THE APPLICATION OF STATISTICAL QUALITY CONTROL TO THE DESTRUCTIVE TESTING OF CEMENT

IN THE CONTROL LABORATORY

D	***
ມ	v

JOHN B. REINHART Bachelor of Science University of Oklahoma Norman, Oklahoma

1960

Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1962

OKLAHUMA STATE UNIVERSITY LIBRARY

NOV 13 1962

THE APPLICATION OF STATISTICAL QUALITY CONTROL TO THE DESTRUCTIVE TESTING OF CEMENT

IN THE CONTROL LABORATORY

Thesis Approved:

Thesis Adviser Dean of the Graduate School

505216 ii

PREFACE

One problem which constantly confronts industry is control of quality. Management is repeatedly required to make decisions concerning the control of the manufacturing process. As some variable of product quality is measured, someone must decide whether or not this quality is at a satisfactory level.

It must be realized that in many cases the present level of quality is satisfactory and no change is warranted. However, there still exists the problem of maintaining this established level. In other instances, the level may not be satisfactory and change in some control variable is necessary to raise or restore quality to the desired level.

It is the purpose of this thesis to present a complete and useful explanation of Shewhart control charts. When this is completed, it is desired to apply the technique to some phase of cement testing.

I wish to express my gratitude to the Ideal Cement Company, whose research fellowship at Oklahoma State University helped to make this study possible. Many people have contributed to this paper by giving their views and opinions concerning the portland cement industry and statistical quality control. I would like to thank the

iii

following men, who are officials of the Ideal Cement Company, for giving me their valuable time during this research: Mr. D. O. Howe, Plant Manager, Ada, Oklahoma; Mr. C. Hargis, Head of Quality Control, Ada, Oklahoma; and Mr. C. J. Noyes, Division Sales Manager, Oklahoma Division.

I am indebted to Dr. Paul E. Torgersen, Oklahoma State University, who has been so helpful during the past semester while acting as my faculty adviser on this project.

TABLE OF CONTENTS

Chapter	5	Page
I.	INTRODUCTION	. 1
~~ •	Coope of the Study	- -
		. 2
II.	THE HISTORY OF CEMENT.	3
	Discovery of Portland Cement	. 4 . 5
III.	THE MANUFACTURE OF PORTLAND CEMENT	. 6
IV.	THE THEORY BEHIND CONTROL CHARTS	. 10
	Types of Control Charts	. 11
V	A BRIEF EXPLANATION OF GENERAL TERMS USED IN QUALITY CONTROL WORK	13
	The Universe	$ \begin{array}{c} 13\\14\\16\\16\\18\\19\\21\\21\\21\end{array} $
VI.	DIRECTIONS FOR X AND R CHARTS	, 24
·	The Subgroup	24 25 26 27 31 33
VII.	METHODS USED IN THE COMPRESSIVE TESTING OF CEMENT IN THE CONTROL LABORATORY	37

Chapter

VIII.	THE A PRI	APP: ESS	LIC IVE	AT S	IC TR)N EN	OF GT	T] H.	HE •	TI •	ECI	HN:	EQT •	JE •	Т(•) (•	CON •	/[•	•	٠	٠		40
		Be In Bl	gin ter ain	ni pr e	ng et Nu	t at mb	he io er	An n c an	nal of nd	Lys Ez Co	sis xis omr	s. sti	ing ess	g (siv	Cor 7e	ndj St	ti tre	or	ıs gtł	s o lo	0 3 6	9	40 44 46
IX.	SUMM	ARY	AN	D	CC	NC	LU	SI	ON:	3.	٠	ø	9	•	•	o	6	a	¢	3	9	9	48
		Re	com	me	nd	lat	io	ns	ŭ	9	٥	o	۰	•	e		¢	9	•	9	•	•	50
BIBLIO	RAPHY	ζ.	c •	¢	•	a	•	۰	٠	•	a,	0	• •	•	ð	٥	4	•	ò	٠	o	٠	52
APPEND	IXES.	٠	0 G	a	•	ó	٠	8	8	*	6	9	Ŭ	٠	•		o	÷		•	٠	.•	54
		Ap Ap Ap Ap	pen pen pen	di di di di	x x x x	A. B. C. D.	• • •	* 5 0	9 9 0	• • •	• 0 • 0	•	• • •	• • •	• • •	9 0 34 13	• • •	0 • u	•	6 9 5	• • •	•	55 56 57 58
		App	pen	di	X	Ε.		•		•				٠		ą	٠		٠		•	6	59

LIST OF TABLES

Table					*	Pa	age
I.	Histogram Resulting in First Analysis .	Ŷ	ø	•	¢	ò	42
II.	Histogram Resulting in Second Analysis.	Ģ	¢	¢	G	ø	43
III.	Data on Compression Strength for Months January Through December	of •	•	e	•	C	60

LIST OF FIGURES

Figure)	Page
1.	Isometric Flow Chart of th of Portland Cement	e Manufacture
2.	Histogram	15
3.	Frequency Curve Superimpose	d on Histogram 15
ч.	Normal Probability Curve	• • • • • • • • • • • 17
5.	Comparison of Two Different	Distributions 17
6.	Confidence Limits	
7a.	$\overline{\mathbf{X}}$ Chart	
7b.	R Chart	
8.	Pictorial Interpretation of Process of X and R Charts	the Internal
9.	Lack of Control of Averages	· · · · · · · · · · · · · · · · · 3 ¹ 4
10.	Lack of Control of Ranges .	••••••••••••••••••••••••••••••••••••••
11.	Lack of Control of Averages	and Ranges 36
12.	Graphical Representation of	Data for One Year 45
13.	Scatter Diagram	

CHAPTER I

INTRODUCTION

In industry, it is either physically impossible or very unprofitable to attempt to consistently produce and dispense a perfect product. As a result of this, the manufacturer is forced to market a certain amount of defective product which inevitably comes back in the form of consumer dissatisfaction. It is largely due to this dissatisfaction that the producer must be concerned with regulating quality.

The purpose of this paper is to present a method which will aid in regulating and controlling quality. The many contributions that have already been made in this area supplied the author with the material necessary to develop an adequate explanation of the method. Once the explanation had been developed, it was applied to the compressive strength requirements for type one cement. The results showed the compressive strength of cement exhibits cyclical ten-This made the use of the control charts impossidencies. ble. In the attempt to uncover the cause for this erradic variation, a correlation analysis was performed. The two variables utilized in this analysis were compressive strength and particle size, which was indicated by a Blaine number. The results were negative. The paper was concluded

by recommending further study in this area, in the form of a multicorrelation analysis.

Scope of the Study

The technique of control analysis was applied to the compressive strength of cement. The data required were taken from the Ideal Cement Company, Ada, Oklahoma. It referred to the seven day test results. The information represented a one year period.

It was desired to lay ground work for future expansion of this method to more pertinent areas in the control of cement quality. For this reason the explanation and application were in no way integrated. As a result of this the reader, who is more familiar with the actual operations, is provided with a separate explanation of the technique. Making use of this condensed explanation, he can apply it to more advantageous areas of control.

CHAPTER II

THE HISTORY OF CEMENT

Evidence indicates that the use of cement, in one form or another, is as old as human civilization. Since man first felt the need to build, he has sought a material that would bind stones into a solid mass. The Assyrians and Babylonians, certainly among the first innovators, used clay for this purpose. Later the Egyptians utilized their discovery of lime and gypsum mortar as a cementing material, in the construction of the pyramids. The Greeks made further improvements and finally the Romans developed a cement which resembled the product as it is known today. Their cement had such great durability that some of their buildings, roads, and bridges still exist.

To make cement, the Romans mixed lime to which water had been added (slaked lime) with a volcanic ash from Mount Vesuvius called pozzolana. The ash produced a cement that was capable of hardening under water.

The art of making cement was lost with the fall of the Roman empire, around 400 A.D. It was more than thirteen hundred years later that the secret of making a cement that would harden under water was rediscovered. It was through the scientific spirit of inquiry of a British engineer,

John Smeaton, that a "hydraulic" cement was reintroduced to the world.

Repeated structural failure of the Eddystone lighthouse off the coast of Cornwall, England, led Mr. Smeaton to investigate the reactions of various mortars when subjected to both fresh and salt water. These experiments led to his discovery in 1756 that lime extracted from limestone containing a considerable proportion of clay would harden under water.

Discovery of Portland Cement

In 1824, a British bricklayer, named Joseph Aspdin, was granted a patent on a hydraulic cement, which he named "portland" cement because its color resembled that of a natural stone quarried on the Isle of Portland, a penninsula on the southern coast of Great Britain. Aspdin's greatest contribution was his method of production. He found that a cement superior to natural cement could be realized by carefully mixing, grinding, burning, and regrinding certain amounts of limestone and clay.

Before portland cement was discovered and for some years after its discovery, large quantities of natural cement were used. Natural cement was produced by burning the mixture of lime and clay in the state in which they are found in nature. Since the ingredients of natural cement are dependent upon nature's composition, its properties vary as widely as the natural resources from which it comes. Thus the use of natural cement gave way to portland cement, which is a predictable, known product of consistently high quality.

5

In the beginning, each portland cement manufacturer developed his own formula, until in 1898 ninety-one different formulae were in use. In 1917, the United States Bureau of Standards and the American Society for Testing Materials established a standard formula for portland cement. The Portland Cement Association was formed in 1916 and established research laboratories near Chicago.

The Development of Portland Cement

In 1880, about 42,000 barrels of portland cement were produced in the United States; a decade later the amount had increased to 335,500 barrels; and since that time production has increased steadily until today the United States manufactures and uses more than two and a half times as much portland cement as any other country in the world. Today in this country, 98 per cent of the cement produced is portland cement. This amounts to 50,000,000 tons a year, one fourth of the world's total.¹

¹Sir Charles Davis, <u>Portland</u> <u>Cement</u>, (London, 1934), p. 17.

CHAPTER III

THE MANUFACTURE OF PORTLAND CEMENT

Portland cement, the basic ingredient of concrete, contains about 65 per cent lime, 22 per cent silica, and 6 per cent alumina. Iron oxide and gypsum make up the rest of the materials. The gypsum, which is added in the final grinding process, regulates the setting or hardening time of cement. The lime used to make cement comes from materials such as limestone, oyster shells, chalk, and a type of clay called marl. Shale, clay, silica sand, slate, and blast furnace slag provide silica and alumina. Iron ore supplies the iron oxide.

The materials in the plant go through a closely controlled chemical process that consists of three basic steps: 1. crushing, 2. burning, and 3. fine grinding.

The quarried limestone is dumped into primary crushers. This first crushing smashes the rock into pieces about the size of a softball. Secondary crushers, or hammer mills, then break the rock into pieces about three-fourths of an inch wide.

Next the crushed rock and other raw materials are mixed in the right proportions to make portland cement. This mixture is then ground in rotating ball mills and tube mills.

These mills contain thousands of steel balls that grind the mixture into fine particles as the mills rotate. The materials can be ground by either a wet or dry method. In the wet process, water is added during the grinding until a soupy mixture called "slurry" forms. In the dry process, the materials are ground without water. Otherwise the processes are essentially alike.

After the raw materials have been ground, they are fed into a kiln or calciner, which is a huge cylindrical oven made of steel and lined with firebricks. The cement kiln rotates about 80 revolutions per hour, and is the largest piece of moving machinery used in any industry. It may be more than 12 feet in diameter and 500 feet in length. The kiln is mounted with the axis inclined slightly from the horizontal. The finely ground raw material or the slurry is fed into the higher end, and slides slowly toward the lower end as the kiln revolves. It takes about four hours for the materials to travel through the kiln. Gas is burned at the lower end of the kiln. This produces a roaring blast of flame that heats the materials to about 2,700 degrees Fahrenheit. As the material moves through the kiln, certain combinations of elements are driven off in the form of gases. The remaining elements unite to form a new substance with its own physical and chemical characteristics. The new substance, called "clinker", is formed in pieces about the size of marbles. About 100 pounds of raw material will produce 60 to 65 pounds of clinker.

Large fans cool the clinker after it leaves the kiln. The clinker may be stockpiled for future use, or it may be reground at once in ball or tube mills. A small amount of gypsum is added to the clinker before regrinding. This final grinding produces a powdery portland cement that is so finely ground that more than 90 per cent of it will pass through a screen containing 40,000 openings to the square inch; more than 80 per cent will pass through a screen that has 100,000 openings to the square inch. The cement is stored in silos until it is shipped.

A diagram of a typical cement plant is shown in Figure 1.

Figure 1. Isometric Flow Chart of the Manufacture of Portland Cement

CHAPTER IV

THE THEORY BEHIND CONTROL CHARTS

Every manufactured product is subject to two types of measured quality variation. The first are chance variations which are inherent in the machine or process. Some stable "system of chance causes" is always inherent in any particular scheme of production and inspection.¹ These chance variations, often referred to as unassignable causes, cannot be controlled or eliminated. This situation is somewhat analogous to the steering of an automobile. To steer the car in a perfect straight line is impossible. The play in the steering mechanism coupled with the constant corrections of the operator cause the vehicle to veer from the desired path. Although this small deviation is evident, it cannot be eliminated from the system. It is to be expected.

The second type of variations are outside this stable pattern. These arevariations due to assignable causes. It is these causes that we wish to eliminate from the process. Again the steering of an automobile can be cited as an example. Large deviations, such as radical movements back

¹E. L. Grant, <u>Statistical Quality Control</u>, (New York, 1952), p. 3.

and forth across the highway center line, can be termed irregular. These could be caused by some failure of the steering apparatus or malfunction of the operator. Whatever the cause or causes, it is desirable that they be stopped.

The control chart provides a useful means of distinguishing between chance variation and assignable causes. It provides the manufacturer with a basis for action. Through it he can determine whether or not the process is operating normally. If it is not, he can determine whether it is deviating sufficiently to justify corrective action.

In reality, a control chart is simply a graphical display of the production process. Its construction merely requires a few elementary mathematical calculations and the capacity to plot these computations graphically.

Types of Control Charts

There are three classifications of control charts as prescribed by Shewhart. The first are control charts for the mean and range, more commonly referred to as \overline{X} and R charts. These are used when some characteristic of quality is measured in terms of variables. When a record is made of an actual measured quality characteristic, such as a dimension expressed in thousandths of an inch, the quality is said to be expressed by variables.² The second and third

²Ibid., p. 5.

types are the control chart for fraction defective, or the p chart, and the control chart for number of defects per unit, known as the c chart. These are used in the case where the product specifications are written in terms of attributes. When a record shows only the number of articles conforming and the number of articles failing to conform to any specified requirements, it is said to be a record by attributes.³

In the testing of cement, the measurement of quality is expressed in specific units, such as pounds per square inch. This makes it necessary to utilize a chart which facilitates the use of measured quality in terms of variables rather than attributes. As a result of this, the control charts for mean and range, \overline{X} and R, will be employed.

³Ibid., p. 5.

CHAPTER V

A BRIEF EXPLANATION OF GENERAL TERMS USED IN QUALITY CONTROL WORK

Before proceeding any further in the explanation of control charts, it is first necessary to consider a few of the statistical principles utilized in their construction and application. For some, this will serve as a brief indoctrination in statistics. However, for the majority it will serve as a means of review.

The Universe

The total or whole of the items, articles, etc., under consideration is called the universe. The hypothetical set of all possible observations of the type which is being investigated is known as the Universe (or Population) of values.¹ Therefore, if vacuum tubes are the criteria of investigation, the universe must be considered as the sum total of all the tubes produced by the system in a specified period of time.

¹Owen L. Davies, <u>Statistical Methods in Research and</u> <u>Production</u>, (New York, 1958), p. 11.

Sampling

The first step in the application of any statistical control measure is the collection of data. This data consists of observations or items drawn randomly from the universe. Any finite set of these observations is regarded as a sample. This sample must be large enough to depict a true representation of the universe. As the sample size increases, its properties resemble more and more those of the true population.

Frequency Distribution

Once the data has been accumulated, it must be analyzed. One method is by means of a frequency distribution. The histogram is usually the best method for plotting a frequency distribution. This distribution provides a way of studying the nature of the variation in the body of data. Its construction starts with dividing into equal intervals the numerical values of the measured quality characteristic. These intervals are termed cells, and their numbers are cell values. These numbers are then recorded along the abscissa of a graph. The next operation is to go back through the data and record each measured value in its appropriate cell. When this is done, a diagram resembling the one shown in Figure 2 should result.

There are three important characteristics to be noted in this figure:

Numerical Value of Quality Characteristic

Figure 3. Frequency Curve Superimposed on Histogram

- 1. The results cluster around a central value.
- 2. They are spread roughly symmetrically around the central value.
- Small divergencies from the central value are found more frequently than large divergencies.

Frequency Curve

If the number of observations is greatly increased and the cell intervals made much narrower, it is reasonable to assume a curve, such as the one shown in Figure 3, would result. This smoothed curve is known as a frequency curve. It could be said to describe the true universe. In reality, the size of the sample allows only an approximation to this curve.

The Normal Curve

In actual practice the normal curve is used as a population model in connection with the estimation of the population frequency distribution. A normal distribution is a bell shaped curve as is shown in Figure 4. In other words, there are many cases where the distribution of the true universe closely resembles the normal curve. The reasons for this are beyond the scope of this thesis. It is only necessary to be aware that this situation exists.

Notice that the normal curve is fully defined by two parameters: its arithmetic mean, and its dispersion measured by the standard deviation. By knowing how to calculate and

Figure 5. Comparison of Two Different Distributions

apply these two values, it is now possible to describe the distribution. One need not determine all of the many possible irregularities in the exact population frequency distribution. To derive estimates of the two is sufficient.

The Mean

The mean (\overline{X}) is one measure of central tendency. The other two, which are not pertinent to this study, are the median and the mode. The mean is calculated by finding the arithmetic sum of the numerical values of all the cases divided by the number of cases. An example will be shown later. As can be seen, the mean characterizes an entire set of data by a single value.

The X value, however, does not by any means represent all the pertinent information about a set of data. These two sets of data may have the same mean but very different distributions. Figure 5 illustrates this point. Here are two different distributions that resulted in analyzing two different machines. Machine A shows more variability in the measured characteristic than Machine B. Although both have a mean of 60, it could be said that the performance of B is more homogeneous than A.

The Standard Deviation

There are various statistical indexes that can be used to measure these differences, and they are called measures of variability. One such measure is the standard deviation.

The standard deviation is expressed in terms of the original numerical values of the data, and reflects the variability in the distribution of the cases from the mean. Mathematically, the standard deviation, (σ) , is the square root of the average of the squares of the deviations of the individual cases from the mean. Expressed in algebraic terms, that is;

 $\Sigma(X_{i})$

The Range

In control charts the most widely measure of dispersion is the range. It is denoted by the symbol R. It is simply the difference between the largest and smallest observed value. Take for instance a sample containing measurements or readings of 50, 60, 70, 50, and 80 units. The range would be calculated by subtracting the lowest value from the highest, or 80 minus 50, which would yield a R value of 30. \overline{R} (read R bar or bar R), is the mean value of the ranges and is calculated in the same manner as \overline{X} .

The Standard Error

It must be remembered that the values of the mean and standard deviation just described are purely estimates of the true mean and standard deviation (signified by \overline{X} ' and σ ') of the universe. They were calculated from a sample which was

representative of the population and not exactly like it.

Now suppose that a large number of samples of the same size are drawn from the universe and the average of each It would be reasonable to expect the sample figured. averages to vary somewhat from each other. On the other hand, it would be found that they follow a distribution similar to the normal curve. This distribution of sample averages will obviously have a standard deviation of its In order to avoid confusion of terms, it is customary own. to refer to the standard deviation of sample averages as the standard error of sample averages. Further consideration will show that the standard error of the sample averages is a function of the standard deviation of the universe. The greater the spread in the universe, the greater will be the spread of the averages of samples drawn from it.

By knowing the estimate of the standard deviation of the universe, σ' , ($\sigma' = \frac{\overline{\sigma}}{c_2}$, in which $\overline{\sigma}$ is the average observed standard deviation of any given set of samples and c_2 is the tabulated value given in Table B of Appendix III, in Grant's <u>Statistical Quality Control</u>) it is now possible to determine the standard error of the sample averages. The standard error of sample averages is given by the expression;

$$\sigma_{\overline{X}} = \frac{\sigma'}{\sqrt{n}}$$

in which $\sigma_{\overline{X}}$ = the standard error of sample averages, σ' = the estimated standard deviation of the Universe, n = sample size.

Control Limits

When an estimate of some quantity has been made, it is desirable to know how precise this estimate is. A convenient way of expressing this <u>precision</u> is to state limits which, with a given probability, include the true value; it is then possible to state, for example, that the true value is unlikely to exceed some upper limit or to be less than a lower limit or to lie outside a pair of limits. They are limits within which it can be stated, with a given degree of confidence, that the true value lies.

In setting control limits, plus or minus one, two, or three standard deviations from the mean can be used. As is noted in Figure 6, two-thirds of the area under the curve falls between plus or minus one standard deviation, 95 per cent between plus or minus two σ , and 99.75 per cent within plus or minus three σ . In actual practice the three sigma limits are the ones most frequently used.

Upper and Lower Control Limits

In control charts, the control limits on the \overline{X} chart are the upper control limit for \overline{X} , noted UCL_{\overline{X}}, and the lower control limit, or LCL_{\overline{X}}. They are expressed mathematically in terms of three sigma as;

$$\begin{array}{rcl} \text{UCL}_{\overline{X}} &= & \overline{X} &+ & 3\sigma \\ & & & \overline{X} \end{array}$$
$$\begin{array}{rcl} \text{LCL}_{\overline{X}} &= & \overline{X} &- & 3\sigma \\ & & & \overline{X} \end{array}$$

The R chart also has upper and lower control limits. These are written as UCL and LCL. Expressed in equation R R R form, they become;

$$UCL_{R} = D_{L}R$$
$$LCL_{R} = D_{3}R,$$

 D_3 and D_4 being the factors presented in Table C, in Grant's, <u>Statistical Quality Control</u>.

A method of shortening the calculations necessary for control limits is shown in Appendix A.

CHAPTER VI

DIRECTIONS FOR X AND R CHARTS

A preliminary consideration in the application of \overline{X} and R charts, is the choice of the variable to be analyzed. This variable must be something that can be measured and expressed in numbers, such as a dimension, hardness number, or compressive strength. It is important that the variable chosen depict a pertinent characteristic of the product's quality. For example, to consider weight as the selected variable in cement would be rather useless, as the quality of cement is not necessarily dependent upon weight. A better indication of quality would be compressive strength, elasticity, etc. These measures are more representative in terms of what is desired in the way of quality.

The Subgroup

The key idea in the Shewhart method is the division of observations into what Shewhart called rational subgroups. The success of the Shewhart technique depends in large measure on the discrimination used in the selection of these subgroups.¹ These subgroups should be selected in a way

E. L. Grant, p. 132-133.

that would afford minimum opportunity for variation <u>within</u> the subgroup, but maximum opportunity for variation <u>between</u> the subgroups.

The size of the subgroup should be small. This is done to keep the variation within each subgroup as low as possible. The two most common sizes are four and five. A size of four makes the computation of the square root of n easier. A subgroup of five simplifies the calculation of the average, which can be obtained by multiplying the sum by two and moving the decimal point one place to the left. The choice between the two is merely a matter of preference.

The Taking of Samples

The frequency with which samples are taken is dependent upon the process under study. In some cases the cost associated with taking and analyzing samples, make a large number impossible. In others, frequent samples are a necessity. This would be applied in the case where the process variability was unusually high. When initially introducing a control chart, it may be necessary to utilize a large number of samples. Later on, when the troubles have been found and corrected, the frequency of sampling can be reduced.

It must be remembered that taking and recording measurements is subject to a certain amount of variation. No two inspectors read or record data exactly the same. What one sees as .002, the other may see as .005. This source of

variation must be realized and every possible step taken to reduce it. One such precaution might be to create some means of periodic orientation for inspectors as a group.

Starting the Control Chart

The actual work of the control chart starts with the first measurements. From these measurements a mean is calculated.

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \cdots + X_i}{n}$$

Where,

 \overline{X} = the mean or average of the subgroup, X_i = the individual measurements, n = the total number of measurements.

When this is done, the range of the subgroup is computed.

$$R = R_2 - R_1$$

Where,

R = the range,

 R_2 = the largest numerical value in the subgroup,

 R_1 = the smallest numerical value in the subgroup. Next, these points are plotted on their respective

graph. The most common graphs consist of eight or ten rulings to the inch.² The left side of the vertical scale

²Ibid., p. 136

is used for the \overline{X} and R calculations and the horizontal is used for the various subgroups. Thus, the horizontal scale may be in units of hours, days, or weeks, depending on the frequency of sampling. Each point within the control limits is noted by a dot and each one outside, a cross. The points may or may not be jointed.

The Trial Control Limits

Where past data is available, the trial control limits may be determined from it. However, it is usually a rare case where the records are kept in terms of the desired characteristic.

Where records do not exist, or exist in terms of the wrong characteristic, the subgroups must be allowed to accumulate, in order to compute the trial control limits. On statistical grounds it is desirable that control limits be based on at least twenty-five subgroups.³ Once these twenty-five subgroups have built up, the trial control limits can be calculated.

First, it is necessary to compute \overline{R} , the average range. This is the sum of the separate R's divided by the total number of subgroups.

$$\overline{R} = \frac{R_1 + R_2 + R_3 + \cdots R_i}{n}$$

³Ibid., p. 136.

Where,

 \overline{R} = the average R, R_i = the range of subgroup i, n = the number of subgroups.

Now by using the D_3 and D_4 factors explained in Appendix A, the trial control limits on the R chart can be computed as follows:

$$UCL_{R} = D_{4}R$$
$$LCL_{R} = D_{3}R$$

Next, $\overline{\overline{X}}$, or the average of the means, is calculated.

$$\overline{\overline{X}} = \frac{\overline{X}_1 + \overline{X}_2 + \overline{X}_3 + \cdots \overline{X}_i}{N}$$

Where,

 $\overline{\overline{X}}$ = the grand mean, \overline{X}_{i} = the average of subgroup i, N = the number of subgroups.

By utilizing the A_2 factor explained in Appendix A, the trial control limits for the \overline{X} chart become:

$$UCL_{\overline{X}} = \overline{X} + A_{2}\overline{R}$$
$$LCL_{\overline{X}} = \overline{X} - A_{2}\overline{R}$$

The \overline{X} and \overline{R} values are located centrally on the \overline{X} and R chart. They are drawn horizontally as heavy lines. The upper and lower trial control limits for both charts can now be applied. They should be represented by dashed markings. See Figure 7.

Figure 7b. R Chart

In initially setting up the charts, it may well happen that the plotted points show lack of statistical control for either or both charts; i.e., one or more points outside the trial control limits. This shows that assignable causes of variation have intervened during the acquisition of the initial data. Any subgroup which shows lack of control in relation to subgroup range should be discarded if it is desired to know the inherent variation of the process, and the value of \overline{R} should be recalculated. New trial control limits should be calculated and drawn on the graph. This procedure should be repeated until all the remaining points are within the trial control limits on the R chart. When all the points are within the trial control limits, they become the actual limits used in future application. Whether a subgroup showing an average value out of control with its range in control is discarded or not will depend on the purpose for which the chart is being used. If no specification exists for the process and it is desired to know the best that can be expected, subgroups showing lack of control on subgroup averages would be also discarded. If an average has been specified for the process, the calculated limit lines could be drawn around the specified average without reference to the average $\overline{\overline{X}}$ achieved during the trial period.

In cases where all the plotted points derived in the trial period or from past data are within the trial control limits, the process is said to be in statistical control.

The trial values thus become the actual values used in future application of the charts.

Interpretation of Control Charts

In drawing preliminary conclusions from the charts, it might be appropriate to consider what has happened thus far. First, data was taken from <u>within</u> each subgroup. This was in the form of \overline{X} and R. The \overline{X} and R were next combined into a grand average, $\overline{\overline{X}}$, and an average range, \overline{R} . From these $\overline{\overline{X}}$ and \overline{R} values the control limits were determined. These control limits now define the limits for variation <u>among</u> the subgroups. Each \overline{X} and R can be applied to these limits to determine whether their values are probable statistically. A graphic interpretation of this is shown in Figure 8.

If points fall outside the limits of probable occurrence, i.e., points above or below the upper or lower control limits on either or both the \overline{X} and R chart, assignable causes of variation are present. In other words, this is not a constant cause system and the process is out of control. It must be remembered, however, that when three sigma limits are employed, a probability of 0.27 per cent exists that the statement that the process is out of control is wrong. This is, of course, assuming that the process distribution resembles the normal. This coupled with the occasional errors in measurement, laboratory variability, etc., usually leads to the adoption of set

rules as a guide to future action. One such rule is to consider 0 out of 25 points, not more than one out of 35, or two out of 100 points outside control limits as evidence of excellent control.⁴

When all points fall within the control limits it can be said that there is no reason to believe that the data are not statistically uniform. There is no reason to doubt the presence of a constant cause system. For all practical purposes, the process should be left alone. There are cases, however, where all the points fall within the control limits, and still a lack of control is indicated. This situation is caused by excessive runs above or below the central line.

Lack of Control

Lack of control as shown by either the X or R chart or both can be interpreted by reference to Figures 9 through 11.

Figure 9 shows two distribution curves which have equal standard deviations but different averages. $(\sigma_1 = \sigma_2; X_1 \neq X_2)$. The shapes are equal, but curve one is to the left of curve two. In this case, the average has shifted. This would exist in control charts where the subgroup average was out of control while the subgroup range was in control. It implies that the system is

4 Ibid., p. 138.

Figure 10. Lack of Control of Ranges

capable of operating under control, but that some factor or factors have caused the average to shift. An example would be a control chart for a weighing machine, where the subgroup average shifted due to material sticking in the pan.

The next case is where there is a lack of control on the chart for ranges while the subgroup averages are under control. It is seen in Figure 10. An example would be worn machine parts in the weighing machine used in the previous example. Because the averages are under control, there can be no material sticking in the pan. This condition certainly suggests that there is something inherently wrong with the system. However, in actual practice the situation suggested in Figure 10 would probably result in a state of affairs present in Figure 11.

In Figure 11, both the subgroup averages and subgroup ranges lack control. This might correspond to both sticking of material and worn machine parts in the above example.

Figure 11. Lack of Control of Averages and Ranges

CHAPTER VII

METHODS USED IN THE COMPRESSIVE TESTING OF CEMENT IN THE CONTROL LABORATORY

The control laboratory at the Ideal Cement Company in Ada, Oklahoma utilizes three shifts. Each shift is composed of eight hours. In one shift eight samples are taken, making a total of twenty-four samples per day. These hourly samples are secured from a continuous sampling machine, located by a conveyor belt leading from the final grinding operation. The sampling mechanism is a homemade apparatus, which continually takes small increments of the product. These small increments are transferred by means of a screw conveyor to a large bucket. Every hour the accumulated product in this bucket is stirred and a sample taken from it. This hourly sample is placed in a container and taken to the control laboratory. When twenty-four samples have been collected, they are placed in a large container and mixed thoroughly. This mixture constitutes the composite sample of product used in performing the various required tests.

One such test, which is pertinent to this study, is the standard method of test for compressive strength of hydraulic cement. The procedure is described in the

American Society for Testing Material's manual, under ASTM Designation: C 109-58.

First one part of cement sample is combined with 2.75 parts of standard sand in a mixing bowl. Standard sand is a natural silica sand produced by a firm in Ottawa, Illinois. Distilled water is then added and the contents of the bowl placed in a mechanical mixer. When the mixing operation is completed, the resulting substance is removed and tamped into three oiled molds. These molds, which contain nine individual 2" by 2" cubes, are allowed to set up for twentyfour hours in a moist closet or room. At the end of the twenty-four hour period, the cubes are removed and submerged in a tray of water. The tray is then placed in a refrigerator. The temperature in this refrigerator is kept at a constant 73.4 plus or minus three degrees Fahrenheit. In three days, the first set of three cubes is removed from the tray and tested. This procedure is repeated at the end of seven days and again at twenty-eight.

The equipment used in the measurement of compressive strength is made by the Baldwin-Southwark Corporation. It has a capacity of 75,000 pounds per square inch. Each cube is placed in the machine and pressure applied until it breaks. The reading in pounds is then recorded. This is repeated until all three cubes have been broken and three breaking poundages recorded. The average of these three readings is figured and the result divided by the crosssectional area of the cube, or four square inches. These

`....

values, which are a measure of the compressive strength in pounds per square inch, are then recorded on a daily tabulation sheet.

CHAPTER VIII

THE APPLICATION OF THE TECHNIQUE TO COMPRESSIVE STRENGTH

A total of 273 measurements were taken from the daily tabulation sheets. The sheets covered the period from January 1, 1960 to December 3, 1960. The measurements were the results of the seven day tests for type one cement. This was done because it was felt that the seven day tests are more pertinent. In the testing of cement, supplementary samples must be sent to a recognized agency. In turn, this agency, must verify the results obtained in the laboratory at Ideal. Only in rare cases will these agencies issue releases for the product on the basis of the three day tests. The product nearly always is released of the strength of the seven day tests.

Beginning the Analysis

The first step in the analysis was to prove that the data were normally distributed. The preliminary procedure in verifying normality is the construction of a histogram. It was decided that the histogram in this case would be composed of forty cells. These cells were in increments of 50 pounds per square inch. They ranged from 2,526 to 4,525

pounds per square inch. In the construction, each of the 273 measurements were recorded in their respective cell. Each value was indicated by an "X". Thus, when the histogram was completed, each cell represented the frequency with which that particular value occurred. The histogram is shown in Table I.

Unexpectedly, what resulted was a bimodal distribution -- a histogram probably composed of at least two separate distributions. This can be seen in the two separate peaks which occur in the area between 3,426 and 3,525, and 3,676 and 3,675. Although pictorially it is somewhat evident that no normality is present, it must be verified mathematically. To accomplish this, a Chi Square Distribution Test was performed. The hypothesis in the Chi Square test is that the data is normally distributed. The mechanics of this test is illustrated in Appendix C and D. As can be seen, the results of this test were not conclusive enough to state strongly that normality existed. To carry the analysis farther, another histogram was needed.

In the second histogram the cell values were shifted over 25 pounds per square inch. This was done to take into account the possibility of the affect of adjacent cells on one another. The histogram that resulted is shown in Table II. This histogram, as in the first case, strongly indicated that the data was not normally distributed. The two separate distributions are even more pronounced than in the previous example. The Chi Square

HISTOGRAM RESULTING IN FIRST ANALYSIS

•	2526-2575
	-2J20-2J7J
	_2770-2027
	_2626-2675
х	2676-2725
	2726-2775
••••	-2776-2825
<u>۸</u>	
	2020-2075
XX	_2876-2925
	_2926-2975
xx	2976-3025
	- 3026-3075
1.42 1949	-2076-2125
XXXXX	
XXXXX	$-3 \pm 20 - 3 \pm 72$
XX	-3176-3225
XXX	: 3226-3275
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXX	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3376-3425
	-31/26
*****	-3+20-3+77
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-3470-3222
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	-3526-3575
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	_3576-3625
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	_3626-3675
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	3676-3725
xxxxxxxxxxxxxxxxxxxxxx	3726-3775
*******	3776-3825
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	3876-3025
*****	-3720-3777 -3076 400F
XXXXX	-39/0-4022
XXXX	4026-4075
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	_4076-4125
XXX	-4126-4175
×-×-	4176-4225
 	4226-4275
مـمـ 	
x	
XX	-+320-+3/2
XX	-4370-4425
Х	4426-4475
2	4476-4525

2501-2550 2551-2600 2601-2650 2651-2700 2701-2750 2751-2800 x 2801-2850 x_2851-2900 2901-2950 х xx²⁹⁵¹⁻³⁰⁰⁰ x 3001-3050 xxx_3051-3100 xxx_3101-3150 XXXX xxxx 3151-3200 3201-3250 XX 3251-3300 XXXXXXXXX 3301-3350 XXXXXXXXXX 3351-3400  $\mathbf{x}\mathbf{x}\mathbf{x}$ 3401-3450 3451-3500 501-3550 551-3600 3601-3650 XXXXXXXXX 3651-3700 701-3750 3 751-3800 801-3850 3851-3900 3901-3950 XXXXXXXXXX 3951-4000 XXXXXXXXXXXXXXX 4001-4050 XX xxxxxxx7+051-4100 4101-4150 XXXXX xxx7+151-4200 x_+201-+250 xxx7+251-4300 7+301-4350 х 4351-4400 XXX 4401-4450 4451-4500 XX

TABLE II

HISTOGRAM RESULTING IN SECOND ANALYSIS

Distribution Test firmly rejected the hypothesis that the data were normal. This can be considered very conclusive on the basis of the magnitude by which the hypothesis was discredited. Notice that in the first case the hypothesis was barely eccepted by 31.31 < 32.70. However, in the second analysis it was strongly rejected by 41.17 > 31.40. It will be remembered that normality is the necessary prerequisite to control chart application. Under the present conditions they cannot be successfully employed.

#### Interpretation of Existing Conditions

This state of affairs certainly must be interpreted as process out of control. Some variable or variables are intervening and causing erratic changes in the process. In order to better visualize these fluctuations, the data were put in graphical form. See Figure 12. As can be seen, the graph shows that the process runs in a cycle. The dotted line is superimposed to emphasize the existing cycle.

Having verified the fact that the process exhibits cyclical characteristics, it was next necessary to attempt to determine the cause. To do this a number of suspected variables were required. These variables for the most part were the result of the writer's conversations with respected authorities in the field of cement. Although the consensus was that there were many variables that might possibly have an effect on compressive strength, the ones mentioned most frequently were particle size, raw material variability,



Figure 12. Graphical Representation of Data for One Year

£

kiln temperature differential, tricalcium sulfide content, and the effect of humidity.

Blaine Number and Compressive Strength

The one variable that the writer felt had the greatest impact was particle size. This particle size is recorded in the daily tabulation sheets as a Blaine number. This number is in units of square centimeter per gram. Once these numbers had been matched with the respective compressive strength, a correlation analysis was performed. First, the data was combined in terms of a graph. It was desired that a scatter diagram would result. As can be seen in Figure 13, this did not occur. The mathematical correlation analysis, shown in Appendix E, positively substantiated the fact that no correlation exists between particle size and compressive strength of cement.



7<del>7</del>

#### CHAPTER IX

#### SUMMARY AND CONCLUSIONS

One aspect of quality control work which most frequently is misinterpreted and misused is specifications and the relationship of these specifications to control limits. Many times specifications are set without taking into account the process capabilities. For instance, take the compressive strength requirements specified by the American Society for the Testing of Materials. A comparison of this specification with the data taken over a year's period, quickly reveals not one measurement as low as that specified by ASTM. This indicates that the specifications are outdated and revision upward is necessary.

It is also necessary to comment on the specifications issued by the main control laboratory of Ideal Cement Company in Denver, Colorado. This laboratory specifies that compressive strength should be maintained somewhere between 3,400 and 4,200 pounds per square inch. In reality, the larger number is completely arbitrary and the lower figure should be interpreted as a minimum specification requirement. An analysis of the data shows that under existing conditions compressive strength cannot be maintained above this minimum level. If no solution can be

found, assuming an investigation is undertaken for the causes for the present fluctuating performance, then a revision should be required. There is a need to change the required limit so as to conform to production capabilities.

In considering control limits, it must be remembered that they are formulated mathematically. To use them validly, the process must be capable of operating in a stable pattern. As can be seen under present conditions, no normality exists.

Another factor which seemed abnormal to the author was the procedures used in sampling. The constant mixing of the sampled product could possibly contribute to a misrepresentation of existing quality. Consider the effect on the mean of two samples taken at a high and low quality level of production. For example, say the two measurements were numbers of 5,000 units, representing the high, and 1,000 units, the low, and it was desired to maintain a quality level of 3,000 units. Notice that when these two samples are combined or mixed they yield a mean or average value of 3,000. This certainly meets the requirements of 3,000. However, when they are considered separately, they tell a completely different story. Theoretically, one half of the time the process was operating far below the desired This is a far truer picture of the existing process. level.

The breaking of three cubes in each of the three, seven, and 28 day tests is another procedure which should

be terminated. The variability which exists between the three cubes rarely exceeds ten pounds per square inch. This is not enough to be significant.

#### Recommendations

A plan which the writer feels would be more adequate and, in part, solve the mixing and excessive cube breaking problems is as follows. First, only three samples would be taken in a 24 hour period. These three samples would be taken in increments of eight hours and in no way mixed. From each sample one cube would be made for each of the three, seven, and 28 day tests. In this way there would still be three cubes to be analyzed. However, each would represent an entirely different time period. It is felt that this procedure would depict more clearly the true operating characteristics of the process.

The most prominent problem exposed by this paper, was the fact that the compressive strength measurements show cyclical tendencies. It would be advantageous to uncover the cause or causes for this erratic fluctuation. To do this, a carefully controlled experiment would be necessary. The first step in such an analysis would be to list every possible variable. The difficulty will be in attempting to assign a numerical index to those variables which at present have none. An example of this is raw material variability. There is at present no measurement of the characteristics of the materials when they are entering

the plant. An attempt to do this would definitely have to be considered from the economic standpoint. However, it would be necessary for a complete and comprehensive analysis.

Having done this, it would next be necessary to apply a multiple correlation analysis to the collected data. The results of this type correlation would determine whether the cause was contained in the list of predetermined variables. If the results show the cause is not contained in the list of predetermined variables, then further analysis is necessary. Assuming that the cause or causes were contained in the listed variables, it would then be a process of elimination. Each variable would be analyzed in the manner described previously, when an attempt was made to correlate compressive strength and Blaine number or particle size.

#### A SELECTED BIBLIOGRAPHY

- ASTM Manual on Quality Control. Philadelphia, Pennsylvania: ASTM, 1951.
- ASTM Standards on Cement. Philadelphia, Pennsylvania: ASTM, September, 1958. Sponsored by ASTM Committee C-1 on Cement.
- Burr, I. W. Engineering Statistics and Quality Control. New York: McGraw-Hill, 1953.
- Croxton, Frederick E., and Dudley J. Cowden. <u>Applied</u> <u>General Statistics</u>. Englewood, New Jersey: Prentice-Hall, Inc., 1955.
- Davies, Owen L. <u>Statistical Methods in Research and</u> <u>Production</u>. New York: Hafner Publishing Company, 1958.
- Davis, Sir Charles. <u>Portland Cement</u>. London, England: Concrete Publications Limited, 1934.
- Duncan, Acheson J. <u>Quality Control and Industrial</u> <u>Statistics</u>. Homewood, Illinois: Richard D. Irwin, 1959.
- Gonnerman, H. F. <u>Development of Cement Performance Tests</u> <u>and Requirements</u>. Chicago, Illinois: Portland Cement Association, March, 1958.
- Kurnow, Ernest, Gerald J. Glasser, and Frederick R. Ottman. <u>Statistics for Business Decisions</u>. Homewood, Illinois: Richard D. Irwin, Inc., 1959.
- McHenry, Douglas, and J. J. Shideles. <u>Review of Data on</u> <u>Effect of Speed in Mechanical Testing of Concrete</u>. Authorized reprint from the <u>Symposium on Speed of</u> <u>Testing</u>, Special Technical Pub. #185. Philadelphia, Pennsylvania: ASTM, 1956.

- Powers, T. C., and T. L. Brownyard. <u>Studies of the</u> <u>Physical Properties of Hardened Portland Cement</u> <u>Paste</u>. Chicago, Illinois: Bulletin 22, Research Laboratories of the Portland Cement Association, March, 1948. Authorized reprint from the <u>Journal</u> <u>of the American Concrete Institute</u>, October, 1946-April, 1947, Proceedings, Vol. 43, 1947.
- Rutherford, John G. <u>Quality Control in Industry</u>. New York: Pitman Publishing Corporation, 1948.
- Watson, W., and Q. L. Craddock. <u>Cement Chemists'</u> and <u>Works Managers' Handbook</u>. London, England: Concrete Publications Limited, 1940.

and the second second second

# APPENDIXES

#### APPENDIX A

A METHOD OF SHORTENING CONTROL LIMIT CALCULATIONS

Because;

3

$$\sigma = 3 \frac{\sigma'}{\sqrt{n}}$$
 and  $\sigma' = \frac{\overline{R}}{d}$ 

(d₂ as given in Table B, Grant's, <u>Statistical Quality</u> <u>Control</u>, p. 512) it is possible to reduce  $3\sigma_{\overline{X}}$  to the following:

$$3\sigma = \frac{3\overline{R}}{d_0\sqrt{n}}$$

This allows the control limits for  $\overline{X}$  to be calculated from  $\overline{R}$  and also allows the use of the tabulated values of the factor  $\frac{3}{d_2\sqrt{n}}$ , noted as  $A_2$  in Table C. The new expressions thus become:

$$UCL_{\overline{X}} = \overline{X} + A_{2}\overline{R}$$
$$LCL_{\overline{X}} = \overline{X} - A_{2}\overline{R}.$$

# APPENDIX B

# LIST OF SYMBOLS

	N	Number of subgroups	
	n	Sample size	
	R	Range	
	R	Average range	
	X.	Individual item	
	X	Mean or average	
	X	Grand mean	·
	۲ı	True mean of the universe	
	o ·	Standard deviation	
•.	σt	True standard deviation of the universe	
	σ	Average observed standard deviation of a given	set
		of subgroups	
	σ <del>π</del>	Standard error of sample averages	
	UCLX	Upper control limit on X chart	
	LCL	Lower control limit on X chart	
	UCL	Upper control limit on R chart	
	LCLR	Lower control limit on R chart	(g. 17.
	r	Correlation coefficient	ber en

# APPENDIX C

# THE CHI SQUARE DISTRIBUTION TEST

# FOR ANALYSIS ONE

P(X <z) 0.9979 0.9910 0.9695 0.9386 0.9159 0.8873 0.8526 0.8114 0.7636 0.7099 0.6510 0.5883 0.5231 0.5231 0.4574 0.3928 0.3311 0.2736</z) 	Z) X 838532087532012460 838532087532012460 838532087532012460 838532087532012460 83853208727272	(x 2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$$x^{2} = \frac{\Sigma(F_{i} - f_{i})^{2}}{f_{i}} = 31.309$$

Because 31.309 < 32.700 (value taken from Table C in Duncan's, <u>Quality Control and Industrial Statistics</u>, Revised Edition, p. 871), the hypothesis must be accepted.

#### APPENDIX D

## THE CHI SQUARE DISTRIBUTION TEST

## FOR ANALYSIS TWO

Upper Limit of Class	(Z) (X-X) $\sigma$	P(X <z)< th=""><th>Prob.X Within Class</th><th>(f) Theor. Freq.</th><th>(F) Act. Freq.</th><th><u>(F-f)</u>2 f</th></z)<>	Prob.X Within Class	(f) Theor. Freq.	(F) Act. Freq.	<u>(F-f)</u> 2 f
4500.5 5550.5 5550.5 5555555555555555555	2.781 2.2955 1.660 1.130 0.805 0.430 0.1350 -0.1350 -0.13520 -0.13520 -0.1510 -1.580 -1.510 -2.170	0.9973 0.9889 0.9747 0.9279 0.8728 0.8328 0.7373 0.6198 0.5557 0.4247 0.3015 0.1562 0.0150 0.0150	0.0084 0.0142 0.0268 0.0200 0.0571 0.0380 0.05610 0.06573 0.06573 0.06573 0.06573 0.06573 0.06573 0.05548 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.055490 0.0555490 0.0555490 0.055550 0.055550 0.055550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.05550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0	2.29 3.88 7.346 15.59 10.37 12.00 20.61 22.00 21.849 23.010 22.551 23.050 13.33 10.160 8.99 3.88	54450304659997795304756	3.2054 1.5039 2.0057 0.20667 0.33407 0.4603 1.3446 0.9466 10.0914 0.0914 0.0914 0.0050 1.53466 10.07005 0.157 0.157

Because 41.170 > 31.400 (value taken from Table C in Duncan's, <u>Quality Control and Industrial Statistics</u>, Revised Edition, p. 871), the hypothesis, that the data is normally distributed, must be rejected.

46.3

58

200 - 40 1

#### APPENDIX E

# COMPUTATION OF CORRELATION COEFFICIENT

The correlation coefficient is computed by utilizing the following equation:

$$\mathbf{r} = \frac{\mathbf{n}\Sigma\mathbf{x}\mathbf{y} - \Sigma\mathbf{x}\Sigma\mathbf{y}}{\sqrt{\mathbf{n}\Sigma\mathbf{x}^2 - (\Sigma\mathbf{x})^2} \sqrt{\mathbf{n}\Sigma\mathbf{y}^2 - (\Sigma\mathbf{y})^2}}$$

where,

n = number of individual observations (273)

x = one variable

y = second variable.

The computations were performed on a table calculator with the following results:

 $\Sigma y = 863,463$   $\Sigma y^{2} = 2,739,029,675$   $\Sigma x = 998,680$   $\Sigma x^{2} = 3,678,057,028$  $\Sigma x y = 3,158,623,624$ 

These values, when substituted in the above formula, result in a r value of -.0049.

#### TABLE III

# DATA ON COMPRESSION STRENGTH FOR MONTHS OF JANUARY THROUGH DECEMBER

#### JANUARY

123456 <b>789</b> 0123456789012322222222222222222222222222222222222	3027 - 3133* 3150 - 3333 3100 - 3625 2904 - 3517 2981 - 3600 2965 - 3492 No production No production 2954 - 3767 3027 - 3875 3100 - 3692 No production No production
27 28 29	3077 - 3842 2954 - 3683 3150 - 3933
30	3111 - 4083

FEBRUARY

1 2 3 4 5 6 7 8 9 0 11 2	305 ¹ 296 306 298 316 293 295 No 1 310 317 316	+ 5 1		089777cc679		on
13 14	295	3 - 5 -	- 7 - 7	46	57 57	
15	296	5 -	. ž	48	33	
16	Noj	pro	ođu	ct	i	on
12	NO ]	pro	)du	CT	;l(	on Sn
19	NO 1	pro	งนั้น งสับ	ct ct	)( 'i'	วน าท
20	305	ртс 4 -	- 4	10	$\tilde{0}$	
21	296	5 -	- 3	95	50	
22	3001	4 -	- 3	99	92	~
23	No	pro	odu	ct	ji	on
24	298.	⊥ - 7	- 3	00	27	
27	290	L -	- J	00	57 55	
27	298:	1 -	- 3	95	50	

* The numbers in the first column represent the Blaine number (square centimeter per gram). The second column is the compressive strength in pounds per square inch.

# TABLE III (Continued)

### MARCH

12345678901123	No production No production No production 3004 - 3892 3027 - 4167 No production No production No production No production No production 3265 - 3983 3265 - 4342 3196 - 4292
14 15 16	3277 = 4450 3285 = 4367
17 18 19 20	No production No production 3099 - 4058 3100 - 3983 3038 - 3767 2981 - 3732
22 23 24 25	3038 - 3642 3054 - 3700 2908 - 3875 2931 - 3800 2931 - 3725
27 28 29 30	2951 - 5727 2908 - 3867 2954 - 3692 2981 - 3725 2904 - 3550 2953 - 3733

2981 2981 2924 31057 31157 30771 30778 31220 3125 2924 3125 2924 3125 20771 30778 31220 2926 31233 20321 3125 3125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 32125 3215 321		3417 333333357 5282280 5700055282280 5700055282280 570005528229 57000552855 57000552855 57000552855 570005552855 570005552855 570005552855 570005552855 570005552855 570005552855 570005552855 570005552855 570005552855 570005552855 570005552855 570005552855 570005552855 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 57000555285 570005555285 5700055555 5700055555 5700055555 57000555555 57000555555 57000555555 570005555555 5700055555555
3330 3123 3111 3219 3546		3425 3492 3508 3575 2725
No pi 3438 3650 3338	200 - -	iuction 3450 3642 3467

123456789012345678901234567890

APRIL

# .61

# TABLE III (Continued)

MAY

123456789012345678901234567890	580624881 pp26558409991168836068 34432940336 49668855111269829592 33443291440023220012221109829592		333333333333 504278 31352085500 5430 55500 5530 5530 5530 53333 55500 5333 53333 5530 53333 53333 53333 53333 53333 53333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 533 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 5333 533	
29 30 31	3138 3038	-	3500 3258 3408	

3208		3358
3173		3550
3265	-	3533
3504		4142
3161	6894v	3750
3077	-	3100
2006		51,00

28 29
----------

JUNE

# TABLE III (Continued)

JULY

123456789012345678901234567	3123 - 3483 3173 - 3933 3300 - 4008 3173 - 3900 No production 3285 - 3933 3242 - 3775 3027 - 3842 3123 - 3892 3173 - 3925 3054 - 3775 3173 - 2975 3219 - 3433 3196 - 4067 3219 - 4383 3296 - 4483 3296 - 3667 3429 - 3642 No production No production
27	No production
27	No production
28	No production
29	No production
30	3373 - 3792
31	3373 - 3692

123456789012345678901234	3396 - 3275 3265 - 3425 No production No production 3373 - 4267 3285 - 3450 3353 - 3850 3372 - 3425 3150 - 3568 2980 - 3658 No production No production 3114 - 3692 3213 - 3558 2981 - 3358 3942 - 3417 3173 - 3467 3054 - 3508 3123 - 3742 3123 - 3742 3123 - 3742 3123 - 3745 3150 - 3425 3150 - 3425 3433 - 3433 3219 - 3525 3285 - 3433
19012345678901 222345678901	3123 - 3742 $3123 - 3725$ $3150 - 3425$ $3433 - 3433$ $3219 - 3525$ $3285 - 3433$ $3196 - 3475$ $3219 - 3475$ $3219 - 3475$ $3219 - 3425$ $3265 - 3483$ $3200 - 3525$ $3300 - 3525$

# AUGUST

# SEPTEMBER

123456789012345	3396 - 3491 3242 - 3475 3219 - 3317 3219 - 3667 3219 - 3425 3100 - 3408 3173 - 3759 No production 3285 - 3767 3219 - 3400 3027 - 3500 3027 - 2992 2907 - 2892 3123 - 3058 3290 - 3042
1678901234567890 30122222222222222222222222222222222222	3150 - 2817 No production No production 2954 - 3167 3025 - 3442 3100 - 3517 3150 - 3717 3150 - 3725 3123 - 3625 3111 - 3525 3173 - 3442 No production No production 3219 - 3758

## OCTOBER

12345678901234567	3161 - 3792 3150 - 3808 3231 - 3783 3111 - 3600 3123 - 3292 3265 - 3558 3100 - 3333 3128 - 3833 3038 - 4100 3150 - 3800 No production 3061 - 3342 3150 - 3167 2992 - 3292 2877 - 3150 2981 - 3550 3138 - 3783
19 20 21	3354 - 3975 3308 - 3672 3265 - 3775
22	3296 - 3958
23 24	No production
25	3219 - 3808
26	No production
27 28	No production
29	No production
3Ó	No production
31	No production
# NOVEMBER

1	No production
2	No production
3	3254 - 3233
4	3150 - 3350
5	3265 - 3608
6	3161 - 3725
7	3161 - 3342
8	3308 - 3642
_9	3254 - 3567
10	3196 - 3417
11	3207 - 3450
12	3150 - 3675
13	3138 - 3842
14	3190 - 3707
12	3331 - 3442
10	3319 - 3000
12	<u>3</u> ⊥/3 = <u>3</u> 733 2010 - 2782
	3219 - 5703
20	2210 - 7005
20	3219 = 4092 3150 = 3075
22	3296 - 3750
22	3150 - 3808
24	3100 - 3733
25	3173 - 3900
26	3123 - 4125
27	3138 - 4083
28	3196 - 3833
29	3196 - 3875
3Ó	3100 - 3725

## DECEMBER

1	3138	-	3808
2	3265	50	3783
3	3173	-	4175

### VITA

## John B. Reinhart

#### Candidate for the Degree of

#### Master of Science

Thesis: THE APPLICATION OF STATISTICAL QUALITY CONTROL TO THE DESTRUCTIVE TESTING OF CEMENT IN THE CONTROL LABORATORY

Major Field: Industrial Engineering and Management

Biographical:

- Personal Data: Born in Oklahoma City, Oklahoma, December 27, 1936, the son of John A. and Betty Reinhart.
- Education: Attended elementary and junior high school in Oklahoma City, Oklahoma; graduated from McGinness High School, Oklahoma City, Oklahoma in May, 1955; received the Bachelor of Science degree from the University of Oklahoma, Norman, Oklahoma with a major in Industrial Management Engineering in May, 1960; completed requirements for a Master of Science degree in May, 1962.
- Professional experience: Worked at American Potash and Chemical Corporation located in Trona, California during the summers of 1956 and 1957 as an industrial engineering trainee; worked at Warner Oil Company located in Oklahoma City, Oklahoma during the summer of 1958 and 1960 as an engineering trainee.
- College Activities: Served as treasurer of Sigma Nu social fraternity; student member of the American Society of Automotive Engineers; member of the Society of Industrial Management Engineers at the University of Oklahoma. Student member of the American Institute of Industrial Engineers and Sigma Nu social fraternity at Oklahoma State University.