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CHAPTER I 

INTRODUCTION 

1. 1 Historical Background 

The basic formulas for column beams were first published by 

Muller-Bresleau in about 1902. (l) They were complicated to such an 

extent as to be of little practical value. During the First World War, 

Muller-Bresleau worked out his formulas in more detail and supplied 
' 

tables of complex functions that made possible their use in practical 

design. (2 ) At the same time the English, working independe_ntly, devel-

oped similar equations and tables. The English equations and tables 

were put into their most useful form by Arthur Berry. (3 ) The resulting 

tables usually are known as the Berry Functions. 

During the First World War, the United States Navy adopted 

Berry's equations and tables. The Engineering Division of the Army 

Air Corps proved in 1922 that Berry's Equations and the Muller-Bresleau 

equations were fundamentally the same, differing only in choice of orgin 

and nomenclature. (4 ) 

In 1935, J.E. Younger published the development of the three 

moment equation. (5 ) His equation was derived for any general loading, 

allowed for displacement of supports, but was limited to beams of con-

stant cross section within any one given span. A similar equation was 

published by Niles and Newell in 1938, although it was limited to a load

ing variation of first degree only. (5 ) Younger utilizes the Berry Functions 
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and a copy of them can be found in his book. Work along similar lines 

was done by Hawranek and Stienhardt in their publication in 1958, although 

they were concerned primarily with the problem of buckling. (7 ) 

1. 2. The Three Moment Equation 

The standard three moment equation, modified only in the sense 

of nomenclature, is given here along with a definition and physical inter-

pretation of the constants involved. Referring to the typical two span 

segment ijk in Figure 1, the three moment equation is as follows: 

M. 

rk { J 
lvkj v .. 1 lJ 

i j k 

l L. j Lk j J 

FIGURE 1 

L .6. -M.G .. + M.(F .. + F.k) + MkGk. + ET. + ET. - 0. 
1 lJ J Jl J J J J 

The algebraic expression for each of the constants that appear is: 

G .. 
lJ 

F .. 
Jl 

Eq. 

L. ( 1 - .t\..L. cot .t\..L.) 
=__J_ JJ JJ 

E/j (.t\..L.) 2 
J J 

Eq. 

1 
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L ( 
1 - ~Lk cot AkLk ) Fjk = 

Ektk • ( AkLk) 2 
Eq. 3 

Gkj 
Lk ( 

AkLk cosec AkLk - 1 ) = 
Ekik ( AkLk) 2 

Eq. 4 

L 
'T •• 

J Sm /\.. 

Jl 
f L.( · "X 

= !) .L.) 2 sin A.L. 
0 ,'J J J J 

X 2)W(x) .. dX 
L. tX.L.) lJ 

J J J Eq. 5 

A 
T .• -
Jl 

A. - A. 
J 1 
L. 

J 

where 

W(x )ij is the load variation in span ij from i to j. 

W(x)jk is the load variation in span jk from k to j. 

J~ 
A == _J_ 

j E.I. 
J J 

Eq's 7 & 8 

3 



1. 3. Physical Interpretation. 

1. F's (flexibilities) and G's (carry over values) 
M. = 1 

N. 
_1-. 

~ I G.. . ~-A 

( 

i lJ 

L. 
] 

FIGURE 2 

2. TL I s (load functions) 

j 

L. I J 

FIGURE 3 

3. TA'S ( deflection functions) 

s rin 
M. i de 1 

N. N. 

v .. J J J 
lJ 

~ IA 
~-T .. 

Jl 
I I 
i j 

l L. l J 

FIGURE 4 

k 

L k I 

Mk) 
. f vk. 

I i J A 
Tjk 

I 
k 

Lk j 

4 
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The elastic constants and load functions may be defined as 

follows: 

G.. is the end slope of a simple beam ij at i due to a unit moment 
lJ 

applied at j, the existing axial loads being present. 

F.. is the end slope of a simple beam ij at j due to a unit moment 
Jl 

applied at j, the existing axial forces being present. 

7 ji is the end slope of a simple beam ij at j due to loads, the 

existing axial loads being present. 

The elastic constants and load functions corresponding to span jk are 

similarily defined. 

It is readily seen that the primary drawback to the three moment 

equation is the necessity for an additional equation or equations to solve 

for the unknown support deflections. The purpose of this thesis is to 

eliminate this problem by developing a five moment equation involving 

redundant moments and load terms only. The procedure is similar to 

that used by Tuma and Havner~)who developed the five moment equation 

for continuous beams on elastic supports. The procedure is as follows: 

1. . Write expressions for the end shears of each span in terms 

of the redundant end moments, axial forces, loads and sup-

port deflections. 

2. Write expressions for the support reactions using the equa-

tions obtained in step 1. 

3. Write three separate three moment equations for supports 

i, j, and k. 

4. Solve the equations resulting from steps 1, 2, and 3 for the 

unknown support deflections. 

Using the equations for the support deflections, an expression can be 
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written for the deflection function of the three moment equation. -Substi

tuting this expression into the three moment equation written at joint j, 

the five moment equation is obtained. 



CHAPTER II 

THE FIVE MOMENT EQUATION 

2. 1 Development of the Five Moment Equation 

Using the typical four span segment of a continuous column beam 

shown in Figure 5, it is possible to arrive at a general expression for 

the deflection term of the three moment equation in terms of known 

FIGURE 5 

load functions and the redundant end moments. By isolating any typical 

span ij,, an expression can be written for the end shears of that span. 

7 



-
X 

~ ---
M. 

1 

i 

l 

EM. = b 
J 

v .. L. - wxi 
Jl J 

Solving for V.. : 
Jl 

V .. = BV .. + 
Jl Jl 

w x' 

-r-- W(x) 
r--..~ 

' " 

L. 
J 

FIGURE 6 

M. + M. - N.(A. - A.) = 0 
1 J J. J 1 

M. - M. N. 
iL J + __lL (A. - A.) 

. . J 1 
J J 

Where: BV .. is the end shear of the simple beam ij at j due to loads. 
Jl 

Similarly, the end shears for each of the spans in Figure 5 can be 

expressed as follows: 

Mi - Mh N. 

vih BV;ih + 1 
(Ai - Ah) = - L. L. 1 1 

Eq. 9 

M. - M. N. 
v .. = BV .. + J 1 _J (A. - A.) 

lJ lJ L. L. J 1 
J J 

Eq. 10 

M. - M. N. 
v .. BV .. J 1 + t' (A. - A.) = 

Jl Jl L. . J 1 
J J 

Eq. 11 

Mk - M. Nk 
vjk = BVjk + J + (Aj - Ak) 

Lk Lk 
Eq. 12 

8 
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Mk - M. Nk 
vkj = BVkj J (Aj - Ak) 

Lk Lk 
Eq. 13 

vkl BVkl + 
Ml - Mk 

+ 
Nl 

(Ak - L\1) = 
Ll Ll 

Eq. 14 

Having the end shears, one can isolate ea. single support and write an 

expression for the reaction of that support. 

v.h J . 
$ l v .. I:F = 0 

1 I 

~ 
lJ V 

-
Ri. 

R. = v .. + vih 1 lJ 

1 

Substituting Equations 9 and 10 for the end shears, the equation yielding 

the reaction at joint i is: 

Ri = BVih + BV.. + ~~ - Mi ( i. 
lJ 1 1 

+ J:...) L. 
J 

M. 
+ _J 

L. 
J 

Denoting the sum of the basic shears at joint i equal to BR., the following 
1 

expressions can be written for each of the reactions at supports i, j, 

and k: 
Mh 

Mi (ii i.) 
M. N. 

R. = BR. + - + + J + _J (Ai - Ah) 1 1 L. L. N. 
1 J J 1 

N. 
J (A. - A.) Eq. 15 L. 
J 

J 1 

M. 
Mj (Ll. _1) + 

Mk N. 
R. BR. + 1 + + _J (A. - A.) = L. - Lk J J Lk L. J 1 

J J J 

Nk 
(Ak - A.) Eq. 16 

- Lk J 
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Eq. 17 

Isolating the two span segment hij and writing the corresponding three 

moment equation, an expression for +~ can be obtained. 

h 

l L. 
1 

i 

l L. 
J 

FIGURE 7 

I 

M. 

~ v.. )J I Jl . 

j 

l 

-71~h = MhGh. + (F.h + F .. ) M. + M.G .. + E7~ + 
1 1 lJ 1 J Jl 1 

A 
7,, 

lJ 

Eq. 18 

Similarly, from spans jkl: 

-7~ = MjGjk + (Fkj + Fkl) Mk + M_rGlk + E7t + 7~ 

Eq. 19 

Utilizing Equations 7 and 8 and substituting Equations 18 and 19 into 

Equations 15 and 17 respectively: 



+ M. (Ll + N.G .. ) + T~ (N. - N.) + N.B-r~ 
J . 1 Jl lJ 1 J 1 1 

J 

11 

Since the reaction of support i is equal to the spring constant of support 

i multiplied by the displacement of that support: 

R. = C. A. 
1 1 1 

Eq. 20 

utilizing Equations 7. 8, and 20: 

( 1·. ) A.· A. 
+ MJ. L. + N.G .. + t' (Ni '"'.NJ.) - L 1 (N. - N.) 

J 1 Jl J j 1 J 

+ N. BT~ 
1 1 

rearranging: 

A. -- BR. 'Y.. + Mh'Y .. (Ll + N.Gh.) - M."f .. (Ll + Ll - N. BF·) 
1 1 lJ lJ i 1 1 1 lJ i j 1 1 

( 
1 ) A."f.. L 

+ M."( .. -L + N.G.. - ·L lJ (N. - N.) + "f .. N.BT. 
J lJ j 1 J 1 j J 1 lJ 1 1 

Eq. 21 



similarly: 

where: 

12 

Eq. 22 

'Y .. 
lJ 

= the reciprocal of the equivalent spring constant. 

'Y.. = 
lJ 

1 1 
N N I 'Y kJ0 = ----=N=----,N==--: . - . 1 - k 

C. + lL J Ck + ---L=---
1 j k 

Eq. 22 a & 22 b 
substituting Equations 21 and 22 into Equation 16, the equation for R. 

J 

becomes: 

Mi ( 1 1 ) Mk R. = C.A. = BR. + -L - M. -L + -L + -L 
J JJ J j J j k k 

M1.~1·.J.(Lli+ Ll -N.EF.)+ M-'Y··(Ll + N.G .. ) 
. j 1 1 J lJ j 1 .. Jl 

L A."/ .. (N. - N.)J Nk [ 
+ 'Y .. N. ET. - J lJL J 1 - -L 'Yk-BRk 

lJ 1 1 j k . J 
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rearranging: 

denoting: 

L~ + NiGj~J + Nk 'Ykj (L~ + NlG-jk) + Mk [ 

1 

Lk 
+ N(kj ( .ck + .cl - Nl llF ~] - M(f kkj ( .cl 

1 
')'.. = ------------

JJ N .C.')'.. NkCk')'kJ' C _ J 1 lJ 
j Lj Lk 

Eq. 22-c 

the final equation for A. becomes: 
J 

[ 
'Y .. N. ( 1 

A = f'\/ BR M f'\/ lJ J 
~. I.. • - h I.. L L 

J JJ J J J j i 

L1 + NL ij (L1 + L1 - N.EF.):1 - M."( .. r L1 
j . j i j i i IJ J J J L j 

1 N .')' .. ( 1 \.·.··. Nk 'Y k .. · .. ·(--1 
+ Lk + LjlJ Lj .+ NiGji). + Lk J '. Lk 

+ N G \J + M "' r 1 + Nk')'kj ( 1 + _!_ - N1"Fk\J -
1 jkJ k I ji L Lk Lk Lk Ll t..., 1 



Denoting:-

14 

. . L 

[
yk.Nk( 1 . ~] N.N.-y .. -y .. I::7. 

M J + N G 1 J lJ J J 1 
- 1'Y jj Lk L 1 1 1 - Lj 

L 
NkNl,y k . 'Y .. r: 7 k. 

J JJ 

Q .. 
Jl 

r:Q:!< = 'Y .. BR. + Q :': + QJ:!<k 
J JJ J Jl 

L 
N.N -'Y .. ')' .. ET. 

Q:': = 1 JLlJ JJ 1 
Jl . 

J 
L 

NkNl'Y k. 'Y .. r: 7 k . J . JJ 

Eq. 23 

Eq. 24 

Eq. 25 

Eq. 26 

Eq. 27 

Eq. 28 

Equation 23 can be written 

Aj = QhjMh + QijMi + r:QjMj + . QkjMk + QljMl + r:Qj. 

Eq. 29 
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Using Equations 21 and 29, the following expression is obtained for Ai. 

. [ 1 1 . I Qij J - M.')' .. -L + -L . - N.EF. ,- -L (N. - N.) 
1 lJ , . 1 1 , J 1 

1 J J. 

+ M.-y .. [.-L. l + N.G .. - ELQj (N. - N.)J 
J lJ . 1 Jl . J 1 

J J 

Mk 'Y .. Qk. Ml'Y .. Ql. tJ J (N. - N. ) - LlJ J (N . - N. ) 
. J 1 . . J 1 
J J 

L -y .. EQ:ic 
+ 'Y .. N. ET. - · 1t J (N. - N.) 

lJ 1 1 . . J 1 
J 

Eq. 30 

Similarly, from Equations 22 an.d 29 

Eq. 31 

Using Equations 29, 30, and 31, the following solution is obtained for 

the deflection function of the three moment equation. 



Rearranging: 

A 
T •. = 
Jl 

16 

M. [ (. 
- _1 Q .. 1 + 

L. lJ 
J 

j 

- ~~ [ EQj( 1 + 
J 

- ~~ [ Qkj ( 1 + -(N j ~ . Ni) 'Y ij)] - Mf 1l 1 + (N j ~ ~ i )'Y ij 1] 
J J . J 

L EQ:" 'Y . . BR. 'Y .. N.ET. 
__J_ + lJ 1 + lJ 1 1 
L. L. L. 

'Y .. 
~ (N. - N.)EQ:". 
L ~ J 1 J J J J J 

Mh [· -L Qh.C.,y .. . J 1 lJ J . . 
'Y .. (i + NiGh'i)] lJ i 

MLi [Q .. C.,y .. + 'Y·· (Ll + Ll - N1.EF.\J 
j lJ 1 lJ lJ i j i) 

M. ~ ( 1 ·J~ . MkQk,'Y .. C. - __J_L EQ.C.,y .. - 'Y .. -L + N.G.. - l lJ 1 
j J 1 lJ lJ j 1 ~ j 

M1Q1·'Y .. C. EQ~.,y.. 'Y.. L 
... J 1J 1 _ J .1 lJ + 2l_ (BR + N n ) L L .. L . .k.JT. 

. - . 1 1 . J 
J j J 

Eq. 32 

. A 
Similarly, the expression for Tjk becomes: 

M.Q .. Ck,yk . 
. 1 lJ J 

Lk 
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Eq. 33 

Thus the final equation of the deflection function in terms of the axial 

forces, loads, and redundant moments is obtained by combining 

Equations 32 and 33: 

A ET. 
J 

- MhOh'. + M.G .. + M.EF! + MkGk' J. 
.J 1 lJ J J 

where: 

[ ck "kj C.y .. J 1' ij f 1 Gh. ·:!!:°· - Qh. L + 1 l] + 
Lj·· .... Li 

+ 
J .· J k L. 

J 
N.Gh.J 1 · 1 

Eq. 34 

lck "kj C.-y .. J 1' ij l _!._ 1 
G!. = - Q .. + 1 lJ _ 

+ - N.EF.] 
lJ lJ Lk L. L. L. L. 1 1 

1 J 1 J 

F!. = 
Jl 

T!. = 
Jl 
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Substituting Equation 34 into the three moment equation for spans ijk, 

the five moment equation is obtained. 

GhjMh = (Gij + Gij)Mi + (EFI + r:Fi)Mj + (Gkj + Gkj)~k 

Denoting: 

Ghj = 

G'!'. = lJ 

Gkj = 

Gij = 

F:" = 
J 

'T~ = 
J 

L 
+ G 1jMl + E'Tj 

Gh. 
' J 

G!. 
lJ 

+ Gij 

Gkj + Gkj 

Glj 

F'. + F. 
J J 

L. + 'T ! 'T. 
J J 

Equation 35 becomes: 

+ E'T~: = 0. 
' J 

Eq. 35 

GhjMh + GijMi + EFjMj + a;j Mk + GijMl + E'Tj = 0 . 

Eq. 36 

Equation 36 is the final form of the five moment equation for a continuous 

column beam on elastic supports. 

2. 2 The Carry Over Moment Equation 

The carry over moment equation is obtained by solving the five 

moment equation (Eq. 36) for the moment Mj' Thus: 

M. = 
J 

G'!'. Gk" 
· lJ M - J M 

EF'!' i EF'l< k 
J J 

Eq. 37 
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Denoting: 

Gbj 
= rhj 

Gkj 
= rkj EF't' EF't' 

J J 

G~. G~. 
- lJ = r .. lJ = rlj EF'l' lJ EF'!' 

J J 

r; 7"~ 
J = m'!' r;F'!' J J 

the final form of the carry over moment equation is: 

Eq. 38 

The carry over factors and starting moment which appear in 

Equation 38 may be defined as follows: 

rhj is the moment developed at joint j due to Mh = 1, 

if Mi' Mk' and M 1 are zero. 

r.. is the moment developed at joint j due to M 1. = 1 
lJ 

if Mh' Mk, and M1 are zero. 

m :+: is the moment developed at j due to loads if the support 
J 

moments at h, i, k, and 1 are zero. 

A physical interpretation of these constants is given in Figures 8, 9, 

and 10. 



1. r jh and r lj (far carry over factors) 

(h;Ni 
'f 

h 

~ 
Li 

2. r .. and r k. 
lJ J 

N. --- 1 )! 
h Li 

N. Nk -- -- J - - - -
1 ~ i 

i J k 

~ 
Lj t ~ ~ :"j . • 

==ffizs ""':_ * 
MOMENT DIAGRAM FOR Mh = 1 

MOMENT DIAGRAM FOR M 1 = 1 

FIGURE 8 

(near carry over factors) 

M.=1 M =1 
1 k N. · N (ff J --- k 11r ~ 
i" Lj j L-k k 

MOMENT DIAGRAM FORM.= 1 
1 

MOMENT DIAGRAM FOR Mk = 1 

FIGURE 9 

Nl 

Ll 

Nl 

L· 
l 

20 

M =1 

ffj 
1 

+ 

I:hj 

.,,,,,.__ 

r 
1 

1 

rlj 

1 

r .. 
lJ 

1 



N. 
1 

L. 
1 

N. 
J 

i 
L. 

j k 

BENDlNCt"MOMENT DIAGRAM DUE TO LOADS 

FIGURE 10 

N 
1 

21 

1 

m. 
J 
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2-4. Conclusions 

The problem of a continuous column-beam on elastic supports 

can be formulated as a five moment equation which relates the redun

dant moments over five consecutive supports to the axial and trans

verse loads. This is accomplished through the elimination of the de

flection function of the well known three moment equation by express

ing the deflections in terms of redundant moments and load functions. 

To apply the five moment equation to the analysis of a continuous 

column-beam, it is necessary to compute three groups of beam and 

load constants, each group determined from the previous one. These 

are: 

1. Angular functions F, G, -r (as defined for the three moment 

equation) and equivalent spring constants 1/-y. 

2. Q functions. 

3. Modified angular functions F', G', -r'. 

Thus, use of the five moment equation requires considerably 

more computation for the formulation of the matrix than does the three 

moment equation. However, for the three moment equation, the solu

tion matrix requires, in a.ddition to the moment equation at each support, 

a shear equation for each unknown support deflection. This implies 

that twice as many unknowns are involved as for the solution matrix for 

the five moment equation. It is reasonable to assume, therefore, that 

in problems involving a large number of spans, the five moment equa

tion can be advantageously applied. To make a more definite relative 

evaluation of the two solutions would require an extensive comparative 

analysis beyond the scope of this thesis. 
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CHAPTER III 

EXAMPLE PROBLEM 

3. 1 A Guyed Tower 

The guyed tower shown in Figure 1 la is analyzed as a continuous 

column-beam on elastic supports. The cross section of the tower mast 

is as shown in Figure llb, and the guy arrangement, relative to the 

direction of the applied wind load, is shown in. Figure 1 lc. The ana

logous column beam on elastic supports is shown in Figure 12. 

w (5) 
50' 

100' 

100 1 

100 1 

100 1 

~200' 200' 200' 200' 

FIGURE lla 



2.5 

_i 

FIGURE llb 

MAST CROSS SECTION 

Guy Wire Properties 

Level 1 and 2 

A = . 3603 in2 

(/) = 7/ 8" 

E = 2 O x 1 O 3 ks i 

P . ·ld = 70. 0 kips yie 

Load 

Properties of Mast Cross Section 

A 9 . 2 
T = 1n 

d2 
I = AT 2 = .0651ft4 

where d is the length of one side. 

FIGURE llc 

GUY WIRE LAYOUT 

Level 3 and 4 

A . 4792 in 
2 

= 

(/) = 1" 

E = 20 X 103 ksi 

P , ld- = 91. 4 kips y1e 

24 
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W = . 075 

3 

c2 c3 

»~w I T 
0 1 2 3 4 5 

---~_1_00_·~~-1,-----~~1_00_·~-+l~~-1_0_0_·~--~~10_0_.'~--le--50• ~-

Figure 12 

ANALOGOUS COLUMN~BEAM ON ELASTIC SUPPORTS 

Su:e:eort Spring Constants 

co = 00 

c1 = 38.88 

c2 = 19.23 

C3 = 18.39 

c4 = 12.70 

Flexibilities and Carry Over Values 

-4 
Fol= Flo= 1. 3056 x 10 

-4 
Fl 2 = F 21 = 1. 2 941 x 10 

~4 
F 23 = F 32 = 1. 2672 x 10 

-4 
F34 = F43 = 1. 2488 x 10 

-4 
F 45 = F 54 = 0.6131x 10 

Load Functions (Eq 's 5, 6) 

L -4 
E Tl = 250. 21 X 10 

L -4 
E T2 = 244. 45 X 10 

Axial Forces 

Nl = 24.07 

N2 = 20. 85 

N3 = 12.96 

N4 = 7.23 

(Eq's 1-4) 

-4 
GOl = GlO = 0. 6833 x 10 

-4 
G12 = G21 = 0. 6731 x 10 

-4 
G23 = G32 = 0. 6491 x 10 

-4 
G34 = G43 = 0. 6328 x 10 

..:.4 
G45 = G54 = 0. 3065 x 10 , 

L 238.44x 10- 4 
E T3 = 

L 
232. 97 X 10- 4 

E T4 ::: 
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~ (Eq)s 22a, 22b, 22c) 

'Y 01 = 0.0 'Y 22 = 0.0529 

'Y 21 = 0.0522 'Y 23 = 0.0518 

'Y 11 = 0.0260 'Y 43 = 0.0796 

'Y 12 = 0.0257 'Y 33 = 0.0550 

'Y 32 = 0.0548 

Q's (Eq's 24 - 28) 

r: Ql 
-4 

Q13 
-4 

= - 5. 2308 X 10 = - 0. 0421 X 10 

Q31 = 
-4 

Q23 + 5. 5541 X 10- 4 - 0. 0307 X 10 = 

Q21= + 2. 6472 X 10-4 r: Q3 = -11. 0736 X 10- 4 

Q02 = 
-4 

Q43 + 5. 5475 X 10- 4 - 0. 0330 X 10 = 

Q12 = + 5. 3290 X 10-4 r: Q* = + 0. 1913 
1 

r: Q2 = -10. 6522 X 10-4 r: Q* = + 0. 3965 2 

Q32 = + 5. 3583 X 10-4 r: Q* = + 0. 4123 
3 

Q42 = - 0. 0393 X 10 
-4 

G' 's and F' 's (Eq 34) 

G'21 
-4 

G'13 + 0. 0599 X 10- 4 = - 0. 1136 X 10 = 

G'31 + 0. 0569 X 10- 4 
G'23 

-4 
= = - 0. 1874 X 10 

G'12 
-4 

G'43 
-4 = - 0. 1424 X 10 = - 0. 2 307 X 10 

G'32 
-4 r: F' + 0. 1617 X 10- 4 = - 0. 2075 X 10 = 1 

G'42 = + 0. 0582 X 10- 4 E F' 2 = + 0. 3013 X 10- 4 

E F' = + 0. 3607 X 10- 4 
3 
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7 1 's (Eq 34) 

I:;7 1l = 2.28 X 10- 4 

Final Modified Flexibilities, Carry Over Values, and Load Functions. 

G*21 
-4 

G* 43 
-4 = 0. 5595 X 10 = 0.4021x10 

G*31 0, 0569 X 10- 4 EF* 
-4 = = 2, 7614 X 10 

1 

G*12 
-4 

EF* 
-4 = 0. 5307 X 10 = 2. 8626 X 10 2 

G*32 
-4 

EF* 2.8764x 10- 4 = 0, 4416 X 10 = 
3 

G* 42 
-4 

E 7* 252, 4900 X 10:- 4 = 0, 0582 X 10 = 1 

G* 13 
-4 

E 7* 227. 6000 X 10- 4 = 0, 0599 X 10 = 2 

G*23 
. -4 

E 7* 257, 3400 X 10- 4 = 0.4617:x 10 = 3 

Carry Over Factors and Starting Moments 

r21 = 0.2026 r42 = 0.0203 

r31 = o. 02 06 r13 = 0.0209 

r12 = 0. 1854 r23 = o. 1609 

r32 = 0. 1543 r43 ::: 0, 1402 

m* = 1 
- 91. 43 m* = 2 - 79.51 

m* = 3 - 89. 75 

Since M 4 , computed by statics, is equal to 93. 75, the modified 

starting moments are: 

m*' = 1 91. 43 - 77. 61 

m* I = 
3 76.61 
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Solution Matrix 

1. 0000 0.2026 0. 02 06 -91.43 

0. 1854 1.0000 o. 1543 = -77.61 

0.0209 0. 1609 1. 0000 -76.61 

Carry Over Procedure 
1 ?. 3 

r's - . 1854 -.2026 -. 1609 - . 1543 

r's I - . 0209 . 0206 
I 
I 

m*'s - 91. 43 - 77.61 - 76.61 

16. 95 
11. 82 

+ 1. 58 - 48. 84 + 1. 91 
9. 89 7.86 

+ 11.47 + 9.77 
- 2. 13 
- 1. 51 

- .20 - 3.64 - .24 
+ .74 + . 59 
+ --:-54 + --:35 

- . 10 
- . 05 

0.00 - --:-f5 0.00 

E - 79. 42 - 52. 63 I - 66. 49 

· The final moments are: 

Ml = - 79.42 

M2 = - 52.63 

M3 :::: 66.49 

M4 :::: 93.75 

The primary drawback to the solution of a guyed tower problem 

is that the axial forces are initially unknown. An analysis, neglecting 

the axial forces, was performed. The axial forces, induced due to 

deformation of the guy's, were computed and used as starting values 

in the analysis including the effect of the axial forces. 
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