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CHAPTER I 

INTRODUCTION 

The purpose of this thesis is to show the application of the 

String Polygon Method to the calculation of the moment distribution 

constants for a symmetrical bent member. The historical background 

of the String Polygon Method was recorded by Tuma< l) and will not 

be repeated here. 

The material presented in this thesis is the outgrowth of the 

Civil Engineering Seminar 620 and reference to the Seminar notes is 

made. The writer's contribution is the introduction of the bent beam 

as the simple structure and the application of the String Polygon Method,. 

in connection with this structure, to th~ calculation of the moment dis-

tribution constants. 

In the second chapter of this thesis the basic structure is 

discussed and the deformation of the structure defined in terms of the 

corresponding conjugate structure. From the conjugate structure 

three elasto-static equilibrium expressions are derived and simul-

taneously solved for the slope deflection equations. 

The basic ideas of segmental and joint elastic weights, the 

definition of the string polygon functions, and the location of the line 

through the elastic center are presented in the ·third .chapter .. 

The calculation and definition of the angular and linear dis-

placement functions and the moment and force functions are shown in 

1 
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chapters four and five respectively. The numerical procedure,. appli­

cation,. and final conclusions are recorded in the last two portions of 

the thesis. 

The sign convention and nomenclature are listed under their 

respective titles. The calculation of deformations is based on the 

assumption of perfect elasticity and the other customary assumptions 

of elastic analysis are introduced as the basis for this work. 

A list of selected bibliography is made at the close of this 

thesis but no special reference is made. 



CHAPTER II 

DEB.IV ATION OF THE SLOPE DEFLECTION EQUATIONS 

2- 1. Basic Structure 

A fixed-end, symmetrical bent member of variable cross sec­

tion acted upon by a general system of loads is considered (Figure 2-1 ). 

ceIT l [I 

Figure 2-1 

Loaded Structure 

® 

A simple bent member is introduced as the basic structure 

(Figure 2- 2 ). The redundant reactions are transferred. to points A I arid 

B' located on the horizontal line passing through the elastic center. 

3 
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··c:C[J I Ct 

-- l line through the 

elastic center 

L 

Figure 2-2 

Basic Structure 

e 

The end reactions in terms of the loads aqd redundants X:1 Y., 

and Z are: 

RAX = z RBX = -z 

x; +Y 

4 

X+Y 
RAY = BVA - RBY = BVB + L (2-1) 

L 

MAB = X + Ze MBA 
.:z y - Ze 

where e is the ordinate for the line through the elastic center. 

A general displacement of the supports is introduced and de-

noted as:-

-AAX ~B 

2-2. Deformation Equations 

An effort will be ·made here to• show the derivation of:theCslope 

:deflec"tiori. :equations for a symmetrical bent member by means of the 

conjugate structure. 
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The conjugate structure corresponding to the real structure 

(Figure 2-2) is shown in Figure 2-3 acted upon by the elemental elastic 

weights and the end deformations. The sign convention for elastic 

weights and end deformations is defined in the nomenclature. 

x' 
___ L____.s/ 

I 
Figure 2-3 

Loaded Conjugate Structure 

+x 

By summing moments about tp.e Ay-axis, By-axis, and A 'B'-axis 

three elasto-static equilibrium equations may be written. 

LMBy = 0 -----c____ 

B 

VA,L - MA'y - I p xi + MB' = 0 
s s . y 

(2-2) 

A 

LMAy = 0 ~ 

B 

VB,L + MB'y + I i\ X MA'y = 0 
s 

(2-3) 

A 
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L MA'B' = 0 ---c:::: -
B 

M;A 'x + I p Ys - MB 1x = 0 (2-4) s 
A 

Transposing terms to equate the load terms to the end deforma-

tion terms and dividing each term by the length L results in 

B 
x' AA'y AB'y + }: p s = + ()A' + L -s L L 

(2-5a) 
A 

B 
AA'y A I 

X 
p s = + OB' + B'y -s L L ~ 

(2-5b) 
A 

B 

+ I p 
Ys = -AA'x + AB'x s (2-5c) 

A 

where 

VA' = () At VB' = ()B' 

MA'y = AA'y MB'y = AB'y 

MA'x = .AA'x M B'x 
= AB'x 

2-3. Conjugate Load Functions 

The 'elemental elas.tici weight (PS) fs '~ function of the :ld:adS:. ' 

and redundants and may be written as 

,., BM ds 
p' = s 

s EIS 

Denoting 

BM ds s 

x'ds s + X=~ 
LE Is 

X ds 
y_s_ 

LEI s 

ysds 
z EI. (2-6a) 

s 

= elemental elastic weight due to loads 



x' ds s 
~ LEI 

s 

= elemental elastic weight due to X = 1. 0 

X ds s 
LEI s 

= elemental elastic weight due to Y = 1. 0 

y ds s 
EIS 

= elemental elastic weight due to Z = 1. 0. 

Equation (2-6a) becomes 

PS = p L + XP X + yp y + ZP z . 
s s s s 

In terms of this notation, the left sides of Equations (2-5) are: 

B 

2 
A 

B 

-2 
A 

X 
p~ 

s L 

B 

=I 

= -

A 

B 

2 -Lxs 
p -

s L 
A 

B X 

- X 

- y p -· I -. y s 
s L 

A 

x' s 
L 

B X 2 -x s p -
s L 

A 

x' s 
L 

7 

(2-6b) 

(2-7a) 

(2-7b) 



·B 

~Py 
~ s s 
A 

From symmetry,. 

B 

B 

+ Z ~ P:: Ys· 
A 

'pY y :::. 0., L,,_ s s 
A 

8 

(2-7c) 

Now it may be observed that Equation (2-7a) represents the 

left reaction of the conjugate structures Equation (2-7b} represents the 

right reaction, and Equation (2-7c) represents the moment of the con­

jugate structure about the line A 1B 1• 

Denoting 

B x' ~""'.'"y s 
~PS L' 
A 

B X L-x s 

A 

p -s L 

B . 
~ pYXS .. = 
~ s L 
A 

(2-8a,.b} 

(2-8c;, d) 

(2-ae. f) 

Mi'B' (2-8g> h} 
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the Equations (2-5) reduce to 

-L -x -y 
e A' 

AA'y AB'y 
RA, + XRA1 + YRA, = + - + L L 

(2- 9a) 

-L -x -y AA, AB'y 
RB' XRB' - YRB' = + eB, -

__ y 
+ 

L L 

(2-9b) 

(2-9c) 

2-4. Slope Deflection Equations 

From the simultaneous solution of Equations (2-9) and with new 

equivalents 

N- = R-x -Ry -Rx -Ry 
A 1 B 1 - B 1 A' 

!/I A 1B 1 

the redundants become 

-y -y -y -y 
RB' RA' RAY + RB' 

X = -=- 8A 1 +--=---()B 1 + !/JA'B' 
N N N 

-L-y -L-y 
+ RB' RA, - RA, RB' 

(2- lOa) 
N 

y = -

-L-x -L-x 
RB' RAt - RA 1 RB' 

(2- lOb) 
N 



z = + 

..;...L 
MA'B' 
-z 
MA'B' 

10 

(2- lOc) 

These expressions for the redundants are substituted into the 

Equations (2-1) and the slope deflection equations for forces and mo-

ments are obtained. 

RAX = + 
1 

- -L 
, MA 1B 1 

Ax, - -z 
MA'B' 

(2- lla) 
---- z 
MA 1B 1 

; -y -x -y -x 
RB' - RB' RA' - RA, 

RAy = BVA - 8 A' (JB' 
LN LN 

-y -y -x -x 
(RA, + RB,) - (RAL + RB,) 

LN if; A'B' 

-L -y -x -L -y -x 
RB' (RA' - RA,) - RA, (RB'-:- RB,) 

(2-llb) 
LN 

-y -y -y -y 

MAB = RB' 
8 A' + 

RA, 
(JB' + 

RA,+ RB' 
l/JA 1B 1 

N N N 

-L -y -L -y 
RB, RA' - RA, RB' 

+ e 
Ax, + -z N MA 1B 1 

-L 
MA'B' (2-llc) 
-Z 

e 

MA 1B 1 

-L 

RBx 
1 

~I + MA'B' (2-12a) = -
-z -z 
MA1B 1 MA 1B 1 



-y -x 
RB' - RB' 

RB. . . = BVB + (}A_-t + 
Y LN 

==- ·--

- L -x -L -x 
e RBt RA t. - RA' RB' 

---A,--z X 
MA'B' 

-L 
MA'Bt + e. -z 
MA1B 1 

11 

(2-12b) 

(2-12c) 

In terms of the end deformations and noting the following 

equalities;, 

(} A' = (} A r/J AlBt = r/J AB 

(}B' = (}B A = x.r A - e(}A + e9B X 

the Equations (2-11) and (2-12) may be written as 

RAx = - e 
(} A + e 

(}B -Z -z 
MAtBt MA'Bl 

-L 
+ 1 A MA'B' (2-13a) --z X -z . 

MA'B' MAtBJ 



MAB 

RBx 

-y -y -x -x 
(RAr + RBr) - (RA' + RB,) 

if; AB 
LN 

-L -y -x. -L -y -x 
RB' (RA' - R At) - RAY (RB' - RBr) 

LN 

,~y 
RA, 

12 

(2-13b) 

= t:· - 2 l e () 
-z A 
MA'B' 

[
-y 

+ -- + 
N 

2 l e . () 
-z B 
MA'B' 

-y + -y 

+ 
RA' RB' 

N 

-= + e 
() A --z 

MA'B' 

1 A + -z 
MA'B' 

X 

i/J AB + 

e 
-z 
MArB' 

-L 
MA'B' 
-z 
MA'B' 

e 
-z 
MA'B' 

Ax 

()B 

-L 
MA'B' 
-z 
MA'Br 

e (2-13c) 

(2-14a) 
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/ 

-y - Rx -y -x 
RB' RAr - RA, 

RBy = BVB + Bt 0 + OB 
LN A LN 

-y itJ,) -x + -x 
(RA, + - -(RA' RB,) 

+ ¢ AB 
LN 

-L -y -x - L ·-'-Y -x 
RB_, (RA' - RA,) ·- RA' (RB' - RB,) 

+ 
LN 

(2-14b) 

[R:, 2 J -t!' 2 J MBA 
e + e 0 = - - OA -z -z B 

MA1B 1 MA'B' 

-x -x 
RA, + RB' e 

¢AB - -z 
N MA'Bt 

A 
X 

-L-x -L-x -L 
RB' RAt - RA' RB' + MA'B' 

e 

N Ml'B' 
(2-14c) 



CHAPTER III 

STRING POLYGON 

3-1. General 

The extention of the string polygon to the analysis of fixed-end 
. . . 1) ( 1 

and hinged bent bars was presented by Tuma ( .. ,, Oden J 1- and 

BoeckerC2>. In these works it was shown that the continuous elastic 

weight can be replaced by the joint elastic weights. For the complete-

ness of this discussion" the basic ideas of segmental and joint elastic 

weights are restated here. 

3-2. Segmental Elastic Weights 

The string polygon functions are the end forces and moments .of 

the conjugate structure due to loads and unit redundants. The solution 

for these functions using the elemental elastic weights entails consider­

able labor. The totalconjugate structure (Figure 3-la) can be divided 

into individual straight segments of finite length and each segment may 

be treated as a separate conjugate beam (Figure 3- lb). 

Instead of working with the elemental elastic weight acting on 

each separate beam# the total elastic weight of each segment may be 

represented by two end reactions (Figure 3-lb). These segmental 

reactions must now be applied as the new loads on the total conjugate 

structure (Figure 3- lc ). 

By this operation> the following simplifications are achieved: 

A. The continuous elastic weight is replaced by two equivalent 

forces for each segment. 

14 
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® 

® 
Figure 3-la 

Total Conj"qgate Structure with Continuous Elastic Weights 

® ® 
Figure 3-lb 

Segmental Conj'ugate Beams with Segmental Elastic Weights 

® 

Figure 3-lc 

Total Conjugate Structure· with Segmental Elastic Weights 
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B. These forces are applied at the joints of the conjugate struc-

ture making the calculation of the lever arms very feasible 

(the coordinates of the joints are known from the beginning 

of the analysis). 

The analytical expressions for these segmental elastic loads 

were derived elsewhere and"'.are. 

P .. = M. Gi. + M. F .. + .,-J.i Jl 1 J J Jl 
(3- la) 

p jk = Mj Fjk + Mk Gkj + 7jk (3- lb) 

The functions of these equations are the end bending moments 

Mp Mj t Mk,. and the loads acting on the segments. The six angular 

constants are defined and illustrated in Table 3-1. 

The angular constants due to loads (7's) must be·calculated for 

loads acting normal to the member. If concentrated dI' continuous loads 

are applied under a certain angle,;. the resolution of the loads into nor-

mal and tangential components must be performed. 

The Equations (3-1) are completely general anq applicable to 

any portion of the bent member .• 

3-3. Joint Elastic Weights 

The joint elastic weight (P j) is the sum of the se·gmental elastic 

weights at a joint and is expressed as 

p. :::. p.. + p "k • 
J Jl J 

(3-2) 

Because the bending moment is a function of the loads and the three re-

dundants,. each joint elastic weight may be resolved into joint elastic 

weights due to loads and thEf.reduridarit$. x.,: y,.·.a,nd Z .. ' :rhese- are,:::· . 

(3-3a) 



TABLE 3-1 

-~ . rdilI I 

1 l 1 
u ul 

dj 

Cr Mi 
·= 1. 0 

)i A 

1 
d. ! J 

E 

1 

.. , 

'T •• 
Jl 

G .. 
Jl 

F .. 
Jl 

G .. lJ 

ANGULAR CONST AN.TS ... 

BM u' du 
u 

cl.EI 
J u 

= the end slope of the .simple 
beam at i due to loads. 

=Ji j _B_M-u_u_d_u 
d.EI 

J u 

= the end slope of the simple 
beam at j due to loads. 

2 
u' du 

d~EI 
J u 

= the end slope of the simple 
beam at i due to Mi = 1. O .. 

=lj u uf du 

d~EI 
J u 

= the end slope of the simple 
beam at j due to M. = 1. 0~ 

. 1 

2 u du 

d~ EI 
J u 

= the end slope of the simple 
beam at j due to Mj = 1. O. · 

-lj u ul du 
- 2 

i d. EI J u 

= the end slope of the simple ·. 
beam at i due to Mj, = 1. 0 .. 

17 
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-x -x + -x P. = P .. pjk J Jl 

x! x! X'' 
iG + _J EF. + k 

Gkj = L ij L L J 
(3-3b) 

-y -y + -y P. = p" pjk J Jl 

xi X. xk 
= - L Gij - _J EF. ~ 

L Gkj L J 
(3-3c) 

-z -z + -z P. = P .. pjk J Jl 

= -y. G .. - y. EF. - Yk Gkj • 1 lJ J J 
(3-3d) 

By these joint elastic weights the deformation of the real struc-

ture is fully defined. 

3-4. String Polygon Functions 

It was proven elsewhere that the shear of the conjugate structure 

at a given joint$ when loaded by the joint elastic weights, is equal to 

the slope of the real structure at that point. Also.;- the bending moment 

of the conjugate structure at this point about a given line is the displace­

ment of that point on the real structure in the direction of that line. 

From these two theorems the calculation of the angular and 

linear deformations of a bent member may b~ easily performed. 

A. The slope at the point A' on the real structure due to loads 

or redundants is equal to the shear of the conjugate struc-

ture at AT due to the corresponding elastic weights 

(Figure 3-2). 

-L 
RA' :: 

B 

I 
A 

' L x. 
- J 
Pj L (3-4a) 
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B x'. -x L -X _J_ RA, = P. 
J L (3-4b) 

A 

B x' -y L -y _J_ 
RA, = P. 

J L 
(,3-4c) 

A 

i x'. -z -z _J_ 0 RAi = P. = 
J L 

(3-4d) 

A 

B. The slope at the point B' of the real structure due to loads 

or redundants is equal to the end shear of the conjugate 

structure at B I due to the corresponding elastic weights. 

(Figure 3-2). 

B 
-L r-L 

x. 
RBt = P. -r J 

(3-5a) 

A 

B x. -x I -x _J_ 
RB' = P. 

J L 
(3-6b) 

.A 

B x. -y I-y -1. 
RB' = P. 

. J L 
(3-5c) 

A 

B ·I -z X. -z _J_ 0 RB' = P. = 
J L 

A 

(3-5d) 

C. The relative displacement of the points A' and B' on the 

real structure due to loads or redundants is equal to the 

static moment of the corresponding joint elastic weights 

about the line A 1 B' (Figure 3-2). 



;+, y 

+z +y 

-L P. 
J 

-x P. 
J 

-y P. 
J 

Figure 3-2 
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(a) 

Ri3, Due to Loads 

+x 

(b) 

R~ 1 Due to X = L 0 

+x 

(c) 

. R~ 1 Due to Y = 1. 0 

+x 

(d) 

Due to Z = 1. O 

Angular and Linear Deformations 
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B 
-L I -L (3-6a) MA'B' = P. y. 

J J 
A 

B 
-x I -x 0 (3-"6b) MA'BI = P. y. = 

J J 
A 

B 
-y = 2 -y 

0 (3-6c) MAIBT pj y. = 
. J 

A 

B 
-z L -z (3-6d) MA'B' - P. y. 

A 
J J 

3-5. Line Through the Elastic Center 

The calculation of the ordinate for the line through the elastic 

center of a symmetrical bent member may be easily accomplished by 

means of the conjugate structure. 

By definition; this· ordinate e is that distance from the base. 

line AB at which an applied end moment causes no relative displace-

ment of the points A' and B' on the real basic structure. In terms of 

the conjugate functions; this means that 

B B xi x'. -x I -x L i + EF. --1 
MA'B' = P. y.= (Gij L J J J L 

A A 

x' 
+ k 0 GkjL) y. = 

J 
(3-7a) 

or 
B B x. X. -y I P! Y· = -I 1 + EFj i MA'B' = . (Gij L J J 
A A 

xk 
0 + Gkj L) Yj = . (3-7b) 



Adding the above equations and noting that x I j + xj = L:.,, the 

result is 

B 

22 

I (3-8a). 

A 

from which 

B 

I 
A 

(G .. + EF. + Gk.) y. ::i O. 
~ J J J 

(3-8b) 

The distance yj' may be expressed as 

y. = C. - e 
J J 

where c. is the perpendicular distance from the base line AB to the J . 

joint j. Using this expression for y. the value of e may be found by 
J 

solving Equation (3-8b ). The equation for e becomes 

B 

L (G .. + EF. + Gk.) C. lJ J J J 
8AB e ~ 

A 
B = (3-9) 

I (G .. + EF. + Gkj) 
AAB 

lJ J 
A 



CHAPTER IV 

ANGULAR AND LINEAR DISPLACEMENT FUNCTIONS 

4..., 1. General 

From the previous investigations it becomes clear that several 

angular and linear functions will be involved. The two theorems for 

the angular and linear deformations of a bent member are again appli­

cable. Utilizing these theorems the end functions may now be expressed. 

4-2. Angular Displacement Functions 

The angular functions of the ends A and B on the real structure 

due to loads and redundants are 

A. The end slope at A (B) of the real structure due to loads is 

equal to the shear of the conjugate structure at A (B) due to 

the corresponding elastic weights (Figure 4-la). 

B x'. -L RL L -L 
LJ (4- la) RA = = P. = 'TAB A' J 

A 

B 
-L -L L -L x. 
RB = RB' = P. _J_ = 7 BA (4- lb) 

J L 
A 

B. The end slope at A (B) of the real structure due to X = 1. 0 

is equal to the shear of the conjugate structure at A (B) 

due to the corresponding elastic weights (Figure 4- lb). 

B x'. I 

I -x -x -x i3 FAB (4-2a) RA = RAT = P. = 
J 

A 
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+z +y 

-'-L 
MAB 

-L P. 
J 

+x 
li'C-------- ------- -------''-------

+y 

-x 
MAB 

-x P. 
J 

+x 
1'£...-.....-------------------''-------

+z +y 

+y 

-y 
MAB 

-z 
MAB 

-y P. 
J 

t-z P. 
J 

+x 

+x 

"¥---------------------"--------
Figure 4-1 
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(a) 

Due to Loads 

(b) 

Due to X = 1. 0 

(c) 

Due to Y = 1. 0 

(d) 

Due to Z = 1. 0 

Angular and Linear Functions 
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B 
-x = R..B, = I (4-2b) 

A 

C. The end slope at A (B) of the real structure due to Y = 1. 0 

is equal to the shear of the conjugate structure at A (B) due 

to the corresponding e~astic weights (Figure 4- le ). 

B x'. 
fi.Y = .aY = I P! .-1. = GAB A A' J L 

(4-3a) 

A 

B x . -y -y 

I . pY-_J = FBA RB = RB' = . L .J 
(4-3b) 

A 

4-3. Linear Displacement Functions 

The linear functions of the ends A and B on the real structure 

due to loads and redundants are 

A. The relative displacement of the ends A and B on the real 

structur.e due to loads is equal to the static moment of the 

corresponding joint elastic weights about the line AB of 

the conjugate structure (Figure 4- la). 

-L -L -L -L 
MAB= MA 1B 1 +(RA,.+ RB,)e 

B 

= I (4-4) 
A 

B. The relative displacement of the ends A and B on the real 

structure due to X = 1. 0 is equal to the static moment of the 

corresponding joint elastic weights about the line AB of the 

conjugate structure (Figure 4- lb). 



CHAP.TERV 

MOMENT AND FORCE .FUNCTIONS 

5-L General 

The bent member develops moment and force functions which 

are expressed in terms of the string polygon functions due to the loads 

and unit redundants. These moment and force functions; from Equa-

tions (2-13) and (2-14),. are defined here. 

5-2. Moment Functions 

The moment functions for the bent member are the deformation 

coefficients for the end rotations and the fixed-end moments; due to. 

the loads and horizontal end displacements,. which induce the end 

moments. · These functions are 

A. The· stiffness factor :K is the moment required to induce 

a unit rotation at the near.hinged end, the far end being 

fixed. 

-y 
RB' = +-- -. N 

-x 
RA, 

K - . -.:-.... ..,.. 
BA - - :N 

. 2 e 
-z . 
MA'B' 

2 
e 

-z 
MA'B' 

(5- la) 

(5,.: lb) 

B. The carry-over stiffness factor CK is the moment in­

duced at the near fixed end due to a ~nit rotation at the far 

'hinged end. 

27'. 



5-3. 

CKAB 

-x 
RB, 

=---=-+ 
N 

2 e 
-z 
MA'B' 

ffY: 2 
· A' e 

CKBA ;., + N + ---z--
M A 'B' 
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(5-2a) 

(5-2b) 

C. · The ·.translation: stiffness fa;ctor Sis the moment of the 

fixed-end member due to a unit rotation caused by a rela-

tive vertical displacement of the ends. 

(5- 3a) 

(5-3b) 

D .. The fixed-end moment due to loads FlVIL is 

-L -y -L -y -L 
L RB' RA, - RA, RB' MA'B' 

FMAB = + e (5-4a) 
N -z 

MA'B' 

-L -x -L -x -L 
L RB' RA, - RA, RB' MA'B' 

FMBA = - + e (5-4b) 
N 

-z 
·MA'B' 

E. The fixed-end moment due to horizontal end displacement 

FMA is 

A + e 
Ax FMAB = -z 

MA'B' 

(5..- 5a) 

A e 
Ax FMBA = - -z 

MA'B' 

(5-5b) 

Force Functions 

The force functions for the bent member are the deformation 
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coefficiertts for the end rotations and the fixed-end thrusts~ due to the 

loads and horizontal end displacements~ which induce the end thrusts. 

These functions are 

A. The stiffness factor KH is the horizontal thrust produced 

by the unit rotation at the near hinged end~ the far end 

being fixed. 

= -
e 

-z 
MA'B' 

e 
-z 
MA'B' 

B. The carry-over stiffness factor CKH is the horizontal 

(5-6a) 

(5-6b) 

thrust induced at the near fixed end due to a unit rotation 

at the far hinged end. 

H e 
CKAB :::: + -z 

H 
CKBA = + 

MA'B' 

e 

C. The fixed-end thrust due to loads FHL is 

-L 
L MA'B' 

FHAB = - -z 
MA'B' 

-L 
L MA'B' 

FHBA = + -z 
MA'B' 

(5-7a) 

(5-7b) 

(5-8a) 

(5-8b) 



30 

D. The fixed-end thrust due to horizontal end displacement 

FHA is 

A + 1 
Ax FHAB = -z 

MA'B' 

(5-9a) · 

A 1 
Ax FHBA = -z 

MA'B' 

(5-9b) 



CHAPTER VI 

NUMERICAL PROCEDURE AND NUMERICAL EXAMPLE 

6-1. Numerical Procedure 

The calculation of the constants discussed in the preceeding 

chapters of this thesis may be performed by this following prpcedure: 

1. The real structure is transformed into the basic structure 

and the reactions due to loads are calculated. 

2. The points of the string polygon are selected and the bending 

moments of the basic structure are recorded for each ridged 

joint., or any other point of the string polygon,, to obtain the 

segmental end moments for the string polygon functions. 

3. The angular constants (F's., G's., and T's) are calculated for 

each segment. If the segments are of variable cross section" 

numerical tables prepared by LassleyC 3)~ Boecker< 2}, 

Exline< 4)1 and Yu( 5) for the calculation of these constants may 

be used to great advantage. 

4. The joint elastic weights (Equations 3-1 and 3-2) due to a. 

unit bending moment throughout the structure are calculated 

and applied on the corresponding conjugate structure~ The 

vertical coordinate of the elastic center is calculated by 

means of the given formula (Equation 3- 9). 

5. The joint elastic weights are calculated for all joints of the 

S;tring polygon in terms of the loads and unit redundants. 
. • ! 

31 / 



32 

6. The end conqitioning elements of the _conjugate structure at 

A' and B 1 are calculated by means. of the given formulas 

(~quations 3-4~ 3- 5; and 3- 6.) 

7. The numerical values of the end conditi<;ming elements are 

substituted into the formulas for the end reactions of the real 

structure (Equations 2-13 and 2-14). 

From this point~ conventional methods of analysis are utilized 

for the calculation of any remaining reactive v~lues required for the 

completion of the problem. 

6-2. Illustrative wxample 

Th.e application of the numerical procedure is shown in the 

following problem. The symmetrical~ complex frame loaded as shown 

(Figure 6-1) is given. It is required to analyze the frame for the 

joint bending moments. All values given are in 1,1nits of kips; fetbt,. 

or ~ip-feet. 

w = 1. 0 k/1. ft. 

--
® CD ® ® 

~ 3Qf· I 45' 45 1 i 301 i 
EI = Constant 

Figure 6-1 

Real Structure 

/ 

12' 

io• 
81 

12 1 
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The symmetrical bent member (Figure 6-2) is removed for 

separate analysis. The solution of the member follows the procedure 

outlined in the preceeding article~ 

1. 

2. 

3. 

w = 1. 0 k/1. ft .. 
, I I l I I 

l 45 1 

Figure 6~2 

Basic Bent Member 

Load Reactions 

Vertical Loads: 

R6x = 0 R7x = 

R6y = 45.000k R7y = 
Horizontal Loads: 

Rax = 6.400k R7x = 

R6y = o. 711k R7y = 

Bending Moment Diagrams (Figure 6-3) 

Angular Constants 

F68 F86 F710 F107 
L = = = = 

~EI = 

F89 = F98 = F910 = Fl09 = 46.573 
3EI 

0 

45.000 k 

0 

o .. 7·11k 

10 3.333 
3EI = EI 

= 15.524 
EI 

12 1 

10' 



1, 012. 5 k-,ft. 

0. 5 k-ft. 

o. 5 k-ft. 

7. 944 k-ft. 

4.05~~~ 

14. 055k-ft. 
70. 360 k-ft. 

Figure 6-3 

Bending Moment Diagrams 

Vertical 
Loads 

34 

X = 1. 0 

y = 1. 0 

Z = 1. 0 

Horizontal 
Loads 



G68 = G86 = G710 = G107 = L = 1.667 
6EI EI 

G89 = G98 = G910 = G109 = 46.573 = 7.762 
6EI EI 

2 3 
3,929.268 

7 89 = 7 98 = 7 910 = 7 109 = w cos {a}L = 

4. Elp.stic Center Ordinate 

= 

= 1, 590. 304 = 14. 056 ft. 
113.144 

5. Joint Elastic Weights 

Vertical Loads: 

P 6 = P7 = o 

Pa = Pio = 7 89 + Mg G98 

24 EI 

= 3, 9i~· 268 + (1, 012. 500) 7. ~~2 

= + 11:, 788. 293 
EI 

p(f~ = 7 98 + 7 910 + Mg BF9 

J = (2) 3, 92ii 26a + c1, o12. 500)(2) i5E~24 

= + 39; 294. 636 
EI 

EI 
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Horizontal Loads: 

X = 

1\ 

P7 

PB 

Pg 

= MB G86 = (64. 000) 1. :f 7 = + 106.688 
EI 

= 0 

= M8 BF8 + Mg G98 

= (64 . OOO) 3. 333 ;I 15. fi24 + (70. 360) 

= + 1, 752. 982 
EI 

= MB G89 + M9 BF 9 

= (64. 000) 7 • ;;12 + c10. 360)(2) 15Ei24 

= + 2,681.305 
EI 

7.762 
EI 

7. 762 
p 10 = Mg G910 = (70. 360) EI . = 

+ 546. 134 
EI 

1. 0 ·: 

p6 = M6 F68 + MB G86 = (1. OOO) 3. 333 ;I 1. 167 

= + 5.000 
EI 

P7 = 0 

PB = M6 G68 + M8 BF8 + Mg G98 

= (1. 000) 1. 167 + 3.il~ + 15. 524 + (0. 500) 7. ~f 2 

= + 24. 405 , 
EI 

P 9 = MB G 8 9 + M 9 BF 9 

= c1. ooo) 7 • ~~2 + co. 500)(2) 15E~24 

= + 23. 286 
EI 
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1\o = Mg Gg'10 = 

y = 1. 0 : 

p6 = 0 

P7 - M7 F710 + 

Pa = Mg Gga = 

(0. 500) 7 "~;2 

MlO G10'7 = -

3.881 - EI 

= -

= + 3.881 

5.000 
EI 

23. 286 
EI 

EI 

1\o = Mg Gg10 + MlO EF 10 + M7 G710 

Z = 1.0: 

= -

p6 = P7 = M6 F68 + M8G86 

= (14. 056) 3E~33 · + (4 .. 056) L~:7 

= + 53. 160 
EI 

p 8 = plO = M6 G68 + MB EF 8 + Mg Gga 

24.405 
EI 

= (14. 056) 1. ~;7 + (4. 056) 3. 333 Ei 15. 524 

+ (-7 944) 7. 762 = + 38. 254 
• EI EI 

Pg = Ma Gag + Mg EFg + M10 Gl09 

= (4. o56)(2) 7 Ei62 + c-1. 944)(2) 15E~24 

183.680 
EI = -
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6. End Conditioning Elements 

Vertical Loads: 

7 

7 x! 

= Ii\-r 
6 

= 11,788.293 + {O. 50)(39, 294. 636) 
EI 

= 31,;435.qll 
+ EI 

-v· ' M517, = L. Pj yj 
6 

= (~)(11, 788. 293)(-4~ 056) + (39,294. 636)(7. 944) 
EI EI 

= + 216,529. 955 
EI 

Horizontal Loads: 

- H = 106. 688 + 1,752. 982 + (0. 5)(2, 681. 305) 
Ra, EI 

= + 3,.20Q. 322 
EI 

-H = (0.5)(2,681.305) + 546.134 
R,;, EI 

= + 1,886. 786 . El 

38 

- H · ~ (106. 688)(-14. 056) + (1, 752. 982 + 546. 134)(-4. 056) 
M5,7, EI . 

+ 2, 6:t· 305 (7 •. 944) 

= + 10,475.467 
El 



X = 1.0: 

Rx = 5. 000 -:+ 24. 405 + (0. 5)(23. 286) 
~' EI 

-x·· 
R7, 

y = 1. o·: 

Ry 
6' 

R·y 
71 

Z = 1.0: 

= + 41. 048 
EI 

= co. 5H23. 286) + 3. 581 
EI 

= 15.224 - EI 

= 41., 048 - EI 

+ 15.224 = EI 

= (53. 610)(2)(-14. 056) + (38. 254)(2)(-4. 056) 
EI EI 

+ (-183 .. 680)(7~ 944) 
EI 

= - 3;, 276. 555 
El 

7. Moment and Force Functions 

R7x1: R6~,: = -(41. 048)2 _ -(15. 224)2 

. (EI)2 (EI)2 

-41. 048 EI = -1~ 453. 168 

= + 0. 088 EI 

2 e 

1;, 453. 168 

(EI)2 
= -

(14. 056)2 El 
-3j, 276. 555 

39 
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e2 
+ ---,....-.-- z 

M6 17' 

= -15.,, 224 EI + 14. 056)2 EI . 
-1, 453. 168 - ,. 2 6. 555 

= - O. 050 EI 

CK67 
C 6 7 = C7 6 = K6 7 = -o. 050 = 0.088 - o. 568 

H 
FH57 

A 
FH57 

= - e 
-z. 
M5,71 

= - 14. 0'.56 EI 
-3,. 21,.L 555 = + o. 00429 

= - v· 
FH76 = = - 216.,, 529. 955 = 

~ .. 276. 555 

H 10; 475. 467 3 .. 197k = FH75 = - -3, 276. 555 = + 

A = - FH75 

= -

1 
Ax 

Ax 
= = -3,. 276. 555 = --z 

M6'7 1 

= {31,. 435. 611 },-15. 224 + 41. 048} 
-1.,,4 3.168 

+ 66. 085k 

O. 0006 lElAsc 

.. ~1~; ~;~: ~:~ (14. 056) = + 370. 254 k-ft. 

= FMH ,-
76 

= 1 886.786 -15~224 - . 31200.322 -41.048 
-1.,,4 3. 68 

10,475.467 (14. 056) 
- (-3, 276. 555) 

= - 25. 6 96 k--ft. 



A 
FM67 = -

14.056 EI 
= -3~ 276. 555 Ax 

= - o. 00428 EI A 
X 

With these values the modified structure (Figure 6-4) may be 
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solved by either the Moment Distribution Method or the Slope Deflec-

tion Method. The Moment Distribution solution follows: 

w = 1. O k/linft. w 1. O k/lin~ft . 
• ii t it ti 

2 ok=·~-- --~~~~--'lJl;~~~~---- - 2 o~~ 
2. ok]pl([) ~~- o~_Ji~·. 

® G) ® ® 
i 30 1 i 90 1 i 30' i 

Figure 6-4 

Modified Structure 

8. Frame Constants 

3EI _ 3EI = ~ - 12 ~ 0 = O. 250 EI 

K' = K' - 3EI = 0. 150 EI 16 . 27 - 20. 0 

4EI 
= K57 = 31.048 = 0.129EI 

C's = 0. 500 

D ' - o. 250 = 0 660 
40 - o. 250 + o. 129 . 



D' = O. 129 = O. 340 
46 0.379 

= - L L L WL2 
FM64 = - FM57 = FM75 = ---r2° 

= (1. 0)(30. 000)2 = + 75• 000 k-ft 
12 

3EI A = i2 X 

3EI A 
144 •. 00 . X 

= 0 .. 021 EI A: · 
·X 

= + 210. ooo x 1 
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A A 3EI 
EM61 = EM72 = 400. 00 Ax·= o. 0075 EI~ = + 75. 000 xl 

9. Modifications for Symmetry and Anti-Symmetry 

Symmetry: 

K II = 
67 K 67 (1 - 'C) · = O. 088(1 + O. 568) EI = 

D" = o. 129 = 0.309 64 0.417 

D" = o. 150 = 0.360 61 0.417 

D" 
67 = 0.138 

0.417 = 0.331 

O. 138 EI 

A O. 00428 EI (A7 - A6) O. 00428 EI (2A6) FM67 = - = -

= - 85-. 600 x1 

A FH67 = - O. 00061 EI (A7 - A 6) = - 6. 100 X 

Anti-Symmetry: 

K''' 67 = K 67 (1 + C) = O. 088 (1 - O. 568) EI = 

D"' = o. 129 = 0.407 64 0.317 

D'" = 0.150 = 0.473 D'" = 0.038 
61 0.317 . 67 0.317 

FM·A 0 A o· = FH67 = 67 

= 

0.038 EI 

0. 120 



10. Distribution Procedure 

Symmetrical - Loads: · 

40 46 
-:.i,.· 0.660 - 0.340 

+ 0.500 
Ir,_\ 

- 75; 000 

\ 
J 

- 68. 792 

+ 94. 903 + 48. 889 

- 3.777 

+ 2.493 + 1. 284 

+ 97. 396 - 97. 396 

+ 97. 396 - 22. 396 

Symmetrical - A 1: 

+21-0.000 

- 1. 637 

-139.680 - 71. 957 

+ 5.558 

- 3.668 - 1. 890 

+ 0.146 

- .0.096 - o .. 050 

+ 66.556 - 66. 556 

-143.444 - 66,556 

64 61 

- o. 309 - 0~ 360 

+ 0.500 

+ 75.000 

-137.583 -160.. 290 

+ 24.445 

- 7.554 -- 8.800 

+ 0.642 

- 0.198 - 0.231 

- 45.248 -169. 321 

-120.248 -169.321 

+ 75. 000 

+ 3.275 + 3.816 

- 35. 978 

+ 11. 117 + 12. 952 

-- CJ. 945 

+ 0.292 + 0~340 

- 22. 239 + 92. 108 

- 22. 239 +17.108 

67 

- o. 331 

+370.254 

-147.379 

- 8.091 

- 0.212 

+214.572 

-155.682 

- 85. 600 

+ 3.509 

+11.909 

+ 0.313 
' ; 

- 69. 869 

+ 15. 731 

M 

B.M 

M 

RM 
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Anti-Symmetrical - Loads: 

40 46 64 

- o. 660 - o. 340 - 0.407 
+ 0. 500 + 0.500 

+ 10. 458 

.... + 5. 229 

- 3 .• 451 - L 778 

- 0.889 

+ 0.362 

+ o. 181 

- o. 119 - o. 062 

- 3. 570 + 3. 570 + 9.931 

- 3. 570 + 3. 570 + 9.931 
.. 

Anti-Symmetrical - A1 

+210.000 

-138.600 - 71. 400 

- 35 .• 700 

- 15. 995 

- 7.998 

+ 5.279 + 2.719 

+ 1. 359 

- 0.553 
... ·- o. 276 ... ·.· ... 

+ o. 182 + 0.094 

+ 76.861 - 76. 861 - 50. 889 

-133.139 - 76. 861 - 50. 889 

61 

- 0.473 

· + 12 .. 154 

+ 0.420 

+ 12. 574 

+ 12. 574 

+ 75. 000 

- 18. 588 

- 0.643 

+ .55. 769 

- 19. 231 

67 

- 0.120 

- 25. 696 

+ 3.084 

+ 0.107 

- 22. 505 

+ 3. 191 

- 4. 716 

- o. 163 

- 4. 879 

- 4. 879 

M 

RM 

M 

RM 

44 
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11. Shear Equation 

Symmetrical: 

'Y 67 

R6x 

V04 

V 16 

® R6x 

G) 

1{04 

@ 

Figure 6-5 

Free-Body Diagram 

H 

= 
K67 (l + C67) (0. 00429)(1 - o. 568) = 

K67( 1 - c67c76) (0. 088)(1 - o. 323) 

= 0.031 

= 'Y 67 (RM67 - RM76) + V 
FH67 + A 

FH67 

= (0. 031)(-155 •.. 682 +15. 731X 1) + 66.085 - 6. 100 x 1 

= + 61.259 - 5. 612 x 1 

= 
M40 97. 396 + 66. 556X 1 

+ 8. 116 + 5. 546 x 1 ~ 
= 12.0 = 

= 
M61 -169. 321 + 92.108X 1 

-8.466 + 4. 605 x 1 = = -r;- 20.0 

0 = (8.116 - 8. 466 - 61. 259) + (5. 546 + 4. 605 + 5. 612)X1 

= -61. 609 + 15. 763 x 1 
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XS = 61.609 = + 3.908 
1 15.763 

Anti-symmetrical: 

Figure 6-6 

Free-Body Diagram 

R6x = (0. 031)(+ 3. 191 - 4. 879 X 1) + 3. 197' - 6.400 

= - 3. 104 - 0.151Xt 

Vo4 
- 3. 570 + 76. 861 x 1 

0.298 + 6. 405 x 1 = = -12.0 

+ 12. 574 + 55. 769 x 1 
V 16 = 20.0 = + 0.629 + 2. 788 x 1 

V04 + V 16 + 4.000 - R6x = 0 

0 = (-0. 298 + o. 629 + 3. 104 + 4. 000) 

+ (6. 405 + 2. 788 + o. 151) x 1 

+ 7. 733 + 9. 344 x 1 

x1 = - 7 .. 733 = - 0.828 9.344 



12. Final Moments 

Symmetrical: 

M40 = + 97. 396 + 260. 100 :: + 357. 497 k-ft. 

M45 = - 97.396 260.100 = -: 35·7. 497 k-ft. 

M54 = - 45.248 86.910 = 132. 158 k-ft. 

M61 = - 169. 321 + 359.958 :: + 190. 637 k-ft. 

M 67 = + 214. 572 273. 048 = - 58. 476 k-ft. 

E M 7 = O ---z._.-

0 = - 58. 476 + 58. 476 - (90. 000)(45. 000) 

+ R 6y (90. 000) 

R = 4., 500. 000 = + 45. 000 k 
6y 90.000 

R 6x = + 61.259 - (5.612)(3.908) ... + 39.327k 

M68 

M86 

Mag 

M98 

= - 58. 476 k-ft. 

= - 58.476 - (39. 327)(10. 00) 

= - 451. 746 k-ft. 

= - 58.476 - (39. 327)(22. 00) 

- (45. 00)(22. 50) 

= + 88.830k-ft. 

Anti-symmetrical: 

t;· + 451. 746 k-ft. 

+ (45. 00)(45. 00) 

= - 3.570 63.700 = - 67. 27P k-ft. 

M46 = + 3. 570 + 63. 700 = + 67. 270 k-ft. 

M64 = + 9. 931 + 42. 200 = + 52. 131 k-ft. 
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M,'61 

M67 

M68 

M86 

Mag 

-

= 

= 

= 

= 

+ 12.574 46.250 = - 33. 676 k-ft. 

- 22.505 + 4.040 = - 18. 465 k-ft. 

0 = - 18. 465 - 18. 465 + (6. 400)(10. 00) 

+ R 6y (90. 00) 

-
-

-

= - 27.070 
90.000 

·.3. 104 

18~ 465 ~-ft. 

= - o. 301 k 

(0. 151)(-0. 828) 

18,465 + (2. 979)(10. 000) = 

11. 325 k-ft. 

= -2. 979 k 

+ 11. 325 k-ft. 

= - 18. 465 + (2. 979)(22. 00) - (0. 301)(45. 00) 

- (3. 200)(12. 00) 

= - 4. 872 k-ft. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The slope deflection equations for a symmetrical bent member 

are derived and the conjugate expressions for the moment and force 

functions: are defined. The procedure for the analysis of this type of 

member is outlined and one numerical example is included. The 

example illustrates this procedure and the integration of this method 

in the analysis of a complex structure. 

The slope deflection equations., in terms of loads and end dis-

placements., for a symmetrical bent member completely describe its 

end reactions. Further investigation of the loads or displacements at 

points within the member is eliminated. The bent member in the real 

structure is replaced by a straight elastic bar for the purpose of solu­

tion by either slope deflection or moment distribution. 

The application of the. String Polygon Method to the solution of 

complex or continuous structures may eliminate much of the laborious 

work connected with the solution of simultaneous equations and moment . . 

distributions procedures. The String Polygon Method becomes more 

advantageous as the number of joints in the bent member inc:r eases and 

more displacements are introduced. 
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