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PREFACE 

The Laplace transformation has not enjoyed the same popularity 

in some areas of engineering analysis as it has in others. In par

ticular, it is not commonly known that it affords a simple and efficient 

approach to the elementary beam problem. In recent years there has 

been an increasing number of engineers who have become adept at using 

the Laplace transformation in the fields of automation, process controls, 

servomechanisms, etc. 

In view of these circumstances, it seems desirable that a pro

cedure, utilizing the Laplace transformation, should be developed for 

the analysis of elementary beam systems. The development of such a 

procedure is presented in this study as the major objective. 

The writer wishes to express his indebtedness and sincere ap-

preciation to the following individuals: 

To Professor J. R. Norton for his initial encouragement which 

resulted in the writer's pursuance of graduate study, for his com

petent guidance and counsel throughout the writer's graduate pro

gram, and for his proposal of a thesis subject that was commen

surate with the writer's intere sts. 

To Professor E. J. Waller for his valuable instruction in the 
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writer's first r~al introduction to the Laplace transformation 

and for his helpful advice and suggestions concerning this study. 

Special indebtedness and appreciation are due Mrs. Glenna Banks 

and Mrs. Dorothy Messenger for their creditable job in typing 

. this final copy and for their cheerful and cooperative attitude 

which made a tiresome task seem enjoyable. 

October 6, 1961 

Stillwater, Oklahoma 
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Kenneth H. Koerner Jr. 
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NOTATION 

Notations employed only in a single article are not, .. as a rule, listed 
below . 

. a, b, c, d 

E . . 

F{x) 

f{s) . 

i. j. k 

I . 

1 . 

··~ {x) . 

M. 
1 

M1• M 2 etc. • . 

.p 
i 

q. 
·1 

Q. 
1 

Position coordinates of load system 

Young's Modulus of Elasticity 

Load function 

Laplace transform of the load function,- F{x) 

General subscripts 

Moment of inertia of area 

Over -all length 

Bending moment at x 

.¢\.pplied moment 

Reactive moments 

Concentrated load 

. Arbitrarily distributed load per unit of length 

. Total distributed load 

Reactions 

Unit step function at k 

Sk {x) • • • • • • • • Unit impulse function at k 

Sk{x) 

V{x). . 

Unit doublet function at k 

Vertie.al shearing force at x 
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x. . . . 
1 

y (x). 

. Y{s). . 

f3 • • • 

q,(x) • • 

Centroidal distance 

. Transverse deflection of a point on the elastic 
curve of a beam at a distance x from one end. 

. . Laplace transform of deflection, Y(x) 

.• Symbol for L [qi Sa:(x) - , sb. (x)J 
.1 1 

. Slope at x 

L . . . . . . . . Summation where i = 1_. 2, 3, ••••• m, n, p, .•.• 
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CHAPTER I 

INTRODUCTION 

The Laplace transformation was introduced by P. S. Laplace in 

1779 (4). It is a linear integral transformation which enables one to 

solve many ordinary and partial linear differential equations. The solu

tion is easily obtained without finding the general solution and then 

evaluating the arbitrary constants., as required by the classical method. 

This results in a savings of time and labor. 

The Laplace transformation is the best known form of operational 

mathematics. The form as it is known today is the result of extensive 

research and development by Doetsch ( 3) and others. 

Beginning in the late 19301-s., the Laplace. transformation has been 

a powerful tool in the solution of linear· circuit problems in the elec

trical engineering field, Only in the last ten to fifteen years has it 

gained usage in the dynamics of mechanical and fluid systems. An area 

in which it has not been exploited to the same degree is the analysis of 

statically loaded structural members. It is this area with which the 

major portion of this thesis will be concerned. 

1 



CHAPTER II 

PREVIOUS APPLICATIONS 

The more prominent Amef'ican textbooks on the Laplace trans

formation, e.g. Churchill (2) and Thomson (13), apply the transform 

method to the static deflection of beams and columns. These applica

. tions are simple and few in number. Their objectives are to. aid in 

teaching the mechanics of the transform and to illustrate its potential 

uses. 

Other applications of the Laplace transformation to general static 

beam and column theory can be found in the engineering literature. 

The following is a synopsis of these articles. For brevity, only the 

structures and load systems will be listed. Unless otherwise noted, 

all structures have a constant cross section and are loaded transversely. 

Strandhagen (12) applied the transform to the deflection of "beam 

columns", i.e. beams subjected to axial loads as well as transverse 

loads. The general cases were: 

1. Simple beam with unequal end moments and no transverse 

loads 

2. Propped cantilever beam with a uniformly distributed load 

2 
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3. Propped cantilever beam with a triangularly distributed load 

4. Fixed beam with a triangularly distributed load 

5. Fixed beam with a parabolically distributed load. 

Pipes (9) dealt with the deflection of: 

1. Fixed beams with 

a. A uniformly distributed load 

b. A concentrated load 

c. An applied moment 

d. A concentrated load and on an elastic foundation. 

2. Cantilever beam with 

a. A concentrated load and on an elastic foundation. 

Gardner and Barnes (4)13olved for the deflections of a simple 

beam with: 

1. Two o-yerhangs loaded by a uniformly distributed and concen-
1 

trated load 

2. A uniformly distributed and concentrated load 

3. Two unequal spans loaded by a uniformly distributed load. 

Iwinski (5) determined the elastic curves for: 

1. Single span beams 

a. Simple beam 

b. Simple beam with an overhang 

c. Simple beam with terminal forces and moments 

d. Cantilever beam 

e. Propped cantilever beam 
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f. Propped cantilever beam with an overha~g 

g. Fixed beam 

h. On elastic supports 

2. Two span beams 

3. Continuous beams 

4. Continuous beam on elastic supports 

5. Beams with variable flexural rigidity. 

In each of the above cases the beams are analyzed for a general

ized system of uniformly distributed loads, concentrated loads, and 

. applied moments. 

Wagner (16) investigated the stability of buckling members. The 

types of columns covered were: 

1. Hinged on both ends 

2. One end fixed, and the other free 

3. One end hinged,. the other guided and hinged 

4. One end fixed, 'the other g~ided and hinged 

5. One end fixed,. the other guided and fixed 

6. Multisection. 

Thomson (14) solved for the deflections of: 

1 .. Simple beams with 

a. A concentrated load 

b. An applied moment 

c. A partial uniformly distributed load 
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d. An abrupt cross sectional change loaded by a uniformly 

distributed load. 

2. Cantilever beams with 

a. A triangularly distributed load 

b. A narrow slot loaded by a concentrated load at the end of 

the beam. 

Blanco (1) used the Laplace transform to determine the deflec

tions for: 

1. Simple beams with 

a. A uniformly distributed load 

b. A triangularly distributed load. 

2. Propped cantilever beam with a partial uniformly distributed 

load. 



CHAPTER III 

OBJECTIVES 

It can be ascertained from Chapter II that the Laplace transform 

has been employed either as an instruction aid or applied in a random 

fashion to the analysis of static structures. 

With the notable exception of Iwinski (5), there have been no at

tempts (particularly in this country) to develop and compile into one 

text, the basic elements of static structures as analyzed by the Laplace 

transformation .. Therefore, the objectives of this thesis are as follows: 

Part I (a) The development of a systematic procedure of analysis 

using the Laplace transform as applied to elementary 

beams. (Note: Elementary beams will be taken to 

include only single span beams with constant cross 

sections.), Symbolism and terminology compatible 

with backgrounds in systems engineering, i. e. , auto

mation, process controls,. servomechanisms, ad

vanced dynamics, etc., will be used. 

(b) The development of general solutions to elementary 

beams that are subjected to any transverse system 

of distributed loads, concentrated loads, and applied 

6 
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rnoments. {The load systeins are assumed to have 

Laplace transforms. ) 

Po.rt II Th.e investigation, in a general nature, of other mis-

cellaneous topics in the sta.ti<: structures field for 

-,Nhich the Laplace transforrn method could be utilized. 

Part III The use of the Laplace transforrn method as a basic 

tool of analysis in impact investigations. 



CHAPTER IV 

PART I - ANALYSIS OF ELEMENT ARY BEAMS 

BY THE LAPLACE TRANSFORM METHOD 

4-1 General 

Strength of materials is that science which establishes the 

relationships between the external forces, acting on an elastic body, 

and the internal forces and deformations which result from these ex

ternal forces. 

A large portion of any elementary strength text is devoted to the 

analysis of beams and columns. The fundamental basis for the analy

sis of these members is the equation of their elastic curves. When 

these equations are known, the other pertinent design data can be 

readily obtained, i. e. : 

a. The maximum deflection 

b. The support reactions 

c. The restraining moments (if any) 

d. The slopes at the supports 

e. The distribution of the bending moment and shearing force 

along the member 

f. The maximum bending moment. 

8 
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In normal design practice. the bending moment and shearing force 

distribution are perhaps the most important of the above data. 

4 ... 2 Beam Equation 

The equation of the elastic curve can be obtained from the basic 

. beam equation 

El y(4) = F(x) (4-1) 

where 

E = Young's modulus of elasticity. 

I = Moment of inertia of area. 

y<4 ) = Fourth derivative. with respect to x. of the transverse 

deflection. 

F(x) = · Load function. 

This equation may be found in any elementary strength text. (15). 

4-3 Transformation of the Beam Equation 

If y(s) and f(s) denote the Laplace transforms of Y(x) and 

F(x) respectively, then the Laplace transformation of Eq. (4-1) gives 

r:4 3 2 ;-1 
El L y(s) - s Y(O) - s Y' (O) - sY" (0) - Y' ll(O)J = f(s) 

This expression is then solved for the subsidiary equation, y(s), 

Y(O) yr (O) Y" (0) Y 1,11, (O) 1 f(s) 
y(s) = -- + + + . + - --

s 2 3 4 EI 4 
(4-2a) 

s s s s 

Performing the inverse transformation on the subsidiary equation 

results in 

L cl~(s~ = Y(x) =Y(O) + Y' (O)x + Y' ~\O)x2 + Y"i \O)x3 + ~I L -1 Ci•>] 
(4-2b) 



where the initial boundary conditions are. 

Y(O) 

Y' (O) 

Y'' (O) 

y111 (O) 

= Deflection at x = 0, 

= Slope at x = O, 

= fil times moment at x = 0, 

= ii times shear at x = 0 • 

10 

The boundary conditions which are unknown at x = 0 can be. evaluated 

from known conditions of deflection. slope. moment. or shear existing 

at other positions along the beam. 

The general expression (4-2b) yields the equation of the elastic/ 

deflection curve for any arbitrary elementary beam subjected to any 

system of transverse loads and/or applied moments. The solution to a 

particular beam will involve the evaluation of its respective boundary 

conditions and load function. 

4-4 Load Function 

The load function F(x). is defined as the system of loads acting 

on the beam. Distributed loads will be represented by the unit step 

function Sk(x). concentratedloads by the unit impulse function Sk. (x), 

and applied moments by the unit doublet function S 'k.. (x) • 

The load function is formulated by use of the following canonical 

set of rules: 

a. The load function is formed for the region Os xs 1. • 

b. Concentrated loads, applied moments. or support reactions 

occurring at x = 0 are included in. the load function. (Note: 



11 

Those occurring at x = J. could be included in the load func

tion, however. beyond their use in calculating the support 

reactions they do not affect the solution for the region 

o~x:::J..) 

c. The remaining portion of the load function is comprised of 

arbitrarily distributed loads, concentrated loads, applied 

moments, and support reactions occurring in the region 

0-c::xc:-J. • 

4-5 Sign Convention 

In a systematic analysis, a sign convention is necessary for a 

uniform interpretation of data. The following sign convention, which is 

compatible with most strength of materials texts, will be used. 

a. A right-handed system of rectangular co-ordinates X, Y, Z 

will be used. The origin will be taken at the left end of the 

beam with the X-axis coinciding with the neutral surface and 

the Y- and z- axes taken along the centroidal principal axes 

of the cross section. (Note: The origin could be taken at 

any cross section of the beam but it is usually most convenient 

to take it at the left end.) 

b. The positive directioh of the 

Y-axis (deflection) will be 

taken vertically upward. 
0 

+Y 

+X 
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c. . The slope </J (x) of the elastic 

curve at a given point will be 

+Y 
taken as positive if the rota-

tion of a tangent at that point 

is measured in a CCW direc-

tion with respect to the origin 
0 

+X 
and X-axis. 

d. The bending moment Mb(x) at 

a section will be taken positive + 
if the center of curvature of the 

elastic curve in that region lies 
E. C. 

above the curve. (The moments 

of upward directed loads will re-
+ BM 

sult in positive bending moments. ) 

e. The vertical shear V(x) at a 

section will be taken positive if t 
the resultant of the vertical loads Cb dJ 
·acting on the portion of the beam + V ~ - V 

to the left of the section is upward. 

+Y 
E. C. 

f. . The loads F(x) directed upward 

will be taken as positive. 

F(x) 
+X 
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g. Reactive moments M 1, M 2 etc. and 

applied moments· M., will be taken Ml Mi 

as positive when act~g in a CW G---:)---· -+---~ 

direction.· 

4-6 Analytical Procedure 

As the result of the previous sections of this chapter, a simple 

yet powerful tool has been developed for use in analyzing elementary 

static structures. 

Before continuing further with the formulation of a step by step 

procedure of analysis, a few of the possible pitfalls and misinterpreta-

tions of sections 4-3, 4-4, and 4-5 will be considered. 

The region o~ x :!!!5.i. will always be defined as the over-all length 

of the beam. This will be true even in the case of a multi-span beam. 

In formulating the load function it cannot be emphasized too 

strongly the importance of placing the origin at the left end of the beam; 

that of including all concentrated loads, applied moments, and support 

reactions occurring at x = O; and the omission of all concentrated 

loads, applied moments, and support reactions occurring at x = i. • 

By complying with these rules a considerable amount of time, labor, 

and confusion can be saved. 

An area in which possible uncertainty may arise is that of deter-

mining boundary conditions. Since the reactions r,t the left support 

(x = 0) have been included in the load function, the initial moment Y" (O) 

. and shear Y''' (0) will always be equal t?' ~~r~,}Jl; ~q. (4~2pJ._ ·. Th: value 
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of the initial deflection Y(O) and slope Y' (O) will depend on the physical 

situation at x = 0. i. e. , whether it has a support or is an overhang. 

If supported, the values of Y(O) and Y' (O) may be known depending 

upon the type of support. If they are not known,. as in.the case of an 

overhang, then they must be evaluated from other known conditions of 

deflection, slope, moment, or shear existing along the beam. 

Recognizing the correct moment and shear conditions at x = i. 

can sometimes be difficult, especially if the person isn't as familiar 

with strength of materials as he once was due to the lack of usage. It 

has been found during the development of this thesis that a simple beam 

with one overhang, a cantilever beam, and a propped cantilever beam 

with or without an overhang are the types with which one might experi-

ence difficulty in determining the conditions at x = i. . As a solution to 

this problem,. the procedure which has been used in the development 

of general solutions to elementary beams (section 4-7) is recommended. 

It consists of always placing the overhang of the simple beam at x = 0 
'· 

and the fixed ends of the cantilever and propped cantilever beams at 

x = i.. By doing this, the moment and shear at x = i. is eliminated by 

the rule of neglecting concentrated loads, applied moments, and sup-

port reactions occurring at x = i.. The values of the deflection and 

slope can then be easily determined by inspection. 

Continuing with the development of a systematic procedure of 

analysis, it is suggested that the following list of steps be used in ar-

riving at a solution of an elementary beam problem. 
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A. List known boundary conditions 

B. Formulate the load function 

C. Transform the load function 

D. 1 [f(s) J Inverse transform EI 7 
E. Substitute (A) and (D) into Eq. (4-2b) 

F. Evaluate unknown initial boundary conditions and reactions 

appearing in (E) from known conditions at other positions 

along the beam 

G. · Solve for the final expression of the elastic/deflection curve, 

Y(x) 

H .. Differentiate (G) successively with respect to x to obtain 

other desired data, i.e., slope, </> (x) = Y' (x); bending mo'"' 

ment, Mb(x) · = EIY" (x); and shearing force, V(x) = EIY"' (x). 

In the next section the above steps and rules will be used to de-

velop a set of general solutions to elementary beams that are subjected 

to any transverse system of distributed loads, concentrated loads, and 

applied moments. The only restriction imposed is that the load sys-

terns be Laplace transformable. 

4-7 General Solutions to Elementary Beams 

4-7-1 General Solution of a Simple Beam 

A. Boundary Conditions 

Y(O) = Y'' (O) = Y''' (0) = 0 

Y(£) = 0 



y 

-----b i 
i-------- c. -------

1 

J---------· d. 
1 

Fig. 4-7-1. Simple Beam 

B. Load Function 

16 

+ ~ P.S 1 (x} + L.., 1 e, 
1 

· F(x) = R 1S 1 (x) + f3 + ""P .S 1 (x) + "\;"1 M.sdn (x) . 
0 L_; l C, L.i 1 . 

l 1 

C. Laplace Transform of Load Function 

D. 1 [f(s)J Inverse T1~ansform of E-I 
8

~4.:_ 



1 
EI 

= _1_ {Rl x3 + L-1 [L/3.J + 
EI 31 4 

. s 

3 LP. (x--: c.) 
1 l S (x) + 

31 Ci 

E. Substituting (A) and (D) into Eq. (4-2b) 

Y(x) = 1 
Y' (O)x + EI 

3 
P.(x - c.) 

1 l 

3! 

+ 

F. Evaluation of Unknown Boundary Conditions and Reactions 

Y(ll) = 0 = Y' (O)l + ;I {Rl £ 3 + L-1 [L!l + 
3! s J x=J. 

yr (0) = 

. 3 LP.(£ - c.) 
l l 

3! 

1 
EI 

{
Rl'l1~ 

3! 

3 
p .(.11 - c.) 

1 l 

3 !.f 

",.. I 1 
~M.(.e - d.) 2 } 

+ L 21 ---

+ T L-1 [L~J + 
s x=P. 

L M.(1! - d.) 2 } 
' 1. I 

T -----

2!1 

The reaction R1 can be determined by statics. 

17 



G. General Elastic/Deflection Curve Equation 

+ 

L P.(£ - cJ3 LM.(£ -d.) 2 } 
1 1 + 1 1 X 

3!£ 2!£ 
+ 

1 
EI 

{
Rlx3 

3! 
LP.(x - c.) 

+ l 1 

3! 

M.(x - d.>2 . } 
l 1 S (x) 

2 1 d. 
• 1 

3 

18 

S (x) + 
C. 

1 

H. Slope, Bending Moment, and Shearing Force Equations 

a. Slope 

¢ (x) 
= - J:_ rR 1 £ 2_ + 

EI l 3! £ 

1 

3 LP.(£ - c.) 
1 1 ------

3!£ 

·IM.(£ -d.)2} + . l 1 

2!£ 

+ 

+ 

S (x) + 
c. 

l 
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b. Bending Moment 

Mb(x) = R 1 x + d
2
2 L-l [L~J + ~ P.(x ~ c.)S (x) + 

dx S L...J 1 1 Ci 

c. Shearing Force 

V(x) 
d3 

= ·R + 
r 1 dx3 

+ L· P.S (x) 
1 c. 

1 

4-7-2 General Solution of a Simple Beam with Two Overhangs 

y 

M. P. 
1 1 

q, 
1 

0 

_ai~ 
' 

Rl R2 

cl 

bi 

C 
i 

c2 

d. 
1 

1. 

Fig. 4-7-2. Simple Beam with Two Overhangs 

X 



A. Boundary Conditions 

Y" (O) = Y'" (O) = 0 

= Y(c ) 
2 

= 0 

B. Load Function 

~ P.S' (x) + ~ M.Sct' (x) 
~ 1 c. 6 1 . 

1 1 

Letting {3 = ~ lq_s (x) - q.Sb (x0 6 I..) a. 1 . .J 
1 1 

C. Laplace Transform of Load Function 

D. 

f(s) 

1 
Inverse Transform of 

EI 

1 
EI 

. 3 L (x - ci) 
+ P. ---

1 3! 

L (x - d.) 2 
M 1 

i 2! 

S (x) 
c. 

1 

20 
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E. · Substituting (A) and (D) into Eq. (4-2b) 

Y(x) = Y(O) + Y' (O)x + . ;I S (x) + 
cl 

21 

3 
+~P. (x-ci) S (x) + 

~ 1 3! Ci 

2 } 
(x - d.) 

M.. 1 Sd (x) 
1 21 . . 1 

.· F. Evaluation of Unknown Boundary Conditions and Reactions 

1 = O = Y ( O) + y, ( O )c 1 + El 

Y(c 2) = O = Y(O) + Y' (O) c 2 + 

{L-1 [L!J 
s x=c 

1 

+ 

L-1 [L!J 
3 

(c 2 - c.) 
+ P 1 S (_c2) 

i C 
3! i s x=c 

2 

+ 

+ 



Solving simultaneously, the boundary conditions are: 

Y' (0) = 
1 

L-l [L~J . 
s x=c . . 1 

S (c 2) -
C. 

1 

+ L-1 [L~J 
s x=c 

2 

2 

+ M. 1 I (c 2 - d.) 

1 2! 

2 } 
(c - d ) I M. l i S (c .) 

1 21 d. 1 
. 1 

The reactions R 1 and R 2 can be determined by statics. 

22 



G. General Elastic /Deflection Curve Equation 

. The same as .(E) where R 1 ,- !t2, Y(O), and Y' (0) are the 

values found in (F). 

H. Slope, Bending Momeht, and Shearing Force Equations 

a. Slope. 

~ (x) + L-1 [L~J 
s x=c 

_ L-1 [L~J 
s x=c 

1 

3 L (c 1 - c.) 
p. 1 S (cl) 

1 3! Ci 

23 

2 

1 +
El 

{ 
(x -c { 

R 1 l S (x) + 
2 cl 

d L-1 ·[. Ls/34] S (x) + dx 
c2 

+ 

2 } 
(x - c.) LP. 1 S (x) +LM.(x - dJSd (x) 

1 2 c. 1 1 . 
1 1 

b. B.ending Moment 



-d2 L-1 [L/3] I. + P. (x - c. )S (x) + 
d 2 4 1 1 c. 

X S 1 

c. Shearing Force 

V(x) = 

LP.S (x) 
1 c. 

1 

4-7-3 General Solution of a Simple Beam with One Overhang 

y 

P. M. 1 1 

qi 

0 

ai1 Rl 

cl 

b .. 
1 

c. 
1 

d. 
1 

1. 

Fig. 4-7-3. Simple Beam with One Overhang 

24 
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A. Boundary Conditions 

Y" (O) = Y"' (O) = O 

B. Load Function 

~M.S" (x) 6 1 d. 
1 

F(x) = R 1S 1 (x) + (3 + ~ P.S' (x) + ~ M.Sd" (x) . 
C, LJ l C, L.J 1 , 

1 1 1 

C. Laplace Transform of Load Function 

o: Inverse Transform of ~I c:1] 

25 

~ 
3 1 1 [f( )] 1 (x - cl) 1 [La] 

L- s R 3! Scl(x) + L- . s/J4 + EI .~ = EI 1 

E. Substituting (A) and (D) into Eq. (4-2b) 

Y(x) = Y(O) + Y' (O) x + ~I R 1 f (x - C ) 3 

1 . 3! 
S (x) + 
cl 
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L (x:.. c.)3 . [· (x - d.) 2 } 
+ P.. 1 S (x)+ M. 1 Sd (x) 

1 31 c. 1 21 . , 1 . 1 

F. Evaluation of Unknown Boundary Conditions and Reactions 

Y(c1) = 0 = Y(O) + Y' (O)c 1 + ii {L-l[L~ = 
s :}c c 1 

+ 

. 3 . 2 L (c 1 - c.) L (c 1 - d.) 
p. 1 S (c ) + M. 1 

1 C, 1 1 
3 ! 1 2! 

Y(.t) = 0 = Y(O) + Y' (O) J. t (J. - C )3 
+ ~I Rl ___ 1_ + L -lf}/3] + 

31 U3 4 · ~-x=J. 

3 L (J. - cJ 
P.--1-

1 31 

Solving simultaneously, the boundary conditions are: 

Y(O) =--1--
. (J. - cl) EI 

{ 
(J. - C )3 

clRl __ 1_. -J. L-1 [L!J 
31 s x=c . 1 

L (J. - c.)3 
P 1 

cl i 
3! 

(J. - d.) 2 } 
cl Mi-1 

2! 

S (c 1) + 
c. 

1 

2 L (c 1 - d.) 
J. M. i 

1 
2! 

+ 



1 ·t·· (J. - C 1 ) 3 Y 1 ( 0) = ,--..---,-- R ----
(cl - i.) EI . 1 

3! 
_ L-1 [L:J 

s x=c - 1 

+ 

+ 

L (i. - c.)3 
p 1 

i 3! 

- (cl - d.)2 
- M. 1 

1 2! 

._ The reaction R 1 can be determined by statics. 

G. General Elastic /Deflection Curve Equation 

The same as (E) where Rl' Y(O), and Y' (O) are the values 

found in (F). 

H, Slope, Bending Moment and Shearing Force Equations 

a) Slope 

<f,(x) = Y' (O) + l 
EI 

b) Bending Moment 

27 



LP. (x - c.) S (x) + L M.Sd (x) 
1 . 1 C. . 1 . 

1 . 1 

c). Shearing Force 

V(x) = Rl scl (x) + :3 L-1 [~fJ+ L pi sci (x) 

4-7-4. General Solu,tion of a Cantilever Beam 

y 

0 

i--------- b. 
1 

c. 
1 

d. 
1 

J. 

P. 
1 

Fig. 4-7-4. Cantilever Beam 

A. Boundary Conditions 

Y 11 ( 0) = Y' 11 ( 0) = 0 
y (i ) = y' (J. ) = 0 

B. Load Function 

28 

F(x) = ~ [q.S (x) - q.Sb (x)!) + ~ P. S' (x) + ~ M.S" (x) 
L_. 1 a. .1 . j L_. 1 C, 6 1 d, 

.1 . 1 1 1 



. Letting {3 :; ~ [q.S (x) - q.Sb (x)J 6 1 a. 1 . 
1 1 

F(x) :; {3 + ~.· P.S 1 (x) + ~ M.Sd'' (x) 6 1 c. 6 1 . 
1 1 

C. Laplace Transform of Load Function 

D. 1 [f(s)J Inverse Transform of EI ~ 

· (x - d.) 2 } 
M. 1 Sd (x) .·. 

1 21 . . 1 

E. Substituting (A) and (D) into Eq. (4-2b) 

2 .L. (x - d.} 
M. 1 

1 2! 

F. . Evaluation of Unknown Boundary Conditions and Reactions 

29 
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Y(l) = 0 = Y(O) + Y' (0)1 + ~I f-l [~:1,£ + 

L (1 - c.) 3 

P. 1 

1 3! 

Y' (1) = O = Y' (O) + 1...fl~ L -l I-L/3]) + 
EIL~x Ls 4J x=1 

Solving simultaneously, the boundary conditions are: 

1 [ -1 

EI L L (1 - d.) 2 } 
+ M. i 

1 2! 

Y' (O) = - .1._ f{.2_ 
· EI l~x 

G. General Elastic /Deflection Curve Equation 

The same as (E) where Y(O) and Y' (O) are the values found in 

(F). 



H .. Slope, Bending Moment and Shearing Force Equations 

b) Bending Moment 

Mb(x) = d: L -l [Lf]+ LP. (x - c.) S (x) + 
d 1 1 C, 

X S . 1 

c) Shearing Force 

V(x) 
d3 

= -. -3 
dx 

L-l [Lf3J+Lp· S (x) 4 1 c. 
S 1 

4-7-5. General Solution of a Propped Cantilever Beam 

0 

,~~~~~~- c. 
1 

q. 
1 

P. 
1 

Fig. 4-7-5. Propped Cantilever Beam 

31 



A. Boundary Conditions 

Y(O) = Y'' (0) = Y 111 (O) = 0 
y (.t ) = y' (.t ) = 0 

B. Load Function 

32 

F(x) = R 1S0' (x) + ~ J::. S (x) - q. Sb (x0 + ~ P. S' (x) + 
~ l) a. 1 . J LJ 1 C . 

M. S'' (x) 
1 d. 

1 

. l 1 1 

Letting (:3 = ~ ~. S (x) - q. Sb (x>1 LJ l) a. 1 . J 
1 1 

F(x) = R 1 S' (x) + (:3 + ~ P. S' (x) + ~ M. Sll(x) 
0 1 c. 1 d. 

· 1 1 

C. Laplace Transform of Load Function 

-d s 
+ .~ M.se i L.Jl 

D .. Inverse Transform of Ji1 [:~)] 

2 } 
(x - d.) 

.
~ M. ·1 Sd (x) 
~ 1 21 i 

E. Substituting (A) and (D) into Eq. (4-2b) 
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2 } 
(x - d.) L.M. 1 Sd (x) 

1 21 ' · • 1 

F. · Evaluation of Unknown Boundary Conditions and Reactions 

Y(l) = 0 = Y' (O) 1 + J:_ .r_R-11-
3 

EIL3! ' 

~ Mi (_1 --_di_) 2} 

L 21 

. .[_R 1 2 
Y' (1 ) • 0 = Y' ( 0) + ;I L ~ 

2 
(1 - C .) 

P.--1-
1 2 

Solving simultaneously, R 1 and Y' (O) are: 

= - i- {1 (d~ L-1 1-Lfl) _ L -1 [Lf] 
1 Ls J x=l s x=l 

+ 

(1 
2 

(1 
3 

L 
- c.) -L - C.) 

+ 1 L Mi (I 1 P. 
1 

P. 
.1 

1 
2 

1 3! 

I Mi 

(1 -ct/} 
2! 

- d.) -
1 
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Y' (0) = _3_ f! (~ L-1 r.L/3]) - ~ L-1. [ L!J + 
2EI ~ dx Ls 4 J x=1 · 1 s x=1 

3 L (1 - c.) 
. pi 1 

3H 
L (1 - d.) 

+ M. _____ ._1 

1 3 

G. General Elastic /Deflection Curve Equation 

The same as (E) where R 1 and Y' (O) are the values found in 

(F). 

H. Slope, Bending Moment and Shearing Force Equations 

a) Slope 

1 Rlx 
cp(x) = Y' (O) + - t 2 

EI 2 

(x - c. ) 2 
P. 1 

1 2 
S (x) + L M. (x - d.) Sd (x)} c. 11 1 . 

1 1 

b) Bending Moment 

Mb(x) = R 1x + d\ L -l [L4/3l+ ~ P. (x - c .. ) S (x) + 
dx S J L-.J 1 . 1 Ci • 
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c) Shearing Force 

4-7-6,. General Solution of a Propped Cantilever Beam with an Overhang 

y 

I , t pi q; 
l 

0 

ai~ R 
1 

cl 

b, 
l 

C, 
l 

d 
i 

Fig. 4-7-6. Propped Cantilever Beam with an Overhang 

A. Boundary Condttions 

Y'' (O) = Y''' (0) = 0 
y ( C 1 ) = y (1 ) = yr (£ ) = 0 

B. Load Function 

~M. S 11 (x) 
~ l d. 

l 

., X 



Letting {3 = ~ ~.- S (x) - q. Sb (x>1 6 l.) a- 1 . J 

F(x) = R 1Sb (x) + {3 + 
1 

1 1 

P.S' (x)+ 
1 c. 

1 

C. Laplace Transform of Load Function 

-c s 
1 

f(s) = R e . 1 

D. Inverse Transform of ii c~>J 

M. Sd'' (x) 
1 . 

1 

-d s 
i 

M.se 
1 

1 -1 
EI L ~= Sc (x) + L-1 [L. :J + 

1 . s 

I (x - c.>3 
P. 1 

1 3! 
L (x - d.) 

S cl. (x) + . Mi 1 
, 2! 

E .. Substituting (A) and ,(D) into Eq. (4-2b) 

1 
Y(x) = Y(O) + Y' (O) x + El 

2 

36 
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F. Evaluation of Unknown Boundary Conditions and Reactions 

Y.(c1) = 0 = Y(O) + Y' (O) c 1 + ; 1 {L -l [~!] + 
x=c 

1 

. (cl - c.)3 I· (cl - d.)2 J 
p. . l S ( c 1 ) + M. . l . S di ( c 1 ) 

l 3 ! Ci l 2 ! 

Y(.l) = 0 = Y(O) + Y' (0) 1. + ix f Rl _(1._-_c1_)_3 + L-1 n.L:=i +. 
L 3! Ls Jx=l. 

3 L (1. - c.) 
p ___ 1_ 

l 3! 
L (.l - d.)2} 

+ M l 

i 21 . 

. Y' (1.} = O = Y' (0) + { 
(1. - C )2 ;I Rl· ___ l_ 

2. 

L (1. - c.)2 
P.--1-

. l 2 

Letting 



K = 2 i {L-1 [L~J 
EI s 4 x=1 

+ Lpi 

I Mi (1 -a/} 
2! 

K = 
3 ir {(! L-l [~!j)x=l + I 
~ M. (1 - d.)} 
L-J·1 1 

··. Then 

Y(O) + Y' (O) c 1 = - K 
1 

Y(O) +, Y' (O) 1 + R 1 

3 
(1 - Cl) 

3! EI 

(1 
3 

- C,) 
1 ,+ 

3! 

(1 
2 

- c.) 
P. 

1 

1 
2 

Solving by Determinates; Y(O), Y' (0), and R are: 
1 

38 

+ 
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-K 
1 

C 0 
1 

(.I! 
3 

- C ) 

-K 1 
2 

3-1 EI 

(£ 
2 

- C ) 

-K 1 1 
3 

2EI 

Y(O) ::; 

1 cl 0 

(£ 
3 

- C ) 

1 1 

3! EI 

(£ 
2 

- C ) 

0 1 
1 

2EI 

::; 

1 \ {L-1 [~!] L (J 

3 
- C,) 

::; l 

2 (1 - c 1 ) EI + P. + 
x=1 

l 
31 

L (l - d.)2 J M l + 
.. i 2 ! 

{(d! 
(1 

2 

c 1 (c 1 - 1) L-1 [L!J) +LP. - c.) 
l + 

s x=1 
l 

2 
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I Miu - di)} 

(2£+ c1) [ L-1[~!] 
3 I (c1 - c.) 

+ p 1 
i 

3 ! x=c 
1 

1 -K 
1 

0 

(1 3 
- C ) 

1 -K 
1 

2 
3! EI 

(1 2 
- C ) 

0 -K 1 
3 

2EI 

Y' (O) = 

(1 - Cl) 
3 

3EI 

= l _[3K1 -3K2 +K3_(1-c 1)] 
2 (1 - Cl) 



Rl 

1 

1 

0 
= 

3 

3 
(1 - c.) 

1 
P.---

1 3 ! 

41 

(1 - d.) 2 } 
+ M. 1 + 

l 2! 

(1 -c1>{(fx L-1 [~f])x~l + L Pi_u_~_c_i>_2 + 

- di>} 

cl -K 
1 

1 -K 
2 

1 -K 
3 - Kl.+ 1{2_,+ K3 (cl·--1) 

= 
. (1 3 3 

- C ) (1 - C ) 
1 1 

3EI 3EI 

3 

=--- + P. 1 L (c 1 - c.) 
S (c 1) + 

c. 3 
(1 - Ci) 1 3! 1 x=c 

1 

+ 

L (1 - c.)3 
+ p . _____ 1_ 

i 
3! 

.I-.. (1 - d.)2} + . M .1 + 
i 21 

~( ) 
( 2 

. d -1 L _ 1 - c.) 
(c 1 - 1) ·ctx L [ !J .. + ~ P. 1 +LJJ.\4. (1 

s x=l 6 1 2 1 
. . . ' ' . 
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G. General Elastic/Deflection Curve Equation 

The same as (E) where Y(O), Y' (0), and R 1 are the values 

found in (F). 

H. Slope, Bending Moment and Shearing Force Equation 

a) Slope 

cf> (x) = Y' (0) + 

b) Bending Moment 

c) Shearing Force 

d3 
V(x) =R1 S (x) + - 3 

cl dx 

S . (x) + ~ L -1 [Lt]+ 
c 1 dx 8 

+ L M. (x -d.) S (x1 
1 1 d. 

1 . 

P. S (x) 
1 c. 

1 



4-7-7. General Solution of a Fixed Beam 

m----- b. ~·~~~~ 
1 

1-----+---- C. 
1 

d. 
1 

P· i 

Fig. 4-7-7. Fixed Beam 
' 
! 

A. Boundary Conditions 

Y(O) :;: Y 1 (0) :;: Y" (O) = Y'" (O) = 0 
Y(.t) =Y 1 (.t) = 0 

B. Load Function 

M. 
1 

43 

F(x) = R 1 S' (x) + M.1. su 1(x) + · ~ ~. S (x) - q. Sb (x~ + 
o o 6 L:1 a. 1 . J 

~ P. S' (x) + '\1 M~ S" (x) 6 1 c.. 6. 1 d,. 
1 .l 

Letting {3 = L [ q. S. (x) - q, Sb .(x)J 
1 a. 1 • 

. ·.l l 

1 1 
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F(x) =R1 s~ (x) + Ml S~1 (x) + {3 + L Pis~. (x) + L Mi s::r (x) 
1 1 

C. Laplace Transform of Load Function 

D. 1 [f(s)J Inverse Transform of EI 7 

3 LP. (x - ci) 
1 .. 

3! 
S (x) + 

C. 
1 

M. 
1 

E. Substituting (A) and· (D) into Eq. (4-2b) 

Y(x) 

I . (x - d.) 2 

M. 1 

1 2! 

2 
(x - d.) 

1 

2! 

F. Evaluation of Unknown Boundary Conditions and Reactions 



2! 
+ L -1 [:_L!J + 

s x=.f 

3 L . (1 - ci) 
P.---

1 3 ! 
L. (1 - d.) 2 } 

+ M i 

i 2! 

Y' (1) ;: 0 = ( d -1 [L/3]) + Ml 1 + dx L . S4 . x=.f + 

. P. · 1 . + M. (1 - d.) 
(1 - c.)2 L } 

1 2 1 1 

Solving simultaneously, R 1 and M1 are: 

R = _ -.12 {~ ·(··~ L -1 1 1 3 2 ·ctx [L:J)·· _ L-1 [Lfl + ~ .. 
s J x=.f s J x=.f 

L (1 - c.) 2 
P. __ 1_ 

1 2! 
> :. P. (_1_-_c1_J_3 + t 

1 3! 

M ;:: _i_ {~ (·..i_ L -1 [· .L/3]);, _ L -1 [. L/3] 
1 .f 2 3 dx S 4 J X :.f S 4 x=.f 

2 L (1 - ci) 
P.---

1 
2 

(.f - C. ) 3 

P. 1 

1 31 

1 
.+ 3 

+ ~ . 3 

45 



V M. (1 - d.) - V 6 1 1 . ~ 

. G. - General Elastic /Deflection Curve Equation 

46 

The same as- (E) where R 1 and M1 are the values found in (F). 

H. Slope,, Bending Moment and Shearing Force Equations 

a) Slope 2 

1 tRlx 
· cf, (x) = EI -:: -. 

2 
+ Mlx+ d~ L-1 C,!J + 

L . (x - c.) 2 

P. 1 

1 2 
s (x) + V M. (x - d.) Sd (x) 

Ci 6 1 1 i 'J 
b) Bending Moment 

c) _ Shearing Force 

d3 1 [,· L{3] .L V(x) i:: R 1 + - 3 L - 4 + Pi Sc. (x) 
dx s 1 . 
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For convenienc.e in solving elementary beam problems, the 

generalized equations of deflection, slope,. moment, and shear for the 

preceding seven elementary cases have been summarized into handbook 

form and placed in Appendix A. 

As a companion aid, Appendix B contains. the Laplace. transforms 

and inverse transforms for several of the more common distributed 

load systems .. When the- {3 factors are more complex than those con-

side red, the principle of convolution. can. he used to obtain the inverse 

transformation of .[i.: J . This method will hold even when the func -
- ' s 

tions are so complex that no formula is availabl~ for the analytical in-

tegration of the convolµtion integral,. since the convolution of two func-

· tions can be evaluated graphically or numerically. . In this form, the 

electronic computer can be used to facilitate the solution. 

In addition, a numerical example has been worked out for a 

simple overhanging, beam and is found in Appendix C. - This example 

. has been solved by three methods. A classical method (such as area

moment). the procedure of section_ 4-7-2, and the summarized results 

of Appendices A and B. - The object was ta. illustrate the use of the for-

mulated procedures and to determine the time advantage. if any. over 

classical methods. 

The. times. involved .to comptJte. the deflection at. x.:;: 11 ft.- were: 

35 mintJtes by area-moment; 29 minutes by section 4-7-2; and 25 

minutes by Appendices A and B. - The additional time required to. find 

the deflection at another point was found.to be an average of 5 minutes 
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by either section 4-7-2 or Appendices A and B, whereas the area

moment method required approximately the same amount of time (35 

minutes) as the first point .. From these results,. the time advantage 

over classical methods is apparent, especially when additional values 

are required. 

Usingthe procedures of section 4-7-2 and Appendices A and B, 

the times required for a complete general analysis (i.e .• deflection, 

slope, moment, and shear equations) were also determined for the 

example problem .. The times were 28 and 23 minutes, respectively. 

In addition,· an average of five. minutes each was required to evaluate 

the deflection,. slope,. moment, and shear at a point on the beam. 

In summary, the specific advantages of the Laplace transform 

method over classical methods in the solution of elementary beams are: 

a. The ease with which complex load systems may be dealt with. 

The more complex the function is, the greater the advantage 

becomes. 

b. The capability of being able to write. the solution as one equa

tion for the entire span, .. thereby reducing the number of ar

bitrary constants to be determined. 

c. The reduced solution.times involved for specific values of 

deflection, slope,, moment, and shear at a particular point. 

As the number of points increases, the time saved.increases 

considerably over classical methods. 



CHAPTER V 

PART II - ANALYSIS OF CONTINUOUS BEAMS 

BY THE LAPLACE TRANSFORM METHOD 

5-1 General 

The general procedures for the analysis of elementary beams 

were developed in Chapter IV. It will now be shown that these same 

rules and procedures apply directly to the analysis of continuous 

(multiple span} beams. 

5- 2 General Solution of a Two Span. Simple Beam 

y 
Q. 

1 

R .. 
2 

·-------- c . . 1 

d. 
1 

Fig. 5-2. Two Span.Simple Beam 

49 

M 
i 

X 



A. Boundary Conditions 

Y(O) = Y' 1' (O) = Y 111 (O) = 0 

Y(c 2) = Y(.O = O 

B. Load Function 

50 

F(x) = R 1 S' (x) + R 2 S' (x) + I [q. S (x) - q. Sb (x)J. + 
o c 2 1 a. 1 . 

· 1 1 · 

P. S' (x) + 
1 c. 

1 

M S'' (x) . i d, 
1 

Letting {3 = ~ [q. S (x) - q, Sb (x)J 6 1 a. 1 . 
1 1 

~ M. S" (x) 6 1 d. 
i 

. C. Laplace Transform of Load Function 

D. Inverse Transform of Ji1 [:~] 

_.!_ L -1 [f(-sj = _l_ 
. EI 4 -EI 

s 

P. S' (x) + 
1 c. . 

1 



3 
{x - c.) 

P .-':: · 1 . S (x) . + 
i . 3! . Ci 

•· E .. Substituting. (A) and (D)Jnto Eq. 1 (4-2b) 

{ 
3 3 

R x (x - c ) 1 1 · 2 
. Y(x) = Y' (0) x + EI . + R 2 . , S (x) + 

3! 3! c2 

3 
(x - cJ 
' 1 

P. . S (x) + 
1 c. ' 

3! .1 

:· F. . Evaluation of Unknown Boundary Conditions and Reactions 

' f 3 ' 1 Rlc2 -1. L 
Y(c 2) = 0 = Y' (O) c 2 + EI . 

1 
, + L I. :1 _ + 

. . 3. Ls J x-c 2 

51 

3 2 } (c 2 - c.) , . (c 2 - d.) LP. · 1 iS (c2)+LM. 1 .sd.(c2) 
1 31 c. 1 ·2' . . 1 . 1 

. f 3 3 
'y (1. ) = 0 = y I ( 0 )J. + _..!:_ 1 ' + R ' 2 ' + L -1 1-L4f3 + 

. R 1 (1 - c ) J 
EI . 3 ! 2 3 ! l_s x=l. 

P. 
1 

(1. 
- ci)3 + .~. M. fl- di)2} 

3! L..J 1 · 2! 



Letting 

M. 
,'· l 

f-1 [Lf3J- ·_ -· ... I .. ·_ .•. -_ (_e - ci)3 
K2 :;: L · A .. + -·. pi . + 

. s · x=l · . -• · 3 ! . . . . 
' ' 

L M;(l :?2} 

52 

And solving these equation; bydete:minates;: Rr~- R 2, and Y' (0) 

are: 

' 2 
c 2(1 - C ) 

.2 

' ' 

{ - ·_:1_1. + K -·~> Ks . ·r,-~c2_> 2_ - .e 2J_-} __ :. , . 
_ ·-2 ·.· .2. ··_ 6 ~ 



G. General Elastic./Deflection Curve Equation 

The same as (E) where R 1, R 2, · and Y' (O) are the values 

found in. (F). 

H .. Slope,. Bending Moment, and Shearing Force Equations 

a) Slope 

R X 
1 1 i 2 

cj, (x) = Y' (O) + EI -.-2 -. 

d. -1 [L/3] - L - + 
dx 4 

s 

. 2 
?r- c2) 

+ R S (x) + 
2 2 c2 . 

LM. (x - d.) Sd (x)} 
l . l . 

l 

b) . Bending. Moment 

53 



LP. (x - c.} S (x) + L M. Sd (x) 
1 1 C. 1 . 

1 1 

c) . Shearing Force 

d3 
V(x) ;:: R 1 + R 2 Sc (x) + 3 

2 dx 

5-3 General Solution of a Two Span Beam Fixed at One End 

------- c2 -----,~ 

i--------~ C, 
.l 

d. 
1 

Fig. 5-3 .. Two Span Beam Fixed at One End 

A. Boundary Conditions 

Y(O) = Y' (O) = Y" (0) = Y'" (O) = 0 
Y(c 2) = Y(i) ::: 0 

54 

P. S (x) 
1 C. 

1 



55 

B. Load Function 

F(x) .:: R 1 S' (x) + R 2 S' (x) + M. S" (x) + o c 2 1 o · 

~ M. S" (x) 
~ l d. 

l 

Letting f3 = ~ rq. , S (x) - q. Sb (x)J 
~ t 1 a. 1 . 

·l l 

F(x) = R 1 S~ (x) + M1 S 1~ (x) + R 2 S~
2 

(x) + f3 + 

P. S' (x) + 
l c. 

l 

M. Sd (x) 
l . 

l 

C. Laplace Transform of Load Function 

... D. 1 [f(s)J Inverse Transform of . - 4 
. . E~ s 

{ 

3 
R 1x. + 

31' 

-c s 
P.e i + 

l 

-d.s 
l 

M.se 
l 

3 
(x - C ) 

+ R . 2 S (x) + 
2 C . 

31 2 



L (x - d.) 2 

M. 1 

1 21 

S (x) + 
c. 

1 

E. Substituting (A) and (D) into Eq. (4-2b) 

{ 
3 

1 Rlx 
Y(x) = - · + 

EI 31 

L (x - c.) 3 
P. .1 

1 31 

S (x) + 
c2 

F. Evaluation of Unknown Boundary Conditions and Reactions 

2! 

Y(.t) = 0 = + 
2! 

-1 [L/3] I·. (1 L 4 + pi 
s . x=1 · 

+ L-1 [Lfl + 
s J x::;c 2 

2 
(c 2 - d.) 

M. 1 
1 

21 

+ 
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~ P. (1 - c.) + 
~ 1 1 

R 1, R 2 and M1 can now be solved from these equations by 

determinates similar to section 5-2 (F). Likewise, the general 

elastic I deflection curve slope, bending 'moment, and shearing 

. force equations can be obtained and, therefore, will not be 

carried out in detail in this section. 

5-4 General Solution of a Three Span Simple Beam 

y 

Q. 
1 

----- x. ___ _.. ___ 
l 

.a. 1. 
11 + 

r--- C 2 ----rR2 
i-------- b. 

1 

C.------.1 

P. 
1 

1-----------C ·------~ 3-

,~----------- d. 1 

i-.-----------· 1 

R 
3 

Fig.· 5-4 .. Three· Span Simple Beam· 

M 
i 



A. Boundary Conditions 

Y(O) = Y" (0) = Y"' (O) = 0 
Y ( C 2) = Y ( C 3) = Y (£ ) = 0 

B. Load Function 
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F(x) = R 1 S' (x) + R 2 S' (x) + R 3 S' (x) + 
o c 2 c 3 

~ rq.S (x) -L L:1 a. 

P. S' (x) + 
1 C, 

1 

Letting (3 = ~ [q. S (x) - q. Sb. (x)J L 1 a. 1 . 
1 1 

M. S" (x) 
1 d. 

1 

1 

F(x) =R1 S' (x) + R 2 S' (x) + R 3 S' (x) + (3 + ~ P. S' (x) + 
o c 2 c 3 L 1 ci 

M. S'·' (x) 
1 d. 

1 

C. Laplace Transform of Load Function 



D •. Inverse Transform of ; 1 [:~], 

ir L -1 c:~1 tR x 3 
1 1 --EI 31 

S (x) + 
c2 

~ P. (.,....x_-_c1_J_3 S (x) + ~ M. (x - di)2 

L-J l 31 Ci L-J l 2! 

, E. Substituting (A) and (D) into· Eq. (4-2b) 

1 Rlx 
Y(x) ~ Y' (O) x + EI { 

3 

3! 

(x - C ) 3 
2 + R 2 S (x) + 

31 c2 
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s (x) + I c. 
1 

(x - d.) 2 j 
Mi i Sd1. (x) 

2! 

F. Evaluation of Unknown Boundary Conditions and Reactions 

{ 
3 

1 Rlc2 
Y(c ) = 0 = Y' (O) c + - . 

2 . 2 EI 31 
+ L --1 [L{3 J 

4 
s x=c 

2 

+ 



. 3 

P .
. (c2 - Ci) 
--'----- S (c ) + 

. 1 3 t Ci . 2 

Y(c ) = 0 =- Y 1 (O) c + Ell 
3 3 

-1 [L/3~ ~ 
L i4Jx=c3 + L-J 

Y(1) = O = Y' (0) P. + ;I 

L (P. 

M. 
1 

_+ 

+ ~ pi _<1._-_c_i_) 3-

L.-J 3! 

. 

M =O=RP. 
. x=P. 1 + R 2 (P. - c 2) + R 3 (P. - c 3 ) + 

'V Q. (P. - x.) + 
~ 1 1 

P. (P. -c.)+ 
1 1 

M. 
1 

60 
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From these equations, R 1, R 2• R 3 and Y' (0) can now be 

solved by determinates similar to section 5-2 (F). Likewise, 

the general elastic/deflection.curve, slope, bending moment, 

and shearing force equations can be obtained and, therefore, 

will not be carried out in detail in this section . 

. These solutions for two and three span beams prove the applica

bility ofthe method .. They also indicate a practical limitation concern

ing continuous beams. That is, for every n .. spans there are n + 1 

simultaneous linear equations with numerical coefficients to be solved. 

When the number of spans are few this is a reasonable task. When the 

number increases, the method ceases to be an efficient method of ana

lysis for continuous beams. Further treatment of continuous beams 

will not be considered here. 



CHAPTER VI 

PART II - BUCKLING OF STRIPS BY END MOMENTS 

When a strip of constant rectangular cross section is subjected 

to end moments about the short principal axis of the cross sectionT 

lateral buckling may occur. The value of this moment may be much 

lower than that found by ordinary flexure theory. 

where 

The differential equation expressing this type of failure (8) is 

I 

X 

M 

I 
u 

J 
e 

G 

= 

~ 

= 

= 

= 

= 

(6-1) 

Angle of rotation of cross section from initial position 

Longitudinal axis. of strip 

End moment 

Moment of inertia about the Jong principal axis 

1 /3 I c3 d, equivalent polar moment of inertia 

Modulus. of rigidity. 

The solution .of Eq. (6-1) for the critical moment, M , is ob
er 

tained by the Laplace transform method as follows. 

= 
: . 2 

Letting k 
M2 

EI JG u e 
and taking the Laplace transform of 

Eq, (6-1). the following expressions are obtained. 
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s 2q, (s) - si(O) - ii>' (0) - k 2q,(s) = O 

q,(s) 
s~(O)+ ~ 1(0) 

= 
82 +k2 

Since ~(O) = 0, (6-2b) becomes 

Taking the invers~ transform of (6-2c) 

1 . 
i(x) = i 1(0) k sin kx 
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(6-2a) 

( 6-2b) · 

(6-2c) 

(6-3) 

From the initial boundary condition 1(1) = 0 the solution to (6-3) is 

found. 

. 1 
1(1) = 0 = ibT(O) k sin k1 

f t(O) = 0 is discarded as a trivial solution, therefore 

k1 = n1r, (n=O, 1, 2, ... ) (6-4) 

is the solution. 

Substituting k = fZ: into (6-4) the least or critical J~ 
value M is found to be 

er 

M = 
JEI JG 

1r u e 
er 

(6-5) 



CHAPTER VII 

PART II - MISCELLANEOUS INVESTIGATIONS USING 

THE LAPLACE TRANSFORM METHOD 

7-1 General 

In addition. to the types of structures considered. in the previous 

chapters, the following items have been investigated in a general man

ner to determine the applicability of the Laplace transform method to 

their solutions. The. findings have been briefly summarized, expressing 

the relative merits of additional detailed study and development. 

7-2 Columns 

Thomson (13) and Wagner (16) have made extensive use of the 

Laplace transform in the analysis of columns. They have considered 

the centrally loaded, constant and multiple cross section column with 

the usual types of end conditions. 

The investigation proved the Laplace transform could be extended 

to eccentrically loaded, constant cross section columns,. the results of 

which yielded the well-known "secant formula". With the exception of 

multiple cross section columns, it was concluded that the Laplace 

transform method has no outstanding advantage over other methods of 

ana.lysis. 
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However, in the related area of 11beam column" analysis,. the 

Laplace transform can be used to develop an efficient and powerful 

procedure of analysis. Strandhagen (12) has laid the basis for this 

method. He applied the transform in determining the deflections of 

single span, constant cross section members that were subjected to 

various kinds of distributed transverse loads and to axial loads. The 

development of a method similar to that for elementary beams should 

be possible, i.e., a set of generalized solutions for the various types 

of beam columns loaded by any system of distributed loads, concen

trated loads, and applied moments over any portion of the span. 

,It was concluded from the investigation that an extension might 

· also include continuous beam columns, single and multiple span beam 

columns on elastic foundations, and. beam columns with multiple cross 

sections. 

7-3 Dead Load Deflections 

Bridge beams and similar structures are usually cambered to 

compensate for dead load deflections. To determine the amount of 

camber, it is necessary to know the deflection values at many points 

along, the span or spans. 

· In the case of a constant cross section beam,. regardless of the 

number of spans, it was found that the method developed for elementary 

beams is ideally suited, for this task, over the classical methods. Be

. sides knowing the kind and amount of dead load, the only additional in

formation required is either the moment or reaction values at one 
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support as determined by other methods, Knowing either of these 

values, the deflection can be easily computed at any point in any span 

of the beam. 

7-4 Frames, Grid Structures,. and End Fixity 

The general nature of the investigation revealed little of im

portance in the application of the Laplace transform to the analysis of 

these items. However, the existence of important applications should 

not be excluded on the basis of this preliminary study . 

. In general, these topics are quite similar to section 7-3; that is, 

once an end condition (reaction or moment) is determined by other 

methods, the procedures in Chapter IV can be used to determine the 

. values of deflection, slope, moment, or shear. 

7-5 Flat Plates 

The literature survey indicated the feasibility of using the Laplace 

transform method in the analysis of flat plates .. References (6), (10), 

(11), and (17) were the only ones found pertaining to the solution of 

plates by the Laplace transform .. Since three of these have been written 

in approximately the last year, it is reasonable to assume that this is 

an active area of development for the transformation. 

An extension that is readily apparent would be the development of 

· an analogy or direct relationship between the analysis of a flat plate, 

. by the Laplace transform, and that of a grid structure. Additional ex

tensions may be possible. to slightly curved plates, thereby allowing 

the analysis of shell structures. 



CHAPTER VIII 

PART III -- IMPACT ANALYSIS USING THE 

LAPLACE TRANSFORM METHOD 

8-1 General 

When an item, be it a machine, household applicance, or guided 

missile is to be shipped via a commercial or military mode of trans

portation, one of the primary factors in.its design criteria is the "G" 

factor. 

This "G'' factor is the maximum or peak acceleration to which 

the. item may be subjected to while in transit or during handling and 

loading operations. It is used in the design procedure either as a 

· "factor of safety" or as a "limiting factor". As a factor of safety it is 

used to determine the design load or working stress for the structural 

elements of the item. In those cases where the strength of the ele

ments is limited by space, size, materials,. and other criteria, the 

"G" factor is used in the design of a shock mitigating system which will 

limit the maximum acceleration to the required safe level. 

Although easy to define and use, the "G" factor is difficult to com

pute due to the many variables and parameters on which it depends. In 

some designs the ''G" factor can be assumed .. The assumption is 
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based on past experience resulting from trial and error methods. 

otlte;t",;\r.l1:3e, it must be determined analytically and verified by a mini-

· mum number of simulated tests. The two most common methods of 

simulating. the impacts and shocks which an item is likely to encounter 

are the drop and inclined-plane tests .. The size and weight of the item 

usually dictates which method will be used. - the smaller and lighter 

items being dropped while the larger and heavier ones are tested on 

the inclined-plane. The drop test is the more common of the two due 

to its simplicity and lack of requirements for special equipment and 

facilites as in the inclined-plane tests. 

It will now be shown how the Laplace transform method can be 

used in analytically determining a i'G''' factor which can be verified by 

instrumented drop tests. 

When an item is to be shipped it is usually packed in a shock 

mitigating system and placed inside of a shipping container .. For the 

purpose of analysis this mechanical system can be idealized by a sys-

tern of spring-mass components as follows: 

where 

k
l 

= 

= 
= 

the mass of a structural element of the. item 

the inherent elastic property of m 1 

the total mass of the item 
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= the spring rate of the mitigating system 

= the mass of the shipping container. 

. The mass m 1 is usually very small in comparison to m 2, therefore it 

will be neglected in the analysis. The shipping container will be as-

sumed rigid and to have little or no deformation between it and the 

floor upon impact. Also, no rebound is assumed for the container. 

The static deflection m 2gJk2 is usually very small with respect to the 

dynamic deflection and therefore it will be neglected. 

The restoring force k 2x 2 can be either linear or nonlinear .. 

However, nonlinear is by far the most common in actual design practice. 

For the analysis of a linear system with and without viscous damping, 

the reader is referred to Thomson. (13). 

8-2 Impact Analysis for Cushioning with Cubic Elasticity 

Cushioning which has a small amount of nonlinearity can easily 

. be represented by a load-displacement function of the type F(x2) = 

3 
k0 x 2 ':.. r x 2 where k0 is the spring rate that would exist if the elas-

. ticity was linear and r is a parameter associated with the degree of 

nonlinearity. Although the Laplace transform method is not applicable 

to the solution of nonlinear differential equations, it can be used to good 

advantage with the perturbation method to obtain an approximate solu-

tion when the value of r is small.. This procedure will now be shown. 

The equation of motion for this type of cushioning system with r 

. positive and damping neglected is 
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(8-1) 

with the initial conditions 

x20 (O) = o and x20 (O) = A0 = ~ . 

Equation (8-1) can.be rewritten as 

(8-2) 

where w = Fo , the natural angular frequency if nonlinear terms 
0 ~~ . 

are missing and a = __E..._ is a positive constant. A solution for Eq. 
m2 

(8-2) is of the form x 2(t) = x20 (t) + a x21 (t) + a 2 x22 (t) (8-3) 

where the subscript 20 is the generating solution and 21 is the first-

order correction. term and 22 is the second-order correction term. 

l\b powers of a greater than 2 will be retained. Also,. since the 

solution will be oscillatory it will be necessary to assume 

2 2 2 
w = w O + a bl (A) + a b 2 (A) (8-4) 

where A is the amplitude and w is the actual fundamental frequency 

of oscillation, and b 1 (A) and b 2 (A) are functions of the amplitude A. 

This assumption is necessary in order to be able to remove secular 

terms (oscillatory terms having an amplitude increasing indefinitely 

with time) as they arise. Equation (8-4) can be rewritten as 

2 2 2 
WO = w - a bl (A) - a b2 (A) 

Equations (8-3) and (8-4) are. then substituted into Eq. (8-2) resulting 

in 
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where no powers of a greater than 2 have been retained. 

Equating like powers of a the following equations are obtained: 

0 .. 2 
a x20 + w x 20 = o 

1 
x:21 + 

2 3 
a w x21 =b1X20 - X20 

2 .. 2 2 
a x22 + w x22 = bl x21 + b2x20 - 3x20 x21 

. Using the Laplace transformation these equations can be solved in the 

following manner to obtain the approximate solution to Eq. (8-2), 

The generating solution is found from 

2 
x20 + w x20;::;: o 

Taking the Laplace transform 

By substituting in the. boundary conditions 

x 20 (O) = O and X1 ( 0) = A = /2gh 20 0 ,._j-e..-

the subsidiary equation becomes 

A 
0 

2 + 2 s w 
= r-ftgh 

2 . 2 
s + w 

Performing the inverse transformation the generating solution is found 

to be 



72 

. X (t) = Ao sin wt = ~ sin wt 
20 · w w (8-5) 

The first order correction terms can be found from 

Substituting in. the value for x20 and using the identity sin 3 x = i sin x -

~ sin 3x,. the following. form is obtained 

b 1A 
= ( 0 

w 
sin wt + sin 3 wt 

Taking the Laplace transform and using the initial conditions x21 (0) = 

X' 
21 

(0) = 0 • the subsidiary equation becomes 

3A3 3A3 
(b A __ o) o 

1 o - 2 2 
.4w 4w 

X21 ·· (s) =-----2- + -2--·-2-__,..2 __ 9_w_2_ 
(s 2 + w2) (s + w ) (s + 

Performing the inverse transformation the solution is 

b 1A 

. x21 (t) .= ( 2w; 

. b·A 
wt ( 1 o 

2w3 

3 A3 
0 

8w5 

3A3 

--0- ) sin wt -
8w5 

) cos wt + 

32 w5 
(3 sin wt - sin 3 wt) 

The second term is the secular term. . For it to vanish, its coefficient 
· 3A2 

0 
must be equal to zero. Therefore the value of b 1 must be --2-

4w 

The first order correction terms are then 
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x21 (t) = 
32 w5 

(3 sin wt - sin 3 wt) (8-6) 

The second order correction terms can be found from 

Substituting in the values for b 1, x 20 , x 21 and the identities for 

.3 3. 1 ·3 d.2 1.3 1.5 1. sm x = 4 sm x - 4 sm x an sm x sin 3x = 2 sm x - 4 sm x - 4 sm x 

the following form is obtained 

•· 2 b2Ao 
x22 + w x22 = < w 

128 w7 
sin 5 wt 

128 w7 
) sin wt + 

12 A 5 
0 

7 
128 w 

sin 3 wt 

Taking the Laplace transform and using the initfal conditions x 22 ( O) = 

X' (0) 22 = 0 the subsidiary equation becomes 

3 A 5 

( - 0 ) 5w 
128 w7 

2 2 2 2 
(s + w ) (s + 25 w ) 

12 A 5 
0 

( 7 ) 3w 
128 w 

2 2 2 2 
. (s + w ) . (s + 9 w ) 

Performing the inverse transformation the solution is 

+ 
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b A b2Ao 
x22 (t) =(-- -

2w3 

21 A 5 
0) 

256 w9 

. t ( 2 o sm w - 2 
2w 

21 A 5 
0 

- 8 ) t cos wt + 
256 w 

1024 w9 
sin wt -

1024 w9 
sin 3 wt -

1024 w9 
sin wt+ 

1024 w9 
sin 5 wt 

The second term is the secular term. Therefore b 2 must be 

. The second order correction terms are then 

x22 (t) = 
1024 w9 

12 A 5 
0 

sin wt - ----
1024 w9 

A5 
0 

sin 3 wt + ----
1024 w9 

21 A 4 
0 

6 
128w 

sin 5 wt 

(8-7) 

The solution to Eq. (8-2) to the second-order correction is therefore 

A 
0 = --w 

sin wt+ 
aA3 

0 

32 w5 
(3 sin wt - sin 3 wt) + 

a2A5 
0 ----c- (31 sin wt - 12 sin 3 wt + sin 5 wt) 

1024 w9 

2 2 
w = w + 

0 

where A0 .= ~ 

+ 
128 w6 

(8--8) 

Differentiating x2 (t) twice with respect to time, the acceleration is 



x2 (t) :::. - ~ 0 w sin wt + 

a2A5 

3 aA 
0 

32 w3 
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( .. 3 sin wt + 9 sin 3 wt) 

+ 0 ( - 31 sin wt + 108 sin 3 wt - 25 sin 5 wt). (8-9) 
1024w7 

The 11G 11 factor or maximum acceleration occurs when wt = 1r I 2 • 

therefore 

"G" = X (t) = - A w -2 · max o 
32 w3 7 

1024 w 
(8-10) 

In his treatment on impact analysis, Mindlin (7) has solved this 

. same type of cushioning problem using the elliptical integral~ the use 

of which results in an exact solution. 

The purpose in using the Laplace transform to obtain an ap-

proximate general solution is to illustrate how it may be used to develop 

a method of impact analysis when the system is nonlinear. Additional 

extensions can be made that include other types of cushioning for which 

the Laplace transforms exist, systems in which damping is present, 

etc. 



CHAPTER IX 

SUMMARY AND CONCLUSIONS 

Utilizing the Laplace. transform method, the formulation of a 

. generalized procedure of analysis for elementary static beam systems 

has been the primary objective of this thesis. 

This objective has been achieved. The procedure developed is 

· applicable to any single span, constant cross section beam that may be 

subjected to a static transverse system of distributed loads, concen

trated loads, and/or applied moments .. The only restriction imposed 

is that the Laplace transform of the load function must exist~ Since 

most practical load systems do have Laplace transforms, this re

striction detracts little from the generality of the procedure. 

The principal advantages of the transform method are found in 

the ease with which complex load functions can be dispatched, the 

capability of being able to write the solution as one equation for the 

entire span, and the reduction in solution time over classical methods. 

One I s attention is called to the important fact that the seven 

generalized solutions which are summarized in Appendix A constitute 

virtually an unlimited number of elementary beam systems. To as-

. semble an equivalent number of systems from existing handbooks would 
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be very difficult, if not impossible, and certainly would require a mul

titude of handbooks. 

An additional extension of . the Laplace transform method is 

possible in the development of a similar procedure for single span 

beams with variable or multiple cross sections. 

The procedures for the elementary beams were extended directly 

to the analysis of continuous beams with constant cross sections. It 

was found that as the number of spans increased, the amount of com

putation required to obtain the solution increased. That is, for every 

n ·. spans there were n + 1 simultaneous equations to solve. When the 

analysis is being performed by hand, this task becomes unreasonable 

when n exceeds three, 

This suggests an extension could be made of the Laplace trans

form method, in conjunction with computer techniques, in the develop

ment of a procedure for continuous beams. A further extension might 

also be made to continuous beams with variable or multiple cross 

sections. 

A general investigation was conducted to determine additional 

areas, in the static structures field, for which the Laplace transforma

tion would have important applications. 

The areas investigated were columns, frames, grid structures, 

flat plates, and beams with varying degrees of end fixity .. From this 

investigation, it was concluded that beam columns and plates have the 

best potential for further development. The formulation of a procedure 
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for beam column analysis, similar to elementary beams, is possible 

and would be both important and desirable. 

A similar procedure developed for flat plates can perhaps be ex

tended to slightly curved plates, thereby including the analysis of shell 

structures. It is also possible that an analogy could be developed to 

extend the analysis of flat plates to grid structures. In general, the 

remaining topics were found to have no apparent characteristics which 

.. would enable the Laplace transform method to have an advantage over 

established methods of analysis. 

In. the field of impact analysis the Laplace transformation is an 

important tool. . In this thesis it was used to determine the maximum 

acceleration for a slightly nonlinear system. Although not applicable 

. to nonlinear analysis, the Laplace transform can be used in conjunction 

with the perturbation method when the degree of nonlinearity is small. 

The system represented an item that was cushioned in a material which 

had the characteristics of an undamped,. massless, hard spring. The 

solution was obtained for a drop of any height, h. 

Further applications in this field were not attempted at this time. 

However, there are many types of impact systems which deserve de

tailed study and development through the use of the Laplace transforma

tion .. For instance,. systems in which damping is present, systems 

where the load-displacement characteristics can be represented by 

transformable functions, systems where the mass of cushioning is 

accounted for in the analysis, etc. 
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In conclusion, the Laplace transformation is considered to be an 

efficient and powerful method of analysis in the static and dynamic 

structures field where Ws development and applications are far from 

having been exhausted. 
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SIMPLE BEAM 

I{ . 
. . i 

____,. X 

----,.---------'' 

END REACTIONS 

Rl • ·+[L'. Qi(.I ~ii)+ Lpi(l •Cl) .j. LM1] 

Ra ~ • +[L Q1x1 + L i>1~1 • L M1] 

DEFLECTION AT ANY POINT 

Y(x) • Y1 (O)x + ..L_ { R .2!_.
3 + L·l c~. J !!:I I ~I 8 4 

· 3 2 . I (x·c) L (x•d) , } 
+ P1 -· -·-1- S (x) + . M1.--1- sd (x) 

· 31 cl 21 I 

SLOPE AT ANY POINT 

BENDING MOMENT AT ANY SECTION 

- SHEARING FORCE AT ANY SECTION 

WijERJ!;. 
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SIAIPLE OVERHANG!XG ·BEAM 

-x 

END REACTIONS 

Rl (c 2\) { L Q?1 + LP!ci :Li.\ - c2 (LQi + L Pi)} 

R2 = (c 2
1- c1) {I Mi -I'Q?i-LPici + cl (LQi +LP!~ 

DEFLECTION AT ANY POINT 

Y(x) = Y(O) + Y1 (O)x + ..!_ R --1-· S (,<) + R ---2- S (x) + L-l ~. + P .. -.-- S (x) + { 
(x - c )3 (x c )3 · [ J I (x. - c 1)3 

El I 31 c 1. 2 3·1 c 2 · · . 8 4 , 31 . ci 

SLOPE AT ANY .POINT 

2 } L. (x-ct1) 

M. --- Sd
1
.(x) 

l 2! 

~(x) = Y' (0) + Ell. {Rl (x -2c/ Scl(x) + R (x - c2)2 S ( ) + d L-1 [~]·+ ""P. (x - <)2 S (x) + 
2 --2- C2 X dx s·4 L_,.1 2 Ci 

BENDING MOMENT AT ANY SECTION 

SHEARING FORCE AT ANY SECTION 

WHERE 

. . . 3 

L (cl-ci) 
c 2 P.---
. 1 31 ·. 

. . 3 · L (c -c,) 
- ·L-l[!dl_J + P. - 2-.-1 -· S (c) -

s 4 x=c · 1 31 °1 2 
. . . 1 . 
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SIMPLE BEAM WITH ONE OVERHANG 

X 

. I 
END REACTIONS 

DEFLECTION AT ANY POINT 

SLOPE AT ANY POINT 

BENDING MOMENT AT ANY SECTION 

SHEARING FORCE AT ANY SECTION 

WHERE 

! . 2 

[ 
. (c 1- d.) 

• I M1---1 -Sd (c 1) + 
21 l 

i 

L. (I -c/ 
cl <'1 __ _ 

· 31 . 

Y 1 (0) ~ l 
(c 1 • I) El 

i 3 3 
·l [.· LR] L (cl. cl) L .(I - cl) L --, • P --- S (c ) t P.--. -

. a 4 ,x=t I 31 Ci l ·1 31 
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CANTILEVER BEAM 

END REACTIONS 

DEFLECTION AT ANY POINT 

{ I (x • 0 )
3 ··L (x c d >2 } 

Y(x) = Y(O) + Y' (O)x + ~I, L·l [ L~J + ·. Pl --1- S (x) + M, --1- Sd (x) 
s . 31 °1 . ' 21 I 

SLOPE AT ANY POINT 

BENDING MOMENT AT ANY SECTION 

SHEARING FORCE AT ANY SECTION 

WHERE 

Y(O) i1 [ ( :, L·l [L~j)x=l +LP/ : c/ + L Mi(! • di] l - i1 { L-1 [~!].=! + L p/ :le/ + 

""M, (l - d/ } 
L._i 1 21 

Y' (0) • . L {. (-. ct L·l r:L~l) 
. E! ·. dx Ls 4J x=I 
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PROPPED CANTiLEVER BEAM 

END REACTIONS 

~ (I -ct.) 2 } 
J ~ .. M. (l - d ) - ) M. --1- . L , . 1 u 1 21 

DEFLECTION AT ANY POINT 

Y(x) = Y' (O)x + E;I R 1y1 + L- __@_ + P. ---1 -· S (x) + M. --1 - S (x) f 3 1[ L J I. (x - c} I. (x - d.)
2 

} 

S 4 l 31 Ci l 2 ! di 

SLOPE AT ANY POINT 

~(x) = Y' (0) + Jii {RI ;.
2 + --2__ L-l [.Y.!_J + ~-, P ~ - c/ S (x) + ~ M.(x - d,)S I (x)} 

dx 8 4 ·L. i 2 ci L 1 1 ct 

BENDING MOMENT AT ANY .SECTION 

SHEARING FORCE AT ANY SECTION 

2 3 I (l - c1) I (I .- c1) 
+ P.--- - P. ---

1 31 1 311 
+ L-1 [L~ J 

s x=1 



· PROPPED CANTILEVER BEAM WITH OVERHANG 

END REACTIONS 

I----·,~ ", ,, 2 
__ J·, 

3 L .(!CC,) 

P.--'-
1 31 

ct. 
1 

M 2 = - [R 1 (i \ c1) + :z Qi (l ,- i<) + :z Pi (I - \I + :z Mi] 

DEFLECTION AT ANY POINT 

Y(x) = Y(O) + Y' (O)x + ii {RI (x -3!cl)3 Scl(x) + L-1 [L~ J + ~ P. (x - c/ S (x) + ~ M. (x - ct/ Sct (x~ 
s L..J 1 3! Ci L 1 2! i 'J 

SLOPE AT ANY POINT 

, { (x - c )
2 

d L ( )2 L } 
¢(x) = Y' (O) + ii R 1--

2
-1- S (x) + ct,; L-l [L:.J + P.~ S (x) + . M.(x - ct.) Sd (x) 

Cl S l 2 Ci l 1. i 

BENDING MOMENT AT ANY SECTION 

. - ,,2 -l[L~J L L 11\(x) - R1(x - c 1) Sc (x) + 2 L 4 + P.(x - c.) S (x) + M.Sd (x) 
1 dx S l 1 Ci 1 i 

SHEARING FORCE AT ANY SECTION 

WHERE 

Y(O) = 2(1 - 1c ) El [3cl {L-: [ L~J 
1 s x=i 

L (l -c} L (I -ct}} {(ct ![LBJ) + P.---1 + M.--1- + c .(c -£) - L- - + 
1 31 1 21 1 1 dx 5 4 x=i 

} { 
3 2 ] _ 1 r · (c cc ) (c - d.) 

- di) - (21 + c 1) L [---"~] +~ P.-1- 1- S (c I+~ M.-1- 1- S. (c .~ 
s x=cl L...J 1 3! ci 1 L-.J 1 2! di 1'J 

Y' (01 1 
"-W- c 1.)EI 

~P '._'.__:_"i +~M '1 -ct/} + 0 _ c 1 {(_c!_ L-1 [L04l) +~ P1. (i - "ii2 .. +~ M,.u -ct1.1}] L 1 3! L 1 2! 1 dx s ~ x=l ~ 2 L 
.'· 
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FIXED.BEAM 

.I I 
1---~-----Ci~ 

RI t di ----------,-,,.i,tR2 

END REACTIONS 

12 {L( _L L·l[.!d!._J ·) 7 2 . dx . s 4 x=l 

2 3 
•. L·I [L~ J + .!_ ~ p ~ • ~ p. (I • ci) + 

s x=I 2 L..., i 21 L..., I 3! 

I . . (I • d.)2} 
- ~.M.(1 • d) -~ M. --1-
~ 6 1 i ~ l 2! 

. · 2 . 3 L (I ·c·) L (l -c.) 
..!... P, --1- • l?. --1-
3 1 2 ,l 3! 

+ 

SLOPE AT ANY POINT 

BENDING MOMENT AT ANY SECTION 

sm;AR!NG FORCE AT ANY SECTION 



APPENDIX B 

THE LAPLACE TRANSFORMS OF USEFUL 

f3 = ~ [ qiS a. (x) - qiSb. (x~ F ACT9RS 
1 1 

AND THEIR INVERSE TRANSFORMS 

;a. Uniformly Distributed Load 

1111111111111 h 
{3 = I lq. S (x) - q. Sb (x>1 L.:1 a. 1 . ~ 

. 1 1 

L{3 I{~ ::;8 -~ ::i·} 
= L {~ (x~~/ 

4 
(x - b.) j 

S (x) - q. 1 , Sb (x) · 
a. .. 1 41 . 

1 . 1 

b. . Triangularly Distributed Load 

Case I 

I b. 
1 
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(3 = L {bi~ ai (x - ai)sa.(x) - qisb. (x) -
1 1 

q. (x -bi) sbi (x} 1 

b. - a. 
1 1 

L {bi\i 

-a.s -b.s ~::s} 1 1 q, 
L/3 e e 1 

= -- -q.-- -
2 1 S b. - a. 

s 1 1 

L {biq\ 

5 4 

L-1[::J (x - a.) (x - b.) 
= 1 . s (x) - q. i , Sb. (x) -

5! a. 1 
4! 1 1 

5 

\ (x~ 

q, (x - b.) 
1 1 

b. -a. 
5! 1 1 

Case II 

I ~ q. 
1 

I ai I bi 

L { q, {3 = q. S (x) - b 1 (x - a.) S (x) + 
1 a. . - a. 1 a. 

1 1 1. 1 

q. (x -bi) sbi (x} 1 

b. - a. 
1 1 

L ( ~ais qi 
-a.s 

1 

L/3 = e 
qi s b. - a. 

-- + 
S2 1 1 



= 

b - a 
i i 

q, 
1 
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b. - a. 
1 1 

5 
(x - a.) q, 

1 S ( ) 1 
X + b, - a, 

5 ! ai 1 1 

(x - b.) 5 } 
___ 1 -. Sb (x) 

51 i 



APPENDIX C 

A NUMERICAL EXAMPLE 

l y q_ M. ·1 1 
p 

i 

0 . } 

c-rl i 

1 . 

b. 
1 

d. 
1 

c2 

c. 
1 

. J. 

Find ·the deflection at x = 11. ft. by the method of 

I. Area Moment 

II. Section 4-7-2 · 

III. Appendices A and. B. 
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Given: 

a. = 2' cl - 5' 
. 1 

b. .. 10 1 c2 = 20 1 
1 

c. = 25 1 P. = -2, 000 lbs. 
·1 1 

d. = 15 1 M. = -50 lb. -ft. 
1 1 

J. .,. -30 1 q. ,.., -100 lb.I-ft. 
1 

. I. . Solution by Area Moment 

From statics, R 1 and R 2 are found to be: 

= _ [(5) (2000) - ~~ - (100) (8) (14)j = 83 _113 lbs. 

2800 - 83-1/3 = 2716-2/3 lbs. 

l ~c I 2000 lbs . 

. tAC ' 

_j_=======:d~!:::::I:=-====-=======~ ) 
I bi C 10,000 lb. -ft. 

--5' --t-- 51 ---5'--
..-~~~~~~151 ~~~~~~~ 

83-1/3 lbs. 2716-2/3 lbs. 

Using the tangential deviations and geometrical relationships 

from the above sketch, the deflection at x ;: 11 ft. is found as follows. 

The bending moment by parts,. as drawn from C to A is 



40,750 lb. -ft.i----.... 
1----~--~-------=-. 

b ft 7.5 1 10,000 I.- .i.--~~-!...!...-=-~~-

50 lb. -ft . .._._ _ _,_,__ ...... 

5' 30,000 lb. -ft.~--=---

1. 250 lb. -ft. 

with the moment arms as shown. 

( +) 

(-) 

The area moments are computed and algebraically summed to 

give the tangential deviation, t AC' 

+ (40,750) (7. 5) (5) 

- (10,000) (15) (7. 5) 

+ (50) (10) (5) 

= + 1,528,125.00/EI 

= - 1, 125, 000. 00/EI 

+ 2,. 500. 00 /EI 

- (30, 000) (7. 5) (5) = -1,125,000.00/EI 

- (. 1250) (1. 667) (1. 25) = 2, 604. 1 7 /EI 

L A "i: 
m. 1 

1 . 

tAC = EI :;:: - 721, 979. 17 /EI 

The bending moment by parts,. as drawn from C to B is, 

24,450 lb. -ft . ._,.. __ 
,1..--,--.....,------=~ 

10. 000 lb. -ft. ~-4-'-._5_1 ___,. 

50 lb. -ft . .__,::;;......... + 

18, 000 lb. -ft. -----

. with the moment arms as shown. 
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The area moments are computed and algebraically summed to give 

the tangential deviation, tBC' 

+ (24, 450) (4. 5) (3) 

- (10, 000) (9) (4. 5) 

+ (50) (4) (2) 

- (18, 000) (4. 5) (3) 

= 

= 

= 

= 

= 

+ 330,075.00/EI 

- 405, 000. 00 /EI 

+ 400.00/EI 

- 243,000.00/EI 

- 317,525.00/EI 

The deflection Y(ll) is found by the following geometrical re-

· lationships. 

bb ' O 6 (O 6) (- 721, 979.17.) = - 433,187.50 = . tAC = . · EI EI 

y (11) = bb' _ t :: -433, 187. 50 + 317,525.00 = 
BC . EI 

II. . Solution by Section 4-7-2 

A. Boundary Conditions 

Y" (O) = Y"' (O) = Y (5') = Y (20 1 ) = 0 

B. Load Function 

- 115,662.50 
EI 

.F(x) = R 1 s5 (x) + R 2 s~0 (x) - 100 s2 (x) + 100 s10 (x) -

2000 S' (x) - 50 S"· (x) 
25 · 1'5 
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C. . Laplace Transform of Load Function 

-5s -20s e2s -l Os 25 
f(s) = R 1e + R 2e - 100 -s- + 100 7 -2000 e s 

50s e15s 

D. Inverse Transform of Ji1 [:~>] 

1 L-1 [fs(4s>l = 1 { (x - 5)3 (x - 20)3 
EI J EI Rl 3 ! . S5 (x) + R2 3 ! . 8 20 (x) -

(x - 2)4 (x - 10)4 
100 41 , s2 (x) + 100 41 .. s10 (x) -

2000 (x - 25 ) S ( ) - 50 (x - l 5) S ( ) · 3 2 }' 
3 ! 25 X 2 ! . 15 X 

E. . Substituting (A) and (D) into Eq. (4-2b) 

1 (x - 5) .{ 3 
. Y(x) = Y(O) + yr (O) x + EI R 1 3 ! ., S 5 (x) + 

3 4 
R (x - 20) S (x) - 100 (x - 2) 

2 31 5 · 41 
_ s2 (x) + 

4 3 
· 100 (x - lO) S (x) - 2000 (x - 25 ) . s25 (x) -

4! 10 3! 
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F. Evaluation of Unknown Boundary Conditions and Reactions 

By statics, 

Rl = 11,200 + 15i - 10,000 = 83-1/3 lbs. 

R 2 = 2, 8 o o - 8 3 """1 I 3 = 2, 71 6 - 2 I 3 lbs . 

0 

1{ #" Y(5 1 ) = 0 = Y(O) + 5Y' (O) + EI R. 
1 . s 5 (x) + 

0 

R (5 ... 20) 3 S ~5) - 100 (5 - 2) 4 
2 3! . r. 4! 

1 

05) + 

4 
100 (5 - 10) 

4! 

0 

s/(5) - 2000 

0 

50 (5 - 15)2 s./(5} 
2! /5 

0 

(5 - 25)3 s_/(5) -
3! . i 

1 

1 
Y(20 1 ) = O = Y(O) + 20 Y' (O) + EI { 

(20 - 5) 3 ,i 
Rl 3! . S5/0) + 

0 1 

(20 20) 3 (20 - 2) 4 ~ ~ 
R 2 31 s 20 (20) - 100 41 7 (20) + 

1 0 

100 
(20 - 10) 4 

s/20) - 2000 <20 - 25l3 
8/(20) 4! 1 3! 

1 

- 50 
(20 - 15) 2 

· 1(20} 2! 



Substituting in the values for· R 1 and R 2, these equa-

· tions reduce to 

Y(O) + 5Y' (O) = 337 • 5 
EI 

Solving simultaneously, 

.· Y(O) = _ 116,~:4. 45 

Y' (O) = 23,276.39 
EI 

G. General Elastic/Deflection Curve Equation 

Y(x) ;: _ 116, ~:4. 45 + 23,276.39 
EI 

(x - 5)3 ( 20) 3 
83-1/3 31 .. s5 (x) + 2716-2/3 x ;! 8 20 (x) -

4 4 
100 _(x ~ 1

2) . 8 2 (x) + 100 (x ~/O) s10 (x) -

99 



100 

Y(ll) = 116,044.45 + 23,276.39 (ll) + 1 { 
EI EI EI 

3! 
(11 - 2) 4 

- 100 
(11 - 5) 3 

83-1/3 
4! 

-- + 115,662.50 EI (+ sign indicates deflection is upward.) 

H. Slope, Bending Moment and Shearing Force Equation 

a. Slope 

cp (x) = 23,276.39 1 
EI + EI [83-1/3 (x ; 5>

2 

2 3 
2716-2/3 (x ~ 20) s20 (x) - 100 (x; 2) s2 (x) + 

3 2 
100 (x - 1 O) S ( ) - 2000 (x - 25 ) 

6 10 X 2 

50 (x -15) s15 (x} 

h. Bending Moment 

Mb (x) = 83-1/3 (x - 5) s5 (x) + 2716-2/3 (x - 20) s20 (x) -

2 
100 (x - 2) 

2 
(x - 10) 2 

s2 (x) + 100 2 s10 (x) -

2000 (x - 25) s25 (x) - 50 s15 (x) 
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c. Shearing Force 

V(x) = 83-1/3 s5 (x) + 2716-2/3 s20 (x) - 100 (x - 2) s 2 (x) + 

100 (x - 10) s10 (x) - 2000 s25 (x) 

III. Solution by Appendices A and B 

R l = l ~ [- 4 8 0 0 - 5 0, 0 0 0 + 5 0 + 5 6, 0 0 O J = 8 3 -1 / 3 lbs . 

R 2 = /5 [ 5 0 + 4, 8 O O + 5 0, 0 0 0 - 14, 0 0 0 J = 2 71 6 - 2 / 3 lbs . 

Y(O) ::: _1_ ~ ( 250) (15)3 + 5 [ 100 (18)4 + 100 (10)4] -
l 5EI l 3 6 L 24 24 

20 [ - 100 <1: J + 5 [- 50 <5t J} = 
116,044.45 

EI 

. 1 [( .2350;, 
yi (O) = -15EI t 1 

(15) 3 
6 + [ (18)4 + 100 (10)4]-

- lOO 24 24 

t 100 <3;: J + [- 50 <f J} 23, 27 6. 39 
= 

EI 

Y(x) = _ 116,044.45 + 23,276.39 + J:__ [ 83 _113 (x - 5) 3 
8 (x) + 

EI EI x EI 3! 5 

3 4 
2716-2/3 (x - 20) S ( ) - 100 (x - 2) 

3! 20 X 4! 
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100 
4 3 

(x - 1 O) S ( ) _ 2000 (x - 25) 
4! 10 X 3! S25 (x) -

2 j (x - 15) 
50 21 . s15 (x) 

Y(ll) = _ 116,044.45 + 23,276.39 (ll) + _!_ { 83 _113 (11 - 5) 3 

EI EI EI 3! 

100 (11 - 2)4 + 100 (11 - 10)4] = + 115,662.50 
4! 41 EI 

(+ sign indicates deflection is upward.) 

¢ (x) = 23, ~16. 39 + i1 { 83-1/3 (x; s>2 S5 (x) + 

2 3 
2716-2/3 (x - 20>. S (x) - 100 (x - 2> 

· 2 20 6 

3 2 
100 (x -5 lO) s10 (x) - 2000 (x - : 5) s25 (x) -

50 (x - 15) s15 (xi} 

~ (x) ::; 83-1/3.(x - 5) s5 (x) + 2716-2/3 (x - 20) s 20 (x) -

2 2 
100 (x - 2) S -(x) + 100 (x - lO) 

2 2 2 S10 (x) -

2000 (x - 25) s25 (x) - 50 S15 (x) 
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V(x) = 83-1/3 s5 (x) + 2716-2/3 s20 (x) - 100 (x - 2) s2 (x) + 

100 (x - 10) s10 (x) - 2000 s25 (x) 
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