simple or compound interest for either method of depreciation used. Fixed annual rates are used for calculating repair and lubrication charges. These rates may be increased proportionately for cases of high annual use. Fuel consumption rates may be measured on an hourly basis or by the amount of work obtained per gallon of fuel. This stored program provides answers giving the annual hours of use, total variable costs, total fixed costs, cost per acre, and cost per hour for all implements included in the problem. The total annual machinery costs for the entire
operation are provided.
The stored program for field machinery selection was discussed in Chapter V. This stored program does not select machinery sizes which are available commercially. Sufficient information concerning the desired optimum machinery sizes is provided in order that an efficient selection of machines in commercially available sizes may be made. The size or capacity of all implements is determined by the effective width. Implement sizes are determined on a least-cost basis and then adjusted to meet timeliness requirements in order that the maximum profit implement size may be found. Increased implement size to meet timeliness requirements may be determined by using timeliness data which may be used to assess an hourly charge for operations performed. An alternate method may be used whereby an implement size is selected which will complete the operations within an allotted time period.

The amount of power required is determined by one of two methods. Total power may be equal to the maximum amount of power required by any single implement in order to complete its operations within an allotted time. For problems where timeliness data is available, a total amount of power may be selected which, along with the implements selected, will produce maximum profit. A choice of two methods for selecting the number and sizes of tractors is provided. All tractors may be selected in equal sizes or for a system requiring (n) tractors, ($n-1$) tractors of the maximum allowable size may be selected along with one tractor of smaller size.

The stored program for field machinery selection provides answers giving the optimum sizes of implements for all operations, the number and sizes of tractors selected, plus additional information to facilitate
the final selection of a complete line of machinery in commercial sizes.
The stored program for calculating annual machinery costs may be used to follow up the stored program for field machinery selection. In this manner, accurate comparisons may be made between expected costs for the selected implements and the rates for custom work.

The two stored programs, developed as the result of this study, should be useful to persons who work problems in the areas of machinery cost calculation and machinery selection. The solutions obtained are simple and easily interpreted. Enough flexibility has been included within the procedure followed by the stored programs that several different approaches to an individual problem are possible.

As has been mentioned previously, none of the procedures which have been outlined in the discussion are impossible to conduct with manual calculations. The use of stored programs with a digital computer merely eliminates all of the tedious and involved computations which must be performed manually. To use stored programs it is necessary to list the desired items of input data on punched cards so that the information may be read into the computer.

Stored programs which have been developed will be useful to people who have access to a digital computer. In the future it may be expected that more people will have access to digital computers as the demand continues to increase and as smaller, cheaper sizes of computers are made available.

While these stored programs were developed for use with one particular type and make of digital computer, similar type programs could be developed to be used with other computer models. Some work may be required for the original development of a stored program, but once
assembled it may be kept and used to solve all future problems of the type for which it was designed.

Further study in the areas of machinery cost analysis and machinery selection would be we11 justified. More efficient and accurate procedures may be found for solving problems of these types. The real need for the present, however, lies in obtaining more accurate information concerning some of the factors affecting machinery cost calculation and selection. Most of the assumptions made for energy requirements and timeliness data are rather arbitrary in nature. Information on these items is non-existent for many farming areas. The need for accurate methods of assessing the value of timely operations was pointed out by the examples presented in Chapter VI. Accurate evaluation of timeliness is essential for selecting a system of machinery which will maximize farm profits. Until better information concerning some of the factors affecting machinery selection is available, the accuracy of the solutions to problems of field machinery selection will be limited.

BIBLIOGRAPHY

Selected References

(1.) Larson, G. H., G.E. Fairbanks, and F. C. Fenton. "What It Costs to Use Farm Machinery." Kansas State University Agricultural Exp.Sta. Bul。417. April, 1960.
(2) Barger, E. L., W. M. Carleton, E. G. McKibben, and Roy Bainer. Tractors and Their Power Units. New York: John Wiley and Sons, 1952 .
(3) Fenton, F.C., and G.E. Fairbanks. "The Cost of Using Farm Machinery." Kansas State College Eng. Exp. Sta。Bul. 74. September, 1954.
(4) Hunt, Donne11. Farm Power and Machinery Management. 3rd Ed. Ames, Iowa: Iowa State University Press, 1960.
(5) Pfundstein, K. L. "Optimizing Farm Tractor Design and Use." (Unpublished paper presented at A.S.A.E. annual meeting at Ithaca, N. Y. June 21-24, 1959)
(6) Richey, C. B. "Crop Machines Use Data." Agricultural Engineers Yearbook. 1961 Ed. St. Joseph, Michigan: American Society of Agricultural Engineers, 1961.
(7) Hunt, Donnel1. "Efficient Machinery Selection." Implement and Tractor. Vol. 76 (April 15, May 1, May 15, and June 1, 1961)
(8) Bainer, Roy, R.A. Kepner, and E.L. Barger. Principles of Farm Machinery. New York: John Wiley and Sons, 1955.
(9) Hunt, Donne11. "Efficient Field Machinery Selection." (Unpublished paper presented at A.S.A.E. Winter Meeting at Chicago, Illinois. December 12-15, 1961)
(10) Promersberger, W. J., and G. L. Pratt. "Power Requirements of Tillage Implements." North Dakota Agric. Exp. Sta. Bul. 415. June, 1958.
(11) Link, David A. "Farm Machinery Selection From System Economics." Unpublished M.S. Thesis, Iowa State College, 1958.
(12) Larson, G. H. "Methods for Evaluating Important Factors Affecting Selection and Total Operating Costs of Farm Machinery." Unpublished Ph.D. Thesis, Michigan State University, 1955.

APPENDIX A

Rules and Procedure for Using
the Stored Program for Calculation of Annual Field Machinery Costs

INPUT DATA RULES

A11 input data is entered on the same basic three card form. The three cards contain all the information needed to calculate the annual machine cost along with an identification code number for each implement and card. The card form used is identical for all implements and is modified only slightly for tractors. A location is reserved on the input cards for all factors which may be pertinent to a problem of machine cost calculation. For cases where some items are not considered pertinent, the locations for these items may be represented by entering zeros on the input cards.

A numbering system or code is used to identify the type of machine, the tractor used with the machine, and the number of the input card for the machine. The general form for the code is uniform for all machines and is illustrated below with the four digit identification system explained.

CODE IDENTIFICATION NUMBER: General Form - XXXX000000

Tractor or power unit number, all machines receiving power from this source will have this number.
NOTE: This number is 0 for self-propelled implements.
\dagger

Machine card number (must be 1,2, or 3). Al1 three are required for each machine.

Implement number for a given tractor, implements drawn by one tractor are identified by this number. Self-propelled machines will all have different numbers in this location also. NOTE: This number will be 00 for a tractor.

Examples：（Card 非1 used for each case）

2．Implement 非1 drawn by the above tractor ．．．．．． 1011000000
3．Implement 非2 drawn by the above tractor $-\ldots-1021000000$
4．Self－propelled implement 非1－．．．．．．．．．－－0011000000
5．Self－prope1led implement 非2 ———————————0021000000

The above identification system enables the computer to identify the different types of machines and to store each of the three input data cards for any given machine in their proper locations．

A11 other locations on the three input data cards that are not occupied by the code identification number are reserved for input data． To facilitate the entering of the data on the input cards all data is entered in fixed decimal point form．To avoid confusion，the same deci－ mal point location is used for all input data．The standard form is indicated below：

00 X X X X X ．X X X

The two digits at the extreme left are always zero since any digits placed in those locations are lost ina shifting operation when the computer converts the data to \mathfrak{a} floating decimal point system．A11 input data must lie within a range of values of from 00000.001 to 99999．999． Care must be exercised when entering data onto the cards to always place the decimal in the same location regardless of whether any significant figures exist to the right of the decimal or not．

Examples：
1．Initial machine cost of $\$ 4500-0004500000$
2. Oil consumption of $0.05 \mathrm{gal} / \mathrm{hr}$ — - - 0000000050

4. Quantity not pertinent to problem - - - - - - - 0000000000

The form for entering data on the input cards is shown on the next page. Each location on the input cards for both implements and tractors is labeled. The storage location within the computer for each item of data is also given. The card number for each implement or tractor is indicated in the location for the identification code to illustrate the data that is to be placed on the card bearing that particular number. Care must be taken when making up data cards to insure that the machine data corresponds to the proper machine card identification number, otherwise the data will not be stored in the proper locations. Each of the items of data for both implements and tractors will be discussed separately. Rules and methods for indicating different desired computational procedures will be pointed out with the discussion of the appropriate item of input data. The computer storage location for each item of input data will be followed by the discussion for that item of data. NOTE: It is important that no items on the input data card be left blank, non-pertinent items should have zeros entered in their location.

IMPLEMENT INPUT CARDS
0010 - Identification code number for card 非1.
0011 - Annual once-over acres covered by the implement. If an implement should cover 100 acres a total of 3 times, the once-over acreage is 300 acres. This item must never be 0 .

0012 - Implement width measured in feet. This item must never be 0 .
0013 - Implement speed in miles per hour. This item must never be 0 .

IMPLEMENT INPUT DATA CARDS:

Code 0010	Acres covered 0011	Imple- ment width (ft.)	Imple- ment speed (mph)	Imple. field effi- ciency (\%) 0014	```Hours of expected life```	Years of expected life 0016	Years of owner- ship

0020	Purchase price (\$) 0021	Salvage value $(\$)$ 0022	Force factor (lb/ft) 0023	Fuel cons. (gal/hr) or p-hr/gal 0024	$\begin{gathered} \begin{array}{c} \text { Oi1 } \\ \text { cons. } \\ \text { (gal/hr) } \end{array} \\ 0025 \end{gathered}$	Fue1 cost $(\$ / \mathrm{gal})$	$\begin{gathered} \hline \text { Oi1 } \\ \text { cost } \\ (\$ / \text { gal }) \\ \\ 0027 \end{gathered}$

$\begin{gathered} \text { Code } \\ \mathrm{xxx} 30 \\ 0 \end{gathered}$	Repairs (\%)	Lubrication (\%) 0032	Labor (\$/hr) 0033	Consumable items (\$/ac) 0034	Taxes, insurance, shelter (\%) 0035	Interest (\%) 0036	inking fund interest $(\%)$0037

TRACTOR INPUT DATA CARDS:

Code	Hours X0010 O	Tractor used for other operat- ions hp	ZERO	ZERO	Hours of expected life	Years of expected life	Years of owner- ship
9032	9034	9035	9036	9037	9038	9039	

Code	Purchase price (\$)	Salvage value $(\$)$	Fue1 cons. p-hr/gal	Fuel cons. (gal/hr)	Oil cons. (gal/hr)		
9042	9043	9044	9045	9046	9047	9048	9049

Code	Repairs $(\%)$	Lubri- X003O (\%) (\%)	ZERO	ZERO	Taxes, insur- ance, shelter $(\%)$	Interest $(\%)$	Sinking fund interest $(\%)$
9052	9053	9054	9055	9056	9057	9058	9059

The listed locations for tractor information are referred to only when the implement operating costs are calculated. When tractor fixed costs are calculated, the tractor data will occupy the same locations as the implement data above.

0014 - Implement field efficiency measured in percent not decimal. This item must never be 0 .

0015 - Total machine service life measured in hours of expected life. This figure divided by the annual hours of use gives the years of expected machine life allowed by wear. The years of machine life allowed by wear is compared with the years of machine life allowed by obsolescence (0016). The smaller of these two figures is then considered to be the expected useful life for the given machine. This item may be zero if it is not desired to consider the service life of the machine allowed by wear and obsolescence is intended to determine machine life.

0016 - Machine expected life in years allowed by obsolescence. This item may not be zero. If wear life is not considered, this item may be the average expected life of the machine in years.

0017 - Total years the machine ownership is to be retained. If this figure is shorter than expected machine life, the computer will calculate a trade-in value for the machine at the end of the period of ownership. This trade-in value will be used to calculate depreciation and interest costs during the period of machine ownership. This item may be zero if the machine is to be kept for the extent of its expected useful life.

0020 - Identification code number for card非2。

0021 - Implement purchase price in dollars. This item may not be zero.
0022 Implement salvage value at the end of the machine's expected useful life. This item may be zero if the machine is considered to have no value at the end of its expected useful life.

0023 - Implement force factor in pounds per foot of width. This item is used if it is desired to calculate fuel consumption on the basis of horsepower-hours obtained per gallon of fuel. If the implement
has an engine this information will be used to calculate implement fuel consumption. If not, then it will be used to calculate tractor fuel consumption. This item may be zero if it is desired to calculate fue 1 consumption on an hourly basis for either tractor or implement.

0024 - Implement engine fuel consumption rate in either gallons per hour or horsepower-hours per gallon. For this item the following rules must be followed closely:

1. This item must list fuel consumption in horsepower-hours per gallon if a force factor (0023) is given and implement has an engine.
2. This item must list fuel consumption in gallons per hour if force factor (0023) is zero and implement has an engine.
3. This item must be zero if the implement is tractor drawn and has no engine.

NOTE: If a tractor drawn implement has an engine, tractor fuel consumption will always be calculated on an hourly basis.

0025 - Implement engine oil consumption rate in gallons per hour. This item is zero if implement has no engine.

0026 - Implement engine fuel price in dollars per gallon. This item is zero if implement has no engine.

0027 - Implement engine oil price in dollars per gallon. This item is zero if implement has no engine.

0030 - Identification code number for card 非3.
0031 - Average annual implement repair cost expressed as a percent of implement purchase price. This item may be zero if there are no implement repair expenses.

0032 - Average annual implement lubrication cost expressed as a percent
of implement purchase price This item may be zero if there are no implement lubrication expenses.

0033 - Total labor cost in dollars per hour. For tractor drawn implements the labor cost for implement and/or tractor is entered here. The unit rate must be multiplied by the number of laborers before entering, if more than one laborer is required for the operation. This item may be zero if no labor is required for the operation.

0034 - Total cost for consumable items in dollars per acre. This loca× tion provides an entry for all items such as wire, twine, etc if it is desired to include these items as machinery costs This location may be zero if there are no consumable items to be included.

0035 - Average annual charge for taxes, shelter, and insurance for implement. This charge is expressed as a percent of implement purchase price. This item may be zero if there are no costs in any of these areas.

0036 - Interest on investment for implement entered as percent. Interest may be calculated as either simple or compound. The method of entering the data in this location determines which of the two methods will be followed for any given implement. Eor simple interest no special identification is needed and the figures are entered just as for any other data. Compound interest is indicated by entering a 1 three places from the left end of the data or 5 places to the left of the decimal. Examples of entry form:

1. Simple interest 0000005000
2. Compound interest $\ldots \infty \ldots \infty \ldots \infty) 0010005000$

This item may be zero if no charges for interest are to be made.
0037 - Sinking fund interest rate entered as percent. This item determ mines the type of depreciation that will be used for the implement. If
a rate of interest is given，sinking fund depreciation will be used．If this item is zero，straight－1ine depreciation will be used．

TRACTOR INPUT CARDS

Tractor input data is stored in different locations than implement data and is left in these locations for reference until all implements drawn by the tractor have passed through．At this time the tractor data is placed in the same locations as the implement＇s data and tractor fixed costs are calculated．For this reason items which are pertinent to fixed cost calculations occupy the same position on the tractor cards as on the implement data cards．Items on the tractor input data cards for which the same rules as implements apply will not be discussed since reference to the corresponding item on the implement data discussion may be made．

9032 －Identification code number for card 非1。

9033 －Hours of tractor use for other operations not included with the implements that are included as part of the overall problem．This item may be zero if the tractor is not used for any operations not included in the problem．The hours that a tractor is used for non－field opera－ tions may be entered in this location．

9034 －Tractor drawbar horsepower．This item should never be zero．
9035－9036＊Always zero．
9037－9039 \＆Same as for implements（0015－0017）．
9042 －Identification code number for card 非2。
9043－9044－Same as for implements（0021－0022）．
9045 －Tractor fuel consumption rate in horsepower－hours per gallon．
May be zero if tractor fuel consumption is always calculated on an hourly
basis．

9046 - Tractor fuel consumption in gallons per hour May be zero if tractor fuel consumption is always calculated on basis of horsepower ohours per gallon. NOTE: This would not permit any tractor drawn implements with auxiliary engines if this item is zero.

9047 - Tractor oil consumption rate in gallons per hour. This item should never be zero.

9048 - Tractor fuel price in dollars per gallon. This item should never be zero.

9049 - Tractor oil price in dollars per gallon. This item should never be zero.

9052 - Identification code number for card 非3。
9053-9054 - Same as for implements (0031~0032).
9055-9056 Always zero.
9057-9059 - Same as for implements (0035~0037).
For any particular problem the methods for calculating depreciation, interest, and other fixed costs would probably be the same for all machines included within the problem. This is not a necessary require ment, however, and different methods may be used within a given problem if desired since the calculation of fixed costs for any machine is independent of data pertaining to other machines in the problem.

Cost information for tractor-drawn implements is stored within the computer and held until all implements drawn by a particular tractor have been read in. The end of the implements for a tractor is indicated by either the reading in of another tractor or a trailer card indicating the end of data for the problem. After all the implements have been read in, tractor fixed costs are calculated and the cost information for both tractor and implements is read out by the computer. Index Register "C"
of the computer is used to store the implements in order until the calculation of tractor fixed costs. Selfopropelled implement costs are not stored but are read out by the computer after being calculated. Ample storage is available within the computer to store a maximum of 96 implements drawn by any one tractor. Due to the calculation procedure followed by the program all implements must be used with one tractor only for the purposes of cost calculation. Assumptions must be made for the amount of use an implement would incur if used for only one tractor in cases where an implement is used for more than one tractor in actual practice。

INPUT DATA READ IN RULES

The following order must be followed when reading input data cards into the computer:

1. Machine Program Deck
2. Transfer Card
3. Data Cards
4. Trailer Card (indicates end of data for problem)

Once the machine program has been entered additional problems may be solved by using only the transfer card followed by the data cards and trailer card. More than one problem may be solved without stopping since input data for another problem may follow the trailer card for the first. A trailer card must follow the input data for each individual problem when this procedure is used.

The following rules must be followed for the input data cards of each individual problem:

1. The 3 input data cards for each machine may be read in in any order, but must be together. The input data cards for any given machine must not be intermingled with those of other machines.
2. Input data for a tractor must precede the data for any implements used with the tractor. All data for implements used with a given tractor must be read in before data for another tractor is read in. Implements for a given tractor may be read in in any order.

NOTE: If either of the above two rules is not observed the computer will halt.
3. Data for self-propelled machines may read in at any time since these machines have no connection with the tractors.

DATA OUTPUT FORM

Output data cards may be identified with the proper machines by use of the code number. The first three digits at the left of the output card for a given machine are identical to the first three digits at the left of the three input data cards for the machine. The only difference between input and output code numbers is that the output data card is numbered as card number 4 while the input cards are numbered 1,2 , or 3. All output data is in floating decimal point form. Persons not familiar with this form can easily learn to interpret it.

The storage locations for the various items of output data are indicated on the following page. Each type of output data card will be discussed.

IMPLEMENT DATA CARDS - This type of data card is used for the output data of all implements both tractor-drawn and self-propelled.

0040C - Implement identification code number.
0041C - Annual hours of use for implement.
0042 C - Tractor operating costs incurred for the hours the tractor is used with implement. This item includes tractor fuel and oil costs. This location will be zero for self-propelled implements. 0043 C - Total annual fixed costs for the implement alone. 0044C - Total annual implement operating costs. This item includes fuel and oil costs for implements with engines along with costs for labor and consumable items. Labor for tractor driver is considered an implement operating cost.

0045 C - Total annual costs for the operation performed by an implement. This item is the total of tractor operating costs (0042C), implement fixed costs (0043C), implement operating costs (0044C), and the portion

IMPLEMENT OUTPUT DATA CARD:

$\begin{aligned} & \text { Code } \\ & \text { XXX4 } \end{aligned}$	Annual hours of use	Tractor operat- ing costs $(\$)$ 0042 C	Imple- ment fixed cost (\$) 0043C	```Imple- ment operat- ing cost (\$) 0044C```	Total annual cost (\$) 0045 C	Cost per acre ($\$ / \mathrm{ac}$) $0046 \mathrm{C}$	Cost per hour (\$/hr) $0047 \mathrm{C}$

TRACTOR OUTPUT DATA CARD:

Code	Annual						
X004	Total of use of	Total ing cost fixed cost $(\$)$	Fixed cost per hour $(\$ / h r)$	Total annual cost	BLANK	BLANK	
0040C	0041 C	0042C	0043 C	0044 C	0045 C		

PROBLEM SUMMARY DATA CARD:

Total	Total	Total	Total	BLANK	BLANK	BLANK
annual	annual	annual	annual			
machine						
operat-	fixed	cost hours ing cost: costs (\$)	(\$) 9006			
9007	9008	9009				
9006						

of tractor fixed costs charged to the operation.
0046C - Cost per acre for the operation performed by the implement. This includes all items and could be used for comparison with custom machine rates. This item is total cost (0045C) divided by acres covered. 0047 C - Cost per hour for the operation performed by the implement. This is total cost (0045C) divided by the hours of annual use (0041C). TRACTOR DATA CARDS :- This type of data card is used exclusively for tractors.

0040C - Tractor identification code number.
0041 C - Total annual hours of tractor use. This item is the sum of the hours of use for all implements drawn by the tractor plus tractor hours spent on other operations not included in the problem. 0042C - Total annual tractor operating costs. This item is the sum of the tractor operating costs incurred for all implements drawn by the tractor.

0043C - Total annual tractor fixed costs.
0044C - Tractor fixed costs per hour. This item is total fixed costs (0043C) divided by hours of use (0041C). This figure multiplied by the annual hours of use for any implement gives the share of tractor fixed costs to be charged to the operation performed by that implement. 0045 C - Total annual tractor costs. This is the sum of tractor operating costs (0042C) and tractor fixed costs (0043C).

PROBLEM SUMMARY DATA CARD - This card gives the cost totals for a given problem and marks the end of the output data for a problem. These cards may be used to separate the output data if more than one problem is run at once. NOTE: This card is the only output data card with no code identification number.

9006 - Total annual machine hours. This is the sum of the annual hours of use for all implements both self-propelled and tractor drawn for field operation.

9007 - Total annual operating costs. Sum of all operating costs for implements and tractors.

9008 - Total annual fixed costs. Sum of all fixed costs for implements and tractors. This includes that portion of tractor fixed costs that is assessed to non-field operations if any exist.

9009 - Total annual machinery cost. This is sum of total operating costs (9007) and total fixed costs (9008).

SPECIAL OUTPUT DATA CARDS:

XXX4000000	4444444444	BLANK \longrightarrow

Input data cards for the machine indicated were not grouped together. (Rule 非1, page 103)

An input data card for an implement has been read in before the input data card for the corresponding tractor. (Rule 非2, page 103)

The combination of implement size, speed, and force factor stated in the input data requires more horsepower than is available with the tractor being used This safeguard will be applied only for tractor drawn implements with no auxiliary engine for which a force factor is given. It is included primarily to guard against errors in judging implement power requirements and speed.

SPECIAL PROGRAM USES

Some machinery cost problems are solved by making several simplifying assumptions. One of the more common of these assumptions is to calculate machine fixed costs as a fixed annual percentage of the purchase price. This type of approach may be taken by this program by using the following form for the input data cards. Location numbers refer to those given in the input data discussion. All rules except those governing the following data locations are unchanged from those explained in the original discussion (pages 95-100).

```
0015 - Zero
```

0016 - Enter 10 if fixed cost percentage is greater than 10%, enter 20
if less than 10%.
0017 - Zero
0022 - Zero
0031 - This item will be annual fixed cost percent minus 10 if 10
appears in 0016, fixed cost percent minus 5 if 20 appears in 0016.
0032 - Zero
0035 - Zero
0036 - Zero
0037 - Zero

Fuel costs are usually calculated on an hourly basis for these problems and this is compatible with the original data input rules so no changes are necessary for items affecting operating costs. Output data form for this type of approach is the same as that explained for the other more complex methods.

A complete listing of the steps used in the stored program for the calculation of annual field machinery costs is included on the following pages. The stored program was written for assembly with a Symbolic Optimal Assembly Program (SOAP). The original "SOAP" program which was written and the machine language program which was assembled are both listed. The "SOAP" program is listed at the right of each page. The machine language program is listed at the left. The number of each step is indicated at the left of the machine language program.

The parts of the machine language program are indicated in the example below:

The storage locations from 1961-1985 are available for additions or alterations of the steps in the present stored program.

In order to use the machine language program for processing data, a transfer card and a trailer card are needed. The forms for these cards are indicated below:

TRANSFER CARD:

TRAILER CARD:

(+ signs must be punched in columns $20,30,40,50,60,70, \& 80$, a1so.)
$\left.\begin{array}{lllllllll}1 & & & & & & \text { BLR } & 1950 & \text { 1999 } \\ 2 & & & & & \text { BLR } & 0000 & 1000 \\ 3 & 1050 & 69 & 1003 & 1006 & \text { BEGIN } & \text { LDD } & \text { 2ERO } & \\ 4 & 1006 & 24 & 9032 & 1013 & & \text { STD } & 9032 & \\ 5 & 1013 & 24 & 9000 & 1020 & & \text { STD } & 9000 & \\ 6 & 1020 & 24 & 9001 & 1027 & & \text { STD } & 9001 & \\ 7 & 1027 & 24 & 9010 & 1034 & & \text { STD } & 9010 & \\ 8 & 1034 & 69 & 1037 & 1040 & & \text { SDD } & \text { FLONE } & \\ 9 & 1040 & 24 & 0038 & 1041 & & \text { RTD } & 0038 & \\ 10 & 1041 & 88 & 0000 & 1047 & & 0000 & \text { START } \\ 11 & 1047 & 70 & 9002 & 1048 & \text { START } & \text { RD1 } & 9002 & \\ 12 & 1048 & 70 & 9012 & 1049 & & \text { RD1 } & 9012 & \\ 13 & 1049 & 70 & 9022 & 1100 & & \text { RD1 } & 9022 & \\ 14 & 1100 & 80 & 0000 & 1056 & & \text { RAA } & 0000 & \text { CHECK } \\ 15 & 1056 & 60 & 9202 & 1015 & \text { CHECK } & \text { RAU } & 9002 & \text { A }\end{array}\right)$

54	1071	30	0008	1039		SRT	OOO8	
55	1039	44	1043	1044		NZU	IMPLE	TRCTR
56	1044	60	9032	1153	TRCTR	RAU	9032	
57	1153	44	1007	1008		NZU	NTFST	FIRST
58	1008	69	1003	1106	FIRST	LDD	ZERO	
59	1106	24	9030	1113		STD	9030	
60	1113	24	9031	1120		STD	9031	
61	1120	27	9032	1125		SET	9032	
62	1125	08	0010	1072		LIB	0010	
63	1072	27	9042	1077		SET	9042	
64	1077	08	0020	1032		LIB	0020	
65	1032	27	9052	1087		SET	9052	
66	1087	08	0030	1047		LIB	0030	START
67	1043	60	9032	1001	IMPLE	RAU	9032	
68	1001	30	0009	1121		SRT	0009	
69	1121	80	8003	1080		RAA	8003	
70	1080	60	0010	1265		RAU	0010	
71	1265	30	0009	1135		SRT	0009	
72	1135	11	8005	1093		SUP	8005	
73	1093	44	1097	1098		NZU		HOURS
74	1097	60	0010	1315		RAU	0010	
75	1315	30	0009	1185		SRT	0009	
76	1185	44	1089	1098		NZU	WRONG	HOURS
77	1089	60	0030	1235	WRONG	RAU	0030	
78	1235	10	1115	1169		AUP	DIGIT	
79	1169	21	9008	1078		STU	9008	
80	1078	69	1081	1134			LDD	FIVE

108	1107	30	0002	1213		SRT	0002		
109	1213	31	4000	1137		SRD	0000	B	
110	1137	60	8002	1045		RAU	8002		
111	1045	35	0002	1051		SLT	0002		
112	1051	80	0058	1157		RAA	0058		
113	1157	10	8005	1263		AUP	8005		
114	1263	32	1003	1129		FAD	ZERO		
115	1129	21	0002	1155		STU	0002		TIME
116	1155	60	0002	1207	TIME	RAU	0002		
117	1207	35	0008	1275		SLT	0008		
118	1275	30	0008	1243		SRT	0008		
119	1243	80	8003	1052		RAA	8003		
120	1052	51	0050	1108		SXA	0050		
121	1108	82	0010	1164		RAB	0010		
122	1164	53	2000	1221		SXB	0000	A	
123	1221	60	0002	1257		RAU	0002		
124	1257	30	4000	1179		SRT	0000	B	
125	1179	21	0007	1060		STU	0007		
126	1060	60	0017	1271		RAU	0017		
127	1271	44	1325	1026		NZU			DEPRC
128	1325	33	0002	1229		FSB	0002		
129	1229	46	1082	1026		BMI	TRDIN		DEPRC
130	1082	60	0022	1127	TRDIN	RAU	0022		
131	1127	44	1181	1132		NZU	NOWGO		FILLN
132	1132	60	1037	1181	FILLN	RAU	FLONE		NOWGO
133	1181	34	0021	1321	NOWGO	FDV	0021		
134	1321	21	0003	1156		STU	0003		
135	1156	60	0007	1111		RAU	0007		
136	1111	80	8003	1170		RAA	8003		
137	1170	51	0001	1076		SXA	0001		
138	1076	65	8005	1285		RAL	8005		
139	1285	20	0006	1009		STL	0006		
140	1009	60	1037	1291		RAU	FLONE		
141	1291	21	0004	1307		STU	0004		
142	1307	82	0015	1313		RAB	0015		ROOT
143	1313	60	0002	1357	ROOT	RAU	0002		
144	1357	33	1037	1363		FSB	Flone		
145	1363	39	0004	1004		FMP	0004		
146	1004	21	0005	1158		STU	0005		
147	1158	60	0003	1407		RAU	0003		DIV
148	1407	34	0004	1.054	DIV	FDV	0004		
149	1054	51	0001	1110		SXA	0001		
150	1110	40	1407	1214		NZA	DIV		ON
151	1214	32	0005	1231	ON	FAD	0005		
152	1231	34	0002	1102		FDV	0002		
153	1102	21	0004	1457		STU	0004		
154	1457	53	0001	1413		SXB	0001		
155	1413	42	1016	1017		NZB			FINSH
156	1016	65	0006	1161		RAL	0006		
157	1161	80	8002	1313		RAA	8002		ROOT
158	1017	60	0017	1371	FINSH	RAU	0017		
159	1371	35	0008	1139		SLT	0008		
160	1139	30	0008	1507		SRT	0008		
161	1507	80	8003	1066		RAA	8003		

162	1066	51	0050	1122		SXA	0050		
163	1122	82	0010	1128		RAB	0010		
164	1128	53	2000	1335		SXB	0000	A	
165	1335	60	0017	1421		RAU	0017		
166	1421	30	4000	1293		SRT	0000	B	
167	1293	21	0007	1160		STU	0007		
168	1160	80	8003	1168		RAA	8003		
169	1168	60	0004	1059		RAU	0004		
170	1059	51	0001	1415		SXA	0001		
171	1415	40	1218	1319		NZA	MULT		VALUE
172	1218	39	0004	1104	MULT	FMP	0004		
173	1104	51	0001	1210		SXA	0001		
174	1210	40	1218	1319		NZA	MULT		VALUE
175	1319	39	0021	1471	VALUE	FMP	0021		
176	1471	21	0022	1026		STU	0022		DEPRC
177	1026	60	0037	1341	DEPRC	RAU	0037		
178	1341	44	1095	1146		NZU	SINKF		STLIN
179	1095	60	0021	1375	SINKF	RAU	0021		
180	1375	33	0022	1099		FSB	0022		
181	1099	21	0002	1205		STU	0002		
182	1205	60	0007	1211		RAU	0007		
183	1211	80	8003	1220		RAA	8003		
184	1220	51	0001	1126		SXA	0001		
185	1126	60	0037	1391		RAU	0037		
186	1391	34	1144	1194		FDV	ONEHD		
187	1194	32	1037	1463		FAD	FLONE		
188	1463	21	0004	1557		STU	0004		INCR
189	1557	39	0004	1154	INCR	FMP	0004		
190	1154	51	0001	1260		SXA	0001		
191	1260	40	1557	1264		NZA	INCR		
192	1264	21	0001	1204		STU	0001		
193	1204	33	1037	1513		FSB	FLONE		
194	1513	21	0003	1206		STU	0003		
195	1206	60	0037	1441		RAU	0037		
196	1441	34	1144	1244		FDV	ONEHD		
197	1244	34	0003	1203		FDV	0003		
198	1203	39	0002	1152		FMP	0002		
199	1152	21	6043	1196		STU	0043	C	
200	1196	65	8007	1255		RAL	8007		
201	1255	20	0008	1261		STL	0008		
202	1261	60	0036	1491		RAU	. 0036		
203	1491	35	0008	1109		SLT	0008		
204	1109	30	0008	1177		SRT	0008		
205	1177	11	1061	1465		SUP	FIFIV		
206	1465	44	1369	1270		NZU	SIMPL		COMP
207	1369	82	0000	1425	SIMPL	RAB	0000		CLEAR
208	1270	60	0036	1541	COMP	RAU	0036		
209	1541	35	0001	1147		SLT	0001		
210	1147	30	0001	1253		SRT	0001		
211	1253	32	1003	1279		FAD	ZERO		
212	1279	21	0036	1189		STU	0036		
213	1189	82	0001	1425		RAB	0001		CLEAR
214	1425	69	0021	1124	CLEAR	LDD	0021		
215	1124	24	0005	1208		STD	0005		

216	1208	60	0007	1311		RAU	0007	
217	1311	80	8003	1320		RAA	8003	
218	1320	88	0001	1176		RAC	0001	
219	1176	60	0002	1607		RAU	0002	
220	1607	34	0003	1303		FDV	0003	
221	1303	21	0002	1305		STU	0002	
222	1305	60	0001	1355		RAU	0001	
223	1355	33	0004	1281		FSB	0004	
224	1281	39	0002	1202		FMP	0002	
225	1202	32	0022	1149		FAD	0022	
226	1149	21	0003	1256		STU	0003	
227	1256	32	0005	1331		FAD	0005	
228	1331	34	1234	1284		FDV	TWO	
229	1284	39	0036	1036		FMP	0036	
230	1036	34	1144	1294		FDV	ONEHD	
231	1294	21	0009	1112		STU	0009	
232	1112	59	2000	1419		SXC	2000	
233	1419	48	1172	1173		NZC		STOW
234	1172	88	0001	1329		RAC	0001	INTER
235	1329	60	0003	1657	INTER	RAU	0003	
236	1657	21	0005	1258		STU	0005	
237	1258	65	8007	1067		RAL	8007	
238	1067	20	0006	1159		STL	0006	
239	1159	60	0004	1209		RAU	0004	BACK
240	1209	39	0004	1254	BACK	FMP	0004	
241	1254	59	0001	1310		SXC	0001	
242	1310	48	1209	1314		NZC	BACK	
243	1314	21	0003	1306		STU	0003	
244	1306	60	0001	1405		RAU	0001	
245	1405	33	0003	1379		FSB	0003	
246	1379	39	0002	1252		FMP	0002	
247	1252	32	0022	1199		FAD	0022	
248	1199	21	0003	1356		STU	0003	
249	1356	32	0005	1381		FAD	0005	
250	1381	34	1234	4018		FDV	TWO	0018
251	0019	32	0009	0018	19	FAD	0009	0018
252	0018	39	0036	1086	18	FMP	0036	
253	1086	34	1144	1344		FDV	ONEHD	
254	1344	32	0009	1385		FAD	0009	
255	1385	21	0009	1162		STU	0009	
256	1162	65	0006	1361		RAL	0006	
257	1361	88	8002	1469		RAC	8002	
258	1469	58	0002	1475		AXC	0002	
259	14.75	51	6000	1182		SXA	6000	
260	1182	40	1435	1136		NZA		LAST
261	1435	59	0001	1092		SXC	0001	
262	1092	60	0007	1411		RAU	0007	
263	1411	80	8003	1329		RAA	8003	INTER
264	1136	60	0003	1707	LAST	RAU	0003	
265	1707	32	0022	1249		FAD	0022	
266	1249	34	1234	1334		FDV	TWO	
267	1334	42	1187	1038		NZB	ADD I	DONTA
268	1187	32	0009	1038	ADD I	FAD	0009	DONTA
269	1038	39	0036	1186	DONTA	FMP	0036	

2.70	1186	34	1144	1394		FDV	ONEHD		
271	1394	32	0009	1485		FAD	0009		
272	1485	21	0009	1212		STU	0009		
273	1212	60	0007	1461		RAU	0007		
274	1461	35	0002	1117		SLT	0002		
275	1117	10	1167	1521		AUP	FIVET		
276	1521	32	1003	1429		FAD	ZERO		
277	1429	21	0007	1360		STU	0007		
278	1360	60	0009	1563		RAU.	0009		
279	1563	34	0007	1757		FDV	0007		
280	1757	21	0009	1173		STU	0009		STOW
281	1173	65	0008	1613	STOW	RAL	0008		
282	1613	88	8002	1571		RAC	8002		
283	1571	60	0009	1663		RAU	0009		
284	1663	32	6043	1519		FAD	0043	C	
285	1519	21	6043	1246		STU	0043	c	TAXES
286	1146	60	0007	1511	STLIN	RAU	0007		
28.7	1511	35	0002	1217		SLT	0002		
288	1217	10	1167	1621		AUP	FIVET		
289	1621	32	1003	1.479		FAD	ZERO		
290	1479	21	0001	1304		STU	0001		
291	1304	60	0021	1525		RAU	0021		
292	1525	33	0022	1299		FSB	0022		
293	1299	34	0001	1101		FDV	0001		
294	1101	21	0002	1.455		STU	0002		
295	1455	21	6043	1296		STU	0043	C	
296	1296	60	0036	1591		RaU	0036		
297	1591	35	0008	1259		SLT	0008		
298	1259	30	0008	1227		SRT	0008		
299	1227	11	1061	1515		SUP	FIFIV		
300	1515	44	1569	1370		NZU	ZIMPL		POUND
301	1569	60	0021	1575	2 IMPL	RAU	0021		
302	1575	32	0022	1349		FAD	0022		
303	1349	34	1234	1384		FDV.	TWO		
304	1384	39	0036	1236		FMP	0036		
305	1236	34	1144	1444		FDV	ONEHD		
306	1.444	32	6043	1.619		FAD	0043	C	
307	1619	21	6043	1246		STU	0043	C	TAXES
308	1370	60	0036	1641	POUND	RAU	0036		
309	1641	35	0001	1197		SLT	0001		
310	1197	30	0001	1353		SRT	0001		
311	1353	32	1003	1529		FAD	ZERO		
312	1529	21	0036	1239		STU	0036		
313	1239	60	0021	1625		RAU	0021		
314	1625	33	0002	1579		FSB	0002		
315	1579	32	0021	1247		FAD	0021		
316	1247	34	1234	1434		FDV	TWO		
317	1434	21	0003	1406		STU	0003		
318	1406	39	0036	1286		FMP	0036		
319	1286	34	1144	1494		FDV	ONEHD		
320	1494	21	0009	1262		STU	0009		
321	1262	60	0007	1561		RAU	0007		
322	1561	80	8003	1420		RAA	8003		
323	1420	51	0001	1226		SXA	0001		

324	1226	40	1629	1130
325	1629	60	0003	1807
326	1807	33	0002	1679
327	1679	21	0003	1456
328	1456	32	0009	1535
329	1535	39	0036	1336
330	1336	34	1144	1544
331	1544	32	0009	1585
332	1585	21	0009	1312
333	1312	51	0001	1268
334	1268	40	1629	1222
335	1222		34	0001
336	1130	32	6043	1669
337	1669	21	6043	1246
338	1246	60	0021	1675
339	1675	39	0035	1635
340	1635	34	1144	1594
341	1594	32	6043	1719
342	1719	21	6043	1346
343	1346	60	0015	1769
344	1769	44	1223	1174
345	1223	60	0028	1033
346	1033	33	0016	1343
347	1343	46	1396	1174
348	1174	69	1037	1140
349	1140	24	0001	1354
350	1396	60	0016	1671
351	1671	34	0028	1178
352	1178	21	0001	1354
353	1354	60	0031	1685
354	1685	32	0032	1309
355	1309	39	0001	1151
356	1151	34	1144	1644
357	1644	39	0021	1721
358	1721	32	6043	1819
359	1819	21	6043	1446
360	1446	60	0010	1565
361	1565	35	0001	1771
362	1771	30	0008	1289
363	1289	44	1393	1694
364	1393	60	0010	1615
365	1615	30	0009	1735
366	1735	44	1339	1190
367	1339	60	0024	1729
368	1729	44	1083	1484
369	1484	60	0023	1277
370	1277	44	1431	1083
371	1431	39	0012	1362
372	1362	39	0013	1713
373	1713	39	1116	1166
374	1166	34	1869	1919
375	1919	21	0002	1505
376	1505	60	9034	1763
377	1763	33	0002	1779

CYCLE	NZA	CYCLE	STASH
	FSB	0002	
	STU	0003	
	FAD	0009	
	FMP	0036	
	FDV	ONEHO	
	FAD	0009	
	STU	0009	
	SXA	0001	
	N2A	CYCLE	
	FOV	0001	STASH
STASH	FAO	0043 C	
	sru	0043 C	TAXES
TAXES	RAU	0021	
	FMP	0035	
	FDV	ONEHD	
	FAD	0043 C	
	STU	0043 C	
	RAU	0015	
	NZU		DONT
	RAU	0028	
	FSB	0016	
	BMI	STEP	DONT
DONT	LDD	FLONE	
	STD	0001	REPAR
STEP	RAU	0016	
	FDV	0028	
	STU	0001	REPAR
REPAR	RAU	0031	
	FAD	0032	
	FMP	0001.	
	FDV	ONEHD	
	FMP	0021	
	FAD	0043 C	
	STU	0043 C	
	RAU	0010	
	SLT	0001	
	SRT	0008	
	NZU	NO	YES
NO	RAU	0010	
	SRT	0009	
	NZU	TRAIL	SELFP
TRAIL	RAU	0024	
	NZU	ENGIN	NOENG
NOENG	RAU	0023	
	NZU	POWRQ	ENGIN
POWRO	FMP	0012	
	FMP	0013	
	FMP	ElGHT	
	FDV	THIRT	
	STU	0002	
	RAU	9034	
	FSB	0002	

378	1779	46	1232	1133		BMI	STOP		
379	1133	60	0002	1857		RAU	0002		OK
380	1232	60	0030	1785	STOP	RAU	0030		
381	1785	10	1115	1470		AUP	DIGIT		
382	1470	21	9008	1228		STU	9008		
383	1228	69	1481	1534		LDD	NINE		
384	1534	24	9009	1691		STD	9009		
38.5	1691	71	9008	1042		WRI	9008		HALT
386	1857	39	6041	1741	OK	FMP	0041	C	
387	1741	34	9045	1145		FDV	9045		
388	1145	39	9048	1399		FMP	9048		
389	1 399	21	6042	1195		STU	0042	C	OIL
390	1083	60	9046	1791	ENGIN	RAU	9046		
391	1791	39	6041	1841		FMP	0041	C	
392	1841	39	9048	1245		FMP	9048		
393	1245	21	6042	1195		STU	0042	c	OIL
394	1195	60	9047	1403	OIL	RAU	9047		
395	1403	39	6041	1891		FMP	0041	C	
396	1891	39	9049	1295		FMP	9049		
397	1295	32	6042	1520		FAD	0042	C	
398	1520	21	6042	1345		STU	0042	C	
399	1345	60	0024	1829		RAU	0024		
400	1829	44	1190	1584		NZU	SELFP		
401	1584	69	1003	1506		LDD	ZERO		
402	1506	24	6044	1297		STD	0044	C	LABOR
403	1190	60	0023	1327	SELFP	RAU	0023		
404	1327	44	1531	1282		NZU.	GIVEN		NOT
405	1531	39	0012	1412	GIVEN	FMP	0012		
406	1412	39	0013	1813		FMP	0013		
407	1813	39	1116	1216		FMP	EIGHT		
408	1216	34	1869	1570		FDV	THIRT		
409	1570	39	6041	1941		FMP	0041	C	
410	1941	34	0024	1224		FDV	0024		
411	1224	39	0026	1276		FMP	0026		
412	1276	21	6044	1347		STU	0044	C	MAOIL
413	1282	60	0024	1879	NOT	RaU	0024		
414	1879	39	6041	1142		FMP	0041	C	
415	1142	39	0026	1326		FMP.	0026		
416	1326	21	6044	1347		STU	0044	C	MAOIL
417	1347	60	0025	1929	MAOIL	RAU	0025		
418	1929	39	6041	1192		FMP	0041	C	
419	1192	39	0027	1377		FMP	0027		
420	1377	32	6044	1821.		FAD	0044	C	
421	1821	21	6044	1297		STU	0044	C	LABOR
422	1297	60	0033	1237	LABOR	RAU	0033		
423	1237	39	6041	1242		FMP	0041	C	
424	1242	32	6044	1871		FAD	0044	C	
425	1871	21	6044	1397		STU	0044	C	
426	1397	60	0034	1389		RAU	0034		
427	1389	39	0011	1611		FMP	0011		
428	1611	32	6044	1921		FAD	0044	C	
429	1921	21	6044	1447		STU	0044	C	
430	1447	60	6042	1497		RAU	0042	C	
431	1497	32	6044	1272		FAD	0044	C	

432	1272	32	9001	1453		FAD	9001		
433	1453	21	9001	1462		STU	9001		
434	1462	60	6043	1547		RAU	0043	C	
435	1547	32	9010	1427		FAD	9010		
436	1427	21	9010	1386		STU	9010		
437	1386	60	0030	1835		RAU	0030		
438	1835	10	1115	1620		.AUP	DIGIT		
439	1620	21	6040	1443		STU	0040	C	
440	1443	60	0010	1665		RAU	0010		
441	1665	30	0009	1885		SRT	0009		
442	1885	44	1439	1240		NZU	ADDTR		OUT
443	1439	60	9030	1597	ADDTR	RAU	9030		
444	1597	32	6041	1267		FAD	0041	C	
445	1267	21	9030	1376		STU	9030		
446	1376	60	9031	1935		RAU	9031		
447	1935	32	6042	1670		FAD	0042	C	
448	1670	21	9031	1278		STU	9031		
449	1278	69	0011	1364		LDD	0011		
450	1364	24	6046	1449		STD	0046	C	
451	1449	58	0010	1047		AXC	0010		START
452	1240	69	1003	1556	OUT	LDD	ZERO		
453	1556	24	6042	1395		STD	0042	C	
454	1395	60	6043	1647		RAU	0043	C	
455	1647	32	6044	1322		FAD	0044	C	
456	1322	21	6045	1148		STU	0045	C	
457	1148	34	0011	1661		FDV	0011		
458	1661	21	6046	1499		STU	0046	C	
459	1499	60	6045	1549		RAU	0045	C	
460	1549	34	6041	1292		FDV	0041	c	
461	1292	21	6047	1200		STU	0047	C	
462	1200	27	9002	1555		SET	9002		
463	1555	08	6040	1302		LIB	0040	C	
464	1302	71	9002	1047		WR1	9002		START
465	1694	60	6043	1697	YES	RAU	0043	C	
466	1697	34	6041	1342		FDV	0041	C	
467	1342	21	6044	1747		STU	0044	C	
468	1747	60	6043	1797		RAU	0043	C	
469	1797	32	9010	1477		FAD	9010		
470	1477	21	9010	1436		STU	9010		
471	1436	69	9031	1493		LDD	9031		
472	1493	24	6042	1445		STD	0042	C	
473	1445	60	0030	1486		RAU	0030		
474	1486	10	1115	1720		AUP	DIGIT		
475	1720	21	6040	1543		STU	0040	C	
476	1543	60	6042	1847		RAU	0042	C	
477	1847	32	6043	1770		FAD	0043	C	
478	1770	21	6045	1198		STU	0045	C	
479	1198	27	9004	1503		SET	9004		
480	1503	08	6040	1352		LIB	0040	C	
481	1352	71	9004	1553		WR1	9004		
482	1553	69	6044	1897		LDD	0044	C	
483	1897	24	0001	1404		STD	0001		REMOV
484	1404	59	0010	1410	REMOV	SXC	0010		
485	1410	60	0001	1605		RAU	0001		

486	1605	39	6041	1392		FMP	0041	C
487	1392	32	6042	1820		FAD	0042	C
488	1820	32	6043	1870		FAD	0043	C
489	1870	32	6044	1372		FAD	0044	C
490	1372	21	6045	1248				
491	1248	34	6046	1496		STU	0045	C
492	1496	21	6046	1599		0046	C	
493	1599	60	6045	1649		STU	0046	C
494	1649	34	6041	1442		RAU	0045	C
495	1442	21	6047	1250		FDV	0041	C
496	1250	27	9002	1655		STU	0047	C
497	1655	08	6040	1402		SET	9002	
498	1402	71	9002	1603		LIB	0040	C

540	1672	08	0001	1614
541	1614	60	9030	1273
542	1273	32	0011	1387
543	1387	24	6041	1184
544	1003	00	0000	0000
545	1037	10	0000	0051
546	1115	00	0100	0000
547	1061	00	0000	0055
548	1068	82	5000	0053
549	1144	10	0000	0053
550	1234	20	0000	0051
551	1167	00	0000	0058
552	1116	88	0000	0052
553	1869	33	0000	0055
554	1031	44	4444	4444
555	1081	55	5555	5555
556	1481	99	9999	9999

	LIB	0001	
	RAU	9030	
	FAD	0011	
ZERO	00	0041	CXCST
FLONE	10	0000	0000
DIGIT	00	0100	0051
FIFIV	00	0000	0000
CONST	82	5000	0055
ONEHD	10	0000	0053
TWO	20	0000	0051
FIVET	00	0000	0058
EIGHT	88	0000	0052
THIRT	33	0000	0055
FOUR	44	4444	4444
FIVE	55	5555	5555
NINE	99	9999	9999

APPENDIX B

Rules and Procedure for Using the Stored Program for Field Machinery Selection

I N P UT D A TA R U L E S

The input data for a problem consists of data for the power to be selected and data for each operation for which an implement is to be selected. Two different card formats are used in order to read both types of data into the computer. A location is reserved on the input cards for all factors which may be pertinent to a problem of machinery selection. For cases where some items are not considered pertinent the locations for these items must be represented by entering zeros on the input cards. The number of input cards used for each implement to be selected may vary from 3 to 5 depending upon the amount of timeliness data included. Two input cards are always used for power.

A numbering system or code is used to identify the various types of machine data which are read into the computer. This code is used to identify power data cards and implement data cards, identify selfpropelled implements, indicate the number of data cards for an implement, and determine whether or not tractors are to be selected in equal sizes. The code also numbers the cards for a given machine and numbers each implement selected in the problem. No two machines will ever have the same code number. This is necessary in order that the output data for each machine may be identified. The code identification system also enables the computer to identify the different types of machines and to store the data for each machine in the proper location. The general forms for the identification code numbers for both implements and power are illustrated.

POWER CODE IDENTIFICATION NUMBER：General Form－100X000X00

The second and third digits from the left identify the data as being power data by being zero，Only one set of power data is needed for any machinery selection problem．For this reason the first digit on the left is always 1.

Examples：

1．Power card 非（select equal tractor sizes）－－－－ 1001000000
2．Power card 非2（select unequal tractor sizes）－－－ 1002000100

IMPLEMENT CODE IDENTIFICATION NUMBER：General Form－XXXX0000XX

Implement number in the system．All implements to be selec－ ted wịll be assigned different numbers in this location． Identification numbers used may range from 01 to 99.

The code identification numbers for any one implement must all be the same with the exception of the card number which is used to identify the different cards for one implement．

Examples：（Card 非1 used for each case）
1．Tractor－drawn implement， 3 cards needed
2. Self-prope1led implement, 4 cards needed - - - 0091000040
3. Tractor-drawn implement, 5 cards needed - - - 1101000045

A11 locations on the data cards that are not occupied by the code identification number are reserved for input data. To facilitate the entering of data on the input cards all data is entered in fixed decimal point form. To avoid confusion, the same decimal point location is used for all input data except two items of timeliness data for implements. Form for these two items will be pointed out later in the discussion for implement input cards. The standard form for all other data is shown below:

$$
00 \times \mathrm{x} \times \mathrm{xx} . \mathrm{x} \times \mathrm{x}
$$

The two digits at the extreme left are always zero since any digits placed in those locations are lost in a shifting operation when the computer converts the data to a floating decimal point system. All input data for which this form applies must lie within a range of values from 00000.001 to 99999.999 . Care must be exercised when entering data onto the cards to always place the decimal in the same location regardless of whether any significant figures exist to the right of the decimal or not.

Examp1es:

1. Implement speed of 4 mph - 0000004000
2. Labor cost of $\$ 1.25$ per hour - - - 0000001250

The form for entering data on the implement input cards is shown on the next page. Each location on the input cards is labeled. The storage location within the computer where each item of data is temporarily

IMPIEMENT INPUT DATA CARDS:

Code XXX1-	Years of expected life	Years of expected ownership	Cost per ft. of width	$\begin{aligned} & \text { Rep., } \\ & \text { Lub., } \\ & \mathrm{T}, \mathrm{I}, \mathrm{~S} \\ & (\%) \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Interest } \\ (\%) \end{gathered}\right.$	S.F. interest (\%)	Time utilizat ion (\%)
001	0011	0012	0013	0014	0015	0016	0017

Code	Width XXX2-- itilizat ion $(\%)$	Fixed cost $(\%)$	Total acres covered	Average speed $(m p h)$	Allotted hours	 size $(f t)$	Labor $(\$ / h r)$
0020	0021	0022	0023	0024	0025	0026	0027

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Code XXX3
\[
0030
\] \& \[
\begin{array}{|c}
\text { Force } \\
\text { factor } \\
(1 \mathrm{~b} / \mathrm{ft})
\end{array}
\] \& (d) Allow. cost variation 0032 \& \begin{tabular}{l}
\[
\mathrm{A}_{\boldsymbol{i}}
\] \\
(Acres)
\[
0033
\]
\end{tabular} \& ```
Ki
(Timeli-
ness
factor)
0034
``` \& \(Y_{i} V_{i}\)
(Total
crop
value)
0035 \& A2

0036 \& K 2

0037 <br>
\hline
\end{tabular}

| Code | $\mathrm{Y}_{2} \mathrm{~V}_{2}$ | $\mathrm{~A}_{3}$ | $\mathrm{~K}_{3}$ | $\mathrm{Y}_{3} \mathrm{~V}_{3}$ | $\mathrm{~A}_{4}$ | $\mathrm{~K}_{4}$ | $\mathrm{Y}_{4} \mathrm{~V}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0040 |  |  |  |  |  |  |  |
| 0041 | 0042 | 0043 | 0044 | 0045 | 0046 | 0047 |  |


| Code | $\mathrm{A}_{5}$ | $\mathrm{~K}_{5}$ | $\mathrm{Y}_{5} \mathrm{~V}_{5}$ | $\mathrm{~A}_{6}$ | $\mathrm{~K}_{6}$ | $\mathrm{Y}_{6} \mathrm{~V}_{6}$ | ZERO |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| XXX5--- |  |  |  |  |  |  |  |
| 0050 | 0051 | 0052 | 0053 | 0054 | 0055 | 0056 | 0057 |

stored after being read into the computer is also given. The card number for each implement is indicated in the location for the identification code to illustrate the data that is to be placed on the card bearing that particular number. Care must be taken when making up data cards to insure that the implement data corresponds to the proper implement card identification number, otherwise the data will not be stored in the proper locations. Each of the items of data for implements will be discussed separately. Rules and methods for indicating different desired computational procedures will be pointed out with the discussion of the appropriate item of input data. The computer storage location for each item of input data will be followed by the discussion for that item of data. NOTE: It is important that no items on the input data card be left blank, non-pertinent items should have zeros entered in their location.

## IMPLEMENT INPUT CARDS

0010-Identification code number for card 非1.
0011 - Years of expected implement life. This item is zero only when a fixed cost percentage (0022) is given.

0012 - Total years that machine ownership is to be retained. If this figure is shorter than expected implement life (0011), the computer will calculate a trade-in value for the implement at the end of the period of ownership. This trade-in value will be used to calculate depreciation and interest costs during the period of machine ownership. This item may be zero if the implement is to be kept for the extent of its expected service life or if a fixed cost percentage (0022) is given.

0013 - Implement purchase price in dollars per foot. This item may not
be zero.

0014 - Annual charges for repairs, lubrication, taxes, insurance, and shelter in percent of the purchase price. This item may be zero only if a fixed cost percentage (0022) is given or if no charges are to be made for these items.

0015 - Interest on investment for implement entered as percent. Interest may be calculated as either simple or compound. The method of entering the data in this location determines which of the two methods will be followed for any given implement. For simple interest no special identification is needed and the figures are entered just as for any other data. Compound interest is indicated by entering a 1 three places from the left end of the data or 5 places to the left of the decimal. Examples of entry form:

1. Simple interest - - - . - . - . - . - . - - 0000005000

This item may be zero if fixed cost percentage (0022) is given or no charges for interest are to be made.

0016 - Sinking fund interest rate entered as percent. This item deter* mines the type of depreciation that will be used for the implement. If a rate of interest is given, sinking fund depreciation will be used. If this item is zero, straight-line depreciation will be used. This item may also be zero if fixed cost percentage (0022) is given. 0017 - Implement time utilization. The percent of time spent actually performing an operation while in the field. This item may not be zero. This item is combined with width utilization (0021) to produce implement field efficiency. A value of 100 may be placed in this location if it is desired to use a single figure for field efficiency.

0020 - Identification code number for card 非2.
0021 - Implement width utilization. The percent of implement width used effectively when performing an operation. This item may not be zero. A single value for field efficiency may be entered in this location if a value of 100 is entered for time utilization (0017).

0022 - Total annual fixed cost in percent of implement purchase price. This item may be zero only if items 0011, 0014, 0015, and 0016 are given. 0023 - Total annual once-over acres covered by the implement. If an implement should cover 100 acres a total of 3 times, the once-over acreage is 300 acres. This item must never be 0 .

0024 - Average implement ground speed in miles per hour for
all operations performed. This item may not be 0 .
0025 - The total allotted hours in which an implement must complete all of its operations on the acreage it covers. This item determines the method which will be used to calculate the total amount of power needed for an operation. If an allotted time is given for one implement, it must be given for all implements that are to be selected. This item may be zero only if it is zero for all implements and all implements have timeliness data. A single implement may have both allotted time data and timeliness data provided that all implements have allotted time data. In this case other implements may of may not have timeliness data. 0026 - Maximum implement width which can be pulled by one tractor. This item is used when the size of implement that can be pulled by one tractor is limited due to the available commercial size. A limit may also be placed here to prevent the selection of an implement width which is larger than desired. For self-propelled implements this item indicates the maximum size of individual unit that is available or that is desired.

This item may be zero if there is no limit on the available size of the individual implement that may be included within one unit.

0027 - Labor cost in dollars per hour for each implement unit selected. For tractor-drawn implements this includes the charge for the tractor driver. This should not be an estimate of the total labor charge that will be made for all units that will be selected of a particular implement type. This is a charge for each tractor and the implement it pulls or for each unit of a self-propelled implement that is selected. Example:

If a charge of $\$ 1.25$ per hour is made for labor for a tractor and plow, $\$ 1.25$ would be entered here as the charge for labor for the selection of the total width of plow required. This item may be zero if no labor is required for an operation.

0030 - Identification code number for card 非3.
0031 - Force factor for the implement in pounds per foot of width. This item may not be zero.

0032 - The allowable variation in dollars of annual cost that will be considered insignificant or permissible. This item is used to determine the allowable range of implement width which will extend on either side of the optimum width to permit the selection of an implement in a commercial size. Values of 5-10 dollars for this item are usually sufficient. This item may be zero if no range in implement widths is desired.

Items 0033-0037, 0041-0047, and 0051-0056 are used to include timeliness data for the operations performed by an implement. A maximum of six different crops may be included for each implement. The amount of timeliness data used determines the number of input data cards required.

If timeliness data is used, it should be included for all crops covered by an implement. The total number of data cards required is:

For 1 crop - 3 cards
For 2-4 crops - 4 cards
For 5-6 crops - 5 cards
Care should be taken to insure that any unused locations on each card are filled with zeros. If timeliness data for only 3 crops is needed, 4 cards would be needed and zeros entered in locations 0045, 0046, and 0047 of the forth card. When more than three cards are used the code identification numbers of the first three cards must also indicate the use of a fourth or fifth card. Data for all these locations may be zero if an allotted time (0025) is given and only 3 cards would be needed. 0033 - Total once-over acreage for the crop covered by an implement. If 40 acres of corn is cultivated 3 times, 120 acres would be entered here. 0034 - Timeliness factor for the operation and crop covered. NOTE: This is one of the items of input data that can not use the standard decimal point location. Since timeliness factors may extend more than 3 places to the right of the decimal, they are multiplied by 1000 before entering on the data cards. This is compensated for by shifting the crop value (0035) three places to the right since the computer will treat all items of input data as if the standard decimal point location were used. Examples:

1. Timeliness factor of . 00005 - . - - - - - - - 0000000050
2. Timeliness factor of .00040 - . . . . . . . . - - 0000000400
3. Timeliness factor of .0010- - - - - - - - - - 0000001000

The minimum value of timeliness factor that can be used is .000001 .
0035 - Total crop value in dollars, This item is found by multiplying
the total crop yield by the unit price．

Example：

500 acres x 20 bu．／ac．x $\$ 2.00 / \mathrm{bu} .=\$ 20,000$
This is one of the items of input data that does not use the standard decimal point location．Since total crop value could possibly exceed \＄99，999 in some instances，provision is made to include larger figures． This item is divided by 1000 before being placed on the input data card．This value must always be given in whole dollar amounts． Examples：

1．Total crop value $=\$ 20,000 \ldots \ldots-\ldots \ldots 00000000$
2．Total crop value $=\$ 2,250 \ldots \ldots-\ldots-\ldots 00002250$

0036，0042，0045，0051，0054－Same as for item 0033 if needed．
0037，0043，0046，0052，0055－Same as for item 0034 if needed．
0041，0044，0047，0053，0056－Same as for item 0035 if needed．
0040 －Identification code number for card 非4（if needed）．
0050 －Identification code number for card 非5（if needed）．
0057 －Always zero if 5 cards are used．

POWER INPUT CARDS－The data cards for power are read into the same locations as the data cards for implements．The items which are essen－ tial for the calculation of fixed costs occupy the same positions on both power and implement data cards．Items on the power data cards which occupy the same locations as the corresponding items on the imple－ ment data cards will not be discussed since the same rules will apply． The form used for power data cards is shown on the next page．

0010 －Identification code number for card 非1。
0011－0012－Same as for implements．

0013 －Purchase price of power in dollars per usable horsepower．（Usable horsepower $=75 \%$ of maximum drawbar horsepower）．This item may not be 0 ．

POWER INPUT DATA CARDS:

| Code | Years of |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1001---$ | Years of <br> expected <br> life | Cost/HP <br> expected <br> owner- <br> ship | Rep., <br> Lub., <br> L,I,S <br> $(\%)$ | Interest <br> $(\%)$ | S. F. <br> interest <br> $(\%)$ | ZERO |
| 0010 | 0011 | 0012 | 0013 | 0014 | 0015 | 0016 |
| 0017 |  |  |  |  |  |  |


| Code | Hours <br> used | Fixed <br> cost <br> (\%) | Max. <br> allow. <br> for non- <br> field | Min. <br> allow. <br> size | ZERO | ZERO | ZERO |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| 0020 | peration. <br> 0021 | 0022 | 0023 | 0024 | 0025 | 0026 | 0027 |

0014-0016-Same as for implements.
0017 - Always zero
0020 - Identification code number for card 非2.
0021 - Hours that power is used for non-field operations. The selection problem deals only with field machinery but tractors are often used for other miscellaneous jobs that any tractor could accomplish regardless of size. This item allows for the consideration of such tractor use if desired. Use of this item reduces the hourly cost for power charged to all the field implements selected. This item may be zero if the power is not used for non-field work or if this item is not to be considered.

0022 - Same as for implements.
0023 - The maximum usable horsepower that is to be obtained from any one tractor. This item represents the maximum size of tractor that is available or that is desired. This item determines the number of tractors that will be selected since the total required power is divided by this item to determine the number of tractors required for a system. This item should never be zero.

0024 - The minimum usable horsepower that is to be obtained from any one tractor. This item represents the minimum size of tractor that is available or that is desired. This item should never be zero.

0025-0027-Always zero.
For any particular problem the methods for calculating depreciation, interest, and other fixed costs would probably be the same for all machines to be selected. This is not a necessary requirement, however, and different methods may be used within a given problem if desired since the calculation of fixed costs for any machine is independent of data
pertaining to other machines in the problem.
The input data for all implements and power in a problem is read into the computer, one group of cards at a time. A11 cards with data for a single implement or for the power are read in together. Before another group of cards are read in, several computations are performed on the data in the locations which have been discussed.

If a total fixed cost percentage (0022) is not given, this item is calculated using the other fixed cost data provided. The fixed cost percentage is multiplied by the unit purchase price (0013) and this value is stored in 0022. Location 0022 now contains the annual fixed costs in dollars per foot of width or per horsepower.

The percent time utilization (0017) and the percent width utilization (0021) for implements are combined to form field efficiency which is stored in 0021.

The timeliness data for the operations performed by an implement is collected and a value for $\sum\left(A_{i} K_{i} Y_{i} V_{i}\right)$ for the implement to be selected is stored in location 0033.

When these calculations have been completed the data is moved to different locations to permit another group of data cards to be read in. Power data is stored in a special location for easy reference during later calculations. Implement data is stored in bands of 30 locations within the computer for later reference. Ample space is, provided within the storage locations to permit storage of additional data that is developed later in the problem. Index Register "C" of the computer is used to store the implements for further calculations. Storage is available for a maximum of 26 different implements that may be selected within any one problem.

The locations occupied by the input data and calculated values during the selection procedure followed by the stored program are indicated below:

IMPLEMENT DATA STORAGE LOCATIONS:

| Code | Field <br> XXX2-- <br> efficien <br> cy <br> $(\%)$ | Fixed <br> cost <br> $(\$ / f t)$ | Total <br> acres <br> covered | Average <br> speed <br> $(m p h)$ | A1lotted <br> hours | Max. <br> allow. <br> size <br> $(f t)$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |


| Force | (d) | इAKYV | HP req. |  |  | BLANK |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| factor | Allowable |  | to meet |  |  |  |  |
| ( $1 \mathrm{~b} / \mathrm{ft}$ ) | cost |  | allotted | (1) | (1) |  | (1) |
| 0688 | 0069 C | 0070c |  | 0072C | 0073 C |  |  |


| Min. <br> size <br> 0076C | Optimum size <br> 0077C | Max. <br> size <br> 0078C | Size <br> permitt- <br> ed by <br> total hp <br> 0079 C | No. of tractors used $0080 \mathrm{C}$ | $\begin{aligned} & \text { HP req. } \\ & \text { by } \\ & \text { optimum } \\ & \text { size } \\ & 0081 \mathrm{C} \end{aligned}$ | Size req by allot ted time 0082C | Allow. size pulled by large tractor 0083C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{|c|}
\hline \text { Allow } \\
\text { size } \\
\text { pulled b } \\
\text { smallest } \\
\text { tractor } \\
0084 \mathrm{C}
\end{array}
\] \& Allow:
size
per
tractor
\(0085 C\) \& Allow.
size
for
tractors
used
0086 C \& \begin{tabular}{l}
Allow. \\
size for \\
all \\
tractors \\
0087C
\end{tabular} \& BLANK
O088C \& BLANK

.0089 C <br>
\hline
\end{tabular}

POWER DATA STORAGE LOCATIONS:

| BLANK | Code <br> $1002--$ | Hours <br> used for <br> non-field <br> operat- | Fixed <br> cost <br> ions <br> i hp) | Max. <br> allow. <br> size | Min. <br> allow <br> size | (I) | (1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9044 | 9045 | 9047 | 9049 | 9050 | 9051 |  |  |


| BLANK | Total no <br> of <br> tractors <br> used | Total <br> usable <br> hp req. | Total <br> usable <br> hp sel- <br> ected | Usable <br> hp of <br> largest <br> tractor | Actual <br> hp of <br> largest <br> tractor | Usable <br> hp of <br> sma1lest <br> tractor | Actual <br> hp of <br> smallest <br> tractor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9053 | 9054 | 9055 | 9056 | 9057 | 9058 | 9059 |  |

(1) These locations are used for indicators and temporary storage during the selection procedure.

INPUT DATA READ IN RULES

The following order must be followed when reading input data cards into the computer:

1. Machine Program Deck
2. Transfer Card
3. Data Cards
4. Trailer Card (indicates end of data for problem)

Once the machine program has been entered additional problems may be solved by using only the transfer card followed by the data cards and trailer card. More than one problem may be solved without stopping since input data for another problem may follow the trailer card for the first. A trailer card must follow the input data for each individual problem when this procedure is used.

The following rule must be followed for the input data cards of each individual problem:

1. The input data cards for the power or for each implement to be selected may be read in in any order, but must be together. The input data cards for any given machine must not be intermingled with those of other machines. NOTE: If the above rule is not observed the computer will halt.

## DATA OUTPUT F OR M

Output data cards may be identified with the proper machines by use of the code number. The same identification code number is used for output cards that was used for input cards with the exception of the card number which has been changed to 6 and 7. One output card is provided for the power or tractors selected. Two output cards are provided for tractor-drawn implements selected. One output card is provided for self-propelled implements selected. All output data is in floating decimal point form. Persons not familiar with this form can easily learn to interpret it.

The temporary storage locations for the various items of output data are indicated on the following page. Each type of output data card will be discussed.

IMPLEMENT DATA CARDS - This type of data card is used for the output data of all implements both tractor-drawn and self-propelled. Only the first card is used for self-propelled implements selected while both cards are used for tractor-drawn implements.

9012 - Identification code number for card 非6.
9013 - Lower limit of the allowable range in implement width permitted to facilitate the selection of an implement in a commercial size. 9014 - The optimum width of implement selected by the procedure followed within the stored program.

9015 - Upper limit of the allowable range in implement width permitted to facilitate the selection of an implement in a commercial size. 9016 - The maximum width of implement which can be pulled by the total amount of power selected for the system. This item is zero for selfpropelled implements.

IMPLEMENT OUTPUT DATA CARDS:

| Code | Min. <br> Size | Optimum <br> size | Max. <br> size | Size <br> permitt-- <br> ed by <br> total hp | No. of <br> tractors <br> used | HP req. <br> by <br> optimum <br> size | Size req <br> by a11ot <br> ted time |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 9012 | 9013 | 9014 | 9015 | 9016 | 9017 | 9018 | 9019 |


| Code XXX7--- $9024$ | Allow. <br> size <br> pulled <br> by large <br> tractor <br> 9025 | Allow. <br> size <br> pulled <br> by sma11 <br> tractor <br> 9026 | Allow. <br> size <br> per <br> tractor <br> 9027 | A11ow size for tractors used 9028 | A11ow. <br> size <br> for <br> all <br> tractors <br> 9029$\|$ | BLANK | BLANK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

POWER OUTPUT DATA CARD:


9017 - The number of tractors used to pull the optimum width of imple* ment selected (9014). The number of tractors denotes the number of individual implements which must be selected to make up the total required implement width. For self-propelled implements this item indicates the number of individual units to be selected. 9018 - The horsepower required to pull the optimum implement width (9014). This item is zero for selfmpropelled implements.

9019 - The width of implement required to complete its operations within an allotted time period. This item is zero if an allotted time period was not included as an item of input data.

9024 - Identification code number for card 非7。
9025 - The maximum width of implement which can be pulled by the largest tractor selected.

9026 - The maximum width of implement which can be pulled by the smallest tractor selected. This item is zero if all tractors are selected in equal sizes.

9027 - The maximum width of implement which is available or is desired in a single unit. This item was also an item of input data. This item is zero if it was zero for the input data or if the maximum available width is larger than the width that the largest tractor can pull.

9028 - The maximum width of implement which may be pulled by the number of tractors (9017) selected for use with the implement. This is a limitation due to the size of available units, not available power. This item is zero if item 9027 is zero.

9029 - The maximum width of implement which may be pulled by all tractors selected for the entire system. This item is zero if 9027 is zero.

POWER DATA CARD
9052 - Identification code number for card 非6.

9053 - Total number of tractors selected for the system.
9054 - Total usable horsepower required for the system.
9055 - Total usable horsepower selected for the system. (This item may differ from $90 \$ 4$ because of limitations on minimum tractor size).

9056 - Usable horsepower of largest tractor selected.
9057 - Actual or maximum drawbar horsepower of largest tractor selected.
9058 - Usable horsepower of smallest tractor selected This item is
zero if tractors are selected in equal sizes.
9059 - Actual or maximum drawbar horsepower of smallest tractor
selected. This item is zero if tractors are selected in equal sizes.
SPECIAL OUTPUT DATA CARDS:

| XXX60000XX | 4444444444 | BLANK $\longrightarrow$ |
| :--- | :--- | :--- |

Input data cards for the machine indicated were not grouped together or there is an error in code numbers for this group of cards. (Rule 非1, page 136.)


An allotted time has been given for some implements but not for all. (Input data rules, page 128)

| XXX60000XX | 5555555555 | BLANK |
| :--- | :--- | :--- |

No allotted time is given for any implements and all implements do not have timeliness data. (Input data rules, page 128)

## SPECIAL PROGRAM USES

In some instances it may be desired to select a single implement for a system where the other implements are already in use or have been selected. For a self-propelled implement this may be accomplished by following the same procedure outlined for the selection of all implements in the system. Such an approach is possible since selfpropelled implements are not dependent upon a common power source. Selection of self-propelled implements proceeds independently of the selection of all other implements within the system.

To select a single tractor-drawn implement the input data must be adapted to follow the same procedure as self-propelled machines. The following steps can be used:

1. Calculate the annual hours that the power is used with other implements and add the estimated hours that power will be used with the implement to be selected.
2. Calculate the cost per hour for power.
3. Add the hourly power cost to the hourly labor cost and process the implement data as if it were self-propelled. Note: A selfpropelled code identification must be used. No limit should be placed on the size of individual unit to be selected.
4. Examine the selected optimum width. If more than one unit is desired to make up this width, multiply hourly labor cost per unit by the number of desired units, add the power cost per hour and recalculate the optimum width. This procedure can be repeated until the selected width is made up of the number of units assumed before selection.
5. A check using manual calculations may be advisable to prevent selection of a width that cannot be pulled by the available power.

A complete listing of the steps used in the stored program for field machinery selection is included on the following pages. The stored program was written for assembly with a Symbolic Optimal Assembly Program (SOAP). The original "SOAP" program which was written and the machine language progran which was assembled are both listed. The "SOAP" program is listed at the right of each page. The machine language program is listed at the left. The number of each step is indicated at the left of the machine language program.

The parts of the machine language program are indicated in the example below:


The storage locations from 1965-1985 are available for additions or alterations of the steps in the present stored program.

In order to use the machine language program for processing data, a transfer card and a trailer card are needed. The forms for these cards are indicated below:

TRANSFER CARD:


## TRAILER CARD:


( + signs must be punched in columns $20,30,40,50,60,70, \& 80$, a1so.)

| 1 |  |  |  |  |  | BLR | 1950 |  | 1999 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  |  |  |  | BLR | 0000 |  | 0849 |
| 3 | 0850 | 69 | 0853 | 0856 | BEGIN | LDD | DIGIT |  |  |
| 4 | 0856 | 24 | 9000 | 0863 |  | STD | 9000 |  |  |
| 5 | 0863 | 88 | 0000 | 0869 |  | RAC | 0000 |  | START |
| 6 | 0869 | 70 | 9002 | 0870 | START | RD1 | 9002 |  |  |
| 7 | 0870 | 70 | 9012 | 0871 |  | RD1 | 9012 |  |  |
| 8 | 0871 | 60 | 9012 | 0879 |  | RaU | 9012 |  |  |
| 9 | 0879 | 35 | 0001 | 0885 |  | SLT | 0001 |  |  |
| 10 | 0885 | 30 | 0008 | 0903 |  | SRT | 0008 |  |  |
| 11 | 0903 | 44 | 0857 | 0858 |  | NZU | OPERA |  | POWER |
| 12 | 0858 | 21 | 9000 | 0866 | POWER | STU | 9000 |  | CHECK |
| 13 | 0857 | 70 | 9022 | 0908 | OPERA | RD1 | 9022 |  |  |
| 14 | 0908 | 60 | 9022 | 0867 |  | RAU | 9022 |  |  |
| 15 | 0867 | 35 | 0008 | 0935 |  | SLT | 0008 |  |  |
| 16 | 0935 | 30 | 0009 | 0855 |  | SRT | 0009 |  |  |
| 17 | 0855 | 44 | 0859 | 0866 |  | NZU |  |  | CHECK |
| 18 | 0859 | 70 | 9032 | 0917 |  | RD1 | 9032 |  |  |
| 19 | 0917 | 60 | 9032 | 0875 |  | RAU | 9032 |  |  |
| 20 | 0875 | 35 | 0009 | 0895 |  | SLT | 0009 |  |  |
| 21 | 0895 | 44 | 0899 | 0866 |  | NZU |  |  | CHECK |
| 22 | 0899 | 70 | 9042 | 0866 |  | RD1 | 9042 |  | CHECK |
| 23 | 0866 | 80 | 0000 | 0872 | CHECK | RAA | 0000 |  | moove |
| 24 | 0872 | 60 | 9202 | 0881 | MOOVE | RAU | 9002 | A |  |
| 25 | 0881 | 35 | 0003 | 0889 |  | SLT | 0003 |  |  |
| 26 | 0889 | 30 | 0008 | 0907 |  | SRT | 0008 |  |  |
| 27 | 0907 | 82 | 8003 | 0916 |  | RAB | 8003 |  |  |
| 28 | 0916 | 27 | 9202 | 0921 |  | SET | 9002 | A |  |
| 29 | 0921 | 28 | 4000 | 0862 |  | SIB | 0000 | B |  |
| 30 | 0862 | 51 | 00.10 | 0868 |  | SXA | 0010 |  |  |
| 31 | 0868 | 40 | 0971 | 0922 |  | NZA |  |  | SEEAA |
| 32 | 0971 | 50 | 0020 | 0872 |  | AXA. | 0020 |  | moove |
| 33 | 0922 | 60 | 9000 | 0931 | SEEAA | RAU | 9000 |  |  |
| 34 | 0931 | 44 | 0985 | 0886 |  | NZU |  |  | ORDER |
| 35 | 0985 | 80 | 0020 | 0892 |  | RAA | 0020 |  | LAStA |
| 36 | 0892 | 60 | 9202 | 0851 | LASTA | RaU | 9002 | A |  |
| 37 | 0851 | 35 | 0003 | 0909 |  | SLT | 0003 |  |  |
| 38 | 0909 | 30 | 0008 | 0877 |  | SRT | 0008 |  |  |
| 39 | 0877 | . 82 | 8003 | 0936 |  | RAB | 8003 |  |  |
| 40 | 0936 | 27 | 9202 | 0891 |  | SET | 9002 | A |  |
| 41 | 0891 | 28 | 4000 | 0912 |  | SIB | 0000 | B |  |
| 42 | 0912 | 51 | 0040 | 0918 |  | SXA | 0040 |  |  |
| 43 | 0918 | 40 | 1021 | 0886 |  | NZA |  |  | ORDER |
| 44 | 1021 | 50 | 0010 | 0942 |  | AXA | 0010 |  |  |
| 45 | 0942 | 40 | 0945 | 0896 |  | NZA |  |  | Allas |
| 46 | 0945 | 60 | 9022 | 0905 |  | Ralu | 9022 |  |  |
| 47 | 0905 | 35 | 0008 | 0873 |  | SLT | 0008 |  |  |
| 48 | 0873 | 30 | 0009 | 0893 |  | SRT | 0009 |  |  |
| 49 | 0893 | 44 | 0897 | 0886 |  | NZU |  |  | ORDER |
| 50 | 0897 | 50 | 0040 | 0892 |  | AXA | 0040 |  | LASTA |
| 51 | 0896 | 60 | 9032 | 0955 | Allá | RAU | 9032 |  |  |
| 52 | 0955 | 35 | 0009 | 0925 |  | SLT | 0009 |  |  |
| 53 | 0925 | 44 | 0929 | 0886 |  | NZU |  |  | ORDER |
| 54 | 0929 | 50 | 0040 | 0892 |  | AXA | 0040 |  | LASTA |


| 55 | 0886 | 60 | 0010 | 0865 | ORDER | RAU | 0010 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 56 | 0865 | 10 | 0853 | 0957 |  | AUP | DIGIT |  |  |
| 57 | 0957 | 11 | 0020 | 0975 |  | SUP | 0020 |  |  |
| 58 | 0.975 | 44 | 0979 | 0880 |  | NZU | NORDR |  | NEXTA |
| 59 | 0979 | 60 | 0020 | 1025 | NORDR | RAU | 0020 |  |  |
| 60 | 1025 | 21 | 9008 | 0884 |  | STU | 9008 |  |  |
| 61 | . 0884 | 69 | 0887 | 0890 |  | LDD | FOURA |  |  |
| 62 | 0890 | 24 | 9009 | 0947 |  | STD | 9009 |  |  |
| 63 | 0947 | 71 | 9008 | 0898 |  | WR 1 | 9008 |  | HALTA |
| 64 | 0898 | 01 | 0001 | 0850 | HALTA | HLT | 0001 |  | BEGIN |
| 65 | 0880 | 60 | 9000 | 0939 | NEXTA | RAU | 9000 |  |  |
| 66 | 0939 | 44 | 0943 | 0894 |  | NZU |  |  | DONEA |
| 67 | 0943 | 60 | 0020 | 1075 |  | RAU | 0020 |  |  |
| 68 | 1075 | 10 | 0853 | 1007 |  | AUP | DIGIT |  |  |
| 69 | 1007 | 11 | 0030 | 1035 |  | SUP | 0030 |  |  |
| 70 | 1035 | 44 | 0979 | 0940 |  | NZU | NORDR |  |  |
| 71 | 0940 | 60 | 0030 | 1085 |  | RAU | 0030 |  |  |
| 72 | 1085 | 35 | 0008 | 0953 |  | SLT | 0008 |  |  |
| 73 | 0953 | 30 | 0009 | 0923 |  | SRT | 0009 |  |  |
| 74 | 0923 | 44 | 0927 | 0894 |  | NZU |  |  | DONEA |
| 75 | 0927 | 60 | 0030 | 1135 |  | RAU | 0030 |  |  |
| 76 | 1135 | 10 | 0853 | 1057 |  | AUP | DIGIT |  |  |
| 77 | 1057 | 11 | 0040 | 0995 |  | SUP | 0040 |  |  |
| 78 | 0995 | 44 | 0979 | 0900 |  | NZU | NORDR |  |  |
| 79 | 0900 | 60 | 0040 | '1045 |  | RAU | 0040 |  |  |
| 80 | 1045 | 35 | 0009 | 0915 |  | SLT | 0009 |  |  |
| 81 | 0915 | 44 | 0919 | 0894 |  | NZU |  |  | DONEA |
| 82 | 0919 | 60 | 0040 | 1095 |  | RAlJ | 0040 |  |  |
| 83 | 1095 | 10 | 0853 | 1107 |  | AUP | DIGIT |  |  |
| 84 | 1107 | 11 | 0050 | 1005 |  | SUP | 0050 |  |  |
| 85 | 1005 | 44 | 0979 | 0894 |  | NZU | NORDR |  | DONEA |
| 86 | 0894 | 82 | 0000 | 0950 | DONEA | RAB | 0000 |  | FLOAT |
| 87 | 0950 | 80 | 4011 | 1157 | FLOAT | RAA | 0011 | B | CONTU |
| 88 | 1157 | 60 | 2000 | 1055 | CONTU | RAU | 0000 | A |  |
| 89 | 1055 | 35 | 0002 | 0861 |  | SLT | 0002 |  |  |
| 90 | 0861 | 10 | 0911 | 0965 |  | AUP | FIFIV |  |  |
| 91 | 0965 | 32 | 0968 | 1145 |  | FAD | ZEROA |  |  |
| 92 | 1145 | 21 | 2000 | 1003 |  | STU | 0000 | A |  |
| 93 | 1003 | 51 | 4017 | 0860 |  | SXA | 0017 | B |  |
| 94 | 0860 | 40 | 0913 | 0864 |  | NZA |  |  | ADDBB |
| 95 | 0913 | 50 | 4018 | 1157 |  | AXA | 0018 | $B$ | CONTU |
| 96 | 0864 | 53 | 0040 | . 0920 | ADDEB | SXB | 0040 |  |  |
| 97 | 0920 | 42 | 0973 | 0874 |  | N2B |  |  | FLTED |
| 98 | 0973 | 52 | 0050 | 0950 |  | AXB | 0050 |  | FLOAT |
| 99 | 0874 | 60 | 0022 | 0977 | FLTED | RAU | 0022 |  |  |
| 100 | 0977 | 44 | 0981 | 0882 |  | NZU | GIVEN |  | FXCST |
| 101 | 0981 | 60 | 0022 | 1027 | GIVEN | RAU | 0022 |  |  |
| 102 | 1027 | 39 | 0013 | 0963 |  | FMP | 0013 |  |  |
| 103 | 0963 | 34 | 0966 | 1016 |  | FDV | ONEHD |  |  |
| 104 | 1016 | 21 | 0022 | 1125 |  | STU | 0022 |  |  |
| 105 | 1125 | 60 | 9000 | 0883 |  | RAU | 9000 |  |  |
| 106 | 0883 | 44 | 0937 | 0888 |  | NZU | IMPLE |  | TRCTR |
| 107 | 0888 | 27 | 9045 | 0993 | TRCTR | SET | 9045 |  |  |
| 108 | 0993 | 08 | 0020 | 0932 |  | LIB | 0020 |  |  |



| 163 | 1221 | 24 | 6073 | 0876 |  | STD | 0073 | C |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 164 | 0876 | 69 | 1079 | 1032 |  | LDD | FLONE |  |  |
| 165 | 1032 | 24 | 6080 | 0933 |  | STD | 0080 | C |  |
| 166 | 0933 | 24 | 6072 | 1175 |  | STD | 0072 | C |  |
| 167 | 1175 | 58 | 0030 | 0869 |  | AXC | 0030 |  | START |
| 168 | 1000 | 59 | 0030 | 1006 | TRALR | SXC | 0030 |  |  |
| 169 | 1006 | 60 | 8007 | 1065 |  | RAU | 8007 |  |  |
| 170 | 1065 | 21 | 9000 | 0974 |  | STU | 9000 |  |  |
| 171 | 0974 | 69 | 0968 | 1271 |  | LDD | ZEROA |  |  |
| 172 | 1271 | 24 | 9051 | 0878 |  | STD | 9051 |  |  |
| 173 | 0878 | 24 | 9008 | 1285 |  | STD | 9008 |  |  |
| 174 | 1285 | 24 | 9009 | 1042 |  | STD | 9009 |  | LOOPA |
| 175 | 1042 | 60 | 6060 | 1115 | LOOP A | RAU | 0060 | C |  |
| 176 | 1115 | 30 | 0009 | 1335 |  | SRT | 0009 |  |  |
| 177 | 1335 | 44 | 0989 | 0990 |  | NZU | INSPT |  | SELFP |
| 178 | 1050 | 48 | 1153 | 0854 | ELIMN | NZC |  |  | WHICH |
| 179 | 1153 | 59 | 0030 | 1042 |  | SXC | 0030 |  | LOOPA |
| 180 | 0854 | 60 | 9008 | 1063 | WHICH | RAU | 9008 |  |  |
| 181 | 1063 | 44 | 1031 | 1018 |  | NZU | TYPEA |  |  |
| 182 | 1018 | 60 | 9009 | 1077 |  | RAU | 9009 |  |  |
| 183 | 1077 | 44 | 0967 | 1082 |  | NZU | TYPEB |  |  |
| 184 | 1082 | 60 | 9000 | 1091 |  | RAU | 9000 |  |  |
| 185 | 1091 | 88 | 8003 | 1100 |  | RAC | 8003 |  |  |
| 186 | 1100 | 80 | 0000 | 1056 |  | RAA | 0000 |  | RANGE |
| 187 | 0989 | 60 | 6065 | 1019 | INSPT | RAU | 0065 | C |  |
| 188 | 1019 | 44 | 1073 | 1024 |  | NZU | MARKA |  | MARKB |
| 189 | 1073 | 69 | 1079 | 1132 | MARKA | LDD | FLONE |  |  |
| 190 | 1132 | 24 | 9008 | 1039 |  | STD | 9008 |  | ZROCK |
| 191 | 1024 | 69 | 1079 | 1182 | MARKB | LDD | FLONE |  |  |
| 192 | 1182 | 24 | 9009 | 1039 |  | STD | 9009 |  | ZROCK |
| 193 | 1039 | 48 | 1092 | 0854 | 2ROCK | NZC |  |  | WHICH |
| 194 | 1092 | 59 | 0030 | 1042 |  | SXC | 0030 |  | LOOPA |
| 195 | 0967 | 60 | 9000 | 1225 | TYPEB | RAU | 9000 |  |  |
| 196 | 1225 | 88 | 8003 | 1034 |  | RAC | 8003 |  |  |
| 197 | 1034 | 69 | 1079 | 1232 |  | LDD | FLONE |  |  |
| 198 | 1232 | 24 | 9050 | 1089 |  | STD | 9050 |  |  |
| 199 | 1089 | 69 | 0968 | 1321 |  | LDD | ZEROA |  |  |
| 200 | 1321 | 24 | 9004 | 0928 |  | STD | 9004 |  | CULLA |
| 201 | 0928 | 60 | 6060 | 1165 | culla | RAU | 0060 | C |  |
| 202 | 1165 | 30 | 0009 | 1385 |  | SRT | 0009 |  |  |
| 203 | 1385 | 44 | 1139 | 1040 |  | NZU | LOOPB |  |  |
| 204 | 1040 | 48 | 1093 | 0994 |  | NZC |  |  | TOTAL |
| 205 | 1093 | 59 | 0030 | 0928 |  | SXC | 0030 |  | CULLA |
| 206 | 1139 | 60 | 6070 | 1275 | LOOPB | RAU | 0070 | C |  |
| 207 | 1275 | 44 | 1129 | 0930 |  | NZU |  |  | ERROR |
| 208 | 1129 | 60 | 0983 | 1137 |  | RAU | TOTWO |  |  |
| 209 | 1137 | 39 | 6068 | 1068 |  | FMP | 0068 | C |  |
| 210 | 1068 | 34 | 9047 | 1072 |  | FDV | 9047 |  |  |
| 211 | 1072 | 34 | 6061 | 0961 |  | FDV | 0061 | C |  |
| 212 | 0961 | 39 | 0966 | 1116 |  | FMP | ONEHO |  |  |
| 213 | 1116 | 21 | 9001 | 1074 |  | STU | 9001. |  |  |
| 214 | 1074 | 39 | 6070 | 0970 |  | FMP | 0070 | $C$ |  |
| 215 | 0970 | 21 | 9002 | 0978 |  | STU | 9002 |  |  |
| 216 | 0978 | 60 | 9001 | 1187 |  | RAU | 9001 |  |  |


| 217 | 1187 | 39 | 6063 | 1113 |  | FMP | 0063 | C |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 218 | 1113 | 39 | 6080 | 0980 |  | FMP | 0080 | C |  |
| 219 | 0980 | 39 | 5067 | 1017 |  | FMP | 0067 | C |  |
| 220 | 1017 | 32 | 9002 | 1097 |  | FAD | 9002 |  |  |
| 221 | 1.097 | 32 | 9004 | 1127 |  | FAD | 9004 |  |  |
| 222 | 1127 | 21 | 9004 | 1286 |  | STU | 9004 |  |  |
| 223 | 1286 | 48 | 1189 | 0994 |  | NZC |  |  | TOTAL |
| 224 | 1189 | 59 | 0030 | 0928 |  | SXC | 0.030 |  | CULLA |
| 225 | 0994 | 80 | 0000 | 1150 | TOTAL | RAA | 0000 |  |  |
| 226 | 1150 | 60 | 9004 | 1259 |  | RAU | 9004 |  |  |
| 227 | 1259 | 34 | 0962 | 1012 |  | FDV | TWOAA |  |  |
| 228 | 1012 | 21 | 9003 | 1020 |  | STU | 9003 |  |  |
| 229 | 1020 | 33 | 1079 | 1205 |  | FSB | FLONE |  |  |
| 230 | 1205 | 46 | 0958 | 1309 |  | BMI |  |  | ROOTA |
| 231 | 0958 | 69 | 1079 | 1282 |  | LDD | FLONE |  |  |
| 232 | 1282 | 24 | 9003 | 1309 |  | STD | 9003 |  | ROOTA |
| 233 | 1309 | 60 | 9004 | 1067 | ROOTA | RAU | 9004 |  |  |
| 234 | 1067 | 34 | 9003 | 1371 |  | FDV | 9003 |  |  |
| 235 | 1371 | 32 | 9003 | 0951 |  | FAD | 9003 |  |  |
| 236 | 0951 | 34 | 0962 | $1062^{\circ}$ |  | FDV | TWOAA |  |  |
| 237 | 1062 | 21 | 9003 | 1070 |  | STU | 9003 |  |  |
| 238 | 1070 | 51 | 0012 | 0926 |  | SXA | 0012 |  |  |
| 239 | 0926 | 40 | 1179 | 1030 |  | NZA |  |  | HPAAA |
| 240 | 1179 | 50 | 0013 | 1309 |  | AXA | 0013 |  | ROOTA |
| 241 | 1031 | 60 | 9000 | 1239 | TYPEA | RAU | 9000 |  |  |
| 242 | 1239 | 88 | 8003 | 0948 |  | RAC | 8003 |  |  |
| 243 | 0948 | 69 | 0968 | 1421 |  | LDD | ZEROA |  |  |
| 244 | 1421 | 24 | 9050 | 1028 |  | STD | 9050 |  |  |
| 245 | 1028 | 24 | 9003 | 1435 |  | STD | 9003 |  | SORTA |
| 246 | 1435 | 60 | 6060 | 1215 | SORTA | RAU | 0060 | C |  |
| 247 | 1215 | 30 | 0009 | 1485 |  | SRT | 0009 |  |  |
| 2.48 | 1.485 | 44 | 1289 | 1.090 |  | NZU | LOOPC |  |  |
| 249 | 1090 | 48 | 1143 | 1030 |  | NZC |  |  | HPAAA |
| 250 | 1143 | 59 | 0030 | 1435 |  | SXC | 0030 |  | SORTA |
| 251 | 1289 | 60 | 6065 | 1069 | LOOPC | RAU | 0065 | C |  |
| 252 | 1069 | 44 | 1123 | 1124 |  | NZU |  |  | WRONG |
| 253 | 1123 | 60 | 0983 | 1237 |  | RAU | TOTWO |  |  |
| 254 | 1237 | 39 | 6068 | 1118 |  | FMP | 0068 | C |  |
| 255 | 1118 | 39 | 6063 | 1163 |  | FMP | 0063 | C |  |
| 256 | 1163 | 34 | 6061 | 1011 |  | FDV | 0061 | C |  |
| 257 | 1011 | 39 | 0966 | ] 166 |  | FMP | ONEHD |  |  |
| 258 | 1166 | 34 | 6065 | 1265 |  | FDV | 0065 | C |  |
| 259 | 1265 | 21 | 6071 | 1174 |  | STU | 0071 | C |  |
| 260 | 1174 | 33 | 9003 | 1255 |  | FSE | 9003 |  |  |
| 261 | 1255 | 46 | 1008 | 1359 |  | BMI | SMALL |  | LARGE |
| 262 | 1359 | 60 | 6071 | 1325 | LARGE | RAU | 0071 | C |  |
| 263. | 1325 | 21 | 9003 | 1008 |  | STU | 9003 |  | SMALL |
| 264 | 1008 | 48 | 1061 | 1030 | SMALL | NZC |  |  | HPAAA |
| 265 | 1061 | 59 | 0030 | 1435 |  | S×C | 0030 |  | SORTA |
| 266 | 1030 | 60 | 9003 | 1339 | HPAAA | RAU | 9003 |  |  |
| 267 | 1339 | 21 | 9054 | 0998 |  | STU | 9054 |  |  |
| 263 | 0998 | 33 | 9049 | 1229 |  | FSB | 9049 |  |  |
| 269 | 1229 | 46 | 1332 | 1033 |  | BMI | MINIM |  | MOREA |
| 270 | 1332 | 69 | 9049 | 1389 | MINIM | LDD | 9049 |  |  |


| 271 | 1389 | 24 | . 9055 | 0996 |  | STD | 9055 | SINGU |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 272 | 1033 | 60 | 90.48 | 1141 | MOREA | RAU | 9048 |  |
| 273 | 1141 | 33 | 9054 | 1471 |  | FSB | 9054 |  |
| 274 | 1471 | 46 | 1224 | 1375 |  | BMI | SPLIT |  |
| 275 | 1375 | 69 | 9054 | 1382 |  | LDD | 9054 |  |
| 276 | 1382 | 24 | 9055 | 0996 |  | STD | 9055 | SINGU |
| 277 | 0996 | 60 | 9055 | 1305 | SINGU | RAU | 9055 |  |
| 278 | 1305 | 21 | 9056 | 0914 |  | STU | 9056 |  |
| 279 | 0914 | 34 | 1117 | 1167 |  | FDV | SERFI |  |
| 280 | 1167 | 21 | 9057 | 0976 |  | STU | 9057 |  |
| 281 | 0976 | 69 | 0968 | 1521 |  | LDD | ZEROA |  |
| 282 | 1521 | 24 | 9058 | 1078 |  | STD | 9058 |  |
| 283 | 1078 | 24 | 9059 | 1535 |  | STD | 9059 |  |
| 284 | 1535 | 69 | 1079 | 1432 |  | LDD | FLONE |  |
| 285 | 1432 | 24 | 9053 | 1439 |  | STD | 9053 | ALLOW |
| 286 | 1224 | 60 | 9054 | 1083 | SPLIT | RAU | 9054 |  |
| 287 | 1083 | 34 | 9048 | 1287 |  | FDV | 9048 |  |
| 288 | 1287 | 21 | 9001 | 1046 |  | STU | 9001 |  |
| 289 | 1046 | 35 | 0008 | 1315 |  | SLT | 0008 |  |
| 290 | 1315 | 30 | 0008 | 1133 |  | SRT | 0008 |  |
| 291 | 1133 | 80 | 8003 | 1142 |  | RAA | 8003 |  |
| 292 | 1142 | 51 | 0050 | 1048 |  | SXA | 0050 |  |
| 293 | 1048 | 82 | 0010 | 0904 |  | RAB | 0010 |  |
| 294 | 0904 | 53 | 2000 | 1111 |  | SXB | 2000 |  |
| 295 | 1111 | 50 | 0050 | 1217 |  | AXA | 0050 |  |
| 296 | 1217 | 60 | 9001 | 1425 |  | RAU | 9001 |  |
| 297 | 1425 | 30 | 4000 | 1147 |  | SRT | 0000 |  |
| 298 | 1147 | 60 | 8003 | 1355 |  | RAU | 8003 |  |
| 299 | 1355 | 35 | 4000 | 1177 |  | SLT | 0000 |  |
| 300 | 1177 | 10 | 8005 | 1183 |  | AUP | 8005 |  |
| 301 | 1183 | 21 | 9002. | 1.192 |  | STU | 9002 |  |
| 302 | 1192 | 33 | 9001 | 1173 |  | FSB | 9001 |  |
| 303 | 1173 | 44 | 1227 | 1128 |  | NZU |  | NUMBR |
| 304 | 1227 | 60 | 9002 | 1337 |  | RAU | 9002 |  |
| 305 | 1337 | 32 | 1079 | 1405 |  | FAD | FLONE |  |
| 306 | 1405 | 21 | 9002 | 1128 |  | STU | 9002 | NUMBR |
| 307 | 1128 | 60 | 9002 | 1387 | NUMBR | RAU | 9002 |  |
| 308 | 1387 | 21 | 9053 | 1096 |  | STU | 9053 |  |
| 309 | 1096 | 60 | 9045 | 1455 |  | RAU | 9045 |  |
| 310 | 1455 | 35 | 0007 | 1571 |  | SLT | 0007 |  |
| 311 | 1571 | 30 | 0009 | 1191 |  | SRT | 0009 |  |
| 312 | 1191 | 44 | 1295 | 1146 |  | NZU | UNEQL | EQUAL |
| 313 | 1146 | 60 | 9054 | 1505 | EQUAL | RAU | 9054 |  |
| 314 | 1505 | 21 | 9055 | 0964 |  | STU | 9055 |  |
| 315 | 0964 | 34 | 9053 | 1168 |  | FDV | 9053 |  |
| 316 | 11.68 | 21 | 9056 | 1026 |  | STU | 9056 |  |
| 317 | 1026 | 34 | 1117 | 1267 |  | FDV | SERFI |  |
| 318 | 1267 | 21 | 9057 | 1076 |  | STU | 9057 |  |
| 319 | 1076 | 69 | 0968 | 1621 |  | L.DD | ZEROA |  |
| 320 | 1621 | 24 | 9058 | 1178 |  | STD | 9058 |  |
| 321 | 1178 | 24 | 9059 | 1439 |  | STD | 9059 | ALLOW |
| 322 | 1295 | 60 | 9048 | 1203 | UNEQL | RAU | 9048 |  |
| 323 | 1203 | 21 | 9056 | 1112 |  | STU | 9056 |  |
| 324 | 1112 | 34 | 1117 | 1317 |  | FDV | SERFI |  |


| 325 326 | 1317 | 21 60 | 9057 | 1126 1585 |  | STU RAU | 9057 9053 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 327 | 1585 | 39 | 9048 | 1489 |  | FMP | 9048 |  |  |
| 328 | 1489 | 33 | 9054 | 1119 |  | FSB | 9054 |  |  |
| 329 | 1119 | 44 | 1223 | 1274 |  | NZU | UNEVN |  | EVENA |
| 330 | 1274 | 69 | 9054 | 1081 | EVENA | LDD | 9054 |  |  |
| 331 | 1081 | 24 | 9055 | 0938 |  | STD | 9055 |  |  |
| 332 | 0938 | 69 | 0968 | 1671 |  | LDD | ZEROA |  |  |
| 333 | 1671 | 24 | 9058 | 1228 |  | STD | 9058 |  |  |
| 334 | 1228 | 24 | 9059 | 1439 |  | STD | 9059 |  | ALLOW |
| 335 | 1223 | 60 | 9053 | 1131 | UNEVN | RAU | 9053 |  |  |
| 336 | 1131 | 33 | 1079 | 1555 |  | FSB | FLONE |  |  |
| 337 | 1555 | 39 | 9048 | 1409 |  | FMP | 9048 |  |  |
| 338 | 1409 | 21 | 9001 | 1218 |  | STU | 9001 |  |  |
| 339 | 1218 | 60 | 9054 | 1277 |  | RAU | 9054 |  |  |
| 340 | 1277 | 33 | 9001 | 1207 |  | FSB | 9001 |  |  |
| 341 | 1207 | 21 | 9002 | 1216 |  | STU | 9002 |  |  |
| 342 | 1216 | 33 | 9049 | 1197 |  | FSB | 9049 |  |  |
| 343 | 1197 | 46 | 1200 | 1001 |  | BMI | SHORT |  | WITHN |
| 344 | 1001 | 60 | 9002 | 1459 | WITHN | RaU | 9002 |  |  |
| 345 | 1459 | 21 | 9058 | 1268 |  | STU | 9058 |  |  |
| 346 | 1268 | 34 | 1117 | 1367 |  | FDV | SERFI |  |  |
| 347 | 1367 | 21 | 9059 | 1176 |  | STU | 9059 |  |  |
| 348 | 1176 | 69 | 9054 | 1233 |  | LDD | 9054 |  |  |
| 349 | 1233 | 24 | 9055 | 1439 |  | STD | 9055 |  | ALLOW |
| 350 | 1200 | 60 | 9049 | 1509 | SHORT | RAU | 9049 |  |  |
| 351 | 1509 | 21 | 9058 | 1318 |  | STU | 9058 |  |  |
| 352 | 1318 | 34 | 1117 | 1417 |  | FDV | SERFI |  |  |
| 353 | 1417 | 21 | 9059 | 1226 |  | STU | 9059 |  |  |
| 354 | 1226 | 60 | 9001 | 1635 |  | RAU | 9001 |  |  |
| 355 | 1635 | 32 | 9049 | 1365 |  | FAD | 9049 |  |  |
| 356 | 1365 | 21 | 9055 | 1439 |  | STU | 9055 |  | ALLOW |
| 357 | 1439 | 60 | 9000 | 1247 | ALLOW | RAU | 9000 |  |  |
| 358 | 1247 | 88 | 8003 | 1106 |  | RAC | 8003 |  |  |
| 359 | 1106 | 69 | 0968 | 1721 |  | LDD | ZEROA |  |  |
| 360 | 1721 | 24 | 9005 | 1278 |  | STD | 9005 |  | LOOPD |
| 361 | 1278 | 60 | 6060 | 1415 | LOOPD | RaU | 0060 | C |  |
| 362 | 1415 | 30 | 0009 | 1685 |  | SRT | 0009 |  |  |
| 363 | 1685 | 44 | 1539 | 1140 |  | NZU | AOORB |  |  |
| 364 | 1140 | 48 | 1193 | 1044 |  | NZC |  |  | READY |
| 365 | 1193 | 59 | 0030 | 1278 |  | SXC | 0030 |  | LOOPD |
| 366 | 1539 | 60 | 9050 | 1297 | AOORB | RaU | 9050 |  |  |
| 367 | 1297 | 44 | 1051 | 0902 |  | NZU | BBBEE |  | afaye |
| 368 | 0902 | 60 | 9056 | 1161 | AAAYE | RAU | 9056 |  |  |
| 369 | 1161 | 33 | 6071 | 1347 |  | FSB | 0071 | C |  |
| 370 | 1347 | 46 | 1250 | 1051 |  | BMI |  |  | BBBEE |
| 371 | 1250 | 60 | 6071 | 1475 |  | RAU | 0071 | C |  |
| 372 | 1475 | 34 | 9056 | 1279 |  | FDV | 9056 |  |  |
| 373 | 1279 | 21 | 9001 | 0988 |  | STU | 9001 |  |  |
| 374 | 0988 | 35 | 0008 | 1257 |  | SLT | 0008 |  |  |
| 375 | 1257 | 30 | 0008 | 1525 |  | SRT | 0008 |  |  |
| 376 | 1525 | 80 | 8003 | 1084 |  | RAA | 8003 |  |  |
| 377 | 1084 | 51 | 0050 | 1190 |  | SXA | 0050 |  |  |
| 378 | 1190 | 82 | 0010 | 1196 |  | RAB | 0010 |  |  |


| 379 | 1196 | 53 | 2000 | 1253 |  | SXB | 2000 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 380 | 1253 | 50 | 0050 | 1559 |  | AXA | 0050 |  |  |
| 381 | 1559 | 60 | 9001 | 1467 |  | RAU | 9001 |  |  |
| 382 | 1467 | 30 | 4000 | 1589 |  | SRT | 0000 | B |  |
| 383 | 1589 | 60 | 8003 | 1397 |  | RAU | 8003 |  |  |
| 384 | 1397 | 35 | 4000 | 1169 |  | SLT | 0000 | B |  |
| 385 | 1169 | 10 | 8005 | 1575 |  | AUP | 8005 |  |  |
| 386 | 1575 | 21 | 9002 | 1134 |  | STU | 9002 |  |  |
| 387 | 1134 | 33 | 9001 | 1465 |  | FSB | 9001 |  |  |
| 388 | 1465 | 44 | 1219 | 1120 |  | NZU |  |  | KEEEP |
| 389 | 1219 | 60 | 9002 | 1329 |  | RAU | 9002 |  |  |
| 390 | 1329 | 32 | 1079 | 1605 |  | FAD | FLONE |  |  |
| 391 | 1605 | 21 | 6080 | 1051 |  | STU | 0080 | C | bBBEE |
| 392 | 1120 | 60 | 9002 | 1379 | KEEEP | RAU | 9002 |  |  |
| 393 | 1379 | 21 | 6080 | 1051 |  | STU | 0080 | C | BBBEE |
| 394 | 1051 | 60 | 9055 | 1609 | BBBEE | RAU | 9055 |  |  |
| 395 | 1609 | 39 | 1162 | 1212 |  | FMP | THSFI |  |  |
| 396 | 1212 | 34 | 6068 | 1368 |  | FDV | 0068 | C |  |
| 397 | 1368 | 34 | 6064 | 1014 |  | FDV | 0064 | C |  |
| 398 | 1014 | 21 | 6079 | 1482 |  | STU | 0079 | C |  |
| 399 | 1482 | 60 | 9056 | 1241 |  | RAU | 9056 |  |  |
| 400 | 1241 | 39 | 1162 | 1262 |  | FMP | THSFI |  |  |
| 401 | 1262 | 34 | 6068 | 1418 |  | FDV | 0068 | C |  |
| 402 | 1418 | 34 | 6064 | 1064 |  | FDV | 0064 | C |  |
| 403 | 1064 | 21 | 6083 | 1336 |  | STU | 0083 | C |  |
| 404 | 1336 | 60 | 9058 | 1345 |  | RAU | 9058 |  |  |
| 405 | 1345 | 39 | 1162 | 1312 |  | FMP | THSFI |  |  |
| 406 | 1312 | 34 | 6068 | 1468 |  | FDV | 0068 | C |  |
| 407 | 1468 | 34 | 6064 | 1114 |  | FDV | 0064 | C |  |
| 408 | 1114 | 21 | 6084 | 1437 |  | STU | 0084 | C |  |
| 409 | 1437 | 60 | 6065 | 1269 |  | RAU | 0065 | C |  |
| 410 | 1269 | 44 | 1273 | 1324 |  | NZU | SOMEA |  | NONEA |
| 411 | 1324 | 21 | 6082 | 1735 | NONEA | STU | 0082 | C |  |
| 412 | 1735 | 48 | 1038 | 1044 |  | NZC |  |  | READY |
| 413 | 1038 | 59 | 0030 | 1278 |  | SXC | 0030 |  | LOOPD |
| 414 | 1273 | 60 | 1276 | 1181 | SOMEA | RAU | CONST |  |  |
| 415 | 1181 | 39 | 6063 | 1213 |  | FMP | 0063 | C |  |
| 416 | 1213 | 34 | 6065 | 1515 | $\alpha$ | FDV | 0065 | C |  |
| 417 | 1515 | 34 | 6064 | 1164 |  | FDV | 0064 | C |  |
| 418 | 1164 | 34 | 6061 | 1211 |  | FDV | 0061 | C |  |
| 419 | 1211 | 21 | 6082 | 1785 |  | STU | 0082 | C |  |
| 420 | 1785 | 60 | 6065 | 1319 |  | RAU | 0065 | C |  |
| 421 | 1319 | 32 | 9005 | 0999 |  | FAD | 9005 |  |  |
| 422 | 0999 | 21 | 9005 | 1058 |  | STU | 9005 |  |  |
| 423 | 1058 | 48 | 1261 | 1044 |  | NZC |  |  | READY |
| 424 | 1261 | 59 | 0030 | 1278 |  | SXC | 0030 |  | LOOPD |
| 425 | 1044 | 60 | 9000 | 1303 | READY | RAU | 9000 |  |  |
| 426 | 1303 | 88 | 8003 | 1362 |  | RAC | 8003 |  |  |
| 427 | 1362 | 60 | 9050 | 1771 |  | RAU | 9050 |  |  |
| 428 | 1771 | 44 | 1625 | 1326 |  | NZU | ADDAA |  | HOURS |
| 429 | 1625 | 60 | 1328 | 1283 | ADDAA | RAU | F I VHD |  |  |
| 430 | 1283 | 21 | 9005 | 1326 |  | STU | 9005 |  | HOURS |
| 431 | 1326 | 60 | 9005 | 1835 | HOURS | RAU | 9005 |  |  |
| 432 | 1835 | 32 | 9046 | 1565 |  | FAD | 9046 |  |  |


| 433 | 1565 | 21 | 9005 | 1374 |  | STU | 9005 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 434 | 1374 | 69 | 0968 | 1821 |  | LDD | ZEROA |  |  |
| 435 | 1821 | 24 | 9004 | 1378 |  | STD | 9004 |  |  |
| 436 | 1378 | 60 | 9047 | 1487 |  | RAU | 9047 |  |  |
| 437 | 1487 | 39 | 9055 | 1291 |  | FMP | 9055 |  |  |
| 438 | 1291 | 21 | 9006 | 1300 |  | STU | 9006 |  |  |
| 439 | 1300 | 34 | 9005 | 0954 |  | FDV | 9005 |  |  |
| 440 | 0954 | 21 | 9007 | 1412 |  | STU | 9007 |  |  |
| 441 | 1412 | 35 | 0008 | 1231 |  | SLT | 0008 |  |  |
| 442 | 1231 | 30 | 0008 | 1049 |  | SRT | 0008 |  |  |
| 443 | 1049 | 80 | 8003 | 1108 |  | RAA | 8003 |  |  |
| 444 | 1108 | 60 | 9007 | 1517 |  | RAU | 9007 |  |  |
| 445 | 1517 | 30 | 0006 | 1281 |  | SRT | 0006 |  |  |
| 446 | 1281 | 60 | 8003 | 1639 |  | RAU | 8003 |  |  |
| 447 | 1639 | 35 | 0006 | 1353 |  | SLT | 0006 |  |  |
| 448 | 1353 | 10 | 8005 | 1659 |  | AUP | 8005 |  |  |
| 449 | 1659 | 21 | 9007 | 1518 |  | STU | 9007 |  | MLOOP |
| 450 | 1518 | 60 | 6060 | 1615 | MLOOP | RAU | 0060 | C |  |
| 451 | 1615 | 30 | 0009 | 1885 |  | SRT | 0009 |  |  |
| 452 | 1885 | 44 | 1689 | 1240 |  | NZU | SOLVE |  |  |
| 453 | 1240 | 48 | 1243 | 1094 |  | NZC |  |  | TEEEE |
| 454 | 1243 | 59 | 0030 | 1518 |  | SXC | 0030 |  | MLOOP |
| 455 | 1689 | 80 | 0000 | 1395 | SOLVE | RAA | 0000 |  |  |
| 456 | 1395 | 60 | 6073 | 1327 |  | RAU | 0073 | C |  |
| 457 | 1327 | 44 | 1331 | 1532 |  | NZU | FROZE |  |  |
| 458 | 1532 | 60 | 6074 | 1429 |  | RAlJ | 0074 | C |  |
| 459 | 1429 | 44 | 1331 | 1184 |  | NZU | FROZE |  |  |
| 460 | 1184 | 60 | 1276 | 1381 |  | RAU | CONST |  |  |
| 461 | 1381 | 34 | 6062 | 1462 |  | FDV | 0062 | C |  |
| 462 | 1462 | 34 | 6064 | 1214 |  | FDV | 0064 | C |  |
| 463 | 1214 | 34 | 6061 | 1311 |  | FDV | 0061 | C |  |
| 464 | 1311 | 21 | 9001 | ]. 170 |  | STU | 9001 |  |  |
| 465 | 1170 | 39 | 6070 | 1220 |  | FMP | 0070 | C |  |
| 466 | 1220 | 21 | 9002 | 1428 |  | STU | 9002 |  |  |
| 467 | 1428 | 60 | 6067 | 1871 |  | RAU | 0067 | C |  |
| 468 | 1871 | 39 | 6080 | 1080 |  | FMP | 0080 | C |  |
| 469 | 1080 | 32 | 9007 | 1361 |  | FAD | 9007 |  |  |
| 470 | 1361 | 39 | 9001 | 1665 |  | FMP | 9001 |  |  |
| 471 | 1665 | 39 | 6063 | 1263 |  | FMP | 0063 | C |  |
| 472 | 1263 | 32 | 9002 | 1293 |  | FAD | 9002 |  |  |
| 473 | 1293 | 21 | 9001 | 0952 |  | STU | 9001 |  |  |
| 474 | 0952 | 34 | 0962 | 1512 |  | FDV | TWOAA |  |  |
| 475 | 1512 | 21 | 9002 | 1270 |  | STU | 9002 |  |  |
| 476 | 1270 | 33 | 1079 | 1655 |  | FSB | FLONE |  |  |
| 477 | 1655 | 46 | 1158 | 1709 |  | BMI |  |  | ROOTB |
| 478 | 1158 | 69 | 1079 | 1582 |  | LDD | FLONE |  |  |
| 479 | 1582 | 24 | 9002 | 1709 |  | STD | 9002 |  | ROOTB |
| 480 | 1709 | 60 | 9001 | 1567 | ROOTB | RAU | 9001 |  |  |
| 481 | 1567 | 34 | 9002 | 1921 |  | FDV | 9002 |  |  |
| 482 | 1921 | 32 | 9002 | 1101 |  | FAD | 9002 |  |  |
| 483 | 1101 | 34 | 0962 | 1562 |  | FDV | TWOAA |  |  |
| 484 | 1562 | 21 | 9002 | 1320 |  | STU | 9002 |  |  |
| 485 | 1320 | 51 | 0012 | 1376 |  | SXA | 0012 |  |  |
| 486 | 1376 | 40 | 1479 | 1130 |  | NZA |  |  | WIDTH |


| 487 | 1479 | 50 | 0013 | 1709 |  | AXA | 0013 |  | ROOTB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 488 | 1130 | 60 | 9002 | 1739 | WIDTH | RAU | 9002 |  |  |
| 489 | 1739 | 21 | 6077 | 1331 |  | STU | 0077 | C | FROZE |
| 490 | 1331 | 60 | 1276 | 1431 | FROZE | RAU | CONST |  |  |
| 491 | 1431 | 39 | 6063 | 1313 |  | FMP | 0063 | C |  |
| 492 | 1313 | 34 | 6077 | 1377 |  | FDV | 0077 | C |  |
| 493 | 1377 | 34 | 6064 | 1264 |  | FDV | 0064 | C |  |
| 494 | 1264 | 34 | 6061 | 1411 |  | FDV | 0061 | C |  |
| 495 | 1411 | 32 | 9004 | 1341 |  | FAD | 9004 |  |  |
| 496 | 1341 | 21 | 9004 | 1350 |  | STU | 9004 |  |  |
| 497 | 1350 | 48 | 1403 | 1094 |  | NZC |  |  | TEEEE |
| 498 | 1403 | 59 | 0030 | 1518 |  | SXC | 0030 |  | MLOOP |
| 499 | 1094 | 60 | 9004 | 1453 | teeee | RAU | 9004 |  |  |
| 500 | 1453 | 32 | 9046 | 1333 |  | FAD | 9046 |  |  |
| 501 | 1333 | 21 | 9004 | 1242 |  | STU | 9004 |  |  |
| 502 | 1242 | 60 | 9006 | 1151 |  | RAU | 9006 |  |  |
| 503 | 1151 | 34 | 9004 | 1705 |  | FDV | 9004 |  |  |
| 504 | 1705 | 21 | 9008 | 1314 |  | STU | 9008 |  |  |
| 505 | 1314 | 60 | 9008 | 1323 |  | RaU | 9008 |  |  |
| 506 | 1323 | 35 | 0008 | 1391 |  | SLT | 0008 |  |  |
| 507 | 1391 | 30 | 0008 | 1759 |  | SRT | 0008 |  |  |
| 508 | 1759 | 80 | 8003 | 1568 |  | RAA | 8003 |  |  |
| 509 | 1568 | 60 | 9008 | 1427 |  | RaU | 9008 |  |  |
| 510 | 1427 | 30 | 0006 | 1441 |  | SRT | 0006 |  |  |
| 511 | 1441 | 60 | 8003 | 1099 |  | RAU | 8003 |  |  |
| 512 | 1099 | 35 | 0006 | 1363 |  | SLT | 0006 |  |  |
| 513 | 1363 | 10 | 8005 | 1369 |  | AUP | 8005 |  |  |
| 514 | 1369 | 21 | 9008 | 1478 |  | STU | 9008 |  |  |
| 515 | 1478 | 33 | 9007 | 1809 |  | FSB | 9007 |  |  |
| 516 | 1809 | 44 | 1413 | 1364 |  | NZU |  |  | OUTTT |
| 517 | 1413 | 69 | 9008 | 1122 |  | LDD | 9008 |  |  |
| 518 | 1122 | 24 | 9007 | 1529 |  | STD | 9007 |  |  |
| 519 | 1529 | 60 | 9000 | 1537 |  | RAU | 9000 |  |  |
| 520 | 1537 | 88 | 8003 | 1246 | , | RAC | 8003 |  |  |
| 521 | 1246 | 69 | 9004 | 1503 |  | LDD | 9004 |  |  |
| 522 | 1503 | 24 | 9005 | 0910 |  | STD | 9005 |  |  |
| 523 | 0910 | 69 | 0968 | 1172 |  | LDD | ZEROA |  |  |
| 524 | 1172 | 24 | 9004 | 1518 |  | STD | 9004 |  | MLOOP |
| 525 | 1364 | 60 | 9000 | 1373 | OUTTT | RAU | 9000 |  |  |
| 526 | 1373 | 88 | 8003 | 1632 |  | RAC | 8003 |  |  |
| 527 | 1632 | 69 | 0968 | 1222 |  | LDD | ZEROA |  |  |
| 528 | 1222 | 24 | 9004 | 1579 |  | STD | 9004 |  | INSPE |
| 529 | 1579 | 60 | 6060 | 1715 | INSPE | RAU | 0060 | C |  |
| 530 | 1715 | 30 | 0009 | 1935 |  | SRT | 0009 |  |  |
| 531 | 1935 | 44 | 1789 | 1290 |  | NZU | LOOKA |  |  |
| 532 | 1290 | 48 | 1343 | 1144 |  | NZC |  |  | SETLE |
| 533 | 1343 | 59 | 0030 | 1579 |  | SXC | 0030 |  | INSPE |
| 534 | 1789 | 60 | 6077 | 1481 | LOOKA | RAU | 0077 | C |  |
| 535 | 1481 | 33 | 6082 | 1859 |  | FSB | 0082 | C |  |
| 536 | 1859 | 46 | 1612 | 1463 |  | BMI | FREZA |  | POWRR |
| 537 | 1612 | 69 | 6082 | 1386 | FREZA | LDD | 0082 | C |  |
| 538 | 1386 | 24 | 6077 | 1180 |  | STD | 0077 | C |  |
| 539 | 1180 | 69 | 1079 | 1682 |  | LDD | FLONE |  |  |
| 540 | 1682 | 24 | 6073 | 1426 |  | STD | 0073 | C |  |


| 541 | 1426 | 60 | 9000 | 1436 |  | RAU | 9000 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 542 | 1436 | 88 | 8003 | 1518 |  | RAC | 8003 |  | MLOOP |
| 543 | 1463 | 60 | 6079 | 1383 | POWRR | RAU | 0079 | C |  |
| 544 | 1383 | 33 | 6077 | 1553 |  | FSB | 0077 | C |  |
| 545 | 1553 | 46 | 1156 | 1307 |  | BMI | FREZB |  | CLEAR |
| 546 | 1156 | 69 | 6079 | 1732 | FREZB | LDD | 0079 | C |  |
| 547 | 1732 | 24 | 6077 | 1230 |  | STD | 0077 | C |  |
| 548 | 1230 | 69 | 1079 | 1782 |  | LDD | FLONE |  |  |
| 549 | 1782 | 24 | 6073 | 1476 |  | STD. | 0073 | c |  |
| 550 | 1476 | 60 | 9000 | 1486 |  | RAU | 9000 |  |  |
| 551 | 1486 | 88. | 8003 | 1518 |  | RAC | 8003 |  | MLOOP |
| 552 | 1307 | 48 | 0960 | 1144 | CLEAR | NZC |  |  | SETLE |
| 553 | . 0960 | 59 | 0030 | 1579 |  | SXC | 0030 |  | INSPE |
| 554 | 1144 | 60 | 9000 | 1603 | SETLE | RAU | 9000 |  |  |
| 555 | 1603 | 88 | 8003 | 1662 |  | RAC | 8003 |  | THAWW |
| 556 | 1662 | 69 | 0968 | 1272 | THAWW | LDD | ZEROA |  |  |
| 557 | 1272 | 24 | 6073 | 1526 |  | STD | 0073 | C |  |
| 558 | 1526 | 48 | 1629 | 1280 |  | NZC |  |  | THAWD |
| 559 | 1629 | 59 | 0030 | 1662 |  | SXC | 0030 |  | THAWW |
| 560 | 1280 | 60 | 9000 | 1839 | THAWD | RAU | 9000 |  |  |
| 561 | 1839 | 88 | 8003 | 1098 |  | RAC | 8003 |  | NUMER |
| 562 | 1098 | 60 | 6060 | 1765 | NUMER | RAU | 0050 | C |  |
| 563 | 1765 | 30 | 0009 | 1536 |  | SRT | 0009 |  |  |
| 56.4 | 1536 | 44 | 1889 | 1340 |  | NZU | VIEWA |  |  |
| 565 | 1340 | 48 | 1393 | 1194 |  | NZC |  |  | RIGHT |
| 566 | 1393 | 59 | 0030 | 1098 |  | SXC | 0030 |  | NUMER |
| 567 | 1889 | 60 | 6068 | 1423 | VIEWA | RAU | 0068 | C |  |
| 568 | 1423 | 39 | 6064 | 1414 |  | FMP | 0064 | C |  |
| 569 | 1414 | 39 | 6077 | 1477 |  | FMP | 0077 | C |  |
| 570 | 1477 | 34 | 1162 | 1712 |  | FDV | THSFI |  |  |
| 571 | 1712 | 21 | 6081 | 1234 |  | STU | 0081 | C |  |
| 572 | 1234 | 60 | 6080 | 1586 |  | RAU | 0080 | C |  |
| 573 | 1586 | 33 | 9053 | 1617 |  | FSB | 9053 |  |  |
| 574 | 1617 | 44 | 1322 | 1372 |  | NZU |  |  | WILDO |
| 575 | 1322 | 60 | 6080 | 1636 |  | RAU | 0080 | C |  |
| 576 | 1636 | 39 | 9056 | 1390 |  | FMP | 9056 |  |  |
| 577 | 1390 | 33 | 6081 | 1357 |  | FSB | 0081 | C |  |
| 578 | 1357 | 46 | 1010 | 1372 |  | BMI | ADDD |  | WILDO |
| 579 | 1010 | 60 | 6080 | 1686 | ADDD | RAU | 0080 | C |  |
| 580 | 1686 | 32 | 1079 | 1755 |  | FAD | FLONE |  |  |
| 581 | 1755 | 21 | 6080 | 1433 |  | STU | 0080 | C |  |
| 582 | 1433 | 60 | 9000 | 1491 |  | RAU | 9000 |  |  |
| 583 | 1491 | 88 | 8003 | 1518 |  | RAC | 8003 |  | MLOOP |
| 584 | 1372 | 48 | 1675 | 1194 | WILDO | NZC |  |  | RIGHT |
| 585 | 1675 | 59 | 0030 | 1098 |  | SXC | 0030 |  | NUMER |
| 586 | 1194 | 60 | 9050 | 1653 | RIGHT | RAU | 9050 |  |  |
| 587 | 1653 | 44 | 1407 | 1208 |  | NZU |  |  | ENUFF |
| 588. | 1407 | 60 | 9051 | 1667 |  | RAU | 9051 |  |  |
| 589 | 1667 | 44 | 1208 | 1422 |  | NZU | ENUFF |  |  |
| 590 | 1422 | 60 | 9053 | 1531 |  | RAlJ | 9053 |  |  |
| 591 | 1531 | 33 | 1079 | 1805 |  | FSB | FLONE |  |  |
| 592 | 1805 | 44 | 1909 | 1208 |  | NZU | CHNGB |  | ENUFF |
| 593 | 1909 | 80 | 0000 | 1815 | CHNGB | RAA | 0000 |  |  |
| 594 | 1815 | 60 | 9000 | 1473 |  | RAU | 9000 |  |  |


| 595 | 1473 | 88 | 8003 | 1832 |  | RAC | 8003 |  | SIFTT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 596 | 1832 | 60 | 6060 | 1865 | SIFTT | RAU | 0060 | C |  |
| 597 | 1865 | 30 | 0009 | 1736 |  | SRT | 0009 |  |  |
| 598 | 1736 | 44 | 1939 | 1440 |  | NZU | UPDAT |  |  |
| 599 | 1440 | 48 | 1443 | 1244 |  | NZC |  |  | DIFFR |
| 600 | 1443 | 59 | 0030 | 1832 |  | SXC | 0030 |  | SIFTT |
| 601 | 1939 | 60 | 6072 | 1527 | UPDAT | RaU | 0072 | C |  |
| 602 | 1527 | 33 | 6080 | 1457 |  | FSB | 0080 | C |  |
| 603 | 1457 | 46 | 1060 | 1461 |  | BMI | ADDDA |  |  |
| 604 | 1461 | 48 | 1464 | 1244 |  | NZC |  |  | DIFFR |
| 605 | 1464 | 59 | 0030 | 1832 |  | SXC | 0030 |  | SIFTT |
| 606 | 1060 | 50 | 0001 | 1266 | ADDDA | AXA | 0001 |  |  |
| 607 | 1266 | 60 | 6080 | 1786 |  | RAU | 0080 | C |  |
| 608 | 1786 | 21 | 6072 | 1725 |  | STU | 0072 | C |  |
| 609 | 1725 | 48 | 1528 | 1244 |  | NZC |  |  | DIFFR |
| 610 | 1528 | 59 | 0030 | 1832 |  | SXC | 0030 |  | SIFTT |
| 611 | 1244 | 40 | 0967 | 1208 | DIFFR | NZA | TYPEB |  | ENUFF |
| 612 | 1208 | 60 | 9000 | 1717 | ENUFF | RaU | 9000 |  |  |
| 613 | 1717 | 88 | 8003 | 1576 |  | RAC | 8003 |  | APPLY |
| 614 | 1576 | 60 | 6060 | 1915 | APPLY | RaU | 0060 | C |  |
| 615 | 1915 | 30 | 0009 | 1836 |  | SRT | 0009 |  |  |
| 616 | 1836 | 44 | 1490 | 1540 |  | NZU | NEEED |  |  |
| 617 | 1540 | 48 | 1.493 | 1294 |  | NZC |  |  | GOTIT |
| 618 | 1493 | 59 | 0030 | 1576 |  | SXC | 0030 |  | APPLY |
| 619 | 1490 | 60 | 6066 | 1472 | NEEED | RAU | 0066 | C |  |
| 620 | 1472 | 44 | 1775 | 1626 |  | NZU | BȦADD |  | GOOOD |
| 621 | 1775 | 60 | 6066 | 1522 | BAADD | RAU | 0066 | C |  |
| 622 | 1522 | 33 | 6083 | 1110 |  | FSB | 0083 | C |  |
| 623 | 1110 | 46 | 1513 | 1514 |  | BMI | WORSE |  |  |
| 624 | 1514 | 60 | 0968 | 1626 |  | RAU | ZEROA |  | GOOOD |
| 625 | 1626 | 21 | 6085 | 1.088 | GOOOD | STU | 0085 | C |  |
| 626 | 1088 | 21 | 6086 | 1590 |  | STU | 0086 | C |  |
| 627 | 1590 | 21 | 6087 | 1640 |  | STU | 0087 | C |  |
| 628 | 1640 | 48 | 1543 | 1294 |  | NZC |  |  | GOTIT |
| 629 | 1543 | 59 | 0030 | 1576 |  | SXC | 0030 |  | APPLY |
| 630 | 1513 | 60 | 9058 | 1572 | WORSE | RAU | 9058 |  |  |
| 631 | 1572 | 44 | 1825 | 1676 |  | NZU | WILLA |  | SAME |
| 632 | 1825 | 60 | 6084 | 1690 | WILLA | RAU | 0084 | C |  |
| 633 | 1690 | 33 | 6066 | 1593 |  | FSB | 0066 | C |  |
| 634 | 1593 | 46 | 1296 | 1676 |  | BMI | WONTT |  | SAME |
| 635 | 1676 | 60 | 6066 | 1622 | SAME | RaU | 0066 | C |  |
| 636 | 1622 | 21 | 6085 | 1138 |  | STU | 0085 | C |  |
| 637 | 1138 | 39 | 6080 | 1330 |  | FMP | 0080 | C |  |
| 638 | 1330 | 21 | 6086 | 1740 |  | STU | 0086 | C |  |
| 639 | 1740 | 60 | 6066 | 1672 |  | RAU | 0066 | C |  |
| 640 | 1672 | 39 | 9053 | 1726 |  | FMP | 9053 |  |  |
| 641 | 1726 | 21 | 6087 | 1790 |  | STU | 0087 | C |  |
| 642 | 1790 | 48 | 1643 | 1294 |  | NZC |  |  | GOTIT |
| 643 | 1643 | 59 | 0030 | 1576 |  | SXC | 0030 |  | APPLY |
| 644 | 1296 | 60 | 9053 | 1855 | WONTT | RAU | 9053 |  |  |
| 645 | 1855 | 33 | 6080 | 1507 |  | FSB | 0080 | C |  |
| 646 | 1507 | 44 | 1511 | 1762 |  | NZU | LESSS |  | USALL |
| 647 | 1511 | 60 | 6066 | 1722 | LESSS | RaU | 0066 | C |  |
| 648 | 1722 | 21 | 6085 | 1188 |  | STU | 0085 | C |  |


| 649 | 1188 | 39 | 6080 | 1380 |  | FMP | 0080 | C |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 650 | 1380 | 21 | 6086 | 1840 |  | STU | 0086 | C |  |
| 651 | 1840 | 60 | 9053 | 1149 |  | RAU | 9053 |  |  |
| 652 | 1149 | 33 | 1079 | 1905 |  | FSB | FLONE |  |  |
| 653 | 1905 | 39 | 6066 | 1316 |  | FMP | 0066 | C |  |
| 654 | 1316 | 32 | 6084 | 1561 |  | FAD | 0084 | C |  |
| 655 | 1561 | 21 | 6087 | 1890 |  | STU | 0087 | C |  |
| 656 | 1890 | 48 | 1693 | 1294 |  | NZC |  |  | GOTIT |
| 657 | 1693 | 59 | 0030 | 1576 |  | SXC | 0030 |  | APPLY |
| 658 | 1762 | 60 | 6066 | 1772 | USALL | RAU | 0066 | C |  |
| 659 | 1772 | 21 | 6085 | 1238 |  | STU | 0085 | $C$ |  |
| 660 | 1238 | 60 | 9053 | 1447 |  | RAU | 9053 |  |  |
| 661 | 1447 | 33 | 1079 | 1206 |  | FSB | FLONE |  |  |
| 662 | 1206 | 39 | 6066 | 1366 |  | FMP | 0066 | C |  |
| 663 | 1366 | 32 | 6084 | 1611 |  | FAD | 0084 | C |  |
| 664 | 1611 | 21 | 6086 | 1940 |  | STU | 0086 | C |  |
| 665 | 1940 | 21 | 6087 | 1541 |  | STU | 0087 | C |  |
| 666 | 1541 | 48 | 1344 | 1294 |  | NZC |  |  | GOT IT |
| 667 | 1344 | 59 | 0030 | 1576 |  | SXC | 0030 |  | APPLY |
| 668 | 1294 | 60 | 9045 | 1703 | GOTIT | RAU | 9045 |  |  |
| 669 | 1703 | 10 | 1753 | 1557 |  | AUP | CONTR |  |  |
| 670 | 1557 | 21 | 9052 | 1416 |  | STU | 9052 |  |  |
| 671 | 1416 | 71 | 9052 | 1767 |  | WRI | 9052 |  |  |
| 672 | 1767 | 60 | 9000 | 1875 |  | RAU | 9000 |  |  |
| 673 | 1875 | 88 | 8003 | 1056 |  | RAC | 8003 |  | RANGE |
| 674 | 1056 | 80 | 0000 | 1812 | RANGE | RAA | 0000 |  |  |
| 675 | 1812 | 60 | 6059 | 1523 |  | RAU | 0069 | C |  |
| 675 | 1523 | 44 | 1577 | 1578 |  | NZU |  |  | NORGE |
| 677 | 1577 | 34 | 6062 | 1862 |  | FDV | 0062 | C |  |
| 678 | 1862 | 21 | 9001 | 1370 |  | STU | 9001 |  |  |
| 679 | 1370 | 34 | 0962 | 1912 |  | FDV | TWOAA |  |  |
| 680 | 1912 | 21 | 9002 | 1420 |  | STU | 9002 |  |  |
| 681 | 1420 | 34 | 0962 | 1563 |  | FDV | TWOAA |  |  |
| 682 | 1563 | 32 | 6077 | 1803 |  | FAD | 0077 | C |  |
| 683 | 1803 | 39 | 9001 | 1607 |  | FMP | 9001 |  |  |
| 684 | 1607 | 21 | 9001 | 1466 |  | STU | 9001 |  |  |
| 685 | 1466 | 34 | 0962 | 1613 |  | FDV | TWOAA |  |  |
| 686 | 1613 | 21 | 9003 | 1822 |  | STU | 9003 |  |  |
| 687 | 1822 | 33 | 1079 | 1256 |  | FSB | FLONE |  |  |
| 688 | 1256 | 46 | 1160 | 1210 |  | BMI | ! |  | ROOTC |
| 689 | 1160 | 69 | 1079 | 1882 |  | LDD | FLONE |  |  |
| 690 | 1882 | 24 | 9003 | 1210 |  | STD | 9003 |  | ROOTC |
| 691 | 1210 | 60 | 9001 | 1419 | ROOTC | RAU | 9001 |  |  |
| 692 | 1419 | 34 | 9003 | 1573 |  | FDV | 9003 |  |  |
| 693 | 1573 | 32 | 9003 | 1853 |  | FAD | 9003 |  |  |
| 694 | 1853 | 34 | 0962 | 1663 |  | FDV | TWOAA |  |  |
| 695 | 1663 | 21 | 9003 | 1872 |  | STU | 9003 |  |  |
| 696 | 1872 | 51 | 0012 | 1628 |  | SXA | 0012 |  |  |
| 697 | 1628 | 40 | 1581 | 1932 |  | NZA |  |  | SUGRT |
| 698 | 1581 | 50 | 0013 | 1210 |  | AXA | 0013 |  | ROOTC |
| 699 | 1932 | 60 | 9002 | 1591 | SUGRT | RAU | 9002 |  |  |
| 700 | 1591 | 32 | 6077 | 1903 |  | FAD | 0077 | C |  |
| 701 | 1903 | 21 | 9002 | 1713 |  | STU | 9002 |  |  |
| 702 | 1713 | 32 | 9003 | 1743 |  | FAD | 9003 |  |  |


| 703 | 1743 | 21 | 6078 | 1631 |  | STU | 0078 | c |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 704 | 1631 | 60 | 9002 | 1641 |  | RAU | 9002 |  |  |
| 705 | 1641 | 33 | 9003 | 1922 |  | FSB | 9003 |  |  |
| 706 | 1922 | 21 | 6076 | 1679 |  | STU | 0076 | C | PUNCH |
| 707 | 1578 | 69 | 0968 | 1623 | NORGE | LDO | ZEROA |  |  |
| 708 | 1623 | 24 | 6078 | 1681 |  | STD | 0078 | C |  |
| 709 | 1681 | 24 | 6076 | 1679 |  | STD | 0076 | C | PUNCH |
| 710 | 1679 | 27 | 9013 | 1284 | PUNCH | SET | 9013 |  |  |
| 711 | 1284 | 08 | 6076 | 1288 |  | LIB | 0076 | c |  |
| 712 | 1288 | 27 | 9017 | 1793 |  | SET | 9017 |  |  |
| 713 | 1793. | 08 | 6080 | 1292 |  | LIB | 0080 | $c$ |  |
| 714 | 1292 | 60 | 6060 | 1516 |  | RAU | 0060 | C |  |
| 715 | 1516 | 10 | 1753 | 1657 |  | AUP | CONTR |  |  |
| 716 | 165.7 | 21 | 9012 | 1566 |  | STU | 9012 |  |  |
| 717 | 1566 | 71 | 9012 | 1817 |  | WR1 | 9012 |  |  |
| 718 | 1817 | 60 | 6060 | 1616 |  | RAU | 0060 | C |  |
| 719 | 1616 | 30 | 0009 | 1587 |  | SRT | 0009 |  |  |
| 720 | 1587 | 44 | 1691 | 1342 |  | NZU | COUPL |  |  |
| 721 | 1342 | 48 | 1445 | 1346 |  | NZC |  |  | SETUP |
| 722 | 1445 | 59 | 0030 | 1056 |  | SXC | 0030 |  | RANGE |
| 723 | 1691 | 27 | 9025 | 1396 | COUPL | SET | 9025 |  |  |
| 724 | 1396 | 08 | 6083 | 1495 |  | LIB | 0083 | C |  |
| 725 | 1495 | 60 | 9012 | 1004 |  | RAU | 9012 |  |  |
| 726 | 1004 | 10 | 0853 | 1707 |  | AUP | DIGIT |  |  |
| 727 | 1707 | 21 | 9024 | 1666 |  | STU | 9024 |  |  |
| 728 | 1666 | 71 | 9024 | 1867 |  | WR1 | 9024 |  |  |
| 729 | 1867 | 48 | 14.70 | 1346 |  | NZC |  |  | SETUP |
| 730 | 1470 | 59 | 0030 | 1056 |  | SXC | 0030 |  | Range |
| 731 | 0990 | 69 | 0968 | 1673 | SELFP | LDD | ZEROA |  |  |
| 732 | 1673 | 24 | 6075 | 1678 |  | STD | 0075 | $c$ |  |
| 733 | 1678 | 60 | 6065 | 1469 |  | RAU | 0065 | c |  |
| 734 | 1469 | 44 | 1723 | 1424 |  | NZU | THERE |  | EMPTY |
| 735 | 1424 | 21 | 6082 | 1886 | EMPTY | STU | 0082 | c | LOOPE |
| 736 | 1723 | 60 | 1276 | 1731 | THERE | R.AU | COWST |  |  |
| 737 | 1731 | 39 | 6063 | 1763 |  | FMP | 0063 | C |  |
| 738 | 1763 | 34 | 6065 | 1716 |  | FDV | 0065 | c |  |
| 739 | 1716 | 34 | 6064 | 1564 |  | FDV | 0064 | C |  |
| 740 | 1564 | 34 | 6061 | 1661 |  | FDV | 0061 | c |  |
| 741 | 1661 | 21 | 6082 | 1886 |  | STU | 0082 | $c$ | LOOPE |
| 742 | 1886 | 80 | 0000 | 1392 | LOOPE | RAA | 0000 |  |  |
| 743 | 1392 | 60 | 1276 | 1781 |  | RAU | CONST |  |  |
| 744 | 1781 | 34 | 6062 | 1813 |  | FDV | 0062 | $c$ |  |
| 745 | 1813 | 34 | 6064 | 1514 |  | FDV | 0064 | c |  |
| 746 | 1614 | 34 | 6061 | 1711 |  | Fov | 0061 | C |  |
| 747 | 1711 | 21 | 9001 | 1520 |  | STU | 9001 |  |  |
| 748 | 1520 | 39 | 6070 | 1570 |  | FMP | 0070 | c |  |
| 749 | 1570 | 21 | 9002 | 1728 |  | STU | 9002 |  |  |
| 750 | 1728 | 60 | 6067 | 1773 |  | RAU | 0067 | C |  |
| 751 | 1773 | 39 | 6080 | 1430 |  | FMP | 0080 | - |  |
| 752 | 1430 | 39 | 6063 | 1863 |  | FMP | 0063 | C |  |
| 753 | 1863 | 39 | 9001 | 1917 |  | FMP | 9001 |  |  |
| 754 | 1917 | 32 | 9002 | 1497 |  | FAD | 9002 |  |  |
| 755 | 1497 | 21 | 9001 | 1306 |  | STU | 9001 |  |  |
| 756 | 1306 | 34 | 0962 | 1913 |  | FDV | thona |  |  |


| 757 | 1913 | 21 | 9002 | 1823 |  | STU | 9002 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 758 | 1823 | 33 | 1079 | 1356 |  | FSB | FLONE |  |  |
| 759 | 1356 | 46 | 12.60 | 1310 |  | BMI |  |  | ROOTD |
| 760 | 1260 | 69 | 1079 | 1483 |  | LDD | FLONE |  |  |
| 761 | 1483 | 24 | 9002 | 1310 |  | STD | 9002 |  | ROOTD |
| 762 | 1310 | 60 | 9001 | 1519 | ROOTD | RAU | 9001 |  |  |
| 763 | 1519 | 34 | 9002 | 1873 |  | FDV | 9002 |  |  |
| 764 | 1873 | 32 | 9002 | 1054 |  | FAD | 9002 |  |  |
| 765 | 1054 | 34 | 0962 | 1664 |  | FDV | TWOAA |  |  |
| 766 | 1664 | 21 | 9002 | 1923 |  | STU | 9002 |  |  |
| 767 | 1923 | 51 | 0012 | 1729 |  | SXA | 0012 |  |  |
| 768 | 1729 | 40 | 1533 | 1583 |  | NZA |  |  | ANSWR |
| 769 | 1533 | 50 | 0013 | 1310 |  | AXA | 0013 |  | ROOTD |
| 770 | 1583 | 60 | 9002 | 1741 | ANSWR | RAU | 9002 |  |  |
| 771 | 1741 | 21 | 6077 | 1480 |  | STU | 0077 | C |  |
| 772 | 1480 | 60 | 6066 | 1474 |  | RAU | 0066 | C |  |
| 773 | 1474 | 44 | 1627 | 1778 |  | NZU | WHOLE |  | TIMLY |
| 774 | 1627 | 60 | 6077 | 1831 | WHOLE | RAU | 0077 | C |  |
| 775 | 1831 | 34 | 6066 | 1766 |  | FDV | 0066 | C |  |
| 776 | 1766 | 21 | 9001 | 1524 |  | STU | 9001 |  |  |
| 777 | 1524 | 35 | 0008 | 1843 |  | SLT | 0008 |  |  |
| 778 | 1.843 | 30 | 0008 | 1761 |  | SRT | 0008 |  |  |
| 779 | 1761 | 80 | 8003 | 1620 |  | RAA | 8003 |  |  |
| 780 | 1620 | 51 | 0050 | 1776 |  | SXA | 0050 |  |  |
| 781 | 1776 | 82 | 0010 | 1633 |  | RAB | 0010 |  |  |
| 782 | 16.33 | 53 | 2000 | 1791 |  | SXB | 2000 |  |  |
| 783 | 1791 | 50 | 0050 | 1547 |  | AXA | 0050 |  |  |
| 784 | 1547 | 60 | 9001 | 1406 |  | RAU | 9001 |  |  |
| 785 | 1406 | 30 | 4000 | 1779 |  | SRT | 0000 | B |  |
| 786 | 1779 | 60 | 8003 | 1637 |  | RAU | 8003 |  |  |
| 787 | 1637 | 35 | 4000 | 1360 |  | SLT | 0000 | B |  |
| 788 | 1360 | 10 | 8005 | 1816 |  | AUP | 8005 |  |  |
| 789 | 1816 | 21 | 9002 | 1574 |  | STU | 9002 |  |  |
| 790 | 1574 | 33 | 9001 | 1456 |  | FSB | 9001 |  |  |
| 791 | 1456 | 44 | 1410 | 1460 |  | NZU |  |  | EXACT |
| 792 | 1410 | 60 | 9002 | 1569 |  | RAU | 9002 |  |  |
| 793 | 1569 | 32 | 1079 | 1506 |  | FAD | FLONE. |  |  |
| 794 | 1506 | 21 | 9002 | 1460 |  | STU | 9002 |  | EXACT |
| 795 | 1460 | 60 | 9002 | 1619 | EXACT | RAU | 9002 |  |  |
| 796 | 1619 | 21 | 6080 | 1683 |  | STU | 0080 | C |  |
| 797 | 1683 | 60 | 6075 | 1829 |  | RAU | 0075 | C |  |
| 798 | 1829 | 44 | 1733 | 1334 |  | NZU | FILUP |  |  |
| 799 | 1334 | 60 | 6080 | 1936 |  | RAU | 0080 | C |  |
| 800 | 1936 | 33 | 6072 | 1199 |  | FSB | 0072 | C |  |
| 801 | 1199 | 44 | 1104 | 1778 |  | NZU |  |  | TIML.Y |
| 802 | 1104 | 69 | 6080 | 1783 |  | LDD | 0080 | C |  |
| 803 | 1783 | 24 | 6072 | 1886 |  | STD | 0072 | C | LOOPE |
| 804 | 1778 | 60 | 6077 | 1881 | TIMLY | RAU | 0077 | c |  |
| 805 | 1881 | 33 | 6082 | 1510 |  | FSB | 0082 | C |  |
| 806 | 1510 | 46 | 1714 | 1733 |  | BMI | MOVUP |  | FILUP |
| 807 | 1714 | 69 | 6082 | 1687 | MOVUP | LDD | 0082 | C |  |
| 808 | 1687 | 24 | 6077 | 1530 |  | STD | 0077 | C |  |
| 309 | 1530 | 59 | 1079 | 1833 |  | LDD | FLONE |  |  |
| 810 | 1833 | 24 | 6075 | 1828 |  | STD | 0075 | c |  |


| 811 | 1828 | 60 | 6066 | 1624 |  | RAU | 0066 | C |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 812 | 1624 | 44 | 1627 | 1733 |  | NZU | WHOLE |  | FILUP |
| 813 | 1733 | 69 | 0968 | 1674 | Filup | LDD | ZEROA |  |  |
| 814 | 1674 | 24 | 6079 | 1883 |  | STD | 0079 | C |  |
| 815 | 1883 | 24 | 6081 | 1050 |  | STD | 0081 | C | ELIMN |
| 816 | 0930 | 60 | 6060 | 1866 | ERROR | RAU | 0060 | C |  |
| 817 | 1866 | 10 | 1753 | 1757 |  | AUP | CONTR |  |  |
| 818 | 1757 | 21 | 9008 | 1916 |  | STU | 9008 |  |  |
| 819 | 1916 | 69 | 1669 | 1724 |  | LDD | FIVEA |  |  |
| 820 | 1724 | 24 | 9009 | 1931 |  | STD | 9009 |  |  |
| 821 | 1931 | 71 | 9008 | 0898 |  | WRI | 9008 |  | halta |
| 822 | 1124 | 60 | 6060 | 1618 | WRONG | RAU | 0060 | C |  |
| 823 | 1618 | 10 | 1753 | 1807 |  | AUP | CONTR |  |  |
| 824 | 1807 | 21 | 9008 | 1668 |  | STU | 9008 |  |  |
| 825 | 1668 | 69 | 1774 | 1677 |  | LDD | SIXAA |  |  |
| 826 | 1677 | 24 | 9009 | 1384 |  | STD | 9009 |  |  |
| 827 | 1384 | 71 | 9008 | 0898 |  | WR1 | 9008 |  | HALTA |
| 828 | 1346 | 82 | 0800 | 1002 | SETUP | RAB | 0800 |  |  |
| 829 | 1002 | 80 | 0059 | 1258 |  | RAA | 0059 |  | ZCORE |
| 830 | 1258 | 69 | 0968 | 1824 | ZCORE | LDD | ZEROA |  |  |
| 831 | 1824 | 24 | 9200 | 1933 |  | STD | 9000 | A |  |
| 832 | 1933 | 40 | 1737 | 1787 |  | NZA |  |  | ZDRUM |
| 833 | 1737 | 51 | 0001 | 1258 |  | SXA | 0001 |  | ZCORE |
| 834 | 1787 | 27 | 9000 | 1442 | ZDRUM | SET | 9000 |  |  |
| 835 | 1442 | 29 | 4000 | 1052 |  | STI | 0000 | B |  |
| 836 | 1052 | 42 | 1556 | 0850 |  | NZB |  |  | BEGIN |
| 837 | 1556 | 53 | 0050 | 1787 |  | SXB | 0050 |  | ZDRUM |
| 838 | 0853 | 00 | 0.100 | 0000 | DIGIT | 00 | 0100 |  | 0000 |
| 839 | 0887 | 44 | 4444 | 4444 | FOURA | 44 | 4444 |  | 4444 |
| 840 | 0911 | 00 | 0000 | 0055 | FIFIV | 00 | 0000 |  | 0055 |
| 841 | 0968 | 00 | 0000 | 0000 | ZEROA | 00 | 0000 |  | 0000 |
| 842 | 0966 | 10 | 0000 | 0053 | ONEHD | 10 | 0000 |  | 0053 |
| 843 | 0983 | 22 | 0000 | 0049 | TOTWO | 22 | 0000 |  | 0049 |
| 844 | 1079 | 10 | 0000 | 0051 | FLONE | 10 | 0000 |  | 0051 |
| 845 | 0962 | 20 | 0000 | 0051 | TWOAA | 20 | 0000 |  | 0051 |
| 846 | 1117 | 75 | 0000 | 0050 | SERFI | 75 | 0000 |  | 0050 |
| 847 | 1162 | 37 | 5000 | 0053 | THSFI | 37 | 5000 |  | 0053 |
| 848 | 1328 | 50 | 0000 | 0053 | FIVHD | 50 | 0000 |  | 0053 |
| 849 | 1276 | 82 | 5000 | 0053 | CONST | 82 | 5000 |  | 0053 |
| 850 | 1753 | 00 | 0400 | 0000 | CONTR | 00 | 0400 |  | 0000 |
| 851 | 1669 | 55 | 5555 | 5555 | FIVEA | 55 | 5555 |  | 5555 |
| 852 | 1774 | 66 | 6666 | 6666 | SIXAA | 66 | 6666 |  | 6666 |
| 853 | 1400 | 00 | 0000 | 0058 | FIVET | 00 | 0000 |  | 0058 |
| 854 | 1450 | 10 | 0000 | 0052 | TENNN | 10 | 0000 |  | 0052 |
| 855 | 0882 | 60 | 0013 | 1718 | FXCST | RAU | 0013 |  |  |
| 856 | 1718 | 34 | 1450 | 1500 |  | FDV | TENNN |  |  |
| 857 | 1500 | 21 | 0000 | 1154 |  | STU | 0000 |  |  |
| 858 | 1154 | 60 | 0011 | 1768 |  | RAU | 0011 |  |  |
| 859 | 1768 | 21 | 0002 | 1606 |  | STU | 0002 |  |  |
| 860 | 1606 | 35 | 0008 | 1925 |  | SLT | 0008 |  |  |
| 861 | 1925 | 30 | 0008 | 1893 |  | SRT | 0008 |  |  |
| 862 | 1893 | 80 | 8003 | 1102 |  | RAA | 8003 |  |  |
| 863 | 1102 | 51 | 0050 | 1308 |  | SXA. | 0050 |  |  |
| 864 | 1308 | 82 | 0010 | 1764 |  | RAB | 0010 |  |  |


| 865 | 1764 | 53 | 2000 | 1874 |  | SXB | 0000 | A |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 866 | 1874 | 60 | 0002 | 1857 |  | RAU | 0002 |  |  |
| 867 | 1857 | 30 | 4000 | 1879 |  | SRT | 0000 | B |  |
| 868 | 1879 | 21 | 0007 | 1560 |  | STU | 0007 |  |  |
| 869 | 1560 | 60 | 0012 | 1818 |  | RAU | 0012 |  |  |
| 870 | 1818 | 44 | 1924 | 1826 |  | NZU |  |  | DEPRC |
| 871 | 1924 | 33 | 0002 | 1929 |  | FSB | 0002 |  |  |
| 872 | 1929 | 46 | 1434 | 1826 |  | BMI | TRDIN |  | DEPRC |
| 873 | 1434 | 60 | 1079 | 1484 | TRDIN | RAU | FLONE |  |  |
| 874 | 1484 | 34 | 0013 | 1814 |  | FDV | 0013 |  |  |
| 875 | 1814 | 21 | 0003 | 1656 |  | STU | 0003 |  |  |
| 876 | 1656 | 60 | 0007 | 1811 |  | RAU | 0007 |  |  |
| 877 | 1811 | 80 | 8003 | 1670 |  | RAA | 8003 |  |  |
| 878 | 1670 | 51 | 0001 | 1876 |  | SXA | 0001 |  |  |
| 879 | 1876 | 65 | 8005 | 1837 |  | RAL | 8005 |  |  |
| 880 | 1837 | 20 | 0006 | 1610 |  | STL | 0006 |  |  |
| 881 | 1610 | 60 | 1079 | 1534 |  | RAU | FLONE |  |  |
| 882 | 1534 | 21 | 0004 | 1907 |  | STU | 0004 |  |  |
| 883 | 1907 | 82 | 0015 | 1864 |  | RAB | 0015 |  | ROOTE |
| 884 | 1864 | 60 | 0002 | 1358 | ROOTE | RaU | 0002 |  |  |
| 885 | 1358 | 33 | 1079 | 1706 |  | FSB | FLONE |  |  |
| 886 | 1706 | 39 | 0004 | 1204 |  | FMP | 0004 |  |  |
| 887 | 1204 | 21 | 0005 | 1408 |  | STU | 0005 |  |  |
| 888 | 1408 | 60 | 0003 | 1458 |  | RAU | 0003 |  | DIVID |
| 889 | 1458 | 34 | 0004 | 1254 | DIVID | FDV | 0004 |  |  |
| 890 | 1254 | 51. | 0001 | 1660 |  | SXA | 0001 |  |  |
| 891 | 1660 | 40 | 1458 | 1914 |  | NZA | DIVID |  | ONNNN |
| 892 | 1914 | 32 | 0005 | 1584 | ONNNN | FAD | 0005 |  |  |
| 893 | 1584 | 34 | 0002 | 1152 |  | FDV | 0002 |  |  |
| 894 | 1152 | 21 | 0004 | 1508 |  | STU | 0004 |  |  |
| 895 | 1508 | 53 | 0001 | 1868 |  | SXB | 0001 |  |  |
| 896 | 1868 | 42 | 1926 | 1727 |  | NZB |  |  | FINSH |
| 897 | 1926 | 65 | 0006 | 1861 |  | RAL | 0006 |  |  |
| 898 | 1861 | 80 | 8002 | 1864 |  | RAA | 8002 |  | ROOTE |
| 899 | 1727 | 60 | 0012 | 1918 | FINSH | RAU | 0012 |  |  |
| 900 | 1918 | 35 | 0008 | 1887 |  | SLT | 0008 |  |  |
| 901 | 1887 | 30 | 0008 | 1756 |  | SRT | 0008 |  |  |
| 902 | 1756 | 80 | 8003 | 1719 |  | RAA | 8003 |  |  |
| 903 | 1719 | 51 | 0050 | 1777 |  | SXA | 0050 |  |  |
| 904 | 1777 | 82 | 0010 | 1634 |  | RAB | 0010 |  |  |
| 905 | 1634 | 53 | 2000 | 1841 |  | SXB | 0000 | A |  |
| 906 | 1841 | 60 | 0012 | 1769 |  | RAU | 0012 |  |  |
| 907 | 1769 | 30 | 4000 | 1891 |  | SRT | 0000 | B |  |
| 908 | 1891 | 21 | 0007 | 1710 |  | STU | 0007 |  |  |
| 909 | 1710 | 80 | 8003 | 1819 |  | RAA | 8003 |  |  |
| 910 | 1819 | 60 | 0004 | 1760 |  | RaU | 0004 |  |  |
| 911 | 1760 | 51 | 0001 | 1869 |  | SXA | 0001 |  |  |
| 912 | 1869 | 40 | 1827 | 1877 |  | NZA | MULTP |  | value |
| 913 | 1827 | 39 | 0004 | 1304 | MULTP | FMP | 0004 |  |  |
| 914 | 1304 | 51 | 0001 | 1810 |  | SXA | 0001 |  |  |
| 915 | 1810 | 40 | 1827 | 1877 |  | NZA | MULTP |  | value |
| 916 | 1877 | 39 | 0013 | 1919 | value | FMP | 0013 |  |  |
| 917 | 191.9 | 2.1 | 0000 | 1826 |  | STU | 0000 |  | DEPRC |
| 918 | 1826 | 60 | 0016 | 1927 | DEPRC | RAU | 0016 |  |  |


| 919 | 1927 | 44 | 1684 | 1734 |  | NZU | SINKF | STLIN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 920 | 1684 | 60 | 0013 | 1720 | SINKF | RAU | 0013 |  |
| 921 | 1720 | 33 | 0000 | 1878 |  | FSB | 0000 |  |
| 922. | 1878 | 21 | 0002 | 1806 |  | STU | 0002 |  |
| 923 | 1806 | 60 | 0007 | 1911 |  | RAU | 0007 |  |
| 924 | 1911 | 80 | 8003 | 1770 |  | RAA | 8003 |  |
| 925 | 1770 | 51 | 0001 | 1928 |  | SXA | 0001 |  |
| 926 | 1928 | 60 | 0016 | 1580 |  | RAU | 0016 |  |
| 927 | 1580 | 34 | 0966 | 1820 |  | FDV | ONEHD |  |
| 928 | 1820 | 32 | 1079 | 1855 |  | FAD | FLONE |  |
| 929 | 1856 | 21 | 0004 | 1558 |  | STU | 0004 | INCRE |
| 930 | 1558 | 39 | 0004 | 1354 | INCRE | FMP | 0004 |  |
| 931 | 1354 | 51 | 0001 | 1860 |  | SXA | 0001 |  |
| 932 | 1860 | 40 | 1558 | 1870 |  | NZA | INCRE |  |
| 933 | 1870 | 21 | 0001 | 1404 |  | STU | 0001 |  |
| 934 | 1404 | 33 | 1079 | 1906 |  | FSB | FLONE |  |
| 935 | 1906 | 21 | 0003 | 1608 |  | STU | 0003 |  |
| 936 | 1608 | 60 | 0016 | 1630 |  | RAU | 0016 |  |
| 937 | 1630 | 34 | 0966 | 1920 |  | FOV | ONEHD |  |
| 938 | 1920 | 34 | 0003 | 1454 |  | FDV | 0003 |  |
| 939 | 1454 | 39 | 0002 | 1202 |  | FMP | 0002 |  |
| 940 | 1202 | 21 | 9001 | 1910 |  | STU | 9001 |  |
| 941 | 1910 | 65 | 8007 | 1680 |  | RAL | 8007 |  |
| 942 | 1680 | 20 | 0008 | 1730 |  | STL | 0008 |  |
| 943 | 1730 | 60 | 0015 | 1780 |  | RAU | 0015 |  |
| 944 | 1780 | 35 | 0008 | 1249 |  | SLT | 0008 |  |
| 945 | 1249 | 30 | 0008 | 1830 |  | SRT | 0008 |  |
| 946 | 1830 | 11 | 0911 | 1880 |  | SUP | FIFIV |  |
| 947 | 1880 | 44 | 1784 | 1834 |  | NZU | SIMPL | COMPO |
| 948 | 1784 | 82 | 0000 | 1941 | SIMPL | RAB | 0000 | FIGUR |
| 949 | 1834 | 60 | 0015 | 1930 | COMPO | RAU | 0015 |  |
| 950 | 1930 | 35 | 0001 | 1937 |  | SLT | 0001 |  |
| 951 | 1937 | 30 | 0001 | 1943 |  | SRT | 0001 |  |
| 952 | 1.943 | 32 | 0968 | 1545 |  | FAD | ZEROA |  |
| 953 | 1545 | 21 | 0015 | 1884 |  | STU | 0015 |  |
| 954 | 1884 | 82 | 0001 | 1941 |  | RAB | 0001 | FIGUR |
| 955 | 1941 | 69 | 0013 | 1934 | FIGUR | LDD | 001.3 |  |
| 956 | 1934 | 24 | 0005 | 1658 |  | STD | 0005 |  |
| 957 | 1658 | 60 | 0007 | 1338 |  | RAU | 0007 |  |
| 958 | 1338 | 80 | 8003 | 1446 |  | RAA | 8003 |  |
| 959 | 1446 | 88 | 0001 | 1.252 |  | RAC | 0001 |  |
| 960 | 1252 | 60 | 0002 | 1708 |  | RAU | 0002 |  |
| 96.1 | 1708 | 34 | 0003 | 1504 |  | FDV | 0003 |  |
| 962 | 1504 | 21 | 0002 | 1758 |  | STU | 0002 |  |
| 963 | 1758 | 60 | 0001 | 1808 |  | RAU | 0001 |  |
| 964 | 1808 | 33 | 0004 | 1388 |  | FSB | 0004 |  |
| 965 | 1388 | 39 | 0002 | 1302 |  | FMP | 0002 |  |
| 966 | 1302 | 32 | 0000 | 1438 |  | FAD | 0000 |  |
| 967 | 1438 | 21 | 0003 | 1858 |  | STU | 0003 |  |
| 968 | 1858 | 32 | 0005 | 1488 |  | FAD | 0005 |  |
| 969 | 1488 | 34 | 0962 | 1538 |  | FDV | TWOAA |  |
| 970 | 1538 | 39 | 0015 | 1588 |  | FMP | 0015 |  |
| 971. | 1588 | 34 | 0966 | 1638 |  | FDV | ONEHD |  |
| 972 | 1638 | 21 | 0009 | 1688 |  | STU | 0009 |  |

$\left.\begin{array}{rlllllll}973 & 1688 & 59 & 2000 & 1595 & & \\ 974 & 1595 & 48 & 1148 & 1299 & \text { SXC } & 2000 & \text { STOWN } \\ 975 & 1148 & 88 & 0001 & 1908 & \text { NZC } & & \\ 976 & 1908 & 60 & 0003 & 1738 & \text { INTER } & \text { RAC } & 0001 \\ 977 & 1738 & 21 & 0005 & 1788 & & \text { INTER } \\ 978 & 1788 & 65 & 8007 & 1597 & & \text { STU } & 0005\end{array}\right]$

| 1027 | 1734 | 60 | 0007 | 1596 | STLIN | RAU | 0007 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1028 | 1596 | 35 | 0002 | 1804 |  | SLT | 0002 |  |
| 1029 | 1804 | 10 | 1400 | 1646 |  | AUP | FIVET |  |
| 1030 | 1646 | 32 | 0968 | 1696 |  | FAD | ZEROA |  |
| 1031 | 1696 | 21 | 0001 | 1854 |  | STU | 0001 |  |
| 1032 | 1854 | 60 | 0013 | 1746 |  | RAU | 0013 |  |
| 1033 | 1746 | 33 | 0000 | 1796 |  | FSB | 0000 |  |
| 1034 | 1796 | 34 | 0001 | 1301 |  | FDV | 0001 |  |
| 1035 | 1301 | 21 | 0002 | 1846 |  | STU | 0002 |  |
| 1036 | 1846 | 21 | 9001 | 1904 |  | STU | 9001 |  |
| 1037 | 1904 | 60 | 0015 | 1896 |  | RAU | 0015 |  |
| 1038 | 1896 | 35 | 0008 | 1946 |  | SLT | 0008 |  |
| 1039 | 1946 | 30 | 0008 | 1697 |  | SRT | 0008 |  |
| 1040 | 1697 | 11 | 0911 | 1747 |  | SUP | FIFIV |  |
| 1041 | 1747 | 44 | 1351 | 1402 |  | NZU | ZIMPL | POUND |
| 1042 | 1351 | 60 | 0013 | 1797 | ZIMPL | RAU | 0013 |  |
| 1043 | 1797 | 32 | 0000 | 1847 |  | FAD | 0000 |  |
| 1044 | 1847 | 34 | 0962 | 1897 |  | FDV | TWOAA |  |
| 1045 | 1897 | 39 | 0015 | 1947 |  | FMP | 0015 |  |
| 1046 | 1947 | 34 | 0966 | 1248 |  | FDV | ONEHD |  |
| 1047 | 1248 | 32 | 9001 | 1298 |  | FAD | 9001 |  |
| 1048 | 1298 | 21 | 9001 | 1754 |  | STU | 9001 | taxes |
| 1049 | 1402 | 60 | 0015 | 1348 | POUND | RAU | 0015 |  |
| 1050 | 1348 | 35 | 0001 | 1398 |  | SLT | 3001 |  |
| 1051 | 1398 | 30 | 0001 | 1448 |  | SRT | 0001 |  |
| 1052 | 1448 | 32 | 0968 | 1498 |  | FAD | ZEROA |  |
| 1053 | 1498 | 21 | 0015 | 1548 |  | STU | 0015 |  |
| 1054 | 1548 | 60 | 0013 | 1598 |  | RAU | 0013 |  |
| 1055 | 1598 | 33 | 0002 | 1648 |  | FSB | 0002 |  |
| 1056 | 1648 | 32 | 0013 | 1698 |  | FAD | 0013 |  |
| 1057 | 1698 | 34 | 0962 | 1748 |  | FDV | TWOAA |  |
| 1058 | 1748 | 21 | 0003 | 1798 |  | STU | 0003 |  |
| 1059 | 1798 | 39 | 0015 | 1848 |  | FMP | 0015 |  |
| 1060 | 1848 | 34 | 0966 | 1898 |  | FDV | ONEHD |  |
| 1061 | 1898 | 21 | 0009 | 1948 |  | STU | 0009 |  |
| 1062 | 1948 | 60 | 0007 | 1349 |  | RAU | 0007 |  |
| 1063 | 1349 | 80 | 8003 | 1399 |  | RAA | 8003 |  |
| 1064 | 1399 | 51 | 0001 | 1449 |  | SXA | 0001 |  |
| 1065 | 1449 | 40 | 1452 | 1.499 |  | NZA | CYCLE | STASH |
| 1066 | 1452 | 60 | 0003 | 1549 | CYCLE | RAU | 0003 |  |
| 1067 | 1549 | 33 | 0002 | 1599 |  | FSB | 0002 |  |
| 1068 | 1599 | 21 | 0003 | 1649 |  | STU | 0003 |  |
| 1069 | 1649 | 32 | 0009 | 1699 |  | FAD | 0009 |  |
| 1070 | 1699 | 39 | 0015 | 1749 | : | FMP | 0015 |  |
| 1071 | 1749 | 34 | 0966 | 1799 |  | FDV | ONEHD |  |
| 1072 | 1799 | 32 | 0009 | 1849 |  | FAD | 0009 |  |
| 1073 | 1849 | 21 | 0009 | 1899 |  | STU | 0009 |  |
| 1074 | 1899 | 51 | 0001 | 1949 |  | SXA | 0001 |  |
| 1075 | 1949 | 40 | 1452 | 1600 |  | NZA | CYCLE |  |
| 1076 | 1600 | 34 | 0001 | 1499 |  | FDV | 0001 | STASH |
| 1077 | 1499 | 32 | 9001 | 1650 | STASH | FAD | 9001 |  |
| 1078 | 1650 | 21 | 9001 | 1754 |  | STU | 9001 | TAXES |
| 1079 | 1754 | 60 | 0014 | 1700 | TAXES | RAU | 0014 |  |
| 1080 | 1700 | 39 | 0013 | 1750 |  | FMP | 0013 |  |

```
\(10811750 \quad 3409661800\)
\(10821800 \quad 3290011850\)
\(10831850 \quad 2190011900\)
\(10841900 \quad 3400131401\)
108514013909661451
108614512100220981
```

VITA

Myron Dean Simons<br>Candidate for the Degree of<br>Master of Science

Thesis: FIELD MACHINERY SELECTION USING STORED PROGRAMS
Major Field: Agricultural Engineering
Biographical:
Personal data: Born at Enid, Oklahoma, September 12, 1938.
Undergraduate study: Oklahoma: State University, 1956-1961.
Graduate Study: Oklahoma State University, 1961-1962.
Professional experience: Graduate Teaching Assistant, Agricultural Engineering Department, Oklahoma State University, 1961-1962. Instructor (Research), Agricultural Engineering Department, Oklahoma State University, 1962.

Registered Professional Engineer-in-Training, Oklahoma。
Associate Member of American Society of Agricultural Engineers.


[^0]:    Figure 4. Flow Diagram of General Procedure for Field Machinery Selection.

[^1]:    Figure 5. F1ow Diagram of Procedure for Calculation of Widths of Self-propelled Implements.

