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PREFACE 

This work was undertaken at the suggestion of Dr. i. c. Todd 

who acted as my adviser and project supervisor. The purpose of 

the paper is to study tbe shock wave initiated by a micrometeoroid 

impacting on a semi-infinite surface. 

The problem for study is intended to yield an order of 

magnitude solution ~o.the phenomena of micrometeoroid impact. 

This first solut'i6n is necessary to provide the basis for 

assumptions that are necessary to treat more complex problems. 

The assistance :and guidance of Dr. Todd have been invaluable 

in the completion of this work. The author is also indebted to 

Mr. B. A. Sodek and Mr. J. G. Ables for assistance i:n this work 

and to Mr. William Grenet for consultations concerning the digital 

computer programming. 

The work was carried out under NASA Contr~ct Number NASr-7 

administered through Research Foundation, Oklahoma State University. 
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CHAPTER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

Micrometeoroids are defined as particles which have a mass of 

-4 less than 10 grams and velocities that range from 30,000 to 

24'C\OOO feet per second. (1). They are detected by devices that 

are placed in high-flying rockets or satellites. One device that 

has been successfully used is a photomultiplier tube with a 

vapor deposited aluminum film covering the face. The micro-

meteoroids impinging . uy;>0n the face of the photomultiplier are 

Known to produce a pulse of current through the tube. 

The NASA. project for which this thesis is a contribution 

was initiated as an analytical study of micrometeoroid impact 

on the coated photomultiplier. The project is concerned with 

the mechanics of impact which result in producing light to 

activate the -photomultiplier tube and is directed t,oward 

determining the e?ergy, momentum and possibly the composition 

of' the micrometeoroid fro.m measurements on the impact. 

'I'he time interval chosen·by the sponsor for this study is 

the first two microseconds after initiation of the impact.. For 

purposes of refe~ence, a typical micrometeo~oid for the study 
-9 . ' 

bas a mass of 10 grams and·moves with a velocity of 36 kilometers 

per second. Since theoretical considerations indicate that 

micrometeoroids ha.ve a velocity between 30,000 and 240,000 feet 
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per second, the selected meteoroid has a velocity approximate],.y 

midway between the extremes. 

Up to this time, very few published articles have attempted 

to determine and analyze the impact phenomena of small particles 

with ultra-high velocitieso One article approaches the problem 

from the thermal damage theory (2). In this theory, the flash 

of light accompanying the impact is attributed to incandescence 

bf the target and the meteoroid in the immediate vicinity of 

tbe impact. 

Bjork (16) has examined the problem of a high-velocity 

projectile of cylindrical symmetry impingeing upon a semi~infinite 

solid by a plane. His computations were intended to give an 

order of magnitude solution to the problem of.bigp.-velocity ,, 

impact,. 

After consideration of a limited amount of impact data for 

lower velocities, a theory different from that of thermal damage 

has been proposed by F. c. Todd, project supervisor. This theory 

proposes that a plasma is formed by a strong radial shock 

from the impact. A plasma is defined as a mixture of ions and 

electrons which is expected to start to form from the applications 

of pressure alone at a pressure of about 100,000 atmospheres (3). 

The radiation that accompanies the impact results from the 

electrons in the plasma dropping back into their normal state, 

or an unfilled level after the pressure starts to decrease. ·Thie 

plasma theory along with other impact models is discussed in 

Appendix A. 



The subject of this thesis is the investigation of the strong 

radial shock wave accompanying micrometeoroid impact. Bethe (4) 

has shown that propagation of a shock wave through a material may 

be solved provided that the equation of state for the material is 

known over the pressure range of the shock. Knowledge of the 

equation of state permits a simultaneous solution of the partial 

differential equations for hydrodynamic flow, which may be applied 

to the problem of high velocity impact. In the solution of these 

equations, the shock fronts are lines of discontinuity. In order 

to obtain a numerical solution, a pseudo-viscosity term, first 

introduced by J. von Neumann and R. D. Ricbtmyer (5~ is used to 

smear out the shock into regions of very steep gradients. 

The problem chosen for this thesis is the development of 

the solution of the propagation of a radial shock wave into a 

semi-infinite media. The reason for choosing a semi-infinite 

target is to simplify solving an exploratory problem. This first 

solution must be obtained to provide the basis for assumptions 

that ·are necessary to treat the more complex problem of a 

shock wave propagating into a thin film of material coating the 

face'of a photomultiplier tube. 

The work described herein may be briefly outlined as follows: 

(1) An equation of state is developed for aluminum 
over an extended pressure range. 

(2) The partial differential equations of fluid flow 
are developed and converted to a dimensionless 
form. 

(3) The dimensionless hydrodynamic equations are 
converted to a difference equations for computer 
solution. 
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(4) The difference equations are combined with computer 
logic to form a FORTRAN computer program. 

(5) The mechanics of developing a computer program are 
completed by choosing a space-time net that will 
give a stable solution. 

( 6 r The computer program, combined with initial and 
boundary conditions, gives the solution for 
shock wave propagation. 

4 



CUPTER II 

SHOCK WAVE BACKGROUND THE)ORY 

Since this thesis is to treat the shock wave initiated by a 

micrometeoroid impacting on a solid, it is desirable to review and 

develQp some of the background theory necessary for the theoretical 

treatment ot shock waves. 

Historical Backgro11nd 

Courant and Friedrichs (6) give a brief historif&l background 

ot· tbe development ot modern smock wave theory. Topics of interest 

from tbeir work are prese•ted. 

In 18o8, loisson was the first to obtain a simple wave 
•. 

solution of the·dittere•tial equation of flow on the assumption ef 

an isothermal propagatioa through the gas. Forty years later in 

1848 Challis noted that thi!II equation .. of tln did •ot always give 

a \uiique solution for the :flow velocity, u. "Tbe same year that 

Challis made his_observatien, Stokes proposed that, to obtain a 

u:niq11e solution., one should assume that a disc.ontim.ui ty 1,n the 

velocity oecurs when t.he velocity gradient becomes i_ntinite. 

Stolte'1! ala, stated that this assumed discontinµi ty wo11l.d never 

exist in a ph'ysical problem since it would be smoothed out to a 

finite width by viscous forces. In 1858, Earnshaw develQJ>ed the 

wave solution tor the flow of gases which satisfies the relation 
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that the pressure is equal to a function of the density. Two years 

later, Riemann developed the simple wave theory solution and solved 

the general flow problem by using "Riemann invariants". He 

elaborated on the theory of shocks but made the incorrect assumption 

that the transition across the shock is adiabatic and reversible. 

In 1869 Rankine first proposed that the transition across 

the shock region is a non-adiabatic process and initiated work to 

derive boundary conditions relating the conditions·of material on 

either side of a shock front. In 1887, Hugoniot prove~ conclu-

sively that an adiabatic reversible transition across a shock 

region would violate the law of conservation of energy. He also 

derived an equation, today known as the Hugoniot Relation, 

rela.ting t~e change of internal energy across a shock front to 

the changes in pressure and density. Finally, in 1910, Rayleigh 

observed that entropy must increase across a shock. 

Uniqueness of Solution 

According to Bethe (4), a unique solution to Hugoniot's 

shock wave equations exists and can be found provided a complete 

equation of state exist for the media through which the shock 

propagates and provided three assumptions about the equation of 

state are fulfilled. 

The most important condition is: 

(a2P) > o 
\av2 

s 
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where P is the pressure, V is the specific volume, i.e., mass per 

unit volume, and Sis the entropy. This condition is satisfied for 

nearly all single phase systems and is violated only for extreme 

-44 cases where the pressure is smaller than 10 atmospheres. 

The second and third conditions are: 

V (~:)v > -2 

and 

(fv) < 0 
. e 

where e is the specific internal energy, The second condition is 

fulfilled whenever a substance expands with increasing temperature 

e,:t constant pressure and is believed to be fulfilled for nearly 

all substances under nearly all conditions. The third condition was 

found to be fulfilled for .. all single phase systems investigated 

by Bethe. 

Stability of Shock Waves 

Shock waves, in a homogeneous medium that satisfies the 

necessary conditions for a unique solution, always travel with a 

superson~c velocity relative to a point in the material ahead of 

the shock and with a subsonic velocity relative to a point in the 

material behind the shock (7). Bethe (4) has shown that this 

property of a shock wave permits a simple explanation of shock 
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wave stability. 

Consider a homogeneous medium supporting a shock wave. The 

stability of the shock can be examined by assuming that it starts 

to break up into two waves, one ahead of the other. The leading 

shock will travel with a supersonic velocity relative to the 

undisturbed material in front and with subsonic velocity relative 

to the material behind this leading shock but ahead of the 

second shock; the second shock will travel with a supersonic 

veLocity relative to the material between the shocks since material 

in this region is in front of the second shock. That is, the 

leading shock wave travels with a subsonic velocity and the 

trailing shock wave travels with a supersonic velocity with 

respect to the material in the region between them. The trailing 

shock will soon overtake the leading shock and merge to form one 

stable wave. The same argument can be applied against a shock 

splitting into .several waveso From these ccmsiderations, a 

compressive shock in a homogeneous medium, satisfying the necessary 

conditions for uniqueness, will be completely stable. 

Rankine-Hugoniot Conditions 

Shock waves are defined as dilational waves in a plastic media, 

or a media that has negligible resistance to shear, similar to a 

liquid. For this reason, the flow of the compressed media can be 

represented by the equations of hydrodynamic flow. In the 
'1 

propagation of the shock front, the pressure rises to a high value 

in a very thin zone which is designated as the shock front. This 



-very thin zone of rapidly changing pressure, density, and internal 

energy appears as a discontinuity in the equations for hydrodynamic 

flow. For a solution, it is necessary to derive conditions that 

relate the states of the material on one side of the shock front to 

those on the other side. These conditions are usually designated 

in the literature as the Rankine~Hugoniot conditions. 

The Rankine-Hugoniot shock conditions will be derived in a 

simple manner on the basis of the assumption of constant flow 

velocity. Tbe same conditions may be developed in a more 

rigorous manner from tbe differential equations for motion in 

continious flow ( 8). 

Tbe Rankine-Hugoniot conditions will be developed from the 

following laws: 

(1) Conservation of Mass 

(2) Conservation of Momentum 

(3) Conservation of Energy 

(4) Increase of entropy across the shock. 

To derive the shock relations across the discontinuity, a 

column of gas in a tube will be considered. Assume at time, t, the 

column covers a length a (t) ~x <a1(t) where a (t) and a (t) are 
O · O l 

the end points of the column at time, t, and xis any point in 

the column. Let the flow at the ends of the tube ·be continious. 

Then the following manner, 

(la) Conservation of Mass: 

9 



where pis the density. 

(2a) Conservation of Momentum: 

!L 
dt 
f a1(t) 

Pu 

a (t) 
0 

where u is the flow velocity and Pis the pressure. 

(3a) Conservation of Energy: 

where e is the specific internal energy. 

(4a) Increase of Entropy: 

d [al (t) ·1 

dt pS dx > 0 

a (t) 
0 

where S equals the specific entropy. 

Equation (2a) assumes that the only forces acting on the 

column are pressure forces; therefore, the time rate of change of 

momentum of the column equals the total resultant force exerted 

10 

on the column by the pressure at the ends of the column. Equation (3a) 



indicates that the gain of energy in the column results only from the 

pressure forces. The rate of increase of energy is equal to the 

power input, which is the work performed per unit time by pressure 

against the ends of the column. 

For the development of the Rankine-Hugoniot conditions, assume 

that there is a discontinuity in the column. Assume that the 

discontinuity is at a point, x= :e:(t), and let u, P, p, and S be 

discontinious at this point. The discontinuity will move with a 

velocity a~, which will be denoted by U(t). at · 
Upon examination of equations (la-4a), it is seen that all of 

the integrals have the same form: 

f.a1(t) 

H = Y(x,t) dx 

a 0 (t) 

where the variable Y(x,t) is discontinious at the point, x = :s:. 

When the derivative of His taken with respect tot, the 

following equation results. 

£1! 
dt 

g(t) 

= ~J Y(x,t) 

a ( t) 
0 

a1 ( t) · 

dx + ~ f Y(x,t) .dx 

:s:(t) 

The right side of equation (6) is evaluated by Courant (9) in 

(5) 

(6) 

11 
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the following manner: 

a 1(t) . 

dH = f . oY(x,t) dx + (Lim Y(. x.,t~ *(t) • Y(a t) u(a t) 
dt c,t ~ (x ... :a:)- j .... o' o' 

a 0 (t) · . (Lim Y(;x,t~ • 
(7) 

+ Y(a1,t) u(a1,t) - ~ (x-+ s)+) E(t) 

where 
oa (t) 

u( a , t) 0 
= ot 0 

and 

u(ai,t) 
aa1 ( t) 

= at 

The ·notation (x-+ :;:) .. indicates that x approaches E from the negative 

,side of g and ( x-+ :a: )+ indicates that it approaches from th!! 

positive side. 

Equation (7) holds independent of the length of the column, 

provided~ is an interior point. If the symbols Y0 and Y1 are 

defined as: 

and 

Y = Lim Y(x,t) 
0 (x -+ s)-

Y1 = Lim Y(x, t) 
(x _, g)+ 



then in the limit, when the length of the column approaches zero, 

the integral 

. a 1 (t) r oY(x,t) dx at . 
a ( t) 

0 

approaches zero, Y(a ,t)~Y, and Y(a t)~ Y, so that equation (7) 
0 O 1 1 

may be written: 

tim (~) '= Y1u 1 - Y1 g(t) + Y0 ~(t) 

(a1 _. u0 _. o) 

- y u 
0 0 

Using the notation, u, for the velocitr of the shock front 

v1 may be defined as vi =ui-U 

Thus, 

- y V 
0 0 

i = 0,1 

Using equation (9) to evaluate equations (la-4a) across a 

discontinuity, the following Rankine-Hugoniot conditions 
• 

may be derived. 

(lb) Conservation of Mass 

13 

(8) 

(9) 
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or 

(10) 

Here Mis defined as the mass flux through the surface of discontinuity. 

(2b) Conservation of Momentum 

This equation can be rewritten in the form: 

or 

2 2 
Pavo +Po= P1v1 + pl 

(3b) Conservation of Energy 

P1<iu/ + el) vl - Po(~o2 + eo) vo = Pouo - P11,11 

or, in terms of Mas defined above under (10) 

M(~o2 + eo) + uoPo = M(,tul2 +el)+ ulPl 

This equation may be converted to the form: 

· M(~v + e + P V) = M(iv12 + e1 + r1v1) 
. ~ 0 0 0 0 ~ 

Where Vis the specific volume, 

(4b) Increase in Entropy 

P181v1 - Po8ovo > O 

For a shock surface at which M > O, equation (3b) may be 

written: 

or 

( 11) 

(12) 

( 13) 

(14) 



where i is the specific enthalpy which is defined by the relation: 

i = e + PV 

Using 

it is possible to write Mv0 +P0 = Mv1 +P1 , Since ui = vi+U 

Thus, 

Multiplying equation ( 15) through by (V + V ) produces, 
0 1 

15 

(V0 + V1) (P1 - P0 ) = (V0 + v1) M (V0 - V1) (16) 

Vl V 

Remembering that M = - = -2., (V0 +v1 )M may be written as, (v + v ) 
v1 V0 o 1 

Thus equation (16) may be written 

From equation (14), 

so that, 

(P - P) (Vo+ vi)= i - i 
. 1 0 \_- 2 1 0 

(17) 

Equation (17) indicates that the increase in enthalpy across a 

shock wave is due to the pressure difference on the mean volume. 

Since i = e + PV equation (17) may be written, 

(18) 
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This equation indicates that when the material supporting 

the shock wave is compressed across the shock there is an increase 

in internal energy in the compressed material which equals the work 

done by the mean pressure in performing the compression. 

Equation (18) is known as the Hugoniot relation. 

The Hugoniot Relation 

The Hugoniot Relation, equation (18) may be rewritten as, 

where (P ,v) is the pressure and specific volume ahead of the 
0 O · 

shock and. (P, V) represents the pressure and volume behind the shock. 

It is worthwhile to note that the Hugoniot Relation is not 

dependent upon the flow velocity or position of the shock. It 

·is a relation dependent only upon the thermodynamic variables 

P, V, and e which characterize the media. Thus the relation is 

already in the form of an equation of state. It is different from 

a complete equation of state in that it relates the thermodynamic 

variables for only one condition. It relates the variables only 

at a point directly behind and another point directly in front of 

the shock where the pressures and specific volumes have their 

maximum and minimum values, respectively. 

When the relation is written in the form H(P, V) = O, 

it characterizes all values (P,V) behind the shock wave which 

satisfy the jump conditions across the shock with the values of 



(P0 ,V0 ) which are given for the material ahead of the shock. When H 

is plotted in the (P,V) plane, the resulting graph is known as the 

Hugoniot curve. The Hugoniot curve plays an important role in the 

equation of state that is used in this thesis and more information 

concerning this curve will be discussed when the equation of state 

is considered in the next chapter. 

17 



CHAPTER III 

EQUATION OF STATE 

Bethe (4) has shown that the hydrodynamic equations governing 

nuid flow yield a solution for shock wave propagation if a 

complete equation of state exists and the equation of state 

satisfies three conditions set forth in bis paper. These three 

conditions were discussed in Chapter II and it was observed that 

they were satisfied for al,l known·materials that do not undergo 

a change of phase over the pressure range associated with the 

shock wave being propagated. As a consequence, the hydrodynamic 

equations for the propagation of a shock wave may be solved, 

provided a complete equation of state is obtained for aluminum. 

Since the hydrodynamic equations are to be solved with a 

digital computer, it is not necessary for one equation of state 
, I 

to cover the complete pressure range associated with the shock. 

rt is possible to combine several different equations, each 

valid over a specific range,.· to give a complete equation over 

thepressure range of interest. 

The equation of state chosen for this work, the Mie-

G:runeisen equation, is derived in detail in Appendix B. The 

form of this equation is, 

(1) 

18 



where P, V, and e are the pressure, specific volume, and the 

specific internal energy. The pressure, Ph' and the specific 

internal energy, eh, are known functions of the specific volumes, 

as shown in Appendix c, over the range that the Kugoniot curve 

is known •. The symbol, y, in this equation should not be confused 

with the gamma of an ordinary gamma~law gas. In this case, y 

is the Gruneisen ratio and chosen to be in such a form that it 

is a function of one variable, the specific volume. Thus a 

complete P, e, V equation of state exists for pressures as high 

as the Hugoniot curve is known. 

·· It is proposed for this work that the Rugoniot be broken 

up into three different pressure regions. The first region will 

.be taken from data pt1blished by Walsh, et.al., (10,11). This 

experimental Rugouiot covers the pressure range up to one 

megabar. The second region to be considered will be for pressures 

above 20 mega.bare. In this region, the Hugoniot will be constructed 

~rom published data of the Thomas-Fermi Statistical model of a 

plasma, which ·the material will approach at these high pressures. 

Since the available experimental Hugoniot extends to only one 

megabar and the Thomas-Fermi data is not considered valid under 

20 megabars, it 1s necessary to interpolate between the values 

of the Hugoniot for the upper and l0Wer regions. 

EXPERIMENTAL llt100NIOT 

The Kugon1ot curve for 2~ST aluminum bas been experimentally 

measured up to l megabar by a method described in Appendix c. 

Rice, et.al., (ll) analytically fit a cubic »olynomial to their 

19 



experimental values which has the form, 
2 j 

Ph = Aµ. + Bµ. + Cµ. · 

where A, B, and Care constants determined by the shape of tbe 

curve and, 

V = specific volume 

VO = specif:i.c volume of the 
material in its unstressed 
state. 

· The Hugoniot in this form is a function of the specific 

volume and this permits the Mie-Gruneisen equation to fulfill the 

requirements of a complete P, e, V equation of state. 

The Hugouiot from Thomas-Fermi Statistics 

At the high pressure which results from a high velocity 

(2) 

impact, the target material is believed to be momentarily converted 

to a plasma. The motion of the particles in this plasma can be 

described by Thomas-Fermi Statistics (12,13). This model involves 

reasonable assumptions which allow theoretical calculations of 

thermodynamic variables at high pressures. The assumptions that 

are necessary to permit theoretical calculation yield equations 

that are so complex that the only practical method of evaluating 

them is with a digital computer. These equations have been 

solved and the data obtained has been published and is available 

for use. (12,13) 

Even though published Jata is available to reasonably low 

. pressures, it is thought that the necessary assumptions limit the 

20 



validity of the data to pressures above 20 megabars. If the 

experimental Hugoniot is used for pressures up to l megabar and 

the Thomas-Fermi data is used to aid the construction of a 

Hugoniot for pressures above 20 megabars, there remains a region 

. of uncertainty between land 20 megabars in which the Hugoniot 

must be interpolatedo 

The curves plotted in figures (1) and (2) were prepared 

from.the published data by Mro B. A. Sodek. Figure (1) is a 

composite graph of the known experimental Hugoniot and the 

theoretically calculated therm.odynamlc variables at high pressures. 

rn the higher pressure range, the lower bounding curve is the 

o°K isotherm. The network of curves in the higher pressure-

range is composed of isotherms and constant entropy curves. 

Figure (2) is a plot of the same network o:f' theoretical calcu-

Iations over a larger pressure range. 

There are several facts (14) which assist the construction of 

the Hugoniot above 20 megabars. First, it is known that across 

a strong shock the specific entropy increaseso As a consequence, 

the llugoniot curve must intersect the constant entropy curves 

as the pressure is 

across the shock. 

increasing in order :for the entropy to increase 
· · dP 

A second known fact is that----.< O along 
· · . dV 

the Hugoniot. Third, the pressure along the Hugoniot varies 

· from one atmosphere to a very high value while the specific volume 

varies from maximum value, v0 ,·to a mi~imum value., Vmin' A fourth 

known fact is that a linear plot of P :vs V for the Hugoniot is 

convex upward and any ray passing through any point on the Hugoniot 

21 
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intersects the Hugoniot at one and only one other point, provided 

the 
I 
ray intersects the V axis at a point V;;;:: V 0 • 

A linear plot of the Hugoniot curve that is used for Ph 

and Vh in the complete equation of state is presented in Figure 3. 
. 0 

rn this figure, the OK isotherm is extrapolated from the 500 
0 

kilobar region to inte.rsect the O K isotherm from the Thomas-

F"ermt·calculations at about 20.megabars. The Hugoniot plotted 

"fn this figure is a composite curve of the data of Rice et.al. (11), 

. the Hugoniot constructed in the high pressure region, and the 

extrapolation between the two. The curves were analytically 

fit to the form, 

where A, B, and Care constants and 
y 

µ = (; - 1) = (to - 1) 

The constants were evaluated to give the best fit of the data 

by the method of least mean square (15). In order to use the 

same analytical form for the complete pressure range, it was 

necessary to use three different sets of constants in three 

separate ranges. Table I contains the constants for both the 

R11go11iot and o°K isotherm and lists the specific volume ranges in 

wnich they are valid. 

Although the Hugoniot constructed in Figure (1) is probably 

not absolutely correct, it does approximate a true Hugoniot 
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suf'ficientlywell so the solution for the shock wave propagation is 

obtained with fair accuracy. 

Computation of the Gruneisen Ratio 

In order to have a complete P, e, V equation of state, it is 

necessary to know the value of the Gruneisen Ratio as a function 

o~ the specific volume over the complete pressure range. McQueen, 

et.al., assumed ,that the Gruneisen Ratio could be expressed in the form 

of the following series and evaluated the coefficients for the 

pressure range in which they were interested. 

0 
Since the O ~ isotherm and the Hugoniot are known as a 

function of the volume over the pressure range of interest, it 

is possible to compute y from Equation (13) of Appendix B 

as a function of the volume 

y = 

iPh(vo - V) + •o +~vpk dV 
0 

The Gruneisen ratio for this problem was computed from this 
0 

relation by using the form of the O -K isoth,erm and the Hugoniot 

(3) 

(4) 

that was'analytically fit to the curves in Figure (3). 'rhe resulting 

curve for y was represented by a series of this form, 

2 3 y = y0 +Aµ+ Bµ + Cµ 
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As for the equation of state, it was necessary to break the curve up 

into three different regions in order to obtain a more accurate· 

representation of the variation for the range of specific volume 

considered. Tbe constants obtained for yin the three ranges 

for computation are given in Table II. The ranges correspond 

to the pressure ranges for the equation of state. 
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TABLE I 

CONSTANTS FOR TEE ZERO DEGREE ISOTHE:RM 

V Pressure 
-v-

0 
A B C (in mega.bars) 

1.0 to .579 0.680 1.536 o.468 0 to l.486 

0.579 to ~450 -1.574 5.116 .. 0.206 l.486 to 5,003 

o.457 to .260 -8.7154 11.620 .. 0.620 5.003 to 52.000 

CONSTANTS FOR THE HU'GONIOT 

V. Pressure 
-v-0 A B C (in mega.bars) 

1.0 to .650 765.0 1659.0 428.0 0 to l.,000 

.650 to .518 . 1150.1 -851.9 3998.0 1.000 to 3.570 

.518 to .300 -2194.2 4034.7 2604.3 3.570 to 52.000 
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TABLE II 

CONSTANTS FOR GRUNEISEN'S RATIO 

V Pressure v- Yo A B C ( in megabars) 
0 

1.0 to .650 2.130 .5.193 12.098 12.550 0 to 1.000 

.650 to .518 2.000 -4.513 6.800 .3.780 1.000 to 3.570 

.518 to .300· 1.590 -1.355 .439 .0404 3. 570 to 52. 000 



CHAPTER IV 

APPLICATION OF THEORY 

The Differential Equations of Fluid Dynamics 

Fluids differ from solids under normal conditions by the 

property that the particles of the fluid have no resistance to 

shear. Compared to the tremendous forces that are initiated by 

micrometeoroid impact., the forces of a solid that resist shear 

may be regarded as insiguificant, The yield strength of very 

good steel for instance., is on the order of 0.0068 megabars (16), 

This amounts to approximately 0.05% of the total impact force for 

the problem of micrometeoroid impact being considered. Sine~ the 

shear forces are so insignificant for a problem of this type, the 

motion of material due to micrometeoroid impact on a solid target 

may b~ treated by the differential equations for the flow o~ a 

compres·sible fluid. 

Courallt (17) indicates that the system of differential equations 

that govern the flow of a compressible fluid must express the 

following physical laws: 

a. The principle of conservation of mass 

b. ·· The conservation of momentum 

c. The conservation of energy 

d ... The condition that changes of state are adiabatic 
except at the shock front. 

' 
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The addi.tion of an equation of state to these conditions completes 

the system of equations which are necessary to obtain a solution 

for fluid motion. 

The partial differential equations that describe fluid motion 
. ' 

are usually written in one of two forms, either Eulerian or 

Lagrangian. Although both of these forms are due to Euler, (18) 

German mathematicians designated one form Eulerian and the other 

Lagrangian. The Eulerian equations describe the variables at 

fixed points in space as time varies. Lagrangian equations describe 

the motion of individual particles or cells in the fluid and are 

most generally used for problems involving only one space variable 

such as problems of radial or slab symmetry. For problems of one 

space variable, the Lagrangian equations give more information 

than the Eulerian form, (19) since each bit of fluid is labeled 

with its original coordinate so that its original position may be 

determined at any time~ t. It is al1;10 a property.of LagramgiliLn 

equations that conservation of mass is automatic, even when the 

equations are converted to a finite difference form. This property 

enhances the accuracy of a numerical approximation to the true 

solution of fluid motion. 

'When problems involve more than one space variable, Eulerian 

equations are more often used.· The accuracy of·a Lagranian solution 

decreases for multidimensional systems as time increases unless a 

new spa:c·e· .. time net is chosen. The choosing of a new net requires 

difficult and inaccurate interpolations. Therefore it is simpler 

to use the Eulerian form for this type of problem. 

It is possible to derive the differential hydrodynamic equations 
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in either the Eulerian or Lagrangian system. For the present treat-

ment the equations will first be examined in Eulerian coordiantes 

and later written in the Lagrangian form. 

Eulerian Equations 

Conservation of Mass: 

The equation., expressing the conservation of mass is the well 

known continuity equation often derived in standard mathemati_cs 

texts ( 20). 

The equation will not be derived here, but will be written 

in the form most often cited, 

op ... 
- + '7 • (p'l') = 0 Ot V 

where 
- o - o - o 

\/ = i 0X1 + j oXa + k oX:3 

... 
P is the density, arid 'l' is the vector form of the fluid velocity 

'Y = ¥ (Xl' x2, x3, t) in the orthoganal coordinate system, 

xl' x2, x3• 

For spherical flow, where the radial velocity is denoted 

as u and _the radial Eulerian coordiante as R, the equation of 

continuity may be written.as, 

(la) 

Conservation of Momentum: 

Conservation of Momentum is.expressed by Newton's .second law 

of motion which is that force equals mass times acceleration. This 



law may be stated in equation form as, 

d'¥' .. i 

~ (2a) 

i = l, 2, 3 

oP where Fi represents body forces, ~ is the pressure gradient and 
a 1 1 

J>7t is the inass times the acceleration. The fluid velocity, '1'1 , 

is a function of position and time: 

Therefore the _derivative of '1'1 with respect to t may be written 

as follows 

av 1 . oX:a 
-+---0X1 · ot 

or 

anq may be written in vector form as: 

The assumption is made that body forces, such as gravity, are 

approximately equal to zero compared to the pres1;1ure gradient, 

By neglecting F1, equation (2) may be rewritten, 

33 

(2b) · 



For a spherical wave with radial velocity, u, the conservation of 

momentum is written, 

(2c) 

Conservation of Energy: 

The flow after the impact is considered to be adiabatic 

except. across the shock front. The change in entropy across the 

shock frqnt is so important that the subject is considered in a 

separate section, although short section. All of the required 

thermodynamic variablee in the complete equation of state must be 

evaluated and these are P, e and V, or P , where these symbols 

indicate the pressure, the energy, the volume and the density, 

respectively. Another relation between the variables in the 

problem may be obtained from the assumption that the gain of 

total energy by an increment of the fluid is only attributable 

to the work performed on the incremE:1nt by the pressure (21)~ 

An additional assumption is made that viscous forces, body forces, 
i 

heat _conduction and energy sources are absent (22). Using .these 

assumptions, the conservation of energy may be written in 

Eulerian, rectangular coordinates as follows: 

~ + pi · ne + P'y • ,i = 0 (3a) at V 

... 
where 'f is the vector velocity in rectangular coordinatee. For 

spherical symmetry, the conservation of energy may be expressed in 

the form, 

(3b) 
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Further considerations of the change in entropy are considered 

in the next section. 

Adiabatic Change of State: 

The condition to insure. an adiabatic change of state, except 

at points of discontinuity, is most often expressed by an equation 

that restricts the change in specific entropy: 

.22. +; • vs = 0 ot 

This equation may be written for spherical motion with radial 

_velocity, u, as follows, 

as os 
ot + u~ = 0 

The adiabatic change of state must occur when a change in the 

(4a) 

(4b) 

specific entropy is restricted, by the use of equation (4), This 

equation bas the physical significance that viscous forces and 

heat conduction do not occur in the flow at any point except across 

the shock front~ At the shock front, a pseudo-viscosity term is 

introduced to make the solution possible with a digital computer. 

The pseudo-viscosity term prevents th~ occurrence of 

uncontrolled oscillations at the shock front. These oscillations 

should be considered as vibrations of the discrete sections of 

materials that are defined by the difference equations. As the 

scale of these sections is decreased to approach infinitesimal 

dimensions, the pseudo-viscosity approaches more and more closely 

to reality. 

With the set of equations (l-4), all of the necessary conditions 
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are expressed in Eulerian form, and written in terms of the thermo .. 

dynamic variables P, e and V, or p • The Eulerian form for the 

equations was chosen for initial examination because it is easier 

to discuss and to recognize the origin of the terms than in the 

Lagrangian form of the equations. The equations will now be written 

3P 

in Lagrangian form to simplify computation of the numerical solutions. 

Lagrangian Equations 

For problems of one space variable such as the radial shock 

wave being considered, the differential equations for hydrodynamic 

flow are often used in the Lagrangian form. The reasons for 

selecting the L_agre:ngian coordinates for this problem have already 

been discussed. The equations e:icpress the same properties as the 

Eulerian equations and are written in a spherically symmetric form. 

Richtmyer (23) presents the spherical form of the equations as 

follows: 

Conservation of Mass: 

(5) 

where r is the radial Lagrangian coordinate of a fixed coordinate 

system and R(r,t) is the radial Eulerian coordinate, p is a 

function of the Lagrangian coordinates and time, and P0 is the 

initial density. 

Conservation of. Momentum: 

VR(r,t)\2 ~ 
°p\: r ) !r (6) 



where u is the radial fluid velocity and Pis the static fluid 

pressure. Both u and Pare functions of the Lagrangian coordiante 

and time, u • u (r,t) and P aP(r,t). 

Conserv~tion of Energy: 

(7) 

where e,the internal energy per unit mass,is also a function of 

rand t. 

The equation of state and the partial differential equation of 

the velocity are used to aid the three conservation equations in 

numerical solution of the problem. 

Equation of State in the Mie-Gruneisen Form: 

where P and e are pres~ure and internal energy at any point in 

the P-e quadrant. Ph and eh are the values of these quantities 

on the Hugoniot line. The quantity, y, is the Gruneisen Ratio 

and changes slowly witb the density. 

Velocity: 

~R(r.t) 
u • at 

(8) 

(9) 

! 
With the five equations (5-9), it is possible to solve for a 

numerical solution of the fluid motion at every point in the 

supporting media except the point where the shock exists. 
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The shock wave manifests itself in these equations as a point 

of discontinuity. J. von Neumann and R. D. Richtmyer, in 1950, 

proposed a method of introducing a fictitious, or pseudo-viscosity 

at this point of discontinuity which satisfies the condition that 

the entropy increases and permits a complete numerical solution of 

the fluid motion. Their method will be the topic of discussion 

in the next section. 

The von Neumann.Richtmyer Method of Handling Shocks 

Shock surfaces appear in the differential hydrodynamic 

equations as regions where the velocity, density, internal energy 

and other variables of the fluid are discontinuous. The Rankine­

Hugoniot jump conditions. were derived in Chapter II. These 

relations relate the conditions of the material on the·two sides 

of the shock front and provide sufficient conditions to relate the 

differential equations on both sides of the shock (24). The 

process of applying boundary conditons to solve the propagation 

of\ a shock wave is known as a shock fitting. The problem was 

initially solved by an iterative trial and error calculation. 

Shock fitting is slow and certainly not satisfactory for more 

complicated problems. 

J. von Neumann and R. D. Richtmyer, wishing to avoid the 

difficulties introduced by shock fitting, devised a method of 

automatically handling shock motion in the numerical solution 

of the differential equations (5). Their method treats shocks 

automatically whenever and wherever they arise. It is based on 

using a dissipative mechanism such as viscosity or heat conduction 



which exist for real'fluids (25). The introduction of a dis1:;1ipative 

mechanism in the differential equations tends to smear the shock 

wave and change it from a discontinuity to a region where the 

variables are varying rapidly but continuously. Even though this 

method does away with the application of the boundary conditions,_ 

the Rankine-Hugoniot conditions still hold across the shock and 

the approximation of smearing out the shock can be made to represent 

actuality as accurately as desired by limi~ing the width of the 

shock. 

von Neumann ~nd Richtmyer proposed that the artificial 

dissipative mechanism be introduced in the form of a pseudo-

viscosity term which can be added to the pressure. Upon the 

addition of this term, equations (6 ) and (7) can be written as 

follows, 

OU _!..f~(r.t))2 • o(P + Q) 
ot = ~ r or 

0 

Conservation E! Momentum 

where Q is the dissipative term, and, 

oe -= ot 
(P + Q) 
. Pa 

Conservation of Energy 
,._. .... 

when equations (5), (8), (9), (10) and (ll) are converted to a 

finite difference form, it is possible to solve them numerically 

(10) 

(11) 

in a stepwise manner with time by means of a digi_tal computer. This 

method produces a solution in which shocks move with approximately 

the right velocity and has approximately the correct changes in 
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pressure, energy, density, and velocity across the shock boundary, 

Selection of a Dissipative Mechanism 

The dissipative term, Q, in the equations is artificially 

introduced to produce desired mathematical effects. For this reason, 

it is possible to use a Q term which is a function of any of the 

variables involved in the numerical calcualtion as long as it 

satisfies the following four requirements set forth by von Neumann 

and Richtmyer (5). 

(1) The three conservation equations must have 
solutions without.discontinuities. 

(2) .The thickness of the shock layers must be 
everywhere of the same order of magnitude 
as the interval length, 6r, used in the 
numerical computation, independent of the 
strength of the shock and of the condition 
of the material into which the shock is 
moving. 

(3) The effect of the terms containing Qin the 
conservation of momentum and in the conser­
vation of energy equations must be negligible 
outside of the shock layers. 

(4) The Rankine-Hugoniot jump conditions must 
hold when all other dimensions characterizing 
the flow are large compared to the shock 
thickness. 

The form of Q used in the problem solved in this thesis is 

patterned after the one recommended by Richtmyer (26), and is 

basically the same as the term used by Brode (27) in his solution 

of a spherical shock wave. 

(12) 
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where K1 i.s a constant with length dimensions; K1 = a Ar and a is 

a constant • 

. It is known that the thickness of the shock zone is 

proportional to the coefficient of the dissipative mechanism (25) 

an.d therefore it is possible to control the width of the shock 

wave by choosing the value of K1• 

Dimensionless Differential Equations 

For the computer solution of the Lagrangian differential 

equations, ''it is desirable to reduce the variables to dimensionless 

parameters to aid in numerical computations. Brode (27) devised 

a method which accomplishes this conversion and reduces the number 

of parameters in the equations by one. The pressure, p, density, P, 

and velocity, u, can be expressed in units of the initial P!essure, 

P0 , initial density, Brode chose to let 
' . 

the length variable be expressed in terms of a length e which is a 

ratio of the total energy and ambient. pressure, P. 
0 

where Etotal is the total energy involved in the shock wave and 

P0 is the pressure ahead of the shock wave. 

(13) 

F~r the problem solved in this thesis it is not necessary to 

restrict e in the above manner and its value is arbitrarily chosen 

to scale the dimensions of the problem to a s:tze convenient for 

machine solution. 

41 



The value of the Eulerian variable R(r,t) will be expressed as 

follows: 

A= R(r,t) 
e and 

where i\ is the dime'nsionless Eulerian parameter at time= t, and 

i\ is the dimensionless Eulerian parameter at time= O. The 
0 

dimensionless parameter for tim~, T, is expressed as, 

where C is a constant velocity chosen to scale the problem for 
0 

machine solution. 

The dimensionless parameter representing the Lagrangian 

coordi~ate r can be expressed as, 

xd = Kf)3 

This form is chosen to permit the Lagrangian coordiante to be 

eliminated from the numerical calculation of the solution. 

Using the defined parameters, the dimensionless form of the 

necessary equations may be written, 

(14) 

(15) 

(16) 
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(17) 
Conservation of Mass 

OU -= oT 

oi\ 
u = Fi= 

(18) 
Cons.ervation of Momentum 

(19) 
Velocity 



and 

(20) 

where /J:. xd is the increment of xd to be used in numerical compulation. 

The partial of the energy with respect to time, ~ , can be 

taken for the equation of state and eliminated between the equation 

of state and the conservation of energy. This will permit solution 

of the flow equations without solving for the internal energy. 

If this is done, the following equation results: 

(21) 

It is possible to combine the velocity equation and the 

conservation of mass equation in the following manner: 

Take the partial derivative of u with respect to 

xd from the velocity equation. 

(22a) 

1 
Take the partial der.ivati'iTe of ~with respect to 

~ from the conservation of mass equation, 

= (22b) 
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Using these two equations, it is possible to eliminate 

and solve for 

such that, 

(23) 

This is the form in which the conservation of mass will be used. 

With the equations in the proper differential form, it is 

necessary to convert them to difference equations. The next 

section will deal with the method of differencing the equations 

and the form of the difference equations to permit a stepwise 

numerical solution. 

Method of Finite Differences 

If the hydrodynamic differential equations are to be 

solved numerically, it is necessary to convert them to finite 

difference equations .. The accuracy of the solution is dependent 

upon the method used to difference the equations. 

To indicate the manner in which eguatiofis are differenced, 

consider a function f =f(x,t). The change in this function with 



time can be computed as follows: 

Let time increase by a small increment At. The 

change in the function is, 

Af(x,t) = f(x,t + At) - f(x,t) 

This difference is defined as a forward difference. 

A backward difference is defined as, 

Af(x,t) = f(x,t) - f(x,t - At) 

(24) 

(25) 

Although both forward and backward differences yield approximate 

solutions for the change in a function, they are not the most 

accurate finite differences that can be used. Wherever possible, 

central, differences are used to represent the change in a functio-q. 

because the approximation to the true solution is more accurate. 

Forward and backward differences are most generally used at the 

boundaries of a problem where central differences will not give 

an answer. The central difference is defined as, 

6l(x,t) = f(x,t + i) - f(x,t - ib.t) (26) 

where 6t is'the central difference operator and the difference 

is taken about the time, t. 

Still considering the function f(x,t), let tix. and At be 
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increments of the variables x and t. A rectangular nE:t! or grid, 

for the x and t plane is defined as the set of points x = L fl x 

and t= nA t 

where L = 1, 2, 3 ••••• Lfinal 

and n = 1, 2, 3 ••••••• nfinal 

The function f(x,t) can be represented at any point in the net as, 

n-i f(LAx, nAt) = fL 

The value of the function at intermediate points in the net is 

written as, 

(27) 

t(1[LAx + (L .. l)Ax], i[n6t + (n - l)AtJ) = f~:t (28) 

It is possible, therefore, to denote the use of a central difference 

to replace a partial derivative of f(x,t) in an equation as 

follows, 

of ex. t) ot = 

The increments int and x must be small in order for the finite 

difference to approach the true value of the partial derivative. 

Thus when choosing Ax and At, one must choose between accuracy 

of the solution and feasibility of taking the time to solve the 

problem being considered with a very fine net. 

With this brief introduction to finite differences the 

author will cite several references to methods of solving 

differential equations by finite differences. The equations 

(29) 
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pertinate to the present problem will then be differenced. R. D. 

Richtmyer (19) gives a fairly complete discussion of solving 

initial value problems by difference methods. There are numerous 

other works of interest (28, 29, 30, 31). 

Difference Equations 

The difference equations given in this section are similar 

to those used by Brode (27) in his solution of a spherical blast 

wave, but differ from his exact equations in that his solution was 

for a Gamma-Law gas which utilized an ideal gas equation of state. 

The differential equation of conservation of momentum, 

equation (18), can be a centrally differenced about the time 

point n6'T and the space point L =Xa as follows, 

It maybe noted that all variables except Qin the above 

equation are properly centered. Richtmyer (33), indicates that it 

is not worthwhile to rewrite this equation to center Q and, in fact, 

doing so might cause instabilities to arise in the numerical 

solution. 

The velocity equation, (19), is differenced about the time 

point ( n + ! ) b.r and the space point Lb. x. 

(31) 
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4.8 

The conservation mass equation, (23), is differenced about the 

time point ( n +!) 6:r and the space point (L .. t) ().x. 

Pn+l n 
L-ft - PL-i 

6T = -

Pn+l + pn 
L-j L-i 

2 

This equation can be simplified to the form, 

or 

(32) 

(33a) 

(33b) 



where 

un+i. un+i j 
+ L L•l 

,n+l +An_ ,n-1 _ ',n 
AL L AL-1 AL-1 

The pseudo-viscosity equation, (21), used for this treatment 

may be differenced as follows, 

(34) 

The dissipative term written in this manner is unrestricted. 

That is, negative val~es of Qare allowed. It is suggested by some 

advocates of the pseud~.'."'viecosi ty method ( 19, 27) that the value 

of Q should be set equal to zero outside of the shock zone in 

order to aid the numerical solution of the hydrodynamic variable 

where the supporting material is undergoing expansion. The form 

of' Q in eq uatfon (]4), however, is the form s.u~ested by von 

Neumann and Richtmyer in their original work proposing the pseudo-

viscosity method. · · 

The method of eliminating the internal energy from the 

solution of the differential equation sug~ested previously 

49 



50 

requires rigorous algebraic manipulation to convert the difference 

equation to a form that will permit a stepwise numerical . 

solution of the hydrodynamic equationse To initiate this treatment, 

consider equation (21), 

If the indicated differentiation is carried out, the following 

equation may be obtained, 

(35) 

where Z = 'YP 

This may be converted to the form, 

2pg..e. zpaoP + pa~ = plilp oz _ zaQ.Q.E. _ a c!Ph p2z2 oeh 
Z oT - · oT OT hoT clT Zp ~ + oT <36 ) 

It is desirable to difference this equation about the time 
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point n +} and the space point L ... }. 

jpn+l n] 2 

= ~L-!: PL-~ . 

~
n+l + 2n ~ _ L-,; L-f 

2 

Pn.+l + pn ~ 2 

L- L-
• 2 • 

~
n+l + 2n ~·. 2 

L-i L-t . 
·. 2 

(37) 



This rather involved equation is even further complicated when, 

for purposes of computation, the.polynomial form of Pb, Eh, and y 

from Chapter III are substituted. For Equation (37) to be of 

aid in the simultaneous solution of the system of hydrodynamic 

flow equations on the digital computer, it must be arranged in 

the form, 

H(6)[ 2(H(4) 11 H(l) - H(3) • H(2) .. H(l) 

• H(6) 

+ H(6) (H(l)+H(2)}1
• H(S) • (H(l)+H(2)}

1 .(p~~1-p~­
(H(l) + H(2)), (P~~i • p~-~ • 2H(2) • H(6) 

(38) 
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where 

H(l) = zn+l = pn+lf V + A n+l + ../ n+f\a + ,./', n+f,a] L•! L-il. o ~-! °'-.~-j) '"\...~-i) 

H(3) • p n+l • A n+l + .,/ if:+pa + cG- n+rf 
. h 1 ~-.l.. D\..~-L- ~-i) L-~ ~ . 

· · n n ,..(. n _ ~ ( n · _ "\3 

B(4) • pht·i •-A~-1 + D\.JJ.r.-,J + C\.~-i) 

H(S) • ~eh • eh JI n+l n) 
L·i L· 

wher!I IIJo • (p - 1) in the dimensionless form. 
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n+l ( B) To shorten the notation, the value of P1 1 from Equation 3 will 
"'2 

be denoted as, 

(39) 

The differenced equations must now be arranged in a fashion that 

will·permit a stepwise numerical solution. Equations (30), (31), 
I;, 

(33), and (38) may be written in the following form: 

(40a) 

,n+l • ')..n + ~T n+l 
~I, L µ.L (40b) 

(40c) 

(40c) 

(40e) 



If boundary and initial values of all the variables are known before 

and including time t:;: n6 T , the above set of equations when solved 

in the order that they appear, will permit a stepw:!.se solution 

for the flow velocity, density, and pressure. 

For actual machine computation the difference equations must 

be written in a language which can be puncted on IBM cards and 

accepted by the IBM 650 digital computer. This conversion, along 

with the machine logic to solve the equations, will be considered 

in the next chapter. 
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CHAPTER V 

DEVELOPMENT OF COMPUTER PROGRAM 

The IBM 650, digital computer for solving the problem in 

this thesis is very limited in storage capacity. The computer 

memory consists of 2000 words of drum storage and 60 words of 

core (immediate acces,) storage. This small memory seriously 

limits the size and type of shock-problem that can be solved. 

The problem for the propagation of a spherical shock may be solved 

provided.the computer program is written in the shortest possible 

·manner. The short program will leave sufficient storage in the 

computer for a space-time net that is large enough to permit a 

numerical approximation of the proposed problem. 

The program will be written in 650 FORTRAN (an automatic 

coding system for the IBM. 650 which e..llows the user to write 

programs for the 650 without having a working knowledge of the 

computer). Use of the FORTRAN system consists of the following 

steps: 

1. The logic and equations are written in FORTRAN 
(FORmula TRANslator). 

2. The FORTRAN statements are processed by a 650 
program called t.he FORTRAN compiler, ,:,r FORTRAN 
phase I, which·accepts FORTRAN statements and 
compiles 650 instructions in SOAP II (Symbolic 
Optimal Assembly Program) language. 

· 3. The SOAP II program is next processed by an 



assembler program called FORTRAN Phase II, 
which is a modified •r,,,,,...sion of a 80A'P II 
assembler, that produces an optim:i,zed 
machine language program (Object Deck) from 
the symbolic instructions. 

The machine language program produced by the FORTRAN, Phase II 

compiler is the final result of the compiling process. The Object 

Deck contains FORTRAN subroutines (special programs contained in 

the FORTRAN compiler) and the original FORTRAN program in a format 

that is acceptable to the computer for data processing. 

Development of Machine Logic 

In order that the difference equations may be solved by the 

650, a logic must be developed which will permit the computer to 

accept the equations and solve them in a logical order. This logic 

can best be presented in the form of a flow diagram, Figure (4)~ 

The solution of the set of simultaneous difference equations 

as they appear in Equations 4oa.--..40e in Chapter IV requires that 

each of the variables, u, p, \, Q, and P, be contained in the 650 

memory at the same time for each space net point at two different 

time points, say n b:r and ( n+l) b:r With this information in 

the computer memory, it is possible to solve for the value of 

each of the variables for each net point at the time (n+l)tiT 

from the initial value of the variable at the time ntiT. 

The computations are carried out in the indicated order, 

Equation 40 through 40. After the computation, the flow diagram a e 

shows that the new values for the variables at the time (n+l) 6T 

replace the initial values so another set of variables may be 
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computed at the next step in time. 

The variables are computed at every net point except the f-irst 

by the difference equations. The value of the variables at the 

first net point must be stipulated by boundary conditions which will 

be discussed in Chapter VI. 

Since computer storage is limited, it is impossible to place 

a sufficiently large net in the 650 storage to permit an initial 

shock profile to propagate through the net until the solution is 

obtained. The shock quickly fills the available net; there~ore, it 

is necessary to devise a method to increase the size of the net, 

periodically, in order to follow the shock as it propagates through 

the material. 

The method devised to keep up with increase in size of the 

problem is to permit the shock to move from the center to the end 

of t.he net and then to double the size of the space increments. 
' 

.This returns the shock to about the center of the available 

net spaces. The principle ree.,son for choosing tnis particular 

method is that it permits the time increment to be increased 

without adding instabilities to the solution. This decreases 

the computer time that is necessary to obtain a final solution. 

FORTRAN Equations 

Once the logic is determined, it is necessary to convert the 

logic and the equations to FORTRAN statements. The logic steps 

are indicated in Figure (4) and expressed in FORTRAN language in 

Figure (5). 
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Although the FORTRAN system gave a complete SOAP II program, the 

size of the resulting program was too large for the available 

memory in tbe IBM 650 computer. Alterations in the SOAP program were 

made which reduced the information necessary to be stored in the 

memory. By changing the program in this manner, the SOAP program 

was sufficiently reduced so a net of 65 space points was available 

for two different instants in time for each of the five variables. 

It was found more convenient to make all minor changes in the 

.overall program in the SOAP deck. 
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CHAPTER VI 

INITIAL VALUES, BOUND.ARY CONDITIONS, AND SOLUTIONS 

The set of difference equations, 40a through 40e, given in 

Chapter IV have sufficient versatility to yield an exact solution 

of shock wave propagation for any arbitrary set of initial values 

and boundary conditions. If the exact mechanisms of micrometeoroid 

impact were kpown, the propagation of the associated shock wave 

could be readily solved. This is not the case; and consequently, 

initial values must be derived and boundary conditions assumed 

that will give an acceptable approximation to the true problem. 

Initial Values 

Initial values were chosen for the present treatment of 

micrometeoroid impact with two criteria in mind. First, initial 

conditions must be chosen so the problem to be solved will remain 

sufficiently simple for solution on the available IBM 650 

digital computer. The second criteria, certainly no less 

important than the first, is that the chosen initial conditions 

must be an acceptable approximation of actual conditions that 

exist during micrometeoroid impact. 

The mode~ of impact chosen for the present problem is 

· illustrated in Figure (6). It is assumed that a nickel~iron 

(density equal 8 gm/cm3) micrometeoroid traveling with a velocity 
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of 36 kilometers per second impacts on a semi-infinite aluminum 

(density equal 2.70 gm/cm3 ) target. The simplifying assumption 

is made that the spherical micrometeoroid is incompressible and 

enters the target by compressing a hemispherical shell of the 

target material ahead of i_t. This is illustrated in Figure (6a). 

A ~urther simplifying assumption is that the pressure, density, 

and material velocity are constant in the compressed region at the 

instant illustrated. The pressure at the front of the compressed 

region drops sharply but not instantly. This is indicated in 

Figure (6b). The machine solution starts at the instant when the 

micronieteoroid has penetrated one-half of its diameter (3.1x10·4cm) 

into the target. 

These assumptions, combined wi_th Rankine-Hugoniot conditions 

across the shock, and equations expresljl_ing conservation of 

momentum and energy between the micrometeoroid and target, allow 

calculations of the values of pressure, density, material velocity 

and dimensions of the compressed zone. An iterative method derived 

by'Mr. J. G. Ables for making these calculations is given in 

Appendix D. The values for the material in the compressed zone of 

the target were determined by these calculations for impact by 

the micrometeoroid at 36 Km/second and are: 

Pressure 14. l Megabars 

Velocity 17 Km/second 

' Density 6.7 gm/cm3 

Shock Radius -4 3.5xl0 cm 

The initial values for the problem are not the conditions that 
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truly exist for micrometeoroid impact. They are believed to 

approximate the true conditions sufficiently to indicate the order 

of magnitude of the true solution. This approximation is required 

to postulate conditions for more complex .and mor:e correct models 

of the.impact. 

Boundary Conditions 

- Boundary conditions for the problem of micrometeoroid impact 

must-be in the form of one of· the variables P, or u, at the micro­

meteoroid interface. To solve the set of equations 40a through 

4de in the. order indicated, the flow velocity, u, of the interface 

must be specified for any time, t. For actual micrometeoroid 

impact, the interface velocity will .vary with time, decreasing as. 

time increases. The boun(l.ary condition chosen for this order of 

magnitude problem is. that the interface velocity equals zero after 

the instant that d.s illustrated in Figure (6a). This assumption 

is- made for two reasons. First, it is nece.ssary to choose a simple 

condition that permits the problem to be solved on the IBM 650. 

·. Second, this first approximation solution assumes no energy is 

transmitted to the target materiai by the micrometeoroid after 

time zero for the machine solution. The assumption of a rigid 

wall with zero velocity meets these requirements. 

Parameters Chosen for Solution 

The dimensionless parameters :for this problem were chosen 

to give a convenient scaling for machine computations.· Values of 



P0 , p0 , and e were arbitrarily chosen to scale the initial values of 

pressure, density, flow velocity, time and Eulerian radius to the 

number range 1 to 104• This range, being well centered in the 

10-50 to 1050 range for the IBM 650·, permits the problem to be 

solved without causing the machine to "overflow" (exceed the possible 

number range of the computer). 

The values selected are, 

e a 5.49xl0-5 cm 

P = 1000 Kilobar 
0 

p = 2. 7 gm/cm3 
0 

4 
C = 3. 2xl0 cm/sec 

0 

From these values it is possible to compute the actual time 

increment, tit, from the dimensional increment l>.T as, 

The choice of values for increments of /lT , and I>. xd must be made 

from stability consideration. 

Stability Conditions 

The stability of the solution obtained by machine computation 

is dependent upon the net velocity and the size of the constant, 

2 
a, used in the dissapative term. The net velocity must meet the 

Courant-Friedrichs-Lewy condition (34) that: 
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i~ ~ the velocity of sound in the media. 

Brode (27) shows that this condition reduces to 

/>.T < 
/lxd 

(1) 



for the dimensionless equation. 

To keep the solution stable for this particular problem, 

it was found necessary to keep 6T below one-half of the value 

that is indicated by the Courant conditon. 

The constant a2 was obtained experimentally on the computer 

by trying several values in the problem. It was found that the 

solution would remain stable and the shock front would cover only 

2 or 3 space nets if the value ~ • 2 was used. Larger values 

caused the shock to spread out too much and smaller value caused 

instabilities to arise. 

The Solutions 

Shock wave pressure profiles are presented in Figures 

(7), (8), (9), and (10). The pressure is presented as a function 

of th~ radial distance from the point of impact and the scale 

in the figures is changed as time increases to allow a clearer 

presentation of the data. The initial shock pressure of 14.l 

megabars drops to 1.7 megabars in 3x1o·lO seconds and finally to 

-10 below 0.5 megabars at time 9.2xl0 seconds after time zero. The 

machine solution was carried to the time that the shock pressure 

was ~sustunder 0.5 megabars. 

·"The now velocities corresponding to the pressure profiles 

are presented in Figures (11), (12), (13), and (14). It is noted 

in Figure (12) that the velocity of the material in the immediate 

vicinity of the micrometeoroid,target interface is negative, 

indicating that the material is flowing back toward the micro-
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meteoroid. This condition existed for a very short time and then 

reversed in sign as is shown in Figure (12b), indicating that the 

material is again flowing radially outward from the point of 

impact. 

Profiles of relative density corresponding to the pressure 

and velocity solutions are presented in Figures (15), (16), (17), 

and (18). The term relative is the density behind the shock 

front, relative to that of the undisturbed material ahead of the 

shock. It is noted that the density behind the shock wave drops 

to a value less than its original value. This is to be expected 

since one of the assumptions governing hydrodynamic flow given in 

Ch!'i:pter IV is that flow is adiabatic behind the shock. The 

co~pression-expansion cycle of the aluminum target can be explained 

with the aid of Figure ( 19), a plot of adiabats crossing the 

Hugoniot at various pressure levels. 

· The material undergoing shock is raised to the peak pressure 

of the shock wave along the locus of pressure-volume points 

described by the Hugoniot Relation. After the shock wave moves 

.forward, the material starts to expand adiabatically. Thus the 

material drops towards its original pressure along the adiabat 

whfch intersects the Hugoniot Curve at the peak pressure of the 

shock wave. It is noted from Figure ( 17) that adiabats inter­

secting the Hugoniot at relatively high pressures will not inter­

sect the relative specific volume axis until V/V0 >l or p / p0 <1. 

Therefore the material that has undergone shock compression drops 

to a relative density of less than unity. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The solution for the propagation of a spherical shock wave 

into a semi-infinite solid has been obtained in this thesis. A 

method was employed that was developed and proved for the solution 

of shock waves in gases or fluids. The equations and the computer 

program are sufficiently versatile to solve any spherical shock with 

arbitrary initial and boundary conditons. This particular problem 

was simplified to permit solution on a computer with a limited 

memory. -while it is realized that this simplified version is 

only an order of magnitude approximation to the true impact 

problem, the solution of such a problem is required to provide 

the basis for better assumptions which are necessary to treat more 

complex problems on a larger, faster digital computer. This first 

approximation permits parameters, such as the coefficient of the 

dissipative mechanism and the space-time net, to be determined 

for the dimensions that are involved in the solution of micro­

meteoroid impact. The machine solution has been followed until 

the peak pressure of the shock wave is only 3.5% of the initiai value. 

Recommendations for Future Work 

The next logical step in the study of the shock wave 

associated with micrometeoroid impact could be the solution of a 
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two dimensional shock propagating into a layered media. This 

problem will probably require that the hydrodynamic equations be 

solved in the Eulerian form on a digital computer somewhat larger 

and faster than the IBM 6500 Also, the problem should include 

the development of initial conditions and boundary conditions 

that more correctly describe the mechanisms of impact than those 

used for the first approximation which is solved in this thesis. 
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APPENDIX A 

IMPACT THEORY 

In a recently publisheQ article in the Scientific American (35), 
. ·\ 

it is shown that the depth of penetration of a projectile imp'ingirl.g,_; 

on the surface of a block of material varies in a strange manner. 

In Figure (20) the ~ariation in depth of penetration with velocity 

is shown for a tungsten carbide pellet which impinges on a lead 

block. The curve can be divided into three regions with respect 

to the velocity. In the first region, the depth of penetration 

increases linearly with an increase in velocity. The projectile 

remains unbroken in this region and the penetration is believed 

to result from a shear mechanism. In the second region, la.bled 

the transition region, a phenomena other than shearing starts 

to take place. The depth of penetration now varies more slowly 

with a change in velocity. In the third region, labeled fluid 

impact, the penetration is a cratering phenomena. That is, the 

hole· that is left in the material is a crater of nearly herni .. 

s11herical shape. 

'·It is the third region that is of the most interest for 

micrometeoroid impact. 

Thermal Damage Theory 

Some have proposed that penetration in the fluid region can 
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be explained by a thermal damage theory (2). This theory predicts 

that the mechanisms of impact produce sufficient energy density to 

vaporize the projectile and target material. Production of light 

observed upon impact is attributed to incandescence of the target 

material. 

The thermal damage model is not accepted entirely in this 

thesis for the following reasons. First, it is known from 

experiment that when the phenomena of cratering starts to take 

place, the projectile no longer retains a form that resembles its 

original shape. The crater that is produced is found to be lined 

with the projectile material. The thermal model, however, does 

not offer any explanation for this lining effect. Conversely, it 

would seem that when the target material was converted to a 

vapor, the projectile material should also be converted to a 

vapor and the explosion of the hot vapor into its surroundings 

should throw the projectile material out of the crater. 

A second reason for not accepting the entire thermal damage 

model is suggested from examinations of a limited amount of high 

velocity impact data (1). An investigation was made of the volume 

of the crater in an aluminum target. The total kinetic energy 

per unit mass of the projectile was computed and plotted against 

the energy necessary to heat the mass of aluminum that would 

fill the equivalent volume of the crater from room temperature 

to the melting point of aluminum. It can be seen from Figure(21) 

that at the highest projectile energy observed it would take 

70 per cent of the input energy simply to heat and melt the 

volume of aluminum that is removed from the crater. This assumes 
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that no energy goes into melting the projectile. Therefore, very 

little energy is left to be radiated and none to supply the latent 

heat to va~orize a substantial part of the material. Also, the 

volume removed would take more of the kinetic energy if it were to 

be converted to a high density vapor. It is also shown in Figure 

(2~ that at velocities that are barely in the cratering velocity 

region it takes at least 50 per cent of the impact energy to melt 

the equivalent volume of aluminum. This investigation is substan­

tiated by a picture in the Scientific American article by Charters 

(35). Here the volume of the cavity in copper was measured by 

the scaling given in the picture and the measurements reveal that 

50 per cent of the projectile energy is necessary to heat and 

melt the crater volume of copper in the crater. Since such an 

appreciable amount of the incident energy is necessary to melt 

the material in the crater it seems that a more plausiable 

explanation of the impact phenomena must be offered. Another 

possible mechanism of impact that bas been given consideration 

is the hydrodynamic model. 

Hydrodynamic Model of Impact 

The hydrodynamic model of ultra-high velocity impact 

· suggests that the penetration of the projectile into the target 

is much the same as one fluid penetrating another. That is, the 

target and projectile under the tremendous forces of impact become 

plastic and the plastic projectile penetrates the plastic target. 

The hemispherical shape of the crater is attributed to a strong 

radial shock accompanying penetration. 
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The most apparent failure of the hydrodynamic model is that 

it does not include a mechanism for the production of light. An 
; 

acceptable model~ include a radiation mechanism. 

This model also fails to predict other observed phenomena. 

To successfully explain the projectile material being evenly 

distributed over the crater surface, it would be necessary for 

the plastic projectile material to be held together by some type 

of force such as a surface tension. For this problem, the forces 

involved are much greater than any known cohesive forces. 

Calculations for the typical micr.ometeoroid with a velocity of 

36 kilometers per second indicate that the energy involved would 

correspond to an iron "gas" ion with each atom having an energy of 

376 electron-volts (36). There are no known cohesive forces which 

differentiate between materials with a value of the energy as 

great as two per cent of this energy. Finally, the hydrodynamic 

model does not predict a change in penetration phenomena for 

increase in projectile velocity as is depicted in Figure (20). 

Failure of the thermal damage and hydrodynamic models to 

account for all of the observed phenomena associated with ultra-

high velocity impact makes necessary the proposal of still another 

impact model. 

Proposed Plasma Impact Model 

- The model of impact proposed by this study group differs from 

other proposed models most radically in the mechanism of the 

projectile material penetration. After the initial contact of the 

micrometeoroid and the target, the pressure for a very short time 

will have a tremendous magnitude. Under these tremendous forces 
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it will be impossible for the projectile and target material to 

remain in their crystaline form. The two materials are probably 

converted to plasmas (a mixture of ioms and electrons) when the 

impact pressure reaches approximately 100,000 atmosphere (3). The 

pentttratiom mechanism for this model can be described as the 

inte.ractio'n of twQ dissimilar plasmas, vi th one penetrating 

the other. The plaf!DII. from the meteoroid will flow through the 

plasma of the target material. It is also proposed that a radial 

shock wave would account for the nearly hemispherical shape of the 

crater that iii formed by the impact of an ultra-high velocity 

projectile. It may be noted at this point that the proposed 

mc,del partially agrees w:l.tb the assumptions made in botb the 

thermal da.mage and hydrodynamic motilels of impact. The.plasma 

model includes a radial shock which was assumed to. accompany the 

hydrodynamic model and it al.!IO assumes that the material in. the 

immediate vicinity of impact has a high energy density as does 

the thermal model. It differa from the thermal damage model in 

that for thermal damage, the high energy density is in the form 

of a high temperature; whereas, for the plasma model more of the 

energy is in the form of recoverable potential energy. 

It is readily seen that radi~tion from the thermal damage 

model will be of a different form than that of th, plasma model. 

The thermal damage model must radiate black-body radiation which 

is a continuous spectrum. A plasma would emit radiation in lines 

wh!ch may be broadened by associated microfields. The light that 

would be emitted by am aluminum plasma would be in the far ultra-
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violet and extend into the visiblEt. Therefore, far ultra-violet 

spectrometry of radiation produced by high-velocity impact will 

yield an experimental check of the existance of plasma. 



APPENDIX B 

TEE MIE-GRUNEISEN EQUATION OF STATE 

The Mie-Gruneisen equation of state can be derived from 

consideration of the total energy of a fluid of interest (11). 

Assume that the thermal energy of a fluid can be described by a 

set of simple harmonic oscillators whose frequencies are va • 

The internal energy may be expressed as follows, 

3N 3N h 

E = 1 + ll hva + l exp[h::7KT] 
or-1 Q'ISl . 

- 1 
(1) 

a• 1,2,•••3N 

where K is Bol tzman' s constant, h is Planck's constant, N is 

the number of atoms and the summation is made over the 3N normal 

modes·. The symbol I represents the potential energy ,of the fluid 

with the atoms in a state of equilibrium. The Helmholtz free 

energy for this model is, 

3N 3N 

A • t + l thv01 + KTL ln(l-exp[-hu01/KT]) (2) 

a-1 a-1 

Recalling that the pressure is equal to the partial derivative 

of the Helmholtz free energy with respect to the volume M for a 

constant temperature, the :pressure for this model may be written: 

· 3N 
.. di 1 ,· . r hva J 

·.P .= - dV + V L 'V~'lhua + exp[hv !KT] - 1 
a-1 a 

(3) 
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where y is defined as, 
Ol 

d(lnu) .... a 
'Y. • -

Ol d(lnV) 

At this point the approximation is made that all 'Vr/s are 

equal. Then equation (3) can be rewritten in the form., 
I 

3N 
• - i! l\' huOl 

P dV + v L Pa+ exp[hua,/K'!J 
. ... a-1 

dt l . 
- 1 • dV + v evib (4) 

where e'vib is the vibrational energy of the fluid and the 

assumption is made that Gruneisen's Ratio., y (V), is a :function o:f' 
. \ : : 

the volume only. The terms in equation (4) can be rearranged into 

t~e :following form, 

' 
I:f' the temperature., T, in equation (3) is allowed to approach 

zero, it is Sef.!n that the pressure along the zero degree isotherm 

may be.expressed as, 
3N 

dt ::t \" 
Pk • ~ dV +:v L [ihua] 

a=l 

The right side o~ eq~ation (5) is equal to i times the thermal 

contribution o:f' the internal energy so that it may be rewritten: 

p - p • lee - e) 
k V k 

where Pk and ek are the pressure and internal energy along the 

zero degree isotherm. 

(6) 

(7) 

This is one form of the Mie-Gruneisen equation o:f' state. It 



can be written in terms of any P, V, and e curve so that in terms 

of the Hugoniot curve, equation (7) can be written 

P - P • ~ (e - ek) h V (8) 

Since a P, V, e equation of state is desired, th~ pressure 

and the intern.al energy along the Hugoniot must be expressed as 

functions of the specific volume for equation (7) to be in the 

proper form. Rice, et.ai.,· (11) obtained an experimental 

Hugoniot curve.for aluminum by a method discussed in Appendix c. 

They fit a cubic polynomial to their experimental Hugoniot data 

for which the pressure along the Hugoniot equals a function of 

the volume, which is 

Remembering the Hugoniot relation, equation (18) from Chapter II, 

eh - e • i(Ph + P) • (V - Vh) 0 0 o. 

_where P0 , v0 , and e0 are the pressure, specific volume and specific 

internal energy ahead of the shock front and Pb, Vb, and eh are the 

pressure, specific volume, and specific internal energy behind the 

shock. This relation may be rewritten in the form 

By considering Pb,•~ (V), the internal energy along the 

Hugoniot, eh, is a function of the volume., eh •eh (V). 

(9) 
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Thus equation (8) can be rewritten, 

The Mie-Gruneisen equation in this form is a complete P, e, V 

equation of state. It is applicable to the prel5!_s_µre range over 

which the Hugoniot is known as a function of the volume, within 

the bounds of the approximation that Gruneisen's Ratio may be 

approximated by a function of only one variable, the volume. 

The Gruneisen Ratio 

The approximation for Gruneisen' s Ratio, y , that is used in 

this treatment of the equation of state is the Dugdale-MacDonald 
. '· 

relation: 

'V = 

The justification of the approximations is supported by work of 

McQueen, e.t.al,., (,11). 

For the present treatment of a high pressure equation of 

(10) 

(11) 

state, -it is possible to consider the pressure ahead of the shock 

equal to zero since 



Using this approximation, equation (7) may be rewritten, 

since 

By considering''tbe .pressure and specific internal energy along the 

Rugoniot, equation (7l'may be rewritten, 

(12) 

and y may be expres~ed in the following relation 

(13) 

It is seen from equation (13) ·that y can be solved for any value 
' ' 

of the variable, v, if' the values of Ph and Pk are k)lown functions 

of the volume. , · 

It shouid be observed at this point that there is not ,S~~d 

agreement in the literature on the value of y at high pressure. 

It is fortunate however, .that errors up to 25% in y lead to 

uncertainties that are no larger than those introduced by considering 

experimental curves of the Hugoniot (37). 
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APPENDIX C 

EXPERIMENTAL HUGONIOT 

The method described in this appendix for determining the 

pressure-compression curves for solids depends upon the measure-

ment of two variableso These two variables, the free surface 

velocity of a plate supporting a shock wave and the shock velocity 

in the plate, have been measured by a method (10) devised by 

J.M. Walsh and associates. 

Two methods are used to convert the measured velocities to 

pressure-compression points.. Both depend on the fa,~nkine-Hugoniot 

,jump conditions that express the conservation of m~ss and the 

conservation of momentum. These two equations may be written in. 

the form, 

(1) Y, • (U - U )/U 
V0 s p s 

(2) P • p U U + P 
0 S p 0 

Conservation of Mass 

Conservatio~ of Momentum 

Here V and Pare the pressure and the specific volume behind 

the shock wave, P0 , V0 , p0 are the pressure, specific volume, and 

the density ahead of the shock wave .. U8 , UP are the velocity of the 

shock wave and of the particle velocity behind the shock wave. 

The first method of determining the pressure-compression 
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points depends upon an approximation of the free surface velocity. 

The measured free surface velocity is due to two factors. It is 

due in part to the particle velocity, Up' behind theshock wave and 

it is due in part to a rarefacation wave with a velocity, U, which 
r 

relieves the pressure at the free surface. The approximation is 
u 

r 
made that ·:U'· • 1. This approximation can be used with the 

p 

equation that the free surface velocity, Ufs' equals the sum of 

the particle velocity, UP' and the rarefacation wave velocity, 

Ur' to show the particle velocity is approximately equal to one­

half the measured free surface velocity. Then with the measured 

free surface velocity, the measured shock velocity, and equations 

(1) and (2), it is possible to directly compute the volume ratio, 

V 
v 0 , and the pressure P for a givenshockwave. Thus by varying 

the strength of thesbockwave, it is possible to plot a Hugoniot 

pressure-compression curve. 

· The second method for converting shock velocity to pressure-

compression data is a graphical method which uses a graph of the 

pressure versus particle velocity and equation (2) to find the 

pressure and particle velocity. The particle velocity and the 

measured shock velocity are then used with equation (1) to find 

the V v_olume ratio, -··• 
. Vo 

The data that _is obtained by either of these two methods 

is analytically fit to an equation of the following form: 

(3) 

101 



Where Ph represents pressure on the Hugoniot curve and 

Here p and p0 are the densities 
behind and in front of the 
shock respectively, and 

A, B, and Care constant determined by the shape of 
the experimental Hugoniot. 

The constants for 24ST aluminum were determined by Rice, 

et.al., and they are, 

A =765, B =1659, and C •428 

for the pressure, Ph, in kilobars. The data obtained for 24ST 

aluminum are illustrated in Figure (22). In this figure, the 

experimental Hugoniot is plotted. In addition, the bounding 

zero degree isotherm, and the adibats that cross the bottom and 

the top of the Hugoniot are plotted. Walsh, et.al., did not 

extend their data below 100 kilobar. However, the isotherms for 

aluminum below 100 kilobar was experimentally determined by 

l3ridgemann, (38) and the analytical fit by Walsh of Ph includes 

data points determined by him. 

From the Hugoniot relation, 

it is possible to write an expression for the specific internal 

energy along the Hugoniot in terms of the specific volume. Assume 

that the pressure ahead of the shock wave, P , to be zero, then 
0 

the internal energy expression may be written as follows, 

• Aµ2 + Bu~ + Cu.4 
eo · 2p (µ. + 1) 

0 

e -h 
(4) 

This form of the Hugoniot is used in the Mie-Gruneisen equation of 

state for the problem solved in this thesis. 
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APPENDIX D 

CALCULATION OF INITIAL VALUES 

This appendix will set forth the iterative method derived 

by Mr. J. G. Ables for calculation of initial values which exist 

for the model of imvact described in Chapter VI. The method is 

derived from the following condit~ons and equations: 

1. Conservation of momentum between the micro­
meteoroid and target material. 

2. Conservation of energy between the micro­
meteoroid and target ma-t;,erial.~ 

3. The Rankirie-Hugoniot conditions. 

4. The Hugoniot curve, Ph • Aµ.+Bµ. 2+ cµ.3 

The assumptions that are made for this derivation are, 

1. 

2. 

3. 

4. 

6. 

The mic4ometeoroid is9a sphere of diameter, 
6.2x10· cm.; mags,10- gram; density 8.o;and 
velocity 3.6xlO cm/sec. 

The micrometeoroid is perfectly rigid and has 
penetrated one-palf Jf its diameter into the 
target. 

Impact produces a strong radial shock in 
the aluminum which has a hemispherical front 
centered on the point of contact. 

The values of the pressure, density, and flow 
velocity between the interface and the shock 
front are constant. 

The kinetic energy, potential energy, and 
pressure in f!on~ of t?e shock are zero. 

The flow of aluminum behind the shock front is 
radially outward from the point ·of initial contact. 
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Symbols that are used in the derivation are defined as follows, 

follows,. 

V •Specific volume of the compressed target material. 

V0 •Initial specific volume of the target material. 

Pb =Hugoniot pressure. 

E •Total.kinetic and potential energy of the 
compressed material. 

E0 =Total kinetic energy of the micrometeoroid 
before impact. 

ET •Kinetic energy of the compressed target material. 

Er =Kinetic energy of the micrometeoroid after it has 
penetrated a depth of one-half o'f its diameter 
into the target. 

V0 =Initial velocity of micrometeoroid before 
impact. 

Vr =Residual velocity of the micrometeoroid after 
the indicated penetration, 

D = Vr. 
Vo .. 

Vm =Total volume of micrometeoroid. 

p O =Initial density of target me;terial. 

p .Density of compressed target material. 

Pm=Density of micrometeoroid. 

r =Radius of micrometeoroid. 
m 

r =Radius of shock compressed target material. s 

R r 
= s r;-·· .. 

W0 •Initial momentum of micrometeoroid after impact • 

. W r =Residual momentum of micr.ometeoroid after impact. 

Ws • Momentum of shock compressed target material. 
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m • Mass of the micrometeoroid. 

The conservation of energy between the micrometeoroid and the 

target material may be expressed as, 

(1) 

Zaker (39) in his work on a point explosion in a solid, shows 

that the total energy of the compressed material is equal to twice 

its kinetic energy. Therefore, e,quation (1) may be written, 

(2) 

Using the symbols defined in this appendix, conservation of 

momentum may be expressed as, 

(3) 

The equations for conservation of energy and conservation of 

momentum may be combined by remembering that the kinetic energy 

of a mass is equal to one-half the square of the momentum divided 

by the mass. Thus the kinet.ic energy of the compressed material 

can be written as, 

(4a) 

or, 

3w2 s 
(4b) 



The density, p, of the compressed material is equal to the mass of 

the material contained in a hemisphere of radius rs before impact 

divided by the volume of the compressed hemispherical shell of 

target material after impact. Thus, 

or 

(2/3)Ilr3 p 
S 0 

p • (2/3)(r3 - r 3 ) 
s m 

p rs 
0 S 

p = r 3 - r 3 
s m 

Using the value of P from equation (5b), equation (4b) may be 

rewritten, 

3w2 s 

J.07 

(Sa) 

(Sb) 

(6) 

This allows the conservation of energy, e.quation (1) to be expressed 

as' 

6w2 s 
(7) 



The radius cubed, r~, may be obtained from e,quation (7) as, 

(8) 

3 
which allows the ratio, R3 = r 8 , to be formed, ;r 

m 

(9) 

By substituting the value of Ws from e:quation (3) into equation ( 9) 

and remembering tbat the mass, m, of the micrometeoroid can be 

expressed as, 

m = p (r/3)Ilr3 
m m 

equation (9) can be rewritten, 

'l:'he dimens,ionless quan'ti ties Q.0 and Q1 are d;ef'ined as, 

and 

E0 - E r-

w - w o. r 
w. 

0 

(10) 
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Using these 1dimensionless variables, the value of R3 from e:quation 

( 10') is, 

:a :a 

R3 • ! ' Cf) , ~-!) ' 0 

It is noted that, 

w:a 
0 

- = 2m E 

since the kinetic energy of the micrometeoroid is equal to one-

'half the square of the momentum divided by the mass. Therefore., 

equation (11) may be written, 

Q2 
If the dimensionless quantity, 1 

~ that, 

or 

Q:a (W - W ):a 

is examined, it is noted 

E 
0 .. i7 
0 

.J. • o r 
Q . 2m(E - E) 

o . o r 

(11) 

(12) 

(13a) 

(13b) 



· From the relationship between kinetic energy and momentum, E0 -Er 

may be expressed as, 

E 
0 

- E r = 
w2 - w2 

o r 
2m 

Using the value of E -E from e;quation (lL~), equation (13b) may 
·O r 

be written, 

Q2 (W - W )2 
1 o r 

-Q = -w'""2---wi....-
o o r 

or, 
W a (1 - wr) 

0 = 
1 _ ~r)a 

0 

If W0 and Wr are written in the form, 

and 

W = i(mv2 ) r · r 

Equation (15b) may be rewritten as, 
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(14) 

(15a) 

(15b) 

(16a) 



or, 
Vr 

using the notation D • _ 
Vo 

(1 - nt 
(1 - D ) 

This expression for Q~ , allows equation (12) to be written, 
Qo 

The ratio of the specific volume, v, of the compressed target 
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(16b) 

(17) 

material, to the specific volume, V, of the target material before 
0 

impact may be formed·as, 

or 

(2/3) II Cr: -r:) 
(2/3) n r 3 

s 

Taking the value of R3 to be that expressed as in equation (17), 

e'quation ( 18b) is rewritten, 

V po ~-·1--· V 16p o m 

1 - D2 

'(1 - D)a 

This is the first equation of the set to be used in the 

iterative calculation of the initial values. 

The second equation used in the iterative scheme is the 

(18a) 

(18b) 

(19) 



Hugoniot equation, 

discussed in Chapter .III. 

V 
0 

where µ. • - - 1 
V . 

The third equation of the iteration set is a modified form 

of the Hugoniot relation, 

also discussed in Chapter III. 

(20) 

(21) 

The quantities 6E and 6 V are the change in internal energy 

of the target material due to impact compression, and the change 

in specific volume respectively. For the model being considered, 

6E is equal to one-half of the total energy of the compressed 

material (40) and 6V is one-half the micrometeoroid volume, 

Vm• Remembering the assumption that the pressure ahead of the 

shock wave is zero, equation (21) can be written, 

(22) 

The final equation making up the iterative set is equation (1), 

written in the form, 

E • E - E o r (1) 

. (23a) 
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or 

E • E (1 • Da) 
0 

The iterative method for solving the initial pressure and 

specific volume of the compressed material ma.y be stated as 

follows. 

1. 

2. 

Choose a value of D such that O ~ D 1< L 

V 
Compute y-- from equation (19) 

0 

po 
1 - - • 16p 

m 

3. Compute Ph from equation (20) 

Vo 
whereµ• --- - 1 

V 

4. Compute E from e~uation (22) 

5. Compute E from equation (23b) 

E = E (1 - D)a 
0 

6. Compare the value of E computed in step 5 with that 

computed in step 4. 

a. 

b. 

c. 

E4-E5 >O, decrease D and return to step 2. 

E5-E4 > O., increase D and return to step 2. 

E5•E4, the correct values of Ph and L have 
been obtained. Vo 

The method described was programmed for solution on the 
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IBM 650 by Mr. B. A. Sodek and Mr. J. G. Ables. 
V 

When the correct values of Ph and v0 · have been obtained, 

the proper value of the flow velocity is solved for by an 

equation derived from the Rankine-Hugoniot relations by Zaker (41). 

(24) 

This equation gives the flow velocity that is needed to 

satisfy the Rankine-Hugoniot condition across the shock and complete 

the calculation of initial values. 
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