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CHAPTER I

INTRODUCTION

1-1. General

Continuous curved beams with general loading are of great impor-
tance in bridge and building structures. These may be basically clas-
sified in three groups:

(a) Continuous curved beams lying in a plane acted upon by a co-

planar system of loading.

(b) Continuous curved beams lying in a plane with loading perpen-

dicular to that plane. |

(c) Continuous curved beams in space with general loading.

The second group is being investigated in this thesis by the flexi-
bility method. |

After developing the carry-over moment methdd applied to planar

frames, Tuma(l’ 2,3)

extended the application of this method to continu-
ous beams and frames in space.

Also the analysis of girders curved in the plane and girders curved
in space has been discussed by several other authors.

Bella Velufini(4) discussed the method of moment distribution
applied to continuous circular be.ams. H. H. Ficke1(5) developed in-
fluence lines for bending moments, vt'orsionalvfnoments, and shearing

forces in curved girders.

The symbols used in this thesis are explained wherever they

1



occur first and rearranged under the title nomenclature.

The sign convention for loads, cross-sectional elements, reactions
and deformations is shown in Fig. 1-la-h. At each point in a member
it is necessary to establish a right-hand system of orthogonal coordi-
nates, a tangential axis x', a radial axis y', and a third axis perpendi-
cular to the plane of these, z' (Fig. 1-1i).

Additional references are given in the bibliograbhy.

1-2. Statement of the problem

A continuous circular beam lying in a plane xy, (fig. 1-2a) is
acted upon by loads perpendicular to this plane. It has a constant
cross-section and radius of curvature R. The beam is supported at
points 0, 1, 2...1, j...n. The angle subtended at the center of curva-
ture C, by each span is denoted by the symbol w with a subscript cor-
responding to the particular span under consideration. The exterior
ends o and n are fixed and the interior supports are assumed to be
spherical hinges and not to deflect.

The analysis is carried out in terms of polar co-ordinates. MiR
denotes the bending moment at i which acts in the radial direction.
M

gential direction. In Fib. 1-2a, the loads are acting in the negetive

denotes the twisting (torsional) moment at i and acts in the tan-

z-direction .and the reactions are acting in the positive z-direction,

The n-span beam shown in Fig. 1-2a has (n + 5) reactive elements.
For the analysis of this beam, three equations of static equilibrium
are available and therefore (n + 2) deformation conditions are necessary.
Thus, such a structure is statically indeterminate to (n + 2)th degree.

If the exterior ends of this beam are simply supported, (Fig. 1-2b),

there are no end moments and the number of reactive elements is
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reduced to (n + 1). In this case, the structure is statically indeterminate

to (n - 2)nd degree.

Fig. 1-2a. Continuous Circular Beam - Ends Fixed

The degree of indeterminancy depends on the end conditions of
the structure and is equal to the number of redundants.

For the purpose of analysis, either the support moments or the
support forces can be considered as redundants. In this thesis, the
support moments are considered as redundants.

For the beams shown in Fig., 1-2a, 1-2b, the redundant support
moments are shown in Figs. 1-2c, 1-2d respectively.

For this choice of redundants the basic structure is a one-span

curved beam, restrained against torsional rotation.



Fig, 1-2b. Continuous Circular Beam-Ends Simply Supported

Fig. 1-3 shows such a typical basic structure for span ij. This
beam is simply supported at i and j and in addition is restrained against
tangential rotation at j. This structure is statically determinate and
also stable. On this basic structure, moments MiT" MiR and MjR are
considered as externally applied moments. '

For this one~span basic structure, angular functions, i.e., angu-
lar flexibilities, angular carry-over values, and angular load functions,
are derived. They are denoted by symbols f, g, and 7 respectively,
with appropriate subscripts. |

Angular functions for the entire continuous beam can be obtained
in terms of angular functions for this one-span basic structure. Angular

functions due to an applied unit external moment are derived for a

specific case of a four span beam,A with exterior ends fixed. These
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angular functions for the whole beam are denoted by symbols F, G, and

T.

Fig. 1-3. Basic Structure ij

The conditions of consistent deformations, expressed in terms of
these angular functions F, G and 7, provide the necessary compatibility
 equations to solve for thé redundant moments. |

In the following chapters the above discussion is expanded fully
according to the following phasesrz

Chapter II - Statics of the Basic Structure.

Chapter III - Deformation of the Basic Structure.

Chapter IV - Compatibility Equations.




CHAPTER II
STATICS OF THE BASIC STRUCTURE

An one-span basic structure ij, described in the last chapter, is
shown in Fig. 2-1a. The vertical reactions, RiZ and Rjz’ and the re-
straining moment, MjT’ are the reactive elements at j.  Other end
r YR

moments-and forces. In other words, the above structure can be con-

moments (Mi and MiT) and loads are considered to be applied

sidered as a one-span continuous beam separated from the whole beam

as shown in Fig. 1-2b.

Fig. 2-la. Basic Structure ij
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The reactive elements can be calculated using three equations of
static equilibrium.
Summing all moments at j in the radial direction, it follows that

Z M

=0
R[@]]
or,
MjR - MiRcos W j + MiT sin wj + Riz R sin wj + SMjR =0 (2-1a)
EQUilibI‘iﬁm of moments at j in the tangential direction is fulfilled
by
M . 0
T [@j]
or,

MJT - MiR sin wj - MiT cos wj + RizR(l - cos wj) + SMjT =0
(2-1b)
The relationship provided by the fact that the forces on the struc-
ture in z-direction are in equilibrium,
ZF_ =0
z
or,

R.. +R, +ZP_=0 (2-1c)
iz jz z

Solving simultaneously equations 2-1a, b, ¢, gives

M. M., cosw. M

- __iT iR J - _JR - -
R, =% * =®sm oy R sine, SM;p (2-2a)
M. M., cosw . M. :
- iT iR77 7] iR _ _
Rjz TR Rsinwj : Rsinwj * 'SMjR -ZPz (2-2b)
',\wj l-,coswj
Myp = + Myp + tan55 (Mg + Myp) + %R?ﬁ?r—'s%T’

(2-2¢)
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where SMjR and SMjT

about the radial and the tangential directions respectively.

are the static moments due to loads only at j

The cross-sectional elements MSR’ MS and VSz , i.e., the

T
moments and the shearing force at any point s in the member ij, are
calculated by considering the free-body diagram of a part of the span

ij (Fig. 2~1b). The arc length is subtends an angle a at the center C

as shown in Fig, 2-1b.

Fig. 2-1b. Free-Body Diagram

The cross-sectional elements can be calculated uSing three equa-

tions of static equilibrium.

ST

Thus,

s u® - o

MSR + MiT si1l1a - MiR cos a + RiZRsino'z+ SM(SiE){ = 0..,. (2-3a)
=m®) - o
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MST - M, cos @~ M.p éin a'-»f-":’RiZR(l - cosa + SMéi,% = 0O....
(2-3b)
= FSlz = o
Vg, + R, - PE = 0 | (2-3¢)

Substituting the value of Riz from equation 2-2a and simplifying, it is

found that

sinfw. - a) sin a

@)

SMSR
sin(w; -@) sing . (i)
= M0+ Mip 7o oy iR sTnw, + BMgp  (2-4a)
cos(w. -a) - cos w.
. - ] i 1-cosa
Mgy = Mjp+ Mg Sy * Mg S j

_ _ang(l)
+SMjRR(1 cosa) SMST

cos(wj-a) - COS W.

= J 4 l-cosa,
Mjp + Mg SO * Mygp oy + BMgp
(2-4b)
- _ ols)
VSZ = 4+ Riz P
M., COS W, M.
= _iT IR + SMyp - P (2-4c)

R MiR Rsinw ., ¥ Reshnow.
J J

where BM-(S]R) and BM(Sl,I), represent the moments at the section con-
sidered in the radial and the tangential directions respectively, due to

P(S)

loads and reactions alone, is the load acting on the length is .
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(i) _ . _ (i)
BMSR = SMjR R sina S»MSR (2-5a)
BMY) - SM._ R(I - cosa) - smD) (2-5b)
ST iR ST
Denoting,
ARij = 0 ATij = + 1
sinfw. - @) cos (W, ~a@) - cos w.
B .. =+ ——.—-J——-—-——- B .. = + J. J
Rij - sin wj Tij sin wj
_ sin « _ 1 - cosa
Crij = TEsmwl oy Crij = *Sme. oy
Equations (2~4a, 4b) can be written as:
i (i) }
Mgg = MypAgp;; + MpBpy + MipCpy. + BMgp (2-6a)
- (i) .
Mgp = MjpAqyy + MigBryy + Mg Cpyy + BMgp (2-6b)



CHAPTER III

DEFORMATION OF THE BASIC STRUCTURE

The end angular functions of the basic structure discussed earlier

are studied in this chapter. Castigliano's principle is used to derive

the analytical expressions for these end angular functions.

For the basic structure 1j (Fig. 2-la), the possible angular func-

tions are:

1.

2

. The angular flexibility £,

The angular flexibility fijTT
iRR
The angular flexibility fjiRR

The near-end angular carry-over function finT

The far-end angular carry-over function gijTR (=g

(=i
#RT
The far-end angular carry-over function &5RR (gjiRR)
The angular load function T'ijTT |
The angular load function TjinR

1 !
The angular load function TjiRR

where an angular flexibility is the end-slope of the basic structure, due

to a unit applied moment at that end and in the same direction as the

moment.

An angular carry-over function is an end-slope of the basic struc-

ture due to a unit applied end moment, in a direction other than that of

‘ the moment, denoted by appropriate subscript, e. g., in expression

8{iTR’

the first and third subscripts (i and T) indicate the location and

14
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direction of the slope respectively, and the second and fourth subscripts
(j and R) indicate location and direction of an applied unit end-moment,
An angular load function is an end-slope of the basic structure

due to applied loads.
It may be noted here that, by the Maxwell's Reciprocal Theorem,

the angular carry-over functions f; are equal to

HRT SRR 279 8j5TR
fijTR’ gjiRR and gjiRT respect_lvely.
For an elemental length in span Ij, the elemental angular flexibil-

ities are:

A = Rdo

_ Rde
R —E-T-S— and A =

T GJS

The strain energy of the basic structure I, due to applied loads
and applied end moments is:

U U..

ij ijR

i ’ j \
f Mgpl® g * f [MST]2 T (3-1)
1 1

Taking the fif,st partial derivative of equation 3-1 with respect to

i

* Uy

i

T » Mjg and MjR

their respective directions, thus:"

au.. j oM j oM
ij . g - J M SR , 4 J M ST
oM. iT i SR aM; R J; ST oM, T °

M respectively, gives the angular deformations in

iT T
(3-2a)
au. . j M j oM
1 - g =f3 M. — SR +f3 M ST »
aMiR iR i SR aMiR R i ST aMiR T
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ou .. oM oM
- g - ./ﬁ M. SR 3 4 ./U M, =S X
anR iR SR 8MjR RT i ST 8MjR T
(3—20)v
The values of MSR and MST’ .i,. e., the moments at a general

section S in span ij , can be substituted frdm equations 2-4a, b, ¢, into

the above equations. Table 3-1 shows the values of the first partial

derivatives appearing in equations 3-2a, b, c.

The expressions for the required angular functions are obtained

by substituting either unity or zero for appropriate moments, and/or

loads in equations 3-2a, b, c. For example the expression for 'fijTT

is

for

and

ou., .
f =
ijTT 8MiT ’
MiT = + 1
MiR =. MjR = loads = 0.

The expressions for all angular functions are obtained in this

manner from equations 3-2a, b, ¢ and are recorded in Table 3-2.

Using these angular functions the deformation equations 3-2a, b, c

can be expressed as:

3U..
l'] = = t
oy T T Mirfyrr f Migfijrr * MjrEjirT * "ijTT
(3-3a)
oU .
ﬁwiﬁ Or = Mirfyrr * Mirfyrr ¥ MjrEiRR T TijRR

(3-3b)



-6 =M

TABLE 3-1

iT€5TR T Mir&iRR *

Miptiigr ¥

FIRST PARTIAL DERIVATIVES, BASIC STRUCTURE

17

1
TiiRR *

(3-3c)

Values of the First Denoted
Partial Derivatives By
aMSR - . . A
aMiT Rij
zl\l\ZST * 1 = Ay
iT J
aMSR sin (wj -a) 5
oM. sin w, Rij
iR J
aMST, ‘ N cos(wj .-a/) - cos v, s
aMiR sin wj Tij
aMSR : sin o - C
oM. sin w T YRij
iR j !
Mg 1 - cos «a = C
oM iR sin wj Tij




TABLE 3-2

ANGULAR FLEXIBILITIES, CARRY-OVER FUNCTIONS AND LOAD FUNCTIONS

‘BASIC STRUCTURE

U ) 2
frr el My = 1, Mg o= Mg = Loads = 0 f[l]
i
an, . 3. sin (uj - a) os(u - a) - cos ©j 2
YRR BN Mg = 1. Mjp = Mjp = Loads = 0 fr—s,xTJ fr s, ] <A
i
an' : y sin a 2 p -cos a 2
LSRR s = Mip = L. Mip = Mjp = Loads = 0 f[s"_m w_j] 2 I[L'_sin_'uj]"‘
o . i i
au,, _
2 M. = 1, M, = M. Loads = 0
rinT s " T " 3 costv; - a) - cos w
- 3 i
} f sin "’j e
£, aU.. i :
ijTR i - = =
aMiR MiT 1, MiR MjR Loads 0
au. .
: Mp Loads = 0
oM. R =1 M.~ = M, oads = . .
g:: “TiR ’ iT iR - I _ J
ijRR f sm(z.)j a) _sina f Cos(uj - a) - cos Yi 1. cosa )
= sln w. 51N w. . R - sin w, 51n W,
au, . : i 3 J i J J
5 i = = - :
jiRR m‘#{ Mip = 1. Mjp = Mjp'= Loads = 0
vy,
W_LT Myp = 1, Myp = M;p = Loads = 0 ]
g5 TR ! J
1l -cosa A
= sin wj R
au, . i
8iRT i Mo =1, Mg = M Loads =0 '
B, R iT » 4R iR
Uy oo
1 = =
THTT mvrf; Myp = Mjp = My = 0 fBM RARS
i
au. . ©osinfw, -~ a)v i cos{w, ~ a) - cos w.
1 i = = - (1) . j . (1) j ]
THRR "A‘erm Myp = Mjg = Myp =0 l BMg s o, 2t JBMgr- Stha; A
. 1
. an' ] (i) sine i l-cose
1 N = = = - =
TiRR s Th Mip = Mg = Mjp = 0 _IBMSR snw;’ f “smo; “Ar
- 1

81



CHAPTER IV
COMPATIBILITY EQUATIONS

For a planar continuous curved beam acted upon by out of plane
loads, the conditions of consistent deformation would provide compati-
bility equations. The number of available compatibility equations is
equal to the number of total redundant support moments,

These compatibility equations for the four span continuous circu-

lar beam with exterior ends fixed (Fig. 4-1a) are now derived.

4-1, Derivation

A four-span continuous circulér beam of radius of curvature R,
lying in a plane xy, is subjected to loads acting perpendicular to that
plane. The points of supports are 0, 1, 2, 3, and 4 (Fig. 4-1a). Ex-
terior supports 0 and 4 are fixed against any rotation. The angle sub-
tended at the centre C by each span is denoted by symbol w with cor-
responding subscript.

This structure is indeterminate to the sixth degree. Thus, the
structure has six redundant moments which are selected as shown in
Fig. 4-1b. Using Castigliano's Theorem, it is possible to obtain six
equations of consistent deformation in terms of the angular functions
and these redundant moments (xo, Yor Y10 Yoo Y3 and y4). Isolated
single—.spans with end moments, as shown in Fig. 4-~1c, may be

treated as the basié structures discussed in Chapter Two.

19



Fig. 4-1a

Four Span Continuous Circular Beam - Exterior Ends Fixed

Fig. 4-1b

Four Span Continuous Circular Beam - With Redundants

20
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Fig.}i" 4-1c. Four Span Continuous Circular

Beam-Freebody Diagram

Consideration of the statics of the basic structure provides the
relationships which follow.

The end moments are:.

w4 wl 1-cosw,
X, = x0+yO tan—z- + Y1 tan-—z— +SM1R _—“——sinwl - SMlT
(4-1a)

: : wo w2 1-cos wo
Xz = x1+y1tan—2—- +'} y2 tanT +SM2R —.sTwz" SM2T
, (4-1b)

w g w3 1 - cos w g
g T ¥y Fyptan 5 tygtan—y + SMyp —smw,  ~ SMsr
(4-1c)

w4 w4 1 - cos w4
¥g 7 ¥gtyglangm * oy tan s+ SMyg —smw, © SMar
(4-14)

Denoting,

1-=cosg)1

(L) _ -
Xy T ShﬂlR,__?ﬁﬁjﬂz_— SMyq
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1- coé w
(L) _ 2
*3 0 7 SMor —sm, SMyp
(L) 1 - cos Wy
*s 7 SMyp —emo, T SMur
‘where x(lL) s xv;L) s x(3L) s ‘and XELL) are the end moments in isolated

spans due to loads only. Rewriting equations 4-1a, b, ¢, d in terms of

the redundant moments and loads,

Xy = % Y, tan—2— + Y1 tan—z— + X1 (4-2a)
Xo = X _F tanw—1 + [tan.»w’1 + tanw ] + tam(‘J + X(L)
2 o Yo 2 71 2 1T Y 2 2
(4-2b)
wy w4 W o _ w5 W
Xg = x_ +y,tan o+ y, [tan—-2— +tanT‘] +y, [tan -= +tan—2—]
, W
+ ¥4 tan-—2§- + XgL) (4-2c)
Wy w4 wo o W
X4 = X, +y tan—2—+ Y1 [1:am—2—+1:an--—]+y2 [tan 5= +tan—2——]
Wg W, ' Wy (L)
+ Y3 [tan-—2—+ tan—2—] + yétanT + X (4-2d)
where,
(L) _ (L)
Xy = x
(L) _ (L) , (L)
X2 = Xy + Xg
(L) _ (L) . (L) (L)
X3 = Xy + Xq + Xg
and _
(L) (1) 4+ X(L) + X(L) + X(L)

Xy~ %%y X9 3 X4
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The expressions for moments at any general section S in the spans
are:
Span 01

(0)

M = A + SR

Msr * *0®Ro1 T Yo Bro1 "Y1 Cro1 ¥ BM

C + BM(O)

Mg = X5 Apor ¥ Yo Bpor * Y1 Cpot ST
Span 12 |
Moo = x, A + v, B + C + MY
SR 1 #Rr12 T Y1 Pr12 Yo CR12 SR
M = x_ A + B + | C + BM(I)
MsT 17712 Y1PT112 Yo 112 ST
Span 23 (4-3)
_ (2)
Mgp = Xp Bgag * Yy Brag * Y3 Cras © BMgp
M., = x. A + v. B + v, C + Mm@
ST 2 723 Y2 P23 Y3 ~T23 ST
Spén'ﬁ
M. = x. A + v. B + y. C + BMm'3)
SR 3 R34 Y3 PR34 Y4 “R34 SR
M = x, A + B + C + BM(?")
ST 3 T34 Y3°T34 Y4~T34 ST

Substituting for X{s %o and Xgq from equations 4-2a, b, ¢ in equations

4-3,
Span 01
M = x A + vy B + vy, C + BM(O)
SR o0 "Rol o Rol 1 "Rol SR
M = x A + B + C + BM(O)
ST o 2To1 T Yo Prol Y1 “Tol ST
Span 12
| |
Mgr = %, AR12 T Yo ARiptat—5 T vy [Agjptano= + Bpyyl

(1) (L)
Y9 Criz * BMggp + %17 Apyy



ST

Span 23

SR

ST

Span 34

SR

ST

: . (L)
* g [Agggtan— + Bposl + y3 Cpog + BMgp + X;7°A

24

, . W W
i} , 1 1
XgApig T Yo Apyg tan— + ¥, [Apg,tan 5= + Bpol
(1) L (L)
T Yy Cpig + BMgp + %7 Aqyy
[®) [®) i [®)

_ 2 1 2
= %, ARz * Yo Appgtan-z + ¥ Apgg [tan = 4 tan o]
Yo . (2)
2 ©R23

W w4 wgy
= X, AT23 Y, AT23 tan 5~ + y, AT23 [tanT +vtanT]

W

2 - (2) (L)
+ vy [Apggtan 5= + Broyg [+ y53 Crys + BM + X5 A

ST 2 T23

| Y3 ¥ wo

= X, AR34 + Yo AR34 tan?— + Y1 AR34 [tan—z— + tan—z— ]v

Yo W3 W3 .
+ :y2 AR34 [tanT + tan—-z—] + Y3 [AR34 tan—z— + BR34]

(3) (L)
* ¥4 Cr3y * BMgy * X377 Agsy
w g LWy W,

= XOAT34 + yoAT34 tan 5= + y, AT34 [tan = + tan-—z—v]

we w W

3 3

, 2
+ Yo AT34 [_tanz— + tanT] + y3[AT34 tan—z— + BT34]

o (3) (L)
+ y4C + BM 3 AT34 .

T34 st * X

The total strain energy of the structure 01234 is:

US

B

Ugy ¥ Upg * Ugg + Ugy
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: 2 * 2
= ), Msrl Mt Mgpl® Ap (4-5)

Partial differentiation of equation 4-5 with respect to Xos Yoo Y10 Yo o

Y3 and Yy gives the six deformation equations:

oUg _ fl . M p _ fl o Mg .
axo 0 SR axo R 0 ST 8xo T
2
+ f Msr alz\;ISR g t f2 Mg BI\:ST Ap
1 Xo 1 Xo
3
+ Moo VSR, |0 Mo ST
SR 9x R ST 9x T
2 o 2 o
4 oM 4 oM
SR ST '
+ M —_——— A + f M A (4-6)
.[; SR 8xo R 3 ST 8xo T
ou 518 ou ouU 18]
Similar expressions for S, S s S . S , and _S can be
0, %y’ ¥y’ 9y 5

obtained, The values of the moments at a section in the spén under
consideration can be substituted in the above equations through the use
of equations 4-4. Also, substituting the values of unity and zero for
appropriate moments, analytical expressions for angular functions are
derived. It is observed that these angular functions (F, G, 7 ) may be
expressed in terms of angular functions (f, g, ") of isolated spans. The
first partial derivatives required in the above derivation are listed iﬁ
Tables 4-1a, b, c,d. The final expressions obtained for the angular func-
tions (F, G and 7') are recorded in Table 4-2a,b,c. Using these angular
functions the deformation equations 4-6 can be expressed as:
9u |
= = XOF

ox
o

wn

0oTT T YoFooTR T Y1Go1TR T Y26

02TR

* ¥3Go3mR T Y4C0saTR T ToorT T O



xOG

X5 F4oRT * Yo Foarr T Y1%1RR T Y2G02RR

Y3Go3RR T Y4Go4aRR ¥ TooRR ~

ZF

XGorT T YoGiorr T Y1 iRR T Y2 Gi2RR

+ =T = 0

¥3Gisrr t Y4 Gi4rR 1RR

%5 GooRT * YoCG20rr T Y1G21irrR T Y2 FFaRrr

Y3Gosrr T Y4CGo4rr Y ¥ Torr * O

G G

30RT T YoCs0rr T Y1CG31RR T Y2 C32rR

=T = 0

Gs4rr T ® T3RR

Y3 Z 33RR T Y4

X6 CG4oRT * YoCu0rrR T Y1C41rr T Y2 C42rRr

Y3C43rR * Y4 Faorr ¥ T44rr * O

26



TABLE 4-1a

FIRST PARTIAL DERIVATIVES - SPAN 071

~ First First Partial First First Partial
Partials Values Partials Values
aMSR A aMST A
] Xo Rol axo Tol
BMSR 5 aMST 5
ayo Ro1l Byo Tol
BMSR o aMST o
oy 1 - "Rol ayl' Tol
Mg ) Mg )
By, %y
Msgr ) My )
oy 3 oy 3
aMSR i BMST i
3y4 3}74
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TABLE 4-1b

FIRST PARTIAL DERIVATIVES - SPAN 12

First First Partial First First Partial
Partials Values Partials Values
M
Y'sr A Mg A
5xo R12 axo T12
aMSR A tan ! aMST A tan -bf—l
3y, R12 2 3y, T12 2
oM w oM w
SR 1 ST 1
5y, | “ri2@" 7 T BRo 5, Apip tan 5=+ Bpy,
Mg o Mg o
5y2 R12 8y2 T12
Mgr i Mg )
8y3 SY3
9Mqp ) 8Mg 1 )
aY4 ay4
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TABLE 4-1c
FIRST PARTIAL DERIVATIVES - SPAN 23
First First Partial First First Partial
Partials Values Partials Values
8MSR A aMST A
8xo R23 axo T23
oM : W oM w
SR A tan =2 —-———ST A tan —-
ayo R23 2 Byo T23
oM w w oM () w
SR 1 2 ST ; 2
By AR23 [tan T_+ tan—-—|] By, AT23 tan 5= + tan—-
oM W oM w
SR 2 ST 2
3y Agggtan 5=+ Bpag 3y Apggz tan 5= + Byyg
2 2
dMgp o Mg c
ay R23 oy T23
3 3
Mggr Mg
9y, - 9y, B
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TABLE 4-1d

FIRST PARTIAL DERIVATIVES - SPAN 34

First First Partial First First Partial
Partials ) Values Partials . Values
aMSR A aMST A
axo | R34 on ‘ T34
M ' W oM W
SR , : 3 ST 3
3y, Agps3q tan 5~ 5y, Apgq tan 5=
oM e W oM w w
SR 1 2 ST 1 2
5y ,AR34 tan -5 + tan 5 3y AT34 tan 5 + tan 5
71 1
oM w w oM w W
SR 2 3 ST 2 3
By AR34§’ tanz— + tan—z— 3y AT34 tan—2— + tan—z—-
2 2
oM W 8M.. W
SR 3 ST 3
55 Apsatan g T Bpgy 555 Apggtan 3= + Brgy
aMSR o 8MST o
8y4 R34 8y4 T34




4-2. Solution Matrix

31

The compatibility equations (eq. 4-7) are written in the matrix

form as follows:

40RT

1oRT

20RT

3o0RT

40RT

[ o

oo TT

FooTR

Fo4RR

G1oRR

G2 oRR

G3orR

G

40RR

CTo 1TR

Gy1RR

ZF pRr

Go1RR

GsirR

G41RR

G

G

G

=

G

G

02TR

02RR

12RR

F

2RR

32RR

42RR

Go3TR

Go3rRR

Gi3RR

GosrR

zZF

“3RR

G43RR

G

G

1 —

'GoaTR

Go4RR

14RR

GosRR

34RR

F40RR

TOOTT

TooRR

ZTIRR

ZT9RR

3RR

T44RR
o




TABLE 4-2a
ANGULAR FLEXIBILITIES AND LOAD FUNCTIONS

- au
S SIS e e 1 -
¥ % X =L Yo=Y =¥y =¥y= 7= Loads =0 forrT * 127 * T2srr * faarr
ws 2 "'1 5
FooRR ¥, Yo X =y rYy " Yyn Yy, " Loada =0 forrr 87" 7 oy * oy * fagrr]
St oy T o w 2
ZFIRR 73_1 y:=1, x°-y°=y2-ys=y4'1.aads= 0 ‘wan*‘unn*“"“!“um”"‘ - *+ tan-z--t-tan-!- ‘231‘1""{341"1‘
F s =1, x =y =y, =y.=y, = Loads = 0 £ +1 +2tan 21 +tan? o2 ¢ P P S
=F2rr LTS Y2 = b X T Yo TV T Y37 Yy 21RR ¥ f23RR 7 '23TR 7 fa3rT T 7 lurT
IF %s =l x. =y =y, =y, =y, = Loads =0 f 41 PP 1 +tan? 3 ¢
3RR L Yg = e Xy TV T Y T Y2 "V, 32RR ¥ '34RR “Z '34RR T MTT
aug ;
Fimr 7% Yguh Xy YotV Yty Loads =0 f43RR
s e e S Sl s e S e LBy er TSR L i
TooTT , Fo . S0 L 22 I3 T4 o1t M2rT* "zarr Y Tarr t X1 lizrr X2 Darr t%3 farT
T Vs EY ¥, 5V, =¥a=¥,=0 ; 3 + tan < - + 7, + T + %1 o ! i
ooRR T, Xo " Yo "Y1 T ¥t Y3t Yy o1RR X AITT [ 25IT S BTT 1 T ITT
7 ST ' 4 it
Py Prooy gy F Byl tancy Lainy ;
au w w
s SEER e 2 TN . T ; . 1 ll) (L) (L)
Z71RR T, X =Y ¥ S ¥ Tyt Yn 0 TioRR * B0 Tppr* T2arT t Taarr YR Xy fpopr v X fogpr Y X537 fyupp
+ 7! +tmu2 ki e i A + x) g + tan 22 (L) +x{l ¢
12RR 7 "zarr ¥ Tarr * ¥ liTe T X7 faapr * X3 Ty
au . o w,
S B N e . 2z ' 2 k) (L) (L)
Z72RR T, N P L Tt L PO T2RR TNy Togprt Tarp t10y XU Dgpp Xy Mgerr YX; SpTR
w w
Byl (L) 3 .(L)
*ThaRr YN 7 Thypr v Xy fpgprttan o X3 fgupp
au w W
s S PR T S 3 (L) 3 (L) (L)
ZT3RR s T P Pt (T £ e PR T3Rr * 10T Tyrr Y X2 Baarr * Ny X3 f34prt T3arr t X3 faR
au
s A ; w
T44RR T, Xy =T =¥y "V "¥g ¥y =0 Ts3rrR * X3 BaaTR

(4%



TABLE 4-2b

ANGULAR'CABRY-"O_V{ER FUNCTIONS - :

=YY, .If Y3 7Yy 7 Loads

0

forrr 120 3 Uyppy * o3y * fagprd -

R . v' . U‘- - . . . i W o .
. L PR 2
BottrR * 2R * @0 Hiprr * fagyr ¥ Gaapyd t 128 Upgpy ¥ f34py)

=¥]® ¥y =y3=y,=Loads

812TR * fo37R * P 7 [fpapr ¥ faerT ]+ o0 7 fypy

= yo =y =Yy " y4'= Loac;s'

"

¥y =Yg = ¥3 =¥y = 'Loads

. RPN ;
8237R * f34mR 1Ry fyg7r

[
3
TR
-
& -

TV SV T¥3 Tyt

W
o

Y1 =Yg = Y3 =¥, ¥ Loads

834TR..

='y° =y, =.y3 = y4= Lba§s =

=Y1°Yp Y3y~ Loads=

o
;e

. . ‘w . w. . .
S st T N | - :
< 81RRT 10 3 Ly ¥ tan” o [fyppp sy Mol

I I AR
ttanp tany Iygrr * faarrl

T Yo7 ¥ 7Y™, " Loads:

[}
(=]

"

=yl=y2=y3=y4': Loads

"

g : Wy ‘ 'wl wy B
(AN BipTR TR g Dy Va0 o tan o [fgpy ¥ gypr]

+tan‘:)1. tan'w3 fA
) Z U34TT

€€



TABLE 4-2cl

ANGULAR CARRY-OVER ;FUNCTIONS
|

34

Y3

o Yo

=Yy E Yy T

Y4

Loads

=Yy =Yg

=Yg

W

Loads

Yy “i Oy Yy
!an—z- gzaTR+tan—2— [34TR+tan—2— !an—z- f34'r'r

=y1=er;

Y3

Loads

=y2.= ya’-:

Y4

Loads

"

“1
tan g B3R

Yo =

=y EygT

Ya

Loads

Yy

=Yy =¥y

=Yy

Loads

"

¥y ! ) by
- B1oRp F AN Gy * (tan -y ftan op (fHapp ttan o fhgpagd

“1 Y2 2 “3
+ [tan — + tan -] ftan - +tan = j 3 mm

g

Ov='y0

Y2,

Ry

Loads,

M

0 Yo Y=Yy "

Y4

Léads

Wy wg
[tan oy ¥ tan o l{gpapp * f34rR + 180 5 fagprl

vg=

Yo

=¥, 7Yy

=Y

Loads

Y1

0~ Yo

Yy ¥y

W

Loads

4

! Y2
£34TR [tan - ttan —2-]

CasrR

SaaRR

¥y

2y Yy e

Loads

Yy

3

=y, " ¥3°

Loads’

o

) Yy “3 Y3
BagRr ¥ 30 7 Exzrg Y [tan g tan—pllfy pp *tan o f3np]

>y4

=Y TVt

y3

1"

Loads

Vg

Ty, =yg*

Y4

Loads

Yo w3
347 [tan g +tan—r )

Y4

SYyTYy

=y3’

Loads

M

=y,

"

Loads

w

+ tan 2
£34RR T BasTR




CHAPTER V
SPECIAL DERIVATIONS

The angﬁlar functions derived in the earlier chapfers are appli-
cable for beams of varying cross-section and any general loading.
Calculations of the angular functions, (f, g, 7') of the one-span basic
structure are now iliﬁétrated for thei'case of a constant cross-section
and for specified load conditions . These values are used in numerical

examples in Chapter VI.

5-1. Angular Flexibilities and Angular Carry-Over Functions,

(£, g) .
The expressions for the angular flexibilities and angular carry-
over functions given in Table 3-1 are evaluated for constant EI and the

resul‘ts are summarised in Table 5-1.

5-2. Angular Load Functions {r).

The following two loading conditions for a basic structure ij
are considered.
1. Unit concentrated load (P = 1) at an angle 6 from support
i. (Fig. 5-1)
2. Uniformly distributed load (w = 1). (Fig. 5-2)
The reactive and cross-sectional elements in the basic structure
ij (Fig. 5-3 and 5-4), due to these two loading conditions, can be

calculated by statics and are given in Table 5-2. Substituting the
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values of cross-sectional moments (BMSR, BMST) from Table 5-2, into
the expressions for load functions given in Table 3-2, and integrating
gives the required load functions. The final values of these load func-

tions are given in Tables 5-3a, b.

TABLE 5-1
FLEXIBILITIES AND CARRY-OVER FUNCTIONS

(BASIC SPAN 1)

Ruw,
foomm | =t
ijTT. gJ
R . R . 2
f.. ——[2w, -sin2w,] + ————5— [2w, - 3sin 2w, +4w. cos w,]
HRR 4EIsin2-,wj J J 4gJ sin wj J J J J
R o T R P Lo
f.. e [2w, - sin 24, ]+ [6w. - 8sinw ;+sin2w. ]
JIRR 4EIsin wj J U 4gJ sin wj J J J
LRT
= R . _
; = W [smwj UJJ cos (J.JJ]
i TR )
R . R . . ,
g — [smw.-w.cosw.]+——7—[s1nw.+s1n2w.—
HRR 2EI sin wj J J 2gJ sin 3 J J
gjiRR - Swj cos wj]
8iiTR
- R o
= gl sin w; [wj - sinwy]
&jiRT




Fig. 5-1

Basic Structure - Loading Condition I

M.
I JT

w =1 v
@

Fig. 5-2
Basic Structure = Loading Condition 11
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Fig. 5-3

Basic Structure - Loading Condition I,
Showing Reactive and Cross-Sectional Elements

Fig. 5-4

The Basic Structure 'ijg - Loading Condition II,
Showing Reactive and Cross-Sectional Elements

38



TABLE 5-2

REACTIVE ELEMENTS AND CROSS-SECTIONAL ELEMENTS IN A BASIC STRUCTURE ij,
FOR LOAD CONDITIONS I AND II

Loading Condition I (P=1)

Loading Condition II (w=1)

: |

iz sin mj iz sin wj
ucz R _ sin @' b g R(1l - cos wj)
o ]z sin wj jz sin wj
E bl
o g
& MjT R sin 6' M.]T Rz(l-coswj)2 5
= - ——— (1 -cosw.)+R (1 - cos 8'") = - - + R(1+w. -cosw.)
sin w. j sin w. j j
= J L J
X. X.
J J
I R sin 8'sina
BM - -
0 S s lIJj stina(l- CosS W.) 9
L. BM C $ + R” (1 -cos a)
& : ; SR sin w.
o I Rsinf'sina ; i j
g BMISR - S wj + R sin (@ - 0)
=
= I _Rsin 6' (1 - cos @)
g BMST sin wj Rz(l-cosa')(l-cos wW.)
2 BM - : +R%(a - sina)
z ST Sin w.
o IT R sin 6'(1 - cos @) j
) . & ”
% BMq e + R[1-cos(x-0)]
w 3
1]
o I sin 0!
=] - = R(1 - cos w.)
O Sz sin wj VS 3 . J + R
. z sin W.
VH _sin @7 1 B
Sz Sin W,

6€



TABLE 5-3
ANGULAR LOAD FUNCTIONS - BASIC STRUCTURE

2 w, sin @'
g Tt + B [6' - 4——]
g ijTT GJ sinw,
et £
o9 R2 ! w5 sin 8' cosw, R2 3szin6'cosw.
t X - 1 1 A . - 1 ~ A 1
ég TinR T oEr sinwj [ Sin'wj 9 cos 67] + 2GJd sinu)j [ sin wj 20 coswj §'cos 0]
<
C.w
r. . 2 X
2% po B SO tsin2w.) + sind +26'cos - sin (w. +61) ]
@) 4 Elsinw, " sinw, j j j
82 |, o
R R | g2 O,
+ IG7 sinwj [sinwj (-6wj+ 8s1nwj-s;n2wj)+ —4s1nwj+ 3 sin 6+20'cosO - 4sinf' -
j—sin(wj +6')]
T! +—£3——- [-w +-1-w.2sinw.+w.cosw.]
, ijTT — C%Jsinu)j j 2 7] ~] J j
.
=B - 3 |
3 R . 1 .
g9 +———.--—2—-[w. cosw.-u.+s1nw.--2—s1n2w.]
SEY 2 Bl sin” u; o ) ]
S A 3| 4RR 3 02
Q %,; +———I—{—-2— [3w; cosw.——%— sin2w.+sinw.-2w.coszw.—%sinZw.-w.]
ga 3 2 GJ sin o, J J J J J J J ]
85_3"4 R3 . 1 .
- + [w.cosw‘.-w.+s1nw.—§s1n2w.]
S| 2 EI sin”w, U ] ]
TiiRR
+ R [3w.cosw +w2sinw -2w sin2w +5sinw -2 sin2uw, - 3w 1
J il J J J j 2 J ]

. 2
2 GJ sin wj

0%



CHAPTER VI
APPLICATION

- The application of the theory developed in the previous chapters
for the analysis of the curved beams is now illustrated by numerical |
examples. A four-span continuous circular beam, with exterior ends

fixed, is analysed for various loading conditions.

6-1. Procedure of Anélysis.

A systematic procedure of analysis for the class of continuous
beams discussed in this thesis is presented in the following steps:

1. Break the structure into basic spans and determine the angu-
lar functions.(f, g, 7") for these spans.

2. Select the redundant moments and determine the angular
functions (F', G, and 7).

3. Formulate the compatibility equations in terms of these
redundant moments and angular functions.

4. Solve the compatibility equations (Step 3) for the redundant
moments.

5. Solve for the other unknowns by statics.

6-2. Numerical Examples.

A four-span continuous circular beam, with exterior ends fixed,
and loaded as shown (Fig. 6-1, 2, 3) is analyzed by the method of

flexibilities. The beam has a radius of curvature equal to 60 ft. and
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~constant rectangular section. The GETI ratio is assumed equal to two.

Bl _ 14 d°
[GT = —25- —5 -where Poisson's Ratio (u ) for a concrete is assumed

to be 0.25; d and b are the depth and the width of the beam respectively]

In the solution of probléms all values, unless stated otherwise,
are in kips, feet and kip-feet. References are made in each example
to the equations, and tables used.

The structure is analyzed for the following three load conditions.

1. A concentrated load of 10 kips at each mid-~span. (Fig.‘6-1)

2. A uniformly distribﬁted load (w = 1 k/ft. ) on the entire

structure. (Fig. 6-2)
3. A uniformly distributed load (w = 1 k/ft.) on the spans
T and 73. (Fig. 6-3)

As the geometry vo."f the structure is same for all the three problems
considered, the angular flexibilities and the angular carry-over flexi-
bilities remains same for these problems.

The redundant moments are shown in Fig. 6-4 and freebody
diagram is shown in Fig. 6-5.

A, Load Condition I

1. Flexibilities and Carry-over Values (£, g) "

Since all the spans ére-of equal length, the values (f, g) are the
same for each span

Flexibilities: From Table 5-1.

_ _ )  62.831856
fortT = f127T = fasT T fsaTT T T ET
. . . i ., 13.260468

‘0olRR ~ '12RR  "23RR 34RR  EI
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Fig., 6-2

Fig., 6-3
IL.oad Condition Iil



Fig. 6-4

Four-Span Continuous Circular Beam - With Redundants

Fig. 6-5

Free-Body Diagram of a Four-Span Continuous Circular Beam
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- . 11.784516

f10RR ~ f21RR ° +

32RR " l4srr = Y TET
Carry-Over Values: From Table 5-1.

f f f f f f f

12RT ~ f23RT ~ f34rT © fo17R * f12TR ©

11, 1720
g —

olRT ~

23TR :» 34TR

01TR ~ 810RT ~ 812TR ~ 821RT 823TR ~ 832RT ~ 834TR ~ £43RT

5.663712

=t

€01RR ~ Z10RR ~ Z12RR " £21RR ~ £23RR ~ £32RR ~ £34RR

6.94810

T

“ 843RR

2. Load Functions (1)
Since all the spans are of equal length and are symmetrically
loaded, the load functions () are the same for each span.

IL.oad Functions: From Table 5-3.

e I - _ _ 664.93700
olTT = "12TT ~ "23TT ~ "34TT EI

o _ _ 809.14320
34RR T ET

1 =t |
TolRR ~ "12RR ~ "23RR
, - - ot - _ _ 752.97852
T =T =7 =T s L
1oRR 21RR 32RR © 43RR EI
3. Angular Flexibilities and Carry-Over Flexibilities (F, G)
These values are obtained by substituting the values (f, g) in
the expressions for flexibilities and carry-over flexibilities (Tables
4-2a, b, c).

_ 251.327424

CFoorT T BT



_ 61.350728
—EI

_ 101, 01444
Ei

_ 67.01444
EI

_ 33.671424
El

11,1720
El

26.793842
El

_32.497247
—EI

_ 18. 044490
El

_9.022401
>

_1.517587
>

71.632160
El

41.519487
El

18, 04448
El

3.035174
EI

23.587664
El

23. 474989
N

3.035174
El

35.543166
El
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_ _ 8.465683

Goyrr ® Y43srRR = —ET

. _ 11.784516
40RR T

4. Load Functions (7's)

Moments (le s XQL s XBL’ and X4L) due to loads only: From

Table 5-2
L__ L__L__L_ . .60sinls ., _ )
X]. = X2 = X3 "X4 = 10 [—81—1’13_0_. (]. cOs 30)+ 60(1 coOs 15)]
= - 21,165725
X, = - 21. 165725
L_ (L, _L _ _
X2 = X1 txy" = 42. 33145
L_ L, L _ _ -
X3 X2 + Xgq = 63.497175
L_ L, L _ _
X4 = X3 +x4 = 84.66290
Substituting these values (XlL_, X2L ... ) and the calculated values (f, g, T

in the expressions for the load functions (Table 4—22),

. 00TT E1
- _ _ 3481.69576
‘ooRR E1
> _ _ 6609.18022
1RR EI
_ _ 5540.15933"
ZT9RR ~ ~ T BT
s - _ 3758,45692
3RR E1
1112, 6082

T44RR Bl
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5. Solution Matrix

Writing the compétibility equations (eq. 4-7), for all the elements
in the structure the following matrix is obtained.

Because of the symmetry of the structure and loads acting on it,
the solution matrix can be modified for moments Yo T Y4 and y{ =Yg -
The modified solution matrix is obtained and is solved for the redundant
moments (xo, 'yo, y, and y2).

The final moments are:

X, == 3.01089 kip-feet

Yo =¥, =+ 43 204§i5 kip-feet
Yy =V3* +41,.58187 kip-feet
Yo = + 39.721744 kip-feet

And from equations 4-2a, b, ¢, d,

x, = - Xz = - 1.45809 kip-feet
Xg = 0
x, = + 3.010889 kip-feet

Cross-sectional elements (MSR’ MST’ VSZ), at various sections in the
structure are calculated by statics and are presented in Table 6-1.
Table 6-1 shows these values of the left half portion of the structure and

the rest is symmetrical.




251,
61.
| 101,
67.
33.
11,

327424 61.
350728 26.
01444 32,
01444 18,
671424 9
1720 1
251,

61.

101.

617.

350728>-l01;0l444 67.01444 33.671424 11.1720

793842

497247

04449

. 022401

. 517587

327424

350728

01444

01444

SOLUTION MATRIX

32,497247 18, 04449 9. 022401

71.632160 41,.519487 18. 04448

41,519487 53.587664 23,.474989

-18.-044438

3.035147

0 72.522728

28. 311429
35. 532421

21. 079663

23.474989 35.543166

3.035147 8,465683 11.784516

134.685864 67.01444

41.519648 18.04449

89.67664 41.519487

1.517587
3.035147
3. 035147

8.465683

MODIFIED SOLUTION MATRIX

X = {~1)

64,994476 53,587664

X, |=(-1)| - 10639,
Yo - 3481,
yl - 6609,
Y - 5540,
Vg - 3758.
Y4 - 1117,
| %] |
B 10639. 0386 |
_ 3481.69576
- 6609. 18022
- 5540, 15933

0386

69576

18022

15933.

45692

6082

6%



TABLE 6-1

CROSS-SECTIONAL ELEMENTS - LOAD CONDITION I

Msr Mg Vsz
(Kip-Feet) (Kip-Feet) (Kips)
Support
Q + 43. 20492 - 3.01089 + 5.26604
5° + 17, 39396 - 0. 36627 + 5.26604
= 10° - 8.54823 - 0.42104 + 5.26604
o . | +5. 26604
@ - - .
5% 15 34.42541 1.8542 - 4.73496
20° - 7.74781 - 3.69424 - 4.73496
25° + 18.98870 - 3.207160 - 4,73496
Support v £
S - 4.73496
1 +41.58187 . 1.45809 +5.27577
5° + 18. 38151 +1.01113 + 5,275717
10° - 8.95752 + 1. 15670 + 5.27577
° + 5.27577
IE 15 - 36. 22844 - 1.02499 - 4.72423
5% 20° - 10. 93086 - 3.23386 - 4.72423
25° + 14. 44984 - 3.17494 -4,72423
Support
: - 4.72423
2 +39.1721174 0 + 4 79423

50
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B. Load Condition II
Flexibility matrix will be the same as calculated in problem (A).

- The load functions are now calculated.

1. Load Functions (7!)
Since all the spans are of same length and have the same load
acting on them, the load functions (7's) are same for each span.

Load Functions: From Table 5-3

i - o o _ _ 1390.9536
olTT =~ "12TT - "23TT ~ "34TT — BT
. - - o _ _ 1687.6944
0lRR -~ "12RR ~ "23RR _ '34RR —E
. oo o - _ _ 1565.7408
1oRR -~ "21RR ~ "32RR ~ "43RR — Bl

2.. Load Functions (7's)

Moments -(xiL, sz, x?{“ and xi“) due to loads only:

From Table 5-2

xiL = x2L = xg"= xi" = -(60)2 [il—_gi%s%%_)_z_ + 1+ -g-- cos 30]
- - 44.278184
X, = - 44.278184
X, = X[ + x,' = - 88.556368
Xy = Xy + xy = - 132.834552
X[ = Xy o+ xg = - 177.112736
Substituting these values (Xf“, X2L ... ) and the values (f, g, 7'")

in the expressions for load functions (Table 4-2a),
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22256.29714

TooTT = - EI
. __ 7278.54651
ooRR EI

_ 13811.65408
ZTIRR - ~ ET

__ 11575.33038
ZTORR ET

_7848. 09420
ZT3RR = -~ EI
. _ 2318.07744
44RR —ET

3. Solution Matrix

The final solution matrix is obtained in this case as it is done in
the previous problem. This solution matrix is modified for the symmetry
of the structure and the loads acting on it. (yo =y, end yg = y3)

The final moments are:

XO = =~ 6,03838 kip-feet

Yo =Yg © + 90. 191478 kip-feet

Y, = y3 = +B86.672578 kip-feet

1

Yo + 82. 95835 kip-feet

And from equations 4~2a, b, c, d,

X1 = - X3 = - 2,92598 kip-feet
X2 = 0
X4 = + 6,03838 kip-feet

Cross- sectional elements (MSR’ MST and VSz) at the various
sections in the structure are calculated by statics and are presented

in Table ‘6-2-.



251,
61.
101,
67.

33.

11.

327424
350728
01444
01444
671424

17200

64. 350728
26. 793842

32.497247

18. 04449

9. 022401

1.517587

.
251, 327424

61,350728
101. 01444

67.01444

101. 01444

392. 497247
71.632160

41.519487

18. 04448

3. 035147

72.522728
28.311429
35. 532421

21.079663

SOLUTION MATRIX

67. 01444

18. 04449

41.519487
593.587664
23.474989

3.035147

33.671424
9., 022401
18. 044438
23.474989
35.543166

8.465683

11. 17200

3. 035147
3. 035147
8.465683

11, 784516

1.517487

MODIFIED SOLUTION MATRIX

134. 685864
41.519648
89. 67664

64.994476

67. 01444
18. 04449
41.519487

53.587664

— —

X = (-1)

[-22256.29714
- 7278.54651

-13811, 65408

-11575. 33038

(x| = (-1) [-22256.20714 |
Yo - 7278. 54651
¥y ~13811. 65408
Yy -11575. 33038
Yq - 7848. 0946

A - - 2318. 07744 |

€q



TABLE 6-2

CROSS-SECTIONAL ELEMENTS - LOAD CONDITION II

Support

50
10°
15°
20°
25°

Support

5°
10°
15°
20°
2b°

Support

Msgr Mg Vs,
(Kip-Feet) (Kip-Feet) (Kip)
+90. 19148 ~6. 03838 +16.26184
+20.98193 -1.40570 +11, 02585
-21. 02629 ~1.59276 + 5.78987
-35.45904 -4.25175 + 0.55388
-22.21125 -6.97014 - 4,68210
+18. 62100 -7.33112 - 9.9161
-15. 15408
+86. 67258 -2.92598 +16.29149
+17. 35972 +1. 39502 +11. 0555
-24,172332 +0. 88839 + 5.81952
-39. 20320 -3. 09552 + 0.58353
-25. 97404 -5, 14170 - 4.65245
+14, 86820 -5. 83073 - 9.88845
~15. 12443
+82. 95835 - +15. 12443
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C. Load Condition III

In this case, the analysis of the structure is simplified by analys-
ing it for the syr:hmet!rical loading and the antisymmetrical loading
(Fig. »6-6a, b). The‘superimposition of these two cases would give the

required results for the given problem.

1. Case I - Symmetrical Loading

For this case of symmetrical loading, the structure (Fig. 6-6a)
is loaded by a uniformly distributed load of 0.5 kip per feet, acting
down and perpendicular to the plane of the structure. The results for
this case are obtained from the problem (A) and these are shown in the '
Table 6-3.

2. Case II - Antisymmetrical Loading

In this case, the spans 01 and 23 are acted upoh by a uniformly
distributed load of 0.5 kip per foot, acting downward and the spans
T2 and 37 are loaded by a uniformly distributed load of 0.5 kip per foot,
acting upward (Fig. 6-6b). These loads are acting perpendicular to
the plane of the structure.s |

(a) Load Functions (7's) : From Table 5-3

o _ . 695.4768
34TT —FBT

1 = - ! = !
ToiTT -~ ~ T127T T 7 23TT

ot I - N __ 843.8472
10RR 12RR 23RR 34RR ) S

ot N - . o _182.8704
10RR 21RR 32RR 43RR — EI

(b) Load Functions (7's) = From Tables 4-2a, 5-2

le =.,sz - XBL - -X4L = - 22.139092



Fig. 6-6a - Fig. 6-6b

Symmetrical Loading - Case I ' Antisymmetrical Loading - Case II

Fig, 6-6¢

Superimposition of Case I and Case 1I

9¢
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X = =-22,139092

= - 22,139092

Substituting these values (XiL, X;" ...) and the values (f, g, 7),

in the expressions for the load functions (Table 4-2a),

. _ _ 1391.04023
0oTT EI

. _ _701,47549
ooRR EI

= _ _ 559.09652
TIRR — EBI

= _ _ 372.172601
T9RR T EI

= _ _ 186.36840 .
T3RR —EI

. 328.7404
T44RR T T T ET

{c) Solution Matrix

Solution matrix is written for the compatibility equations (eq. 4-7).
For an antisymmetrical loading on the symmetrical structure, this
solution matrix is modified for the moments Yo 5.7 Vg Y17~ Y3 and
Yo = 0. The modified solution matrix is given and is solved for the

redundants.



251.
61.
101.
67.
33.

11.

SOLUTION MATRIX

327424 61.350728 101.01444 67. 01444
350728 26.793842 32,497247 18. 04449
01444 32.497247 71.632160 41.519487
01444 18. 04449 41.519487 153.587664
671424 ‘9.022401 18. 04448 23.474989
17200 1.517587 3. 035147 3.035147
_551.327424 50, 178728 67.34301é_
61, 350728 25,276227 23.474846
101. 01444 29.462073 53.587680

33.671424
9. 022401
18. 04448

23.474989
35.543166

8.465683

Yo

V1]

FXO_ = (-1)

11.

11.

517587 | |y,
.035147 | |y,
.035147 | |y,

.465683 | |y,

— — —

17200 X

784516 | |y,

MODIFIED SOLUTION MATRIX

rl1391.040251

- 559. 09652

- 701.47549 |

| —

=(-1)

-1391.
- 601.
- 5509.
- 372,

- 186.

+ 328.

04023
47549
09652
72601
36840

7404

8¢
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The final moments for an antisymmetrical loading are recorded
in Table 6-3. The final moments for the loéding condition III'are obtained
by superimposing the results of the symmetrical case and the results of

" an antisymmetrical case. These moments are shown in the Table 6-3.

TABLE 6-3

FINAL MOMENTS - LOAD CONDITION III

Case 1 Case II )
Moments Symmetrical Antisymmetrical Final Moments

Load Load (Kip-Feet)
Xy - 3.01919 + 3.82179 + 0.80260
Yo +45, 09574 +68. 53403 +113. 62977
Y1 +43, 33629 -24,01722 + 19. 31907
Yo +42.47918 - + 42.47918
Y3 +43. 33629 +24, 01722 4+ 67.35351
Y4 +45, 09574 -68.53403 - 23.43829
X4 - 1.46299 - 6.08913 - 7.55212
X - + 9.30667 + 9.30667
Xq + 1.46299 - 6.08913 ' -~  5.6261
Xy + 3.01919 + 3.82179 + 6.84098




TABLE 6-4

CROSS-SECTIONAL ELEMENTS - LOAD CONDITION II1

,Span 01

Span 12

Span 23

<

Span 3

Support
0

5o
10°
15°
20°
25°

Support

1

5o
10°
15°
20°
25°

Support

2

5o
10°
15°
20°
25°

Support

3

5°
10°
15°
20°
25°

Support
4

+113. 62977

+ 4+ + + + +

29, 05185
28. 38544

58.19132
60. 14362
34, 22309

19. 31907
23.73422
27.96804
31.98924

35, 76697

39.27280

42,47918
22,71412
60. 37293

- 70. 15716

51.99675
6. 02543

67.35351
52, 84412

37.93237

22, 73227
7.35914
8. 06992

23.43829

. 80253
. 81015
. 65488
. 68266
. 68545
. 00946

. 55212
. 67209
.41551
. 79812
. 16116
. 43677

. 30667
. 94842
. 13640
. 24398
. 28990
. 02655

. 62614
. 00547
. 96853
. 61821
. 93144
. 89967

. 82512

+ 4+ + + +
=

.45414
.21815
. 98216
. 25383
.48982
-12.72581

=3 Y DN 00 w

-18.69986
+ 1.47038

. 47038

. 47038

.47038

.47038

.47038

. 47038

+17. 92226

+12. 68627

+ 7.45028

+2.21429

- 3.02170
8.25769

<+
—

-14,23194
+ 1.33703

. 33703
. 33703
. 33703
. 33703
. 33703

+ 4+ 4+ + +
[

+ 1.33703
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CHAPTER VII
SUMMARY AND CONCLUSIONS

7-1. Summary

The app'licba’tion of the flexibility method for the analysis of a
plana'r»‘continuous circular beam, laterally loaded, is outlined in the pre-
vious éhapfefé.* The‘s»tat‘icsv of a one~span basic structure is studied.

Using Castigliano"s Theorem, the angular functions (f, g, 7') for this
basic .structur'e are derived.

The analysis of a four-span continuous circular beam, with ex-
terior ends fixed, is considered in this thesis. The angular functions
(F', G, and 7) for this structure are derived in terms of angular functions
(f, g, 7") of an isolated one-span basic structure. The condition of con-
sistent deformations, expressed in terms of these angular functions and
redundant moments, provides the necessary compatibility equations to
solve for the redundant moments.

The theory presented in this thesis is illustrated by a numerical

example.

T-2. Cbnclusions

The flexibility method provides an adequate solution for the analysis
of a planar continuous circular beam, loaded out of plane. However, it
requires considerable amount of computation and accuracy. In problems

involving a small number of spans, this method can be advantageously

used.
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The application of this theory derived is limited to a four-span
continuous circular beam loaded laterally. However, the study can be

extended to continuous circular beams with any number of spans.
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