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PREFACE 

The theory of linear feedback control systems is well documented 

in the literature . This is the result of a tremendous emphasis on such 

systems during the postwar years of 1945 through 1955. By the latter date, 

many techniques of analysis and synthesis had been developed and were in 

general use in industry . All of these techniques are dependent upon the 

assumption that the coefficients of the differental equations which de ­

scribed the operation of the systems are constant and well known. This 

assumption is not generally the case with physical systems, especially if 

the environmental conditions in which the system is required to operate 

are variable. For that reason, in the late 1950 1 s the control engineer 

began searching for methods of control that would enable him to control 

systems and processes that had variable parameters. The result of this 

search was a new class of control system that was to eventually be labeled 

"adaptive". 

The primary objective of this thesis is to study in some detail a 

particular type of adaptive control system. The type to be studied is 

characterized by the use of a dynamic model of the desired transfer func ­

tion as the system reference. The resulting system is linear and continu­

ous, and for that reason is classed as passive-adaptive compensation . 

A secondary objective of this thesis is to gather into one document 

some of the ideas of adaptation and to discuss these ideas briefly. This 

is accomplished in Chapter II. Chapters UI and IV are devoted strictly 

to the passive-adaptive model reference compensation technique mentioned 
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above. Chapter I presents the introductory remarks. Chapter V presents 

a summary and draws some conclusions from the rest of the thesis. 

The author is p~r~icularly indebted to Mr. Paul A. McCollum for 

his assistance• guidance and continuous encouragement during the prepara­

tion of this thesis. The author is also indebted to Mr. John Fike for 

his work with the digital computer computations that were so valuable in 

the final verification of the theories involved. 

An extra special word of thanks goes to my wife Louise for her 

patience. encouragement, and for typing the original draft. 
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CHAPTER I 

INTRODUCTION 

Generally, the synthesis problem as applied to automatic control 

systems can be stated in the following manner. Given a dynamic system, 

plant, or process that does not yield the desired performance character­

istics when operating alone, design a controller(s) and/or compensating 

device(s) which will cause the resulting system (original system plus 

controller or compensating device) to yield the desired performance 

characteristics. 

If the original system is linear and its parameters are well known 

or can be accurately determined then any one of several system synthesis 

procedures are applicable. All of these synthesis procedures assume one 

of two prominent fonns of compensation. 111.ese are cascade and feedback 

compensation. Both require feedback. The-former type places the com­

pensating device in cascade or, as it is sometimes referred to, in series 

with the plant in the forward transmission path of the system. Feedback 

compensation places the compensating device in the feedback transmission 

path. It is sometimes referred to as parallel compensation. 

111.ese compensation techniques have been investigated extensively 

and are well documented in the literature [1 1 2, 3). However, generally 

the problem is not nearly as straight forward as these defined compensa= 

tion procedures would imply. For example, there exists, in most physical 

plants or systems several problems which the cascade and feedback 
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compensation procedures generally ignore. Some of these problems are dis­

cussed in the following paragraph~. 

First• the system, plant, or process to be controlled is at least 

partially specified and is not available for adjustment or redesign. This 

may be the result of technical or economical reasons. This is not a par­

ticularly severe problem if the characteristics of the plant are such that 

one can realize the desired response using the aforementioned compensation 

techniques. 

Secondly• the parameters which describe the tx:ansfer charact.eristics 

of the plant or system to be controlled are not accurately known. This 

problem places a .definite limitation on the linear compensating techniques 

mentioned above in that most of the procedures for realizing the desired 

compensating devices are based on the assumption that the characteristics 

of the plant are accurately known. 

The fact that the properties of the input signal or signals are not 

always well known also presents some problems in so far as compensating 

procedures are concerned. 

However, the problem area that is of most importance here is the 

fact that the parameters which describe the characteristics of the system, 

plant, or process to be controlled are subject to variations during the 

normal course of system operations. This is true of many physical systems. 

Generally these variations are due to the changing environment in which 

the system is required to operate. 

A particularly good example of a physical device which exhibits all 

these problem conditions is the high performance aircraft or missile. In 

either case the control engineer has little or no control over the physical 

configuration of the airframe as this is dictated by the aeronautical 
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specifications. ThusD the parameters of the device to be controlled are 

fixed and not available for adjustment. Generally• the coefficients of 

the differential equations which describe the motion of the airframe are 

not well known, at least during the earlier stages of development. Further­

more, these coefficients are functions of the environmental variables such 

as Mach number, altitude,, location of the center=of=gravity 3 mass, and any 

number of other factors that normally vary in some manner during flight. 

It is not uncommon for a particular coefficient to change by a factor of 

10 or even 100 during the course of a normal flight. Obviously, a com­

pensating device designed to give a satisfactory performance at the nomi­

nal value of such a factor cannot be expected to provide the same perfor­

mance at some other condition. 

As a result of the many problems encountered in the control of sysa 

terns and processes similiar to the airplane in complexity, the control 

engineer has found it necessary to resort to techniques of compensation 

other than those found in conventional texts on automatic feedback con= 

trol systems. The result of this has been the development of a new class 

of systems that have been labeled "adaptive" in the literature. This 

terminology appears to be due to Drenick and Shahbender (4]o It is the 

intention of this thesis to examine in some detail a particular class of 

these adaptive control systems and to present a particular configuration 

which will be shown to provide excellent transient and steady-state per= 

formance characteristics for a second order plant whose parameters are 

subject to large and rapid variations. The unique feature of this con= 

figuration is the use of a dynamic model of the desired system transfer 

characteristics as the system reference. 

The next chapter shall be devoted to a brief survey of the available 
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literature on the subject of adaptive control systems. Some of the teruli­

nology of such systems is presented and a classification technique that 

has been proposed in the literature is used as a framework for discussing 

the ideas of adaptation. 



CHAPTER II 

GENERAL BACKGROUND• ADAPTIVE CONTROL SYSTEMS 

At this writing, a precise definition of adaptive control does not 

exist. The tenn uadaptation" was borrowed from the biological sciences 

where it is defined as a ''modification of an animal or plant (or of its 

parts or organs) fitting it more perfectly for existence under the con­

ditions of its environment. 111 Thus, if one applies the literal biologi-

cal definition of the term adaptation to the problem of giving a general 

definition to the phrase "adaptive control system" one automatically im-

plies some sort of modification or adjustment to the system. These modi-

fications or adjustments are designed to fit the system for op~rations 

in a changing environment. 

Several definitions have been suggested in the literature. To 

illustrate the wide variation in concepts that have resulted since the 

introduction of the tenn "adaptive control" the following representative 

definitions are quoted from the literature: 

Adaptive control is a method of control aimed at obtaining op­
timum system performance even when there exists incomplete or 
inexact analytical or analog model of the process that is being 
controlled. [5] 

The term adaptive will be applied to any control system which 
measures continuously or intermittently, the impulse response or 
some other function which characterizes the system and which makes 

1"Adaptation", Webster's New Colleiiate Dictionary, G. & c. 
Merriam Co., Publishers 8 (Springfield,assachusetts, 1956), p. 10. 
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use of this system characteristic function·to determine and to 
generate the necessary forcing function to cause the system to 
behave in a desired manner. [6] · 

A feedback control system is adaptive if the sensitivity with . 
respect to a variable xis zero over an interval in x of non­
zero magnitude. [ 7] 

An adaptive system is any physical system which has been de­
signed with an adaptive viewpoint. [8] 

Of these listed definitions,. only the last seems to qualify as a 

general definition of the word adaptation. Consequently, a classical 

linear feedback control system such as is illustrated in Figure 1 

qualifies as an adaptive control system. To see that this is true 

consider the effects on the plant driving signal, e(t), if suddenly the 

output signal• c(t), is not equal to the input s_ignal,. r(t), as the re­

sult of parameter variation in the plant. 1he error signal, e(t), is 

modified or adjusted accordingly, so as to fit the overall system more 

rt + e t Plant t 

Figure 1. A Feedback Control System 

perfectly for its operating environment. Al though this is a somewhat 

simplified example, it does serve as an illustration of the basic defi­

nition of adaptation. It can be concluded that any control system that 

exhibits an ability to adjust to a changing environment is adaptive 8 

whether that control system is a simple feedback control system as 
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illustrated above or one of the more complicated structures discussed 

later in this chapter. 

Classification of Adaptive Control Systems 

\ 
\ 

In a paper that has become the byword in so far as terminology is 

concerned, Aseltine, Mancini, an.d Sarture [9] attempted to classify the 
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approaches that have been taken in the design of adaptive control systems. 

Although this classification technique does not always yield a unique 

classification for any particular system, it does provide a framework for 

discussion. These classifications and, a brief discussion of each are pre= 

sented in the next several paragraphs. 

Passive Adaptation. A passive-adaptive system is one that achieves adap= 

tation without system parameter changes. This class. of systetn is adaptive 

in that it is designed to.operate satisfactorily over wide variations in 

the environmental con4itions. 

A good example of a passive-adaptive control system is the simple 

feedback control system illustrated in Figure 1. The original justifi= 

cation for employing feedback in any control system has to do with render-

ing the system less sensitive to variation in environmental conditions 

and to improving the system's ability to reject corrupting signals [10]. 

Consequently, any system which utilizes conventional feedback is adaptive 

and furthermore can be classified as a passive-adaptive control system. 

In a sense, passive-adaptive control is more of a compensating technique 

than a philosophy of control. 

There are certain special feedback configurations which display in-

herent adaptive behavio,r of a higher degree than the conventional feed-

back control system illustrated in Figure 1. A pair of such feedback 
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configurations are shown in Figure 2. Thes.e special configurations gen­

erally achieve their higher degrees of adaptation as a result of the fact 

r(t) ~ 
-

= 
'' 

r(t) + 

Figure 2. 

G1 - Plant 

H 

(a) 

Plant 

H 

(b) 

Two Feedback Control Systems With 
Two Degrees of Freedom 

c(t) 

C (t) 

that they exhibit two or more degrees of freedom. By the tenn • two or 

more degrees of freedom, it is meant that the system designer has the 

freedom to select two or more independent transfer functions. In the 

illustrated cases, the designer is free to select G1 and Hand thus has 

two degrees of freedom. Horowitz [ 10] has shown that by utilizing a con= 

figuration such as those illustr~ted in Figure 2 and a high loop gain 

one can control both the system's overall transfer characteristics as 

well as the system's sensitivity to plant parameter variations. 

This class of adaptive control scheme appears to have its greatest 

potential in systems which involve plants whose parameters vary rapidly 
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compared to the nominal time constants of the system. For that reason 

a particular subclass of this classification was selected for special 

study in this thesis. That subclass is characterized by the use of a 

model of the desired transfer function as the system reference. A more 

detailed discussion of this type of passive-adaptive control system is 

presented in Chapters I U and IV of this thesis. 

Input Signal Adaptation. This class of adaptive control system includes 

those systems which adjust their parameters in accordance with tne input 

signal characteristics. The essential components of such a system are 

shown in Figure 3. It is seen that two elements» in addition to the 

plant. are required. These elements are (1) the input measuring device 

and (2) the controller. 

r(t) 

Input 
I - Measuring 

Device 

Controller 

- Plant 

\\ 
Figure 3. A Generalize~ Input Sensing 

Adaptive Control System 

c(t) -
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The essential nature of such systems can be described in the follow-

ing manner. The input measuring device monitors the input signal and 

based on prior knowledge of the plant transfer characteristics causes 

the controller to adjust the parameters of the plant according to some 

predetermined function. Several criteria for adjustment have been sug­

ge,sted. Two of the more prominent ones are (1) minimization of the mean­

square error b·etween the input signal and the system output in the pres ­

ence of noise of known statistical characteristics [11] and (2) minimiza­

tion of the mean- square noise plus squared dynamic error signal [4]. 

This class of adaptive control system does not consider cases where 

the plant parameters are subject to variation, and at the same time as­

sumes some prior knowledge of the plant transfer characteristics, As 

pointed out previously, these are two of the basic problems which caused 

the control engineer to resort to adaptive control techniques. In that 

sense. the applicability of input signal adaptation techniques appears 

to be limited, particularly where plant parameter variations are con-

cerned. 

Extremum Adaptation. This classification includes those systems which 

are designed to operate at or near an extremum of some system variable . 

The extremum may be either a maximum or a minimum. The variable to be 

automatically maximi.zed or minimized may be of any variety such as out­

put torque. fuel consumption, or even some artificially derived figure of 

merit . As pointed out by Cosgriff and Emerling [12] this class of con­

trol system differs considerably from the more conventional types where 

the optimum time response to a specific class of input signals is the 

ultimate matter of interest . In an extremum adaptive control system 

the ultimate item of concern is whether or not the variables of 
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interest are maximum or minimum regardless of the character of the input 

signal. 

Draper and Li [9 • 13 • 14] have proposed four varieties of extremum 

adaptive systems. The proposed systems of these authors are all based on 

the concept of dynamically adjusting the controlled system parameters in 

such a manner as to achieve an extreme condition for a particular system 

variable. These proposed methods are generally classified according to 

the manner in which the parameter adjustment signal is derived. The 

proposed methods are (1) generation of a constant adjustment rate• the 

sign of which is determined by the sign of the time rate of change of the 

variable to be opt~mized 8 (2) an adjustment technique that is proportional 

to the response of the plant to a sinusoidal test disturbance signal, (3) 

an adjustment signal that is proportional to the rate of change of the 

variable to be optimized with respect to adjustment• and (4) an adjust 0 

ment signal that is proportional to the difference between the present 

output and the extremum condition that the variable has held in the past. 

All of these cases have a common deficiency in that a type of hunting 

operation is achieved. Furthermore, since the optimum condition is an 

extremum there are many control applications wherein this feature is not 

desirable. One example of such an application is the one in which this 

thesis is most concerned. That application is the problem of insuring 

satisfactory transient response in the face of gross plant parameter 

variations. 

System Variable Adaptation. This class of adaptive control system in= 

eludes those systems which base self-adjustment on measurements of system 

variables such as the output or error signals. These measurements of 

system variables may consist of magnitude sensing, derivative sensing, 
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algebraic sign sensing, or any other function of a system variaqle that 
I 

is useful in achieving the desired system performance. At any rate, cer­

tain system control parameters are adjusted either continuously or inter-

mittently according to the characteristics of the system variable being 

used to actuate the adaptive processes. 

A particularly good example of this class of adaptive control that 

uses intermittent adjustment has been presented by Flugg=Lotz and Taylor 

[15, 16]. Tilis control system is illustrated in block diagram fo:rm in 

Figure 4. 

Input 
Variable __ "'* 

r(t) 

Plant 
. G 

_I -

d 
dt--· 

Output 
Variable 

c(t) 

i------,---1---- dc(t) 
c(t) dt, . Switching 

Logic r(t) 
dr(t) '--~~~~__J~~~- .dt. 

Figure 4. A System Variable Adaptive Control System 
That Employs Intermittent Adjustment 

-, 
···~ 
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The essentia l £ -eatMr.es 1·uf th·i s,esyS'tem are as .f .ollows... The ·plant or 

controlled system, G, has two feedback loops closed about it. One of 

these control loops provides a feedback signal that is proportional to 

the output signal. The other control loop provides a feedback signal 

that is proportional to the derivative of the output signal. The gains 

of these .two feedback loops are discretely, selected by means of logic 

circuitry that monitors the output and input signals as well as the 

derivatives of these signals . The feedback gains at any instant are 

de.termined by the relative signs of the variables mentioned above. 

A good example of a system variable adaptive technique that uti ­

lizes semi continuous system adjustment has been proposed by Whitaker• 

et al., [17 , 18] . This control system is shown in block diagram form 

in Figures. The essential component in the system is the dynamic model 

that is used to establish the system reference . This model is constructed 

of conventional analog components and is designed so as to provide the 

desired dynamic response when subjected to the same input signal as the 

basic control system. The actual output of the system is compared to the 

model output thus generating an error signal that is some measure of the 

difference between the model transfer characteristics and the transfer 

characteristics of the basic control system. This error is used to ana= 

lyze the performance of the system and to detennine appropriate corrective 

adjustments f or the controller. In the original work Whitaker, et al . , 

adjusted the controller parameters so as to minimize a particular error 

function over a particul ar sampling interval such as the rise time or 

settling time of the mode l. I t was necessary to exercise care in the 

selection of t he proper error f unct i on to mi nimize in controlling a par­

ticular system variable. However, it has been demonstrated that such a 
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l- 'I Basic Control System ~- I 
I 1 Plant 
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Controller . -
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Figure So A Model Reference System Variable 
Adaptive Control System 
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Varia6 

system is feasibleo It has a basic disadvantage that in general a time 

t 

le 

delay equal to the s.ampling interval must take place before any corrective 

action can take place. Even then the corrective action can only start to 

occur since more sampling intervals must lapse before the error function 

can be minimizedo A type of hunting operation would occur if the basic 
··-;-

control system were subjected to rapidly changing parameters. ' 

With these example systems in mind, certain observations can be made 

conceming system variable adaptive techniques. This class of adaptive 

control appears to have some promise in so far as finding .a solution to 

the problem qf achieving satisfactory transient response with a plant 
' 



that exhibits grossly varying parameters. The major disadvantages appear 

to be in the relative complexity that is involved and in detennining the 

variables and criteria that can be used to achieve a particular transient 

response . Still another disadvantage appears to be the need for dynamic 

adjustment of controller parameters. This presents an implementation 

problem. 

System Characteristic Adaptation. This class of adaptive control system 

derives self-adjustment signals from measurements of its own characteris­

tics . By characteristics it is meant the coefficients of the describing 

differential equations or some other quantity such as second order damp­

ing ratio and natural frequency. Quantities such as these completely de­

tennine the system response to a particular class of signals. Several 

ingenious techniques for detennining the characteristics of a basic 

second order system are included in the literature. Some of these tech­

niques are described briefly in the following paragraphs. 

Anderson, et al .j [19]j have described a system in which the impulse 

response of the plant is measured and used to generate a figure of merit 

that is a function of the damping ratio of a second order system. This 

is illustrated in Figure 6. The output of the figure of merit computer 

is used to adjust the controller parameters so as to achieve the desired 

value for the figure of merit and in turn the damping ratio . The impulse 

response of the system is determined by cross -correlation of the white 

noise input and the resulting plant output as described in [20]. This 

cross=correlation involves time delay and integration of the product of 

two functions and is exceedingly difficult to implement in a physical 

system. Furthennore, the integration time can be excessive as compared 

to the rate at which the plant parameters might vary. For this reason 
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Figure 6. An Impulse Response Adaptive 
Control Sys tern 

Variable 

and the fact that an auxiliary test signal consisting of a low level 

white noise input is necessary this technique of system measurement is 

certainly limited. 

Several authors [6 v 7 • 21] i have suggested the use of computers in 

system characteristic adaptation processes. In each case the computer 

is utilized to determine the system characteristics from certain obser= 

vations of the input and output signals. These are basically sophisti-

cated techniques for determining the impulse response of the_system and 

for that reason react very much like the example given above~ 
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Advantages and Dis advantages of Adaptive Control 

Obviously, the major advantage of the various techniques by which 

a type of adaptive control can be achieved is the fact that relatively 

tight specifications on a systems performance are feasible in spite of 

changing environmental conditions . Whether or not this advantage offsets 

the major disadvantage of increased complexity and reduced reliability is 

of course dependent upon the performance and operational requirements . 

However, one observat i on does seem appropriate here. That is, until less 

complicated techniques of system measurement and parameter adjustment be­

comes available, it does not seem feasible to utilize any of the last 

four classifications in a control system in which the plant parameters 

are subject to large and rapid variations. It seems far more reasonable 

to use one of the passive -adaptive techniques of the first classification 

in that sort of application. There are no delays for system measurements 

or identification and no requirement for adjustment of controller para­

meters. The reduction in complexity seems to far offset the disadvantage 

of high loop gains . With this in mind a particularly interesting subclass 

of the passive- adaptive type control system was selected for a more de­

tailed study . The ultimate objective being to find a solution to the 

problem of providing a satisfactory transient performance when confronted 

with a plant displaying large and rapid variations in its parameters . 

The most unique feature of this system to be studied is the fact that 

the system employs a model of the desired system as a reference. 



CHAPTER III 

PASSIVE-ADAPTIVE COMPENSATION.U~ING 

A MODEL REFERENCE 

It was stated in Chapter II that the control engineer's problems 

are generally compounded by certain factors that are related to the 

parameters of the system or plant to be controlled. One of these factors 

is the variation of these parameters with environmental conditions such 

as temperature 9 atmospheric pressure, humidity, velocity• etc. It was 

because of problems such as this one that the control engineer resorted 

to the application of adaptive control techniques such as those described 

in Chapter II of this thesis. Most of these techniques employ elaborate 

and complicated methods of measuring the variations in the parameters of 

the plant. Once the variation in the parameters has been determined the 

problem of compensation must still be solved. Again, most of the truly 

adaptive control methods use complicated methods of changing the para~ 

meters in the controller or computing new input signals which cause the 

system to react in a specified manner. If the variation in system partUU= 

eters is rapida such complicated techniques of system measurement and 

implementation could not hope to be adequate. For this reason it is 

sometimes necessary to resort to techniques of control which mask or hide 

the effects of the parameter variation in so far as the output of the con= 

trolled system is concerned. Such a technique of control is termed pas= 

sive-adaptive compensation. It is the purpose of this chapter to present 

18 
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a technique of passive=adaptive compensation which utilizes a mathematical 

model of the desired transfer function as the system reference. The con-

cept of using such a model in a control system was first introduced by Ham 

and Lang [22]. These authors referred to this method of control as "con= 

ditional feedback" and used it to compensate for the effects of a pure 

time delay (transport lag) in the plant or controlled system. 

Before proceeding with the development of the passive-adaptive model 

reference control system& a discussion of the effects of varying parameters 

in a simple unity feedback control system will be presented. 

Effects of Varying Parameters 

It has been stated that one of the reasons for employing feedback 

in a control system is to reduce the sensitivity of the system to varia= 

tions in the parameters of the plant or controlled system. Although feed= 

back will reduce the effects of varying parameters it will be shown that 

the conventional unity feedback that is so extensively discussed in the 

literature is inadequate in the face of large plant parameter variations. 

This is particularly true if stringent transient specifications are placed 

on the system's performance. To illustrate the effects of large parameter 

variations on the transient performance of a simple unity feedback control 

system consider the-system shown in Figure 7. 

s Plant 
G (s) 

C s 

Figure 7. A Unity Feedback Control System 
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The symbols of Figure 7 are defined as follows: 

C(s) = the Laplace transfonn of the controlled variable, c(t). 

R(s) = the Laplace transform of the reference input, r(t). 

E(s) = the Laplace transform of the actuating or error signal 9 

e(t). 

G(s) = the transfer function of the plant expressed as a 

function of the complex frequency variables= CT+ ju). 

The closed loop transfer functi'on for the system in Figure 7 can be 

written 

C(s) 
T(s) = it'(sT = G(s) 

1 + G (s) 

For this example let the plant transfer function be written 

132 
G Cs) = """s"""(,...;,s=+-2""'a""'J-

III-1 

III=2 

where Cl and (3 are the parameters of the plant. It is the effects of 

varying these quantities that is to be investigated here. Substituting 

Equation III=2 into Equation III=l yields 

T(s) = 
(32 

IIi-3 
s2 + 2 as + (3 2 

The justification for using such a simple plant transfer function in 

this example is now apparent. The closed loop transfer function of Equa­

tion III-3 has a second order polynomial in s for a denomin_ator. Many 

physical systems exhibit transfer functions which are either second order 

or have dominant second order factors. Thus the results of this illustra= 

tive example are representative of many actual systems. 

The ultimate item of interest is 8 of course, the resulting time re= 

sponse of the system controlled variable, c(t), since a system's performance 
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is generally judged according to a set of time domain specifications. 

Howeveri Laplace transform theory shows that this time domain response. 

c(t), is completely characterized by the singularities of C(s), where 

C(s) represents the Laplace transform of the time function c(t). Conse­

quently, it is possible to determine the time response of the system of 

Figure 7 from a knowledge of the singularities of Equation III=! and the 

characteristics of the system input function. For this reason the con­

trol engineer has become dependent upon information which relates the 

location of the singularities of the system transfer function to the 

parameters in question. With that in mind the effects of varying plant 

parameters Q, and (3 shall be investigated in terms of the resultant ef­

fects on the location of the singularities of Equation III-3. 

In this case, the complex frequency domain singularities of interest 

are the zeros of the equation 

s2 + 2 a s ... (3 2 = o. III=4 

This equation has zeros located at 

III=S 

and 

s2 = = a= Ja z = (3 2 III=6 

In order to illustrate the effects of the varying parameters, con= 

sider the case where a is held constant and (3 is allowed to vary. This 

case is shown graphically in Figure 8. It will be noted that this is the 

familiar root locus of Evans [23] in which the variable parameter is the 

system open loop gain. Here the locus of constant a lies along the axis 

of reals between s = O and s = =2 Cl., and along a vertical line that is 



defined by the equation 

R (s) = - a e 

The break away from the axis of reals occurs when 
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III-7 

III-8 

The case where (3 is held constant and a is allowed to vary is 

generally not as familiar as the preceding case. This c.ase is illustrated 

in Figure 9 where it is seen that the locus of constant (3 lies along the 

negative axis of reals for sufficiently large a and along a circle defined 

by the equation 

for 

-0-

I s.1 = (3 

C(s) 132 
mr= sz + 2as+!3 2 

/32 
f3=of.Jl /31 
=2Q ~a 

R 2 

(32 >/31 

Figure 8. Locus of Singularities of a 
Second Order System as (3 Varies 

III-9 

III-10 
j w 

(3 = 0 

=j w 
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If one ignores the parts of the two loci that lie along the negative 

real.. axis in Figures 8 and .9 • a composite sketch may be der,ived. This 

case is shown in Figure 10 where the vertical lines correspond to con-
1 

stant Cl and the semi=circles correspond to constant /3. Only stable 

cases a~e shown (no positive real parts)~ Thus, when one specifies the 

ranges of values that the parameters of the second C?.rder system may take 

+j w 
Q2 

C(s) . /-.J 
RCST = ... s2-.+-2"""a"""""s-=+ -(3"""":ll'2=· 

a>a>cL 
3 2 1 

=j w 

Figure 9. Locus of Singularities of a 
Second Order System with Variable Cl 

on 9 one is actually specifying a region in the complex frequency domain 

in which the singularities of the closed loop system can exist as the 

result of the allowable variation in the plant parameters. The shaded 

area of Figure 10 is such a region. Before one can realize the full mean-

ing of this 8 a review of the time response in tenns of the location of the 

complex conjugate poles of a linear second order system is in order. Fig= 

ure 11 illustrates a typical case where the system transfer function is 



C(s) 
RfsT 

Lines of 
Constant 

a 

s2 + 2 CL S + (3 '2 

Lines of 
Constant 

f3 

+j w 

~j w 
Figure 10. Composite Locus of the Singularities of a 

Second Order System Having Variahle Parameters CL and f3 . 

+j w 

I ~· 

I 
I cos-1 S 

- () ----------------1--~----J'----+---J-s w 
l n 

I 
l 

s2 l- --=j~ 

Figure 11. Significance of Pole Location 
Second Order. System 

-j w 
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given by 

C(s) = 
R(s) 

III-11 

The corresponding time domain response is given by 

c(t) 1 = 
1 

E -S Wnt Sin ( Wdt + Cos- 1 S ) = vi =s 2 
II I-12 

where 

' = damping ratio 

Wn .. undamped natural frequency 

wd = wnv1 = s 2 = damped natural frequency. 

On comparing Equations III-11 and III=3 it is seen that 

wn = /3 III-13 

s = o/S III-14 

wd .. Jez= a 2 III-15 

To further illustrate the significance of varying parameters in so 

far as a second order system's transient performance is concerned 8 con= 

sider the example case where the shaded area of Figure 10 is defined by 

the equations 

O. 707 -f° a L. 7. 07 III .. 16 

(3 2 = 50 = Constant. III-17 

On evaluating Equation III=l4 at both extremities of Equation III-16 1 

the range of values of the damping ratio is seen to be 

0.1 :: S ".=. 1.0 • II !=18 
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Figure 12 shows the resulting time response for a unit step function 

input signal for several values of damping ratio in the range indicated 

by Equation III-18. It is obvious that in any application where the 

overshoot b rise time I and solution time specifications are stringent• then 

the system defined by Equations III-3 8 III-16, and III-17• and illustrated 

in Figure 7 is certainly unsatisfactory. 

The next section of this chapter deals with a linear model reference 

control system that shows some promis.e in solving the problem of varying 

parameters. 

2.0 
1.8 

1.6 

1.4 
c(t) 1.2 

1.0 

o.s 
o.6 

0.4 

0.2 

~= 0.1 
c;,= 0.25 

s= o.s 

0.7 

Figure 12. Second Order Transient 
Response to Step Function 

7.0 8.0 9.0 10.0 
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A Passive-Adaptive Model Reference 

Compensation Technique 

In this section 8 a proposed solution to one of the basic control 

system problems is presented. This basic problem of control can be 

stated as follows: 

Given a fixed portion of a system which has parameters that are 

functions of external variable environmental conditions 9 devise a 

compensating technique which will yield a system whose transient 

performance is essentially insentitive to these parameter variations. 

The proposed solution to this basic problem requires that certain 

assumptions and limitations be placed on the characteristics of the de-

sired system as well as on the form of the transfer characteristics of 

the planto These assumptions and limitations are as follows: 

lo It is assumed that the overall desired system transfer func= 

tion 8 Td(s)& is known or at least can be determined from the 

system specifications. 

2. It is assumed that Td(s) is of the form 

Td (s) 
C(s) Kd 

= ittsT = 5n-1 sn + an-1 + Q •• + ao III-19 

which can be written 

Td{s) 
C(s) Kd 

= RtsT"" n=l 
sn + L i a·S 1 

III-20 

=O 

where 

Kd"" desired system gain constant 

ao = coefficient of the 1th term of the desired characteristic 
1 

equation. 
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The symbols C(s) and R(s) are the same as those previously de­

fined. It will be noted that Equation III-20 allows the system 

characteristic equation to be of any order theoretically. However, 

the.re are some practical limitations as wi.11 be pointed out later 

in this chapter. 

3. It is assumed that the plant or fixed components ,of the system 

to be controlled has a transfer characteristic of the form 

Ka 
G(s) =: --~-------~--Sm+ 'V sm=l + •oo + 'V 

lm=l Io III=21 

which can be written 

G(s) 
Ka 

= m-
sm + L Y isi III-22 

1=0 

where 

G(s) "'plant transfer function expressed as a function of the 

complex frequency variable S, 

Ka = plant gain constant 

~. = coefficient of the ith term of the plant's characteristic 
1 

equation. 

The parameters 0£ the plant are therefore Ka and the "( i of the 

plant transfer characteristics. For the purpose of these works 9 

Ka shall be assumed to be invariant with the external environmetal 

conditions while the }'i tenns shall be considered as variables. 

4. It will be assumed that the range over which each Yi varies 

during normal operating conditions is known or can be estimated 

with reasonable accuracy. 
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s. It is also assumed that the coefficient of the ith term of the 

desired transfer function of Equation III-20 lies somewhere in 
\ 

the range of values that the ith coefficient of the plant trans-

fer function can take on during the normal cycle of operations. 

That is 

III-23 

where Yi 1 and "( iz represent the minimum and maximum values, 

respectively, that Yi can assume during the normal range of 

environmental changes. 

60 It will be assumed that the order of the plant transfer character-

istic is equal to the order of the desired system transfer ch~r-

acteristic. This requires 

m = n III-24 

from Equations III-20 and III-22. 

7. It is also assumed that the gain constants of the plant and 

the desired transfer functions are identical. 

In an ordinary feedback control system the basic reference quantity 

i:s the input signal and the ideal output is a reproduction of the input 

signal. Obviously, practical limitations prevent the realization of this 

ideal output. Consequently, one must design a feedback control system 

from the standpoint that something less than an ideal output signal will 

result. The acceptable tolerances on this less than ideal output signal 

are generally specified by a set of time domain specifications. However, 

ordinary linear feedback control system synthesis techniques do not pro= 

vide a means within the system whereby the system may continuoas:ly determine 
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whether or not it is meeting these time domain specifications. As far 

as the system is concerned the ideal output is always a reproduction of 

the input signal. A compensation technique that was first proposed by 

Ham and Lang [22] does not suffer from this deficiency in that a dynamic 

model of the desired transfer function is an integral part of the system. 

This dynamic model is used to generate a synthetic output signal that is 

used as a part of the system signal reference scheme. As far as the 

system is concerned 8 the ideal output is not a reproduction of the input 

signal~ but is a realizable reproduction of the dynamic model output 

signal. Figure 13 shows a block diagram of the model reference scheme, 

as it will be employed to compensate for grossly varying parameters in 

the plant. 

R(s) 

Model 
M(s) 

+ 

+
~~E(~s~)~7~1_·~~P-la_n_t~~--'~~~•C_(~s-) 

G (s) 

Controller 

H(s) 

E(s) 

Figure 13. A Model Reference 
Passive=Adaptive Control System 

The symbols of the block diagram are defined as follows: 

M(s) ~ the desired plant or system transfer function expressed as a 

function of the complex frequency variables. 

H(s) = the controller transfer function expressed as a function 
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of s also. 

E(s) = the Laplace transform of the difference between the plant out­

put signal and the model output signal. It is assumed here that the 

device that is used to measure the output of the plant has a unity 

transfer function 8 at least in the range of frequencies of interest. 

The syipbols C(s) • R(s), E(s).,, and G(s) were defined previously. 

Basically, the model reference system operates in this manner. If 

the plant and model transfer functions are identical or if the outputs 

of the plant and model are identical, then E(s) is zero and there is no 

feedback about the pl~nt. However, if these conditions are not satisfied 

and if H(s) has a relatively high gain then the feedback aboat G(~) will 

be appreciable. Also 9 if the model and the plant outputs differ, the 

controller can be thought of as a simple computer which operates on the 

error signal and computes the necessary input signal to cause the outpµt 

of the plant to be identical to the output of the model. These consider­

ations are readily apparent if one considers the overall system transfer 

function. 

The input signal to the plant can be written as 

E(s) = R(s) + H(s) E.(s) III-25 

However, 

E (s) = C(s) /G (s) III=26 

and 

E(s) = M(s) R(s) - C(s). III-27 

Substituting Equations III-26 9 and III-27 into Equation III-25 yields 
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C(s)/G(s) = R(s) + H(s) [M(s) R(s) - C(s)]. III-28 

Solving this equation for the transfer function of the system yields 

C(s) 
'R1sT = { 1/M(s~ + H(s)} M(s). 

1/G (s + H(s) 

This is a most significant equation in that it shows that if 

1/M(s~ + H(s) _ 1 
1/G(s + H(s) -

in the frequency range of interest then 

if:~ = M(s). 

III-29 

Under those conditions, the transfer function of the entire control sys­

tem is simply the transfer function of the dynamic model regardless of 

the values of the parameters of the plant transfer function G(s). 

Of course one can approximate Equation III-30 by requiring that 

H(s) be very large compared to [M(s)]=1 and [G(s)]=l throughout the 

frequency range in which the system is designed to operate. However, 

this does not specify what is the most efficient technique for obtaining 

this high gain from the standpoint of gain conservation. In other words 8 

what configuration must H(s) have in order to approximate Equation III-29 

to any desired degree of accuracy with the minimum required gain level? 

One technique of approximating Equation III-30 that appears to have 

some merit is considered here. 1his technique achieves the approximation 

by generating a corresponding term in H(s) for every term in [G(s)]- 1 

that differs from the term of the same order in [M(s)r1 • Each of these 

generated terms in H(s) must have a coefficient that is large compared 
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to the coefficients of the corresponding tenn. in [M(s)r 1 and [G(s)J-1, 

Consider the case where [M(s)] is taken to be equal to Td(s). If Td(s) 

is defined by Equation III-20 and if G(s) is defined by Equation III-22, 

it can be written that 

1 [M(s)] = 1 1 sn + 
MTsT = =r d 

and 

1 [G(s)] =l = if" sm + G(sj' = 
a 

If 

m = n 

and 

then Equation III-33 becomes 

n-1 

. f: sn + L ~ si, 1 
GCrr d 1=0 ' 

Now 8 let H(s) be defined as follows 

n=l 

~ 
m=l 

~ 

H(s) = K sn-1 + • • • + K1 S + Ko n-1 

or 
n-1 

H(s) = L Ki si. 

1=0 

a. 
]. si 

Ka 
III-32 

Yi Si• . r a 
III-33 

III-34 

III-35 

III-36 

III-37 

III-38 
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Now the left-hand side of Equation III-30 can be written as 

n-1 

..l sn +[[~+Ki] si 

1/M(s) + H(s) Kd c=O d = 1/G(sJ + H(s) 

.!_ sn + t re + K ·J 
1n .. 39 

si 
K ·Kd 1· 
d 1=0 

This factor will be equal to unity only if 

a- X 1 K· K· 11!=40 r"' 1 = lq + 1 
d 

for all i. But 

'Yi ,' a· 1 II 1=41 

due to the variations of 'Yi caused by the changing environment in wh~ch 

the system is assumed to ope-rate. However, if 

III-42 

ancl 

III-43 

for all conditions of 'Yi~ then Equation III-40 and hence Equation III-30 

can be approximately satisfied. This result leads to the observation 

that regardless·of the value of the parameters of the plant the system 

can be"'made to exhibit a transfer function that is very nearly equal to 

the transfer function of the model. Of couirse there are s-ome p.ractical 

consider~tio~s pertaining to the physical realization of the .higher 

ordered. zeros in H(s). as well as the high gain constants that are required. 
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Practical Considerations 

The preceding paragraphs did not place a restriction on the order of 

the characteristic equations of the plant and the desired transfer func­

tions other than to specify that b.oth must be of the same order. In re-

ality there are some practical limitations concerning the measurement of 

higher ordered derivatives of physical signals in conjunction with high 

gains. 

It was noted in Equation III - 39 that the controller transfer function 

H(s) must contain a term corresponding to every term of [G(s)] - 1 that does 

not have the ~ame coefficient as the identically ordered ferm of [M(s)]- 1• 

Thus, if [M(s)]- 1 and [G(s)] - 1 hav.e terms of order k that do. not have equal 

coefficients then the error between the model and plant must be differen-

tiated k times. The actual differentiation of a physical signal more than 

twice is ext.remely difficult particularly if the system happens to be 

noisy. This difficulty in generating the higher order derivatives of 

the error signal in conjunction with the required high system gains 

places practical limitations on the order of the system that may be com-

pensated using the techniques that were presented in the preceding para= 

graphs. 

However 9 only the first derivative is required to compensate a sec-

ond order system. Since many practical systems exhibit dominant second 

order characteristics and therefore can be approximated by a second order 

transfer function the fact that only the first derivative is required is 

significant. It allows the model reference technique of compensation for 

varying plant parameters to be applicable in a practical sense to a large 

class of control systems. With this in mind, the application of this 

technique of compensation to a second order system will be studied in 
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detail in the next chaptero 

Before proceeding to the detailed examination of the application of 

the model reference compensation technique, a few words concerning the 

apparent advantages of the technique are appropriate. The most obvious 

advantage over other adaptive control systems that the technique enjoys 

is in the relative simplicity._ The technique does not require dynamic 

adjustment of the system vs parameters ,and gains whereas most of the so 

called adaptive systems do involve such an adjustment. Along the same 

lines of thought it is not necessary to provide expensive, complicated• 

and possibly bulky equipment to measure the variation in plant parameters 

when the model reference compensation technique is used. The model that 

is used to detennine the desired response can be made of relatively in­

expensive, reliable, and time invariant analog components. The fact that 

the resulting system is continuous is a major advantage in that the over= 

all system will react to faster parameter variations than many of the 

adaptive systems discussed in Chapter II. 



CHAPTER IV 

APPLICATION OF A. SYSTEM W11H A 

SECOND ORDER PLANT 

In the preceding chapter a model reference passive-~daptive technique 

for compensating for varying parameters in a control syst~m,was· introduced. 

Tl~is techn~que was shown to be dependent upon the various derivatives of, 

an error signal that was deriveq using a model of the desired system as 

the reference. The highest order derivative necessary was shown to be 
I., ' 

determined by the order of the plant transfer funct:j..on. Because of the 

physical difficulties encountered in obtaining higher order derivatives 

of physical signals it was concluded that th~ usefulness of the technique 

is limited to systems which require only first or at most the second de= 

rivative of the error sig11al. A second order' system is one in which only 
I . 

the first derivative is required. With this in mind a second order sys= 

tern was selected for a detailed investigation. 

Development of the Second Order Sys~em 

Transfer Function 

The seven basic. assumptions listed in Chapter III apply to ,the fol-

lowing developmento For a second order plant transfer function, Equa-

tion 111=22 reduces to 

K 
G (s) = 

s2 + Y1 s + Yo IV-1 

37 
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where it is assumed that ')11 and ')10 are functions of the environment and 

are therefore subject :to variation during the normal operating cycle of 

the system. In order for the model reference technique to be applicable 

the desired transfer function must have the same order as G(s) and take 

the form of Equation 111=20. Then 

IV=2 

is the equation which represents the desired system transfer function as 

well as the transfer function of the dynamic modelo It is_ convenient to 

rewrite Equation IV'."'2 as 

M(s) = 
IV=3 

where 

IV=4 

and 

IV=S 

It should be noted that Sd is the desired system damping ratio and 

wd is the desired system undamped natural frequency. It is also con= 

venient to rewrite Equation IV=l as 

Kd 
G (s) "" s2 + 2 + (32-CL S 

IV=6 

where 

;\ = 2 CL IV-7 

and 

Yo = 132 IV=8 
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lhe transfer function of th~ controller for the second order system 

becomes 

H(s) = Kl s + Ko IV-9 

from Equation III-37. 

R(s) 

A block diagram of the resulting system is shown in Figure 14. 

Plant 

E s 

s2 + 2as + (3 2 

Controller 

K1 S + K0 

Model 

Figure 14. A Second Order Model Reference 
Passive=Adaptive Control System 

The resultant system transfer function can be:written by substi-

C(s)..._ 

tuting Equations IV=3~ IV=6~ and IV-9 into Equation III-29. lhis sub-

stitution yields 

{ :: : c2 Si.Jd+'Kf~d)s + cwd2 + KoKd)} 

(2U+ K1Kd)S + C/32 + Ko~d) 

IV=lO 
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Equation IV- 10 is the exact transfer function of the system shown in 

block diagram form in Figure 14. However, if the desired system transfer 

function of Equation IV=3 is to be realized the factor in brackets on the 

right-hand side of Equation IV- 10 must approximate unity. The degree to 

which this approximation is achieved is determined by the magnitude of 

K1 and K0• The larger K1 and K0 can be made the more nearly the factor 

approximates one. Consequently» it is necessary that some technique be 

devised whereby a set of gains K1 and Ko can be detennined that will yield 

the desired degree of approximation . Unfortunately, it does not appear as 

though a generalized technique existsD however, a procedure that has been 

successful in the design of second order systems will be presented here. 

It should be emphasized that the procedure is somewhat arbitrary in the 

sense that beyond some minimum value» the values of K1 and Ko are not 

critical. It should also be emphasized that any procedure which yields 

gains that achieve the desired degree of approximation is just as appli = 

cable as the one to be presented here. 

Controller Design Equations 

There are basically two factors to be considered when attempting to 

select the gains K1 and K0 in Equation IV=lO. These two factors are 

(1) the steady=state error between the model output and the actual sys ~ 

tern output and (2) the transient error between the model output and the 

actual system output, The selection of Ko shall be based on minimizing 

the first of these factors and the selection of K1 shall be based on 

minimization of the second factor, 

According to 'basi c control system theory the steady-state positional 

error coeffici entQ ~Dis defined in the following manner [24). 



Steady=state value of output 
KP= s'feady=state value of input 
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IV-11 

It is not difficult to show 9 for the model unit considered separately, 

that the model positional error coefficient& Kpme is 

Kd 
K - """""""1 pm. W L. 

d 
IV-12 

It can also be shown that the actual system positional error coefficientD 

Kpae can be written 

IV=l3 

Now 8 ideally Equations IV=l2 and IV=l3 should be identical~ however 9 since 

Ko cannot be infinite and /3 is subject to variation while W d is constant 

the ideal cannot be achieved. · Henc.e K0 . is selected ~ti.ch that Kpa• differs 

from 1),m by no more than some fixed percentage throughout the normal op= 

erating range of the system. Therefore, Ko wiH be selected such that 

(1 = d) Kpm ~ Kpa -:; Kpm (1 + d) IV-14 

for all values of /3 in the range 

IV=l5 

where dis the arbitrary per unit value by which Kpa is allowed to differ 

from Kpm• /3 1 and {3 2 are the minimum and maximum values a respectively 1 

of (:3 in the n.~rmal operating range of the system~ Substituting Equations 

IV=l2 and IV=l3 into Equation IV=l4 yields 
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(l - d) ~ L (1 + d) o IV-16 

Obviously, Equation IV-16 will give two values of K0 if the two extreme 

values of (.3 are i~~erted in the denominator and the appropriate inequality 

is evaluated. If /3 equals /3 1 and 1;he 0right side of Equation IV~l6 is 

used then a value 

Kol= 
Wd2 _ . /312 - (1 +. d) 

IV-17 

would insure that. 

IV-18 

Also, ~f /3 equals f3 2 and the left side of Equation IV= 16 is used then 

a value 

IV=l9 

will insure that 

IV=20 

As a result of the inequality signs in Equation IV=l7 and IV-20 both the 

right and the left side inequalities of Equation IV=l6 wil.l be satisfied 

if the gain K0 is made equal to the largest of the two values K01 and K02 • 

The relative magnitude of these two values is dependent upon the magnitudes 

of wd~ (3 18 and /3 2• It can be shown that if 

2 f3/+ S/ d t02 13 2 
wd ~ 2 + 'i' Ct..J1 = 2 ) IV-21 
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then 

IV-22 

and· conversely if 

IV-23 

then 

IV-24 

It should be noted that the factor 

for most practical cases and therefore may be neglected in determining 

which gain equation is applicablea 

As pointed out previously the first de,rivative gain of the controller 

unit 9 ·K1 , shall be selected so as to control the transient error between 

the model output and. the act1:1a1 syst,em output. Control over this tran-

sient error may be exercised through the use of the gain K1 to insure that 

the poles and zeros of the tenn in th.e brackets of Equation IV-10 are far 

removed to the left with respect to the desired poles. , That is K1 shall 

be selected such that the real part of the poles and zeros of the term 

in the brackets of, Equation IV=lO are n times farther to the left than the 

real parts of the poles of the model. In this case n is a positive nun1= 

ber sufficiently large that an acceptable transient performance is re= 

alized. Truxal [25] has indicated that an n of six generally results· in 

a satisfactory transient response in a similar situation. Horowitz [ 10~ 

uses a figure of n equal to four under similar circumstances. 
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In the section of Chapter III devoted to evaluating the effects of 

varying parameters on a second order system, it was shown that if 

IV-26 
and 

IV-27 

then the poles of a system having a transfer function 

G(s) = 
s2 + 2 a s + (3 2 IV=28 

map into an area defined by the inequalities of Equations IV=26 and IV=27. 

If one is going to control the transient response of the model reference 

system deP,icted in Figure 14 by controlling the poles and zeros of Equa= 

tion IV=10 then one must insure that the entire area over which the poles 

and zeros of the plant may vary during normal operations is mapped to the 

left of a line defined by 

IV=29 

In Equation IV=29 n is the arbitrary positive number mentioned above and 

S d W d is the real part of the poles of the model or desired transfer 

function. 

The actual system transfer function of Equation IV=lO has poles lo= 

cated at 

S1 "" = S d w a + ;,.,w dV1 = s/ 
IV=30a 

and 

Sz "" = S d wd = j Wa\/1 = S/ 



These are the poles of the model and therefore are the desired poles~ 

The actual system also has poles at 
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IV-3la 

and 

IV-3lb 

It is these latter poles that must be controlled and forced to have real 

parts to the left of the line defined by Equation IV=29. Therefore K1 

shall be selected such that 

for all a in the range of Equation IV=26. Hence when solving for K1 the 

minimum value of a shall be employed. Thus solving Equation IV=32 yields 

IV=33 

where a 1 is the minimum value of a in the normal operating range of 

the system. 

,It can be seen that if 

IV-34 

from the initial basic assumptions of Chapter III then the zeros of the 

system transfer function are also to the left of the line defined by 

Equation IV-29 if K1 is selected using Equation IV-33. 

The equations developed in this section have been shown to yield 

satisfactory time domain response by means of an analog computer investi= 

gation. Samples of the results of this computer investigation are presented 
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in the next section of this chapter. 

Sample Results of the Computer Investigations 

The time domain characteristics of a simple system using the design 

equations developed in the preceding section were investigated using an 

analog computer. For the purposes of the computer investigations the 

plant or system to be compensated was assumed to have a transfer function 

that could be written 

G (s) "" 
50 

s2 + 2 as + (3 2 IV=.35 

where a and (3 were both subject to variations in the ranges 

0.101 .:ea ~1.01 IV=36 

and 

6~ (3 ..cg IV=37 

The resulting poles of the plant transfer function are located in 

the shaded region of Figure 15. It can be seen that the assumed con= 

ditions represent unusually large variations in the poles of the plant. 

However 0 it was felt that presentation of such an example would certainly 

indicate the feasibility of the model reference compensating technique 

with more authority than an example with smaller and probably more prac= 

tical parameter variations. 

The system specifications were assumed to be such that a time domain 

response approximating a second order system with a damping ratio of O. 7 

and an undamped natural frequency of 7.07 radians per second would be 

satisfactory. Consequently, the dynamic model transfer function that was 
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used in this computer investigation could be written 

M(s) = ___ so ___ _ 

s2 + 9.9S + 50 
IV-38 

The poles of Equation IV-38 also lie in the shaded region of Figure 15. 

Th.is was a. requirement i.'f the controller design equations previously 

presented were to be employed. 
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Figure 15. Location of the Poles:of the 
Plant Transfer Function 
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Application of the controller design equations yields a controller 

transfer function of 

H(s) = 1.95 S + 60.4 IV-40 
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when the factors d and n were selected to be 0.01 and 10 respect;ively. 

Both of these arbitrarHy selected factors were chosen so as to present 

a rather pessimistic' case in this example. That is, a plant with extremely 

large pole variations was selected for use,, while at the same time rather 

tight . transient and steady-state,_ response requirements were as·sumed to be 

specified. For example the factor,d was. chosen to be 0.01 which indicates 

that the allowable difference betw~en the actual syst.em steady-_state posi­

tional error coefficient and the corresponding coefficient for the model 

is one percent based on the model coefficient. Tids is a rather stringent 

requirement in the face of the assumed large var1ations in the plant natu­

ral frequency. The fact that the factor n was chosen to be 10 indicates 

rather close tolerances on the transient response when one considers that 

eminent authors in the field [ 10, 2,5] haye suggested the use of factors 

between four and six in similar circumstances. 

Using the plant 8 model, and controller transfer functions presented 

above in conjunction with either Equation IV-10 or Equation 111=29 the 

system transfer function could be written as 

C(s) = 50 msr """'"""z---=---~-­s + 9 0 9S + 50 
{ 52 + 107.4S + 3070 1 

s2 + c2 a + 97. s) s + c132 + 30;20) J · 
IV-41 

This equation represents the output=input characteristics of the system 

~hown in block diagram form by Figure 14 with the appropriate substitution 

of Values for the vadous parameters as specified above. It is this equa-

tion that was studied rather extensively by means of the analog computer 

in order to determine the corresponding response in the time domain. 

Before proceeding with the,, presentation of the time domain data it 

is of interest to note that if the system were ideally compen~ated then 
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the factor in brackets in Equation IV-41 would be identically equal to 

unity for all 0., and (3 and throughout the frequency range of interest. 

However, as pointed out previously ideal compensation is possible only if 

K1 and K0 are infinite. Since infinite gains are not possible it is of 

interest to determine how well the bracketed factor approximates unity. 

This was accomplished for the example case by evaluating the bracketed 

term of Equation ·iV-41 for several combinations of a and (3 along the 

periphery of the shaded region of Figure 15. For this evaluation the 

substitution 

s = jW IV-42 

was used. The factor uJ was allowed to vary from a value less than the 

undamped natural frequency of the model to a value considerably greater 

than the undamped natural frequency of the model. The actual computation 

was performed by an IBM-650 general purpose digital computer. The results 

of this computation indicated that the approximation of unity was quite 

good. In fact the greatest deviation was found to be approximately an 

eight percent increase with respect to unity in the magnitude of the 

bracketed term. The greatest phase shift contributed by the term was 

found to be on the order of 2.5 degrees. Both of these maximum deviations 

occurred at frequencies that were considerably greater than the natural 

frequency of the model and hence were of little concern in so far as the 

overall response of the system was concerned. 

Equation IV-41 was simulated on the analog computer. A schematic 

diagram of this simulation is shown in Figure 16. For the purposes of 

the time domain investigation the resulting system was excited by a 

simulated step function. Table I shows the analogies between ,the various 
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problem variables and the analog computer voltages labeled in Figure 16. 

omputer 
Voltages 

(See 
Figure 16} 

TABLE I 

ANALOGIES BETWEEN COMPUTER VOLTAGES 
AND PROBLEM VARIABLES 

Problem 
Variable 

el c(t) = plant output expressed as a function of timeo 

c(t) = dc(t)/dt = time rate of change of the plant output 
expressed as a function of timeo 

cd(t) = model output expressed as a function of time. · 

cd(t) = dcd(t)/dt = time rate of change of the model 
output expressed as a function of time. 

cd (t) = c(t) = E (t) dynamic error between the model 
outp,~t and the plant output expressed ·as a function of 
time. 
• • • 
cd(t) ':' c(t) = E (t) = time rate of change of the dynamic 
error between the model output and the plant output • 

• f(E 9E) = system corrective signal expressed as a 
function· of time. 

r(t) = system input signal• a step function scaled so 
as to represent 0.01 radians referenced to the output 
of the control system.l · 

1The dimensions of this input signal were arbitrarily assigned for 
the purposes of the analog computer investigation. Any other dimensions 
are certainly just as appropriate in that no restrictions have been 
placed on the type of quantity to be controlled 8 i.e. 9 angular position~ 
linear velocity 9 temperature& etc. 
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During the course of the computer investigations several combina= 

tions of Cl and (3 were studied so as to determine the effects of the 

varying plant parameters on the system describeq. by Equation IV-41. 

Time response data from a sampling of those combinations will be pre­

sented and discussed. Each of the cases selected for presentation here 

result in the poles of the plant being on the periphery of the shaded 

area of Figure 15. The combinations of a and (3 selected for presen­

tation are tabulated in Table II. 

TABLE II 

PLANT PARAMETER CQMBINATlONS 

Case No. a (3 

I o.~ 101 6 

II 0.101 9 

III 7.07 9 

IV 6.0 6 

V 7.07 7.07 

For each of these cases four variables will be shown as a function 

of time. These variables are (1) the uncompensated plant output. (2) 

the compensated plant output~ (3) the model output, and (4) the error 

between the compensated plant output and the model output. This time 

domain data is presented in Figures 17 through 21 in the order that the 

various cases appear in Table II. 

Two items are of particular interest in evaluating the results of 

the analog computer investigations. These are the transient response 
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and the steady-state or final value error between the model output and the 

actual system output. The transient performance will be discussed first. 

A comparison of Cases I and IV (Figures 17 and 20) best illustrates 

the transient performance of the model reference passive-adaptive compen-

sation technique. Both of these cases represent second order plants having 

an undamped natural frequency of six radians per second. However, Case I 

represents a plant having a damping ratio of approximately 0.12 while 

Case IV is critically damped. As a basis of comparison 8 the rise time1 

and the percent overshoot2 were measured from the transient data presen:ted 

for these cases. , The results of these. measurements are tabulated in Tab le 

III. It should be pointed out that the values in Table III are at best 

only good approximations because of the difficulty.involved in accurately 

extracting data from time responses such as those in Figures 17 through 

21. However 9 this data does show that the large variations in transient 

perfoi:mance noted in the uncompensated cases, do not appear in the·com= 

pens~ted cases •. The effects of variations in the plant parameters have 

been effectively masked from the output signal. transient characteristics 

by me~s of the model reference passive-adaptive compensation method. 

lThe generally accepted definition of 
the rise time is the ,time required for the 
from 10 to 90 percent of its final value. 
rise time is contained in [26]. 

rise time was employed 8 i.e.a 
system output .response to go 
A more detailed discussion of 

2The definition of percent overshoot that was employed here and that 
is generally accepted can be stated as follows: Percent overshoot is the 
ratio 9f system output overshoot to the system output final value expressed 
as a percentage. Additional information concerning this qu~tity can be 
found in [26]. 
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TABLE II I 

A COMPARISON OF TRANSIENT DATA 

Case Uncompensated Compensated Model or Desired 

No. Rise Percent Kise Percent Kl~e Percent 
Time Over- Time Over- Time Over-
Seconds Shoot Seconds Shoot Seconds Shoot 

I 0.17 75% 0.275 5.2% 0.3 4.8% 

IV o.6 0% 0 0 275 5.5% 0.3 4.8% 

The remaining item of interestD the steady-state error between the 

model output and the actual system output, is best illustrated by a 

comparison of Cases III, IV, and V. It is noted that these cases present 

data for plants having three different undamped natural frequencies. The 

steady- state errors were extracted from the time responses for the above 

named cases and tabulated in Table IV . The quantity tabulated is defined 

as the difference between the dynamic model output and the plant output . 

Note that the uncompensated error function is not shown in Figures 17 

through 21. That quantity was obtained for Table IV by taking the dif-

ference between the model output and the uncompensated plant output traces. 

Again j) it should be emphasized that the values in Table IV are at best 

good approximations because of the difficulties in obtaining accurate 

data from the time traces. Howeverp as before the data is certainly in-

dicat ive of the steady-state performance that is possible using the model 

reference technique for compensating for varying plant parameters. , It 

is seen that the steady- state errors encountered at the periphery of 

allowable values of undamped natural frequency are reduced by a 'factor 

of 10 at l~ast. 



Case No. 

III 

IV 

V 

TABLE IV 

A COMPARISON OF STEADY-STATE ERROR DATA 

Uncompensated 

= 0.0014 radian 

0. 0046 radian 

0 

Compensated 

- 0.0001 radian 

0.00004 radian 

0 

The analog computer data shows that the mod,el ref~rence passive= 

adaptive technique provides excellent transient and steady=state per= 

formance. The configuration is shown. to be particularly applicable to 

a case of very large variations in the parameters of the plant. It 
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can also be concluded that since the system is not required to continu= 

ously adjust its parameters~ then the technique is certainly applicable 

to systems which display rapidly varying parameters. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

A t~_chnique whereby a system having variable parameters may be com= 

pensated in such a manner as to provide a relatively unchanging transient 

and steady-state performance throughout the normal range of operating en= 

vironment is presented in this thesis. The unique feature of this com= 

pensating technique is the fact that a dynamic model of the desired system 

transfer characteristics is employed as the reference quantity rather than 

the input signal as is the case with conventional feedback control systems. 

It is shown that 8 theoretically at least, the technique can be applied 

to any ordered plant 9 system» or servomechanism, provided certain conditions 

concerning the relative forms of the desired system transfer function and 

the transfer function of the plant 8 system~ or servomechanism are satisfied. 

These limiting conditions are (l) the plant and desired transf~r character­

istics must have the same order 9 (2) neither the plant nor the .desired 

transfer characteristics may have zeros in the finite complex frequency 

domain 9 (3) the plant and the desired transfer characteristics must have 

identical gain constants 9 and (4) the plant must 8 somewhere in its normal 

operating range of environmental conditions 8 exhibit poles that are equal 

to the poles of the desired transfer characteristics. 

It is shown that there are some practical limitations concerning the 

maximum order of the plant to be compensated using the model reference 

technique. It is seen that the technique is dependent upon the generation 
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of higher ordered derivatives of physical s.ignals. This is not always 

practical, particularly if the signal happens to be noisy. It is also 
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shown that a second order plant requires only the first derivative of the 

output signal. Therefore, practical application of the model reference 

compensation technique to such a system is certainly feasible. 

This conclusion concerning feasibility was verified by means of an 

analog computer investigation based on some second order design equations 

which are presented in this paper. The results of this computer investi-

gation were excellent. A sampling of the transient data acquired during 

the analog study is presented to substantiate the theory. 

The model reference passive=adaptive compensation technique exhibits 

certain advantages over the other adaptive contro,I sy'st~ms that are dis­

cussed in this thesis~· ~eseadvantages are (1) there is no requirement 
' . 

for active adjustment of the system 1 s parameters, (2) the resulting sys-

tern is strictly linear and therefore ordinary analysis p~ocedures apply, 

(3) the system designer can totally specify the time· resp:onse character= 
' ' 

,. 

istics 'Of the resultin$ systems within the p,reviously mentioned limits 9 

and (4) the resulti.n'g system is more simple than most other adaptive con= 

trol techniques and is therefore more reliable. 

The major disadvantages of the model reference technique. of con.trol 
' ' 

are (1) the requirement for generating the higher derivatives .. of a physi-

cal signal and (2) the necessity of high loop gains. These two factors 

are particularly significant if the system is noisy. 
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