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CHAPTER I
INTRODUCTION

1.1 Historical Background

The basic formulas for column beams Were.first published by
Muller-Bresleau in about 1902, (1) They were complicated to such an
extent as to be of little practical value. During the First World War,
Muller-Bresleau worked out his formulas in more detail and supplied
tables of complex functions that made possible their use in practical
design. (2) At the same btime the English, working independently, devel-
oped similar equations and tables. The English equations and tables
were put into their most useful form by Arthur Befry. (3) The resulting
tables usually are known as the Berry Functions.

During the First World War, the United States Navy adopted
Berry's eduations and tables. The Engineering Division of the Army
“Air Corps proved in 1922 that Berry's Equations and the Muller-Bresleau
equations were fundamentally the same, differing only in choice of orgin
and nomenclature. (4)

In 1935, J.E. Younger published the development of the three
moment equation. () His equation was derived for any general loading,
allowed for displacement of supports, but was limited to beams of con-
stant cross section within any one given span. A similar equation was
published by Niles and Newell in 1938, although it was limited to a load-

ing variation of first degree only. (6) Younger utilizes the Berry Functions
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and a copy of them can be found in his book. Work along similar lines
was done by Hawranek and Stienhardt in their publication in 1958, although

they were concerned primarily with the problem.of buckling. (7)

1.2, The Three Moment Equation

The standard three moment equation, modified only in the sense
of nomenclature, is given here along with a definition and physical inter-
pretation of the constants involved. Referring to the typical two span

segment ijk in Figure 1, the three moment equation is as follows:

W(x)

ij -

M. Mk
o 1
ij .4%,
i
l L.
J
i
FIGURE 1
M.G.. + M.(F., +F. ) + M, G, . + ot~ + =75 = 0.
171] i Tk k7kj ] J
The algebraic expression for each of the constants that appear is:
Lj ?Lij cosec ?Lij - 1 ‘
G.. = Eq. 1
ij E.I. L 2
JJ ] j) .
L. 1 - Aij cot Aij
F,. = : ' : Eq. 2
E.I. 2
J 3] (?L.L.)

J ]



) Lk J\kL cot AkLk
F.. = Eq. 3
ko B Nk
k k
7\ L cosec)& L - 1
ij = L ) Eq. 4
k
’TL= L + '7'.L
J i jk
L sm)&X <
- 5 W(x)1 dX
J L) sme L, (AL J
j IV Eq. 5
Lk sin A X
- (x)., dX
A Lk) sin X L Lk(AkLk) 2
Eq. 6
'7'.A = 'Té + 'T.A
J j1 jk
A~ A A - A
AN j i A _ i k ' ,
Tji Lj Tjk Lk Eq's 7 & 8

where
W(X)ij is the load variation in span ij from i to j.

W(x)jk is the load variation in span jk from k to j.

. k
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1.3 Physical Interpretation

1. F's (flexibilities) and G's (carry over values)

Mj =1
N. Nj‘ ‘Nk Nk
G.. : . F.
i U Fy 5 Ik Gri
| - | " |
J [ 1
FIGURE 2
L, .
2. 7 's (load functions)
"] ﬁ
N, N..
1) J
Arr %
7L :
i ji
L.
J
FIGURE 3
3. 'TA'S (deflection functions)
T T
string line of|bea p—
Mi in deflected plosition
N N, N
ij .
cE T i3
7 731 » %7 v TJk i
| | |
i J k
" | "k |

FIGURE 4



The elastic constants and load functions may be defined as
follows:

Gi' is the end slope of a simple beam 1j at i due to a unit moment
applied at j, the existing axial loads being present.

Fji is the end slope of a simple beam ij at j due to a unit moment
applied at j, the existing axial forces being present.

ji is the end slope of a simple beam 1j at j due to loads, the
existing axial loads being present.

The elastic constants and load functions corresponding to span jk are

similarily defined.

It is readily seen that the primary drawback to the three moment
equation is the necessity for an additional equation or equations to solve
for the unknown support deflections. The purpose of this thesis is to
eliminate this problem by developing a five moment equation involving
redundant moments and load terms oﬁly. The procedure is similar to
that used by Tuma and Havner(,g) who developed the five moment equation
for continuous beams on elastic supports. The procedure is as follows:

1. Write expressions for the end shears of each span in terms

of the redundant end mom ents, axial forces, loads and sup-
port deflections.

2. Write expressions for the support reactions using the equa-

tions obtained in step 1.
3. Write three separate three moment equations for supports
i, j, and k.

4. Solve the equations resulting from steps 1, 2, and 3 for the

unknown support deflections.

Using the equations for the support deflections, an expression can be



written for the deflection function of the three moment equation. Substi- -
tuting this expression into the three moment equation written at joint j,

the five moment equation is obtained.



CHAPTER 11
THE FIVE MOMENT EQUATION

2.1 Development of the Five Moment Equation

[

Using the typical four span segment of a continuous column beam
shown in Figure 5, it is possible to arrive at a general expression for

the deflection term of the three moment equation in terms of known

] —_ W(x)
My
N
J - — e lF - 1 -
"% ,% Vik
j k 1
R s
1 i 1
FIGURE 5

load functions and the redundant end moments. By isolating any typical

span 1j, an expression can be written for the end shears of that span.
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Solving for Vji

Vi = BV F

i
W
<
+
+
Hat
S
1
D>

Where: BVji is the end shear of the simple beam ij at j due to loads.
Similarly, the end shears for each of the spans in Figure 5 can be

expressed as follows:

Mi - Mh Ni
MJ - Mi Nj
M. - M1
VJl=BVji———llT——+—E1(Aj—A) Eq. 11
J J
o Mk - M. Nk
VJk = Bij + —__lLk + -L—k (AJ - Ak) Eq. 12



Mk - M. Nk
k k
Ml - Mk Nl
= + — - .
v o= BV, T t L (& - A Eq. 14

Having the end shears, one can isolate .a single support and write an

expression for the reaction of that support.

i}
o

V.. LF
ij v

Vih JL—_———?_:S

T Ri Vi' + V
R J

ih
i

Substituting Equations 9 and 10 for the end shears, the equation yielding

the reaction at joint i is:

My 1 1y M

Ny
(A -4 - - A)

h) j i

Denoting the sum of the basic shears at joint i equal to BRi’ the following

expressions can be written for each of the reactions at supports i, j,

and k:
My 1 1 M., N,
Rj = BRy + - - Ml(r +I:) S o S G Y
1 1 J J 1
N;
- TJ— (AJ - Al) . Eq. 15
J .
My 1 1 M N
R. = BR, + —& - M(- +-—)+——.+— (A. - A,)
T . T T T T i
J j J ] k k j J
Ny
- (Ak-AJ) Eq. 16



oy (A, - A)
K Ly Ly Ly Ly RO

Ny
o (A - A Eq. 17

Isolating the two span segment Hﬁ and writing the corresponding three

moment equation, an expression for T%l can be obtained.

/
W(x)
M, M
Vii | % 2 Vi
h i j
l L, | L.
A2 1 v :] l
FIGURE 7
A L, _A
Tip T MpGpg © (Fp # FO My + MGy + D7+ 73
Eq. 18
Similarly, from spans jkl:
A L, A
T T MGy T (Fyy ¥ F) My MGy BT
Eq. 19

Utilizing Equations 7 and 8 and substituting Equations 18 and 19 into

Equations 15 and 17 respectively:
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_ 1 _ 1 1
R, = BR; + M. (1—1 + NiGhi> Ml(-L—l + -L_J N, EFi)

L

+ M.(— + N.G..) + 2 (N, - N.) + N7l
j\L 1731 ij vl ] 171

) 1 i 1 1
R, = BR, + M, (-L— + Nlij> M, (E-I; + o leFk)

¥ Ml(—l + N,G >+ 2 (N

L
T 1% I] - Ny o+ Ny I7

k 1 k

1
Since the reaction of support i is equal to the spring constant of support
1 multiplied by the displacement of that support:
R, = Ci A, Eq. 20

utilizing Equations 7, 8, and 20:

= 1 - LR S
Ci Ai = BRi + Mh <T_;: + NiGhi> Mi (T-"—l + Lj Ni EFi)
1 A, Ai
M (L_ NlGji> * fl (N -NJ) - (8- NJ)
J J J
+ N. I
i i

rearranging:

_ 1 ) 1,1
A, = BRyv; + Myy;. (T:l + NiGhi) My, (L—+-E_ NiEFi)

+ M.y, [+~ + N.G —-—L—A'yij(N—N)+yN>:7~L
e LV ol A 1N Ty

Eq. 21
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similarly:
A, = BR My, [ NG - M Loyt
k k7 kj RS VPR A 1 kykj(Lk "I
- N,IF, )+ My, [+ + N,G -—A-ﬁ-‘l(N - N
15"k ﬁ’kj T, 1M1k) " T kT
+ N L Bq. 22
17155 Tk a.
where:
'Yij = the reciprocal of the equivalent spring constant.
= 1 _ - 1
7ij TN, SN, Tkj N, - N,
c, +2 1 C, + =
i Lj k Lk

Fq. 22a & 22b
substituting Equations 21 and 22 into Equation 16, the equation for Rj

becomes:

ko
Ay, .
1 Lo 1K N -
T MYy (Ll * Nlle) NP T ot (N NlZ‘
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rearranging:

1 : 1 ‘
T + Nlij>:] + Ny, (L—k + Nlij) + Mk[
N, v N/y' .
El' * “’I;Z'E (‘L‘L + L1 - leFkﬂ - Ml[”‘kf‘lﬂ(i}“
k k k 1 f k 1
. NG ] Ny N.Z7; N YN BT
1 11«:)] L L
j k
N, N Y .N
k i ki k
AJ[T_;_J + =t (N - N;) - = (Nk—Nl)J
L k L
j k
denoting:
Y = -
L i T S 0 Eq. 22-c
J Lj Lk
the final equation for Aj becomes:
..N,
A. = v.BR, - M_.v Zil—l—l+NG + M.y
J jJ J “h .].] Lj Li i ji i‘ .].]
N.v.
1 jtij (1 1 _ -
T, T L (Tj T leFiﬂ ijjj[ T
j j i j j
' NLY-. . N, v
=+L—1+—"1%”-(%+N1G-1)5+ o (zl—
k oY s k \Tk
N v, .
‘ 1 k'kj [ 1 1 _
+ NlG.kﬂ + Mk'inIiLk + T (-EE + " leFkﬂ
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L
N N.N.v..v..LT.
Mv..[yk -k<—-1- +NGk>] B L A i
1733 Lk L1 171 Lj
L
N N v, .v..2T
k1 1;2} -k Eq. 23
k
Denoting:
Y..v..N.
IS 5 Y R T
Q3 L (Li + NiGhi) Bq. 24
N.v..
_ 1 N S Y PR S
Qs = 755 [E T (E‘. T - NIE, Eq. 25
] ] i ]
N v
- 1 k¥kj [ 1 1.
Q= 7y [—L—l: + iy (L_]; + ” le:Fk)] Eq. 26
_EQj = Qy +tQy Eq. 27
r N.v..
oon 1 jij (L
Qi = 7 Yy T I (L. + NiGj'i>J
SN ] ]
. ~ N, v...
- 1 k kJ( 1. k):j
o= oy = — + N,G.
QJk YJJ_Lk "L Ly 1771
Q¥ = v..BR. + Q¥ + QX Eq. 28
QJ Vit QJl QJk 4
L
N.N.v..7..ZT.
Qx = - iyt
ji Lj
L
, N. N YL DT
f = - K 1kY5""k
jk Lk

Equation 23 can be written

A

j = thMh + QijMi + EQij + Qk

M, +

! %k
My Qlel - EQj .

Eq. 29
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Using Equations 21 and 29, the following expression is obtained for Ai.

A. = v.BR +Mb—--—--——'yithjN—N - L+ NG
i 7iBRy n| o BN Yij\L; i%hi

1
j ] ]
g . Q..
- L 1. + -
M, LEIJPEE' N.IF; A L (N, Ni)]
F Q.
+ Mgl + NGy - +— (N, - N )]
-] ]
M, 7..Q, . Y. Q
- B UH W o-N LN, - Ny
. j i ] i
] ]
YIJEQ;‘
+ yi.NiE'ri - Lj (Nj - N.) .Eq. 30
Similarly, from Equations 22 and 29
v. .Q, . M.v. .Q..
- - _kj™hj - ik - N
A = BRy Mh[ L Mg Nl.)] T, Mk N
1 EQJ i
1 1 Qj
- MYy [Tf oo NER - o (N Nl)}
k 1 k
+ My, .|+ + NG ] (N, - N)| + Ny, o7
RS ST I R 1"k "k
oQ¥y, .
+ KN - N Eq. 31
T "1

Using Equations 29, 30, and 31, the following solution is obtained for

the deflection function of the three moment equation.
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A _ _ 'h I S VAR L
731 - Lj [th (1 * Lj > 713 (Li + NlGhl
M. (N. - N.)y..
. i iTTij 1.1
L. [Qlj(l + L. > ' 71] (L + L. NiEFi)]
] J : i ]
i
M. (N, - N.)v.. )
R g iThij 1
L. [EQ (1 + L. ) Yij (L. + NlGjl)}
J J J
M N, - N.) v.. N, - N
. _klqg O UL T e G Ny
L. kj L. 1j L. Jj
J ] A J
Q¥ v BR ’YIJNIE'TL v '
- - - - F3
A s — —3- (N - N;) EQS.
J J J Lj
Rearranging: ‘
A My 1
TR ol K XA LS IS (Tfi * NiGh‘i)J

)} M9 745C4
i — 1.

. i . i L.
jLod j o j
M,Q,.v..C. LQ¥C.y Y
171374371 171 ij
Lj Lj‘ + Lj (BRi + N.Z7.7)

Similarly, the expression for 'rﬁ{' becomes:

A MpQpiCi¥yy  MiQusCyvyy
ik L, iy
M, .
T T [EQjCk”kj T Vi (T:“ + NlijH
K K .
M

K 11
- —E;[ijck'ykj TV (1‘:1; T leFk)] -
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My 1 LQt

- ‘“[’Qljck'ij T Vi (Tf + N1G1k>] T T Gy
K 1 K

+ K @R 4N ph Eq. 33
L, P PR d-

Thﬁs the final equation of the deflection function in terms of the axial

forces, loads, and redundant moments is obtained by combining

Equations 32 and 33:

where:

A - 1 ' t
E'Tj Mh‘Gh.j + M:'LGij + MjEFj + Mkaj
1 1
+ MGf; + I Eq. 34
C, v, C.v.. Y.. ¢
£ - Tk'kj i'ij ijf 1
Gpj th[ L. L ]J’ _"L.;[L. + NGy
. j jLri
C, v, . C.v.. 2%
- k"kj 171j ij| 1 1
1 = - - — — -
Gi; Q; { L 'L } T [L. t o - NIE
1 J 1 J
C.v.. ¥
Voo RN ij | 1
Bl Y1 t T [L. + NiGji]
J J J
C. v Yq:
_ k "kj kj [ 1 :l
Fl. = - IQ. + < |— + N.G
jk j Lk Lk Lk 179k
C C.v..
Gl --Q.[ LS 1713}—71{3[—1——:-—1——NEF]
kj ki| "L L L T, I 197k
C, Y- Y Y ;
- kkj 171y kj| 1
iy - - ay 308 L S T [ g
1j 1 Lk Lk “Ll 171k
, PG, Y L
T o= - L2+ FlBR, + NDT
J J
LQ¥y. C Y, .
v - 1'jk Tk kj L
’Tjk T + 1 (BRk + N127k)

k k
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Substituting Equation 34 into the three moment equation for spans ijk,

the five moment equation is obtained.

t - ' [ 1
GhJMh (Gij + Gij)Mi + (CF] + EFi)Mj + (ij + ij)Mk
+ GL.M, + T o+ Z7f o= 0. Eq. 35
13771 j 1 .
Denoting: ‘
|
%k = 1
Ghj = G
G* = G! + G.
i i] i]
G* = Q. + G,
kj kj kj
G* = G!.
1j 1j
F¥= ©F. + F
j j j
Tk = 'TI._J'+ 7!
j j

Equation 35 becomes:

G*¥.M

* * - ok * * = :
hi'h + GijMi + EFij o ijMk + Gle + E'Tj 0

1
Eq. 36
Equation 36 is the final form of the five moment equation for a continuous

column beam on elastic supports.

2.2 The Carry Over Moment Equation

The carry over moment equation is obtained by solving the five

moment equation (Eq. 36) for the moment Mj‘ Thus:

G* L T*

G¥.
sz’ﬁ% ——%M’ FkJM '—J*—M'"—"‘*-
J J
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Denoting:
%k %

C%h L, CS% L,
TF¥ hj TF ¥ kj
G* G*

- 1 = - 1] =
hak; i TF 1

] ]
E'T’J'.‘

- = %

j3jaks my

the final form of the carry over moment equation is:

M. = r, M

' *
i hj h.+ rijMi+r.M + r,..M +1'n1 Eq. 38

ki "k 131

The carry over factors and starting moment which appear in

Equation 38 may be defined as follows:

rhj is the moment developed at joint j due to Mh = 1,
if M., M, , and M, are zero.
i k 1
r, is the moment developed at joint j‘due to M, = 1

if Mh’ Mk’ and 1\/[1 are zero.

m¥* is the moment developed at j due to loads if the support

moments at h, i, k, and 1 are zero.

A physical interpretation of these constants is given in Figures 8, 9,

and 10.



1s rjh and rlj (far carry over factors)
S w, N, N TR
=l 1 e e L
\
|
}

MOMENT DIAGRAM FOR M, =1
FIGURE 8

2, Ty and rkj (near carry over factors)
M. =1 M, =1
N. N

: T e :
S

N.

- ¢ §

MOMENT DIAGRAM FOR Mk =1
FIGURE 9
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BENDING MOMENT DIAGRAM DUE TO LOADS

FIGURE 10
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2-4. Conclusions

The problem of a continuous column-beam on elastic supports
can be formulated as é five moment equation which relates the redun-
dant moments over five consecutive supports to the axial and trans-
verse loads. This is accomplished through the elimination of the de-
flection function of the well known three moment equation by express-
ing the deflections in terms of redundant moments and load functions.

To apply the five moment equation to the anaiysis of a continuous
column-~-beam, it is necessary to compute three groups of beam and
load constants, each group determined from the previous one. These
are:

1. Angular functions F, G, 7 (as defined for the three moment -

equation) and equivalent spring c.onstants 1/7.

2. @ functions.

3. Modified angular functions F', G', T7'.

rI"hus, use of the five moment equation requires considerably
more computation for the formulation of the matrix than does the three
moment equation. However, for the three moment equation, the solu-
tion matrix requires, in addition to the moment équatién at each support,
a shear equation for each unknown support deflection. This implies
that twice as many unknowns are involved as for the solution matrix for
the five moment equation. It is reasonable to assume, therefore, that
‘in problems involving a large number of spans, the five mome‘nt equa-
tion can be advantageously applied. To make a more definite relative
evaluation of the two solutions would require an extensive compérad:ive

- analysis beyond the scope of this thesis.
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CHAPTER III

EXAMPLE PROBLEM

3.1 A Guyed Tower

The guyed tower shown in Figure 1la is analyzed as a continuous
column-beam on elastic supports. The cross section of the tower mast
is as shown in Figure 11b, and the 'guy arrangement, relative to the
direction of the applied wind load, is shown in Figure 1lc. The ana-

logous column beam on elastic supportsbis shown in Figure 12.

- . 1 5 _..*.‘
w . ( ) 50!

100!

100!

200! 200!

FIGURE 1lla



2.

FIGURE 11b
MAST CROSS SECTION

Guy Wire Properties

Level 1 and 2

A = .3603 in2

@ - 7/8”

E = 20x 103 ksi
P ie1q = 70-0 kips

Properties of Mast Cross Section

T.oad

~ . 2
AT = 9in
2
_ d _ 4
I = AT—T = _06b1 ft

where d is the length of one side.

120°
120°
120°
FIGURE 11lc

24

GUY WIRE LAYOUT

Level 3 and 4

= ,4792 in2

1”

= 20 x 10° ksi

= 91.4 kips
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W = .075
L N2 - Ny ‘ T~ Ng of— | —= Ny o — |
e
| I ! [
1 2 3 4 b}
100! ! 100! l 100! l 100! ‘ 50!
[ ! | l
Figure 12

ANALOGOUS COLUMN-BEAM ON ELASTIC SUPPORTS

Support Spring Constants Axial Forces
CO = 00 Nl = 24,07
C1 = 38.88 N, = 20.85
C, = 10.23 N, = 12.96
C, = 18.39 N, = 7.23
C4 = 12.70

Flexibilities and Carry Over Values (Eq's 1-4)

Fop = Fyo= 1.3056x 107° Gyy = Gyo = 0.6833 x 107
Fig=Fy  =1.2041x 1074 Gy = Ggq = 0.6731 x 1074
Foq = Fgy = 1.2672x 107° Gyg = Ggy = 0.6491 x 107
Fo, = Fya=1.2488x 107% Gy, = Gyq = 0.6328x 107"
Fyg = Fg, = 0.6131x 107% Gys = Ggy = 0.3065 x 10’4i
Load Functions (Eq's 5, 6)
L7y = 250.21x 107° L7y = 238.44x 1077
L7y = 244.45x 107* LTy = 232.97x 107



v's (Eq's 22a, 22b, 22c)
Yo1 = 0.0
¥4, = 0.0522
¥{; = 0.0260
Y9 = 0.0257
Y4y = 0.0548

Q's (Eq's 24 - 28)

EQl =

G''s and F''s

- 5,2308 x
- 0.0307x
+2.6472 x
- 0.0330x
+5.3290 x
-10. 6522 x
+ 5.35683 x

- 0.0393 x

(Eq 34)

1 =
G'aq

Glgp =

1 =
G'ia

Glzg =

Glyg =

0.1136 x

+ 0.0569 x

0.1424 x

I

0.2075 x

+ 0.0582 x

Y92
Va3
Y43

V33

13

Ghs

)
Glys
L FY

t
T FY,

rLF!

1]

ti

0. 0529
0.0518
0.0796

0.0550

- 0.0421 x 10~
+5.5541 x 10~
-11.0736 x 10

+5.5475 x 10

+ 0.1913
+ 0.3965

+ 0.4123

+ 0.0599 x
- 0.1874 x
- 0.2307 x
+0.1617 x
+0.3013 x

+ 0.3607 x

4

4

4

4
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7' 's  (Eq 34)

E'r'l

Final Modified Flexibilities,

2.28 x 10~

4

! =
273

1 =
272

+18.74x 1074

27

- 16.79x 1074

Carry Over Values, and Load Functions.

*
G¥91

*
G731y

G*1o
G* 35
G* 49
G* 3
G*

23

i

i

0.5595 x 10~
0. 0569 x
0.5307 x
0.4416 x
0. 0582 x
0.0599 x

0.4617 x

4

1074

1074

1074

* =
G 43

LF*

1

*

LF*

3
L T*

n

1

i}

%
)372

*
)373

Carry Over Factors and Starting Moments

m*:-

1

m* = -

0

0

0

0

91,

89.

.2026
. 0206
. 1854
. 1543
43

75

0.4021 x 10~ 4

2.7614 x 10°%

2.8626 x 10”2

2.8764 x 10~
252, 4900 x 10~
227.6000x 10~

4
4
4
257, 3400 x 10”4

Lug = 0.0203
rig = - 0. 0209
rog = - 0.1609
Lu3 = - 0.1402
m*2= - 79.51

Since M4, computed by statics, is equal to 93. 75, the modified

starting moments are:

* 1
m3

* 1
m7s

= - 01.43

= - 76.61



Solution Matrix

28

1. 0000 0.2026 0. 0206 M -91,43
0.1854 1. 0000 0.1543 M = -77.61
0.0209 0.1609 1. 0000 M -76.61

Carry Over Procedure ,
1 2 3

r's |- .1854 [-.2026 -.1609| - 1543 -
r's | - .0209 . 0206
m*'s - 91.43 - 77.61 - 76.61
16. 95
11, 82
+ 1.58 - 18. 84 + 1.91
9.89 7.86
+T1.47 + 9.1
- 2,13
- 1.51
- .20 - 3764 -] .24
+ .74 + ' .59
+ .54 + 35
- .10
- .05
0.00 - 15 0. 00
£ |-79.42 - 52.63 - 66.49

The final moments are:

M1 = - 79.42
M2 = - b52.63
M3 = - 66.49
M4 = - 03.75

The primary drawback to ‘the solution of a guyed tower problem
is that the axial forces are initially unknown. An analysis, neglecting
the axial _forces, wasg performed. The axial ‘forces, induced due to
deformation of the guy's, were computed and used as starting values

in the analysis including the effect of the axial forces.
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APPENDIX A

.CARRY OVER VALUES

FLEXIBILITIES

~ LOAD FUNCTIONS

L. i x.L, coseca,L, - 1 L.yl - 2L.cot AL,y L yosinax®
Gy * wt ! L l Fii = B l -3 T 3 (smxi - L_)“'(X)dx
H i (L) i it Ly S ¢ P i i
i7i i iy e
Al s
. ) Lk )\kchosecAkLk - 1! . B Lk 1 - )Lkchot)kLkl Tl i} 1 ] sm)«k]_)lc ) —I:{. —_——
kj EI 2 jk ~ ET 2 ik 2 sind L. i
K Oyl k Pl Ayl A]‘V kK
EQUIVALENT SPRING CONSTANTS
. - N \ : g - N
1 N, - Ny 1 OGN Gy SR S
=Gt v © G T T e K T
i 3 Al i k kj k
Q FUNCTIONS
" N.y .
YiYaN 1 i 1 .
NS S Y NV | ] J(— + N,G..)]
Q; : ‘L. + NiGhi{ Qi THIT PP PR N Y
i i j j j
Y N 1 M0
Wik L J VN i (,m - NGy
Qlj Lk Ll + l\lGl N QJK ’Y.]] LLk Lk o 17
= 1 NiTsj (1 + 1 N.IF LQF = v..BR. + QFf + QX
Q; 733 L] - Lj T f} Ny i) i i3 i ik
. N.N.v..v..07 N, N7, v, DT
%Ky 1 . BT 4575577 - 117 157 335 Tk
Q.. = 7..[i + K “J( Lo Lo yerll QF = - AL 2 Qf = - —— =
kj Ly, K k L, 177 K] J j k




Appendix A - continued

MODIFIED CARRY QVER VALUES (G''s)

) C-'v--‘ C'v ) Vs, Y Tl Tk 11
Coa 1, Tk}, Ja L s L ____ll‘kl+__“JI__+NGl
~ Chj th[ T, B vy }+ T, T + NGy Gy Q4 L; L, ol b o RN
C-'Y-: C vy Yisg ¥ C Vs Y.
= - ANy, TKNgy o JHpL L e Al H«Jl Kl .1 oy
G Syl T o ToTo Yo T NEh Gj Quil—t™ * T ol ionlil v
i k i i j k k
MODIFIED FLEXIBILITIES (F''s)
£Q, Tii 11 EQ i1 i
Fl. = - —31 cqy.. + | + NG, Fio= - —d vy . +|-8 L4 ya.
i Lj 1711 ; LJ i ik Lk k " kj Lk Lk 175k
MODIFIED LOAD FUNCTIONS - (7' 's)
LQ*y..C. .. ZQ¥C. v, . Y.
T = - __?_l—il__l + Zﬂ BR. + N )-~-,-1 T . 3 TkEK] + “K BR. + N E-,-1
T. i i7y ik L, k 1%k

i o
o j

FINAL FLEXIBILITIES AND CARRY OVER VALUES; CARRY OVER FACTORS AxD STARTING MOMENT

GX* = G, .! G* = G,

hj hj 1j 1j

Gx = GiJl' * Gy G¥ = Gy + Gy
F]"; = Fji' + Fji F;,i*k = ij‘ + ij
O TEt Ty TS T T

*

N 0

1j TEF*

J
E'r:.?‘
R 2
J

*

L Sy

kj El:{

TN
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