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PREFACE 

Since the coming of the missile age, the complexity of electronic 

equipment has increased many times over. Accordingly the electro­

magnetic relay has followed the same course. The design of the basic 

relay is of course the same, however the conditions governing its opera­

tion and the specifications guiding its manufacture have become extremely 

particular. Close tolerances in time over wide ranges of environment 

have brought about these changes. The reliability of the relay has be­

come even more important, since the failure of a single relay could, 

for example, result in the destruction of large missiles. 

The ever-increasing number of problems in the relay field have 

created an exhaustive program of research into methods of analysis and 

the prediction of performance. This paper presents a method of analy­

sis of the dynamic behavior of a relay during the release cycle. It is 

felt that with this method an investigation of many important parameters 

could be derived which could be beneficial to the designer as well as the 

manufacturer. In all the analyses which have been investigated so far, 

none can represent all of the basic parameters during the transient con­

ditions. It is felt that. the analog computer can simulate them to a close 

degree, and the recordings shown in Chapter V are presented as verifi­

cation. 

iii 



The author wishes to express his sincere appreciation to Professor 

Charles F. Cameron for his guidance and assistance in carrying out this 

work. 

iv 



Chapter 

I. 

II. 

III. 

IV. 

V. 

TABLE OF CONTENTS 

INTRODUCTION. 

Background . 
The Problem 

BACKGROUND INFORMATION 

Assumptions Made • . . . 
Laboratory Work Performed 
An Analysis of a Relay Core 

THE RELAY CIRCUIT . • . . . 

THE COMPUTER PROGRAM ••. 

Introduction to the Computer 
The Computer Program . • . . • • • 
Scaling the Equations • . 
The Scaled Program . • 

THE COMPUTER RESULTS 

Setting Up the Program 
Verification of the Computer Program • 
Results . . . . . . . • . 

VI. SUMMARY AND CONCLUSIONS .. . . . 
SELECTED BIBLIOGRAPHY. 

APPENDIX A 

APPENDIX B 

V 

Page 

1 

1 
2 

4 

4 
6 

12 

18 

. 26 

26 
28 
34 
40 

46 

46 
49 
51 

67 

69 

71 

74 



Table 

I. 

II. 

Figure 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

LIST OF TABLES 

Data Calculated From the Coil Current Decay 
of Fig. 6 . o • • • • • • • • •. • • • • • 

Parameter Relationships to Computer Program. 

LIST OF FIGURES 

Coil Current of an Electromagnetic Relay 
During Operate . . . • • . . . . . 

Coil Current of an Electromagnetic Relay 
During Release . . . • . . • . • . 

Coil Current Decay for Various Values of 
· Spring Tens ion . • . . . • . . • • 

Coil Current Decay for Various Values of 
Residual Air Gap . . • • . . . . • . 

Experimental Curves for the Release Time 
of the Relay for Various Values of Spring 
Tension and Residual Air Gap. . . • 

. . . 

. 0 • • 

Coil Current Decay of an Electromagnetic 
Relay for Various Values of Residual Air 
Gap, Shown up to the Armature Motion .. . . . . . 

Log Plot of the Nonlinear RL Circuit of a Relay 

The Relative Permeability of a Relay Core 
Plotted Against Coil ·CU:rr.enJ; 

Pictorial Diagram of a Relay·:. . 

Force Versus Distance Inverse-Square Law 

Magnetic Pull Versus Air Gap 

vi 

Page 

16 

44 

Page 

8 

8 

10 

10 

11 

13. 

15 

17 

20 

32 

32 



Figure 

12. 

13. 

14 .• 

15. 

16. 

X 
Force Relative to Air Gap - Plqtted e • . . . . 

Preliminary Computer for the Release Cycle 
of an Electromagnetic Relay . • . 

The Volts-Centimeter Relationship for 
Amplifier Eight . . . • . • • . . • . . 

Scaled Computer Program of the Release 
Cycle of an Electromagnetic Relay • . 

Sanborn Recordings of the Armature Motion 
and Coil Current Decay for Various Values 
of Spring Tension and a Residual Air Gap 

. . .. . 

of Approximately Zero • • . • • . • . . • . 

17. Sanborn Recordings of the Armature Motion and 
Coil Current Decay for Various Values of 
Spring Tension and a Residual Air Gap= 
0.0025 cm .•............•.... 

18. Sanborn Recordings of the Ar:mature Motion 
and Coil Current Decay for Various Values 
of Spring Tension and a Residual Atr Gap -
0. 0050 cm . . . . . . . .. . . . .. . . . . 

19. Sanborn Recordings of the Armature Motion 

20. 

21. 

22. · 

and Coil Current Decay for Various Values 
of Spring Tension and a Residual Air Gap = 
0 . 0 0 7 5 cm . • . • • • • . • • . ~ . . . . • 

Sanborn Recordings of the Armature Motion 
and Coil Current Decay for Various Values 
of Spring Tension and a Residual Air Gap = 
0. 010 c.m _. • . • • • • • • •. • • • •t • •. • 

Graph for the Release Time of the Release Cycle 
of a Relay for Various Values of Spring 
Tension and Residual Air Gap. . • • • • • 

Sanborn RecorcFngs of the Flux Density •of the 
Core of a Re~ay During the Release Cycle 
for Two Values of Spring Tension . . "! • 

vii 

Page 

. . · 33 

35 

42 

45 

55 

56 

57 

58 -

59 

60 

61 



Figure 

23. 

24. 

25. 

26. 

27. 

Composite Curve Representing the Transient 
Behavior of the Flux Density During 
Release for the Armature Held Open, the 
Armature Held Closed and the Armature · 
Free to Move . . . • . . . . • . . . . 

Sanborn Recording of the Magnetic Pull on the 
Armature of a Relay During Release. . • 

Sanborn Recordings of the Total Reluctance of 
the Magnetic Circuit Plotted with Coil 
Current Decay and Armature Motion. . • 

Sanborn Recordings of Acceleration, Velocity 
and Displacement of the Armature of a 
Relay . -.. ... · ... ;, ...•. 

A Force Function Curve. • . •· . .. . 

viii 

Page 

62 

63 

64 

65 

66 



CHAPTER I 

INTRODUCTION 

Background 

The electromagnetic relay has an exacting job to perform in the 

electronic equipments of today's missile age. Tolerances closer than 

ever before are placed on them and predict_ed performance over a 

variety of environmental conditions . must be known. In the past the con­

tact requirements 1 were usually all that was necessary to obtain a relay 

to do a satisfactory job. Now the requirements are much more severe; · 

not only are contact requirements stated but· accurate information on 

the core and actuating mechanism must be known. The requirements 

also state a wide variety of shock, vibration and temperature conditions 

that will exist. No longer is the static behavior of a relay sufficient to 

predict the required performance; necessary and sufficient information 
. ' . 

also must be known during the transient behavior of the relay. It is 

during this time that the design becom~s very critical. 

· 1 A glossary of the relay terms u~ed in this paper is _included in 
Appendix A. Its purpos~ is to avoid repetitions definitions in the text. 

l 
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The National Association of Relay Manufacturers has devoted its 

existence to the promotion of standardization of testing and specifica-

tions for relays as well as the advancement of the art of manufacturing. 

Each year the Association meets at Oklahoma State University and as 

part of their meeting papers are presented on new techniques in testing 

and developments in the field. It became obvious to the writer, after 

reviewing many of these papers that were presented, that there is a 

scarcity of measuring techniques for the transient behavior and a lack 

of equipment for this purpose. The people in the industry are aware of 

this and a more concerted effort is being put in this direction. Analysis 

along the mathematical and experimental lines is becoming more fre­

quent. Among these analyses the digital computer has been employed2, 

however the author found no evidence of the use of an analog computer 

to analyze the transient behavior of the relay. 

The Problem 

It is the history of this work that prompted the author to prepare 

this thesis. The purpose is to present a method of analysis of the 

transient behavior of the release cycle of a relay using an analog com-

puter. The work carried out was divided intp four parts_. 
j 

20lin Smith and George Papaiconomou, "Computer-Calculated 
Curves Predict Solenoid Performance, 11 Product Engineering, 
January 22, 1962, pp. 59-66. 
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1. The collection of data that will aid in the development of the 

computer program. 

?. The derivation of a set of equations that will represent the 

release cycle of a relay. 

3. · Prep~ring the computer program and time and amplitude 

scaling it. 

4. The verification of the computer program itself by com­

paring the results to earlier experimental data and to data 

obtained through research. 

In Chapter V'a compilation of curves is presented for different 

parameters involved in the relay operation, the coil current decay, 

flux density, magnetic pull on the armature, reluc~ance of the total 

magnetic circui~, and the displacement, velocity and acceleration of 

the armature. 

It was found that the analysis of a relay during the transient be­

havior is a complex undertaking. The relations of single variables on 

the parameters, such as release time, can be determined with experi­

mentation, but it is difficult to represent a combination of variables 

and predict performance. This is because the relay can be repre­

sented by three circuits, electrical, mechanical and magnetic. Each 

of these possesses a dependence on the others and, in turn, cannot be 

analyzed separately. One advantage .of the analog computer is that the 

magnetic and mechanical circuits can be represented by similar net­

works as the electrical circuit and they cari all be simulated in one 

diagram. 



CHAPTER II 

BACKGROUND INFORMATION 

Assumptions Made 

In order to perform a transient analysis on an electromagnetic 

. relay, assumptions of one form or another invariably have to be made, 

This is true in part to the number of variables associated with each of 

the three basic circuits and in part to the dependence of these circuits 

on each other. Certain assumptions were made in the programming of 

the release cycle of the relay on the analog computer but it is believed 

that they had insignificant effect on most of the results obtained in 

Chapter V. 

The first assumption that was made was with regard to the eddy 

currents created in the armature. These currents are created when a 

conductor moves relative to a magnetic field or when it is present in a 

field of varying intensity. In the case of the relay, both of these con­

ditions exist and there are undoubtedly eddy currents created during 

transient conditions. The question that arose was relative to the effect 

these currents have on the over-all behavior of the relay. These cur­

rents oppose the fiel£1,.,irhich induces them and also create heat losses. 

It was felt that both these factors were very small and that the.eddy 

4 
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currents could be neglected. The basis for this decision was: 

1. The energy loss due to eddy: currents is proportional to the 

volume of the armature and the armature volume is small 

in the relay considered. 

2. The ratio of the armature volume to the volume of the mag­

netic core volume is very small therefore the opposing 

forces can be considered negligible. 

3. The eddy currents are directly related to frequency; the 

relay considered in this case is DC and the frequencies as­

sociated with the current decay and armature motion are 

small. 

The residual magnetism of the core was also considered negli­

gible.. A certain amount of magnetism will remain in the core after 

the generated field is removed. This is due to the retentivity of the 

material. Hard iron and certain steel alloys have relatively high 

retentivities and make good permanent magnets.. Soft iron and sheet 

steels have relatively low retentivities. make good electrical magnets 

and are used in relays. When the field is removed from the electric 

magnet the poles reorientate themselves randomly, however some re­

main fixed in their original north-south state due to the retentivity of 

the material. This magnetism can only be zero when the retentivity 

is zero, however such materials do not exist that make good electrical 

magnets. In order to overcome this problem in relays, a small 

residual air gap of some sort is designed into the structure. This gap 

--



is made large enough to overcome the residual magnetism. In this 

problem, the residual magnetism will not be considered a factor and 

will not be designed into the program. 

Temperature was not considered to be a factor in the problem. 

6 

It was felt that complications arising from severe temperature changes 

on a relay in themselves warrant a separate investigation. Tempera­

ture affects the geometrical quantities of a relay as well as the resist­

ance of the coil. A wide temperature change could then in turn have 

significant effects on the friction of the armature and pull-in drop-out 

currents as well as the operate, release and transit times. 

For the main part of the analysis, the friction of the armature 

was considered negligible and the spring tension constant for various 

air gaps. For simplicity the relay was considered to have one set of 

contacts, a two-position single-throw switch. The contacts at each 

end limited the armature travel and in turn determined the residual 

air gap and the total air gap. These stops were considered to be non­

elastic in nature. 

Laboratory Work Performed 

Before preparing the program for the computer, considerable 

time was spent in the Oklahoma State University relay research labo­

ratory learning firsthand·the behavior of the relay with different con­

ditions set for spring tension, air gaps, discharge resistance and the 

size of coils. Although most of the information was available from 
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previous analysis 3 it was felt that seeing some of these basic char-

acteristics in the laboratory would be an aid in setting up the computer. 

The method used for most of the laboratory analysis was the 

transient coil current display, because of the many details which may 

be observed from the waveforms. The equipment4 used was already 

set up in the laboratory and only minor adjustments had to be made so 

that the variables of interest could be changed. 

Figures 1 and 2 represent typical traces of the coil current for 

the operate and release cycles of a relay. From them information can 

be obtained about the over-all relay behavior due to particular adjust-

ments in the variables. The motion of the armature can be depicted 

from the characteristic "cusp" or "dip" in the trace. The variables, 

spring tension, discharge resistance, coil turns and air gaps, all have 

significant influences on the position and size of the "cusp" or "dip". 

The characteristics in the build up and decay coit·CU1f'-t-eht1.ia.re· 1clue to a 

change in the total reluctance of the magnetic circuit due to the arma-

ture motion. When the armature is open the reluctance of the circuit 

is greater than when it is closed. The inductance, determined by the 

reluctance, will be less, and the instantaneous time constant is there-

fore less than that when the air gap is closed. From these facts it is 

3Final Reports on the. Investigations of Dynamic Characteristics 
of Relays, Sandia Corporation, 1959, 1960, 1961. 

4see Appendix B for the equipment set-up used to obtain and 
record the coil current waveform. 
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evident that the current traces wi11 exhibit some characteristics 

during the armature motion. 

9 

The photographs shown in Figs. 3 and 4 represent some of the 

work which. was performed in the laboratory. It was desired to collect 

some information experimentally which could be compared to the com-

. puter results. The spring tension and residual gap were chosen and 

the curves shown are for different values. of each variable. The data 

for ~ach circumstance is given under each set of curves. The release 

time in both sets of curves was measured with a ruler and dividers and 

the composite graph shown in Fig. 5 was plotted. This graph will be 

compared to results from the computer to show the validity of the com­

puter results. 

After completing the laboratory analysis of the variables men­

tioned, the following relations were determined and verified from 

existing literature. 

Spring Tension - This variable has a marked effect on the oper­

ate, release and transit time of the relay. As the spring tension was 

decreased the transit time on operate became less and the transit time 

on release became larger. The operate time was increased with in­

creasing values of spring tension and the released time was decreased. 

The spring tension affects the shape of the "cusp" or "dip" since it 

affects the transit times. 

Air Gap - This has no noticeable effect on the release time but 

considerable on the operate time. For decreasing air gaps the operate 
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Fig. 3. Coil Current Decay for Various 
Values of Spring Tension 

air gap = 0. 01 inches 
coil current = 120 ma. 
total circuit resistance = 100 ohms 
number of coil turns = 4,000 

residual air gap approx. = 0 
spring tension (left to right) = 

300, 250, 200, 150, 100 grams 
scope sweep time = 5 ms I cm 

Fig. 4. Coil Current Decay for Various 
Values of Residual Air Gap 

air gap = 0.01 inches 
coil current = 120 ma. 
total circuit resistance = 100 ohms 
"ij.umber of coil turns = 4,000 
scope sweep time = 5 ms /cm 

spring tension = 250 grams 
residual air gap (top to bottom) 

= approx. 0, 0.0005, 0.001, 
0.0015, 0.002, 0.0025, 0.003 , 
0.0035 inches 
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time decreased and the transit time on operate decreased. The transit 

time on release also became less as the air gap was decreased. The 

air gap affected the shape of the "cusp" and "dip" noticeably. 

Residual Air Gap - This had no noticeable effect on the operate 

time but considerable on the release time. It also noticeably affected 

both release times; for less residual a ir gap the times were increased. 

It had noticeable effect on the shape of the "cusp" and "dip". 

Discharge Resistance - This resistance has no effect on the operate 

time but has significant effect on the release time. As the resistance 

went up the time went down, showing that the RL time constant of the 

circuit was affected only during release. The "cusp" and "dip" were 

not changed and no change was noticed in the transit times. 

Number of Coil Turns - The change in the number of turns changed 

the inductance of the circuit, and ha d effects on both the operate and 

release times. It did not affect the transit times or the shape of the 

"cusp" or "dip". 

' 

An Analysis of a Relay Core 

In order to generate the permeability of the co re of the relay, a 

general idea of the behavior must be known. A r elay was set up in the 

labor atory and the curves in Fig. 6 were made. These represent the 

coil current for various values of residual air gap up to the time of 

armature motion . From them t he values of inductance at different 

points on the decay were calculated so that the permeability could be 



Fig. 6. Coil Current Decay of an Electromagnetic 
Relay for Various Values of Residual Air 
Gap, Shown up to the Armature Motion 

discharge resistance = 1,000 ohms 
spring tension = 195 grams 
coil current = 135 ma. 
air gap = 0. 01 inches 

sweep time = 2 ms I cm. 
vertical cal. = 30 ma. /cm. 
residual air g a p (left to right) = 

a pprox. 0, 0 . 0005, 0 . 001 , 
0. 0015, 0. 002 inches 

13 
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determined. 

The first trace in the photograph was used for the residual air gap at 

approximately zero. A log plot analysis was made by picking various 

points on the curve and employing the equation for the decay of a linear 

RL circuit 

I/I ~ e-Rt/L 
0 • 

Eight points were picked off and the values of current and time were 

recorded in Table I. Each point was plotted on semilog graph. paper, 

I /I versus time. Figure 7 shows all the points plotted. A straight 
0 . 

line was drawrl; from the point · I/I = 1 and t = O through each point. 
0 

Each line represents a. linear RL circuit, since a semilog plot of a 

linear RL circuit is a straight line. 5 The curve which would be rep-

resented by drawing a line through the points r1 - r7 would indicate the 

changing time constant for a nonlinear RL circuit. 

By drawing a horizontal line across the graph in Fig~ 7 at I/I = 
·o 

O. 367 the time constant for each current point r1 - r7 was determined, 

since the 63. 2% value of current is represented by I/I = 0. 367. The 
0 

values of time where the horizontal line intersects each individual RL 
I 

line were determined and recorded in Table I. From these values the 

inductance at each current point was determined from the relation 

L/R == t , where t is that value of time for the 63. 2% current decay. 
C C 

5 Gladwyn V. Lago and Donald L. Waidelich, Tran$ients in Elec­
trical Circuits, The Ronald Press Company, New York, 1958, p. 28. 
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TABLE I 

DATA CALCULATED FROM THE COIL CURRENT DECAY OF FIG. 6 

Data Taken from Fig. 6 Data Calculated 

Time 10- 3 Current I/I t Inductance-h Rel. Permeability 
0 C 

0 I ::: 135 1 0 
0 

1. 33 I ::: 
1 

57.3 0.43 1. 58 1. 58 46,3 

2.67 I :::: 
2 

39.4 0,29 2.167 2.17 63.6 

4.00 I = 3 
31. 2 0.23 2.75 2.75 80.6 

5.33 I = 
4 

25.8 0.19 3. 19 3.19 93.8 

6.67 I :::: 
5 22.2 0.16 3.61 3.61 105.5 

8,00 I :::: 
6 18.0 0.14 4.05 4,05 118. 7 

9.33 I = 
7 17. 1 0.13 4.58 4.58 134.8 

· The inductance was balculated and recorded in Table I and from the 

values th.e permeability of the core was determined from the equations 

N2 
L ==----Rel core 

henrys 
and 

Rel = P. /uA 
core 

where the total reluct:a:nce was considered in the core. 

Figure 8 shows the calc:rulated curve for the permeability of the 

core plotted against cm.·rent decay. The INSERT shows the predicted 

behavior on operate and then release. From this curve the dotted line 

was made, so that a good idea of the "peak" value of permeability could 

be found. This value will be used in Chapter IV to generate the pe;r-

meability. 
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CHAPTER III 

THE RELAY CIRCUIT 

In order to describe the operation of a relay circuit mathemati-

cally, three basic circuits must be considered. Ideally, it should be 

· possible to present one equation which would relate all three circuits 

· simultaneously during the dynamic operation of the relay. An equation 

has been presented which satisfies the transient coil current build-up 

curve. 6· This equation relates the rate of change of four different var-

iables associated with the three circuits; the rate of change of flux 

with respect to current, current with respect to time, flux with respect 

to armature motion, and armature motion with respect to time. This 

equation can be used to analyze the coil current waveforms of a relay 

but is a rather difficult equation to· handle mathematically. It takes 

the form 

i = 
R 

+ 8¢ dx) 
ax dt 

where· i, E, and R represent current, voltage and resistance .. 

6 
· C. F. Cameron and D. D. Lingelbach, The Dynamics of Relays, 

Electronics Industries, 1959. 
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. Since the above equation would be awkward to· use,. this chapter 

· will be devoted to expressing the operation of the release cycle of a 

relay in terms of a series of equations, .all interrelated. · These equa-

tions will relate ·the electrical, ~echanical, and magnetic circuits in 

. terms of the variables of each. 

Considering the circuit diagram of the relay shown in Fig .. 9 ,. the 

electrical equation during the· time when the switch SW is closed is 

·E = R xi 
_d 1 

=Rxi=Ldi 
s dt 

where i 2 · - i 1 + i 

, .. Rd - discharge resistance 

· R · = series resistance 
s 

· L = inductance of ferromagnetic circuit . 

. The instant after-the switch· SW is opened,. the ·equation-becomes 

E O R . R .Ldi 
: = = .. d X 11 = . S X l dt 

and rewriting .and substituting for the conditions i · = 0, -i · = i, and . 2 1 

·Rt· = R + R , the equation becomes .· d s 

'(1) L di · + R_ t i = 0 • 
dt 

. The· inductance of the circuit is not a constant, since the perme -

ability of the iron core changes when the current i~tensity·changes . 

. The inductance can be related to, the flux. changing. with respect to-the 

current in the coil, 

dl/J 
L = N -· henrys 

di 



air gap x 

residual air gap x 
r 

Magnetic core ~ r 
1 

I 
I 
I 
I 
I 

20 

S.B. 

·N I 
I 
I 

S.B. 

R s 

i 

= 

= 

= 

= 

t R s 

/~ armature open 
I 

armature closed 

armatur~ pivot 

release spring on armature, referred to as spring 
tension 

number of turns of coil 

resistance across coil, referred to as discharge 
resistance 

series resistance of coil 

Fig. 9 .. Pictorial Diagram of a·Relay 



where = number of turns of coil 

= total flux in- webers . 

. If fringing effects around the poles of the coil are considered 

negligible, then the total flux can be related to, the flux density 

dl/J ·= A dB 

and di can be related to the current intensity by the expression 

di 

where B = 

H_ = 

= l x dH 
N2 

flux density in webers/meter 2 

current intensity in amperes/meter 2 

. Relating the ·above express-ions,. the inductance can then be 

· stated as 

where 

·L = 

dB 
ud - dH . 

henrys 

The .term ud is referred to as the differential permeability and 

represents the changing permeability of the magnetic circuit during 

.the current decay .. The reluctance of a:.magnetic circuit can be stated 

in general as ·J. /uA,. where J. · and -.A· are the length and cross sec-

. tional area of the particular circuiL .·· From this the expression of the 

'magnetic circuit ' the' inductance can be rewritten as 

L = 
2 

NA dB 
J. dH 

N2 
= . Rel henrys 

. t 
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where P. in the original equation ,was the length of the coil. . The mag·· 

netic circuit of the relay can be considered a series circuit, where 

the reluctances of the core and air gap are additive. Relt can-then be 

expressed as Rel + Rel and written out in an equation of the 
:core gap 

form 

R .l _J._ + X • lh e t = rec1proca . enrys uA · u,A 
0 

· where permeability of core material u = 

u = 
0 

permeability of air -7 
= 4 1r x 10 henrys I meter 

P. = length of coil in meters 

X .- length of air gap in meters 

. The equation of the inductance can then be stated: 

. (2) L 
N2 

= 
· Rel 

t 
= 

P. /u + x/u 
0 

henrys . 

. Equation (2)· represents the inductance and relates the electrical 

circuit to the varying permeability of the magnetic circuit and to the 

changing air gap of the mechanical circuit,. It is almost exact, in that 

only three approximations were made: the coil is uniform, the fring-

ing of flux around the. poles is negligible, and the remaining reluctances 

-of the magnetic circuit are· considered small compared to the air ·gap 

• and core reluctances. 

In describing the motion of the armature certain assumptions 

were made ·which simplified the equation somewhat .. It was assumed 

. that since Q, the angle of movement of the armature, is small (see 
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Fig. 9), the armature can be considered parallel to, the pole at 

all times. It was also assumed that the mass of the armature is con-

centrated over the pole. The forces necessary to overcome friction 

. were considered small compared to the spring and magnetic forces 

and therefore negligible . 

. The motion of the armature of the relay can be described by the 

equation 

·F 
t 

where Ft = magnetic and mechanical forces on the armature, m = 

mass of armature, and x . a distance perpendicular from the pole, 

The equation relating the quantities of the mechanical circuit to 

the attractive force of the magnet circuit can be stated: 

(3) . S. B. - F 
m 

where· S. B. = spring tension on armature (spring bias) and F is 
m 

the magnetic pull on the armature. · Equation (3) is a representation of 

the armature position, and the following relations can be stated. 

· S.B. < F 
m 

··S.B. = F m 

· S.B. > F 
m 

armature is closed 

armature is· in equilibrium 

armature will or is open . 

The gap force of the magnetic circuit can be stated as 

F = 
B 2A 
2u 

0 

newtons , 
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and for a long solenoid the flux density at either end can be expressed 

as 

B = 
uNi 

2 Yn2 + £ 2 

2 
webers/meter 

where £ is the length and D the diameter of the solenoid. From 

these two equations an equation specifying the magnetic pull at the pole 

can be written 

F 
p 

newtons . 

Since the force on the armature from the magnet will obey the 

inverse square law, that is Fa 1 / x2, the equation for the magnetic 

· pull on the armature can be written in the form 

(4) 
1 

F a­
m 2 

X 

u 2N 2i 2A 

4(D 2 + £ 2)u 
0 

newtons . 

Equation (4) gives the expression for the magnetic pull on the 

armature in terms of residual air gap (indirectly through the air gap x), 

air gap, current, and permeability, expressing mechanical, electrical, 

andmagnetic parameters. 

All of the basic relay parameters are present in Equations (1) 

· through (4) and through the proper handling of them the release cycle 

of the relay. can be simulated, 

(1) 

( 2) 

L di. + 
dt 

L 

= 0 



(3) 

(4) 

S.B. - F 
m 

1 
F a­

m 2 
X 

2 2 2A u Ni 

where all physical quantities are in the MKS system. 

L = 

i = 

R = 

N = 

A = 

i. = 

u = 

u = 
0 

X = 

X = 
r 

t = 

m = 

F = 
m 

S. B. 

D = 

= 

inductance = henrys 

current = amperes 

resistance = ohms 

number of turns 

cross-sectional area of coil 

length of coil in meters 

2 = meters 

permeability of core = henrys/meter 

permeability of air 
-7 = 4 1r x 10 henrys /meter 

air gap = meters 

residual air gap = meters 

time in seconds 

mass = kilograms 

magnetic force = newtons 

spring force on armature = newtons 

diameter of coil = meters 

25 



CHAPTER IV 

THE COMPUTER PROGRAM 

Introduction to the Computer 

· The ·procedure for programming. Equations (1) through (4) on an 

analog computer ·involves two basic steps:. (1) rewriting the equations 

in the· form of a computer diagram, .and (,2) scaling the equation par am-

eters so-that they are acceptable to the c·omputer. Before proceeding 

with these steps, a brief run-down on the equipm·en~ used is in order. 

Two· Donner· Model 3400 desk type analog computers were avail-

· able for this work, Each unit contained a problem .board, coefficient 

J>Otentiometers and all the necessary diodes, .. condensers and resistors 

to patch the problem. Each computer contains ten chopper-stabilized 

direct coupled amplifier_s and has' an accuracy of O. 1 percent, · Four 

functional multipliers were available, and it was necessary to,.use·all 

of them~ These units were electronic and had an accuracy of around 

five·· percent and therefore degraded the results to a total accuracy of 

around five percent.·· 

The· computer language· evolves around the operational DC ampli-

fier which is represented by the symbol 

e,N----1[>>---- C:ovr 

26 
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· These are used for inverting, amplifying, .summing, and with the 

proper diodes they are used to lim.it functions.· From the diagram 

. shown, R 1, R 2, . . . Rn represent input resistors and Rf the feed­

back resistor in a typical amplifier set-up. The number of inputs can 

vary from one to· about four or five. depending on the U:se. The ampli-

fier has the following properties: 

1. The output is. inverted. 

2 .. The dynamic range is~ 100 volts. 

3. The gain is determined by Rf/R. t . · mpu 

In order to perform integration, t.he feedback resi~tor· is re -

· placed by a condenser, and the output of the integrator will .have the 

-- -ft. form e 
0 0 

• · Initial condi-

tions can be applied by establishing ·a voltage on the capacitor· before 

the· problem is started. 

The condensers and resistors are available so that they can be 

plugged into the problem board as needed,. The coefficient potentiom-

eters are used to set odd values of resistance and to adjust the reference 

voltages supplied. 
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The Computer Program 

Through the _proper use of Equations (1) through (4) from Chap-

ter·u, it is possible to simulate the release cycle of the relay on an 

analog computer. Rewriting. Equation (1) in the form 

di 
dt 

= 
R t 

- -- i 
L 

it caQ._ now be programmed using an inverter, an integrator, and a func -

tion multiplier. The program takes the form shown, where the initial 

condition set on the integrator represents the steady state coil current 

before decay. Since the inductance i.s a variable, it has to be multi-

plied with the current through a function multiplier. 

-~l---f 
L. 

In Chapter Hl the permeability of the magnetic core was shown 

to be approximately proportional to the inverse of the coil current on 

decay'~ Using this relationship the permeability is generated through 

the following set-up where the values set on the potentiometers B and 

C will set the limits on the permeability curve. Potentiometer · B will 

set the value of 1 /u when the current app;roaches zero, and potenti-

· ometer C the value 1 /u when the coil current is maximum. 



Rewriting Equation (2) in the form 

Rel + Rel 
1/L = 

core gap 

the inductance can be generated by the following circuit. 

-/?EL ~ C~e 

-
------.; N. 2 @ ----· -f: 

-REL . 
MP 

The reluctance of the core can be generated from the equation 

Rel = J. /Au 
core 

and is shown in the circuit 

I 
.A-( 
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where potentiometer D represents J. / A · Similarly for the relucta:n!ce 

of the air gap 

Rel = x/uA . 
gap 

. The program is shown below where potentiometer E represents J. /uA. 

-X -----+@------ _/?EL<:,,qp 
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The motion of the armature can be generated by integrating 

Equation (3) twice and setting the proper limits on the air gap. Re-

writing Equation (3) in the form 

(S. B. - F ) 
m m 
1 

the program is shown be low. The diode D 1 is used to limit conduc -

tion of amplifier 5 to the condition where the spring bias must be 

greater than the magnetic pull, since the re should be no armature mo-

tion before this condition exists. Diode· n 2 limits the output of ampli­

fier 8 to a prescribed level by potentiometer H, which represents the 

armature stop on the relay. Potentiometer G represents the residual 

air gap of the relay, setting a small voltage at the output of amplifier 8, 

where this voltage is zero for z·ero. residual.air gap .. The spring tension 

is represented by potentiometer. F. 

~------t 

l>, + R F. /!i 1101.:r. 

Equation (4) was originally specified as the following: 

1 
Fa­

m 2 
X 

. In order to make this equation realizable, the relationship that the 



31 

force has on the armature must be known. Figure 10 shows this re-

lationship and is a representation for the inverse square law. Since 

the force generated at the pole has finite limits, then a more close ap-

proximation of this curve is needed. Considering that the air gap ap-

proaches but is never equal to zero, a line representing some "mini-

mum air gap" is shown in Fig. 10. If this "minimum air gap" is con-

sidered very small, then Fig. 11 can be assumed where the curve 

shown is a continuation of the inverse square curve. This maximum 

force, F , can then be assumed to be that maximum force generated 
max 

by the magnetic circuit ... This curve can now be represented by the 

equation F = F I 2X, where F is the force at some distance x .. 
x max x 

For very small values of air gap, in the order ·of 1I100 of a centimeter, 

the curve of Fig. 12 is drawn and shows that for very small values of 

air gap · 2x varies linearly. The· equation can now be specifically 

stated 

F 
m 

Since the diameter of the solenoid is much less than the length, the 

. n2 < £ 2 and the denominator can take the form 4xu01 2 . The program 

takes the form. 



F 
max 

Q) 
C) 
H 
0 

f.r.t 

F 
max 
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F 1. 000 max 

,980 

.960 

.940 

Q) 
C) 
1-1 
o .920 , 
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. 860 
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-NJ 
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. J+t~ .... 

R=f- t . 
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B 
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vv UI/ /t11JL TIPL/1:R ___ __, 

iiifl-B 

where function multiplier #1 =B and amplifier 9 represent a divider cir-

cuit, function multiplier #2·-A multiplies the force times-the _output of 

amplifier 10, where amplifier 10 presents the curve relationship 

shown in Fig. 8 inverted. Function multiplier #2.a.B represents a 

squaring device. ,, 

Scaling the· Equations 

In order to run the program,, physical quantities must be known. 

Considering the relay parameters used in Chapter III, the following 

set/?/ values wa.s chosen for this problem: 
·;f-' .. 

i = 100 milliamperes 
ss 

R = 100 ohms 
s 

R = 900 ohms 
d 

R = 1000 ohms 
t 

J. = 6cm 

A 1cm 
2 = 

N = 4000 turns 

X = 0, 025 cm (approximately 0. 01 inches) 
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Fig. 13. Preli.mi.nary Computer Program for the Release Cycle 
of an, Electromagnetic Relay 
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X = to be varied at will from zero to x 
r 

u = 
0 

-7 
permeability of air = 41r x 10 henrys/meter 

m = 10 grams 

u = permeability of core 

-7 
As i approaches zero, u=70x41rxlO henrys/meter 

For i maximum, 100 ma. u = 200 x 41r x 1 o-7 henrys/m:eter 

S. B. = to be varied at will from zero to 408 grams (102 grams = 

1 newton) 

The purpose of the following calculations was to determine the 

values of reluctance under different conditions of current and air gap. 

With this data it was possible to determine the corresponding values 

of inductance using Equation ( 2). This information will be used to 

scale amplifier 4. 

Calculation of Reluctance 

-2 -7 -4 
Rel (i = maximum value)= i. /uA = 6xl0 /70 x 41r x 10 x 10 

core 

= 6. 66 x 10 6 'reciprocal henrys 

Rel (i at zero) 
core 

-2 -7 -4 
= 6 x 10 /200x 41r xlO x 10 

= 2. 34 x 10 6 reciprocal henrys 

. -2 · -7 -4 
=0.025xl0 ,/41rxlO xlO Rel (air gap maximum) 

. gap . 
6 

= 2. 0 x 10 reciprocal henrys 

Rel (air gap at zero) = 0 
gap 
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Calculation of Inductance from Values of Reluctance 

L = henrys 
Rel + Rel 

core gap 

L (i , 0.025cm) = 16xl06 /(6.66+ 2.0)xl0 6 = 1.85henrys 
ss 

L 1i Ocm\ 
\ SS' I 

6 6 = 16x10 /6. 66 X 10 = 2. 40 henrys 

L (i = 0, 0.025 cm)= 16xl06!(2.34 + 2.0)x10 6 = 3.66 henrys 

L (1 = 0, 0 cm) 
6 6 

= 16 x 10 / 2. 34 x 10 = 6. 80 henrys 

maximum possible value of inductance = 6. 60 henrys 

minimum possible value of inductance = 1. 85 henrys 

Calculation of Maximum Magnetic Pull on the Armature 

The maximum magnetic pull exists on the armature when the air 

gap is considered at zero and the current at its maximum value. Using 

these values and Equation (4), the pull was calculated so that amplifiers 

9 and 10 could be scaled. 

F 
m 

= 

2 2 2 
u Ni A 

4u P.. 22x 
0 

= 
(?Ox 41r X 10- 7)2 X (4000} 2 X (0.1) 2 X 10-4 

-7 2 
4x(41rxlO )x(0.06) xl 

= 7. 05 newtons 

Once the dynamic limits of the inductance were known, the prob-

lem was time -scaled so that it would be compatible to the computer 

time. · Using the Donner computer and a graphic Sanborn recorder, the 

problem should be scaled so that it runs around 1 to 10 radians per 

second (O. 6 to .6 · seco;nd,s), well within the response characteristics 
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of both units. Solving Equation (1) where L is considered a constant, 

the expression e-Rtt /L was obtained. Using the exponent Rt/Land 

an average value of inductance, "ball park" figures were obtained for 

scaling the problem. Using the average value of inductance and a re-

sistance of 1000 ohms, 

(6. 80 + 2, 08)/2 
1000 

-3 = 4. 44 x 10 seconds , 

By scaling Equation (1) and its associated circuitry by a factor 

3 
of 10 , the speed of operation was decreased to around 4. 4 seconds. 

The equation was scaled in the following.manner: 

let the equation be 
di Rt 

i ' and let 
t = - 'T = dT L 

103 

103 di Rt di 
R 

and i 
t = or = --i 

X dt L dt 
103L 

No time scaling of Equation (2) or (4) is necessary since neither 

has time dependence originating from its own variables, 

In order to scale Equation (3), it is necessary to determine the 

volts-centimeter relationship for the output of amplifier 8 in terms of 

the input variables. The maximum return force possible on the arma-

tureis 408grams (408/102 newtons). Using this information the dis-

tance that the armature would travel in a specified period of time was 

determined (considering no armature backstop). From this the volts-

centimeter relationship was determined. Plugging the values into 

Equation (3) form = 10- 2 kilograms and· S. B. = 4 newtons 



= = 400 . 

. Integrating, 

Where 

dx = 40ot + c 1 dt 

dx 
dt I t=o = o = c1 

integrating again, 

2 
X = 200 X t + C 2 

and similarly for t = 0 = x = C 2, 

2 
X = 200 t . 

and 

39 

From this equation the distance traveled by the armature in 10 - 3 

seconds was calculated. 

-6 
200 x 10 meters 

= -4 
200 x 10 centimeters 

O. 02 centimeters . 

By arranging amplifier 8 so that it reads a specified voltage in . 

. 1 second (problem is scaled 1 o3>, that voltage represented O. 02 centi-

meters. This technique was carried out and will be explained more 

· thoroughly later in the chapter. 
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The Scaled Program 

Enough information has been determined and is known so that the 

final computer diagram could be assembled. The first step was to set 

Equation (1) up where the coefficient of i has its maximum value. 

This was done so that after the amplifier gains were set to satisfy the 

equation, no higher value would exist which would exceed the dynamic 

limits of the amplifier. Setting up the equation with the minimum value 

of inductance, 

di 
dt = = 0. 53 i 

The first variable scaled on the final program shown in Fig. 15 

was the initial condition set on integrator 2. A scale factor of 1 milli-

ampere = 0. 8 volts was used and the I. C. was set at 80 volts, repre-

senting 100 milliamperes. Once this condition was established, it was 

possible to scale amplifiers 3 and 4. 

Amplifier 3 was scaled in the following manner: 

1. Amplifier 3 was given a gain of 2. 

2. With potentiometer C set at O %, potentiometer B was set for 

the maximum limit of permeability, where 1 /u = 1 I 200 = 0. 005 = 
max 

-20 volts at e 3 . 

3. Potentiometer C was adjusted for the lower limit of per me -

ability, where 1 /u . = 1 /70 = 0. 0143 = -57. 2 volts. With the condi­
mm 

tions set on e 3 from step 2, the voltage at e 3 now reads - 77. 2 volts. 

(The scaling of the permeability was set so that O. 001 = 4 volts.) 
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Amplifier 4 was similarly scaled: 

1. Amplifier 4 was given a gain of 2. 

2. With potentiometer E set at O %, potentiometer D was ad-

justed for the maximum core reluctance, where Rel = 6. 66 x 106 
core 

reciprocal henrys = 66. 6 volts; e 3 was set to read 66. 6 volts. The 

corresponding value of the Rel for i = 0 was automatically set 
core 

when the current went to zero by the characteristics of the system. 

3. Potentiometer E was set after amplifier 8 was scaled. 

After amplifiers 3 and 4 had been scaled, amplifier 1 and inte-

grator 2 were scaled in the following manner: 

1. Amplifier 1 was given a gain of 2 (maximum voltage at e 1 

would then be 2 x 0. 53 xi = 2 x 0, 53 x 80 volts = 84. 8 volts}. 

2. · Integrator 2 was then set with a gain of 1 / 2 so that the coef-

ficient would again be O. 53 i. 

3. Potentiometer A was then adjusted to give 84. 8 volts at e 1 

Amplifiers 5 and 8 and integrators 6 and 7 were scaled next 

using the following procedure: 

1. Initial conditions on integrators 6 and 7 were set at zero. 

2. All amplifiers and integrators were given a gain of one. 

3. Function multiplier #2-A was disconnected from amplifier 5 

so that maximum spring bias would occur on the armature. 

4. Potentiometer F was set at - 40 volts, where 1 O volts = 1 

newton. 

5. Potentiometers G and H were set at O % • 



42 

6. The program was run off and the output of amplifier 8 was 

checked at 1 second to determine the volts-centimeter relationship 

(discussed earlier in the chapter). On the first run-off the value of 

voltage was very low, so a gain of 10 was given to amplifier 8 from 

the input of 7. Figure 14 shows the computer run-off of this and the 

corresponding volts-centimeter relationship. On the recording 1 cm·· 

vertical equaled 20 volts and the speed on the horizontal scale was 

20 mm/sec. Correspondingly, a voltage of 40 volts was given for 

O. 02 cm. This set the scaie relationship for amplifier 8 of 20 volts/ 

0, 01. cm with a scaled time of 1 second. 

Fig. 14. The Volts-Centimeter Relationship 
for Amplifier 8 
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7. Using this scale factor potentiometer H was set to limit the 

output of amplifier 8 to 0. 025 x 20 = 50 volts for the specified air gap 

of O. 025 cm. Later on potentiometer G will be set for the desired air 

gap; however, at this time it was set at O % representing O residual 

air gap. 

Potentiometer E was then adjusted with the output of 8 set at 

- 50 volts so that the output of amplifier 4 read 20 volts with potentiom-

eter D disconnected. This set the Rel for maximum air gap for 
gap 

2 x 106 reciprocal henrys = 20 volts. 

The final scaling which was performed to complete the computer 

set-up was the scaling of the function multipliers #2'-A, #2--B, and 

#1-B, and also the amplifiers 9 and 10. The procedure was as follows: 

1. Potentiometer J is set at O %, representing the armature 

resting on the pole of the magnet. 

2. Potentiometer· K was then adjusted so that 7. 05 newtons of 

magnetic pull resulted at the output of the function multiplier (7. 05 

newtons = 70. 5 volts). This was read with an external voltmeter. 

3. The output of amplifier 8 was set at - 50 volts, correspond-

. ing to the armature being against the backstop. 

4. Potentiometer J was then adjusted so that the put put of func -

tion multiplier #2-A now corresponds,to the value given in Fig. 12 for 

an air gap of 0. 025 cm. · This was taken as 0. 985 x 70. 5 volts = 

69. 4 volts. 
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This completed the time and amplitude $Caling of the computer 

· program. Table·u was made up so that during the running of the pro-

gram. the relations of the parameters could be easily seen, 

e2 

e3 

e4 

e5 

e6 

e7 

e8 

e9 

elO 

A 

B 

C 

D 

E 

F 

G 

.H 

.J 

TABLE II 

PARAMETER RELATIONSHIPS TO COMPUTER PROGRAM 

di 
dt 

i 

= 1 ma = 0. 8 volts 

1 ma ~ ,b. 8 volts 
, I 

-1 /u 0. 001 (relative) = -4 volts 
-1 

1-/.,L 1 henry = 25. 5 volts 

acceleration on armature (cm/ sec 2) 

velocity of armature cm/sec 

relative position of armature 

. position of armature with backstop 0. 01 cm·.= 20 volts 
' 2 

relative. flux density on surface of magnet pole . webers/ M 

proportional variable for force versus distance relationship 

N and Rt (relative relationships) 

sets limit on maximum. permeability 

sets limit on minimum permeabilit;r 

sets reluct'ance of core 
' 

sets reluctance of air gap 

sets spring tension (S.B. = 10 volts= 102 grams) 

residual air gap setting (O. 01 cm = 2 volts at e8) 

air gap (2 volts = O. 001 cm) 

used to set the relationship for amplifier 10 

Rt . 
--y;1 #2-A force on ar:n1ature of relay 

# 2 .. B force on surface of magnetic pole · 

Multiply computer time· by 10 - 3 to obtain re lay time. 
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CHAPTER V 

THE COMPUTER RESULTS 

Setting Up the Program 

The computer program shown in Fig. 15 was set up using both 

Donner computers that were available. A Tektronics model 651 

oscilloscope was used to trouble shoot the circuit and a Sanborn model 

320 dual channel "hot pen" recorder was used to display the results 

shown in Figs. 16 through 26. All three integrators in the program 

were placed on one computer so that the initial conditions could be con­

trolled using a single control, alleviating the necessity of muting the 

two computers together. 

In order to trouble shoot the program systematically it was as­

sembled in sections, and each section checked indiyidually for proper 

operation, indicative to the equ.ation that it represents. Amplifier 1 

and integrator 2 were set up first and a positive voltage was applied 

through a potentiometer to the input Y of function multiplier #1-A in 

place of the 1 /L connection. This voltage was adjusted so that e 1 

read 84. 8 volts. The computer was then run off and both the amplifier 

and integrator were observed to be functioning properly, neither circuit 

saturated and the voltage decayed exponentially. Amplifiers 3 and 4 

46 
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were assembled next and no difficulty was encountered. · The armature 

motion circuit consisting of amplifiers 5 and 8 and integrators 6 and 7 

were set up next. The input to amplifier 5 from F was set at a 
m 

voltage of 70 volts through a relay that was disconnected on compute. 

The spring tension was set through potentiometer F at 30 volts and 

this problem was run off. It was noticed that integrator 6 saturated 

with time. The output of amplifier 8 was set so it was limited to -50 

volts through n2 , the limiting di9de, and potentiometer H. The 

computer was again run off and it was determined that the integrator 

saturated after amplifier 8 reached its limited value of -50 volts, there-

fore it was felt that the saturation of integrator 6 was irrelevant to the 

armature motion to the stop. The circuit corresponding to function 

multipliers #2-A, #2-B ar:id #1-B was the final circuit to be checked 
l 

out. The input· i of amplifier 9 was connected and the input 1 /u to 

function multiplier #1-B was also connected. The potentiometer J 

was set at zero. The output of function multiplier #2-A was then 
i. 

measured and potentiometer K was adjusted for maximum output, 

which was less than 50 volts. The gain of amplifier 11 was increased 

to 2 and the process repeated. The output circuit then could be ad-

justed to the maximum force value of F = 7. 02 newtons =70. 2 volts. 
. m 

The top of potentiometer J was then adjusted to -50 volts by applying 

a voltage to amplifier 8. (This simulated the armature being open at 
I 

0.025 centimeters.) The potentiometer was then adjusted so that the 

output of the function multiplier #2-A corresponded to that shown in 
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Fig. 12 for an air gap of 0. 025 cm. This turned out to be 69. 4 volts. 

It was found that oscillations occurred in function multiplier #1-B. 

This was corrected by adding a 200 µµf conde_nser across amplifier 9 

to bypass the high frequency gain of the circuit. With this completed 

the circuits acted stable and no other difficulties of this nature were 

apparent. With the assembly of the program on the computer, the out-

line for scaling the amplifiers to the proper voltages described in 

Chapter IV was followed through. 

When the computer was run off with the program fully set up and 

adjusted, difficulty was encountered in the limiting circuit of diode D1 . 

Over long time solutions (2-3 seconds) the integrators 6 and 7 appeared 

to drift before the armature started to move, that is, before S. B. > F . 
. m 

The (-3) 0 (3) voltmeter on the computer console was used to check the 

outputs of e 5 , e 6, and e 7 . It was discovered that the limiter circuit 

D1 caused a voltage of - 0. 7 volts at e 5 wh.en S. B. < Fm. During 

this time the diode is conducting to limit the swing of amplifier 5 to 

positive directions. The voltage drop across the diode .caused this 

voltage at e 5 , since the voltage at the ~rid of the DC amplifier is es­

sentially zero. In order to overcome this, the limiter circuit shown 

in Fig. 15 for amplifier 5 was changed to the circuit shown below. 
I 
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The resistors R 1 and R 2 were used to divide the 105 volt reference 

on the computer and place about one volt on the leg of the potentiometer 
L_ 

X. This gave a vernier for X and rnade it possible to balance out the 

-0. 07 volts on e 5 easily. The operation of the resistors and poten­

tiometer was to raise the anode end of the diode to O. 7 volts, thereby 

raising the cathode end to zero volts •. The circuit performed much 

more satisfactorily with this circuit, however a slight amount of drift 

was still encountered over long time solutions. 

Verification of the Computer Program 

The behavior of the coil current waveform was encouraging. 

When the program was run off the observation of the coil current 

showed the characteristic "cusp".; indicated in Fig. 2 at the same time 
' l 

that amplifier 8 shifted from zero (with. no residual air gap) to -50 

volts. From this evidence it was felt that a comparison of the release 

times similar to the conditions shown in Fig. 5 would be a good indica-

tion of the behavior of the complete program. 

Figures 16 through 20 represent the curves recorded for different 

values of residual air gap and spring tension. Figure 21 is the graph 

made for the composite values of spring tension and residual air gap 

for release plus transit times. The time correspondence between the 

two graphs was considered to be ten to one since the total resistance 

in the experimental relay was 100 qhms and the total resistance of the 

computer-simulated relay was 1,000 ohms. The resistance is a 
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constant in determining the time constant of the circuit, so it was felt 

safe in assuming this. The solid line curves shown in Fig. 21 were 

corn.pared to Fig. 5. The results were gratifying. The spring tension 

curves corresponded directly, indicating that the times of the two re­

lays were similar and that the behavior was alike. The residual air 

gap curves were not quite so similar. At low values of residual air 

gap, the curve of Fig. 5, the time increased rapidly indicating possibly 

that the residual magnetism had some effect. Since the curves from 

the computer were made without employing any residual magnetism in 

the circuits, it was felt that this was probably the reason for the dis­

simHarity between the two. It was felt from the results, however, that 

the relay circuit in Fig. 15 was performing properly except for small 

values of residual air gap and that accurate predictions on the behavior 

of the basic parameters could be obtained. 

The flux density behavior was analyzed and compared to the be­

havior of a predicted curve shown in Fig. 23. This curve shows the 

expected flux var:i.ation for the relay during transient conditions. The 

curve was obtained by drawing the comparative curves for the flux 

decay for the armature held open, held closed and free to move. The 

dotted line was drawn to show the predicted variation when the armature 

was free to move. Since the armature accelerates as it moves, the 

expected change would be slow at firs!t and then increase rapidly. An 
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investigation has been made in the past 7' which verified this curve by 

electronically integrating the induced emf in a search coil embedded 

in the relay .coil. .From this the flux of ·the coil was dislayed and found 

to agree closely with this curve. 

Figure 22 represents the flux density of the relay simulated. It 

can be seen that the coil current decay is much more rapid than the 

flux decay. The rapid decrease in flux density during armature motion 

is also shown, agreeing with Fig. 23. It was difficult to obtain a wide 

variation in the flux density during armature motion for high values of 

spring tension. This also agrees with the predicted curves, since for 

short release times the curves in Fig. 23 (open arid closed) are close 

together. 

Results 

The flux behavior will determine the behavior of the magnetic 

pull on the armature of the relay. Since the flux density curves shown 

. agreed with the predicted curves, it is believed that the behavior of the 

magnetic pull on the armature of the relay shown in Fig'. · 24 is fairly 

accurate. The air gap was increased to O. 05 cm. so that a more pro-

nounced indication of the armature motion would be shown. and the 

. force where the armature was released easily found .. The value of 

spring tension used to obtain this curve was 300 grams, the breaking 

7 Research Reports, Sandia Corporation, I:nte,rim Report on the 
Dynamic Characteristics of Relays, August, 1959. 
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point on the "pull" decay whe.re the change in slope occurs, is on the 

3 newton line, indicating around 300 grams of magnetic pull, satisfying 

the condition F = S. B. where the armature just starts; to: move. 
m 

The recordings shown _in Fig. 25 are for the reluctance of the 

total magnetic circuit plotted with armature motion and coil current 

decay. In these curves the reluctance efficiency was assumed to be 

100%, in that all reluctances were associated with the air gap of the 

armature and the core of the relay. With this curve, however, 

valuable information on the core-gap relationship would be available. 

The final set of curves which were made to show the basic be-

havior of the relay during release is shown in Fig. 26. The accelera-

tion, velocity and displacement of the armature are shown. From 

these the rionline.arity of the curves is very evident, indicating the dif-

I 

ficulties which would be encountered in design relying on the linear set 

of curves. The acceleration curve is interesting in that it can be said 

to represent all the forces on the armature instantaneously. As the 

magnetic pull of the core decreases to zero, the force (using mass 

times acceleration) on the armature gradually becomes constant, in-

dicating constant spring tension as the armature is resting on the 

backstop. 

The final curve which is shown, is Fig. 27. This is a drawing 

of a force function curve used in the designing of the relay coil and 

spring tension requirements. By the amount of shaded areas, each 

side of the armature motion (travel), the amount of reserve needed 
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for the spring tension, and magnetic pull can be closely determined, 

thus preventing overdesigning the size of the core and the spring. 

These types of curves have been obtained through static approxima­

tions, taking force measurements over small increments of armature 

displacement. The curves shown in Figs. 24 and 26 (acceleration} 

could be quite valuable in design of this type. With special recording 

instruments (X-Y recorder) the acceleration (total forces on the 

armature) versus armature displacement, and the magnetic pull on 

the armature versus the armature displacement could provide im­

portant roles in the relay design. Using "ball park" figures on the 

computer, closer tolerances could be obtained in the magnetic pull and 

spring tension variables. 

The recordings shown are only an indication of the parameters 

that could be displayed using the analog computer. Using ,a little dis­

cretion the designer could adjust his program so that the parameters 

of particular interest to him could easily be observed. A list of param­

eters is presented which :are the more common ones used in relay anal­

ysis and these could be obtained using the analog computer. 

flux versus amp~turns 

flux versus gap 

force versus gap 

force versis amp-turns 

B-H curve 

flux leakage versus position 
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Initially it was planned to carry on. an investigation into the 

stability of the armature of the relay during release. Time, however, 

prevented this from being accomplished. The basis for this investiga­

tion was a paper: 8 ,on the analysis of the armature motion of a relay 

during release. The equations from this paper were programmed and 

run off on the computer. The results from this agreed with the results 

obtained experimentally in the paper. The oscillation of the armature 

when the spring tension was canceled out by the gravitational pull at 

some equilibrium position occurred as predicted. 

It was felt that this work was a duplication of the work covered 

in the paper and is therefore not presented here. It is recognized, 

however, that a more exhaustive analysis of the armature motion 

during release could be performed. 

·s 
Cameron, Charles F., and E. F. Allen, Analysis of Arma-

ture Motion During Release (Fourth National Conference on Electro­
magnetic Relays. School o~ Electrical Engineering, Oklahoma State 
University), April 17-19, 1956. 
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Sanborn Recordings of the Armature Motion and 
Coil Current Decay for Various Values of 3pring 
Tension and a Residual ~ir Gap of Approximately 
Zero. 

Snring Tension (left to right) 300, 250, 200, 150t and 100 grams 
Number of Coil Turns= 4000 
Discharge Resistance= 900 ohms 
Coil Resistance= 100 ohms 
Air :Jan = O. 025 cm. 
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Figure. 17 Sanborn Recordings of the Armature Motion and 
Coil Current Decay for Various Values of 3~ring 
Tension and a .tesidual .:.tr Gap = Oo 0025 cm. 

Spring Tension (lf to rt) 300, 250, 200, 150 and 100 grams 
Number of Coil Turns= 4000 
Discharge Resistance= goo ohms 
Coil ;1esistance = 100 ohms 
Air Gap= 0.025 cm. 
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Figure 18 Sanborn 3.ecordin0s of the ".rmature i"·lotion and 
~ Coil Current Decay for Jarious Values of 3~ring 

Tension and a Jesidual ~ir ;~p = 0.0050 cm. 

Spring Tension (lf to rt) 300, 250, 200, 150, and 100 grams 
Number of Coil Turns= 4000 
Discharge Resistance = 900 o-hms 
Coil _tesistance = 100 ohms 
Air Gap= 0.025 cm. 
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Figure 19 Sanborn Recordings of the Armature Hotion and 
Coil Current Decay for Various Values of Spring 
Tension and a Residual Air Gap: 000075 cm. 

Spring Tension (lf to rt) 300, 250, 200, 150 and 100 grams 
Number of Coil Turns= 4000 
Discharge Resistance= 900 ohms 
Coil Resistance~ 100 ohms 
Air Gav: 0.025 cmo 
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Firsure 20 Sanborn Recordings of the Armature Motion and 
Coil Current Decay for Various Values of Spring 
Tension and a Residual Air Gap:: 0.010 cm. 

Spring 1'ension (lf to rt) 300, 250, 200;, 150 an.d 100 grams 
Number of Coil Turns= 4000 
Discharge Resistance= 900 ohms 
Coil Resistance= 100 ohms 
Air dap = 0.025 cm 
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Figure 22 Sanborn Recordings of the Flux Density of the 
Core of a Relay During the Jelease Cycle for 
Two Values of Jpring rension 

Spring rension (lf to rt) 100 gra~s and 30 grams 
Number of Coil Turns= 4000 
Discharge Resistance= 900 ohms 
Coil Resistance= 100 oh~s 
Air Gap= 0.025 cm. 
aesidu~l Air Gap Approximately Zero 
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.Fig. 23. Composite Curve Representing the Transient Behavior 
of the Flux Density During Release, for the Armature 
Held Open; the Armature Held Closed and the Armature 
Free to Move 
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Figure 24 Sanborn aecording of the Magnetic Pull on the 
Armature of a ::telay During Release 

Spring Tension = 300 grams 
Number of Coil Turns= 4000 
Discharg~ Resistance= 900 ohms 
Coil Resistance= 100 ohms 
.Air Gap~ 0.05 cm. 
Residual Air Gap Set at Zero· 
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Figure 25 Sanborn ilecordings of the Total Reluctance of the 
Magnetic Circuit Plotted with Coil Current Decay 
and Armature Motion 

Number of Coil Turns= 4000 
Dischar~e Resistance= 900 ohms 
Coil .Resistance= 100 ohms 
Air Gan= 0.025 cm. 
Residual Air Gap Apuroxirnately Zero 
Spring Tension= 100 grams 
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J;'i gure 26 3anborn Jecordings of the Acceleration, Velocity 
and Jisplacement of the \rmature of a Jelay 

3cale 10 volts/cm 
Air Gan= 50 volts= 0.025 cm. 
3esidual Air Gap Bet at Zero 
Snring Tension - 300 grams (approximately 100 grams/cm) 
Maximum rJJagnetic Pull on Armature = 7. 02 nevltons 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

A method of analysis of the transient behavior of a relay during 

· its release cycle has been shown. A set of equations was derived and 

a computer· program was built. The program was run off on an analog 

computer and the results were compared to experimental and predicted 

curves. The comparisons were favorable, and it is felt that the com­

puter program shown in Fig. 15 is valid for the simulation of the re-

· lease cycle of a relay on an analog computer. 

Two basic assumptions were made in regard to deriving the equa-

tions for the program: (1) The eddy currents generated in the arma­

ture were small, and (2) The residual magnetism of the core was 

small. There was no evidence revealed that the eddy currents affec -

ted the operation; however, more consideration should be given to the 

redisual magnetism of the core. Evidence of this presents itself in 

the incompatibility of the release times at low values of residual air 

gap when comparing the experimental curves with the computer curves. 

This suggests that the effects of the residual magnetism should be in­

vestigated further and perhaps provisions made in the program to in­

corporate. it. · The approximation of the permeability of the eore with 

current decay was sufficient for this problem since accurate figures on 
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· release time were not desired.· For more accurate readings, however, 

it is felt that a separate function generator should be used for the 

permeability . 

. The use of the analog computer for relay analysis could prove to 

be quite advantageous, especially when working with special relays 

where unusual RL or RLC circuits are employed, such as relays with 

slugs or sleeves and the ferromagnetic relay. The design of the minia­

ture relay could be enhanced through the use of the force function and 

similar techniques-to reduce excessive overdesign in the magnetic cir­

cuit and in the restoring force. 
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APPENDIX A 

GLOSSARY OF RELAY TERMS 

Air Gap - A term for contact separation or for magnetic air gap. 

Ampere-Turns - The product of the number of turns in an electro­
magnetic coil and the r. m. s. current in amperes passing through 
the coil. 

Armature - The hinged or pivoted moving part of the magnetic circuit 
of an electromagnetic relay. Sometimes used in a general sense 
to mean any moving part which actuates contacts in response to a 
change in coil current. 

Armature Chatter - Vibration of armature. 

Armature Travel - The total distance traveled during operation by a 
point on the armature which is nearest the pole-face center when 
the relay is operated. 

Backstop - The part of a relay which limits the movement of the arma­
ture away from the pole piece or core. 

Coil - One or more windings of wire to which energy is supplied to ac­
tivate the relay. 

Coil Inductance - Primarily a property of the number of turns of wire 
along with the geometry of the magnetic circuit and its permeabil­
ity. 

Coil Resistance - The DC ohmic resistance of the coil measured at the 
coil terminals. 

Contact Bounce - The uncontrolled making and breaking of contact when 
relay contacts are moved to the closed position. 

Contact Chatter - A sustained rapid opening and closing of contacts 
caused by variations in the coil current, mechanical vibration 
and shock, or other causes. 
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Contacts - Current-carrying parts of a relay which engage or dis­
engage to make or break electrical circuits. 
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Core - A stationary part of the magnetic circuit of a relay about which 
the coil is wound. 

Discharge Resistanc e - The ecternal DC ohmic resistance which is 
effectively in parallel with the relay coil when the coil is de­
energized. 

Drop-out Current - The m a ximum value of current for which the con­
tacts of a previously energized relay will always assume their 
energi zed positions. 

Electromagnetic Relay - A relay whose operation involves the use of a 
magnetic field, produced by an electromagnet. 

Magnetic Air Gap - The nonmagnetic portion of a magnetic circuit. 

Operate Time - If a relay has only normally closed contacts, its 
operate time is the longest time interval given by definition (a) 
below. If a relay has normally open contacts (regardless of 
whether or not it has normally closed contacts) its operate time 
is the longest interval given 'by definition (b) . 

(a) Operate Time for Normally Closed Contacts -

The total elapsed time from the instant the coil is energized 
unt il the contacts have opened; i.e., the contact current is 
zero. 

(b) Operate Time for Norma~ly Open Contacts -

The total ela psed time from the instant the coil is energized 
until the contacts are closed and all contact bounce has 
ceased. 

Pole Face - The part of t he magnetic structure on the end ·Of the core 
nearest the a rmature. 

Pull-in Current - The minimum value of current for which the contacts 
of a previously de - energized relay will always assume their ener-
gized position . 1 

Relay - An electromechanical device which is operated by variation in 
the conditions of one electric c ircuit to affect the operation of other 
devices in the same or other electric circuits by either opening 
contacts or closing contacts or both. 
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Release Time - :Ji a relay has only normally open contacts, its release 
time is the longest time interval given by definition (a) below. If . 
a relay has normally closed contacts (regardless of whether or not 
it has normally open contacts). its opera~e time is the longest time 
interval given by definition (b). · 

(a) Release Time for Normally Open Contacts -

The total elapsed time from the instant the coil current 
s~arts to drop from its rated value until the contacts have 
opened; i.e., the contact current is zero. 

(b) R~lease Time for Norm.ally Closed Contacts -

The total elapsed time from the instant the coil current 
starts to drop from its rated V;alue until the· contacts are 
closed and all contact bounce has ceased. 

Residual Gap - The length of the rn.agnet~c air gap betweE:!n the pole-face 
center and the nearest point on the armature when the armature is 
in the energized position. 

Tension Spring - A term for "restoring spring". 

Transfer Time - The total elapsed time between the breaking of one set 
of contacts and the making of another set of contacts. 

(a) Transfer Time on Operate; -

The total elapsed time from the instant the normally 
closed contacts start to open until the normally open con­
tacts are closed and all contact bounce has ceased. 

(b) Transfer Time on Release -

The total elapsed time from the instant the normally open 
contacts start to open until the normally closed contacts 
are closed and all contact bounce ha~ ceased. 

Transit Time - Same as "transfer time". 



APPENDIX B 

The basic circuit used to obtain the coil current waveforms shown 

in Figs. 3, 4 and 6, is shown below. The control relay had mercury 

contacts, there by eliminating the possibility of con tact chatter. A polar-

oid land camera was used to photograph the current traces. 

Supply Voltage 

P = · Push Button 

Control 
Relay 

E = Voltage for Control Relay 
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Discharge 
Resistance 

elay 

Test 

To Oscilloscope 
Tektronics Model 545 l Small Current Shunt 
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