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NOMENCLATURE

cj Ordinate of the point j on the structure.

dj Segment length

e Ordinate of the line through the elastic center.

w Load intensity.

x, x', u, u' Cross section coordinates.

Y. Ordinate from the line through the elastic center to the
J pomt j on the structure. :

BM Bending moment due to loads.

C Carry-over factor.

CK Carry-over stiffness factor.

E Modulus of elasticity.

EAB Angular-linear carry-over value.

F Angular flexibility.

FM Fixed-end moment.

FH Fixed-end thrust.

G Angular carry-over,

K Stiffness factor.

L Span length.

M End bending moment.

R End reactions.

S Translation stiffness factor.

v End shear.

X, Y, Z Reactive redundants.
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Conjugate bending moment.

Elastic weight.

Conjugate end shear.

Conjugate shear.

End displacement.

Relative end displacement due to loads.
Thrust induction factor.

Relative end displacement due to thrust.
Summation.

Angular load function.

End rotation.
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SIGN CONVENTION

For forces and moments:

(+) | (+)

Forces Moments

For deformations:

+A
y
+0
+A
X
For cross sectional elements:
M M
X X vV
(+) X (+)
AY
X
For elastic functions:
AY
e o et
) |} Ay A ) A
X p'e
M +Px
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CHAPTER 1
INTRODUCTION

The purpose of this thesis is to show the application of the
String Polygon Method to the calculation of the moment distribution
constants for a symmetrical bent member. The historical background
of the String Polygon Method was recorded by Tuma( 1) and will not
be repeated here.

The material presented in this thesis is the outgrowth of the
Civil Engineering Seminar 620 and reference to the Seminar notes is
made. The writer's contribution is the introduction of the bent beam
as the simple structure and the application of the String Polygon Method,
in connection with this structure, to the calculation of the moment dis-
tribution constants.

In the second chapter of this thesis the basic structure is
discussed and the deformation of the structure defined in terms of the
corresponding conjugate structure. From the conjugate structure
three elasto-static equilibrium expressions are derived and simul-
taneously solved for the slope deflection equations.

The basic ideas of segmental and joint elastic weights, the
definition of the string polygon functions, and the location of the line
through the elastic center are presented in the third chapter .

The calculation and definition of the angular and linear dis-

placement functions and the moment and force functions are shown in



chapters four and five respectively. The numerical procedure, appli-
cation, and final conclusions are recorded in the last two portions of
the thesis.

The sign convention and nomenclature are listed under their
respective titles. The calculation of deforxhations is based on the
assumption of perfect elasticity and the other customary assumptions
of elastic analysis are introduced as the basis for this work.

A list of selected bibliography is made at the close of this

thesis but no special reference is made.



CHAPTER II
DERIVATION OF THE SLOPE DEFLECTION EQUATIONS

2-1, Basic Structure

A fixed-end, symmetrical bent member of variable cross sec-

tion acted upon by a general system of loads is considered (Figure 2-1).

Figure 2-1

Lioaded Structure

A simple bent member is introduced as the basic structure
(Figure 2-2). The redundant reactions are transferred to points A' and

B! located on the horizontal line passing through the elastic center.



Cline through the

elastic center

v v
A L ol

Figure 2-2

Basic Structure

The end reactions in terms of the loads and redundants X, Y,

and Z are:

Rax = 2 Rpx = -2
X+Y
- _X+Y = — -
R,y = BV, s Rgy = BVg + L (2-1)
MAB=X+Ze MBAZY—Ze

where e is the ordinate for the line through the elastic center,
A general displacement of the supports is introduced and de-

noted as:
Oy 1Any (s Apx Agy-

2-2. Deformation Equations

An effort will be:made here to:show the derivation of the:'slope
deflection equations for a symmetrical bent member by means of the

conjugate structure.



The conjugate structure corresponding to the real structure
(Figure 2-2) is shown in Figuré 2-3 acted upon by the elemental elastic
weights and the end deformations. The sign convention for elastic

weights and end deformations is defined in the nomenclature.

+ z +y

Figure 2-3

Loaded Conjugate Structure

By summing moments about the Ay-axis, By-axis, and A'B'-axis
three elasto-static equilibrium equations may be written.

ZMB = 0 S S
y

B

- M - P I M = 2.9

L - M ZPstJrMB,y 0 (2-2)
A

B
VL+1‘\‘/{B,y+Z13x—1'\7IA,y=0 (2-3)
A



zM_A'B' =0 —=__
B
My, + 2 P, y, - Mg, =0 (2-4)
A

Transposing terms to equate the load terms to the end deforma-

tion terms and dividing each term by the length L results in

B
x! Apy - Ag,

+ P 5 - _ Ay B'y .
2 PS T + GA‘ T + i (2-5a)
A
B

x A A

- P .5 - _ _Aly B'y -
z Ps T + BB‘ T + T (2-5b)
A
B

+ P = - / -
Z Ps Is AA‘x + AB‘x (2-5c)
A

where

vAv = Ops vBl = Og;

MA'y = ‘AA'y MB'y = AB‘y

MA'x = AA'x MB'x = ABr'x

2-3. Conjugate Load Functions

The elemental elasti¢c weight (138) is a function of the loads. ..

and redundants and may be written as

_ BMSds x‘sds xsds ysds .
Po = —mr— *Xtgr~ - Yoer - Z-mr - (2-69)
S s S S
Denoting
‘15L ) BMSds
S EIS

it

elemental elastic weight due to loads



_x x'sds
Ps = TE
s
= elemental elastic weight duetoX = 1.0
- xsds
Ps = - TEI
s
= elemental elastic weight duetoY = 1.0
PZ = - ZE(E
s EI
s
= elemental elastic weight dueto Z = 1.0.
Equation (2-6a) becomes
B =Pl + xp* + YPY + zPZ. | (2-6D)
s s s s s

In terms of this notation, the left sides of Equations (2-3) are:

B y B x! B 1

X X

= s =L s =X s

ZPS—L‘ Z P XZPS—E
A A A



From symmetry,

1

s
ZS=
ZST
A

B .
—‘ZXS
zPS—L— = 0

A

B

PY
zps Vs
A

0.

(2-Tc)

Now it may be observed that Equation (2-7a) represents the

left reaction of the conjugate structure, Equation (2-7b) represents the

right reaction, and Equation (2-7c) represents the moment of the con-

jugate structure about the line A'B’,

Denoting

B Lx,

=L s
zps_f
A

]
=

>N\
)
Hw't
i

>\ =
i
@
<
mn
"
=
-

A'BY *

A'B!

(2-8a,b)

(2-8c, d)

(2-8e, f)

(2-8g,h)



the Equations (2-5) reduce to

Rk‘, + XRy, + YR], = + 0,, - Ai'y + Al]?'y
(2-9a)

- ﬁé‘, XRp, - YRJ, = + 6g, - Afy + A]i'y
(2- 9b)
My * ZMpip = - Apy * Ay (2-8¢)

2-4. Slope Deflection Equations

From the simultaneous solution of Equations (2-9) and with new

equivalents
N = R,,R3, - Rg/ R},
A - A
B'y A'y
Yarp L
Bgr = AB'x ) AA'x
the redundants become
Ry, R}, R] +&}
X = —:——GA, + __‘_—"9]31 + wAIBl
N N N
sL 5y sL 55
R- R - R, R
Bl Al Al B (2-10a)
N
5 X = X 5 X =X
RB' RA' RA', + RB"
Y = - ——:—-GA,- T GB' - wAIBl
N N N
sL 5x sL sx
RS, R%; - R, R;,
_ B A A Bl (2-10b)

b
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— L
M ianl}
Z =+ —— A, - 2B (2-10c)
Marg Mp g

These expressions for the redundants are substituted into the
Equations (2-1) and the slope deflection equations for forces and mo-

ments are obtained.

1 '_L
M
Ry, =+ —2— A, - —28 (2-11a)
X V4 X = Z
Mprg MpiB! |
RY _ ®X &Y 7 X
R, -Bv, - B "B, FA T Ra
Ay A = Al B’
LN LN
= X =5 X
(RX{ + Rgx) (RA|, + RB!)
B g nt
IR A'B
5L 5 5 X a2l gm 5 X
_ RBx (RX| - RAI) ——R‘Al (Rg! T RB') (2-11b)
LN
a8y RY 27 +RBY
N =RB,6 +RA,6 +RA,+RB|¢
e ' —_ 1 — Rt
AB X A N B X A'B
sL 5y =L 5y
e RpiRar = Rai Ry,
+ A, +
M 5 g0 N
— L
M
. _AB (2-11c)
— Z
M prgt
= L
M
Rp, = - —0— A, + —28 (2-12a)
X =7z X w7 Z
MA!B! MAYB!
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5y 5 X =Y = X
R - By, + BB FAr T Far
By B At = B!
LN LN
x —
+(RX1 + Rg!) - (RA! + Rgx)
LN A'B!
sL = 5 X 5L 5 =X
- RB! (RX, - RA-!) : RAI (Rgv - RBI)
LN
(2-12b)
= X =X 5 X =X
RB" RA' RA' + Ro,
MBA = eA! - —“_"_9]31 - = B ¢A!BI
N N N ‘
sL 5% sL X
e o _PprBar - RBaRp
— t —
My N
=L
M ; ‘
+ 2B, ©(2-12¢)
My

In terms of the end deformations and noting the following

equalities,
Opr = Op Yarpr = Yap

_ e e
Rax = wZ bp + —5— b
A'B! Mp gt
_L
My iny
N (2-13a)
MAIB! MA"B'
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— _X ——
_ R]};l " RB-I RK! RAI
Rpy = BVy - —— 0p - - g
Y LN LN ;
— — x =X
(RXI + Rgl) - (RAr + 'RB-l)
- i wAB
LN .
=L ,= =X =L = =X
RB" (RA' RA{) RA'( gl - RBJ)
LN
(2-13b)
R.]}3" e2 EX' e2
MA = - 0, + + 0
B N- 1—\-—/IZ A N mZ B
A'B! A'B!
BY BY
. RA' + RB' e
— v + — A
N AB M Z b
A'B!
sL 5y =L S =L
R 'R i - R ,R 1 M 1
+ B4 — Al B ___AZ Bl o (2-13c)
N M g
- e B e
Rpy = + — Z eA — 7 GB
MAva MAJBY
: —1L
-1 A 4 AB (2-14a)
7 2 X 3 2
A'B! A'B?
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= = X - =X
Ry - Ry, R} - Ra
LN ’ LN
= = =X =X
+ (RZv + Rgr) (.RAl + RBI)
- YAB
LN
R ®RY, - RY R ®RY, - RX
+ B~f Al Af) A'( Bl B')
LN
(2- 14b)
— ¥ =X
RB' e2 RA-' e2
- — T =z 'eA i e + = Z OB
=X =X
. I{A, + I%B' ’ ) e A
. AB —=Z p'd
N 1VIA_nBl
sL 55X L 5x sz L
BprBar - Bpr Br | Mg
- e
— — z
N LEAJB'

(2-14c)



CHAPTER III
STRING POLYGON

3-1. General

The extention of the stiring polygon to the analysis of fixed-end
and hinged bent bars was presented by Tuma( %), Oden( }), and
(2)

Boecker In these works it was shown that the continuous elastic
weight can be replaced by the joint elastic weights. For the complete-
ness of this discussion, the basic ideas of segmental and joint elastic

weights are restated here,

3-2. Segmental Elastic Weights

The string polygon functions are the end forces and moments of
the conjugate structure due to loads and unit redundants. The solution
for these functions using the elemental elastic weights entails consider-
able labor. The total conjugate structure (Figure 3-1a) can be divided
into individual straight segments of finite length and each segment may
be treated as a separate conjugate beam (Figure 3- 1b).

Instead of working with the elemental elastic weight acting on
each separate beam, the total elastic weight of each segment may be
represented by two end reactions (Figure 3-1b). These segmental
reactions must now be applied as the new loads on the total conjugate
structure (Figure 3-1c).

By this operation, the following simplifications are achieved:

A. The continuous elastic weight is replaced by two equivalent

forces for each segment.

14
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Figure 3-1a

Total Conjugate Structure with Continuous Elastic Weights

Ai Figure 3-1b

Segmental Conjugate Beams with Segmental Elastic Weights

Figure 3-1c

Total Conjugate Structure with Segmental Elastic Weights
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B. These forces are applied at the joints of the conjugate struc-
ture making the calculation of the lever arms very feasible
(the coordinates of the joints are known from the beginning
of the analysis). |
The analytical expressions for these segmehtal elastic loads
were derived elsewliere and are.

P = M, Gij + Mj Fji + T (3-1a)

ji i

P, = M, F,

" " (3- 1b)

+ Mk ij + Tjk

The functions of these equations are the end bending moments
Mi’ Mj s Mk‘ and the loads écting on the segments. The six angular
constants are defined and illustrated in Table 3-1.

The angular constants due to loads (7's) must be'calculated for
loads acting normal to the member. If concentrated or continuous loads
are applied under a certain angle, the resolution of the loads into hor-
mal and tangential components must be performed.

The Equations (3-1) are completely general and applicable to
any portion of the bent member.

3-3. Joint Elastic Weights

The joint elastic weight (I_’j) is the sum of the segmental elastic
weights at a joint and is expressed as

P, = Py + By . (3-2)

Because the bending moment is a function of the loads and the three re-
dundants, each joint elastic weight may be resolved into joint elastic
weights due to loads and the'redundants. X, Y, and Z. These.are: .

: 13.L =:'.13:I'."" +"ﬁ“1_5L T.. + T,

i k- Tt ik (3-3a)
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TABLE 3-1

ANGULAR CONSTANTS-.

]|

u : ut

dj

T..
1)

ji

Tes
1]

H

i}

J BM_u' du
GEL,

i

the end slope of the simple
beam at i due to loads.

T..
1

i

] BM_ udu
TdEL_
i U

the end slope of the simple
beam at j due to loads.

A

F )y
1)

ji

i

1]

[t}

! u‘zdu
1 d; EI
j T u
the end slope of the simple
beam at i due to Mi =

1. 0.

G..
ji

1]

)]

u u' du
i 4 EI
j u
the end slope of the simple
beam at j due to Mi = 1.0,

gy

G,;
1

ji

F..
Ji

i

the end slope of the simple
beam at j due to Mj =

1.0,

ij

j
f uu' du
2
i d. EI
j u

the end slope of the simple .

beam at i due to Mj .= 1,0,
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PX = pX 4+ %
i ji ik
x! x! x!
- Lta.,+ Jdrr o+ Ea (3-3Db)
L ij i j L kj :
PY = BY + PY
i it ik
Xi Xj Xk
= -1 G 71 BF - Gy (3-3¢c)
PZ = P2 + P>
i ji ik
= -y Gij " Y Z}Fj - Vi ij . (3-34)

By these joint elastic weights the deformation of the real struc-
ture is fully defined.

3-4. String Polygon Functions

It was proven elsewhere that the shear of the conjugate structure
at a given joint, when loaded by the joint elastic weights, is equal to
the slope of the real structure at that point. Also, the bending moment
of the conjugate structure at this point about a given line is the displace-
ment of that point on the real structure in the direction of that line.
From these two theorems the calculation of the angular and
linear deformations of a bent member may be easily performed.
A. The slope at the point A' on the real structure due to loads
or redundants is equal to the shear of the conjugate strué—
ture at A' due to the corresponding elastic weights

(Figure 3-2).

= I ‘
Ry, = (3-4a)

>N\
ol
e
U,
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B x'.

=X =X

Ry, = z P . (3-4b)
A
B x? :

RY = pYy _Il 3-

- 3o e
A

= Z B = Z x!

R7, = z PS4l =0 (3-4d)

B. The slope at the point B' of the real structure due to loads
or redundants is equal to the end shear of the conjugate

structure at B! due to the corresponding elastic weights.

(Figure 3-2).

B <

=L sL j

Ryt = ZPJ. < o (3-5a)
A
B <

5 X U o= X i

Rg = z P. + (3-5b)
A
:B X,

R, = Z Pjy — (3-5¢)
A
B X

5 Z ' 5Z

Rg = Z Pj 4+ =0 (3-5d)
A

C. The relative displacement of the points A' and B' on the
real structure due to loads or redundants is equal to the
static moment of the corresponding joint elastic weights

about the line A'B' (Figure 3-2).
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()
tﬁ L Due to Loads
B! _
+ x
(b)

=X -
TRB' DuetoX =1.0

+x

(c)
Due to Y = 1.0

Figure 3-2

Angular and Linear Deformations
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B

—L L

MAIBI = z Pj Yj (3-6a)
A
B

Myp = z PYy, = 0 (3-6b)
A
B .

=Y 5

Mamgr = Z Py =0 (3-6c)
n .
B

MilBt = z I—DJZ yj (3-6d)
A

3-5. Line Through the Elastic Center

The calculation of the ordinate for thehline through the elastic
center of a symmetrical bent member may be easily accomplished by
means of the conjugate structure.

By definition, this ordinate e is that distance from the base
line AB at which an applied end moment causes no relative displace-
ment of the points A' and B' on the real basic structure. In terms of

the conjugate functions, this means that

B B x! x!
7 X = PX o = i ]
Mg E Py, Z Gy * IF; T
A A
x‘k
+ G ) vy = 0 (3-7Ta)
or
: v B - B X, XJ
M = P = - 1 _Jd
Mg = » Ply;= Z(GiJL + LF,
A A
Xy
+ G )y = 0. (3-7b)
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Adding the above equations and noting that x'j + Xj = L, the

result is
B
L L L o , _
A

from which

B
Z (Gy + oFy + Gy = 0. }. (3-8b)
The distance yj- may be expressed as
y: = ¢, - e
where cj is the perpendicular distance from the base line AB .to the

joint j. Using this expression for yj the value of e may be found by

solving Equation (3-8b). The equation for e becomes

B .
G.. + ZF. + G, . R

e = = = . (3-9)

G

i

B

.. + IF. + G..)
Z(J j kJ)
A



CHAPTER IV

ANGULAR AND LINEAR DISPLACEMENT FUNCTIONS

4-1., General

From the previous investigations it becomes clear that several
angular and linear functions will be involved. The two theorems for
the angular and linear deformations of a bent member are again appli-
cable. TUtilizing these theorems the end functions may now be expressed.

4-2. Angular Displacement Functions

The angular functions of the ends A and B on the real structure

due to loads and redundants are
A. The end slope at A (B) of the real structure due to loads is
equal to the shear of the conjugate structure at A (B) due to

the corresponding elastic weights (Figure 4-1a).

B '

=L _ gL SL %

Ry = Rp\ = 2 P, —EJ = Tap (4-1a)
< _
B X

=L _ =L = L

Rg = Rg = Z Pl = gy (4-1b)

B. The end slope at A (B) of the real structure due toX =1.0
is equal to the shear of the conjugate structure at A (B)

due to the corresponding elastic weights (Figure 4-1b).

. B -
rX = —X = X _J = -
Ry = Ry }E PS o Fap (4-2a)

A .
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(a)
Due to Loads

+x
(b)
DuetoX = 1.0
+ x
(c)
DuetoY = 1.0
+ x
(d)
DuetoZ = 1.0
+ x

Figure 4-1

Angular and Linear Functions
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‘ X,
= RX, = 213?‘-—J-=G (4-2b)

C. The end slope at A (B) of the real structure duetoY¥ = 1.0
is equal to the shear of the conjugate structure at A (B) due
to the corresponding elastic weights (Figure 4-1c).

!

o |

&Y = RY. = Y 1 - 4

Ry = RY, z PV o Gpp (4-3a)
" _ ,

_ _ B x.

Ry = R}, = Z PY 4 = Fg, (4-3Db)
A

4-3, Linear Displacement Functions

The linear functions of the ends A and B on the real structure
due to loads and redundants are | |
A. The relative displacement of the ends A and B on the real
structure due to loads is equal to the static moment of the
corresponding joint elastic weights about the line AB of

the conjugate structure (Figure 4-1a).

— L L =L , =L
M apr B+ Bgh)e

A - M

1] -
M
il
i
0

€AB (4-4)

B. The relative displacement of the ends A and B on the real
structure due to X = 1.0 is equai to the static moment of the
corresponding joint elastic weights about the line AB of the

conjugate structure (Figure 4-1b).



CHAPTER V -
MOMENT AND FORCE FUNCTIONS

5-1. General

The bent member develops moment and force functions which
are expresséd in terms of the string polygdn functions due to the loads
and unit redundants. These moment and force functions, from Equa-
tions (2-13) and (2-14), are defined here.

5-2. Moment Functions

The moment functions for the bent member are the deformation
coefficients for the end rotations and the fixed-end moments, due to
the loads and horizontal end displacements, which induce the end

moments. These functions are

A. The stiffness factor K is the moment required to induce

a unit rotation at the near hinged end, the far end being

fixed.
RY 2 :
t B! e
K = - —_— (5-1a)
AB = 7
N M B! '
RX 2 V ,
: : A e .
KB’A ST = T =z . (5-1b)
N MA'lBl

B. The carry-over stiffness factor CK is the moment in-

duced at the near fixed end due to a uynit rotation at the far

‘hinged end.

27
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| Ry o2
CKpp = -t —% | (5-2a)
| Mpig:
=7
CK. . = A e | 5-2b
BA -t R{ t =z (5-2b)
Mgt

‘C. The translation: stiffness factor S is the moment of the
fixed-end member due to a unit rotation caused by a rela-

tive vertical displacement of the ends.

RY, + RY
Al B!

Syg = + 2B 5-3a
AB = (5-3a)
. = X =X

S = - far t B (5-3b)
BA N ' :

D. The fixed-end moment due fo loads FML is

sL 5y _ sL gy = L
L _ . BpiBar - By Rpy Mpg, |
FM = + - e (5-4a)
AB —= — 7
N MA'B.Y
sL =x =1, 5x —L
R |R | R |R 1 M Rt
N .MA'B‘

E. The fixed-end moment due to horizontal end displacement

FM2 s
A e .
FMpy = + — A, (5-5a)
A'B'
A _ e .
FMg, = - —m— A (5-5b)
Mpig:

5-3. Force Functions

The force functions for the bent member are the deformation
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coefficieﬁts for the end rotations and the fixed-end thrusts, due to the
loads and horizontal end displacements, which induce the end thrusts.
These functions are
A. The stiffness factor KH is the horizontal thrust produced
by the unit rotation at the near hinged end, the far end

being fixed.

Kpp = - =5 (5-6a)
MAIBI

Kga =~ =5 (5-6b)
| Mpigs

B. The carry-over stiffness factor CKH is the horizontal
thrust induced at the near fixed end due to a unit rotation
at the far hinged end.

H e

CKyL =+ —2 (5-7a)
MA’B'

CKL, =+ —2— (5-7b)
Mpis: |

C. The fixed-end thrust due to loads FHL is

L
M IRt

FHY, = - —a2n (5-8a)
Mpig
— L
M

FHL) = + —2BL | (5-8b)
M
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D. The fixed-end thrust due to horizontal end displacement

FHA is
A 1 _0ay.
FHyp = + ﬁ"z'— A (5-9a)
A'B!
A _ 1 : )
FHpy = A (5-9b)



CHAPTER VI

NUMERICAL PROCEDURE AND NUMERICAL EXAMPLE

6-1. Numerical Procedure

The calculation of the constants discussed in the preceeding

chapters of this thesis may be performed by this following procedure:

1.

The real structure is transformed into the basic structure
and the reactions due to loads are calculated.

The points of the string polygon are selected and the bending
moments of the basic structure are recorded for each ridged
joint, or any other point of the string polygon, to obtain the
segmental end moments for the string polygon functions.

The angular constants (F's, G's, and 7's) are calculated for
each segment. If the segments are of variable cross section,
numerical tables prepared by Lassley( 3)_, Boecker(z).,
Exline(4)., and Yu( 5) for the calculation of these constants may
be used to great advantage,

The joint elastic weights (Equations 3-1 and 3—2). due to a
unit bending moment throughout the structure are calculated
and applied on the corresponding conjugate structure. The
vertical coordinate of the elastic center is calculated by
means of the given formula (Equation 3-9).

The joint elastic weights are calculated for all joints of the

string polygon in terms of the loads and unit redundants.

31
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6. The end conditioning elements of the conjugate structure at
A' and B' are calculated by means vof the given formulas
(Equations 3-4, 3-5, and 3-6.)
7. The numerical values of the end conditioning elements are
substituted into the formulas for the end reactions of the real
structure (Equations 2-13 and 2-14).
From this point, conventional methods of analysis are ut"ilized
for the calculation of any remaining reactive values required for the
completion of the problem.

6-2. Tllustrative Fxample

The application of the numerical procedure is shown in the

following problem. The symmetrical, complex frame loaded as shown

2
Vi
V4

(Figure 6-1) is given. It is required to analyife the frame for the
joint bending moments. All values given are in units of kips, feét,

or kip-feet.

12!
10
8!

12!

45! 45!

!
EI = Constant

Figure 6-1

Real Structure
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The symmetrical bent member (Figure 6-2) is removed for
separate analysis. The solution of the member follows the procedure

outlined in the preceeding article.

w = 1,0k/1.ft. |
U N SN T T

k 12!

®

| 45! 45!
!

10!

L op®

Figure 6-2

Basic Bent Member

1. Load Reactions

Vertical Loads:

R6X =0 ' R7X =0
- k '
R6y = 45,000 R7y - 45.000k
Horizontal Loads: |
- k -
R6X = 6,400 R7x =0
R. = 0.711K R, = 0.711F
6y Ty

2. Bending Moment Diagrams (Figure 6-3)

3. Angular Constants

L _ 10 _ 3.333

Fgg = Fgg = Fr10 = Fio7 “ 38T ° 38T = "EI
_ L _ _ 46.573 _ 15.524
Fgg = Fgg = Fg19 = Fi09 3BT~ = —EI
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Vertical
Loads

0.5k—f‘c.
+=
- + -
1.0k ft. / X = 1.0
0'5k—ft.
SNt Y = 1.0
N
e
zZ = 1.0
Horizontal
Loads

Figure 6-3

Bending Moment Diagrams



_ ) . _ L _ 1,667
Geg = CGgg = G710 ® Crov = BET - TEI
_ . § _ 46.573 _ 7.762
Ggg = Ggg = Co10 = G109 ® TBET = ~EI
| 2, 3
- - = . wcos (o). _ 3,929,268
789 98 910 109 24 E1 EI

4. Elastic Center Ordinate

B
G.. + °F. + G, .)C.
g(u i kJ),J

-5 _
G.. + TF. + @,
g(lll j kJ)

(2)(28.286)(10. 0) + (46.572)(22. 0)
(2)(5. 000) + (2)(28.286) + (46.572)

1, 590. 304 ft,
= 13712z = 14.056
3. Joint Elastic Weights
Vertical Loads:
P, =P, =0
Pg = Fro = Tgo * Mg Gog
_ 3,929.268 ‘ 7.762
= Spr T2+ (1,012.500) — 7S
. 4 11,788.293
B
Fio T Tes * Toro * Mg EFy
7 3, 929. 268 15,524
7= @)=+ (1,012.500)(2) =S
39,294, 636

=+ El

35



Horizontal Lioads:

546. 134
EI

3.333 + 1.167

_— ) 1.667 _ . 106.688
P, = 0
Py = Mg IFg + M, Ggg
= (64.000) 2:338 4 1. 522 (7 360
_ . 1,752.982
SRR ) S
Pg = Mg Ggg + Mg IFy
7.762 15. 524
= (64.000) =182 1 (70.360)(2) 12224
_ . 2,681.305
= + Seogt—
_— _ 7.762
P,y= Mg Gy = (70.360) L22 = 4
X = 1.0
P, = Mg Fgg + Mg Ggg = (1.000)
. 5.000
=t T
P, = 0
Pg = Mg Ggg + Mg LFg + Mg Ggg
- (1. 000) 1: 167 + 3,333 + 15,524
BT
. 24.405
=+t TEI
PQ = M8 G89 + M9-~):F9
7.762 15.524
= (1.000) =282+ (0.500)(2) 132
_ ., 23.286

EI

EI

+ (0.500)

36
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ol

il

3.333 + 15,524

_ 24.405

EI

o 7.762 _ , 3.881
Mg Gg,, = (0.500) 1182 - o 3.881
0
_ 5.000
My Frjo ¥ MygGior = - —®&1
__ 3.881
Mg Ggg = EI
I _ 23.286
Mg ZFg * My, Gig9 = - —ET
Mg Ggyg + Mg ZF 5 + Mg Gy
Py = Mg Fgg + Mg Ggg
= (14.056) 3232 4 (4.056) 122"
. 53.160
=+
Pp= My Ggg + Mg ZFg + M, Ggg
= (14.056) =287 + (4. 056)
7.762 _ . 38.254
Mg Ggg + Mg ZFg + My Gypg
7.762 15. 524
(4.056)(2) 182 + (-7, 044)(2) 2222
_ 183.680

EI

37
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6. End Conditioning Elements

Vertical Loads:
1

7
— - —_— - e 3
Rg, = R;; = ; Pj_J

11,788.293 + (0.50)(39, 294. 636)
‘ EI

+

"

- 31,435,611
El -

7
..._'V - -
SORDARY

_ (2)(11,788.293)(-4.056) | (39,294.25fx1.944)
o :

216,529, 955

= EI
Horizontal Loads:
gH . 106.688 + 1,752,982 + (0.5)(2,681,305)
I .
6 EI
_ ., 3,200.322
= + S
g H (0.5)(2, 681.305) + 546.134
(s EI
_ . 1,886.786
= 4 B,
s H . (106.688)(-14.056) + (1,752,982 + 546. 134)(-4. 056)
1 = ‘
67! EI
2,681.305
_ 4 10,475,467

EI



=¥ _ 5.000 + 24.405 + (0.5)(23.286)
6! Bl
. 41,048
R O
=x _ (0.5)(23.286) +3.581 _ , 15.224
7 —FT BT
Y = 1.0
=y _ _ 15.224
Rg B
=y . _ 41.048
Ra BT
Z = 1.0
-y (53.610)(2)(-14.056) , (38.254)(2)(-4.056)
A'B! BT | BT
, (~183.680)(7. 944)
Bl
_ _ 3,276.555
—ET

7. Moment and Force Functions

. . . , 2 ‘ 2
% = =X =Y -(41. 048 -(15.224
' (EI) (EI)
_ 1,453,168
(ED)°
Ry 2
T e
K., = K, = - ;
67 76 = —_—
- N M62,7,

41,048 EI _ (14.056)% EI
~T,453.168 ~ -3, 276.555

"

+ 0.088 EI



CKgrq

FM

| 2
= CK,e = E' + _e.z.
N M'6'7'
_ -15,224 EI _ (14.056)” EI
~1,453.168 ' -3,276.555
= - 0.050 EI
o . SKer | -0.050 | s68
76 © K 0. 088 -
67
H _ . e _ _ 14,056 EI _
K76 - T3,276.555 - + 0.00429
o
MY,
. eV . Mg 216,520.955 _
= - FHyg - —3,276.555 ~ + 66.
6'7‘ ’
- pgd - _ 10,475.467 _ , o g0k
76 3. 376. 555 -
A
- A _ 1 X _
= - FHpg = —— A, = T37376.555
M
617!
=Voy =Vay =V
_ v _ BpBg - R Ry Mgy
= - FMygg = = >
N Mgy
_ (31,435, 611)(-15. 224 + 41, 048)
1,453,168
_ 216,529. 955 .
A Do R-o%s (14.056) = + 370.254
o H
= FMgg

_ (1,886.786)(-15.224) - (3,200.322)(-41.048)

"~ (-3,276.555)

10, 475. 467

25,696

k-ft.

(-1,453. 168)

(14. 056)

40

05K

0. 00061EIA~X

k-ft.
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A e 14,056 EI A

6 " Tz S T 73,376.555 x
6171

[t}

- 0.00428 EI Ax

With these values the modified structure (Figure 6-4) may be
solved by either the Moment Distribution Method or the Slope Deflec~

tion Method. The Moment Distribution solution follows:

w = 1.0 k/lin ft. w 1.0 k/lin; ft.
I A 1T ¥ 3
2.0&———-——» . i, . -———-—2'0k

g1
ol Nic
© © @ @
o | [ |

3 3

Figure 6-4

Modified Structure

8. Frame Constants

Ky, = K = 3—5-1- = 2B = 0.250 EI
Ky, = K'yy = ops = 0.150 EI

Ky = Kgn g{*—'% 0.129 EI

C's = 0.500

D' 0. 250 0. 660

40 - 0.250 ¥ 0,129
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! = =
D'y, = oiseg = 0.340
2
L _ _ L _ _ L _ L _ WL
FMyg = - FMgy = - FMg, = FMyy; = —y5-
_ (1.0)(30.000)% _ . o oo ket
12 -
A A _ 3EI, _ 3EI . _ |
EM;, = EMj} = ?Ax = 171.00 8¢ = 0-021 EIA_
= + 210,000 X,
A A 3EI

9. Modifications for Symmetry and Anti-Symmetry

Symmetry:

Ké',? = K67 (L-C) = 0.088(1+0.568) EI = 0.138 EI

o
[y

2

©

Dyiy = 517 = 0-309

Dg1 = g:z]i?'(z) = 0.360

Di. = p7eg = 0.331

FMgy = - 0.00428 EI (A; - A) = - 0.00428 EI (2A)
= - 85.600 X,

FH/y = - 0.00061 EI (A, - Ag) = - 6.100X

67
Anti-Symmetry:
Ké‘,z' = K67 (1+C) = 0,088 (1 - 0,568) EI = 0.038_EI

o 0.129 _
Dgi = o317 = 0-407
0.150 0.038
11} = - . = =
Dgi = o317 = 0-473 Dgy = o317 = 0-120
A A
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Distribution Procedure

Symmetrical - Loads: -

40 46 64 61 87
+ 0.660|- 0.340 {- 0.309|- 0.360|- 0.331
+ 0.500 |+ 0.500
——~> | - 75,000 | + 75.000 +370. 254
} -137.583 | -160.290| -147. 379
- 68.792
+ 94.903 | + 48. 889
+ 24,445
- 7.554|- 8.800| - 8.091
- 3.7
+ 2.493 |+ 1.284
+ 0,642
- 0.198| - 0.231} - 0.212
+ 97.396 | - 97.396 | - 45.248| -160. 321 | +214. 572
+ 97.396 | - 22,396 | -120,248 | -169. 321 -155. 682
Symmetrical - Alz
+210. 000 + 75,000 | - 85.600
+ 3.275 |+ 3.816 |+ 3.509
_ - 1.637
| ~139.680| - 71.957
- 35.978
+ 11,117 | +12.952 | + 11.909
+ 5,558
- 3.668| - 1.890
- 0,945
+ 0.292 |+ 0,340 |+ 0.313
+ 0.146 f
- 0,096| - 0.050
+ 66.556| - 66.556 | - 22,239 | + 92.108 | - 69. 869
-143,444| - 66,556 | - 22.239 |+ 17.108 | + 15.731

RM

RM
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Anti-Symmetrical - Loads:

40 46 64 61 67
- 0.660 | -0.340 | - 0.407;- 0.473| - 0,120
+0.500 | + 0.500
‘ - 25.696
+ 10,458 | + 12,154 | + 3,084
L 4+ 5,229
- 3.451 | - 1,778
- 0.889
+ 0.362 |+ 0.420| + 0,107
+ 0,181 '
-0.119 | - 0.062
- 3.570 | +3.570 | + 9.931|+ 12.574 | - 22.505
- 3.570 + 3,570 | + 9.931}+ 12,574 | + 3,191
Anti-Symmetrical - Al
+210. 000 + 75.000
-138.600] - 71,400
- 35.700
- 15,995 | - 18.588 | - 4.716
- 7.998
+ 5.279| + 2,719
+ 1.359
- 0.553 |- 0.643 ] - 0.163
- 0,276
+ 0.182} 4+ 0.094
+ 76.861| - 76.861 |- 50.889 | +55.769 | - 4.879
-133.139| - 76.861 |- 50.889 | - 19.231 | - 4.879

RM

RM
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11, Shear Equation

45

Symmetrical:
@ R6x
e el
Vie
© @
Figure 6-5

Free-Body Diagram

k2 +c,.) '
. - 67 67 - (0.00429)(1 - 0.568)
67 K67(1 - C67C76) (0. 088)(1 - 0.323)

= 0.031
R, = v., (RM,, - RM,.) + FHY, + FH2
67 67 76 67 67

04

16

04

"

(0.031)(-155. 682 _+,15".731X1) + 66.085 - 6.100 X1

+ 61,259 - 5,612 X1

M 97.396 + 66.556X

Ts0 1

20 . - = +8.116 + 5.546 X,
Mg,  -169.321+ 92.108X

2 = T = -8.466 + 4.605 X,
Vie ~ Bgx = O

(8.116 - 8.466 - 61,259) + (5.546 + 4,605 + 5.612)X1

-61,609 + 15,763 X1



S _ 61,609

1 ~ i5.7g3 - * 8.908

X

Anti-symmetrical:

Figure 6-6

Free-Body Diagram

R, = (0.031)(+3.191 - 4.879X ) + 3.197 - 6.400
= - 3.104 - 0.151X,
- 3.570 + 76.861 X

Vog = G = - 0.208 + 6.405 X,

+ 12.574 + 55,769 X1

Vig = 500 = + 0.629 + 2,788 X,
Vog * Vig * 4000 - R, =0
0 = (-0.298 + 0.629 + 3. 104 + 4. 000)
+ (6.405 +2.788 +0.151) X,
= 4+ 7.733 + 9.344 X,
X, = - £133 - 5 gog
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12. Final Moments

Symmetrical:
M,, = + 97.396 + 260,100 = + 357,497 <'t
My, = - 97.396 - 260.100 = - 357.497° T
M, = - 45.248 - 86.910 = - 132.158 <"
Mg, = - 169.321 + 350.958 = + 190.637 -
Mg, = + 214,572 - 273.048 = - 58.476 "
EM7 = 0 = =
0 = -~ 58.476 + 58.476 - (90.000)(45.000)
+ Rg (90.000)
_ 4,500.000 _ k
Rgy = “oopg. = + 45.000
Rg, = + 61.259 - (5.612)(3.908) = + 39, 327"
o k-t
Mgg = - §8.476
k-ft.
Mg, = - 58.476 - (39.327)(10.00) = + 451.746
k-t
Mgq = - 451.746
Mgg = - 58.476 - (39.327)(22.00) + (45.00)(45.00)

- (45.00)(22. 50)
k-ft.

+ 88.830

Anti-symmetrical:

My, = - 3.570 - 63.700 = - 67. 270 X~ ft-
M,z = + 3.570 + 63.700 = + 67. 270 &It
M.. = + 9.931 + 42.200 = + 52,1315 Tt

64
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Mg, = + 12.574 - 46.250 = - 33.676° "
M, = - 22.505 + 4.040 = - 18. 465t
EM, = 0 =
0 = - 18.465 - 18.465 + (6.400)(10.00)
+ Rg (90.00)
__27.070 _ _ k
Rey = -~ s0.000 - - 0-301
ﬁ k
Rg, = - '3.104 - (0.151)(-0.828) = -2.979
_ K-ft.
Mg, = - 18,465 %
k-ft.
Mg, = - 18,465 + (2.979)(10.000) = + 11.325
K~ft.
Mg = - 11.325
Mg, = - 18.465 + (2.979)(22.00) - (0.301)(45.00)

- (3.200)(12.00)

= - 4. 8725



CHAPTER VII
SUMMARY AND CONCLUSIONS

The slope deflection equations for a symmetrical bent member
are derived and the conjugate expressions for the moment and force
functions are defined. The procedure for the analysis of this type of
member is outlined and one numerical example is included. The
example illustrates this procedure and the integration of this method
in the analysis of a complex structure.

The slope deflection equations, in terms of loads and end dis-
placements, for a symmetrical bent member completely describe its
end reactions, Further investigation of the loads or displacements at
points within the member is eliminated. The bent member in the real
structure is replaced by a straight elastic bar for the purpose of solu-
tion by either slope deflection or moment distribution.

The application of the String Polygon Method to the solution of
complex or continuous structures may eliminate much of the laborious
work connected with the solution of simultaneous equations and moment
distributions procedures. The String Polygon Method becomes more
advantageous as the number of joints in the bent member increases and

more displacements are introduced.
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