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PREFACE

This work was undertaken at the suggestion of Dr., F., C. Todd
who acted as my adviser and project supervisor. The purpose of
the paper is to study the shock wave initiated by & micrometeoroid
impacting on a semi-infinite surface,

The problem for study is intended to yileld an order of
magnitude solution to the phenomena of micrometeoroid impact.
This first solution 1s necessary to provide the basis for
assumptions that are necegsgary to treat more complex problems.,

The assistance and guldance of Dr., Todd have been invaluable
in the completion of this work. The author is also indebted to
Mr, B. A, Sodek and Mr. J. G. Ables for assistance in this work
and to Mr, William Granet for consultations concerning the digital
computér programming,

The work was carried out under NASA Contract Number NASr-T

administered through Research Foundation, Oklahoma State University.
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CHAPTER I
INTRODUCTION AND STATEMENT OF THE PROBLEM

Micrometeoroids are defined as particles which have a mass of
less than 1o'u grams and velocitles that range ffom 30,000 to
240,000 feet per second (1), They are detected by devices that
are placed in high-flying rockets or satellites. One device that
has been successfully used is a photomultiplier tube with a
vapor deposited aluminum film covering the face, The micro-
meteoroids impinging  upon the face of the photomultiplier are
known to produce & pulse of current through the tube. |

The NASAbproject for which this thesis is a contribution
was initiated as an analytical study of micrometeoroid impact
© on the coated photomultipiier. The project ig concerned with
the mechanics of impact which result in producing light to
activate the photomultiplier tube and is directed toward
determining the energy, momentum and possibly the compogition
of the_micrometeoroid frog measurements on the impact.

| The time interval chosen by the sponsor for this study 1s
the first two microseconds after initiation of the impact. For

purposes of reference, a typical micrometeorold for the study

- *

has a mass of 10 _grams and-moves with a vg}ocity of 36 kilometers
per second. BSince theoretical considerations indicate that

micrometeoroids have a velocity between 30,000 and 240,000 feet



per second, the selected meteoroid has a velocity approximately
midway between the extremes.,

Up to this time, very few published articles have attempted
to determine and analyze the impact phenomena of small particles
with ultra-high velocities. ‘One article approaches the problem
from the thermal damage theory (2). In this theory, the flash
of,light accompanying the impact is attributed to incendescence
of the target and the meteoroid in the immediate vicinity of
the impact,

Bjork (16) has examined the problem of a high-velocity
projectile of cylindrical symmetry‘impingeing upon a semi-infinite
golid by a plane, His computations were intended to give an
.order of magnitude solufion to the problem of high-velocity
impact,

After consideration of a limited amount of impact data for
lower velocities, & theory different from that of thermal damage
has been propoqed by ¥, C. Todd, project supervisor. This theory
proposes that a plasma is formed by a strong radial shock
from the impact., A plasma is defined as a wmixture of ions and
electrons which is expected to start to form from the applicatioﬁs
of pressure eslone at & pressure of about 100,000 atmospheres (3).
The rediation that accompanies the impact results ffom the
electrons in the plasme dropping back into their normal state,
or an unfilled level after the pressure starts to decrease. This
plasma theory along with other impact models is discussed in

Appendix A.



The subject of this thesis is the investigation of the strong
radial éhock wave accompanying micrometeoroid impact. Bethe (4)
has shown that propagation of a shock wave through a material may
be solved provided that the equation of state for the material is
known over the pressure range of the shock. Knowledge of the
equation of state permits a simultaneous solution of the partial
differential equations for hydrodynamic flow, which may be applied
to the problem of high velocity impact. In the solution of these
equations, the shock fronts are lines of discontinuity. Inuorder
to obtain a numerical solution, a pseudo-viscosity term, first
introduced by J. von Neumenn and R. D. Richtmyer (5), is used to
smear out the shock into regions of very steep gradients.

The problem chosen for this thesis 1s the development of
the solution of the propagation of a.radial shock wave into a
gemi-infinite media. The reason for choosing a semi-infinite
target is to simplify solving an exploratory problem. This first
éolution must be obtained to provide the basis for assumptions
- that are necessary to treat the more complex problem of a
shock wave propagating into a thin film of material coating the
face of & photomultiplier tube,

The work described herein may be briefly outlined as follows:

(1) An equation of state is developed for aluminum
over an extended pressure range.

(2) The partial differential equations of fluid flow
are developed and converted to a dimensionless
form.

(3) The dimensionless hydrodynamic equations are
converted to a difference equations for computer
solution,



(4) The difference equations are combined with computer
logic to form a FORTRAN computer program.,

(5) The mechenics of developing & computer program are
completed by choosing a space=time net that will
give a stable solution.

(6) The computer program, combined with initial and
boundary conditions, gives the solution for
shock wave propagation,



CHAPTER II
SHOCK WAVE BACKGROUND THEORY

Since this thesis is to treat the shock wave initiated by a
micrometeoroid impacting on a solid, it is desirable to review and
develeop some of the background theory necessary for the theoretical

treatment of shock waves,
Historical Background

Courant and Friedrichs (6) give a brief historical background
of' the development of modern shock wave theory. Topics of interest
frqm theirbwork are presented,

In 1808, Poisscn was the first to obtain a simple wave
séiution of ﬁhe'differential equation of flow on the assumption of
an isbthermal propagation through the gas. Forty years later in
1848 Challis noted that this equation of flow did not always give
a nique solution for the>flaw velocity, u. The same year that
Challis made his observation, Stokes proposed that, to obtain a
unique solution, one should assume that a discontinuity in the
%giocity occurs when the velocity gradient bec;mes infinite.
Stokes alsé stated that this assumed discontinﬁity would never
exist in a ﬁhysical problem since it would be smoothed out to a
Pinite width by viscous forces. Im 1858, Earnshaw developed the

wave solution for the flow of gases which satisfies the relation



~that the pressure is ngal to a function of the density. Two years
later, Riemann developed the simple wave theory solution aﬁd solved
the general flow problem by using "Riemann invariants”. He
elaborated on the theory of shocks but made the incorrect assumption
that the transition across the shock is adiabatic and reversible.

In 1869 Rankine first proposed that the transition across
the shock region is a non-adiabatic process and initiated work to
defive boundary conditions relating the conditions of material on
either side of a shock front, In 1887, Hugoniot proved, conclu-
gively that an adiabatic reversible transition across a égﬁck
region would violate the law of conservation of energy. He also
derived an equation, today known as the Hugoniot Relation,
relating the change of internal_gnergy across a shock front to
the changes in pressure and density. Finally, in 1910, Rayleigh

observed that entropy must increase across a shock,
Uniqueness of Solution

According to Bethe (4), a unique solution to Hugoniot's
shock wave equations exists and can be found provided a complete
equation of state exist for the media through which the shock
propagates and provided three assumptions about the equation of
state are fulfilled,

The most important condition is:

(ﬁ) >0
ov?
s
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where P 1s the pressure, V is the specific volume, i.e., mass per
unit volume, and S is the entropy. This condition is satisfied for
nearly all single phase systems and is violated only for extreme
cases where the pressure 1ls smaller than lO‘-ML atmospheres,

The second and third conditions are:

and

where e 1g the gpecific internal energy, The second condition is
fulfilled whenever a substance expands with increassing temperature
at constant pressure and is believed to be fulfilled for nearly

all substances under nearly all conditions. The third condition was
found to be fulfilled for .all single phase systems investigated

by Bethe,
Stability of Shock Waves

Shoék waves, in a homogeneous medium that satisfies the
necessary coﬁéitions for a unigue solution, always travel with a
supersonic velocity relative to & point in the material ahead of
the shock and with a subsonic velocity relative to a point in the
material behind thekshock (7). Bethe (4) has shown that this

property of & shock wave permits a simple explanation of shock



wave stability.

Consider a homogeneous medium'supporting a shock wave, The
étability of the shock can be examined by assuming that it starts
to break up into two waves, oné ahead Qf the other, The leading
shock will travel with & supersonic velocity relative to the
undistgrbed material in front and with subsonic velocity relative
to the material behind this leading shock but ahead of the
second shock; the second shock will travel with a supersonic
velocity relative to the masterial between the shocks since material
in this region is in front of the second shock. That is, the
leading shock wave travels with a subsonic velocity and the -
trailing shock wave travels with a supersonic velocity with
'respect to the material in the region between them. The trailing
shock will soon overtake the leading shock and merge to form one
stable wave, The same argument can be applied against a shock
Sﬁlitting into several waves. From these considerations, a
compressiVe ghock in a homogeneous medium, satisfying_the necessary

conditions for uniqueness, will be completely stable.
Rankine-Hugoniot Conditions

Shock waves are defined as dilational waves in a plastic media,
or a media that has negligible resistance to shear, similar to a
liquid, For this reason, the flow of the compressed medie can be
represented Ey the equations of hydrodynamic flow. In the
propagation of the shock front, the pressure rises to a high value

in a very thin zone whiph is designated as the shock front., This



very thin zone of rapidly changing pressure, density, and internal
energy appears as a discontinuity in the equations for hydrodynamic
flow, For a solution, it is necessary to derive conditions that
relate the states of the material on one side of the shock front to
those on the other side. These conditions are usually designated
in the literature as the Rankine-Hugoniot conditions.

The Rankine-Hugoniot shock conditions will be derived in a
simﬁle manner on the basgig of the assumption of constant flow
velocity. The same conditions may be developed in a more
rigorous manner from the differential equations for motion in
continious flow (8),

The Rankine-Hugoniot conditions will be developed from the
following laws:

(1) Congervation of Mass

(2) Conservation of Momentum

(3) Conservation of Energy

(4) Increase of entropy across the shock.

To derive the shock relations across the discontinuity, a
columm of gas in a tube will be considered. Assume 8t time, t, the
column covers & length ao(t)<ﬁx <al(t) where ao(t) and aI(t) are
the end points of the column at time, t, and x is any point in
the column. Let the flow at the ends of the tube ‘be continious.
Then the following manner,

(1a) Conservation of Mass:

a;(t)

ay(t)
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where p is the density.

(2a) Conservation of Momentum:

a; (t)

T Pu dx = P(al,t) - P(ao,t)

where u is the flow velocity and P is the pressure,
(3a) Conservation of Energy:
a, (t)
. 2
e p(Fu” + e) dx = P(a_,t) u(a_,t) - P(a;,t) u(a;,t)

a_(t)

where e is the specific internal energy.

(4a) Increase of Entropy:

a (t)
d o
Y pS dx » O

a (t)

where S equals the specific entropy.

Equation (2a) assumes that the only forces acting on the
© column are pressureAforces; therefore, the time rate of change of
momentum of the column equals the total resultant force exerted

on the column by the pressure at the ends of the column. Equation (3a)
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indicates that the gain of energy in the column results only from the

pressure forces. The rate of increase of energy is equal to the
power input, which 1s the work performed per unit time by pressure
against the ends of the column,

For the development of the Rankine-Hugoniot conditions, assume
that there is a discontinuity in the column. Assume that the
discontinuity is at a point, x=%=(t), and let u, P, p, and S be
discontinious at this point. The discontinuity will move with a
velocity %% ‘which will be denoted by U(t).

Upon examination of equations (la-4a), it is seen that all of

the integrals have the same form:

where the variable Y(x,t) is discontinious at the point, x = 5 .
When the derivative of H is taken with respect to t, the

following eguation results.,

=(t) a;(t) .
%% = gt Y(x,t) dx + %E Y(x,t) dx ()
ao(t) B(t)

The right side of equation (6) is evaluated by Courant (9) in
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the following menner:

a. (t)
1 .
& L) gy (L;j; f<;3f>> CORRENDEICRD
. (t) | S | (M
o + Y(alst) u(al,t) - (Lz-: 3(;’)5_5 é(t)
where
| Ba(€)
u(a ,t) = 3t
and
aal(t)

u(al,t) =5
The notation (x - =)~ indicﬁtes that x appyoaches % from the negative
gide of = and (x- = )+ indiéates that it approaches from the
positive gide.
Equation (7) holds independent of the length of the columﬁ,
provided % is an interior point., If the symbols YO and Yl are

defined as:

Y = Lim ¥Y(x,t)
o}
(x = =)-
and
Y, = Lim Y(x,t)

(x - E)+
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then in the limit, when the length of the column approaches zero,

the integral

approaches zero, Y(ao,t)_.YO, and Y(alt)_.Yl, so that equation (7)

may be written:

OH\ . g
Lim (ét = Ylul - Y1 g(t) + Yo 2(t) - Youo

(al -ouo-o O)

(8)

Using the notation, U, for the velocity of the shock fromt

vy may be defined as v, =ui-U i=0,1

d
Lim (:1?) = Ylv1 - Yovo
(9)

(al ~a - o)

Thus,

Using equation (9) to evaluate equations (la-ka) across a
discontinuity, the following Renkine-Hugoniot conditions
may be derived.

(1b) Conservation of Mass

1Vl " Po¥e = ©



1h

or

P1V1 = PoYo = M (10)

Here M is defined as the mass flux through the surface of discontinuity.

(2b) Conservation of Momentum

"
lae)
'
o

(plul) Vi -° (pouo) Vo o 1

This equation can be rewritten in the form:

or
vZ 4P =,v,° 4P (11)
(3b) Conservation of Energy

2 1. 2
pl(éul * el) Vi - po(%‘uo * eo) Vo = Py T P11y

or, in terms of M as defined above under (10)
2

2
M(%uo + eo) + uoPo = M(.(i!’;ul + el) + ulPl
This equation may be converted to the form:
2
| M(%vo +e + POVO) = M(3v," + e + rlvl) (12)
Where V is the specific volume.
(4b) Increase in Entropy
01511 = 0o5,Y6 > O (13)

For a shock surface at which M >0, equation (3b) may be
written:

By e v RV

or

.

(1k)
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where 1 is the specific énthalpy which is defined by the relation:
. i=e+ PV
Using PV = PV = M and Mu +1 P, =My + P
it is possible to write Mv +PO== le +P1, since u, = vi+U
Thus,

P, - P = M(vo -vy) (15)

Multiplying equation (15) through by (V0-+V1) produces,

(Vg + V) (Py - P ) = (V  + V)M (V - V) (16)
. v,V
Remembering that M = o= = VQ’ (Vo V. )M may be written as, (v_*v_)
1 o 1 o] 1
Thus equation (16) may be written
2 2
(vo * vl) (Pl B Po) = (Vo B! )
From équation (14),
2 2
iy =i = %(vo - vy )
so that, . _
' +V -1
(e, - 2,) <Vo 1>_ 1, -1 (17)

2

Equation (17) indicates that the increase in enthalpy across a
shock wave iB due to the pressure difference on the mean volume.

Since i = e + PV equation (17) may be written,

(v, - Vl)r<?l ; Pé) =e - éo (18)
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This equation indicates that when the material supporting
the shock wave-is compreésed across the shock there is an increase
in internal energy in the compressed material which equals the ﬁork
doneiby the mean pressure in performing the compression,

Equation (18) is known as the Hugoniot relation,
The Hugoniot Felation

The Hugoniot Relation, equation (18) may be rewritten as,

P
H(P,V) = e(,V) - e(P,V ) + (V - V) (P—lﬁ‘-’-> (19)

where (PO,VO) is the pressufe and specific volume ahead of.the
shock and (P,V) represents tﬁe pressure and volume behind the shock.
It is worthwhile to ﬁote that the Hugoniot Relation is not
dependent upon the flow velocity or position of the shock., It
'is'a relation dependent only upon the thermodynamic variables
P, V, and e which characterize the media. Thus the relation is
already in the form of an equﬁtion of state, It is different from
a complete equation of state in that it relates the thermodynamic
variables for only one condition. It relates the variables only
vat a”poipt directly behind and anothef point directly in front of
the shock where the pressures and specific volumes have their |
maximum and minimum values, resgpectively.
When the relation is written in the form H(P,V) =0,
it characterizes all values (P,V) behind the shock wave which

satisfy the jump conditiong across the shock with the values of



(PO,VO) which are given for the material ahead of the shock. When H
is plotted in the (P,V) plane, the resulting graph is known as the
Hugoniot curve. The Hugoniot curve plays an important role in the
equation of state that is usgd'in this thesis and more information
concerning this curve will be discussed when the equation of state

is considered in the next chapter.

17



CHAPTER III
EQUATION OF STATE

Bethe (4) has shown that the hydrodynamic equations governing
‘fluid flow yield a solution for shock’wgve propagation if a
complete equation of state exists and the equation of state
satisfies tﬁree conditiong set forth in his paper. These three
conditions were discussed in Chgpter IT and it was observed that
they were satisfied for all known materials that do not undergo
a éhange of phase over the pressure range associated wifh the
shock wave being propagated. As‘a consequence,'the hydrodynamic
equations for the propagation of a shock wave may be solved, |
provided a complete equation of state is obtained for aluminum.

Since the hyerdynamié equations are to be solved with a
digital compuﬁer, it is not necessary for one equation of state
to cover the complete pressure range associated Vith the shock,
It 1s possible to combine several different equations, each
valid over a specific range, to give a complete equatiop over
the pressure range of interest. |

‘The equation of state chosen for this work, the Mie-
Gruneisen equation, is derived in ‘detail in‘Append;x B, The

form of this equation is,

P - Ph =

<<

(e - e,) (1)

18
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where P, V, and e are the pressure, specific volume, end the
specific internal energy. The pressure, Ph, and the specific
internal energy,'eh, are known functions of the specific volumes,
as shown in Appendix C, over the range that the Hugoniot curve
is known. The symbol, v, in this equation should not be confused
with the gamme of an brdinary gemma-law gas. In this case, «
is the Gruneisen ratio and chosen to be in such a form that it
is & function of one variable, the specific volume. Thus a
complete P, e, V equation of state exists for pressufes as high
as the Hugoniot curve is kmown.

| It is proposed for this work thet the Hugoniot be broken
up into three different pressure regions, The first region will
be taken from date published by Walsh, et.al., (10,11). This
experimental'Hugoniot covers the pressure range up to one
megabar. The second region to be considered will be for pressures
above 20 meggbars. In this region, the Hugoniot will be canstructed
from published data of the Thomas-Fermi Statistical model of a
plasma, which the material will approach at these higﬁ pressures.,
Since the ajailable experimental Bugoniot extends to only one
megabar and the Thomas-Fermi data is not considered valid under
20 megabars, it is necessary to interpolate between the values
of the Hugoniot for the upper and lower regioms.

EXPERIMENTAL HUGONIOT

The Hugoniot curve for 24ST aluminum has been experimentally
measured up to 1 megabar by & method described in Appendix C.

Rice, et.al., (11) analytically fit a cubic polynomial to their



experimental values which has the form,

Ph = Ay + Bu2 + Cu3 _ (2)

where A, B, and C are constants determined by the shape of the

curve and,

V =specific volume

v
0
u:(“""l) s e
\Y V, =specific volume of the
material in its unstressed
state.

The Hugoniot in this form is a function of the specific
volume and this permits the MiémGruneisen equation to fulfill the

requirements of & complete P, e, V equation of state,
The Hugoniot from Thomas-Fermi Statistics

At the high pressure which results from a high velocity
impact, the target material is believed to be momentarily converted
to a plasma., The motion of the particles in this plasma can be
described by Thomas-Fermi Statistics (12,13). This model involves
reasonable ;ssumptions which allow theoretical calculations of

?thermodynamic variables at high pressures. The assumptions that
' are»necesééiy to permit theoretical calculation yield eguations
that are so complex that the only practical method.of evaluating
them is with & digital computer. These egquations have been |
solved and the data obtained has been published and is available
for use. (12,13)
Even though published ﬂat& is available to reasonably low

. pressures, it is thought that the necessary assumptions limit the

20



validity of the data to pressures above 20 megabars.v If the
experimental Hugoniot is ﬁsed for pressures up to 1 megabar and
the ThomaseFermi datae is uéed to aid the construction of a
Hugoniot for pressures above 20 megabars, there remains a region
. of uncertainty between 1 and 20 megabars in which the Hugoniot
must be interpolated,
The curves plotted in figures (1) and (2) were prepared

from the published data by Mr, B, A. Sodek. Figure (1) is a
composite graph of the known experimental Hugoniot and the
theoretically calculated thermodynamic variables at hiéh pressures,
In the higher pressure range, the lower bounding curve is the
0°K isotherm. The network of curves in the higher pressure;
range is composed of isotherms and constant entropy curves.
Figure (2) is a plot 6f the seme network of theoretical calcue
lations over a larger pressure range.

There are several facts (14) which assist the comstruction of
the Hugoniot above 20 megaebars. First, it is known that across
a strong shock the specific entropy increases, As a consequence,
the Hugoniot curve must intersect the constant entropy curves
as the pressﬁre is increasingnin order for the entropy‘to increase
a&;oss the shock. A second known fact ie that %§~,< 0 along
the Hugoniot. Third, the pressure along the Hugoniot varies
from one atmosphere to a very high value while the specific volume

varies from maximum value, V,, to a miﬂimum value, V A fourth

min®

known fact is that & linear plot of P vs V for the Hugoniot is

convex upward and any ray passing through any point on the Hugoniot

2l
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intersects the Hugoniot at one and only one other point, provided
thelray intersects the V axis at a point V;zVO.

A linear plot of the Hugoniot curve that is used for P
and Vh in the complete equation of state is presented in Figure 3.
Tn this figure, the OOK igotherm is extrapolated from the 500
kilobar region to intersect £he OOK isotherm from the Thomas=
Fermi calculations at about 20vmegabars. Thé Hugoniot plotted
1 this figure is a composite curve of the datea of Rice et.al. (11),
- the Hugoniot constructed in the high pressure region, and the
extrapolation between the two. The curves were analytically
fit to the form,

P = Ap, + BMZ. + Cus

where A, B, and C are constants and

e @D - G

The constants were evaluated to give the best fit of the data
by the method of ieast mean square (15). In order to use the
same énalyticdl form for the complete pressufe range, it was
-necessary to use three differeﬁt sets of constants in three
separate ranges. Table I contains the éonstaﬁts for both the
Hugoniot and OOK.isotherm and 1ists.the specific volume ranges in
Wﬁich they are valid.

Although the Hugoniot comstructed in Figure (1) is probably

not'absolutely correct, it does approximate a true Hugoniot
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sufficiently well so the solution for the shock wave propagation is

obtained with fair accuracy.
Computation of the Gruneisen Ratio

" In order to have a complete P, e, V equation of state, it is
necessary to know the value of the Gruneisen Ratio as a function
oflthe specific volume over the complete pressure range. McQueen,
et.al., assumed that the Gruneisen Ratio could be expressed in the form
of the following series and evaluated the coefficients for the
pressure range in which they were interested.

Y=y, * At Bu2‘+ o’ | (3)
Since the OOK isotherm and the Hugoniot are known as a
function of the volume over the pressure range Qf interest, it
is possible to compute y from Equation (13) of Appendix B

as a function of the volume
v(Ph - pk)

%Ph(vo - V)t eofj;

Y = v

P, AV , ()

The Gruneisen ratio for this problem was computed from this
o _
relation by using the form of the 0K isotherm and the Hugoniot
that was‘analytically fit to the curves in Figure (3). The resulting

curve for vy was represented by a series of this fornm,

Y=y, tAut Bu2 + CHB
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As for the equation of state, it was necessary to break the curve up
into three different regions in order to obtain & more accurate -
representation of the variation for the range of specific volume
considered. The constants obtained for +v in the three fanges

for computation are given in Table II. The ranges correspond

to the pressure ranges for the equation of state.
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V')
¢]

1,0 to .579
0.579 to 450
0,457 to 260

1.0 to .650
650 to .518

.518 to 300

TABLIE I

CONSTANTS FOR THE ZERO DEGREE ISOTHERM

A
0,680
~1.5Th
-8, TL5k4

B
1.536
5.116

11.620

Pressure
C (in megabars)

0.468 0  to 1.486
-0.206  1.486 to 5,003

0,620 5,003 to 52,000

CONSTANTS FOR THE HUGONIOT

765.0
'1150.1

-2194,2

1659.0
-8510 9
Lo34, T

Pressure
C (in megabars)

428,0 0 to 1,000
3998.0 1.000 to 3,570

2604, 3 3,570 to 52,000

28
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VO

1,0 to .650
.650 to ,518

.518 tol.300

TABLE II

CONSTANTS FOR GRUNEISEN'S RATIO

Yo
2,130
2,000

1.590

Pressure
A B C (in megabars)
«5,193 12,098 12,550 0 to 1,000

~4,513 6.800 3,780 1,000 to 3,570
‘lo 355 0)4'39 00)4'0)4- 3. 570 tO 52.000



CHAPTER IV
APPLICATION OF THEORY
The Differential Equations of Fluid Dynamics

Fluids differ from solids under normal conditions by the
property that the particles of the fluid have no resistance to
shear. Compared to the tremendous forces that are initiated by
micrometeoroid impact, the forces of a solid that resist shear
may be regarded as insignificant, The yield strength of very
good steel for instance, is on the order of 0.0068 megabars (16),
This amounts to approximately 0.05% of‘the total impact force for
the problem of micrometeoroid impact being considered, Since the
shear forces are g0 insignificant for a problem 6f this type, the
motion of material due to micrometeoroid impact on a‘solid target
may be treated by the differential equations for the flow of a
compressible fluid. o

Courant (17) indicates that the system of differential equations
that govern the flow of a compressible fluid must express the
following physical laws;

g, The principle of congervation of mass

b._' The conservation of momentum |

é. The conservation‘of energy

d... The condition thaﬁ changes of state are adiabatic

except at the shock front.
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Thé addition of an equation of state to these conditions completes
the system of equations which are necessary to obtain a solution
for fluid motion.

The partial differential equations that describe fluid motion
are usually writtéﬁ'iq one of two forms, either Eulerian or
Lagrangian. Although both of these forms are aﬁe to Euler, (18)
German mathematicians designated one form Eulerian and the other
Lagrangian. The Eulerian equations describe the variables at
fixed points in space as time varies. Lagrangian equations describe
the motion of individual particles or cells in the fluid and are
most generally used for problems involving only one space variable
such as problems of radial or sLab symmetry, For problems of one
space varlable, the Lagrangien equations give more information
than the Eulerian form, (19) since each bit of fluid is labeled
with 1ts original coordinate so that its original position maey beA
determined at any time, t. It is also a property:of Lagrangian |
equations that conservation of mass is autohatic, even when the
equations are converted to a finite difference form. This property
enhanceg the accuracy of a numerical approximetion to the true
solution of fluid motibn.

‘When problems involve more than one space variable, Eulerian
equations are more often uSed,"The accuracy of a Lagranian solufion
decreases for multidimensional systems as time increases unless a
new space-~time net is chosen. The choosing of a new net rqquires
difficult and ipaccurate interpolations. Therefore it is simpler
to use the Eulerian form for this type of problem.

It is possible to derive the differential hydrodynamic equations



32

in either the Eulerian or Lagrangian system. For the present treat-
ment the equétions will firet be examined in Eulerian coordiantes

and later written in the Lagrangian form,
Eulerian Equations

Conservation of Mass:

The equation. expressing the conservation of mass is the well
known continuity equation often derived in standard mathematics
texts (20).

The equation will not be derived here, but will be written

in the form most often cited,

ap =
at+v~ (p"f) = 0

where
- E Y- R w1
Vel tisg t g

P is the density, and Y 1is the vector form of the fluid velocity

V=7 (Xl, X X3, t) in the orthoganal coordinate system,

2’ X3°
For spherical flow, where the radial velocity is denoted
as u and the radial Eulerian coordiante as R, the equation of

continuity mey be written as,

242y (BB

3¢ T 3R 3R TR/ (la)

Conservation of Momentum:
Conservation of Momentum is expressed by Newton's second law

of motion which is that force equals mass times acceleration. This



law may be stated in equation form as,

a¥;
2 %
PEy - X, T

i=1, 2, 3

i
dy
p—E% is the mass times the acceleration., The fluid velocity,

is & function of position and time:

Yi = 11,:L(Xl »Xg sXa,t)
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(2a)

where F, represents body forces, %%— is the pressure gradient and
i

i 3

Therefore the derivative of Yi with respect to t may be written

as follows

¥ B, W Y,
dt = et T3t ¥} tTTAr 3}, T et 3K

or
in BYi A Yiawi . ?zawi . Yaawi
dt ot Xy o) Xa
and may be written in vector form as:
in awi 7: v
—EE'——SE'F( ) i

The assumption 1s made that body forces, such as gravity, are
approximately equal to zero compared to the pressure gradient,

%% . By neglecting F;, equation (2) may be rewritten,
i

v |
1 93P i - ‘
o 3x, ¥ 3¢ + (V) ¥y =0

(2b)



For a spherical wave with radial velocity, u, the conservation of

momentum is written,

Consérvation of Energy:

The flow after the impact is considered to be adiabatic
except~écross the shock front. The change inentropy across the
shock front is so important that the subject is considered in a
separate section, althoﬁgh short sectién. All of the required
thermodynamic variables in the complete equation of state must be
evaluated and these are P, e and V, or p, where these symbols
indicate the pressure, the energy, the volume and the density,
respectively. Another relation between the variables in the
problem may be obtained from the assumptiqn that the gain of
total energy by an increment of the fluid is only attributable
to the work performed on the increment by the pressure (21).

An additional assumption is made tﬁét viscous forces, body forces,
heat conduction and energy soufces are absent (22), Using these
gssumptions, the conservation of energy may be written in

Eulerian, rectangular coordinates as follows:

d " -
PSo+ pY-ye + BY - ¥ = 0 (3a)

where if.is the vector velocity in rectangular coordinates, For
spherical symmetry, the conservation of energy may be expressed in

the form,

de de 2u |, du
pE+PuBR+P<R+aR>—O (3b)
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Further considerations of the change in entropy are considered

in the next section,
Adiabatic Change of State:

The condition to insure an adiabatic change of state, except
at polnts of discontinuity, is most often expressed by an equation

that restricts the change in specific entropy:

S+t VUs=o0 (4a)

This equation may be written for spherical motion with radial

-velocity, u, as follows,

£ 4+ u2 =0 (4b)

The adiabatlic change of state must occur when a change in the
specific entropy‘ig restricted, by the use of equation (4), This
equation has the physical significance that viscous forces and
heat conduction do not occur in the flow at any point except across
the shock front. At the shock front, a pseudo-viscosity term is
introduced to make the solution possible with a digital computer,
The pseudo-viscosity term prevents the occurrence of
uncontrolled oscillations at the shock front., These oscillations
should be considered as vibrations of the d15cfete seétions of
materials that are defined by the difference equations. As the
scale of these sections is decreased to approach infinitesimal
dimensidns, the_pseudo-viscosity approaches more and more closely

to reality.

With the set of equations (1-4%), all of the necessary conditioms
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are expressed in Eulerian form, and written in terms of the thermo-
dynamic variables P, e and V, or p . The Eulerian form for the
equations was chosen for initial examination because it is eagier

to discuss and to recognize the brigin of the terms than in the
Lagrangiean form of the equations. The equations will now be written
in Lagrangian form to simplify computation of the numerical solutioms.

Lagrangian Equations

For problems of one space variable such as the radlal shock
wave being considered, the differential equations for hydrodynamic
flow are often used in the Lagrangian form. The reasons for
selecting the Lagrangian coordinates for this problem have already
been discussed. The equations express the same properties as the
Eulerian equations and are written in a spherically symmetric form.
Richtmyer (23) presents the spherical form of the equations as

follows:

Congervation of Mass:

p PoN T dr ' )

where r 1s the radial Lagrangian coordinate of a fixed coordinate
system and R(r,t) 1s the radial Eulerian coordinate, p is a
function of the Lagrangian coordinates and time, and P, is the

initial density.
Conservation of Momentum:

du _ _LR(r,t) 3P
dt E<: T dr (6)



where u is the radial fluid velocity and P is the static fluid
pressure, Both u and P are functions of the Lagrangian coordiante

and time, u = u(r,t) and P =P(r,t).

Conservation of Energy:

Se
d

=

t
‘on"'d
i

D)

where e, the internal energy per unit mass,is also a function of
r and t,

The equation of state and the partial differential equation of
the velocity are used to aid the three cbnservation equations in

numerical solution of the problem.

Equation of State in the Mie-~Gruneisen Form:

P-P = Yé(e - o) (8

where P and e are pressure and internal energy at any point in
the P~e quadrant. Ph and e, are the values of these quantities
on the Hugoniot line., The quantity, ¥, is the Gruneisen Ratio

and changes slowly with the density.

Velocity:

u = BRéz,tz (9)

With the five equations (5-<9), it is possible to solve for a
numerical solution of the fluid motion at every point in the

supporting media except the point where the shock exists,
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The sho;k wave manifests 1tself in these equations as a point
of discontinuity. J. von Neumann and R. D. Richtmyer, in 1950,
proposed a method of introducing a fictitious, or pseudo=viscosity
at this point of discontinuity which satisfies the condition that
the entropy increases and permits a complete numerical solution of
the fluld motion. Their method will be the topic of discussion

in the next section.
The von Neumann-Richtmyer Method of Handling Shocks

Shock surfaces appear in the differential hydrodynamic
equations as regions where the velocity, density, internal energy
and other variables of the fluid are discontinuous. The Rankine-
Hugoniot jump conditions were derived.in Chapter II, These
relations relate the conditions of the material on the two sides
of the shock front and provide sufficient conditions to relate the
differential equations on both sides of the shock (24%). The
process of applying boundary conditons to solve the propagation
ofi a shock wave is known as a shock fitting. The problem was
initially solved by an iterative trial and error calculation,
Shock fitting is slow and certainly not satisfactory for more
complicated problems.

J. von Neumann and R, D, Richtmyer, wishing to avoild the
difficulties introduced by shock fitting, devised a method of
automatically handling shock motion in the numerical solution
of the differential eéuations (5). Their method treats shocks

éutOmatically whenever and wherever they arise. It is based on

using a dissipative mechanism such as viscosity or heat conduction
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which exist for real'fluids (25)., The introduction of a dissipative
mechanism in the differential equations tends to smear the shock
wave and change it from a discontinuity to a region where the
variables are varying rapidly but continuously. Even though this
method does away with the application of the boundary conditions,
the Rankine-Hugoniot conditions still hold across the shock and
the approximation of smearing out the shock can be made to represent
actuality as accurately as desired by limiﬁing the width of the
shock,

von Neumann and Richtmyer proposed that the artificial
dissipative mechanism be introduced in the form of a pseudo-
viscogity term which can be added to the pressure. Upon the
addition of this term, equations (6) and (7) can be written as

follows,

du _ 1/ /R(E,OY 3P +Q)
ot ?ij: r :> or (10)

Congervation of Momentum

where Q is the dissipative term, aﬁd,

oe _ &E_;_Ql . %% | (11)

ot p

Conservation of Energy

when equations (5), (8), (9), (10) and (11) are converted to a
finite difference form, it is possible to solve them numerically

in a stepwise manner with time by means of a digital computer, This
method produces a solution in which shocks move with approximately

the right velocity and has approximately the correct changes in
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pressure, energy, density, and velocity across the shock boundary.
Selection of a Dissipative Mechanism

The dissipative térm, Q, in the equations is artificially
introduced to produce desired mathematical effects. For this reason,
it 1s possible to use a Q term which is a function of ény of the
variables involved in the numerical calcualtion as long as it
satisfies the following four requirements set forth by von Neumann
and Richtmyer (5).

(1) The three conservation equations must have
solutions without discontinuities.

(2) The thickness of the shock layers must be
everywhere of the same order of magniltude
as the interval length, Ar, used in the
numerical computation, independent of the
strength of the shock and of the condition
of the material into which the shock is
moving.

(3) The effect of the terms containing Q in the
conservation of momentum and in the conser-
vation of energy equations must be negligible
outside of the shock layers.

(4) The Rankine~-Hugoniot jump conditions must
hold when all other dimensions characterizing
the flow are large compared to the shock
thickness.

The form of Q used in the problem solved in this thesis is
patterned after the one recommended by Richtmyer (26), and is
basically the same as the term used by Brode (27) in his solution
of a spherical shock wave,

du

o (12)
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where K, ig a constant with length dimensions; K,=alr and a is
a constant, |

It is known that the thickness of the shock zone is
proportional to the coefficient of the dissipative mechanism (25)
and therefore it is possible to control the width of the shock

" wave by choosing the value of K, .
Dimensionless Differential Equations

For the cbmputer soiution of the Lagrangian differential
equations, ‘it is desirable to reduce the variables to dimensionless
parameters t¢ aid in numerical computations, Brode (27) devised
a method Which'accomplishes this convefsion and reduces the number
of parameters in the equations by one. The pres;ure, p, density, P,
and velocity, u, can.be expressed in units of.the initial pressure,
Po’ initial density, Py and velocity,co. Brode chosé to let
the length variable be expressed in terms of a length € which is a

ratio of the total energy and ambient pressure, PO.

E

P
o

vhere E is the total energy involved in the shock wave and

total ‘
P, is the pressure ahead of the shock wave.

For the problem solved in this thésis it is not neceséary to
restrict ¢ in the above manner and its value is arbitrarily chosen
to scale the dimensions of the problem to a size convenient for

machine solution.



The value of the Eulerian variable R(r,t) will be expressed as

follows:

A = R(ELE) and A =% (14)

where A is the dimensionless Eulerian parameter at time =t, and
ko is the dimensionless Eulerian parameter at time= 0. The
dimensionless parameter for time, 7, 1s expressed as,
tc0
T = (15
wheie CO is a constant velocity chosen to scale the problem for
machine solution.
The dimensionless pé}ameter representing the Lagrangian

coordinate r can be expressed as,

x, = %@)3 (16)

This form is chosen to permit the Lagrangian coordiante to be
eliminated from the numerical calculation of the solution.
Using the defined parameters, the dimensionless form of the

necesgsary equations may be written,
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1_,2 3 (17)
p x4 Conservation of Mass

e 22+ Q) (18)

Conservation of Momentum

I\ (19)
ot Velocity



and

= -a°Ax® <gu;> .

Bxd (20)

where Axd is the increment of X3 to be used in numerical compulation.

The partial of the energy with respect to time, , can be

de
aT
taken for the equation of state and eliminated between the equation
of state and the conservation of energy. This will permit solution

of the flow equations without solving for the internal energy.

If this is done, the following equation results:

-h.l.e
P+Q 3 a<§a- ﬁ)
P dT L

43 .

(21)
It is possible to combine the velocity equation and the
conservation of mass equation in the following manner:
Take the partial derivative of u with respect to
Xg from the velocity equation,
du_ _ BE
Bx ¥x T BT (222)
X 1
Take the partial derivative of Eﬁ?“with respect to
T from the conservation of mass equation,
G| fie
-z + A 3
NPATL mg' , = A (22b)
dT P AL B 3x 3T



Uéing these two equations, it is possible to eliminate

¥
BxdaT

and solve for

such that,

du/3
£ =%+ 7]

This is the form in which the conservation of mass will be used,
With the equations in the proper differential form, it is
necessary to convert them to différégce equations. The next
section will deal with the method of differencing the equations
and the form of the difference equations to permit a stepwise

nuﬁerical solution.
Method of Finite Differences

If the hydrodynamic differential equations are to be
solved numerically, it is necessary to convert them to finite
difference equations. The accuracy of the solution is dependent
upon the method used to difference the equétions.

To indicate the manner in which equatiofis are differenced,

consider a function.f'=f(x,t). The change in this function with

(23)

L



time can be computed as follows:
Let time increase by a small increment At., The

change in the function is,

Af (x,t) = f(x,t + At) - f(x,t) (24)

This difference 1s defined as a forward difference.

A backward difference is defined as,

Af(x,t) = £(x,t) - f(x,t - At) (25)

Although both forward and backward differences yield approximate
golutions for the change in a function, they are not the most
accurate finite differences that:can be used. Wherever possible,
central differences are used to represent the change in a functibn
because the appfoximation to the true solution is more‘accurate.
Forward and backward differences are most genefélly used at the
boundaries of a problem where central differencés will not give

anvanswéf, The central difference 1s defined as,
6. £(x,t) = £(x,t + ) - £(x,t - $At) (26)
where 6t is the central difference operator and the difference

is taken about the time, t.

Still considering the function £(x,t), let Ax and At be

45
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increments of the variables x and t. A rectangular net, or grid,
for the x and t plane is defined as the set of points x=LAx
and t=ndt

and n=1, 2, 3‘”‘"’nfina1

The function f(x,t) can be represented at any point in the net as,

£(LAx, DAE) = fZ’% (27)

The value of the function at intermediate points in the net is

written as,

L: (28)

wolkofh

f@[LAx + (L - 1)ix], 3{nat + (n - 1')At]> = £°

It is possible, therefore, to denote the use of a central difference
to replace a partial derivative of f(x,t) in an equation as
follows,

n"‘% fn"%‘

.ty - fp
dt - At

(29)

The increments in t and x must be small in order for the finite
difference to approach the true value of the partial derivative,
Thus when choosing Ax and At, one must choose between accuracy
of the solution and feasibllity of taking the time to solve the
problem being considered with a very fine net.

With this brief introduction to fiﬁite differences the
author will cite several references to methods of solving

differential equations by finite differences. The equations



pertinate to the present problem will then be differenced. R. D.
Richtmyer (19) gives a fairly complete discussion of solving
initial value problems by difference methods. There are numerous

other works of interest (28, 29, 30, 31).
Difference Equafions

- The difference equations given in this section are similar
to those used by Brode (27) in his solution of a spherical blast
wave, but differ from his exact equations in that his solution was
for a Gamma-Law gas which utilized an ideal gas equation of state.

The differential equation of conservation of momentum,
equation (18), can be a centrally differenced about the time

point nAT and the space point I.=xd ags follows,

n+y _ n-3 n__.n n-% _n-%
o A A _QDQ Preg " Pr-gt Q- Gd
AT - Axd

It may be noted that all variables except Q in the above
equation are properly centered., Richtmyer (33). indicates that it
is not worthwhile to rewrite this equation to center Q and, in fact,
doing so might cause instabilities to arise in the numerical
golution.

The velocity equation, (19), is differenced about the time
point (n+%) Ar and the space point LA x.

A,n+1 . An

L L _ n+3
AT T Y, (D
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The conservation mass equation, (23), is differenced about the

time point (n +3%) AT and the space point (L -3) Ax.

n+l _ n ntl | n <;n+% b :)
Pt " Pre3 _ PL3 t P N A 75
AT - 2 n+l n n+l h
Ay Ay N M1t A
2 2
—
ot ntd
Yy, Y1-1
. Axd
n+l n' ,ntl n
}‘L‘ + }‘L_ }‘L-'-l + AL-I
2 2
bxg (32)
This equation can be simplified to the form,
n+l = n _( n+l n
pL_% Pr-g = | P-4 + pL_%D W (33a)
or
n+l _n /1 - W> _
Pr-i = P33 ¥ W (33b)
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where
2<un+‘b + un-%) n—!—% ntd
LRC U n+1 nt+l L-l s
AL + A +. A AL—l AL + AL - AL-I - AL-I

The pseudo-viscosity equation, (21), used for this treatment

may be differenced as follows,

| eI _
ni—i = -g3 (Ax )2 6‘% + pL %)( > -1 (34)

.The dissipative term written in this manner is unregtricted.
.fhét is, negative valges of Q are allowed. It is suggested by some
advocates of the pseudo-viscosity method (19, 27) that the value
of @ should be set equal to zero outside of fhe shock zone in
order to ald the numerical solution of the hydrodynamic variable
where the supporting material is undergoing expansion., The form
of @ in equétion (3%), however, is the form sy%gested by von
Neumann and Richtmyer in thelr original work proposing the pseudo-
viscosity method.

The method of eliminating the internal energy from the

’solution of the differential equation suggested previously
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requires rigorous algebraic manipulation to convert the difference
equation to a form that will permit a stepwise numerical
solutioh of the hydrodynamic equations. To initiate this treatment,

consider equation (21),

P~-P

—t &
Yo +eh
aT

» d
P+Q3p _ [
pP° T

If the indicated differentiation is carried out, the following

equation may be obtained,

oP
SE _,_h 5 p 32
2. “ar “Br T ® T By B
P aT z° t 3T (35)
where Z = yp
This may be converted to the form,
: JP de
3 a - 2&2 2 aZ - 2 a_Z - 2 é’e _ 2-_—h,- 2 s-—tl-
Pr - 205y + B = RS - 203 - 20 4 P2 (36)

It is desirable to difference this equation about the time



point n +-é— and the space point L -3,

n+l n 3

37
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This rather involved equation is even further complicated when,
for purposes of computation, the polynomial form of Py, Eh’ and vy
from Chapter III are substituted., For Equation (37) to be of

aid in the simultaneous solution of the system of hydrodynamic

flow equations on the digital computer, it must be arranged in

the form,
pi+l H(G)[2<H(4) * H(L) - H(3) - H(2) - H() - PE-Q]_
L-% (H(l) + H(Z)D’ . (;I{fi - pt]':-é) - 2H(2) - YH(ﬁ)

ol a0- (o (5t D @)
(H(l) + H(Z)) . (p?:é - pz_é) - 2H(2) . H(6)

+

(38)

52
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where

H(1)=Zn+1"PL%[‘Y +A“2+%+B<ntéa+c<uzfi>s]

H(2) = ZE-‘%“: pi_-_él:'yo + Apg_%_ + BQ"E-QQ + C(@-Qaj

HE3) = B he % Auz”é-;- u&) r e @»
CRENJR RIS GV )
RS
- %]A-(“mg G CHRE CIVT GV c(“‘;;’% |
BRGED oy + 1) ,

H(6) = (p?é + pL,Qa

where g = (p - 1) in the dimensionless form.
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To shorten the notation, the value of P§+i from Equation (38) will
-2

be denoted as,

n+1 n+l n
= f<?L X QL Ir Pr-g° pL_%> (39)

The differenced equations must now be arranged in a fashion that
will permit a stepwise numerical solution. Equations (30), (31),

f.

(33), and (38) may be written in the following form:

ARG LI =

n+l :
AL AL + At (40b)
n+l 1 - WY
SRR Crs ) (40¢)
pn+1 + pn
R RCHRTA IR R (I

n+l n+1 n+%  n+l n
L %" = §2 “g QL % pL -3 é) (40e)



. If boundary and initial values of all the variables are known before

and including time t=nAT , the above set of equations when solved |

in the order that they appear, ﬁill p?rmit e stepwise solution
for the flow velocity, densiﬁ&, and pressure,

For actual machine computation the difference équations must
be written in a language which can be punched on IBM cards and
accepted by the IBM 650 digital computer. This conversion, along
with the machine logic to solve the equations, will be considered

in the next chapter..
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" CHAPTER V
DEVELOPMENT OF COMPUTER PROGRAM

The IBM 650, digital computer for solving the problem in
‘this thesis is very limited in storage capacity. The computer
memory consists of 2000 words of drum storage and 60 words of
core (immediate access) storage. This smail memory seriously
limits the size and type of shock-problem that can be solved.
The problem for the propagation of a spherical shock may be solved
provided.the computer program ls written in the shortest possible
manner. The short program will leave sufficient storage in the
computer for a space-time net that is large eﬁough to permit a
numerical approxiﬁation of the proposed problem.

The program will be written in 650 FORTRAN (an automatic
coding system for the IBM 650 which allows the user to write
programe for the 650 without having a working knowledge of the
comﬁuter). Use of the FORTRAN system consists of the following
steps: Q

1. The logic and equations are written in FORTRAN
(FORmula TRANslator).

2. The FORTRAN statements are processed by a 650
program called the FORTRAN compiler, or FORTRAN
phase I, which accepts FORTRAN statements and
compiles 650 instructions in SOAP II (Symbolic
Optimal Assembly Program) language.

3. The SOAP II program is next processed by an



assembler program called FORTRAN Phase II,

which is a modified version of a SOAP II

agsembler, that produces an optimized

machine language program (ObJect Deck) from

the symbolic instructioms.

The machine language program produced by the FORTRAN, Phase II

compiler is the final result of the compiling process. The Object
Deck contains FORTRAN subroutines (special programs contained in

‘the.FORTRAN compiler) and the original FORTRAN program in a format

that is acceptaeble to the computer for data processing.
Development of Machine Logic

In order that the difference  equations may be solved by the
650, a logic must be developed which will permit the computer to
accept the equations and solve them in a logical order, This logic
can best be presented in the form of a flow diagram, Figure (),

The solution of the set éf simultanéous difference equations
as they appear in Equations Moé--hoe in Chapter IV requires that
each of the variables, u, p, A, Q, and P, be contained in the 650
memory at the same time for each space net point at two different
time points, say n Ar and (n4+l) AT . With this informetion in
the computer memory; it is possible to solve for the value of
each of the variables for each net point at the time (n+l)AT
from the initial value of the variable at the time nAT. .

The computations are carried out in the indicated order,
Equation Moa through uoe. After the computation, the flow diagram
Shows‘that the new values for the variables at the time (n+l) AT

replace the initial values so another set of variables may be

o7



computed at the next step in time.

The variables are computed at every net point except the first .
by the difference equations. The value of the variables at the
first net point must be stipulated by boundary conditioﬁs which will
be discussed in Chapter VI,

Since computef storage is limited, it is impossible to place
a sufficiently large net in the 650 storage to permit an initial
shock profile to propagate through the net until the solution is
obtained., The shock quickly fills the available net; therefore, it
is necessary to devise a method to increase the size of the net,
periodically, in order to fbllow the shock as 1t propagates through
the material. | |

The method devised to keep uﬁ with increase in size of the
problgm is to permit the shock fo move from the center to the end
of Fhe net and then to double the size of the space increments.
-This returns the shock to about the center of the available
net gpaces. The.principle reason for choosing this particular
method is that it permits the time increment to be increased
without adding instabilities to the solution. This decreases

the computer time that is neceSsary to obtain a final solution,
FORTRAN Equations

Once the logic is determined, it is necessary to convert the
logic and the equations to FORTRAN statements. The logic steps
are indicated in Figure (4) and expressed in FORTRAN language in

Figure (5).
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Although the FORTRAN system gave a complete SbAP IT program, the
size of the resulting program was too large for the available
memory in the IBM 650 computer. Alterations in the SOAP program were
made which reduced the information necessary to be stored in the
memory. By changing the program in this manner, the SOAP progran
. was sufficiently reduced so a net of 65 space points was available
for two different instants in time for each of the five variables.
.It wag found more convenient to make all minor changes in the

overall program in the SOAP deck,
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CHAPTER VI
INITIAL VALUES, BOUNDARY CONDITIONS, AND SOLUTIONS

The set of difference equations, 40a through LOe, given in
Chapter IV have sufficient versatility to yield an exact solution
of shock wave propagation for any arbitrary set of initial values
and boundary conditions. If the exact mechanisms of micrometeoroid
impact were known, the propagation of the associated shock wave
could be readiiy solved. This is not the case; and consequently,
initial values must be derived and boundary conditions assumed

that will give an acceptable approximation to the true problem.
Initial Values

Initiel values were chosen for the present treatment of
wicrometeoroid impact with two criteria in mind. First, initiasl
conditions must be chosen so the problem to be golved will remain
gufficiently simple for solution on the available IBM 650
digital computer. The second criteria, certainly no less
important than the first, is that the chosen initial conditions
must be an acceptable approximation of actual conditions that
exist during micrometeoroid impact. |

The model of impact chosen for the present problem is

{llustrated in Figure (6). It is assumed that a nickel-iron

(density equal 8 gm/cm3) micrometeoroid traveling with a velocity
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of 36 kilometers per second impacts on a semi-infinite aluminum
(density equal 2,70 gm/cm3)‘target. The simplifying assumption
is made that the spherical micrometeoroid is incompressible and
enters the target by compressing a hemispherical shell of the
target materiai éhead of it. This is illustrated in Figure (6a),
A further simplifying assumption is that the pressure, density,
and material velocity are constant in‘the compressed region at the
instant illustrated. The pressure at the front of the compressed
reglon drops sharply but not instantly. This is indicated in
Figure (6b). The machine solution starts at the instant when the

'ucm)

microméteo;oid has penetrated one-half of its diameter (3.1x10
into the target.

These assumptions, combined with Rankine-Hugoniot conditions
across tﬁe shock, and equations expressing conservation of
momentum and energy between the micrdmeteoroid and target, allow
calculations of the values of pressure, density, material velocity
and dimensions of the compressed zone. An itérative method derived
by Mr., J. G. Ables for making these calculations 1s given in
Appendix D, The values for the material in the compressed zone of

the target were determined by these calculations for impact by

the micrometeoroid at 36 Km/second and are:

Pressure 14,1 Megabars
Velocity 17 Km/second
Density 6.7 gn/cm3

Shock Radius 3.5x10°4 cm

The initial values for the problem are not the conditions that

6l
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truly exist for'micrometebroid impact. They are believed to
épproximate the true conditions sufficiently to indicate the order
of magnitude of the true solution. This approximation is required
to postulate conditions for more complex and more correct mbdels

of the impact.
Boundary Conditions

Boundary cqnditions for the problem of micrometeoroid impact
must be in the form of one of the variabies P,vor u, at the micrq—
meteoroid interface. To solve the set of equatidns 40a through |
hOévin the order indicated, the flow velocity, u, of the interfaée
must be specified for any time, t. For‘actuai micrometeoroid
impact, the interface velqcity will-vafy with time, decreasing as
timé increases., The boundary condition chosen for this order of
magnitude probiem ia that thevinterféée velocity equals zero after
thé instant that i; illustrated in Figure (€a). This assumption
is made for tﬁo reasons., First, it is necessary to choose a simple
condition that permits the problem.to be solved on the‘IBM 650,

.Second, this first approximation solution assumes no energy is
transmitted to the target material by the micrometeoroid after
time zero for the machine solution. The assuﬁption of a‘figid

wall with zero velocity meets these requirements,

Parameters Chosen for Solution
The dimensionless parameters for this problem were chosen

to give a conﬁenient scaling for machine computations. Values of



P Po? and ¢ were arbitrarily chosen to scale the initial values of

0’
pressure, density, flow velocity, time and Eulerian radius to the
number range 1 to 10h.‘ This range, being well centered in the
10720 to 10°0 range for the IBM 655, permits the problem to be
solved without causing the machine to "overflow" (exceed the possible
number range of the computer).

The values selected are,

€ = 5.11-9x10-5 cm

Po= 1000 Kilobar'

Po= 2.7 gm/cm3

Co‘= 3.2:{10lL cm/sec'
From these values it is possible to compute the actual time

increment, At, from the dimensional increment AT as,

E4T
C
o

At =

The choice of values for increments of AT , and Aixd must be made

from stability consideration.
Stability Conditions

The stability of the solution obtaeined by machine computation
is dependent upon the net velocity and the size of the constant,
2 :
a, used in the dissapative term. The net velocity must meet the

Courant-Friedrichs-Lewy condition (34) that:

Ar <
At -

Brode (27) shows that this condition reduces to

Axd

AT = ;;‘“‘f;“ (L

(Pp)max

66
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for the dimensionless equation.

To keep the solution stable for this particular problem,
it was found necessary to keep AT beiow one=-half of the value
that is indicated by the Courant conditon;

The constant a® was obtained exps;imentally on the computer
by trying several values in the problem. It was found that the
.solution would remain stable and the shock front would cover only

2 or 3 space nets if the value &2 = 2 was used, Larger values
saused the shock to spread out too much and smaller value caused

instabilities to arise.
The Solutions

Shock wave pressure profiles are presented in Figures
(7), (8), (9), and (lO). The pressure is presented as a function
of the radial distance from the point of impact andlthe scale
in fhe.figures is changed as time increages to allow a clearer
presentation of the data, The initial shock pressure of 1k.1
megabars drops to 1.7 megabars in 3xlO“'lo seconds and finally to
below 0.5 megabars at time 9.2:&{10“'lo geconds after time zero, The
machine solution was carried to the time that the shock pressure
was just under 0.5 megabars,

“The flow velocities corresponding to the pressure profiles
are presénted in Figures (11), (12), (13), and (1k4). It is noted
in FPigure (12) that the velocity of the material in the immediate
vicinity.of the micrometeoroid, target interface is negative,

indicating that the material is flowing back toward the micro=-
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meteoroid. This condition existed for a very short time and then
reversed in sign as is shown in Figure (12b), indicating that the
material is again flowing radially outward from the point of
impact.

Profiles of relative density corresponding to the pressure
and velocity solutions are presented in Figures (15), (16), (17),
and (18). The term relative is the density behind the shock
front, relative to that of the undisturbed material ahead of the
shock, It is noted that the density behind the shock wave drops
to a value less than its original value. This is to be expected
since one of the assumptions governing hydrodynamic flow given in
Chapter IV is that flow isadiabatic behind the shock. The
compression-expansion cycle of the aluminum target can be explained
with the aid of Figure (19), a plot of adiabats crossing the
Hugoniot at various pressure levels.

The material undergoing shock is raised to the peak pressure
of the shock wave along the locus of pressure-volume points
described by the Hugoniot Relation, After the shock wave moves
forward, the material starts to expand adiabatically. Thus the
material drops towards its original pressure along the adiabat
which intersects the Hugoniot Curve at the peak pressure of the
shock wave, It is noted from Figure (17) thatadiabats inter-
secting the Hugoniot at relatively high pressures will not inter-
sect the relative specific volume axis until V/Vo >1 or p/po <1l.
Therefore the material that has undergone shock compression drops

to a relative density of less than unity.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

The solution for the propagation of a spherical shock wave
into a semi-infinite solid has been obtained in this thesis. A
method was employed that was developed and proved for the solution

of shock waves in gases or fluids. The equations and the computer

program are sufficiently versatile to solve any spherical shock with

arbitrary initial and boundary conditons., This particular problem
was simplified to permit solution on a computer with a limited
memory., While it is realized thét this simplified version is

only an order of magnitude approximation to the true impact
problem, the solution of such a problem is required to provide

the basis for better assumptions which are necessary to treat more
complex problems on a larger, faster digital computer. This first
approximation permits parameters, such as the coefficient of the
dissipative mechanism and the space-time net, to be determined

for the dimensions that are involved in the solution of micro-

meteoroid impact, The machine solution has been followed until

the peak pressure of the shock wave is only 3.5% of the initial value.

Recommendations for Future Work

The next logical step in the study of the shock wave

associated with micrometeoroid impact could be the solution of a
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two dimensional shock propagating into a layered media., This
problem will probably require that the hydrodynamic equations be
solved in the Eulerian form on a digital computer somewhat larger
and faster than the IBM 650. Also, the problem should include
the development of initial conditions and boundary conditions
that more correctly describe the mechanisms of impact than those

used for the first approximation which is solved in this thesis.
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APPENDIX A
IMPACT THEORY

In a recently published article in the Scientific American (35),
it is shown that the depth of penetratioﬁ\of a projectile impinging.
on the surface of a block of material varles in a strange manner.

In Figure (20) the variation in depth of penetration with velocity
is shown for a tungsten carbide pellet which impinges on a lead
block., The curve can be divided into three regions with respect
to the velocity. In the first region, the de?th of penetration
increases linearly with an increase in velocity. The projectile
remains unbroken in this region and the penetration isAbelieved
f£o result from a shear mechanism., In the second regionm, labled
the transition region, a phenomena other than shearing starts
to take place. The depth of penetration now varies more slowly
with a change in velocity. In the third region, labeled fluid
impact, the penetration is a cratering phenomeﬁa, That is, the
Hole that is left in the material is & crater of nesrly hemil-
spherical shape.

| "It is the third region that is of the most interest for

micrometeoroid impact.
Thermal Damage Theory

Some have proposed thaet penetration in the fluid region can
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be explained by a thermal damage theory (2), This theory predicts
that the mechanisms of impact produce sufficient energy density to
vaporize the projectile and target material., Production of light
observed upon impact is attributed to incandescence of the target
material,

The thermal damage model is not accepted entirely in this
thesis for the following reasons, First, it is known from
experiment that when the phenomena of cratering starts to take
place, the projectile no longer retains a form that resembles its
original shape. The crater that is produced is found to be lined
with the projectile material, The thermal model, however, does
not offer any explanation for this lining effect. Conversely, it
would seem that when the target material was converted to a
vapor, the projectile material should also be converted to a
vapor and the explosion of the hot vapor into its surroundings
should throw the projectile material out of the crater.

A second reason for not accepting the entire thermal damage
model is suggested from examinations of a limited amount of high
velocity impact data (1). An investigation was made of the volume
of the crater in an aluminum target. The total kinetic energy
per unit mass of the projectile was computed and plotted against
the energy necessary to heat the mass of aluminum that would
fill the equivalent volume of the crater from room temperature
to the melting point of aluminum. It can be seen from Figure (21)
that at the highest projectile energy observed it would take
70 per cent of the input energy simply to heat and melt the

volume of aluminum that is removed from the crater. This assumes
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that no energy goes into melting the projectile. Therefore, very
little energy is left to be radiated and none to supply the latent
heat to vaporize a substantial part of the material., Also, the
volume removed would take more of the kinetic energy if it were to
be converted to a high density vapor. It is also shown in Figure
(21) that at velocities that are barely in the cratering velocity
region it takes at least 50 per cent of the impact energy to melt
the equivalent volume of aluminum, This investigation is substan-
tiated by a picture in the Scientific American article by Charters
(35), Here the volume of the cavity in copper was measured by

the scaling given in the picture and the measurements reveal that
50 per cent of the projectile energy is necessary to heat and

melt the crater volume of coppér in the crater. Since such an
appreciable amount of the incident energy is necessary to melt

the material in the crater it seems that a more plausiable
explanation of the impact phenomena must be offered. Another
possible mechanism of impact that has been given consideration

is the hydrodynamic model.

Hydrodynamic Model of Impact

The hydrodynamic model of ultra-high velocity impact
suggests that the penetration of the projectile into the target
is much the same as one fluid penetrating another. That is, the
target and projectile under the tremendous forces of impact become
plastic and the plastic projectile penetrates the plastic target.
The hemispherical shape of the crater is attributed to a strong

radial shock accompanying penetration.
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The most apparent failure of the hydrodynamic model is that
it does not include a mechanism fdr the production of light. An
acceptableAmodel must include a rédiafion mechanism,

This hodel‘also fails to predict other observed phenomena,

To successfully explain the projectile material being evenly
distriﬁuted-over the crater surface, it would be necessary for
the plastic projectile material to be held together by some type
of force such as a surface tension. For this problem, the forces
involved are much greater thaﬁ any known cohesive forces.
Calculations for the typical micrometeoroid with a velocity of
36 kilometers per second indicate that the energy involved would
correspond to an iron "gas" ion with each atom having an energy of
376 electron-volts (36). There are no known cohesive forces which
diﬁferentiate between materials wity a value of the energy as
great'aé'two pef cent of this energy. Finally, the hydrodynamic
model does not predict a change in penetration phenomena for
increase in projectile velocity as is depicted in Figure (20),
Failure of the thermal damage and hydrodynamic models to
account for all of the observed phenomens associated with ultra-
high velocity impact makes necessary the proposal of still another
impact model.
Proposed Plasﬁa Impact Model

" The model of impact proposed by this study group differs from
other proposed models most radically in the mechanism of the
projectile material penetration, After the initial contact of the
micrometeoroid and the target, the pressure for a very short time

will have a tremendous magnitude. Under these tremendous forces



it will be lmpossible for the projectile and target material to
remain in thelr crysteline form, The two materials are probably
cénverted to plesmes (e mixture of ions and electrons) when the
impact pressure reaches approximetely 100,000 atmosphere (3). The
penetration mechanism for this model can be described as the
interaction of two diéeimilar plasmas, with one penetrating

the other. The plesme from the meteoroild will flew through the
plagma of the tqrget material, It 1s also proposed that a radial
shock wave would account for the nearly hemlspherical shape of the
crater that is formed by the impact of an ultra-high veloclty
prbjectile. If may be noted at thle point that the proposed

model partially agrees with the assumptions mede in both the
thermal damage and hydrodynemic models of impact, The‘plasma
model includes a rediasl shock which was assumed to accompany the
hydrodynamiq,model end it also ﬁssumes that the material in the
immediate vicinity of impact has & high energy density as does

the thermal model. It differs from the thermel damage model in
that for thermal damege, the high energy density 1s in the form
of & high tempersature; whereas, for the plasmea model more of the
energy is in the form of recoverable potential energy.

It is readily seen that radiation from the thermal damage
model will be of a different form than that of the plasma model.
The thermal damage model must radiate black-body radiation which
is a continuous speétrum. A plasma would emit radiatidn in lines
which may be broadened by associsted microfields. The light that

would be emitted by an aluminﬁm plasma would be in the far ultra-

\O
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violet and extend into the visible. Therefore, far ultra-violet
spectrometry of radiation produced by high-velocity impact will

yield an experimentel check of the existance of plasma.
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APPENDIX B

THE MIE-GRUNEISEN EQUATION OF STATE

The Mie;Gruneisen equation of state can be derived from
consideration of the total energy of a fluld of interest (11).
Assume that the thermal energy of a fluid cen be described by a
gset of simple harmonic oscillators whose frequencies are Vo .

The internal energy may be expressed as follows,

N 3N hy
' ‘ o

E=%+ éZ vy +Z exp[hv&/KT] -1 (1)
a=1 asl . o = 1,2, 3N

vhere K i1s Boltzman's constant, h is Planck's constant, N is
the number'bf atbms and the summation is made over the 3N normal
ques. The symbol & represents the potential énergy,of the fluid
with the atoms in a state of equilibrium. The Helmﬁoltz free

energy for this model is,

~ 3 3N
A=3 +Z o, + KTZ In(1-exp[-hv /KT]) (2)
a=1 aml

Rebaliing that the pressure is equal to the partial derivative
of the Helmholtz free energy with respect to thé volume M for a

constaht temperature, the presgure for this model may be written:

hv
o
ua7KI] - 1] (3)

. 3N
aeg 15 ]
=Tty E; Y éhvd + explh

a=1
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where Yo is defined as,
L o Sy
o d(1nv)
At this point the approximation is made that all>ya9s are

equal. Then equation (3) can be rewritten in the form,

3N e
- . 32 xz 1 o L A
P wtv/l ot explhy_/RT] - 1~ & ¥ Svib )

ore=]

where évib is the vibrational energy of the fluid and the
assumption is made that Gruneisen's Ratio, vy (V), is a function of
the volume only. The terms in equation (4) can be rearranged into

the following form,

' 3N 3N ho
p. |- &8 Xz ‘ .,xz o
F vty %hva v exp[hva/KT] -1 G)
a=1 o=] .

!

If the temperature, T, in equation (3) is allowed to approach
zero, it is seen that the pressure along the zero degree isotherm

may be expressed as,

3N
P = - %% +:¥z [%hva] (6)
o=1

The right side of equation (5) is equal to % times the thermal

contribution of the internal energy so that it may be rewritten:

P - Pk = %(e - e (7

K
where P, and ey are the pressuré and internal energy along the
zero degree isotherm,

This is one form of the Mie=Gruneisen equation of state, It
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can be written in terms of any P, V, and e curve so that in terms
of the Hugoniot curve, equation (7) can be written

P-P = % (e - e (8)

Since a P, V, e equation of state is desired, the pressure
and the ;ntefnal energy along the Hugqniot must be expressed as
functions of the specific volume for equation (7) to be in the
proper form, vRice, et.al., (11) obtained an experimental
Hugoniot curve for sluminum by a method discussed in Appendix C,
'They fit a cubic polynomial to their experiﬁental Hugoniot data
for which the pressure along the Hugoniot equals a function of

the volume, which is
P, = P, (V)
Remembering the Hugoniot relation, equation (18) from Chapter II,
ey " e, = %(Ph + Po) . (Vo,r- Vh)

vhere Pys Vo, and e, are the pressure, specific volume and gpecific
internal energy ahead of the shock front and Py, V,, and e; are the
pressure, specific volume, and specific internal energy behind the

shock, This relation may be rewritten in the form

e, = (P, +P) - (V - V) +e (9)

By considering Py, = Py, (V), the internal energy along the

Hugoniot, ey, is a function of the volime, e, =e, (V).
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Thue equation (8) can be rewritten,

p-p ) =X - m) (10)

The Mie=Gruneisen equation in this form is a complete P, e, V
equation of state. It is applicable to the pressgfé rﬁnge over
which the Hugoniot is known as a function of the vdiume, within
the bounds of the approximastion that Gruneisen's Ratio may be

approximated by a function of only one variable, the volume,
The Grunelsen Ratio

The approximation for Gruneisen's Ratio, vy, that is used in
thie treatment of the equation of state 1s the DugdalefMécDonald

relation:

1
-3 (1i)

The justification of the approximations is supported by work of
McQueen, et.al., (11).

For the present treatment of a high pressure equation of
state, 1t is possible to éonsider the pressure ahesad §f the shock

equal to zero since

<<
‘Po Ph



Using this approximation, equation (7) may be rewritten,

vV
- X
P Pk = g(e t/; P, dV)
< "o

since

By éonsidering“the,pressure and specific internal energy along the
Hugoniot, equation (7) may be rewritten,
¥ (3 ¢ !
Ph - Pk =3 [%Ph(vb - V) + e, t/; Pde] (12)

0

and ¥ may be expressed in the following relaéion

C v
v = %-ph(vo -V) + eOL/;'Pde | . (13)

0

It is seen from equation (13) that v can be solved for any value
of the variable, V, if the values of Ph and’Pk are kpqwn functions
of the volunme, - -

It should be observed at this point that there is not good
agreement in the literature on the value of +v at high pressure,
It is fortunaté however, that errors up to 25% in v lead to

uncertainties that are no 1arger.thén those introduced by considering

experimental curves of the Hugoniot (37).
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APPENDIX C
EXPERIMENTAL HUGONIOT

The method described in this appendix for determining the
pressure-compression curves for solids depends upon the measure=
ment of two variables. These two variables? the free surface
velocity of a plate‘supporting a shock wave and the shock vélocity
in the plate; have been measured by a method (10) devised by
J. M, Walsh and associsates,

‘Two methods are used to convert the measured veloéities to
pressure~compression points, Both depend on the Rankine-Hugoniot
jump conditions that express the conservation of mass and the
conservation of momentum. These two equations may be written in

the form,

1 % = (U -U0)/u. Conservation of Mass
o s p’' s
(2) P = pQUsUp + Po Conservation of Momentum

Here V and P are the pressure and the specific volume behind
the shock wave, Po, Vo» Po are the pressure, specific volume, and

the density shead of the shock wave. U_, U_. are the velocity of the

8’ °p
shock wave and of the particle velocity behind the shock wave.

The first method of determining the pressure-compression
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points depends upon an approximation of the free surface velocity.
The measured‘free gsurface velocity is due to two factors., It is
due in part to the particle velocity, Up, behind the shock wave and
it is due in part to a rarefacation wavé with a velocity, Ur’ which
relieves the pressure at the free surface. The approximation is

U

made that = 1., This approximation can be used with the

vy
equation that the free surface velocity, Urg, €quals the sum of
the particle velocity, Uﬁ, and the rarefacation wave velocity,

Ur’ to show the particle velocity is approximately equal to one=
half the measured free surface velocity. Then with the measured

free surface velocity, the measured shock veloclty, and equations

(1) and (2), it is possible to directly compute the volume ratio,

v :
Vo » and the pressure P for a givenshock wave, Thus by varylng

the strength of theshock wave, 1t is possible to plot a Hugoniot
pressure-compression curve,

- The second method for converting shock velocity to pressure-
compréssion data is 8 graphical methpd which uses a graph of the
pressure versus particle velocity and equation (2) to find the
pressure and particle velocity; The particle velocity and the
measured shock velocity are then uged with equation (1) to find

the volume ratio, v.

. Vo
The data that is obtained by elther of these two methods

is analytically fit to an equation of the following form:

P = Ap + By® + cpd 3)



Where P, represents pressure on the Hugoniot curve and

h

v Here p and p, are the densities
o o
go= (}—-- #) = <§— - #) behind and in front of the
v o ' shock respectively, and

A, B, and C are constant determined by the shape of
the experimental Hugoniot.

"The constants for 24ST aluminum were determined by Rice,
et.al,, and they are,

A =765, B =1659, and C =428
for the pressure, Py, in kilobars. The data obtained for 24T
aluminum are illustrated in Figure (22). In this figure, the
experimental Hugoniot is plotted, In addition, the bounding
zero degree isotherm, and the adibats that cross the bottom and
the top of the Hugonlot are plotted., Walsh, et.al., did not
extend their dats below 100 kilobar, However, the isotherms for
aluminum below 100 kilobar was experimentally determined by
Bridgemann, (38) and the analytical fit by Walsh of Ph includes
data points determinéd'by him.

From the Hugoniot relatiom,
e, ~e, =% +P)- (V - V)
it is possible to write an expression for the specific internal
energy along the Hugoniot in terms of the specific volume. Assume

that the pressure ahead of the shock wave, Po’ to be zero, then

the internal energy expression may be written as follows,

C e o AW 4B+ cut |
T % T T 2p (w+ 1) )

This form of the Hugonlot is used in the Mie-Gruneisen equation of

state for the problem solved in this thesis.
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This appendix will set forth the iterative method derived
by Mr, J. G. Ables for calculation of initial values which exist

for the model of impact described in Chapter VI.

APPENDIX D

CALCULATION OF INITIAL VALUES

derived from the following conditions and equations:

1. Conservation of momentum between the micro-

meteorold and target material,

2. Conservation of energy between the micro-

3.
L,

meteoroid and target materiale
The Rankine-Hugoniot conditions.

The Hugoniot curve, Ph = AunFBu24-Cu3

The assumptions that are made for this derivetion are,

ll

The michmeteoroid is 8 sphere of diameter;
6.,2x10" "cm,; ma s,lO'9 gram$. density 8.0;and
velocity 3.6x10° cm/sec.

The micrometeoroid is perfectly rigid and has
penetrated one-half of its diameter into the
target. '

Impact produces a strong radial shock in
the aluminum which has a hemispherical front
centered on the point of contact.

The values of the pressure, density, and flow
velocity between the interface and the shock
front are constant,

The kinetlc energy, potential energy, and
pressure in front of the shock are zero,

The flow of aluminum behind the shock front is

radially outward from the point of initial contact.

104
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Symbols that are used in the derivation are defined ag follows,
follows,
A \=Specific volume of the compressed target material,
V_ =Tnitial specific volume of the target material.

Pp =Hugoniot pressure.

1 =Total kinetic and potential energy of the
compressed material.

=Total kinetic energy of the micrometeoroid
before impact.

ET =Kinetic energy of the compressed target material.

=Kinetic energy of the micrometeoroid after it has
penetrated a depth of one~half of 1ts dismeter
into the target.

Vo, =Initial velocity of micrometeoroid before
impact.

V., =Residual velocity of the micrometeoroid after
the indicated penetration,

V. =Total volume of micrometeoroid.

p_ =Initial density of target material,

o] =Densify of compressed target material,
=Density of micrometeoroid.

r =Radius of micrometeoroid.

r =Radius of shock compressed target material.

WO =Initial momentum of micrometeoroid after impact.

,Wr =Regidual momentum of micrometeorold after impact.

Ws*=Momentum of shock compressed target material.



106

m = Mass of the micrometeoroid.
The conservation of energy between the micrometeoroid and the
target material may be expréssed as,
E0 = E + Er- ¢D)
Zaker (39) in his work on a point explosion in a solid, shows
that the total energy of the compressed material is equal to twice
its kinetic energy. Therefore, equation (1) may be written,
E, = 2ET + Er (2)

Using the symbols defined in this appendix, conservation of

momentum may be expressed as,
W= Wr + Ws : 3)

The equations for conservation of energy and conservation of
momentum may be combined by remembering that the kinetic energy
of a mass is equal to one-half the square of the momentum divided
by the mass. Thus the kinetic energy of the compressed material

can be written as,

@®v,
T @GS - o)

E (4a)

or,

Ep = ﬁ-—ﬂr———jiy (4b)
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The demsity, p, of the compressed material is equal to the mass of
the material conteined in e hemisphere of radius rg before impact
divided'by the volume of the compressed hemispherical shell of

target material after impact. Thus,

(2/3)an Py
o= (2/3)(r§7- fi? (3a)
or
p = P —— C (5b)
8 m .

Using the value of P from equation (5b), equation (4b) may be

réewritten,

<]
Ep = oo | (6)

This allows the conservation of energy, equation (1) to be expressed
as,

o
E = + Er (7)
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: The redius cubed, rg, may be obtained from equation (7) as,

6wy

3 8

Tg = Hpo(Eo - Er) (@)
3
r

which allows the ratio, R3=_3_° , to be formea,
T
m
. . 6w?

R® = g7 €))

nporm(E,,o Er)

By substituting the value of W_ from equation (3) into equation (9)

and remembering that the mass, m, of the micrometeoroid can be

s

expressed sas,

m = pm(r/S)Hr;

equation (9) can be rewritten,

- 2
R® = ig@ﬂ___ﬂEz; . EE
m(Eo - Er) Po

(10)

The dimensionless quaﬁfities Qo and Ql are defined as,

and
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Using these dimensionless variables, the value of g3 from equation

(10) is,
3 8 pm i Wi v, |
R =0 <po> | <Z0> ' <1-:°> o 1)

It is noted that,

wa
o
ot 2m
since the kinetic energy of the micrometeoroid is equal to one-

half the square of the momentum divided by the mass, Therefore,

equation (11) may be written,

p Q3
R = 1e<-ﬂ> e § (12)
v po Qo
If the dimensionless quantity, 1 is examined, 1t is noted
Qo
that,
2 _ 2
gl = fHE___HEz " %o : (13a)
Q0 EO - Er F;
or

(13b)



From the relationship between kinetic energy and momentum, E,-E..

may be expressed as,

o T 2m (14)

Using the value of E_-E_ from equation (14), equation (13b) may

be written,

Q]. (WO - w.r)2
6; = -T—T'JE—WO " (15a)
or,
W .2
T
Q3 (1 il ﬁ)
% T T (150)
NS
o

If W, and Wr are written in the form,
2
W, = 5(@vy)
and

) 1 2
W = z(mv])

Equation (15b) may be rewritten as,
V_2

r

L G-

4> Y

(16a)
Q, - (E%if a |

110
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or, using the notation D =
-—= 3 (16b)

This expression for Q? , allows equation (12) to be written,

Q’O
p : 2
R® = 163: ) (17)

The ratio of the specific volume, V, of the compressed target

material, to the specific volume, Vo’ of the target material before

2/3) 1 <?2 - ri)

impact may be formed as,

v
LA, 18
v DR (18a)
) s
or
v 1
7= <1 - ‘R'3> (18b)
)
Taking the value of RS to be that expressed as in equation (17),
equation (18b) is rewritten,
p 2
v _ o l1-D
v =1 6p_ - D) (19

This 1s the first equation of the set to be used in the
iterative calculation of the initial values.

The second equation used in the iterative scheme 1s the



Hugoniot equation,A

P = Au+ B + cu (20)

Yo
where p = v - 1

discussed in Chapter III,
The third equation of the iteration set is a modified form

of the Hugoniot relation,

AE
i %(P1 + P ) (21)

also discussed in Chapter III,

. The gquantities AE and AV are the change in internal energy
of the target material due to impact compression, and the change
in specific volume respectively, For the model being considered,
AE is equal to one-half of the total energy of the compressed
material (40) and AV is one-half the micrometeoroid volume,

‘Vm. Remembering the assumption that the pressure ahead of the

shock wave is zero, equation (21) cen be written,

E=-§Vm1’

. (22)

The final equation making up the iterative set is equation (1),
E = Eo - Er (1)

written in the form,

E(uv?)
E=E\0 l-mi—)- (23a)

112
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or

E=E( - D?) (23b)

The iterative method for solving the initial pressure and
specific volume of the compressed material may be stated as
follows,

1, Choose a value of D such that O <D <1

v
2, Compute 7 from equation (19)
5

v '1 Po . D?
—— . - ]
v 16pm (1 - D)~

o

3. Compute P, from equation (20)

v

Ph = Ay + By® + Cu®  where p = vg -1

4, Compute E from equation (22)

E = %vah

5. Compute E from e€quation (23b)
RS-
E = Eo(l D)

- 6, Compare the value of E computed in step 5 with that
computed in step L.

8. ,Eu-E5:>o, decrease D and return to step 2.

b. ES'EM=>0’ increase D and return to step 2.

C. ES'EM’ the correct values of Ph and %—— have
' been obtained, o

The method described was programmed for solution on the



IBM 650 by Mr, B. A, Sodek and Mr. J. G. Ables.

v
When the correct values of Ph and v;’ have been obtained,

the proper value of the flow velocity ie solved for by an

equation derived from the Rankine=Hugoniot relations by Zaker (k1).
-] = -
P =P (V- V) (24)

This equation gives the flow velocity that is needed to
vsatisfy'the Rankine-Hugoniot condition across the shock and complete

the calculation of initial values.

11k
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