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CHAPTER'! 

INTRODUCTION AND STATE OF THE ART 

Of late, muc~ interest has been generated concerning the possible 

use of IQin,iature,, hydroclones to help eliIQinate some of the filtration 

probleIQs existing in the missile and space field, ijydroclones offer 

seyeral attractive.advantages over ordinary filters providing that the 

co.rrect hydroclone ·configuration is used for the particular job at hand. 

Until,the·present time, no one has been.able to give,a satisfactory,the

ory of hydroclone operation which would allow accurate theoretical pre

diction ,of optimum design and performan,ce,' Such a theory was probably 

not needed because the needs were easily fulfilled by,existing designs. 

Becal,lse ,of. this iarge gap in the ar.t,. coupled with the need for a hydro

clone capable of giving a low micron separation,with hydraulic fluid,.a· 

theory,-of operation,was devised. 

In ,the following pages,, this theory;will be presented; and some 

new design .ideas. will be introduced which have been ',sh<;>wn .. to greatly 

, increase· the hydroclone performance. 

There are basically. two types of hydroclones: 

a) Hydroclones with open underflow, 

b) ijydroclones with closed underflow. 

See Figure· 1-1. 

The first type may be -con,sidel;'ed as being,a classifier, .i.e,, a 

system which separates the liquid-solid inflow into 1:wo.parts with one 

1 
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part containing a greater percentage-of the larger and more dense parti

cles and the othe:,;, contai~ing a greater percentage of smaller:and 

lighter pa:rldcles, The second type. of hydroclone could loosely, be· termed 

a filte:,;. That: is,. a device which reiqoyes the larger and II1ore dense par

ticles from:the liquid-solid inflow and retains them. The main differ

ence between.a hydroclone and an ordinary filter is that the latter re

moves the particles from the fluid by means of a porous media; that is, 

it blocks further downstream movement of these particles. The hydroclone, 

on the-other hand, remoyes these particles from the fluid stream by mea~s 

of a strong centrifugal field. Thus, there is no blocking of the parti

cles and no possibility of a plugged filter. 

A hydroclone may be thought-of as a combination of two-systeII1s: 

a) the cyclone-system, 

-b) the underflow system. 

The cyclone system consists of the inlet, the cyclone section,_ and 

the ·overflow. See Figure 1. 2. The cyclone section perforll)s the task .of 

separating the solid particles from the-liquid. The underflow system 

may be either of the open or closed type and may consist-of any.imagi

nable configuration. The underflow system disposes of the particles 

which have been -_separated from the liquid by the cyclone system. 

There-are two terms of interest in anydisc~ssion_of hydroclones. 

These-are hydroclone separation efficiency_,and hydroclon,e pressure drop. 

There-are several means of describing the separation efficiency. These 

-are: 

a) Specification of the· largest -particle remain,ing in the -overflow. 

b) Specification of particle-which is separated with some given 

efficiency, i.e., D5o%,, D9o%,,.etc. 
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c) Specification of the relative weight -per cent of particles in 

the inflow and overflow. 

An equation for the n50% particle is derived in Chapter V. 

The·term "J:iydroclone pressure drop" refers to the drop in pressure 

which occurs across the device. This is discussed more thoroughly-in 

Chapter VI. 

One-should recognize that .in .order to analytically design a hydro

clone for .a particular job, it is ~ecessary to know the relationships 

which exist between the separation efficiency, the pressure drop, the 

fluid flow rate, and all of the hydroclone design variables. 

5 



CHAPTER II 

PREVIOUS INVESTIGATION 

During the past half-century,·much has been written.about the cyclone 

separator for use with both gases and liquids, The majority of investi-

gators have relied heavily on empirical equations and experimental data 

to attempt to design units for new applications. An extensive review 

of·this literature has been compiled by R. E. Bose (1)1, 

The most useful expression for hydroclone separation efficiency to 

appear is that of Matschke and Dahlstrom (2) wholhave shown empirically 

that 

D.so% = (2-1) 

where Q is the flow rate; (Ps-~), the relative density of the liquid 

and solid; C is a constant; d0 , the hydroclone overflow diameter; and 

di, the hydroclone inlet diameter. The most general empirical equation 

relating pressure drop and hydroclone parameters is that of Yoshioka and 

Hatta (3), 

(2-2) 

where K is a function of the cane angle, surface finish, and type of 

underflow;.· and de is the hydroclone diameter. 

1 ( )Refers to Selected Bibliography. 
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There are many other empirical equations available from.the litera

ture in addition to those listed on .page six. .They .all have one factor 

in common; their use is limited. In general, they may be used only to 

establish trends and to make rough estimates. 

Over the past several years, considerable work--both theoretical 

and experimental--has been done at OSU on hydroclones. 

The first investigator at OSU was R. L. Lowery(4). The object of 

his investigation was to determine if the cyclone separator could be 

used to separate two immiscible fluids combined in the form of an unstable 

emulsion. No analytical work was done due to the complexity of the flow 

fields. Although considerable difficulty was encountered in obtaining 

consistent results, the experimental work indicated that the cyclone 

separator may be used to separate two immiscible liquids combined in an 

unstable emulsion. 

The second investigation conducted at OSU was that of J. s. Gilbert 

(5). This aut.hor conducted an analytical and experimental investigation 

to determine the feasibility of using a hydroclone to remoye contami

nants from hydraulic fluid. 

In Gilbert's research, an equation of motion of .a particle in a 

hydroclone was developed and solved on an analog computer. The only 

useful data obtained from solutions of this equation of motion was that 

large particles reach a greater radius faster than small particles. 

There was no way. to determine what size particles would be removed and 

what.size would not. Experimental data showed that large particles were 

removed better than small particles. 

The next investigator at OSU, J. F. Beattie.(6), modified the equa

tion of motion derived by Gilbert and obtained more analog solutions. 



,This change consi,sted of replacing the molecular viscosity with.a value 

·for turbulent yiscosity. 

8 

Each of these-equations of motion, however, have a common fault 

which yields them useless in deterI!lining accurate data, This fault is 

that.they.neglect the radial velocitycompo11ent of•the fluid in the com

putation of the relative·particle velocity. 

The·fourth .investigator at OSU, R. E, Bose (1), corrected this basic 

fault in the equation of motion and obtained some useful data from which 

to predict hydroclone separation ability. By. determining the flow rate 

at which.a particular particle-size-was in equilibrium:at the·same radius 

as the vortex finder radius, a graph was constructed from which one could 

predict hydroclone performance, Experimental data comparedwell.with 

these theoretical predictions except.at yery low flow rates where the 

vortex patterns break down. 

The main drawback of these previous investigations is that they 

. have not yielded any.workable equations for.determining hydroclone sepa

ration efficien,cy,in terms of the hydroclone parameters, 



CHAPTER III 

STATEMENT OF PROBLEM 

The objective of this study was to theoretically develop a set of 

equations for separation efficiency and pressure drop from which hydro

clones could be designed. In addition to this, there was a desire to 

solve the Navier-Stokes' equations to obtain the expression for the tan

gential velocity existing in the hydroclone. It was also desired to ob

tain the cyclone·section shape which would yield optimum separation. 

A limited number of experimental tests were conducted to attempt 

to verify, in part, the theoretical equations. 

9 



CHAPTER IV 

HYDROCLONE. VELOCITY FIELD 

The flow pattern which exists within a hydroclone is of a very com

plex nature. Fig. 4-1 is a drawing depicting this pattern. The tangen

tial velocity, v, is the dominant component which exists in the hydroclone. 

In the region, r <ore, the ·tangential velocity approaches that of solid 

body. rotation. An exact solution of the Navier-Stokes' equations for 

the velocity field would be nearly impossible; but fortunately, experi

mental evidence shows that .all three of the velocity components may be 

assumed to be independent of axial position, thus a two-dimensional solu

tion for the tangential velocity is possible if values are assumed for 

the radial velocity. In this chapter, an approximate solution will be 

obtained to the Navier-Stokes' equations for two different hydroclone 

configurations. Comparisons ~ill be made with experimental data. 

First, we must list the assumptions of conditions prevailing within 

the hydroclone; namely: 

1) Steady flow conditions prevail, i.e., derivatives of all vari

ables with respect to time vanish. 

2 ) Tangential velocity, is a function of r only and is independent 

of angular position, p, and axial position, z. 

3) Radial velocity is a function of r only and is independent of 

p and z . 

. 4) The diameter of the inner forced vortex is assumed to be equal 

to the diameter of the vortex finder. 

10 
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Figure 4-1. Flow Patterns. 
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From.conditions 2) and 3), it is evident that a two-dimensional analysis 

of the·tangential velocity is possible, 

Consider the Navier-Stoke's equations for the case of steady. flow 

and polar synunetry. We then have in two ~imensions: 

( 4-1) 

The solutions obtained.below will be for hydroclones with conic cyclone 

·sections. The only,difference between the two configurations under con-

sideration is in their vortex finders. Both types of vortex finders are 

shown in Fi~. 4-2. 

Type (a) Type (b) 

Figure 4-2. Types of Vortex Finders. 



Solution for Type A 

If we make the assumption that w, the axial velocity, is constant 

in the region r > ore, then by continuity -we ·would have for the radial 

velocity 

. - Q(Y) u-
- 2TfY-f(Y-) ' 

Q(~)= (Vc.-Y) _Q_ 
(j- 8) Y-c. · ( 4-2) 

where f(r) is defined in Fig. 1-2. Eq. 4-2 is limited to the region 

r > ore, One might wonder about the validity of the above assumption, 

but it will be shown later that the experimental tangential velocity 

corresponds well enough with the theoretical solution to conclude that 

the assumption is indeed good. Motivation for the assumption is based 

on experimental observation. 

If we now substitute Eq, 4-2 into Eq, 4-1 and introduce the dimen-

sionless variables 

R= '(' V= 1.T ,~ ' l.Tc 
(4-3) 

we have 

-A d(VR) d {1- d(VR)t 
dR - dR R dR R2. ( 4-4) 

where 

A Q+M~-2. 
'2'11" (j-~) Yc. :v-.. 

Introducing S = d(VR)/dR, Eq. 4-4 be.comes 

-_6_ \~] - _d_ \ S] R R -dR R ( 4-5) 
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In order to completely define the problem we now need to specify the 

boundary conditions i~posed on Eq, 4-5, The first condition is 

V= 1 at R= i (4-6) 

In assumption Eq,. 4-4 we said the inner forced vorter was the·same diqm-

eter as the vortex finder, Since the inner forced vortex is defined by 

V = KR, then the second boundary.condition .becomes 

qJfL 
dR 

0 at (4-7) 

Integrating Eq,. 4-5 once, we have 

(4-8) 

Integrating Eq, .4-8 yields 

R-A+2 

VR= c, . + c'2 
(2.-A) 

(4-9) 

or 

V= 
c, R-A+i 

(A-2 J ( 4-10) 

Imposing the first boundary condition on Eq. 4-10 yields 

( 4-11) 
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From Eq • . 4-10 we have 

gjfl 
dR 

C, A R-A-j 

(A-2) 
( 4-12) 

Now from the second boundary condition, we have 

0 -= + 

-A-1 C,A ~ 
(A-2) 

Solving for C1 and C2 from Eq, 4-11 and Eq. 4-13 yields 

(A-2) 
- A~-M:: l 

2. 

c~ - j + 1 A6-A~, 
- -1 2 

(4-13) 

( 4-14) 

The solution which has been obtained~ defined by, Eqs. 4-10 and 4-14, is 

valid only in the region 5 !: R ~ l. In the region 0~ R ~ 5, we have 

V = KR where K is a constant. 

In Fig~ 4-3 is a plot of Eq. 4-10 for the case where 5 = 0.25. 

Shown in Fig. 4-4 is a plot of an experimental curve for V obtained 

by probing the velocity field of a one-inch diameter hydroclone with a 

ten-degree cone. The fluid used was MIL 5606. Also shown in Fig. 4-4 

is a plot of Eq. 4-10 for the case where A= 3,5, 

It is interesting to note that by. solving for v for this particu-

lar case, a value is obtained which is about one hundred times as large 

as the molecular viscosity of the fluid used, This apparent increase in 
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the viscosity is due to the violent eddying or turbulence which occurs 

in the hydroclone. 

Solution for Type B 

For this type, the radial velocity is given approximately by: 

( 4-15) 

The radial velocity given in Eq. 4-15 may be approximated by U = U0 = canst. 

without losing much accuracy as may be seen in Fig. 4.5. We now have 

-U.o s d (~) - -
V '(' d'r' 

where d (1T'r) s ':. 
dY" 

Introducing the dimensionless variable R = r/rc, we have 

- ul) 'f, s -v R 
Integrating once, yields 

_ _d_(X) S=d(vR) 
-dR R , dR. 

':' - BR+ C~ 
where 

Substituting for S gives 

d(VR) =
d R 

R -BR-+-CJ e . 

( 4-16) 

(4-17) 

(4-18) 

(4-19) 

· ( 4-20) 
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Integrating again, we have 

or 

V= 
C<t -R 

e-8R+C3[l+ j J 
8 8'2 R · 

The boundary conditions for this case are the same as in Eq. 4-14. 

Dividing Eq, 4-22 by R and differentiating yields 

20 

(4-21) 

( 4-22 ) 

d (~) _ 
d R -

- 2 c~ e.-a~+c~ L .1 _ 3- J ( 4-23) R3 - . [~~ 8'2Rl 

- BR+C~ f.l .. + j J 
+ e LR 8 R' . 

From the second boundary . condition, we have 

-2Gt -B~+-C! f _1 + 2. ,._ 2 ] o = ~! +- e if Bb~ e~~! . (4-24) 

From the first boundary condition, we have 

(4-25) 



C Solving for~ 3 from Eq, 4-24 and Eq, 4-25 and equating, we have 

Solving for C4 yields 

Solving for ~C3 from Eq, _ 4-25, we have 

C:a 
e = 

(Cq- i) e 8 

[t+ ~J 

21 

(4-26) 

(4-27) 

(4-28) 

In Fig . .. 4-6 a plot of Eq, 4-22 has been made for the ·case where 5 = O. 25 

and B is a variable parameter. In Fig; 4-7 is the plot of an experi~ 

mental curve · for V obtained by probing the velocity field of a one-inch 

diameter hydroclone with _a ten-degree cone. The fluid used was MIL 5606. 

The probing of the tangential velocity fields was accomplished by 

using a small pitot pickup probe inserted into the side of the hydro-

clone at a point just below the vortex finder. By measuring the velocity 

pressure with a differential transducer, the velocities could then be 

computed. 

It has been found that on the average about a sixty per cent loss 

in inlet velocity is suffered by. the fluid coming into the hydroclone 

due to spreading, In terms of the separation efficiency, this represents 

about the same percentage loss. This is one point of hydroclone design 

that deserves careful consideration in future study. 
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It is important to remember that this treatment of the tangential 

velocity is a very simplified account of the actual situation existing 

within the hydroclone. Secondary flows have been neglected, the bound

ary layer was not considered, and simplified forms of the axial and ra~ 

dial velocities were assumed. Regardless, however, of the simplification 

which has been introduced, the good correlation between the a~alytical 

and experimental data indicates some usefulness of the solutions pre

sented. 



CHAPTER V 

"DEVELOPMENT OF EXPRESSION FOR THE SEPARATION EFFICIENCY 

Let us assume that the hydroclone D5o% particle size is given by 

the size particle which is in equilibrium at the position r = r 0 . This 

appears to be a good assumption since d0 = 2r0 defines the diameter of 

the inner vortex and particles which are in equilibrium at .a radius 

equal to r 0 should report about 50% to the overflow and 50% to the under-

flow. For a particle in equilibrium, the centrifugal force equals the 

viscous drag force, or 

F cent. = ( 5-1) 

Assuming all particles to be spherical in shape, each of these forces 

may be easily calculated, The centrifugal force is given by the product 

of the particle relative mass and the radial acceleration, or 

(5-2) 

Assuming Stokes' Law to be a valid approximation of the viscous drag, 

the drag force becomes 

25 
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Substituting Eqs. 5-2 and 5-3 into Eq. 5-1 yields 

( 5-4) 

For a particle in equilibrium at r z r 0 , Eq. 5-4 becomes 

( 5-5) 

where 

It has been shown experimentally that in general vc'S. vi where 

Vi = Q If we now define vc~e2 = vi~2 where ~e is the effec-

tive dimensionless inlet radius, we have 

Eq. 5-5 now beco~es 

Solving for D we have 

- 3).)~e..,_ [ ',('g 'f'~4- JY'2. 
O - Vo Q .flVo l ( f>s-PL.) 

For a conic cyclone section f(r 0 ) 
(~-~) 
+o.v ~/,z 

(5-6) 

(5-7) 

(5-8) 
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so that Eq. 5-8 becomes 

(5-9) 

Eq, 5-9 now tells us the size of particle that will be in equilibrium at 

a radius r 0 , Let us now determine the conditions necessary for there to 

be an absolute separation efficiency. In order for such an absolute 

separation efficiency to exist, it is necessary for the particle size in 

equilibrium at r = r 0 to .increase as R increases; 

or 

dD I > 0 
d R 'f'&'f'C) . 

( 5 -10 ) 

I f this were not true, then large particles would have smaller equilib·.-

r i um .radii than small particles. Writing D as a function of R, we 

would have from Eq. 5-9 

Rewriting Eq, 5-11, we have 

Differentiating Eq, 5- 12 with respect to R, we have 

dP I. L) k l R) dV v,.J dR,. c2 [v2(j-R)J* 2Y( j- cm- . (HJl 
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~/ 
In order fo.t Eq. 5-10 to be satisfied, we must have ,, 

[ 2v U-R),- Y'-]"' 0 . ( 5-14) 

Eq. 5-14 may be satisfied in two ways: 

dv 
(a) -dR 

(b) 
dV -dR 

<0 

y > :2 (J-R) slY 
dR 

( 5-15) 

If now, Eqs. 5-15 are satisfied at · the position R = 5, then Eq. 5-9 is 

valid for use in computing the o5afo particle size, In Fig. 5-1 a plot 

has been made of D versus the right hand side of Eq. 5-9, This yields 

a straight line of slope 1 passing through the origin. Experimental 

data points have been plotted in Fig. 5-1 for separation efficiencies of 

5afo and loafo. This experimental data was obtained by injecting AC test 

d~st into the fl~id stream above the hydroclone and comparing the parti-

cle count data of upstream and downstream samples. Note that in Fig. 5-1 

the 5afo points seem to fall, in general, around the theoretical 5Cf{o line. 

It may be concluded from this that for the flow ranges used with this 

particular hydroclone (1 inch diameter with 10° cone) and for MIL 5606 

fluid the equation does predict well the D5Cffo particle size for AC dust. 

The equation needs to be verified for wide ranges of the variables and 

for different kinds of contamination to determine exactly the useful 
_,/ 

limits. Experimental tests of this magnitude were beyond the scope of 

this study. It should be remembered that certain limitations were im-

posed on the equation during its development, i.e., the contamination 
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consisted of spherical particles and that Stokes' Law was a valid expres-

sion· .for the viscous drag. The equation would need a correction factor 

to,.account for particle shape if other than,spherical particles were used. 

The·assumption.that Stokes' Law may.be used to compute the drag appears 

to be valid sine~ the relative velocity of the particle in the radial 

direction yields a ~eynolds' number for the particle·which .is as small 

as required, One might thitµt that there is inconsistency here since the 

fluid is turbulent in the hydroclone; however, the relative particle 

velocity does yield laminar flow of the particle relative to the fluid. 

In conclusion, we can say that Eq. 5-9 appears to be a powerful '"'-
\ 

tool in hydroclone design because of the great number of hydroclone pa- ) 
I ,, 

rameters which .it conta'ins. 

. ·, .• : .. -~ 



CHAPTER VI 

HYDROCLONE PRESSURE DROP 

The pressure drop across a hydroclone is given py the sum of three 

terms 

( 6-1) 

in which 

6pi pressure drop across inlet 

6Pc = pressure drop across the cyclone section 

6p0 = pressure drop across the overflow. 

Considering the inlet(s) and overflow to be nozzles, we can write 

(6-2) 

and 

( 6-3) 

We now need to compute the pressure drop due to the centrifugal field in 

the cyclone section. 

Consider the Euler equation in the r direction, or 

(6-4) 
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where Fr is the body force per unit mass in the r direction. Since 

the radial velocity is negligible compared to the tangential velocity, 

we may neglect the radial acceleration so that Eq. 6-4 now becomes 

d-P 
dY' 

,:,2 
or since Fr "" - we now have r , 

Rewriting Eq. 6-6 in terms of dimensionless variables yields 

From Eq. 4-10, Eq. 6-7 becomes for a type (a) vortex finder 

Expanding Eq. 6-8 yields 

(6-5) 

(6-6) 

( 6-7) 

( 6-8) 

The third term of the above integral is negligible compared with the 

other two and so will be neglected. Integration now yields 

( 6-10) 
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where C1 and C2 are defined in Eq. 4-14. From Eq, 4-6, vc = Q2 . 2 
N1tt3e re 

thus, 

We may now add Eqs. 6-2, 6-3, and 6-11 to obtain .6.p, thus 

.1-P- aQ'l. r 1 + j + 
- 2-tt''tc.~ l (NCo~ ~~)1. (Coo £'"')7. (6-12) 

\ 

(AJ~)'1.[ci1(~.- 1)- le~~;) (}A-JJJ}_ 

Let us now define a dimensionless 6.P given by 

( 6-13) 

where 

If now values are known for the quantities Cn0 , Cni, t3e, and A in 

addition to the hydroclone physical parameters re, N, and t,, then the 



pressure drop across a given hydroclone may be computed for a given flow 

rate with a specified fluid. It should be noted that the pressure drop 

equation which has been presented here was derived for the type (a) vor

tex finder. Because of the similarity of the tangential velocity pro

files for the two types of vortex finders, it would seem that either 

solution could be used satisfactorily for ' both vortex finders. Because 

of this, the simpler of the two solutions was used, i.e., that solution 

for the type (a) vortex finder. 

At the time of this study, not enough experiment equipment was avail

able to check each term, of the pressure drop equation individually. It 

was decided that since for one particular hydroclone configuration, & 

is a constAnt, it might be possible to show that & varies as Q2. If 

this were true, then the following relation must be satisfied; 

(6-14) 

where b is a constant. In Fig. q,-1 is a plot of & versus Q. The 

straight line has a slope of 2 and so represents the theoretical curve. 

Experimental data points have been plotted on the curve also. It should 

be noted that the theoretical curve is well correlated by the experimen

tal data points. It may be concluded that the pressure drop does vary 

with the square of the flow rate as predicted by Eq. 6-12. The power of 

Eq. 6-12 lies in its ability to show the effect of changes in the hydro

clone dimensions on the pressure drop. Eq. 6-12 might also be used in 

conjunction with the separation efficiency equation to theoretically op

timize the hydroclone parameters involved. In this way, much experimen

tal work might be eliminated. 
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CHAPTER VII 

DEVELOPMENT OF EXPRESSION FOR THE 

OPTIMUM CYCLONE SECTION SHAPE 

From Eq. 5-4, we have seen that for a particle in eq1.1ilibri1.1m.at 

radius r we have 

D-=- ( 7-1) 

From Eq. 4-5, we have for type (b) vortex finder 

(7-2) 

Substituting Eq, 7-2 into Eq, 7-1, we have now 

(7-3) 

A necessary condition for D to be a minimum w.ith r constant is 

( 7-4) 

Taking the partial derivative of Eq, 7-3 with respect to f(r), we have 

( 7-5) 



In order that the condition of Eq, 7-4 be satisfied, we must have 

or 

;)(W) 

d ttY') 

(trY') - -
- 2+Cr) . 
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( 7-7) 

The governing differential which describes (vr) in terms of r and f(r) 

for ore~ r ~ re is given by Eq. 4-1, or 

( 7-8) 

where B = _g_ 
21tv · 

But 

d (ltr) d(-v-,) dte.Y') -d Y' - d .ftY') clV' 
(vr) d +lv-) 

':. -
'2 tlY') d'r 

(7-9) 

and 

d'Cvr) - -1 l (1rr) d2+ty) -
d. Y"?. - 2. .ft'<') d. V' '2 

1 d+lr)(~> tv-,-) d~) + QT'r) d_!:J)l 
t~tr) dr 2 +Cr) dY' d.Y' J 

(7-10) 



Substituting Eqs. 7-9 and 7-10 into Eq. 7-8, we have 

(7-11) 

Simplifying Eq. 7-ll, we get 

Let us assume a solution to Eq. 7-12 of the form 

(7-13) 

Substitution of Eq. 7-13 into Eq. 7-12 shows that Eq. 7-12 will be satis-

fied if 

Co::. - B~ 
' 

YL=-4 . ( 7-14) 

Thus, Eq. 7-13 now becomes 

-KY"):. -B/~ +Ci '('-1.f where Ci is arbitrary. ( 7-15) 

The arbitrary constant Ci may ' be evaluated from the boundary condition 

(7-16) 
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We now have 

( 7-17) 

It should be noted that this expression is valid only, in the region 

ore<== r S re which was the limiting condition placed on Eq. 7-2. Eq. 7-17 

now is an expression for the cyclone section shape which wiU yield a min-

imum particle size in the hydroclone overflow for constant values of Q, 

v , and re . In Fig. 7-l is shown a plot of Eq. 7-17 for the case where 

a= 0. 05 and B/6rc = 0 .01. 

It would be of interest now to compute the value of (vr) for this 

optimum cyclone section shape. From Eq. 7-9 we have the relation between 

f ( r ) and (vr) 

d(lfr) 

dY' 
_ (vr) d +lr) 

- Q -t(.'f") d 'r' 

Substituting Eq. 7-17 into Eq. 7-18 yields 

d (1.rr) 

dY"' 
2 (?rf') (~Ye+ 8/<o) (%)~ ~ 

(c{rc+ 6/h)(~)'f- B/tp 

Integration of Eq. 7-19 yields 

(1.T'f') 
R' 

C ly , 
E-R'i " 

where C1 i s an arbitrary constant. From the boundary condition 

(vr ) r = re-= Vtrc we have 

C 

( 7- 18) 

(7-20) 

( 7-21 ) 
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thus, 

(1rY") 

or finally, 

V r1 E - ' I ] Vi. L &-R~ R , 
In Fig, 7-2 is shown a plot of Eq, 7-23 for the case where E = O. 03, 

Also plotted in Fig. 7-2 is the tangential velocity field for a potential 

vortex. The theoretical tangential field for the optimum cyclone sec-

tion shape is thus predicted to be stronger than for that of a potential 

vortex which is the limiting case for the tangential field of a cone-

shaped cyclone section. 

Comparing Fig. 7-2 with Fig. 4-7, it may be seen that for R = 0 . 3 

the value of V · . for· the bptimum shape: hydroclone is . about 1. 35 times 

as large as V for a conventional hydroclone. In terms of separation 

efficiency, this means that theoretically the optimum shape hydroclone 

will yield about 25% better efficiency than a conventional hydroclone. 

In actual practice, this will probably never be achieved as boundary lay-

er effects arid other friction losses have been neglected. As of this 

time, no experimental data has been obtained to indicate the actual per-

formance of a hydroclone with this theoretically optimum shape. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

As a result of the experimental studies which were conducted, it may 

be concluded that the analytical expressions which have been developed 

for the separation efficiency and pressure drop are accurate for the 

range of variables used in the tests. For other ranges of these varia

bles ( flow rate, hy~roclone radius, viscosity, etc.), it is not known at 

this time if the equations are accurate. It should be noted that there 

was also excellent agreement between the theoretical and experimental 

tangentia l velocity profiles. Note also that because of the similarity 

between the solutions given for the two types of vortex finders (See 

Figures 4.3 and 4.6), one might use the simpler of the two solutions, 

i.e . , Eq. 4-10, for both types of vortex finders and not introduce any 

great errors . As of this time, no conclusive experiments have been con

ducted to determine the effectiveness of the theoretically derived opti

mum cyclone section shape; however, calculations do indicate that the 

maximum possible gain in efficiency over a conventional hydroclone is of 

the order of 25%, 

The feeling of the author is that the main .utility of the equations 

der i ved i n this thesis are to indicate the effect of the various operating 

variables upon hydroclone operation. If sufficient experimental data is 

obtained to completely verify these relations, then tables or curves of 

data coul d be prepared from which hydroclones could be completely designed 

for any / ew application which should arise. 
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Another utility of these equations would be in the optimization of 

such parameters as the overflow diameter, the inlet diameter, the cone 

angle, and the hydroclone size. This would be very beneficial in the 

elimination of laborious experimental tests. 

It is the feeling of the author that there are several great needs 

for future investigations. These are listed below: 

I) Extensive experimental tests to prove or disprove the theoret

ical equations. 

II) Theoretical and experimental optimization of the hydroclone de

sign parameters. 

III) Extensive studies to develop more efficient. inlet tonfigurations. 

IV) . Determination of the effects of secondary flows and boundary 

layer effects upon hydroclone operation. 

V) Better underflow design configurations. 

The field of the hydroclone separator is not yet touched as far as 

applications and developments are concerned. The future is bound to yield 

new and exciting possibilities, but not without many hours of study_and 

experimentation. 
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