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CHAPTER I 

INTRODUCTION 

THE PROBLEM 

As THE AMERICAN FARMER 1 S MARGIN OF PROFIT CONTINUES TO DECREASE, 

IT IS BECOMING NECESSARY FOR HIM TO FIND NEW ANO BETTER WAYS BY WHICH 

HE CAN DECREASE HIS OPERATIONAL COSTS. ONE METHOD OF DOING THIS IS 

THROUGH BETTER AND LESS EXPENSIVE METHODS OF CONSTRUCTING HIS FARM 

BUILDINGS. 

IN THE DESIGN AND CONSTRUCTION OF NEARLY ALL BUILDINGS FOR 

AGRICULTURAL PURPOSES AS WELL AS LIGHT INDUSTRIAL BUILDINGS, THE FRAME 

OF THE BUILDING IS EXTENDED TO THE FOUNDATION AND FASTENED BY A 

CONNECTION WHICH HAS LITHE RESISTANCE TO ROTATION. THE APPARENT 

REASON FOR THIS PRACTICE IS THAT WHEN DESIGNING A BUILDING OF THIS 

TYPE, THE FRAME WHICH ENDS AT THE FOUNDATION, CAN BE ASSUMED TO BE 

PINNED. THUS THE STRESSES CAN BE EVALUATED QUITE EASILY, THIS ALSO 

SEEMS TO BE AN ACCEPTED CONSTRUCTION METHOD WHICH HAS BEEN CARRIED ON 

THROUGH THE YEARS. HOWEVER, THROUGH THIS PRACTICE A GREAT DEAL OF 

STIFFNESS AND RIGIDITY, WHICH COULD BE ADDED TO THE FRAME BY EXTENDING 

THE FRAME BELOW THE GROUND LEVEL OR BY USING RIGID FASTENERS, IS LOST, 

THE AMOUNT OF STIFFNESS ACQUIRED BY EXTENDING THE FRAME ENDS BELOW THE 

GROUND LEVEL IS DIFFICULT TO PREDICT, HOWEVER, BECAUSE OF SUPPORT 

YIELDING DUE TO SOIL MOVEMENT. THIS SOIL MOVEMENT, IN TURN, IS DIFF.ICULT 

TO PREDICT BECAUSE OF THE. LARGE DIFFERENCES IN SOIL PROPERTIES 



DUE TO VARIATIONS IN SOIL CONDITION AND TYPE, ANOTHER ACVANTANTAQE or EX-

TENDING THE FRAME ENDS BELOW THE GROUND LEVEL IS THAT THE STRUCTURE CAN 

BE ERECTED WITHOUT MAKING A SPECIAL FOUNDATION. ALSO BY USING THIS 

MEANS OF CONSTRUCTION, IT IS POSSIBLE TO GET A MORE UNIFORM DISTRIBUTION 

OF STRESSES IN THE FRAME. THIS IN TURN ALLOWS A FRAME or MORE NEARLY 

CONSTANT CROSS SECTION TO BE USED, THUS REDUCING PRODUCTION COSTS. 

OBJECTIVES 

THE OBJECTIVES OF THIS STUDY ARE LISTED AS FOLLOWS: 

I. EVALUATE STIFFNESS OR RESISTANCE TO BENDING OF GEOMETRICALLY 

SIMILAR HINGELESS AND TWO-HINGED LIGHT GAGE, COLD-FORMED STEEL FRAMES 

UNDER THE SAME LOADING CONDIT~ONS. THIS JS TO BE DONE EXPERIMENTALLY 

AND ANALYTICALLY TO DETERMINE ACCURACY AND RELIABILITY OF ANALYTICAL 

METHODS. 

2. EVALUATE SECONDARY STRESSES DEVELOPED DUE TO MOVEMENT OF 

SUPPORTS OF GEOMETRICALLY SIMILAR HINGELESS AND TWO-HINGED, LIGHT GAGE, 

COLD-FORMED STEEL FRAMES. MOVEMENT OF SUPPORTS FOR TWO~HINGED FRAMES 

IS TO BE LATERkL TO CAUSE SEPARATION OF SUPPORTS. SUPPORT MOVEMENT OF 

THE HINGELESS FRAME SHALL BE TRANSLATIONAL, ROTATIONAL, OR A COMBINATION 

WHICH WOULD LIKELY SIMULATE ACTUAL STRUCTURAL CONDITIONS. THIS IS TO BE 

DONE EXPERIMENTALLY AND ANALYTICALLY. 

SOME OF THE REASONS FOR ESTABLISHING THE ABOVE OBJECTIVES ARE: 

( I) IF A BUILDING FRAME IS TOO FLEXIBLE, CONSIDERABLE DEFLECTION MIGHT 

OCCUR WHICH COULD CAUSE HIGH STRESS IN THE COVERING MATERIAL, CAUSING IT 

TO FAIL OR BECOME DAMAGED. (2) THE EFFECT OF SUPPORT MOVEMENT ON 

BUILDING FRAMES IS IMPORTANT BECAUSE IT CREATES SECONDARY STRESSES IN THE 

FRAMES. (3) DETERMINE THE STRUCTURAL ADVANTAGES ONE FRA~E TYPE MIGHT 



HAVE OVER THE OTHER. (4) VERIFY THEORETICAL ANALYSIS BY USE OF 

EXPERl~ENTAL PROCEDURES. 
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CHAPTER 11 

REVIEW OF LITERATURE 

INTRODUCTION 

ROBINSON (20) STATED, 11 S1NCE THE END OF THE WAR, CHANGES IN 

HUSBANDRY PRACTlCE:HAVE BROUGHT ABOUT A REVOLUTION IN FARM BUILDINGS. 

IN PARTICULAR WITH INCREASED MECHANIZATION, LARGER BUILDINGS AND 

GREATER SPACE FOR WORKING ARE REQUIRED. THE DESIGN OF THE FUTURE MUST 

REDUCE TO A MINIMUM THE INTERFERENCE WITH ADAPTABILITY AND FREE MOVE­

MENT.11 THIS AUTHOR ALSO SUGGESTED THAT BUILDING METHODS IN THE FUTURE 

WOULD UNDOUBTEDLY MAKE GREATER USE OF PRE-FABRICATED UNITS MADE IN THE 

FACTORY AND ASSEMBLED ON THE FARM. IT SEEMS THAT THIS THEORY GOES 

ALONG VERY WELL WITH THE USE OF RIGID FRAMES FOR FARM BUILDINGS. 

CURTIS AND HANSEN (5) STATED THAT LUMBER RIGID FRAMES MAY REVOLUTIONIZE 

THE CONSTRUCT.ION OF FARM BUILDINGS. THE REASONS THEY GAVE WERE THAT 

RIGID FRAMES PROVIDE MORE USABLE SPACE; ARE CHEAPER IN MOST CASES; AND 

THEY COULD BE ERECTED QUICKLY AND EASILY. 

PAUL AND HANSEN ( 17) JNVESTIGATED THE POSSIBILITY OF USING CON­

CRETE RIGID FRAMES FOR BUILDINGS FREE OF ANY INTERIOR SUPPORTS, TRUSSES, 

OR BRACES. THE OBJECTIVE OF THIS STUDY WAS TO DEVELOP A SERIES Of 

DESIGNS FOR USE BY CONCRETE PRECASTING PLANTS, WHERE THE FRAMES WOULD 

BE CAST AND THEN SHIPPED TO THE SITE TO BE CONSTRUCTED. THEY ALSO 

FOUND THAT THE BEHAVIOR OF. THE CONCRETE RIGID FRAME TESTED COULD BE 

4 



PREDICTED QUITE ACCURATELY BY THEORETICAL MEANS. 

EFFECTS OF SUPPORTS PLACED IN THE SOIL 

ANALYTICAL EVALUATION OF SUPPORTS 

5 

IN THE DESIGN OF LIGHT STRUCTURAL FRAMES WITH FIXED~END SUPPORTS, 

DEPENDING UPON THE SOIL FOR RESISTANCE TO MOVEMENT, THE PROBLEM ARISES 

AS TO HOW MUCH RESISTANCE CAN BE EXPECTED FROM THE SOIL. THE MAIN 

REASONS FOR THIS PROBLEM ARE THE WIDE VARIATION OF MECHANICAL PROPERTIES 

OF THE SOIL, AND THE INABILITY TO PREDICT STRESSES IN SOIL SUBJECTED TO 

LATERAL PRESSURES FROM A PILLAR. 

IF THE ENDS OF THE FRAMES ARE PLAC.ED IN A HOLE DUG IN THE GROUND 

AND THE VOIDS FILLED WITH CONCRETE. OR OTHER SUITABLE MATERIAL, THEN IT 

APPEARS THAT THE END CONDITIONS COULD BE CONSIDERED TO BE THE SAME AS 

PILES OR POLES PLACED IN 1HE GROUND. FOR THIS REASON THE BEHAVIOR OF 

LATERALLY LOADED PILES WAS INVESTIGATED. 

A RATIONAL SOLUTION WAS PROPOSED BY CZERNIAK (6) FOR THE RESISTANCE 

TO OVERTURNING OF SHORT PILES IN WHICH HE ASSUMED THE PILE TO BE PERFECTLY 

RIGID AND THE SOIL RESISTANCE INCREASED LINEARLY WITH DEPTH, THE SOIL 

RESISTANCE WAS BASED ON THE FOLLOWING TH.EORY: .WHEN A SHORT PILE--A PILE 

WITH EMBEDDED DEPTH NOT OVER TEN TIMES ITS LEAST LATERAL DIMENSION--IS 

ROTATED IN ITS POSITION, THE HORIZONTAL PRESSURE AGAINST THE PILE 

INCREASES UNTIL IT REACHES THE LIMITING VALUE KNOWN AS THE PASSIVE EARTH 

PRESSURE. FURTHER DISPLACEMENT OF THE PILE DOES NOT SIGNIFICANTLY CHANGE 

THE PRESSURE, BEFO~E THE PASSIVE PRtSSURE IS REACHED, THE BODY OF THE 

EARTH IS IN A STATE OF ELASTIC EQUILIBRIUM AND THE MAGNITUDE .OF THE 

PRESSURE IS ~ELAtED TO THE AMOUNT OF PILE MOVEMENT. THE MOVEMENT AT 

THE GROUND LEVEL REQUIRED TO DEVELOP THIS PASSIVE PR.ESSURE MAY BE AS 

HIGH AS 1/32 INCH PER FOOT OF PILE E~BEDMENT. THE GENERAL FORMULA GIVEN 



TO ESTIMATE PASSIVE PRESSURE IS: 

pH = K {? H TAN2 (45° + f) + 2 C TAN (450 ,+ P.. ) 
2 2 . 

e UNIT WEIGHT OF SOIL, LB/FT3 

H DEPTH,. FT 

.c COHESION, LB/FT2 

cp = ANGLE OF FRICTION IN DEGREES 

p 
H HORIZONTAL PRES,SURE,. LB/FT2 

K EFF I.CI EN'CY. FACTOR TO ALLOW FOR ROUGHNESS OF PILE FOR 
ROUND BORED FOUNDATIONS 1 APPROXIMATELY 2 

USING THIS THEORY AS A BASIS, HE THEN DEVELOPED EQUATIONS TO 

DETERM'INE ACTUAL SOIL PRESSURES AND REQUIRED PILE EMBEDMENT.FOR 

ROUND AND RECTANGULAR SECTIONS. CzERNIAK 1 S EQUATIONS FOR ACTUAL 

.S.OIL.PRESSURES WERE: 

(A) ROUND SECTION 

4 Ho 
PX= 9. 25 L -

(8) RECTANGULAR SECTION 

Px = EARTH PRESSURE AGAINST. PILE AT. DISTANCE X 
FROM RESISTING ,Sl,IRFACE, LB/FT2 

E = 

L = 

X 

LATERAL FORCE PER FOOT OF PILE DIAMETER 
APPLIED AT THE RESISTING.SURFACE, LB/FT 

DISTANCE FROM LATERAL LOAD TO RESISTING 
SURFACE, FT 

DEPTH OF PILE, MEASURED FROM THE RESISTING 
.SURFACE, ,FT 

DISTANCE BETWEEN POINT AT WHICH p 
X IS TAKEN 

AND RESISTING.SURFACE 

Us1Nct THESE EQUATIONS AND THE RECOMMENDED LATERAL SOIL PRESSURES 

6 



.TABLE I 

RECOMMENDED LATERAL SO IL PRESSURE 
IN POUND PER SQ FT PER FOOT DEPTH 

CLASS OF MATERIAL 

RocK .IN NATURAL BED-LIMITED BY THE STRESS IN PILE 
MEDIUM HARD CALI CHE 
FINE CALICHE WITH SAND LAYERS 
COMPACT WELL GRADED GRAVEL 
HARD DE_NSE CLAY 
COMPACT COARSE SAND 
COMPACT COARSE AND FINE SAND 
MEDIUM STIFF CLAY 
COMPACT FINE. SAND 
ORDINARY SILT 
SANDY CLAY 
ADOBE 
COMPACT INORGANIC SAND AND SILT MIXTURES 
SOFT CLAY 
LOOSE ORGANIC SAND AND SILT MIXTURES AND MULCH 

OR BAY MUD 

VALUE 

500 
400 
400 
400 
350 
300 
300 
250 
200 
200 
200 
200 
100 

0 
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IN TABLE I THE DESIGN FOR A PILE CAN BE MADE. THE ACCURACY OF 

SOLUTIONS MADE IN THIS MANNER IS CERTAINLY QUESTIONABLE FOR PILES 

PLACED IN THE UPPER FIVE OR SIX FEET.OF THE EARTH AS WOULD BE THE 

CASE IN FARM.BUILDINGS. IT DOES, HOWEVER, PROVIDE AN ESTIMATE THAT 

COULD BE USED, 

MATLOCK AND REESE (J2) PROPOSED RATIONAL SOLUTIONS IN WHICH THE 

NON-LINEAR FORCE-DEFORMATION CHARACTERISTICS 0~ THE SOIL WERE CON-

SIDERED. THE BASIC EQUATION USED FOR THE ELASTIC-PILE THEORY WAS: 

D4y Es 
DX4 + TI Y = O 

y = LATERAL DEFLECTION IN INCHES 

X = DEPTH BELOW GROUND LINE IN INCHES 

Es = SOlL MODULUS LB/IN2 

El FLEXURAL STIFF"NESS OF PILE LB-1N 2 

AND FOR THE RIGID PILE THEORY 

P = -Es Yr - Es SX 

S = SLOPE OF THE PILE 

Yr DEFLECTION AT X = 0 

P = SOIL REACTION PER UNIT OF LENGTH OF 
PILE LB/IN 

THEN USING DIMENSIONAL ANALYSIS, NON-DIMENSIONAL PARAMETERS WERE 

OBTAINED AND SUBSTITUTED INTO THE ABOVE EQUATIONS. 8Y USING DIFFERENT 

SOIL ~ODULUS CONSTANTS IN THE EQUATION Es= KXN, WHERE 

K = CONSTANT OF SOIL MODULUS 

N = EXPONENT 

AND. BY USINQ REPEATED APPLICATIONS OF THE PRECEDING THEORIES, A SAT-

ISFACTORY SOLUTION CAN THEN BE OBTAINED IN THE STRUCTURE-PILE-SOIL 

SYSTEM, 

8 



9 

THE LATTER OF THE TWO SOLUTIONS WOULD APPEAR TO BE MORE APPROPRIATE 

SINCE SOIL MODULUS VARIES NOT ONLY WITH DEPTH, BUT ALSO WITH WIDTH OF 

THE POLE, THE MAGNITUDE OF THE APPLIED LOAD, AND THE DEFLECTION. HOWEVER, 

AN ACCURATE PREDICTION OF THE SOIL MODULUS VARIATION Ex= KX AT RELATIVELY 

SHALLOW DEPTHS, WOULD BE HARD TO ACHIEVE. THIS WOULD ALSO VARY 

CONSIDERABLY FOR EACH LOCATION A BUILDING WAS TO BE CONSTRUCTED. 

NELSON ( 14) DERIVED AN EQUATION FOR THE DEFLECTION OF AN ELASTIC 

POLE UNDER LATERAL LOAD WHEN THE DEFLECTION DUE TO ANCHORAGE YIELD WAS 

KNOWN. THE ASSUMPTIONS USED IN HIS DERIVATION WERE: 

( I) POLE WAS LOADED BY TILTING MOMENTS IN 
VERTICAL PLANE AND ROTATES ABOUT A 
FIXED POINT 

(2) CONCRETE USED FOR BACKFILLING THE 
ANCHORAGE DID NOT CONTRIBUTE TO THE 
STIFFNESS OF THE POLE 

(3) HORIZONTAL REACTION ON THE POLE DURING 
APPLICATION OF TILTING MOMENTS IS 
DISTRIBUTED AS A PARABOLA Wl1H HORIZONTAL 
AXIS 

USING THESE ASSUMPTIONS AND THE EQUATION 

4 
P= EI .g_J 

DX 
p BELOW-GRADE REACTION ON THE POLE 

El FLEXURAL STIFrNESS OF POLE 

Y LATERAL DEFLECTION 

X = DEPTH BtLOW GROUND LINE 

THE EQUATION FOR THE SLOPE (¢) OF THE POLE .AXIS A1 THE GROUND LINE WAS 

DEVELOPED. THIS EQUATION 1s: 

cp = DY a cx:2P02 [,5 a; 3 + _,_ 
+ 1] DX D 2 El (2-3cr) ya: 

er:= D r= D 
o H 



0 = HORIZONTAL DEFLECTION AT GROUND LINE 

D = DISTANCE BETWEEN GROUND LINE AND POINT OF 
ROTATION 

D = TOTAL DEPTH OF SET OF THE POLE 

H DISTANCE BETWEEN GROUND LINE AND POINT 
OF APPLIED LOAD 

P = LATERAL LOAD 

BY USING 0.6 AS A VALUE FOR£, WHICH SEEMED TO BE APPROPRIATE 
D 

FROM TEST RESULTS OF VARIOUS OTHER EXPERIMENTERS, HE OBTAINED 

REASONABLE RESULTS WHEN COMPARED TO TEST RESULTS OBTAINED BY NELSON 

AND HIS ASSOCIATES (J5). THESE TESTS WERE, HOWEVER, FOR ONLY ONE 

MAJOR TYPE OF SOIL CONDITION. THE MAJOR OBJECTION TO THIS METHOD IS 

THAT DEFLECTION AT THE GROUND LINE HAS TO BE MEASURED OR ESTIMATED. 

PROTOTYPE SUPPORT STUDIES 

A STUDY OF THE RESISTANCE TO OVERTURNING.OF UTILITY POLES WAS 

MADE BY ANDERSON (1). HE FOUND THAT THE FAVORED DESIGNS FOR RESISTING 

TILTING MOMENTS WERE SLIM AND DEEP WITH THE TOP THIRD OF THE FOUNDATION 

INCREASED IN WIDTH AT RIGHT ANGL.ES TO DIRECTION OF FORCE. THE THEORY 

WAS USED THAT UNIT DEFLECTION VARIED WITH DEPTH AND WITH CERTAIN 

CHARACTERISTICS OF THE SOIL, WHICH WERE ASSUMED TO VARY LINEARLY WITH 

DEPTH. THE NET RESISTANCE OF THE SOIL TO HORIZONTAL MOVEMENT WAS 

CONSIDERED TO BE THE DIFFERENCE OF THE PRESSURES ON ITS TWO SIDES OR 

PASSIVE RESISTANCE LESS ACTIVE PRESSURE. THEN USING GENERAL EQUATIONS 

AND TAKING MOMENTS ABOUT AN ASSUMED NEUTRAL AXIS, IT WAS FOUND THAT 

THE ERRORS WERE ON THE SAFE SIDE AND ACCURACIES WERE ABOUT 5 PER CENT 

ASSUMING SOIL VALUES TO BE ABSOLUTE. 

McCELLAND AND FOCHT (13) CONDUCTED AN EXPERIMENT ON A 24 INCH 

10 



PILE DRIVEN INTO THE dROUND 75 FEET. FROM THESE EXPERIMENTS THEY FOUND 

THE SOIL MODULUS TO VARY ALMOST LINEARLY WITH DEPTH IN WHICH THE SOIL 

WAS A CONSOLIDATED CLAY. THEY ALSO FOUND THAT SOIL MODULUS VARIED 

WIDELY WITH DEPTH AND PILE DEFLECTION. 

THE PREVIOUSLY MENTIONED EXPERIMENTS WERE CARRIED OUT W1TH MUCH 

LARGER POLES AND DEEPER SETTINGS THAN WOULD BE EXPECTED IN FARM 

CONSTRUCTION. THEREFORE, MOST OF THIS DESIGN DATA WOULD NOT APPLY TO 

POLE FOOTING DESIGNS OF AGRICULTURAL. BUILDINGS SINCE THESE ARE 

RELATIVELY SHALLOW. 

A STUDY OF THE LATERAL LOAD EFFECTS ON POLES WAS MADE BY NELSON 

(15) AND ASSOCIATES ON SIX INCH DIAMETER POLES PROJECTED J4 FEET ABOVE 

GROUND SURFACE. IT WAS FOUND THAT THE DEPTH OF SETTING WAS ONE OF 

THE IMPORTANT FACTORS IN STABILITY OF THE POLE ANCHORAGES. BY 

INCREASING .DEPTH 3 1/2 AND 5 FEET IT WAS FOUND THAT MOVEMENT WAS 

REDUCED 38 PER CENT AND 30 PER CENT RESPECTIVELY OF THE VALUE AT 

2 1/2 FEET. THIS EFFECT WAS FOUND TO BE MOST PRONOUNCED ON DEFLECTION 

RATES DURING THE FIRST APPLICATION OF LOADS. OTHER IMPORTANT FINDINGS 

WERE THAT RELATIVELY SMALL INCREASES IN WATER CONTENT OF THE. SOIL CAN 

CAUSE RADICAL LOSS OF STABILITY IN CLAY SOILS, AND THAT ROTATION 

OCCURED ABOUT WELL-DEFINED POINTS WHICH VARIED IN.DEPTH FROM 1/2 TO 

2/3 OF THE TOTAL DEPTH. . . THE FOLLOWING METHODS WERE SUGGESTED TO 

REDUCE POLE ROTATION: 

( I) THE USE. OF CONCRETE AS COMPARED TO TAMPED 
EARTH FOR BACKFILLING .AROUN~ THE PILE 

(2) INCREASING THE DEPTH OF THE POLE SETTING 

(3) KEEPING SOIL AROUND THE ANCHORAGE DRY 

(4) PRECONSOLIDATION OF SOIL AROUND THE ANCHORAGE 
TO INCREASE SOIL ELASTIC MODULUS 

11 



FROM THESE SAME TESTS NELSON ( 14) FOUND THE FOLLOWING: THAT BY A 

COMBINATION OF PRECONSOLIDATION, THE USE OF COMPLETE CONCRETE 

ENCASEMENT, AND A 5 FOOT ANCHORAGE DEPTH, TOTAL ROTATION OF A POLE 

AT THE GROUND LINE CAN BE AS LOW AS APPROXIMATELY 3 X 10-6 RADIANS 

PER FT-LB OF APPLIED TILTING MOMENT. THIS WAS FOR A NOMINAL 5 INCH 

TOP PRESSURE CREOSOTED SOUTHERN PINE POLE IN A 12-INCH DIAMETER 

CONCRETE ANCHORAGE. IT WAS ALSO FOUND THAT APPROXIMATELY 3 .PER CENT 

OF THIS ROTATION WAS NON-RECOVERABLE BECAUSE OF PLASTIC CONSOLIDATION 

OF SOIL, AND THAT APPROX.IMATELY 50 PER CENT WAS CAUSED BY ELASTIC 

CONSOLIDATION. 

MODEL SUPPORT STUDIES 

VARIOUS EXPERIMENTERS HAVE USED MODEL TESTS TO STUDY LATERAL 

LOADING ON PILES. HOWEVER, MOST OF THE STUDIES WERE NOT CARRIED OUT 

IN SUCH A MANNER THAT PHYSICAL SIMILARITY COULD BE OBTAINED. 

BECKETT. (3) MADE A STUDY OF LATERALLY LOAD·ED MODEL POLES USING 

PRINCIPLES OF SIMILITUDE, IN THESE TESTS USED TO PREDICT THE BEHAVIOR 

OF LATERALLY LOADED POLES, IT WAS FOUND THAT THE DEFLECTION OF THE 

PROTOTYPE WAS CLOSE TO THAT PREDICTED. BY THE MODEL IN ALL CASES. 

THESE TESTS WERE RUN IN THREE DIFFERENT SOIL TYPES: LOOSE SAND, DENSE 

SAND, AND SATURATED SANDY CLAY. FROM THESE TESTS THE FOLLOWING 

PREDICTION EQUATIONS WERE MADE. 

FOR LOOSE SAND 0.68 

Y= l.824X 1050 (P/()~)12•5(D/H) 

FOR DENSE SAND O.SJ 2J3i 

y=l.68x163oe5·51 (D H l 

FOR SATURATED SANDY CLAY 

y= 632 D(H315')3.2546 (kt/D)0.8009 
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Y LATERAL MOVEMENT 

0 POLE DIAMETER 

p APPLIED LOAD 

H DEPTH OF EMBEDMENT 

j WEIGHT OF SOIL PER UNIT VOLUME 

K COEFFICrENT OF PERMEABILITY 

T TI ME ELAPSED SINCE. LOAD! NG 

THESE EQUATIONS ARE DIRECTLY APPLICABLE TO ANY SIZE OF POLE PROVIDED 

THEY MEET THE REQUIREMENTS OF DIMENSIONAL ANALYSIS USED IN THE TESTS. 

THIS WOULD MAKE THESE EQUATIONS GOOD ONLY FOR THE THREE SOIL TYPES 

TESTED. IT WAS ALSO FOUND THAT P /031 VERSUS THE LOAGR I THM OF Y /0 

PLOTTED ON RECTANGULAR COORDINATE PAPER RESULTED IN A STRAIGHT LINE. 

RICE (19) CONDUCTED MODEL EXPERIMENTS TO MEASURE RIGIDITY OF 

SELECTED ANCHORAGE DESIGNS UNDER APPLIED BENDING AND HORIZONTAL LOADS. 

THESE TESTS WERE DESIGNED AND OPERATED ACCORDING TO PRINCIPLES OF 

SIMILITUDE AND CONDUCTED IN A SAND TANK FILLED WITH DENSE SAND. THE 

BASIS OF SELECTION FOR THE ANCHORAGES WAS THAT A HORIZONTAL EXTENSION 

ATTACHED TO THE FIXED-END ANCHORAGE BELOW THE GROUND LEVEL WOULD 

REDUCE SOIL PRESSURE AND THEREBY INCREASE THE RIGIDITY OF THE ANCHORAGE. 

EXPERIMENTS WERE CONDUCTED USING HORIZONTAL EXTENSIONS OR WINGS WITH 

WING LENGTH TO ANCHORAGE DIAMETER RATIOS OF 2 AND 3. WING DEPTH TO 

ANCHORAGE DEPTH RATIOS OF 1/3 AND 1/2 WERE USED WITH THE WINGS 

LOCATED AT THE UPPER PORTION OF THE ANCHORAGES WHERE SOIL PRESSURES 

ARE GREATEST UNDER OVERTURNING LOADS. FOR A TYPICAL VALUE OF 20 FOR 

Pji{D3, 

p = APPLIED LOAD 

1/= SOIL DENSITY 

0 = ANCHORAGE DIAMETER 

IT WAS FOUND THAT THE MOVEMENT WAS REDUCED APPROXIMATELY 20 PER CENT 
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BY A WING TWICE AS·WIDE AS THE ANCHORAGE DIAMETER AND APPROXIMATELY 

40 PER CENT BY A.WJNG.3 TIMES THE ANCHORAGE DIAMETER AS COMPARED TO 

AN ANCHORAGE WITHOUT A STABILIZING WING NORMAL TO THE MOMENT PLANE. 

14 

IT WAS ALSO FOUND THAT A WING IN A PLANE PARALLEL TO THE PLANE OF APPLIED 

MOMENT WAS MORE EFFECTIVE THAN A NORMAL WING FOR ANCHORAGES WITH A 

DEPTH TO DIAMETER RATIO OF 4, WHILE FOR RATIOS OF 7 AND 9 A NORMAL 

WING WAS FOUND TO BE MORE EFFECTIVE. 

FIXED-END SUPPORTS 

To DATE THERE IS VERY LITTLE INFORMATION PUBLISHED ON THE EFFECT 

OF FIXED-END SUPPORTS IN LIGHT STRUCTURES. 

SALMON (21) IN AN ARTICLE ON MOMENT-ROTATION CHARACTERISTICS OF 

COLUMN ANCHORAGES STATED THAT THE THREE TYPES OF LIKELY FAILURE OF 

COLUMN ANCHORAGES ARE, (I) FAILURE IN SHEAR RESISTANCE, (.2) FAILURE 

IN MOMENT RESISTANCE, AND (3) FAILURE IN TENSILE RESISTANCE. HE ALSO 

STATED THAT SHEAR FAILURE WAS MOST LIKELY TO OCCUR IN LOW, WIDE 

BUILDINGS. A TENSILE OR MOMENT RESISTANCE FAILURE IS MORE LIKELY TO 

OCCUR IN TALLER, NARROWER BUILDINGS. 

GALAMBOS (7) IN A RATIONAL DERIVATION FOUND THAT THE BUCKLING 

STRENGTH OF A Pl~NED-BASE RIGID FRAME WAS CONSIDERABLY LOWER THAN THAT 

OF AN IDENTl~AL FIXED-BASE FRAME. USING HIS DERIVATION HE FOUND THAT 

A. FIXED-BASE FRAME COULD CARRY 4.07 TIMES AS MUCH AXIAL LOAD AS A 

PINNED-BASE.CONDITION. HOWEVER, FURTHER RESEARCH ON THE MOMENT­

ROTATION CHARACTERISTICS OF COMMON COLUMN FOUNDATIONS IS NECESSARY 

BEFORE MORE ACCURATE ESTIMATES OF BASE RESTRAINT CAN BE MADE. 

AVAILABL'EdNFORMATiON·LNDJCATE,S THAT PRESENTLY USED PINNED-COLUMN 

.BAS.ES GI V8 EN.OUGH R.ESTRA I NT TO I NCR EASE THE BUCKLING STRENGTH OF THE 
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FRAME CONSIDERABLY. IN THIS SAME ARTICLE HE STATED THAT, "PINNED 

COLUMN BASES ARE SPECIFIED IN MOST OF THE UNITED STATES BECAUSE THE 

CONSTRUCTION OF SUITABLE FOUNDATIONS FOR FIXED-BASES USUALLY INCREASES 

THE OVER-ALL COST. 11 HOWEVER, IN·THIS STATEMENT HE IS PROBABLY REFERRING 

TO LARGER STRUCTURES THAN WOULD ORDINARILY BE USED ON THE FARM OR FOR 

LIGHT INDUSTRIAL PURPOSES. 

THE ONLY INFORMATION ON ACTUAL TESTS OF FIXED-END SUPPORTS IN 

STRUCTURAL FRAMES FO.UND WERE THOSE CONDUCTED BY NELSON ( 16) AND HIS 

ASSOCIATES. THESE TESTS WERE CONDUCTED BY THE USE OF MODELS AND 

PROTOTYPE STRUCTURES. THE TYPE OF FRAMES TESTED WERE ONt-HINGED 

ARCH FRAMES AND THREE-HINGED ARCH FRAMES WHICH WERE FOR COMPARISONS. 

THE PROTOTYPE FRAMES WERE GLUE-LAMINATED WOODEN ARCHES. MODELS USED 

WERE ONE-HALF SIZE WOODEN ARCHES AND ONE-EIGHTH SIZE MODELS USING 

MILD STEEL ARCHES. THE STIFFNESS OF MODEL AND PROTOTYPE ONE-HINGED 

FRAMES WITH MOMENT RESISllNG ANCHORAGES IN SAND AND CLAY SOILS RANGED 

FROM l.55 TO l.85 TIMES AS G.REAT AS THE STIFFNESS OF IDENTICAL THREE­

HINGED ARCHES UNDER SHORT-TERM LOADS APPLIED AT THE CROWN, THIS 

COMPARED VERY CLOSELY TO THE THEORETICAL STIFFNESS INCREASE OF I .78 

FOR A TYPICAL PROTOTYPE WITH IDEAL FIXED-END ANCHORAGES. OTHER 

FINDINGS WERE THAT STABILIZING WINGS ON PROTOTYPE ARCH ANCHORAGES 

GAVE 52 PER CENT LESS MOVEMENT OF THE ANCHORAGE AS COMPARED TO 

ANCHORAGES WITHOUT WINGS. THESE WINGS WERE ONE-THIRD THE ANCHORAGE 

DIAMETER. ALSO THE MODELS WERE FOUND TO GIVE RELIABLE AND USEFUL 

INFORMATION. 

FRAME PROPERTIES 

SINCE THE FRAMES TESTED IN THE PRESENT STUDY WERE MADE UP OF 
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LIGHT GAGE, COLD-FORMED STEEL SECTIONS, IT WAS THOUGHT THAT INFORMATION 

WAS NEEDED WITH RESPECT TO PROPERTIES OF THESE TYPE SECTJONS. 

LIGHT.GAGE, COLD-FORMED STEEL SECTIONS ARE MADE BY COLD FORMING 

.SHEET OR STRIP STEEL IN ROLLS OR BRAKES, THE GENERAL RANGE OF. THICKNESS 

IS FROM No. 10 GAGE (0.1345 IN) TO No. 28 GAGE (0.0149 IN). HOWEVER, 

OTHER THICKNESSES HAVE BEEN USED. 

WINTER (23) GAVE THESE THREE REASONS FOR US]NG COLD-FORMED 

STRUCTURAL SECTIONS AS COMPARED TO.HOT-ROLLED SECTIONS. 

(I) WHERE MODERATE LOADS AND SPANS RENDER THE 
TfflCKER HOT-ROLLED SHAPES UNECONOMICAL 

(2) WHERE, REGARDLESS OF THICKNESS, MEMBERS ARE 
WANTED OF CROSS-SECTIONAL CONFIGURATJONS 
WHICH CANNOT ECONOMICALLY BE PRODUCED BY HOT­
ROLL I NG OR· BY WELD I NG .OF FLAT PLA TE.S 

(3 ) Wr+E*E 1 ·T I S DE-S-1-R ED THAT-- LGAD,-,.-C-A,R~ Y-1 NG M-EMB ER S 
ALSO PROVIDE USEFUL SURFACES, SUCH AS IN 
FLOOR AND WALL PANELS, ROOF DECKS AND THE LIKE 

FROM THE THIRD REASON IT IS APPARENT THAT THE COLD-FORMED SECTIONS CAN 

BE DIVIDED INTO TWO GENERAL CLASSES--INDIVIDUAL STRUCTURAL SECTIONS 

AND DECKS OR PANELS. 

FROM EXP ER I MENTAL RESULTS GR I FF I N · ( 8) CONCLUDED THAT THERE ARE 

THREE MODES OF FAILURE IN COLD-ROLLED SECTIONS DEPENDING .ON THE ACTUAL 

PROPORTIONS OF THE MEMBER AND THE STRUCTURAL APPLICATION. THESE 

MODES OF FAILURE ARE: 

(I) LOCAL INSTABILITY OR PLATE BUCKLING 

(2) MATERIAL FAILURE 

(3) LA-TERA-L OR0 OVER-ALL J.N-STA-8-1-L I TY 

HE ALSO STATED THAT ~OST SECTION SHAPES ARE ·SUBJECT.TO TORSIONAL 

INSTABILITY DEPENDING .ON THE ACTUAL FORM A~D OIMENSIONS OF. THE SHAPE. 

IN THE DESIGN OF STRUCTURES USING COLD-FORMED STEEL SECTIONS, 
.. I 



PROCEDURES MUST BE USED TO TAKE INTO ACCOUNT THE TENDENCY OF THE THIN 

SECTIONS TO BUCKLE UNDER COMPRESSIVE STRESSES LESS THAN THE YIELD 

POINT OF STEEL. A NUMBER OF PROCEDURES USED IN THE DESIGN OF LIGHT 

GAGE, COLD-FORMED STEEL STRUCTURES ARE LISTED IN THE LIGHT GAGE, COLD­

FORMED STEEL DESIGN MANUAL (II). ONLY A FEW OF THESE CONCERNED WITH 

THE SHAPE OF SECTION USED IN THIS STUDY WILL BE MENTIONED, 

MOST COLD-FORMED STRUCTURAL MEMBERS ARE FORMED OF SHEET OR STRIP 

STEEL IN WHICH THE FLAT-WIDTH TO THICKNESS.RATIOS OF THE INDIVIDUAL 

COMPONENTS OF THE SECTIONS ARE SO LARGE THAT THEY WILL BUCKLE AT 

STRESSES BELOW THE YIELD POINT IF SUBJECTED TO COMPRESSIVE SHEARING, 

BENDING, OR BEARING FORCES. THEREFORE, IT IS NECESSARY TO DESIGN SUCH 

MEMBERS SO THAT AT DESIGN LOADS, ADEQUATE SAFETY EXISTS AGAINST FAILURE 

BY LOCAL BUCKLING, FoR THE SHAPE OF MEMBERS TO BE USED IN THIS STUDY, 

THE LOCAL BUCKLING WOULD PROBABLY TAKE PLACE AS SHOWN IN FIGURE J. 

THE COMPRESSION STRESSES OVER WIDTH W WOULD BE DISTRIBUTED IN A MANNER 

AS SHOWN IN FIGURE 2. THIS NON-UNIFORMITY INCREASES WITH LOAD AS CAN 

BE OBSERVED IN FIGURE 2 AS THE LOAD IS INCREASED FROM LOAD I TO LOAD 2. 

IT IS DIFFICULT TO ACCOUNT FOR THIS NON-UNIFORM STRESS DISTRIBUTION IN 

DES I GN, SO A CONCEPT CALLED' 11 EFFECT I VE DES I GN WI DTH 11 IS USED. THE 

TOTAL COMPRESSIVE FORCE OVER WIDTH W IS EQUAL TO THE AREA UNDER THE 

STRESS DISTRIBUTION CURVE TIMES THE THICKNESS OF THE ELEMENT. BY USE 

OF 11 EFFECTIVE DESIGN WIDTH" T!-IE NON-UNIFORMITY OF THE $TRESS DISTRI­

BUTION OF THE ACTUAL MEMBER IS REPLACED BY ONE OF REDUCED EFFECTIVE 

WIDTH B, AND WITH CONSTANT STRESS OF MAGNITUDE fMAX' IF THE EFFECTIVE 

WIDTH HAS BEEN CHOSEN SO THAT TWO RECTANGULAR AREAS, fMAXX a/2, SHOWN 

BY THE DASHED LINE IN FIGURE 2, ARE EQUAL TO THE AREA UNDER THE ACTUAL 

STRESS DISTRIBUTION CURVE, THE TWO ELEMENTS WILL BE EQUIVALENT. 

17 



FIGURE I, POSSIBLE LOCAL BUCKLING Of TEST SECTION 

FIGURE 2. STRESS DISTRIBUTION IN BUCKLING PORTION 
Of SECTION. 
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IT IS ALSO SHOWN IN FIGURE 2 THAT THE EFFECTIVE WIDTH DECREASES WITH 

INCREASING EDGE STRESS. To DETERMINE THE EFFECTIVE WIDTH THE FOLLOWING 

EQUATION IS USED (23). 

B 
r I. 9v E [ I -

FMAX 

[ MODULUS OF ELASTICITY 

T - THICKNESS OF SECTION 

B ~ EFFECTIVE WIDTH 

CHARTS ARE ALSO AVAILABLE FOR DETERMINING THE EFFECTIVE WIDTH IN THE 

LIGHT GAGE, COLD-FORMED STEEL DES I GN MANUAL (JI). 

IF THE EFFECTIVE AREA OF THE COMPRESSION FLANGE OF A BEAM 

DECREASES AS THE LOAD INCREASES, THE NEUTRAL AXIS WILL TEND TO MOVE 

TOWARD THE TENSION FLANGE. THIS IN TURN MODIFIES THE EFFECTIVE CROSS 

SECTION PROPERTIES SUCH AS AREA, MOMENT OF INERTIA, AND THE SECTION 

MODULUS. IN DESIGN WORK THESE CHANGING PROPERTIES MUST BE ACCOUNTED 

FOR, FOR THIS REASON A NUMBER OF THE SECTION PROPERTIES IN THE DESIGN 

MANUAL (JJ) ARE GIVEN FOR TWO BASIC STR.ESSES, FB = 20,000 PSI AND 

. 30,000 PS I. 

ANOTHER PROBLEM OF MOST LIGHT GAGE, COLD-FORMED STEEL. SECTIONS 

IS THE LATERAL DEFLECTION OR TWISTING DUE TO APPLYING THE LOADS IN 

THE PLANE OF THE WEB WHEN THE SECTION LACKS SYMMETRY ABOUT THAT PLANE. 

THIS LACK OF SYMMETRY ABOUT A VERTICAL PLANE OR THE SO-CALLED SHEAR-

CENTER OF A CHANNEL IS NEITHER COINCIDENTAL WITH THE CENTROID NOR IS 

IT LOCATED IN THE PLANE OF THE WEB. THAT PO I NT IN THE PLANE OF A 

BEAM SECTION THROUGH WHICH A TRANSVERSE LOAD MUST ACT IN ORDER TO 

PRODUCE BENDING WITHOUT TWISTING IS THE SHEAR-CENTER, IN A CHANNEL 

THIS POINT IS LOCATED A DISTANCE, M, BACK OF THE MID-PLANE OF THE WEB 

AS SHOWN IN FIGURE 3, SINCE THE INTERNAL SHEAR FORCE PASSES THROUGH 
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THE CENTER OF SHEAR AND IF THE EXTERNAL LOAD IS APPL I ED IN PLANE OF 

THE WEB, IT WI LL PRODUCE A TWIST I NG MOMENT, QM. THESE TORQUES MUST BE 

BALANCED BY SOME EXTERNALLY APPLIED COUNTER-TORQUES OR UNDESIRABLE 

TWISTING WILL RESULT. To DETERMINE THE DISTANCE, M, THE FOLLOWING 

EQUATION IS GIVEN ( II ) . 

w2 
M = ----

2 W .+ H 

3 
W PROJECTION OF FLANGES FROM 

INSIDE FACE OF WEB IN 

H = DEPTH OF CHANNEL OR BEAM INCH 

THEN TO DETERMINE MAXIMUM PERMISSIBLE SPACING OF WELDS OR OTHER 

CONNECTORS JOINING TWO CHANNELS TO FORM AN I-SECTION FOR FLEXURAL 

MEMBERS IS: 

L 
SMAX = b, 

AND IN NO CASE SHALL THE SPACING EXCEED 

SLIM= 2c Sw 
M Q 

MAXIMUM SPACING BETWEEN CONNECTIONS 

L SPAN· OF BEAM, IN 

Sw STRENGTH OF CONNECTION IN TENSION, LB 

C VERTICAL DISTANCE BETWE~N THE TWO ROWS 
OF CONNECTIONS NEAR OR AT THE TOP AND 
BOTTOM FLANGES, IN 

Q = INTENSITY OF LOAD ON BEAM, LB/LINEAR IN 

M DISTANCE OF. SHEAR CENTER FROM MID-PLANE 
OF THE WEB, IN 

P=Applied Load 

F--­

Center of ----1 
Shear -----iM 

J_ 
~=:::J 

FIGURE 3. •FORCES IN THE. PLANE OF THE SECTION. 
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CHAPTER IJ I 

THEORETICAL ANALYSIS 

EFFECT OF LOADING CONDITIONS 

ANY STRUCTURE SHOULD BE DESIGNED FOR THE MAXIMUM EXPECTED 

STRESSES. To ESTIMATE THE MAXIMUM STRESSES, THE DIFFERENT LOADING 

CONDITIONS WHICH MIGHT PRODUCE THESE NEED TO BE INVESTIGATED. IN 

THIS STUDY THE FOLLOWING LOADING CONDITIONS WERE CONSIDERED: VERTICAL 

LOADS D~E TO SNOW OR ICE, LOADS DUE TO WIND FORCES, AND GRAIN LOADS. 

THE METHODS USED TO CALCULATE THE BENDING MOMENTS AND PERPEN-

DICULAR SHEARING STRESSES DUE TO THE VARIOUS LOADING CONDITIONS 

WERE THE MOMENT-AREA METHOD ( 18) AND FORMULAS DEVELOPED BY 

KLEINLOGEL ( 10). BEFORE APPLYING THESE METHODS, HOWEVER, ONE. SHOULD 

CONSIDER THE ASSUMPTIONS USED IN THE DEVELOPMENT OF THESE METHODS. 

THESE ARE AS FOLLOWS: THE MATERIAL BEHAVES ELASTICALLY AND 

DEFORMATIONS DUE TO SHEARING FORCES ARE NEGLECTED. KLEINLOGEL 1 S 

FORMULAS ALSO ASSUMED NO ROTATION OR DISPLACEMENT OF FIXED SUPPORTS, 

AND NO DISPLACEMENT OF HINGED SUPPORTS OCCUR. KEEPING THESE 

ASSUMPTIONS IN MIND, THE NEXT STEP IS TO CONSIDER HOW THE PREVIOUSLY 

MENTIONED METHODS WOULD BE APPLIED TO A TYPICAL HINGELESS AND TWO­

HINGED FRAME. FOR THIS PURPOSE CONSIDER THE FOLLOWING FRAME, FIGURE 4, 

WITH A CONCENTRATED LOAD AT THE PEAK. THIS WOULD REPRESENT AN EXAMPLE 

OF A HINGELESS FRAME WITH SUPPORTS A AND E FIXED. 
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THE MOMENT-AREA METHOD IS APPLIED AS FOLLOWS: 

p 

8 D 

A E 

FIGURE 4. [XAM~LE OF HINGELESS FRAME. 

AssUME NO ROTATION OCCURS AT POINTS A AND C AND NO DISPLACEMENT OF 

C IN HORIZONTAL OR X DIRECTIONS DUE TO SYMMETRY OF FRAME AND LOADING. 

THEN ASSUMING POINT C FIXED, AND BY THE FREE BODY DIAGRAM OF FIGURE 5, 

i Ve 

c-:5-~-- H C 

8 

FIGURE 5. FREE BODY DIAGRAM OF FRAME MEMBER 

THE FOLLOWING TWO MOMENT-AREA EQUATIONS CAN BE WRITTEN: 

IN WHICH 

6X = f'/ Mos 
Jr A El C . 

0 

6¢= ANGULAR ROTATION, RADIANS, OF TANGENT TO FRAME 
ATC WITH RESPECT TO TANGENT OF A 

6X HOR I ZONTAL DISPLACEMENT OF A WI TH RESPECT TO C 
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YA= VERTICAL DISTANCE FROM A TO POINT ON THE 
FRAME WHERE "M" IS APPL I ED 

M BENDING MOMENT IN ELEMENT DS 

DS = DIFFERENTIAL ELEMENT ALONG FRAME 

E MODULUS OF ELASTICITY 

= MOMENT OF INERTIA 

THESE TWO EQUATIONS CAN BE SOLVED SIMULTANEOUSLY FOR MA AND HA' IF 

POINTS A AND E ARE ASSUMED TO BE PINNED AS IS THE CASE FOR A TWO-

HINGED FRAME, WE CAN AGAIN CONSIDER THE FREE BODY DIAGRAM EXCEPT IN 

THIS CASE MA WOULD E~UAL ZERO AND ONLY ONE MOMENT-AREA EQUATION WOULD 

NEED TO BE CONSIDERED, WHICH IS: 

6 X = J A y A Mas 0 
C El 

THIS EQUATION CAN THEN BE SOLVED DIRECTLY FOR HA. 

ANALYSIS BY THE USE OF KLEINLOGEL 1 S FORMULAS CONSISTS ONLY OF 

PLACING KNOWN YALUES IN GIVEN FORMULAS AND SOLVING DIRECTLY. AN 

EXAMPLE WAS, THEREFORE, NOT CONSIDERED NECESSARY. 

THE SIGN CONVENTION USED IN ALL ANALYTICAL AND EXPERIMENTAL 

ANALYSIS IS AS FOLLOWS: POSITIVE (+) FOR MOMENTS THAT PLACE THE 

INNER SURFACES OF THE FRAME IN TENSION AND NEGATIVE (-) IF THE 

MOMENTS PLACED THE INNER FACE OF THE FRAME IN COMPRESSION. FOR 

SHEARING FORCES A POSITIVE.(+) SHEARING .FORCE WAS CONSIDERED TO BE ONE 

THAT TENDED TO SHEAR THE LOWER PORTION OF A VERTICAL MEM~ER INWARD AND 

NEGATIVE(-) IF IT TENDED TO SHEAR IT OUTWARD. FOR THE SLOPING MEMBERS 

OF THE FRAME, A POSITIVE (+) SHEARING FORCE TENDED Td SHEAR THE OUTER 

PORTION UPWARD AND NEGATIVE (-) SHEAR TENDED TO SHEAR IT DOWNWARD. 

THE MAXIMUM EXPECTED SNOW LOAD AND WIND LOADS USED WERE OBTAINED 

FROM UNITED STATES NAVY TECHNICAL PUBLICATION, NAVDOCS TP-TE-3, 
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A MAXIMUM SNOW LOAD OF 45 POUNDS PER SQUARE FOOT OF HORIZONTAL PROJECTED 

AREA WAS USED WHICH IS ADEQUATE FOR NEARLY ALL. PARTS OF THE UNITED 

STATES. FOR WIND LOADS, A MAXIMUM WIND SPEED OF 90 MPH WAS USED WHICH 

IS ADEQUATE FOR THE ENTIRE UNITED STATES UNDER NORMAL CONDITIONS 

EXCEPTING A FEW COASTAL REGIONS. THE VELOCITY PRESSURE WAS FOUND FROM 

THE FOLLOWING EQUATION WHICH WAS OBTAINED FROM THE PREVIOUSLY MENTIONED 

PUBLICATION. 

P = 0.00256 v2 

p FORCE IN POUNDS PER SQUARE FOOT 

V = VELOCITY IN MILES PER HOUR 

THE PRESSURE COEFFICIENTS AND INTERIOR AIR PRESSURES WERE ALSO 

OBTAINED FROM THIS PUBLICATION AND ARE LISTED AS FOLLOWS: 

ROOF WINDWARD= -.20 

ROOF LEEWARD -.50 

WALL LEEWARD -.50 

WALL WINDWARD - +.75 

. THE ROOF COEtFICIENTS ARE FOR THE TO 3 SLOPE USED IN THIS ANALYSIS. 

A NEGATIVE (-) SIGN INDICATES AN OUTWARD FORCE, AND POSITIVE (+) AN 

INWARD FORCE. FOR INTERIOR AIR PRESSURES TH~ FOLLOWING COEFFICIENTS 

WERE CONSIDERED: IF THERE IS AN OPENING ON THE WINDWARD SIDE, USE 

+0.6P NORMAL TO ALL INTERIOR SURFACES AND -0.4P IF THERE IS AN OPENING 

ON THE LEEWARD SIDE OF THE BUILDING. 

GRAIN LOADS WERE ALSO CONSIDERED SINCE STRUCTURES OF THIS TYPE 

WOULD LIKELY BE USED FOR STORAGE OF GRAIN. FOR THESE CONDITIONS IT 

WAS ASSUMED THAT A RETAINING WALL WOULD BE PLACED INSIDE THE VERTICAL 

MEMBER OF THE FRAME AND SUPPORTED BY THE FRAME AS A DISTRIBUTED, VARYING 

LOAD. SEE FIGURE 6. IT WAS ALSO ASSUMED THAT THE GRAIN LEVEL WAS AT 



THE HAUNCH OF THE FRAME, THE LATERAL PRESSURE AGAINST THE FRAME AT 

ANY POINT BELOW THE GRAIN LEVEL WAS FOUND BY USE OF THE FOLLOWING 

EQUATION, (2): 

L = WY TAN 2 (45° - ~) 
2 

IN WHICH, 

L UNIT LATERAL PRESSURE, LB/FT2 

W WEIGHT OF MATERIAL, LB/FTJ 

Y = DEPTH OF MATERIAL, FT 

¢= ANGLE WHOSE TANGENT EQUALS THE COEFFICIENT 
OF FRICTION BETWEEN GRANULES OF THE MATERIAL 

FOR THESE CALCULATIONS WHEAT WAS USED, WHICH HAS A UNIT WEIGHT OF 

49 LB/FTJ AND AN ANGLE OF REPOSE OF 25 DEGREES. 

FOR CALCULATION PURPOSES, THE DEAD LOAD DUE TO THE STRUCTURAL 

MATERIAL WAS NEGLECTED SINCE IT PROBABLY WOULD BE SMALL COMPARED TO 

THE OTHER LOADS CONSIDERED. THE THREE LOADING CONDITIONS AND THEIR 

APPLICATIONS TO THE FRAME ALONG WITH FRAME DIMENSIONS ARE SHOWN IN 

FIGURE 6. 

FOR EVALUATION PURPOSES A UNIT LENGTH, I FT, OF THE BUILDING 

WAS USED, To OBTAIN THE MAXIMUM EXPECTED STRESSES, A COMBINATION OF 

THE VARIOUS LOADS WERE CONSIDERED AS SUGGESTED IN THE UNITED STATES 

NAVY BULLETIN MENTIONED PREVIOUSLY. THE VALUE OF THESE STRESSES PER 

UNIT OF BUILDING LENGTH FOR THE TWO TYPES OF FRAMES CONSIDERED ARE 

TABULATED IN TABLE I I. THE BENDING MOMENT AND SHEAR DIAGRAMS FOR THE 

THREE MAJOR TYPES OF LOADING ARE PRESENTED IN FIGURES 7, 8, AND 9. 
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THE .TABULATED VALUES IN TABLE I I REVEAL THAT IN NEARLY ALL CASES, 

THE BENDING MOMENTS AT THE HAUNCH AND PEAK OF THE FRAME ~E~~ LESS FOR 
/ 

THE HINGELESS FRAME AS COMPARED TO THE TWO-HINGED FRAME. 
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Snow Load 

Wind Load And Bursting Effect 

Groin Level 

Groin Load 

FIGURE 6. APPLICATION OF LOADS 



+271 @ 

+439 

Perpendicular .Shear 

Bending Moment 
TWO HINGED FRAME 

Perpendicular Shear 

+ 1,947 
Bending Moment 

HINGELESS FRAME 

f'IQUAE 7, SNOW LOAD,, SHEAN ·AND BENDING MOMENT DIAQAAMS 

27 



-192 
...... 153 

Perpendicular Shear 

- 183 

Bending Moment 
TWO-HINGED FRAME 

Perpendicular Shear 

Bending Moment 
HINGELESS FRAME 

+54 

flGURE 8. W1Nb LOAD ANQ lNTERNAL PRESSURE, SHEAR AND 
BENDING MOMENT DIAGRAMS 
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-570 

-1,3 3 8 

-242 

-515 

Perpendicular Shear 

Bending Moment 

TWO HINGED FRAME 

Perpendicular Shear 

Bending Moment 
HINGELESS FRAME 

FIGURE 9. GRAIN LOAD, SHEAR AND BENDING MOMENT 
DIAGRAMS 
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TABLE I I 

STRESSES DUE TO VARIOUS EXPECTED LOADING CONDITIONS 
IN HINGELESS AND TWO-HINGED FRAMES 

WIND ~OAD I HL -966 I +717 -219 +281 ! +54 1 -177 i -23 -264 -187 INTERNAL PRESSURE r---- ---- ------ ------ __________ t ___________________________ : ___________ ---------- --
- l<2_UTWARDJ j.TH O +J,400 -183 -58 0 -153 i +3 -264 -J87 

---------- -- . ---------,--------r-- ------- ----------- _--- --------------- ----------------------------- --------------- ---~ 
l HL I +1,455 -242 +354 I -242 +1,455 +773 +773 O -+-~ 

-G::~: ~:::--+~~-r::3~ ~:~I;- +l:~~~--L~~~;·t:~ +l~y +I~ -~~~ I~ I 
GRA I: LOAD r·T;:d-- 0 _ 3,1·35· -:;:i-;-921~t-=i"lj·5+- 0 I ~24 I +924 ~515-r +515 I 

'~!~~~:~~~ro .1 ::~~~:::; t~~~~~ -: ::::~~~~~~:;-~:~:n+I ±T~ ~:--~~ 
ow Lo AD 1- --- --+--------- -/ --------· ------ -1-- -------- -- -+--------------!----- -- -- - --- 1-------------1---------------+-------+-----l 

GRA I N+LoAD I TH i O I -506 i +959 i -2,278 I O I +641 I +797 I +4 +7 l I 
-I /2-Wi ND LOAD ___ i---H~---T+ I ,-493 ----r- I, 739!--+838--i ·--,-, 956 ·---i +2,003· ·-t---- +342 --1-·-·-· 420 -r +43--1 ----~ +493---1 

+ ~----1·--··-··----- ------ --,- ---- ·-· ----- ------+- : . ------- --··- ------1-----------------~ ____________ _j____________ _ _ _L___ ; 
_ SNO,}'I LOAD ! TH o J-1,865 /+I, 199 i -2,594 i O +194 / +273 I +389 ! +422 i 
1------~~T1N-~LOAD _________ r:::-~L~~:1~--=~:~7_7-~::~~~~~-~-~~-~T-~•:;:~j~:~:~~---=-I~! -=i-= !_;_~-~]_ :c~;=_-f_3s:-:r~--~~:1:~i __ -r--:-i??~: -r-~2 13__/ 
1_1/2 SNow LoAD ___ ! ___ TH_J ____ 0_1_-662 I +261 J__-1,394 ___ L_ _______ o __ L ___ -12 _ _1 ___ +144_1_ +4 ___ j __ +71 __ j 

NOTE: HL = HINGELESS FRAME TH= Two-HINGED FRAME M = BEND MOMENT H = HORIZONTAL FORCE 
V = VERTICAL FORCE 

w 
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IT WAS ALSO SHOWN THAT OF THE THREE MAIN TYPES OF LOADING CONSIDERED, 

SNOW LOAD PRODUCED THE MAXIMUM BENDING MOMENTS, 

THE REASON THE HAUNCH AND PEAK. OF THE FRAME ARE OF MOST INTEREST 
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IS THAT AT THESE POINTS, THE FRAME MEMBERS ARE USUALLY FASTENED TOGETHER 

BY SOME TYPE OF JOINT. ALSO,. MAXIMUM MOMENTS USUALLY OCCUR AT THE 

HAUNCH. THESE JOINTS COULD THiN .BE CONS!DERED POINTS OF LIKELY FAILURE. 

IN THE CONSTRUCTION OF A LIGHT STRUCTURAL HINGELESS-FRAME, THE SIDE 

MEMBERS ARE USUALLY EXTENDED BELOW THE GROUND LEVEL TO OBTA!N THE 

HINGELESS-FRAME CONDITION. fOR THIS REASON, THE POINTS AT THE GROUND 

LEVEL WOULD PROBABLY BE LESS LI.KELY TO FAIL THAN THE HAUNCH OR CROWN 

JOINTS, ALSO IN A HINGELESS FRAME, THERE WOULD LIKELY.BE SOME 

DEFORMATION OF SOIL WHICH WOULD TEND TO RELIEVE STRESSES AT THESE 

POINTS, 

OF THE VARIOUS LOADING CONDITIONS CONSIDERED, IT APPEARS THAT 

THE. SNOW LOAD PLUS GRAIN LOAD WOULD. BE THE CONDITION TO DESIGN FOR 

SINCE IT PRODUCES MAXIMUM BENDING MOMENTS. FOR EXPERIMENTAL PURPOSES, 

HOWEVER, THE SNOW LOADING CONDITIONS WOULD PROBABLY BE ADEQUATE FOR 

TESTING .PURPOSES SINCE IT DEVELOPED UP TO 90 PER CENT FOR HINGELESS, 

AND 82 PER CENT FOR TWO-HINGED OF THE MAXIMUM STRESSES AT THE HAUNCH 

THAT WERE DEVELOPED BY THE LOADING CONDITION WHICH PRODUCED THE 

MAXIMUM STRESSES. IT IS ALSO QUITE EASY TO SIMULATE THE GRAVITY 

LOADS IN THE LABORATORY, WHEREAS GRAIN LOADS WOULD BE VERY DIFFICULT 

TO SIMULATE. 

THE SNOW LOAD USED IN THESE COMPUTATIONS IS QUITE HIGH, HOWEVER, 

IF THIS TYPE OF STRUCTURE WERE DESIGNED FOR CONSTRUCTION ANY WHERE IN 

THE UNITED STATES, IT WOULD SEEM QUITE REASONABLE TO USE THESE LOADS. 

IF THE STRUCTURE WERE DESIGNED FOR A CERTAIN AREA, THESE LO~DS SHOULD 



THEN BE ADJUSTED FOR THAT AREA. 

IT WAS OBSERVED IN THESE COMPUTATIONS THAT THE SHEARING FORCES 

NORMAL TO THE STRUCTURAL MEMBERS WERE CONSIDERABLY HIGHER IN THE 

HINGELESS FRAME. HOWEVER) THE MAGNITUDE DJD NOT APPEAR TO BE HIGH 

ENOUGH TO BE OF GREAT CONCERN. 

THEORETICAL DEFLECTION AND STRESSES 

THE PURPOSE OF THE ANALYTICAL INVESTIGATION WAS TO PREDICT AS 

ACCURATELY AS POSSIBLE THE DEFLECTIONS AND STRESSES IN THE FRAMES TO 

BE TESTED. THEREFORE, CALCULATIONS WERE MADE USING THE ACTUAL 

DIMENSIONS AND POINTS OF LOADING OF THE FRAMES TO BE TESTED. THE 

METHOD USED FOR THIS ANALYSIS WAS THE MOMENT-AREA METHOD SINCE IT 

CAN BE USED TO FIND BOTH STRESSES AND DEFLECTIONS. 

IN ORDER TO ACCURATELY PREDICT THESE DEFLECTIONS AND STRESSES, 

HOWEVER, ONE MUST ALSO HAVE A REASONABLY ACCURATE VALUE FOR THE 

MODULUS OF ELASTICITY AND THE MOMENT OF INERTIA OF THE FRAME SECTION. 

THIS IS OFTEN REFERRED TO AS THE El VALUE OR THE STIFFNESS OF A 

STRUCTURAL MEMBER. THESE VALUES CAN BE OBTAINED FROM VARIOUS SOURCES. 

HOWEVER, IT WAS DEEMED NECESSARY IN THIS CASE TO DETERMINE AN El VALUE 

BY CONDUCTING EXPERIMENTS ON ACTUAL FRAME MEMBERS TO OBTAIN A MORE 

RELIABLE VALUE, AN EXPERIMENT WAS THEN SET UP TO OBTAIN THIS VALUE 

FOR THE FRAMES TO BE TESTED. THIS EXPERIMENT IS EXPLAINED IN MORE 

DETAIL IN CHAPTER IV. 

THE NEXT STEP WAS TO CALCULATE THE STRESSES AND DEFLECTIONS IN 

EACH FRAME TYPE AND LOADING CONDITIONS APPLIED TO IT. As AN EXAMPLE, 

THE HINGELESS FRAME WITH GRAVITY LOADING CONDITIONS IS CONSIDERED. 

THE CALCULATIONS ARE SHOWN IN FIGURE 10. FOR THESE CALCULATIONS THE 
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6 cf,= iI [25.53 MA - 237.586 HA+ 146. 06] = 0 
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33 

6 X = - 1-EI [238.06 MA-2,630.85 HA+ 1857.5~ = 0 

4. Solving for HA ·and MA 

l!. cf, = MA - 9. 3 I HA + 5. 7 6 = 0 

6X = M,.- 11.05 HA +_7.80 =0 

HA= 1.171 lb./lb. of Load 

M,. = 5.133 ft.- lb./lb. of Load 

FIGURE 10. THEORETICAL STRESSES IN HINGELESS FRAME 



CROWN WAS CONSIDERED TO BE FIXED SINCE THE FRAME AND ITS LOADING 

CONDIYIONS WERE SYMMETRIC ABOUT THAT POINT. THE ONLY VALUES NOT KNOWN 

AT POINT A ON THE FRAME WERE HA AND MA. THEREFORE, TWO MOMENT-AREA 

EQUATIONS WERE NEEDED TO SOLVE FOR THESE VALUES. WITH THESE VALUES 

KNOWN, THE BENDING MOMENTS AND AXIAL LOADS CAN BE EVALUATED AT ANY 

POINT IN THE FRAMES .BY THE USE OF EQUATIONS FROM STATICS. THIS WAS 

DONE FOR EACH POSITION ON THE FRAME WHERE THE STRESSES WERE TO BE 

EXPERIMENTALLY DETERMINED. THE NEXT STEP WAS TO DETERMINE THE 

DEFLECTIONS AT THE CROWN AND HAUNCH. THESE CALCULATIONS ARE SHOWN IN 

FIGURE J J. JN THIS CASE AS IN THE PREVIOUS ONE, THE CROWN WAS ASSUMED 

TO BE FIXED. THESE CALCULATIONS WERE ALL CARRIED OUT ASSUMING p TO BE 

EQUAL TO ONE POUND OF LOAD. THE WEIGHT OF THE FRAME ITSELF WAS 

NEGLECTED. 

ANALYTICAL CALCULATIONS FOR THE TWO-HINGED FRAME WERE CARRIED OUT 

IN A SIMILAR MANNER. THE ONLY DIFFERENCE WAS THAT ONLY ONE MOMENT-AREA 

EQUATION WAS NEEDED SINCE THE HORIZONTAL FORCE WAS THE ONLY UNKNOWN AT 

POINT A IN THE FRAME. 

NEXT, ANALYTICAL CALCULATIONS WERE MADE TO DETERMINE THE EFFECTS 

OF SUPPORT MOVEMENT. FOR THE HINGELESS FRAME, PURE ROTATION AND 

TRANSLATIONAL SUPPORT MOVEMENT IN A LATERAL DIRECTION WERE CONSIDERED. 

LATERAL SUPPORT MOVEMENT ONLY WAS CONSIDERED FOR THE TWO-HINGED FRAMES. 

CALCULATIONS FOR DETERMINING THE STRESSES IN THE HINGELESS FRAME DUE 

TO SUPPORT MOVEMENTS ARE SHOWN IN FIGURE 12. AGAIN THE CROWN WAS 

ASSUMED TO BE FIXED AGAINST ROTATION DUE TO THE SYMMETRY OF THE FRAME 

AND LOADING. Tq GET THE SYMMETRIC LOADING, BOTH SUPPORTS WERE 

CONSIDERED TO MOVE THE SAME AMOUNT BUT IN OPPOSITE DIRECTIONS. 
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. DuE TO HA I, 842. 6 

DUE TO MA 628.9 
DUE TO LOAD -466.o 

DEFLECTION AT HAUNCH 

8 
6 x = (' y Mo s = _I_ 

Jc s E1 E1 
PARTS OF INTEGRAL 

DUE TO Vs 622.5 
DUE TO Hs -161 .8 
DUE TO Ms -242.5 
DUE TO LOAD -155,7 
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TI 
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Jc 
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FIGURE II. DEFLECTIONS IN HINGELESS FRAMES. 
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HINGELESS FRAME 

STRESS DUE TO SUPPORT MOVEMENT 

I 
\./ ./' 
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~ 

I. EQUATIONS USED 

6 ,ef> = ('A Mos 6 x = /A Mos 

Jc .El ' Jc El 

FROM PREVIOUS CALCULATIONS 

6 cp = _I [25.53 MA -237 .59 H~ 
TI - l 

6x = - /238.06 MA -2,630.85 HAI 
EI L J 

2. SUPPORT ROTATION 

ASSUME 6¢, = - .OJ RAD I ANS 

6<p= _I J25.53 MA "'237.59 HAl =.01 
El '-- -

6x = _I r238.06 MA -2,630.85 HAJ = 0 
El l 

HA El X (2.244 X 10-~) 
MA= [I~ (2.480 x 10- ) 

3 .. TRANSLATIONAL MOVEMENT 

AssUME6x = .01 FEET OUTWARD 

QCP= IT [25.53 MA -237.59 HA]= o 

6x = _I 1238.06 MA -2,630.85 HA]= .01 
EI -

HA El" (2.407 X 10-~) 
MA = El "· (2.240 X ,o- ) 

FIGURE 12. STRESSES IN HINGELESS FRAMES 

DUE TO SUPPORT MOVEMENT 



DEFLECTIONS WERE FOUND IN THE SAME MANNER AS FOR THE GRAVITY­

LOADING CONDITIONS. CALCULATIONS TO DETERMINE THE STRESSES AND 

DEFLECTIONS FOR THE TWO-HINGED FRAME DUE TO LATERAL SUPPORT MOVEMENT 
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ARE SIMILAR TO THOSE FOR TRANSLATIONAL SUPPORT MOVEMENT.OF THE HINGELESS 

FRAME. THE ONLY DIFFERENCE IS THAT THERE IS NO BENDING MOMENT AT POINT 

A AND E OF THE FRAME. 

VALUES OF THE THEORETICALLY DETERMINED STRESSES AND DEFLECTIONS 

FOR EACH FRAME A~D LOADING CONDITIONS ARE LISTED IN APPENDIX B ALONG 

WITH THE EXPERIMENTALLY DETERMINED STRESSES AND D~FLECTIONS. 



CHAPTER IV 

EXPERIMENTAL STUDY 

EXPERIMENTAL DESIGN 

PRELIMINARY TESTS 

FOR THE THEORETICAL ANALYSIS, AN EXPERIMENTALLY DETERMINED VALUE 

OF El WAS USED FOR DETERMINING THE THEORETICAL STRESSES AND DEFLECTIONS 

IN THE FRAMES TO BE TESTED, 

FOR THIS DETERMINATION OF El, A STRAIGHT SECTION OF THE TEST FRAME 

WAS USED. IN DETERMINING THE LENGTH OF SECTION TO BE TESTED, THE 

FOLLOWING TWO PROBLEMS HAD TO BE CONSIDERED: ( i) MAKE THE SECTION AS 

LONG AS POSSIBLE TO OBTAIN HIGH BENDING MOMENTS AND LOW PERPENDICULAR­

SHEARING STRESSES, AND (2) USE A SECTION SHORT ENOUGH TO HAVE LATERAL 

STABILITY SO THAT LATERAL BRACING WOULD NOT HAVE TO BE USED, WHICH 

MIGHT AFFECT THE RESULTS, 

THIS EXPERIMENT WAS ALSO SET UP TO DETERMINE ACCURACY AND 

RELIABILITY OF ELECTRICAL RESISTANT GAGES FOR DETERMINING STRESSES 

AND BENDING MOMENTS IN THE TEST FRAME. FOR THIS PURPOSE STRAIN GAGES 

WERE MOUNTED ON EITHER SIDE OF THE TEST SECTION AS SHOWN IN FIGURE 13. 

THIS PART OF THE EXPERIMENT ALSO SERVED AS A CHECK FOR THE El VALUE 

THAT WAS TO BE DETERMINED BY MEASURING THE DEFLECTIONS IN THE TEST 

SECTION. 

THE NEXT PROBLEM CONCERNED THE NUMBER OF SECTIONS TO TEST AND THE 
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NUMBER OF CYCLES TO RUN ON EACH TEST SECTION. FoR THIS EXPERIMENT, 

IT APPEARED THAT AS MANY TEST SECTIONS AS POSSIBLE SHOULD BE USED TO 

DETERMINE THE AMOUNT OF DIFFERENCE IN THE TEST SECTIONS DUE TO NON-

UNIFORMITY OF THE SECTIONS. 

FOR THIS EXPERIMENT, FOUR TEST SECTIONS WERE USED WITH TWO 

LOADING CYCLES PER TEST SECTION. EACH LOADING CYCLE CONSISTED OF 

A LOADING AND UNLOADING .PHASE. USING THIS EXPERIMENTAL SETUP, THE 

VARIANCE DUE TO TEST SECTIONS, LOADING CYCLES, AND THE LOADING AND 

UNLOADING PHASE OF EACH CYCLE COULD BE COMPUTED, WHICH PROVIDED HELPFUL 

INFORMATION IN DESIGNING THE FRAME EXPERIMENTS. 

FRAME TESTS 

FoR THE FRAME EXPERIMENTS, GRAVITY LOADS WERE SIMULATED. THE 

DECISION TO USE GRAVITY LOAD WOULD PROBABLY APPEAR OBVIOUS WHEN THE 

AMOUNT OF EQUIPMENT AND TIME INVOLVED IN SIMULATING WIND AND GRAIN 

LOADS ARE CONSIDERED. FOR THE GRAVITY LOADING CONDITIONS THE LOADS 

WERE APPLIED AT POSITIONS ON THE FRAME WHERE THE PURL/NS WOULD 

ACTUALLY BE PLACED IN CONSTRUCT/ON. 

NEXT, THE PROBLEM OF SELECTING THE POSITIONS ON THE FRAME AT 

WHICH DEFLECTION AND STRAIN MEASUREMENTS WERE TO BE MADE WAS 

CONSIDERED. FOR DEFLECTION MEASUREMENTS, THE PEAK AND HAUNCH 

DEFLECTIONS APPEARED TO BE OF MOST IMPORTANCE AND WERE THEREFORE 

USED. THE DECISION WHERE TO MAKE STRAIN MEASURMENTS WAS A MORE 

ARBITRARY ONE SINCE THE MEASUREMENTS COULD NOT BE MADE DIRECTLY AT 

THE PEAK OR HAUNCH DUE TO THE FRAME CONSTRUCT/ON. IT IS QUITE 

EVIDENT, HOWEVER, THAT THEY NEEDED TO BE AS CLOSE TO THE PEAK AND 



HAUNCH AS POSSIBLE BECAUSE OF THE HIGH BENDING MOMENTS AT THESE POINTS. 

THE STRAIN GAGES WERE PLACED I 1/2 FEET ON EITHER SIDE OF THE HAUNCH 

AND PEAK. THIS WAS TO MOVE THE GAGES FAR ENOUGH AWAY FROM THE JOINT 

4o 

SO THAT THE JOINT STRUCTURE WOULD NOT EFFECT THE STRAIN READINGS. GAGES 

WERE ALSO PLACED ON THE LOWER PORTION OF THE SIDE MEMBERS WHICH WAS A 

POINT OF HIGH BENDING MOMENT IN THE HINGELESS FRAME. FoR THE HINGELESS 

FRAMES, THESE GAGES WERE PLACED 6 INCHES ABOVE THE GROUND LEVEL AND 

FOR THE TWO-HINGED FRAMES THEY WERE PLACED I FOOT ABOVE THE GROUND 

LEVEL. THE REASON FOR MOVING THE GAGES UP ON THE TWO-HINGED FRAMES 

WAS THAT THE BENDING MOMENT IS THEORETICALLY ZERO AT THE GROUND LEVEL. 

THEREFORE, THEY WERE MOVED UP TO A POSITION WHERE ENOUGH STRAIN WOULD 

BE PRODUCED TO ALLOW MEASUREMENT WlTH SOME DEGREE OF ACCURACY. 

THE NEXT DECISION WAS WHERE THE GAGES SHOULD BE PLACED ON THE 

FRAME MEMBERS IN REFERENCE TO THE CROSS-SECTION CONFIGURATION. FOR 

THE PRELIMINARY TESTS, A GAGE WAS PLACED ON EACH C-SHAPED SECTION 

AND ON OPPOSITE SIDES OF THE MEMBER. THE RESULTS FROM THESE 

PRELIMINARY TESTS SHOWED A LARGE VARIANCE RATIO DUE TO THE POSITION 

OF THE GAGES. THEREFORE, FOR THE FRAME TEST THE GAGES WERE PLACED 

ONE ON EITHER SIDE OF ONE C-SHAPED SECTION AS SHOWN IN FIGURE 13. 

FROM AN EVALUATION OF THE PRELIMINARY TESTS, IT WAS FOUND THAT 

THERE WAS A LARGE AMOUNT OF VARIANCE DUE TO THE TEST SECTIONS WHEN 

MEASURING DEFLECTION. THEREFORE, AS MANY FRAMES AS POSSIBLE WERE 

TESTED AND FEWER TEST CYCLES RUN. FOR THESE TESTS THERE WERE FOUR 

HINGELESS AND FOUR TWO-HINGED FRAMES iVAILABLE AND THEY WERE ALL 

TESTED IN ORDER TO DETERMINE VARIATION AMONG THEM AS ACCURATELY AS 

POSSIBLE. 

THE FOLLOWING TESTS WERE THEN MADE: 
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(J) GRAVITY LOADS, FIXED SUPPORTS 

(2) SUPPORT ROTATION ONLY 

(3) TRANSLATIONAL SUPPORT MOVEMENT ONLY 

FOR TWO-HINGED FRAMES 

( J) GRAVITY LOADS, PINNED-END SUPPORTS 

(2) GRAVITY LOADS, RESTRAINED SUPPORTS 

(3) LATERAL SUPPORT MOVEMENT ONLY 

EXPERIMENTAL EQUIPMENT 

THESE EXPERIMENTS WERE CONDUCTED IN THE AGRICULTURAL ENGINEERING 

LIGHT STRUCTURES LABORATORY wHICH HAS A FLOOR EXPECIALLY MADE FOR 

CONDUCTING TESTS SUCH AS THESE. THIS FLOOR IS A 5 J/2 INCH THICK 

CONCRETE FLOOR WITH STEEL CHANNELS SPACED EVERY TWO FEET APART TO 

WHICH BRACKETS OR BRACES CAN BE BOLTED DIRECtLY, 

THE FRAMES USED FOR THESE EXPERIMENTS WERE DESIGNED AND 

MANUFACTURED BY ARMCO DRAINAGE AND METAL PRODUCTS, INC. THESE 

FRAMES WERE MADE OF 0. JOO INCH THICK COLD-FORMED STEEL WHICH HAD A 

YIELD STRENGTH OF APPROXIMATELY 37,000 PSI. GUSSET PLATES USED AT 

THE HAUNCH AND PEAK WERE 3/16 INCH THICK STEEL PLATES WITH A TWO 

INCH LEG BENT UP FOR ADDED STIFFNESS. A COMPLETE SKETCH OF THE FRAME 

WITH ITS D~MENSIONS IS SHOWN IN FIGURE 14. BOLTS USED TO ASSEMBLE 

THE FRAMES WERE i/2 INCH, HIGH-STRENGTH STEEL BOLTS. 

THE PRELIMINARY EXPERIMENTS TO OBTAIN AN El VALUE OF THE FRAME 

SECTION WERE CONDUCTED USING STRAIGHT SECTIONS OF THE FRAME. THESE 

SECTIONS WERE SUPPORTED ON EITHER END BY TWO HEAVILY CONSTRUCTED 

H-SHAPED SUPPORTS SPACED 12 FEET APART. To APPLY THE LOADS, A 

HYDRAULIC CYLINDER WAS USED WHICH COULD BE ACTIVATED BY EITHER A 

MOTOR DRIVEN PUMP OR BY HIGH PRESSURE INERT GAS ACTING THROUGH 
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AN ACCUMULATOR. To APPLY THE LOADS DIRECTLY TO THE FRAME SECTION, 

AN INVERTED A-SHAPED BRACKET WAS USED. THIS BRACKET WAS USED TO 

.DIVIDE LOAD EVENLY BETWEEN TWO POINTS OF APPLICATION AND PLACED THE 

PORTION BETWEEN THESE POINTS AT A CONSTANT BENDING MOMENT, To MEASURE 

THE APPLIED LOAD, A LOAD LINK WAS PLACED BETWEEN THE A~SHAPED BRACKET 

AND HYDRAULIC CYLINDER. THEN TO MEASURE THE STRAIN IN THE LOAD LINK, 

WHICH WAS CALIBRATED AGAINST LOAD, A BALDWIN STRAIN INDICATOR WAS 

USED. THIS INDICATOR WAS ALSO USED TO MEASURE THE STRAIN PICKED UP BY 

THE STRAIN GAGES MOUNTED ON THE TEST SECTIONS. THE STRAIN GAGES USED 

WERE 1/2 INCH, 120 OHM RESISTANCE METAL FOIL GAGES. FOR. THE DEFLECTION 

MEASUREMENTS, A DIAL MICROMETER WAS USED, 

BRACKETS TO HOLD THE SUPPORT ENDS OF THE HINGELESS FRAMES WERE 
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MADE OF 5. I NCH X I 3/4 I NCH CHANNELS. To ADD ST I FF NESS TO THE BRACKETS, 

A 5/16 INCH X I 1/2 INCH METAL PLATE WAS WELDED IN THE MIDDLE OF EACH 

CHANNEL. THIS GAVE THE SUPPORT END OF THE FRAME AN El VALUE 

APPROXIMATELY 7.4 TIMES AS LARGE AS FOR THE El VALUE OF THE FRAME 

ITSELF. THESE BRACKETS WERE CONSTRUCTED AS SHOWN IN FIGURE 15, AND AN 

INSTALLATION OF ONE IS SHOWN !N FIGURE 16. THE BRACKETS WERE SUPPORTED 

IN SUCH A MANNER THAT THEY COULD BE ADJUSTED LATERALLY IN ANY MANNER 

DESIRED BY SIMPLY ADJUSTING THE BOLTS THAT HELD THEM IN PLACE, 

SUPPORT BRACKETS FOR THE. TWO-HINGED FRAMES WERE CONSTR~CTED TO 

GIVE A PINNED-END CONDITION. THESE SAME BRACKETS WERE ALSO CONSTRUCTED 

SO THE SUPPORT END COULD BE. FIXED IF DESIRED, PROVISIONS FOR LATERAL 

SUPPORT MOVEMENT WERE ALSO MADE. CONSTRUCTJON DETAILS ARE GIVEN IN 

FIGURE 18 AND TYPICAL INSTALLATIONS ARE SHOWN IN FIGURES 17 A, AND 17 8. 

FIGURE 17 A SHOWS A TYPICAL PJNNED CONDITION AND FIGURE 17 B SHOWS AN 

INSTALLATION IN WHICH THE END WAS FIXED, 
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FIGURE l7A. INSTALLATION OF TWO-HINGED BRACKETS 

AS A PINNED END CONDITION. 

FIGURE 178. INSTALLATION OF TWO-HINGED BRACKETS 

WITH END OF SUPPORT FIXED. 
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THE BRACKETS USED TO GIVE THE FRAME LATERAL SUPPORT WHILE TESTING 

ARE SHOWN IN FIGURE 19, THIS SUPPORT WOULD BE PROVIDED BY THE FRAME 

COVERING AND OTHER LATERAL BRACING IN ACTUAL CONSTRUCTION. 

AT WHICH THESE BRACKETS WERE PLACED JS SHOWN IN FIGURE 20. 

THE POSITIONS 

To APPLY THE GRAVITY LOADS THREE MATCHED HYDRAULIC CYLINDERS WERE 

USED. THESE CYLINDERS WERE ACTIVATED BY THE SAME PRESSURE SOURCE USED 

FOR THE PRELIMINARY EXPERIMENTS. THE CYLINDER LOADS WERE THEN APPLIED 

TO THE FRAMES AS SHOWN IN FIGURE 20. 

MEASUREMENT OF THE LOADS APPLIED TO THE FRAME WAS ACCOMPLISHED 

BY USE OF A PRESSURE CELL. THIS PRESSURE CELL WAS MADE FROM TWO 

3 1/2 INCH HIGH PRESSURE PIPE FLANGES. A METAL PLATE WAS PLACED 

BETWEEN THE TWO FLANGES ON WHICH FOUR STRAIN GAGES WERE MOUNTED. 

HYDRAULIC PRESSURE WAS APPLIED TO ONE SIDE OF THE PLATE AND STRAIN 

MEASUREMENTS DUE TO BULGING WERE MADE ON THE OTHER SIDE. A DIAGRAM OF 

THE PRESSURE CELL IS SHOWN IN FIGURE 21. To MEASURE THE ACTUAL FORCE 

APPLIED BY THE CYLINDERS, A BALDWIN TYPE LJ-1 LOAD CELL WAS USED. 

STRAIN GAGES USED TO MEASURE STRAIN IN THE FRAMES WERE BALDWIN-

LIMA-HAMILTON CORPORATION (FA-100-12) ETCHED FOIL GAGES. 

GAGES HAD A LENGTH OF ONE INCH AND 120 OHMS RESISTANCE. 

DEFLECTION, DIAL MICROMETERS WERE USED. 

THESE 

To MEASURE 

To DETERMINE THE POSSIBILITY OF THE FRAME MEMBERS ROTATING 

WITH RESPECT TO THE GUSSET PLATE AT THE HAUNCH, A MEASURING SYSTEM 

WAS CONSTRUCTED AT THAT POINT. FOR THIS PURPOSE TWO 1/8 INCH WELDING 

RODS WERE BENT TO THE. PROPER SHAPE AND GLUED DIRECTLY TO THE FRAME 

MEMBERS WITH THE FREE ENDS EXTENDING BEYOND THE MEMBERS. THEY WERE 

PLACED IN A POSITION SO THAT THEY WOULD ROTATE ABOUT THE CENTER OF THE 

BOLT SPACINGS. ROTATION WAS MEASURED WITH A RULER PLACED ON A BOARD 
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FIGURE 21, PRESSURE CELL USED TO MEASURE HYDRAULIC PRESSURE. 
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ATTACHED DIRECTLY TO THE GUSSET PLATE. BY THIS MEANS ROTATION OF 

EITHER MEMBER COULD BE MEASURED WITH RESPECT TO THE GUSSET PLATE. 

THIS SETUP IS SHOWN IN FIGURE 22. 

THE ENTIRE INSTALLATION OF EQUIPMENT READY FOR TESTING IS SHOWN 

IN FIGURE 23. 

EXPERIMENTAL PROCEDURES 

PRELIMINARY TESTS 

WHEN TESTING THE FRAME MEMBERS, THE FIRST STEP WAS TO PLACE THE 

MEMBERS BETWEEN THE SUPPORTS AND THEN CLAMP AND BOLT PLATES BETWEEN 

THE MEMBER SECTIONS TO KEEP THEM FROM TWISTING UNDER LOAD. NEXT, 

THESE MEMBERS WERE PRELOADED WITH A LOAD AS GREAT OR LARGER THAN THE 

TEST LOAD, AND THIS LOAD WAS THEN LEFT ON FOR TWO OR THREE MINUTES. 

AFTER PRELOADING, ZERO STRAIN, DEFLECTION, AND LOAD LINK READINGS 

WERE TAKEN. LOADS WERE THEN APPLIED IN APPROXIMATELY SIX EQUAL 

INCREMENTS. STRAIN, DEFLECTION, AND LOAD LINK READINGS WERE TAKEN 

FOR EACH LOAD INCREMENT. To START THE UNLOADING CYCLE, A LOAD 

GREATER THAN THE LOAD FOR WHICH READINGS WERE TAKEN DURING THE 

LOADING CYCLE, WAS APPLIED AND THEN UNLOADED TO APPROXIMATELY THIS 

SAME LOAD. UNLOADING WAS THEN CARRIED OUT IN THE SAME MANNER AS THE 

LOADING CYCLE WITH SIX EQUAL INCREMENTS OF UNLOADING BEING USED. 

ALL SUBSEQUENT TESTS WERE CARRIED OUT IN THE SAME MANNER. 

FRAME TESTS 

To DETERMINE APPLIED LOADS, EACH CYLINDER WAS CALIBRATED IN 

TERMS OF APPLIED LOAD AND HYDRAULIC PRESSURE APPLIED. FOR THIS 
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FIGURE 22 . ROTATION MEASUREMENT SETU P . 

FIGUR E 23 , I NSTALL AT ION OF EQU I PMENT READY FOR TEST ING. 



CALIBRATION, EACH CYLINDER WAS ATTACHED TO A LOAD CELL WHICH MEASURED 

THE LOAD APPLIED IN POUNDS. To MEASURE THE HYDRAULIC PRESSURE, A 

PRESSURE CELL WAS USED AND THE STRAIN READING OBTAINED FROM THE CELL 

WAS CALIBRATED IN TERMS OF LOAD APPLIED BY THE CYLINDER. 

BEFORE ASSEMBLING ANY FRAMES, ALL STRAIN GAGES WERE ATTACHED TO 

THE PROPER FRAME MEMBERS, WHICH WERE SELECTED AT RANDOM. THIS WAS 

DONE MOSTLY FOR CONVENIENCE AND ALSO TO ALLOW THE STRAIN GAGE 

CEMENT TO DRY THOROUGHLY BEFORE USE. 

DURING FRAME ASSEMBLY, THE BOLTS FASTENING THE FRAME MEMBERS 

TOGETHER WERE TIGHTENED ONLY ENOUGH TO GET A SNUG FIT. WHEN ALL 

BRACKETS WERE IN PLACE AND THE FRAME IN TEST POSITION, THE BOLTS WERE 

TIGHTENED WITH A TORQUE OF 105 FT-LB OR GREATER. THEN AT LEAST THREE 

GRAVITY LOADING CYCLES WERE APPLIED AND THE BOLTS AGAIN TIGHTENED TO 

TAKE UP ANY SLACK DUE TO JOINT MOVEMENT. ALSO DURING THE PRELOADING 

CYCLES, ROTATION MEASUREMENTS OF THE FRAME MEMBERS WITH RESPECT TO THE 

GUSSET PLATES AT THE HAUNCH WERE NOTED, IF THE ROTATION APPEARED TO 

BE OF SIGNIFICANCE, IT WAS RECORDED, NEXT, ZERO READINGS WERE TAKEN 

FOR THE STRAIN GAGES, DIAL MICROMETERS, AND PRESSURE CELL. LOADS 

WERE THEN APPLIED IN EQUAL INCREMENTS UNTIL THE MAXIMUM THEORETICALLY 

DETERMINED LOAD WAS REACHED. fOR THE FIRST HINGELESS FRAME TESTED, 

AN ATTEMPT WAS MADE TO RUN A LOADING AND UNLOADING PORTION FOR EACH 

CYCLE. HOWEVER, THE UNLOADING RESULTS WERE SO POOR THAT ONLY THE 

LOADING PORTION FOR ALL SUBSEQUENT TESTS WERE RUN. AFTER EACH 

INCREMENT OF LOAD WAS APPLIED, THE SUPPORTS WERE ADJUSTED TO THE 

ORIGINAL POSITIONS BEFORE ANY READINGS WERE TAKEN. THIS WAS TO REDUCE 

ANY EFFECT THAT SUPPORT MOVEMENT MIGHT HAVE ON THE RESULTS. 

53 



54 

AFTER THE GRAVITY LOADS WERE APPLIED, THE SUPPORT MOVEMENT 

TESTS WERE CONDUCTED. SUPPORT ROTATION OF THE HINGELESS FRAMES WAS 

CARRIED OUT BY ROTATING THE SUPPORTS ABOUT THE POINT WHICH REPRESENTED 

THE GROUND LEVEL. To DO THIS, THE TOP OF THE SUPPORT WAS HELD IN A 

FIXED POSITION AND THE BOTTOM ROTATED INWARD FOR BOTH SUPPORTS AT THE 

SAME TIME. THIS ROTATION WAS MEASURED BY DIAL MICROMETERS PLACED AT 

A KNOWN DISTANCE FROM THE TOP AND RECORDED IN TERMS OF RADIANS 

ROTATION PER SUPPORT. THE PROCEDURE USED FOR CONDUCTING THESE TESTS 

WAS THE SAME AS FOR GRAVITY LOADS, EXCEPT THE LOADING WAS CARRIED OUT 

IN INCREMENTS OR ROTATION RATHER THAN INCREMENTS OF APPLIED LOAD. 

TRANSLATIONAL SUPPORT MOVEMENT TESTS WERE CONDUCTED BY MOVING 

BOTH SUPPORTS OUTWARD SIMULTANEOUSLY. THIS MOVEMENT WAS M2ASURED 

WITH DIAL MICROMETERS AND RECORDED AS OUTWARD MOVEMENT IN FEET.OF 

MOVEMENT PER SUPPORT, THESE TESTS WERE THEN CONDUCTED AS THE PREVIOUS 

TESTS WITH INCREMENTS OF OUTWARD MOVEMENT, 

LATERAL SUPPORT MOVEMENT OF THE TWO-HINGED FRAMES WAS ACHIEVED 

BY SIMPLY MOVING BOTH SUPPORTS OUTWARD SIMULTANEOUSLY, THIS MOVEMENT 

WAS MEASURED WITH DIAL MICROMETERS AND RECORDED AS FEET OF. LATERAL 

MOVEMENT PER SUPPORT. 

TESTS FOR DETERMINING THE EFFECT OF FIXING THE TWO-HINGED FRAME 

SUPPORTS WERE CONDUCTED AS FOLLOWS: THE SUPPORT WAS ADJUSTED FOR 

ZERO ROTATION AND THE TWO DIAL MICROMETERS USED FOR MEASURING ROTATION 

ADJUSTED TO THE SAME READINGS. THEN AFTER EACH INCREMENT OF GRAVITY 

LOAD, THE DIAL MICROMETERS WERE AGAIN ADJUSTED TO HAVE THE SAME 

READING BY ADJUSTING A BOLT, FIGURE J8, USED FOR ROTATION ADJUSTMENT. 

THUS IF THE ENTIRE SUPPORT MOVED IN THE DIRECTION OF APPLIED LOAD, 

BOTH DIAL MICROMETERS WOULD BE MOVED THE SAME AMOUNT AND ROTATION COULD 



STILL BE MEASURED. THIS CAN BE UNDERSTOOD MORE CLEARLY BY REFERENCE 

TO FIGURES 17 A AND. 17 B. 

To TEST THE EFFECT.OF EXTRA FASTENERS HOLDING THE TWO FRAME 

SECTIONS TOGETHER, FOUR ADDITIONAL FASTENINGS WERE USED IN THE TOP 

MEMBERS. THESE FASTENINGS WERE MADE BY.DRILLING EXTRA HOLES IN THE 

MEMBERS AND FASTENING THEM TOGETHER WITH 1/2 INCH BOLTS, FIGURE 13, 

THESE FASTENINGS WERE .MADE 1/3 OF THE DISTANCE BETWEEN ORIGINAL 

FASTENINGS INWARD FROM EACH END OF THE TOP MEMBERS. THIS WAS DONE FOR 

ONE TWO-HINGED FRAME ONLY. · To TEST TH IS EFFECT, TWO GRAV I TY LOAD 

CYCLES WERE.RUN ON THE FRAME WITH THE EXTRA FASTENINGS. 

FOR THE TEST TO DETERMINE THE EFFECT OF TIME VERSUS DEFLECTION, 

.ONE TWO~HINGED FRAME WAS USED. A KNOWN LOAD WAS APPLIED AND HELD 

CONSTANT FOR THE DURATION OF THE TEST. FOR THIS TEST THE ONLY 

OBSERVATION USED WAS DEFLECTION TAKEN AT THE. PEAK. 
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CHAPTER V 

ANALYSIS OF DATA 

To DETERMINE THE El VALUE OF THE FRAME SECTIONS, THE DEFLECTION 

READINGS OBTAINED FROM PRELIMINARY TESTS WERE USED, THE VALUE OF 

DEFLECTION USED WAS OBTAINED BY A LINEAR REGRESSION ANALYSIS OF THE 

DATA FROM EACH CYCLE OF EACH SECTION TESTED. A MEAN VALUE WAS_THEN 

OBTAINED FROM THESE REGRESSION COEFFICIENTS WHICH WAS USED FOR THE 

VALUE OF DEFLECTION. THIS VALUE, .0827 INCHES PER 1000 POUNDS OF 

APPLIED LOAD, TOGETHER WITH A MOMENT-AREA EQUATION WAS THEN USED TO 

OBTAIN THE [I VALUE. 

REGRESSION ANALYSIS WAS PERFORMED BY THE LEAST SQUARES METHOD. 

REGRESSION COEFFICIENTS REFER TO THE SLOPE OF THE LINE REPRESENTING 

THE RELATIONSHIP BETWEEN LOAD AND DEFLECTlON. 

_To INVESTIGATE THE VARIATION I_N DEFLECTION THAT COULD BE EXPECTED, 

AN INTERVAL .WAS FOUND WITHIN WHICH THE MEAN DEFLECTION OF OTHER SAMPLES 

COULD BE EXPECTED TO FALL 95 TIMES OUT OF 100, THIS INTERVAL WAS 

.i76i TO .l893_1NCHES DEFLECTION PER 1000 POUNDS OF APPLIED LOAD, 

To SERVE AS A CHECK, THE El VALUE WAS DETERMINED BY STRAIN DATA. 

THE MEAN VALUE OF STRAIN, OBTAINED AS IN THE PRECEEDING ANALYSIS, WAS 

,25125 X 10-6 IN/IN PER POUND OF APPLIED LOAD, E WAS ESTIMATED TO BE 

29.5 X -JD6 LB/1N2 . STRESS WAS THEN FOUND BY- 1"1ULTIPLY!NG STRAIN BY E, 

WHICH WAS 7.412 LB/1N 2 . KNOWING THE VALUE OF BENDING MOMENT, 28.25 



IN-LB/LB OF APPLIED LOAD, THE MOMENT OF INERTIA WAS THEN FOUND TO BE 

. 4 
I 1.24 IN BY THE FOLLOWING EQUATION: 

I = Mc 
FB 

MOMENT OF INERTIA, 

M BEND I NG MOMENT, IN-LB 

C DISTANCE TO POINT OF STRAIN 
MEASUREMENT FROM NEUTRAL AX Is, IN 

FB STRESS AT POINT OF MEASUREMENT, LB/IN2 

THE El VALUE WA6 FOUND BY MULTIPLYING THE COMPUTED VALUE 8¥ THE 

ASSUMED VALUE OF E. 
.,. 

STATISTICAL ANALYSIS OF VARIANCE, A~ PRESENTED BY STEEC AND 
• "t:11 

TORRIE (22), WAS APPLIED TO THE EXPERIMENTAL DATA. THE ANALYSIS OF 

VARIANCE TABLES ARE PRESENTED IN APPENDIX C. 

COMPUTER PROGRAMS WERE WRITTEN TO DO A MAJOR PORTION OF THE 

DATA ANALYSIS FOR THE FRAME EXPERIMENTS. THESE PROGRAMS WERE WRITTEN 

IN FORTRAN,: A 'COMPUTER PROGRAM WHICH VERY NEARLY REPRESENTS 

MATHEMATICAL EXPRESSIONS AND ARE LISTED IN APPENDIX A. 

DEFLECTION AT THE PEAK WAS OBTAINED BY SUBTRACTING THE AVERA~E 

DEFLECTION OF BOTH SUPPORTS, MEASURED PARALLEL TO THE SUPPORTS FROM 

THE PEAK DEFLECTION. HAUNCH DEFLECTION WAS OBTAINED BY TAKING THE 

AVERAGE DEFLECTION OF BOTH HAUNCHES, MEASURED PERPENDICULAR TO THE 

COLUMN MEMBERS. 

FROM THE STRAIN READINGS BOTH BENDING MOMENT AND AXIAL LOAD 

WERE CALCULATED. A GRAPHICAL REPRESENTATION OF THESE CALCULATIONS IS 

SHOWN IN FIGURE 24. THE STRAIN DUE TO AXIAL LOAD AND BENDING MOMENT 

WAS THEN MULTIPLIED BY A CONSTANT TO CONVERT THEM TO FT-LB BENDING 

MOMENT AND LB OF AXIAL LOAD. 
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Sm A IN DUE To 
BENDING MOMENT 

-~-,..----., ...- GAGE No. I READ I NG 

- - - - --- ~AVERAGE OF READINGS 
+ ZERO READING 

GAGE No. 2 READING ~ STRAIN DUE TO AXIAL LOAD 

GAGE No. 2 GAGE No. I 

FIGU~E 24. GRAPHICAL §OLUTION OF STRAIN READl~GS. 

AXIAL LOAD WAS COMPUTED AS FOLLOWS: 

P = EE A 

IN WHICH p LOAD, LB 

€ MEAS UR ED STRAIN, IN/IN 

E MODULUS OF ELASTICITY, LB/ I N2 

A AREA OF CROSS SECTION, IN2 

FOR THESE CALCULATIONS, E AND A WERE ASSUMED TO BE 29.5 X (06 LB/1N2 

AND.2.34 1N 2 RESPECTIVELY. To COMPUTE BENDING MOMENT, THE AVERAGE 

VALUE. OF STRAIN PER POUND OF APPLIED LOAD THAT WAS OBTAINED FROM THE 

PRELIMINARY TEST WAS USED. THIS VALUE WAS THEN DIVIDED INTO THE 

BENDING MOMENT PRODUCED-FOR EACH POUND OF APPLIED L04D. THIS VALUE 

WAS 

BM 2 .. 4 FT-LB LB OF APPLIED LOAD 
.25f25.M1CRO INCHES OF STRAIN LB OF APPLIED LOAD 
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BM= 9. 1708 FT-Ls/MICRO INCH OF STRAIN 

THE BENDING MOMENT AND AXIAL LOAD WERE COMPUTED FOR EACH POSITION AT 

WHICH TWO STRAIN GAGES WERE MOUNTED. To REDUCE THE AMOUNT OF DATA, 

THE BENDING MOMENTS AND AXIAL LOADS AT SYMMETRICAL POSITIONS ON THE 

FRAME WERE AVERAGED. THIS ALSO HELPED TO AVERAGE OUT EFFECTS DUE TO 

UNEVEN LOADING OF THE FRAMES. 

A REGRESSION ANALYSIS WAS APPLIED TO EACH SET OF READINGS TAKEN 

FOR EACH LOADING CYCLE. FROM THIS ANALYSIS, A VALUE OF A INTERCEPT 

ON Y AXIS, AND 8, THE REGRESSION COEFFICIENT OR SLOPE OF THE LINE 

BEST FITTING THE DATA, WERE OBTAINED. ALSO DURING THIS OPERATION, A 

CORRELATION COEFFICIENT WAS COMPUTED, WHICH MEASURES THE DEGREE TO 

WHICH VARIABLES VARY TOGETHER OR A MEASURE OF THE INTENSITY OF 

ASSOCIATION (22). THESE PREVIOUSLY MENTIONED VALUES, ALONG WITH THE 

THEORETICAL DETERMINED VALUE OF 8 FOR EACH SET OF DATA, ARE LISTED 

IN App END IX B. 

To DETERMINE THE PROBABILITY OF OBTAINING A MEAN 8 VALUE LARGER 

OR SMALLER THAN THE THEORETICAL 8 VALUE, A VALUE OFT, STUDENT'S T, 

(22) WAS COMPUTED. THIS VALUE 

T = 

s~ = 

(x -JJ) 
s~ 

SAMPLE MEAN 

POPULATION MEAN 

STANDARD ERROR QF MEAN 

WAS THEN USED TO ENTER A TABLE OFT VALUES AND OBTAIN THE PROPER 

PROBABILITY. FOR THESE CAL CU LAT IONS, J} WAS ASSUMED TO BE THE 

THEORETICAL 8 VALUE. 
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CHAPTER VI 

RESULTS 

PRELIMINARY TESTS 

BY USE OF THE DEFLECTION DATA FROM THE PRELIMINARY TESTS, THE 

El VALUE WAS FOUND TO BE 318.58 X 106 IN2 -LB. USING THE STRAIN DATA 

AND AN ASSUMED VALUE OF E, 29.5 X 106 LB/1N 2 , AN El VALUE OF 

337.31 X 106 LB-IN2 WAS OBTAINED. THIS VALUE WAS APPROXIMATELY SIX 

PER CENT LARGER THAN THE VALUE DETERMINED BY DEFLECTION READINGS. FOR 

CALCULATION PURPOSES, THE El VALUE OBTAINED BY USE OF THE DEFLECTION 

DATA WAS USED. 

IN ORDER TO COMPARE THE EXPERIMENTAL RESULTS WITH OTHER AVAILABLE 

DATA, THE I VALUE WAS NEEDED WHICH WAS FOUND BY DIVIDING THE El VALUE 

OBTAINED FROM DEFLECTION DATA BY AN ESTIMATED VALUE OF E, 29.5 X 106 

LB/IN2. THIS VALUE OF I, 10.8 IN4 WAS APPROXIMATELY 20 PER CENT LESS 

THAN THE I VALUE GIVEN IN THE LIGHT GAGE, COLD-FORMED STEEL DESIGN 

MANUAL. Two REASONS FOR THIS LOW VALUE ARE SUGGESTED. FIRST, 

MEASUREMENTS OF THE SECTIONS INDICATED A THICKNESS OF APPROXIMATELY 

0.104 IN, AND THE TABULATED VALUE OF I WAS FOR A THICKNESS OF 0.105 IN. 

THE SECOND FACTOR WAS THE LATERAL INSTABILITY OR TWISTING OF THE 

SECTIONS DUE TO INADEQUATE FASTENINGS HOLDING THE (-SHAPED SECTIONS 

TOGETHER. THE LIGHT GAGE,. (OLD-FORMED STEEL DESIGN MANUAL SPECIFIES 

THE MAXIMUM PERMISSIBLE LONGITUDINAL SPACING OF THE FASTENINGS FOR 
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FLEXURAL MEMBERS AS L/6 WHERE L IS THE SPAN OF THE MEMBERo THIS WOULD 

REQUIRE A TOTAL OF FIVE FASTENINGS BETWEEN SUPPORTS FOR THE FRAME 

MEMBER, AND ONLY FOUR WERE USED FOR THESE EXPERIMENTS. THE REASON FOR 

USING ONLY FOUR FASTENINGS WAS TO REPRESENT THE PROTOTYPE FRAME, AS 

NEARLY AS POSSIBLE, WHICH HAD SPACES BETWEEN FASTENINGS UP TO 93 

INCHES IN LENGTH. OBSERVATIONS DURING THE TEST AT HIGH LOADS SHOWED 

THAT TWISTING OF THE MEMBER SECTIONS WAS VERY APPARENT. 

BENDING MOMENTS FOUND BY ELECTRICAL RESISTANCE STRAIN GAGE 

MEASUREMENTS AND THE I VALUE DETERMINED BY USE OF THE DEFLECTION DATA 

WERE FOUND TO BE WITHIN 7 PER CENT OF THE THEORETICALLY DETERMINED 

BENDING MOMENTS. IT WAS ALSO FOUND THAT STRAIN MEASUREMENTS INDICATED 

MOVEMENT.OF THE CENTROID AWAY FROM THE NEUTRAL AXISo FOR TWO MEMBERS, 

THIS MOVEMENT WAS TOWARD THE TENSION SIDE OF THE MEMBER, AND FOR THE 

OTHER TWO MEMBERS IT WAS TOWARD THE COMPRESSIVE SIDE. THIS MOVEMENT 

WAS THOUGHT TO BE ATTRIBUTED TO PLACING THE STRAIN GAGES ON BOTH 

SECTIONS OF THE MEMBER, BUT ON OPPOSITE SIDES AS SHOWN IN FIGURE 13. 

A SLIGHTLY DIFFERENT El VALUE FOR ONE SECTION DUE TO MATERIAL OR 

MANUFACTURING DIFFERENCES COULD ACCOUNT. FOR THIS EFFECT. To AVOID 

THIS EFFECT IN THE PROTOTYPE FRAMES, THE STRAIN GAGES WERE MOUNTED 

ON EITHER SIDE OF ONE SECTION OF THE MEMBER FOR ALL SUBSEQUENT TESTS. 

STATISTICAL ANALYSIS OF THE DEFLECTION DATA INDICATED A LARGE 

AMOUNT OF VARIATION DUE TO DIFFERENCES AMONG .FRAME MEMBERS. FoR THE 

STRAIN DATA, THE. LARGEST AMOUNT OF VARIATION WAS DUE TO THE POSITION 

0~ THE STRAIN GAGES. THIS EMPHASIZES THE IMPORTANCE OF CORRECTLY 

POSITIONING THE STRAIN GAGES. THE ANALYSIS OF VARIANCE TABLES FOR 

THE DEFLECTION AND STRAIN GAGE READINGS ARE LISTED IN APPENDIX C. 
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FRAME TESTS 

DEFLECTION RESULTS 

RESULTS FROM THE GRAVITY LOADING TESTS ON BOTH THE HINGELESS AND 

TWO-HINGED FRAMES INDICATED THAT THE FRAMES WERE, IN MOST CASES, 

CONSIDERABLY MORE FLEXIBLE THAN CALCULATED WITH THE EXPERIMENTALLY 

DETERMINED[! VALUE. THE MEASURED PEAK DEFLECTION OF THE HINGELESS 

FRAMES WAS 33.45 PER CENT GREATER THAN THE CALCULATED VALUE AND 13.85 

PER CENT GREATER FOR THE TWO-HINGED FRAME. AT THE HAUNCH THE DEFLECTION 

WAS 21 .40 PER CENT GREATER THAN CALCULATED FOR HINGELESS FRAMES AND 

I .84 PER CENT GREATER FOR THE TWO-HINGED FRAME. 

POSSIBLE EXPLANATIONS FOR THE DIFFERENCES BETWEEN THE THEORETICAL 

AND EXPERIMENTAL DEFLECTION VALUES ARE BASED ON THE ASSUMPTIONS MADE 

IN THE THEORETICAL ANALYSIS. THE FIRST ASSUMPTION THAT THE MATERIAL 

BEHAVES ELASTICALLY AND OBEYS HOOKE'S LAW APPEARED TO BE IN GOOD 

AGREEMENT WITH THE EXPERIMENTAL BEHAVIOR SINCE THE DEFLECTION OF THE 

FRAME VERSUS LOAD OF THE FRAME APPEARED TO BE A LINEAR RELATIONSHIP. 

THIS WAS REVEALED BY THE HIGH CORRELATION COEFFICIENTS FOR DEFLECTION 

IN INCHES VERSU$ TOTAL APPLIED LOAD IN POUNDS. FOR SUCH CYCLES OF 

LOADING, THESE CORRELATION COEFFICIENTS WERE ALL ABOVE 0.924, AND 

83 PER CENT OF THEM WERE ABOVE 0.990. DEVIATIONS OF THE EXPERIMENTAL 

POINTS FROM A STRAIGHT LINE APPEARED TO BE RANDOM OVER THE ENTIRE 

REGRESSION LINE AS CAN BE OBSERVED IN FIGURE 25. THESE HIGH 

CORRELATION COEFFICIENTS ALSO HELP RULE OUT THE POSSIBILITY OF 

SLIPPAGE AT THE BOLTED JOINTS. SLIPPAGE WOULD PROBABLY HAVE BEEN 

INITIATED AT SOME PARTICULAR LOAD AND WOULD BE EVIDENCED BY AN ABRU~T 

CHANGE IN SLOPE OF THE REGRESSION LINE CAUSING POOR CORRELATION. 
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THE NEXT ASSUMPTION WAS THAT DEFORMATIQNS DUE TO SHEARING 

FORCES ARE SMALL. SHEAR STRAIN WOULD ADD LITTLE TO THE FRAME 

DEFORMATION SINCE THE FRAME MEMBERS WERE LONG COMPARED TO THEIR CROSS­

SECTION DIMENSIONS. SHEAR STRAIN COULD ACCOUNT FOR SOME OF THE 

CALCULATED DEFLECTION DEVIATION BETWEEN EXPERIMENTAL AND CALCULATED 

RESULTS IN THE HINGELESS FRAME BECAUSE OF THE LARGER PERPENDICULAR 

SHEARING FORCES, AS COMPARED TO THE TWO-HINGED FRAME IN THE SHEAR 

DIAGRAMS OF FIGURES 7, 8, AND 9. 

THE NEXT POSSIBLE CAUSE FOR THE LARGE DEFLECTIONS WAS THE 

TWISTING OF THE MEMBER SECTIONS. TH1S TWISTING WAS VERY NOTICEABLE 

AT HIGH GRAVITY LOADS AND AT PORTIONS OF THE FRAME WHICH EXPERIENCED 

HIGH BENDING MOMENTS. THE PORTIONS OF THE FRAME BETWEEN THE HAUNCH 

AND THE FASTENINGS APPROXIMATELY ONE~HALF THE DISTANCE BETWEEN HAUNCH 

AND PEAK APPEARED TO HAVE THE LARGEST AMOUNT OF TWISTING. AT THIS 

POSITION, THE SECTIONS TWISTED FROM THEIR ORIGINAL SPACING OF 

3/16 INCH TO APPROXIMATELY 1/2 INCH OR MORE ON THE TENSION SIDE OF 

THE MEMBER WHILE THE SPACING WAS COMPLETELY CLOSED ON THE COMPRESS.ION 

SIDE. To TEST THE EFFECT OF ADDITIONAL FASTENINGS BETWEEN THE FRAME 

SECTIONS,. FOUR EXTRA FASTENINGS WERE INSTALLED IN ONE TWO-Hl~GED FRAME. 

THESE FASTENINGS WERE PLACED 1/3 OF THE DISTANCE BETWEEN ORIGINAL 

FASTENINGS INWARD FROM BOTH ENDS OF THE.FRAME TOP MEMBERS. GRAVITY 

LOADING TESTS OF THE. FRAME WITH THESE EXTRA FASTENINGS INDICATED 

DEFLECTION AT THE PEAK TO BE 0.67 PER CENT GREATER THAN CALCULATED 

AND 9.67 PER CENT LESS AT THE HAUNCH. FROM THESE. RESULTS, IT WOULD 

APPEAR THAT MOST OF THE DIFFERENCE BETWEEN THEORETICAL AND EXPERIMENTAL 

DEFLECTIONS COULD BE ACCOUNTED FOR BY THE TWISTING OR LATERAL 

INSTABILITY OF THE MEMBER SECTIONS. ONLY TWO LOADING CYCLES WERE RUN 
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ON ONE FRAME FOR THIS EXPERIMENT ON FASTENER SPACING. HOWEVER, 

APPROXIMATELY THE SAME VALUES WERE OBTA /NED FOR BOTH CYCLES. 

THIS SAME EFFECT WOULD LIKELY ACCOUNT FOR THE LARGER PERCENTAGE 

DIFFERENCES BETWEEN THE THEORETICAL AND EXPERIMENTAL DEFLECTION ON 

VALUES OF H/NGELESS FRAMES AS COMPARED TO THE TWO-HINGED FRAMES. A 

LARGE PORTJON OF THIS COULD POSSIBLY BE ATTRIBUTED TO THE LOWER 

PORTION OF EACH COLUMN MEMBER. THIS PORTION HAD A SPAN OF 

APPROXIMATELY 77 INCHES BETWEEN FASTENINGS, AND EXPERIENCED HIGH 

BENDING MOMENTS UNDER GRAVITY LOADs,.FIGURE 7. FoR THE TWO-HINGED 

FRAME, THIS PORTION DEVELOPED COMPARATIVELY SMALL BENDING MOMENTS 

AS THE BENDING MOMENTS APPROACHED ZERO AT THE LOWER END OF THIS 

MEMBER. 

SUPPORT ROTATION OF THE HINGELESS FRAMES PRODUCED 27.5J PER 

CENT LESS DEFLECT/ON AT THE PEAK AND 32. J8 PER CENT LESS DEFLECT/ON 

AT THE HAUNCH THAN THE CALCULATED VALUES. SINCE THE EXPERIMENTAL 

VALUES FOR BOTH DEFLECTIONS AND BENDING MOMENTS, AS DETERMINED BY 

STRAIN, WERE LESS THAN THE CALCULATED VALUES IN ALL CASES, ROTATJON 

OF THE SUPPORTS MAY NOT HAVE BEEN AS LARGE AS MEASURED. THIS COULD 

BE DUE TO THE SUPPORT BENDING BETWEEN THE POINTS OF ROTATION MEASURE-

MENT. HOWEVER, IT DOES NOT SEEM LIKELY THAT SUPPORT BENDING WOULD 

CAUSE DIFFERENCES AS GREAT AS THOSE OBTAINED SINCE THE SUPPORTS WERE 

OVER SEVEN TIMES AS STIFF AS THE FRAME MEMBER. 

ANOTHER POSSIBLE CAUSE FOR THE LOW DEFLECTION AND BENDING 

MOMENT VALUES IS LOCAL BUCKLING OF THE FRAME MEMBERS JUST ABOVE THE 

FRAME SUPPORTS. THIS COULD BE CAUSED BY THE HIGH BENDING MOMENTS AT 

THIS POSITION WHICH WERE APPROXIMATELY FOUR TIMES GREATER THAN AT 

ANY OTHER POSITION IN THE FRAME. 



FOR TRANSLATIONAL MOVEMENT OF THE HINGELESS FRAME SUPPORTS, THE 

DEFLECTION AT THE PEAK WAS 28.06 PER CENT GREATER THAN EXPECTED AND 

18.52 PER CENT LESS AT THE HAUNCH THAN EXPECTED. SINCE THE DEFLECTION 

AT THE PEAK WAS GREATER THAN CALCULATED, IT I ND I CATES THAT FULL 

SUPPORT.MOVEMENT WAS LIKELY OBTAINED. HOWEVER, THE DEFLECTION OF THE 

SUPPORT WAS PROBABLY OF THE SAME MAGNITUDE AS FOR THE SUPPORT 

ROTATION EXPERIMENTS SINCE APPROXIMATELY THE SAME BENDING MOMENTS 

WERE GENERATED AT THE SUPPORTS. 

THE DEFLECTION DUE TO LATERAL SUPPORT MOVEMENT OF THE TWO­

HINGED FRAME WAS 26.07 PER CENT LESS THAN CALCULATED FOR DEFLECTION 

AT THE PEAK, AND 0.53 PER CENT GREATER AT THE HAUNCH. 

A LARGE PORTION OF THE DIFFERENCE BETWEEN THE EXPERIMENTAL AND 

THEORETICAL RESULTS FOR THE SUPPORT MOVEMENT MAY BE DUE TO FRICTION 

BETWEEN THE SUPPORT BRACKETS AND THE FRAME. FRICTION DUE TO THE 

WEIGHT OF THE FRAME RESTING ON THE BRACKETS WOULD BE CONSTANT AND, 

THEREFORE, HAVE THE SAME EFFECT FOR EACH INCREMENT OF LOADING OR 

SUPPORT MOVEMENT. HOWEVER, IF THE FRICTION WAS GREAT ENOUGH SO THAT 

SEVERAL LOADING OR SUPPORT MOVEMENT INCREMENTS WERE REQUIRED TO OVER-

COME IT, THE RESULTS COULD BE EFFECTED APPRECIABLY. THE TESTS 

CONDUCTED ON THE FIRST FRAME WERE MADE USING A LOADING AND UNLOADING 

.PORTION FOR EACH LOADING CYCLE. RESULTS FROM THESE TESTS INDICATED 

TWO REGRESSION LINES WITH APPROXIMATELY THE SAME SLOPE BUT 

CONSIDERABLE DISTANCE BETWEEN INTERCEPTS. IT WAS NOTED ALSO THAT ONE 

OR POSSIBLY TWO UNLOADING INCREMENTS WERE APPLIED BEFORE THE DATA 

AGAIN FOLLOWED A STRAIGHT LINE REPRESENTING DEFLECTION VERSUS LOAD. 

THESE RESULTS WERE THOUGHT TO BE ATTRIBUTED TO THE FRICTION ACTING 

IN THE ENTIRE TESTING .SYSTEM. 
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To ELIMINATE AS MUCH FRICTION ERROR AS POSSIBLE, ONLY LOADING CYCLES 

WERE USED FOR ALL SUBSEQUENT TESTS, 

To TEST THE EFFECT OF END RESTRAINT FROM THE BRACKETS FOR 

ATTACHING THE TWO-HINGED FRAME TO A FOUNDATION, SIX LOADING CYCLE 

TESTS ON THREE DIFFERENT FRAMES WERE MADE. THE RESULTS OBTAINED 

WERE 4.03 PER CENT.LESS DEFLECTION AT THE PEAK AND 4.74 PER CENT 

LESS DEFLECTION AT THE HAUNCH AS COMPARED TO THE DEFLECTIONS FOR THE 

PINNED-END CONDITION. THESE VALUES ARE APPLICABLE ONLY FOR THE TYPE 

BRACKETS USED IN THIS TEST, HOWEVER, THE BRACKETS USED WOULD PROBABLY 

BE A TYPICAL REPRESENTATION OF OTHER TYPES USED. THIS DIFFERENCE 

WAS QUITE SMALL COMPARED TO OTHER ERRORS. THEREFORE, THE ASSUMPTION 

OF PINNED-END CONDITIONS IS VALID FOR THESt TESTS. STATISTICAL 

ANALYSIS COMPARING THE DEFLECTIONS OF THE PINNED AND FIXED-END SUPPORTS 

SHOWED HIGH VARIANCE RATIOS AS CAN BE NOTED IN APPENDIX .C. 

IN REGARD TO SLIPPAGE OF THE BOLTED JOINTS AT THE HAUNCHES, IT 

WAS FOUND IN ALL CASES THAT SOME INITIAL JOINT MOVEMENT OCCURRED 

DURING THE PRELOADING CYCLES. THIS AVERAGE ROTATION DUE TO SLIPPAGE 

BETWEEN THE TOP MEMBER OF THE FRAME AND THE HAUNCH GUSSET PLATE WAS 

APPROXIMATELY 0.0104 RADIANS MEASURED AT THE CENTER OF THE BOLT 

SPACINGS. THE ROTATION OF THE COLUMN WITH RESPECT TO THE GUSSET. PLATE 

WAS FOUND TO BE VERY SMALL AND. NEGLIGIBLE IN MOST CASES. IT WAS 

FOUND THAT PROPERLY TORQUING THE BOLTS CONNECTING THE FRAME MEMBERS 

AND GUSSEi. PLATES AFTER THE PRELOADING CYCLES ELIMINATED SLIPPAGE 

DURING THE LOADING TESTS, IN ACTUAL CONSTRUCTION, LOOSENING OF THE 

BOLTS DURING INITIAL LOADING COULD HAVE AN APPRECIABLE EFFECT ON THE 

STRUCTURE. IT IS NOTED THAT FRAME PARTS WERE MADE IN AN ENGINEERING 



LABORATORY WHICH DID NOT HAVE PRECISION EQUIPMENT FOR LOCATING THE 

BOLT HOLES AS WOULD BE USED IN PLANT FABRICATION. THIS MISALIGNMENT 

COULD POSSIBLY ACCOUNT.FOR MOST OF THE SLIPPAGE THAT OCCURED. 

IT WAS NOTED WHEN CONDUCTING THESE TESTS THAT THE DEFLECTION AT 

THE PEAK CONTINUED TO INCREASE WITH TIME UNDER A SUSTAINED MAXIMUM 

LOAD. To INVESTIGATE THE EFFECT OF TIME ON THE DEFLECTION AT THE 

PEAK, A TWO-HINGED FRAME WAS LOADED AND DEFLECTION READINGS TAKEN AT 

VARIOUS TIME INTERVALS. THE TOTAL LOAD APPLIED TO THE FRAME WAS 

3,317 LB. THE RESULTS FROM THESE TESTS CAN BE OBSERVED IN FIGURE 26. 

THE TOTAL DEFLECTION INCREASE DURING 868 MINUTES WAS 0.307 IN. WHEN 

THE LOAD WAS RELEASED, THE PEAK DEFLECTION, AFTER 48 HOURS, HAD 

RETURNED TO WITHIN 0.130 IN OF THE ORIGINAL STARTING VALUE, INDICATING 

THAT 42 PER CENT OF THE TIME-DEPENDENT DEFLECTION WAS PERMANENT.SET. 

THIS LAG IN DEFLECTION WITH Tl~E COULD POSSIBLY BE BEST EXPLAINED BY 

HYSTERESIS EFFECTS, THE LAGGING OF A PHYSICAL EFFECT ON A BODY 

BEHIND ITS CAUSE. IN THE CASE OF AN ELASTIC MATER I AL AS USED IN 

THESE TESTS, THE HYSTERESIS EFFECT.WOULD BE THE ELASTIC AFTER EFFECT 

WHICH IS DUE TO THE THERMOELASTIC PROPERTIES OF THE MATERIAL. 

THE DEFLECTION WHICH TOOK PLACE IN 868 MINUTES, WHICH AMOUNTS 

TO 15 PER CENT OF THE TOTAL DEFLECTION, COULD HAVE A SIGNIFICANT 

EFFECT ON THE RESULTS FROM.PROLONGED TESTS. fOR THE PRESENT TESTS, 

THE TIME FOR EACH LOADING CYCLE WAS APPROXIMATELY 45 MINUTESj 

. THEREFORE, THE TIME EFFECT WAS SMALL. IF THE RESULTS OBTAINED FROM 

THESE EXPERIMENTS WERE TO BE APPLIED TO LONG-TERM LOADING CONDITIONS, 

THEY SHOULQ BE CORRECTED FOR TIME-DEPENDENT DEFLECTION. 

COMPARISON OF THE DEFLECTIONS OF THE HINGELESS AND TWO-HINGED 

FRAMES, REVEALED THAT THE HINGELESS FRAME HAD 24 PER CENT.LESS 
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DEFLECTION AT THE PEAK AND 23 PER CENT LESS DEFLECTION AT THE HAUNCH 

AS COMPARED TO DEFLECTION OF THE TWO-HINGED FRAME. THESE EXPERIMENTAL 

RESULTS ARE CONSIDERABLY LESS THAN THE THEORETICAL DIFFERENCE OF 35 

PER CENT FOR BOTH POSITIONS. 

ANALYSIS OF VARIANCE FOR BOTH THE PEAK DEFLECTION AND HAUNCH 

DATA SHOWED HIGH VARIANCE RATIOS DUE TO DIFFERENCES BETWEEN THE END 

CONDITIONS. THIS ANALYSIS OF VARIANCE FOR THE HAUNCH DEFLECTION 

DATA SHOWED HIGH VARIANCE RATIOS DUE TO BOTH LOADING CYCLES AND 

INTERACTION BETWEEN LOADING CYCLES AND END CONDITIONS. To DETERMINE 

THE VARIANCE RATIOS DUE TO THE HINGELESS AND TWO~HINGED FRAMES, A 

RANDOMIZED COMPLETE-BLOCK DESIGN ANALYSIS OF VARIANCE WAS USED AS 

PRESENTED BY STEEL AND TORRIE (22). FOR THIS ANALYSIS, EACH CYCLE 

WAS TREATED AS A COMPLETE RANDOMIZED .BLOCK. THE VARIANCE RATIOS 

DUE TO DIFFERENCES BETWEEN FRAMES HAD A SIGNIFICANCE LEVEL ABOVE 90 

.PER CENT IN ALL BUT ONE CASE. 

SrnA IN RESULTS 

THE RESULTS FROM THE STRAIN READINGS WERE USED TO. CALCULATE 

BOTH AXIAL LOADS AND BENDING MOMENTS. As CAN BE OBSERVED IN FIGURE 

24, THE AMOUNT OF STRAIN DUE TO AXIAL LOADING WAS VERY SMALL AS 

COMPARED TO THE STRAIN DUE TO BENDING. THEREFORE, A SMALL ERROR IN 

EITHER OF THE TWO READINGS USED TO MAKE THESE CALCULATIONS COULD 

CAUSE CONSIDERABLE ERROR IN COMPUTATION OF THE AXIAL LOAD OF THE 

MEMBER. THIS WAS FOUND TO BE THE CASE IN MOST INSTANCES SINCE THE 

DIFFERENCE BETWEEN THE EXPERIMENTAL AND THEORETICAL VALUES RANGED 

FROM 86.61 PER CENT GREATER TO 86.7! PER CENT LESS THAN THE 

THEORETICAL VALUES. ANOTHER FACTOR IS THE DIFFERENT BEHAVIORS OF 



THE SECTION FLANGES IN COMPRESSION AND TENSION, ALSO, REDISTRIBUTION 

OF THE STRESSES DUE TO TWISTING AND LATERAL INSTABILITY OF THE MEMBER 

SECTIONS POSSIBLY HAD SOME EFFECT, OTHER FACTORS BELIEVED TO 

CONTRIBUTE TO THESE ERRORS WERE FRICTION OF THE FRAME SLIDING ON THE 

SUPPORT BRACKETS AND VARIATION OF TEMPERATURE DURING TESTING WHICH 

COULD NOT BE CONTROLLED, THE DATA FOR AXIAL LOAD ARE LISTED IN 

APPENDIX 8. ALSO, A PLOT OF AXIAL LOADING VERSUS LOADING OF THE 

FRAME JS SHOWN ~N FIGURE 27. THIS DATA WERE FROM A GRAVITY-LOADING 

CYCLE WHICH HAD AN EXCEPTIONALLY HIGH CORRELATION COEFFICIENT. 

RELATIVELY HIGH LINEAR CORRELATION COEFFICIENTS WERE OBTAINED 

FOR BENDING MOMENTS IN FT-LB VERSUS LOAD AND SUPPORT MOVEMENTS, 

RESPECTIVELY OF THE FRAMES. FOR APPROXIMATaY 75 PER CENT OF THE 

LOADING CYCLES, THESE COEFFICIENTS WERE ABOVE 0,99, WHICH INDICATES 

A GOOD FIT OF THE DATA TO THE REGRESSION LINE, THIS CAN BE OBSERVED 

IN FIGURE 28. 

71 

FOR THE HINGELESS FRAME WITH GRAVITY LOADING, THERE WAS 31 .63 

PER CENT MORE BENDING MOMENT DEVELOPED AT POSITION 44 NEAR THE PEAK 

THAN EXPECTED. THIS HIGH VALUE OF BENDING MOMENTS CORRESPONDS TO A 

HIGH VALUE OF DEFLECTION FOR THE SAME TESTING CONDITIONS. A POSSIBLE 

CAUSE FOR THESE HIGH VALUES COULD BE EITHER A SMALL AMOUNT OF 

SLIPPAGE OR MORE ELASTIC DEFORMATION AT THE HAUNCH JOINT PLATES THAN 

IN THE FRAME MEMBERS. SLIPPAGE AT THE HAUNCH JOINT WAS NOT DETECTED 

BY THE ROTATION MEASURING EQUIPMENT EXCEPT IN TWO OR THREE CASES 

WHICH IT WAS SMALL. HOWEVER, DURING HIGH GRAVITY LOADS ROTATION OF THE 

TOP FRAME MEMBER WAS APPROXIMATELY 0.0017 RADIANS MEASURED AT THE 

CENTER OF THE BOLT GROUP CONNECTING THE TOP MEMBER AND GUSSET PLATE. 

THIS ROTATION RETURNED BACK TO ZERO WHEN THE LOAD WAS RELEASED, 
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THEREFORE, IT WAS THOUGHTTO BE ELASTIC AND COULD HAVE POSSIBLY 

CONTRIBUTED TO THE HIGH BENDING MOMENTS AT POSITION 44. BENDING 

MOMENTS AT POSITIONS 22 AND 33 NEAR THE HAUNCH WERE 5,42 PER CENT 

AND 14,96 PER CENT LARGER THAN EXPECTED. FOR POSITION 11, THE 

BENDING MOMENTS WERE 27,71 PER CENT SMALLER THAN EXPECTED, THIS 

WAS POSSIBLY DUE TO THE SUPPORT END OF THE FRAME ROTATING OR 

DEFLECTING BETWEEN ROTATION MEASURING DIAL MICROMETERS, A SMALL 

AMOUNT OF ROTATION HERE WOULD HAVE DECREASED THE BENDING MOMENTS 

AT POSITION LI AND INCREASED THE BENDING MOMENTS AT POSITIONS 22, 

33, AND 44. THIS IS IN CONFORMITY WITH THE EXPERIMENTAL RESULTS, 

ANOTHER FACT WHICH HELPS TO VERIFY THIS IS THAT FOR THE TWO-HINGED 

FRAME UNDER GRAVITY LOAD, BENDING MOMENTS WERE DEVELOPED WHICH WERE 

CLOSE TO CALCULATED VALUES AS SHOWN IN APPENDIX 8, THEREFORE, IF 

THE BENDING MOMENTS CAN BE PREDICTED FOR ONE FRAME TYPE, THEY SHOULD 

BE PREDICTABLE FOR OTHER FRAME TYPES ALSO UNLESS SOME ASSUMPTION USED 

IN THE THEORETICAL ANALYSIS WAS INCORRECT, 

FOR THE TWO-HINGED FRAME, THE END CONDITIONS WERE ASSUMED TO 

BE PINNED, THIS CONDITION WAS NOT.DIFFICULT TO ACHIEVE IN THE 

LABORATORY, HOWEVER, THE HINGELESS FRAME SUPPORTS WERE ASSUMED TO 

BE. PERFECTLY RIGID FOR THE THEORETICAL ANALYSIS, THIS CONDITION IS 

HARDER TO ACHIEVE. SINCE ONLY A SMALL AMOUNT OF MOVEMENT CAN CAUSE 

CONSIDERABLE EFFECT. ON THE FRAME STRESSES, USING .DATA FOR THIS 

EXPERIMENT, IT WAS FOUND THAT THE BENDING MOMENT AT POSITION [I 

WAS 0.42 FT-LB/LB OF APPLIED LOAD LESS THAN EXPECTED, FROM THE SUPPORT 

ROTATION EXPERIMENT, IT WAS FOUND 407, I 12 FT~LB OF BENDING MOMENTS 

WERE PRODUCED PER RADIAN OF SUPPORT ROTATION, THEREFORE, ONLY l,03 

X 10-6 RADIANS OF SUPPORT MOVEMENT COULD ACCOUNT. FOR THE ERROR IN THE 



BENDING MOMENT AT POSITION I I DUE TO ONE POUND OF LOAD APPLIED TO 

THE FRAME. THIS WOULD MEAN A MOVEMENT OF 49.44 X 10-6 IN OF MOVEMENT 

AT THE BOTTOM OF THE FRAME SUPPORT ASSUMING THE TOP OF THE FRAME 

SUPPORT REMAINED RIGID, IF A LOAD OF 3,000 POUNDS WAS APPLIED TO 

THE FRAME, 0. 148 I NCH ES OF MOVEMENT AT ONE SUPPORT WOULD ACCOUNT FOR 

THE ERROR, IT IS NOT LIKELY THAT THIS MUCH ERROR COULD HAVE OCCURRED 

SINCE THE DIAL MICROMETERS USED TO MEASURE SUPPORT MOVEMENT COULD BE 

READ ACCURATELY TO ONE THOUSANDTH OF AN INCH AND THE SUPPORTS WERE 

ADJUSTED BY THESE DIAL MICROMETERS AFTER EACH LOADING INCREMENT. 

ALTHOUGH THE SUPPORT MOMENT WOULD NOT LIKELY ACCOUNT FOR ALL THE 

ERRORS BETWEEN THEORETICAL AND EXPERIMENTAL RESULTS, IT APPEARS TO 

ACCOUNT. FOR A PORTION OF IT, THE BENDING MOMENT RESULTS OF THE 

SUPPORT MOVEMENT EXPERIMENTS INDICATED LARGE VARIANCES FROM THE 

THEORETICAL VALUES IN NEARLY ALL CASES, THESE DIFFERENCES, AS IN THE 

PREVIOUS CASES, WERE ATTRIBUTED TO ERRORS IN SUPPORT ROTATION 

MEASUREMENT AND FRICTION OF THE FRAME SLIDING ON THE SUPPORT BRACKETS, 

OBSERVATIONS OF STRAIN MEASURED IN MICROINCHES PLOTTED AGAINST 

TOTAL LOAD APPLIED TO THE FRAME IN POUNDS INDICATED A DEVIATION FROM 

A STRAIGHT LINE AT APPROXIMATELY 400 TO 450 MICROINCHES OF STRAIN. 

THIS EFFECT SHOWN IN FIGURE 29 WAS NOTED IN ALL OF SEVEN DIFFERENT 

STRAIN VERSUS LOADING DIAGRAMS PLOTTED. IT COULD BE EXPLAINED BY 

BUCKLING EFFECTS, IT DOES NOT APPEAR TO BE DUE TO LOCAL BUCKLING, 

HOWEVER, SINCE THE Ocr CRITICAL BUCKLING STRESS GIVEN AS (23) 
1T 2E 

12 , . - .P2) (w/r) 2 

WHERE K COEFFICIENT.DEPENDING ON END SUPPORTS 

E MODULUS OF ELASTICITY 

Po1ss10N's RATIO 

T PLATE THICKNESS 
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W = WIDTH OF PLATE 

GIVES A VALUE MUCH HIGHER THAN THE VALUE AT WHICH THE DEVIATIONS 

OCCURRED IN THE EXPERIMENTAL RESULTS, ANOTHER POSSIBLE CAUSE COULD 

HAVE BEEN.PLASTIC DEFORMATION AT SOME POINT. IN THE FRAME WHICH WOULD 

RELIEVE THE STRESSES IN OTHER PORTIONS OF THE FRAME. THIS VERY 

LIKELY COULD HAVE OCCURRED SINCE PLASTIC DEFORMATION WAS OBSERVED IN 

THE TIME VERSUS DEFLECTION TESTS, 

COMPARING THE BENDING MOMENTS DEVELOPED IN THE TWO-HINGED AND 

HINGELESS FRAMES, THE FOLLOWING RESULTS WERE FOUND, fOR POSITION 22, 

EXPERIMENTAL RESULTS SHOWED (9.05 PER CENT LESS.BENDING MOMENT IN 

THE HINGELESS FRAME AS COMPARED TO 25,54 PER CENT. LESS FOR THEORETICAL 

RESULTS. AT POSITION 33, THE HINGELESS FRAME HAD f 1.27 PER CENT LESS 

AS COMPARED TO (0,68 PER CENT FOR THEORETICAL RESULTSj AND POSITION 

44 SHOWED 22.02 PER CENT LESS FOR THE HINGELESS FRAME AS COMPARED TO 

36.!3 PER CENT FOR THEORETICAL RESULTS, ALL THE ABOVE PERCENTAGES 

ARE BASED ON RESULTS FROM THE TWO-HINGED FRAME, ALTHOUGH THE 

EXPERIMENTAL RESULTS SHOWED LESS DIFFERENCE AT POSITIONS 22 AND 44 

THAN THEORETICALLY CALCULATED, THESE DIFFERENCES OF (9,05 PER CENT 

AND 22.02 PER CENT RESPECTIVELY COULD.HAVE CONSIDERABLE INFLUENCE 

IN FRAME DESIGNS, AT POSITION 33, THE BENDING MOMENTS IN.BOTH THE 

HINGELESS AND TWO-HINGED FRAMES WERE HIGHER THAN AT ANY OTHER POINT 

MEASURED AND ALSO WERE HIGHER THAN EXPECTED IN BOTH CASES, 

STATISTICAL ANALYSIS OF VARIANCE AS PRESENTED IN THE ANALYSIS 

OF VARIANCE TABLES IN APPENDIX C SHOW LARGE VARIANCE RATIOS DUE TO 

END CONDITIONS AS COMPARED TO RANDOM ERRORS. THIS INDICATED DEFINITE 

DIFFERENCES BETWEEN BENDING MOMENTS AT POSITIONS 22, 33, AND 44 IN 

THE TWO-HINGED AND HINGELESS FRAMES, 
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POSITION I I WAS NOT CONSIDERED SINCE THE DIFFERENCE BETWEEN THE 

BENDING MOMENTS IN THE HINGELESS AND TWO-HINGED FRAMES WAS SO GREAT" 

ANALYSIS OF VARIANCE TO DETERMINE VARIANCE RATIOS DUE TO FRAMES IN 

THE HINGELESS AND TWO-HINGED FRAMES WAS OBTAINED IN THE SAME MANNER 

AS FOR THE DEFLECTION DATAo THE RATIOS OF VARIANCE DUE TO THE 

DIFFERENCES IN FRAMES WERE ALL FOUND TO HAVE LEVELS OF SIGNIFICANCE 

ABOVE 62"7• 



CHAPTER VI I 

SUMMARY AND CONCLUSIONS 

SUMMARY 

THIS STUDY WA! CONDUCTED TO EVALUATE TH! STIFFNES5 OF 

GEOMETRICAkLY SIMILAR HINQELESS AND TWD-HINQED klQHT GAGE, COLD­

FORMED STEEL FRAMES. ALSO THE SECONDARY STRESSES DEVELOPED DUE TO 

SUPPORT MOVEMENT WERE INVE!TJQATEO, THI! WAS DONE EXPERIMENTALLY 

FOR BOTH CASES, THE ANALYTICAL RESULTS WERE OSTAINED BY USE OF THE 

MOMENT-AREA METHOD, To COMPARE THE STIFFNESS OF THE GEOMETRICALLY 

SIMILAR HINQELESS AND TWD•HINGED FRAMES, FOUR FRAMES OF EACH TYPE 

WERE TESTED. THESE TESTS WERE CONDUCTED SIMULATING GRAVITY LOADS 

WHICH WERE APPLIED HYDRAULICAkLY; TD STUDY THE EFFECT OF SUPPORT 

MOVEMENY; ROTAflONAL SUPPORT MOVEMENT AND TRANSLATIONAL SUPPORT 

MOVEMENT OF THE HINGtLESS FRAME AND LATERAL SUPPORT MOVEMENT OF THE 

TWO-HINGED FRAMES WERE STUDIED. 

CONCLUSIONS 

THE CONCLUSIONS DRAWN FROM THIS SiUDY ARE AS FOLLOWS: 

I. THE El VALUE OF THE FRAME MEMBERS WAS FOUND TO BE 19,4 

PER CENT LESS THAN THE EXPECTED VALUE,.WHLCH WAS BASED ON THE 

CALCULATED VALUE. 

2. PEAK DEFLECTIONS FOR THE HINGELESS AND TWO-HINGED FRAMES 

WERE FOUND TO BE 33.45 PER CENT AND 21;42 PER CENT RESPECTIVELY 
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GREATER THAN THE EXPECTED VALUES FOR WHICH THE PERCENTAGES WERE 

BASED. THE APPARENT REASON FOR THE LACK IN STIFFNESS WAS TWISTING 

OF THE FRAME MEMBER SECTIONS DUE TO INADEQUATE FASTENINGS WHICH 

HELD THE TWO (-SHAPED SECTIONS TOGETHER. 

3. THE USE OF FOUR EXTRA FASTENINGS, WHICH CONSISTED OF A 

3/16 IN PLATE BOLTED BETWEEN THE TWO (-SHAPED SECTIONS MAKING UP 

THE FRAME MEMBERS WITH TWO 1/2 IN BOLTS SPACED 4 IN APART 

PERPENDICULAR TO THE FRAME MEMBER, WAS FOUND TO REDUCE THE DEFLECTION 

AT THE PEAK FOR A TWO-HINGED FRAME 10.18 PER CENT. 

4. RESTRAINING THE TWO-HINGED SUPPORTS WAS FOUND TO REDUCE 

DEFLECTION AT THE PEAK 4.03 PER CENT AS COMPARED TO THE PEAK DE­

FLECTION FOR THE PINNED-END SUPPORT CONDITION, 

5, DEFLECTIONS FOR THE HINGELESS FRAMES WERE FOUND TO BE 24 

PER CENT LESS AT THE PEAK AND 23 PER CENT LESS AT THE HAUNCH AS 

COMPARED TO DEFLECTIONS FOR THE TWO-HINGED FRAMES. ANALYTICAL 

CALCULATIONS INDICATED 35 PER CENT LESS DEFLECTION AT BOTH THE PEAK 

AND HAUNCH AS COMPARED TO THE TWO-HINGED FRAME DEFLECTION VALUES, 

6. DEFLECTIONS AT THE PEAK FOR THE HINGELESS FRAMES, DUE TO 

SUPPORT MOVEMENTS, WERE 27,51 PER CENT LESS FOR SUPPORT ROTATION AND 

28.06 PER CENT GREATER FOR TRANSLATIONAL SUPPORT MOVEMENT AS COMPARED 

TO THE THEORETICAL VALUES. FOR LATERAL SUPPORT MOVEMENT OF THE TWO­

HINGED FRAMES, THE DEFLECTION AT THE PEAK WAS 26.07 PER CENT LESS AS 

COMPARED TO THE THEORETICAL VALUE. 

7. AXIAL LOADS IN THE FRAME MEMBERS AS DETERMINED BY ELECTRICAL 

RESISTANCE STRAIN GAGES WERE FOUND TO VARY FROM 86.70 PER CENT GREATER 

TO 86.71 PER CENT SMALLER THAN THEORETICAL VALUES. 
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8. BENDING MOMENTS DETERMINED BY USE OF ELECTRICAL RESISTANCE 

STRAIN GAGES WERE FOUND TO BE WITHIN 7 PER CENT OF THE VALUES 

DETERMINED THEORETICALLY. 

9. BENDING MOMENTS FOR THE HINGELESS FRAMES 6 IN ABOVE THE 

SUPPORTS WERE 27.70 PER CENT LESS AS COMPARED TO THE THEORETICAL 

VALUE FOR GRAVITY LOADING INDICATING POSSIBLE YIELDING OF THE SUPPORTS, 

10. HIGHEST BENDING MOMENTS DUE TO GRAVITY LOADS WERE ENCOUNT-

ERED AT POSITION 33, THE POSITION JUST ABOVE THE HAUNCH JOINT, IN BOTH 

THE HINGELESS AND TWO-HINGED FRAMES. 

I I. EXPERIMENTALLY DETERMINED BENDING MOMENTS CORRESPONDED 

I 

MUCH MORE CLOSELY TO THEORETICAL VALUES FOR THE TWO-HINGED FRAME 

WITH THE LARGEST DIFFERENCE BEING 15.73 PER CENT GREATER AS 

COMPARED TO THE LARGEST DIFFERENCE OF 31 .63 PER CENT FOR THE HINGELESS 

FRAME. 

12. BENDING MOMENTS DUE TO SUPPORT MOVEMENTS WERE FOUND TO VARY 

CONSIDERABLY FROM THEORETICAL VALUES WITH THE DIFFERENCES BETWEEN 

EXPERIMENTAL AND THEORETICAL VALUES RANGING FROM 42.48 PER CENT LARGER 

TO 32.86 PER CENT LESS AS COMPARED TO THEORETICAL VALUES. FRICTION 

BETWEEN THE FRAMES AND SUPPORT BRACKETS AND YIELDING OF THE SUPPORTS 

WERE BELIEVED TO BE RESPONSIBLE FOR LARGE PORTIONS OF THESE DIFFERENCES. 

13, ASSUMING THE SUPPORTS OF A HINGELESS FRAME TO YIELD OUTWARD 

AT THE GROUND LEVEL 1/8 IN AND TO ROTATE ABOUT A POINT 2/3 OF THE 

TOTAL DEPTH OF THE SUPPORT, THE FOLLOWING BENDING MOMENTS FROM 

EXPERIMENTAL RESULTS WOULD BE PRODUCED: POSITION II, (-l,836 FT-LB), 

POSITION 22, (-456 FT-LB) POSITION 33, (-132 FT-LB) AND POSITION 

44, (+678. FT-LB). THE EFFECT THESE BENDING MOMENTS WOULD HAVE ON A 

FRAME GRAVITY LOADED BY A 3,000 LB LOAD ARE: POSITON I I, 56 PER CENT 



LEss; POSITION 22, 10 PER CENT GREATER; POSITIOM 33, 2.6 PER CENT 

GREATER AND POSITION 44, 21 PER CENT GREATER. THEREFORE, WHEN 

DESIGNING HJNGELESS FRAMES, POSSIBLE SUPPORT YIELDING SHOULD BE TAKEN 

INTO CONSIDERATION. 

14. ANALYTICAL ANALYSIS SHOWED BENDING MOMENTS IN THE TWO-

HINGED FRAMES TO BE GREATER FOR ALL LOADING CONDI TONS EXCEPTl~G GRAIN 

LOAD AND GRAIN LOAD PLUS SNOW LOAD LOADING CONDITIONS. 

SUGGESTIONS FOR FURTHER STUDIES 

I. A MORE DETAILED STUDY SHOULD BE MADE OF THE EFFECTS ON 

STIFFNESS OF THE FRAMES DUE TO EXTRA FASTENINGS BETWEEN THE FRAME 

MEMBER SECTIONS. 

2. A STUDY SHOULD ALSO BE MADE WITH THE FRAMES ERECTED 

OUTDOORS AS THEY WOULD BE IN ACTUAL CONSTRUCTION. THIS COULD ALSO 

INCLUDE ERECTION OF THE HINGELESS FRAMES IN TWO OR MORE VARIED SOIL 

TYPES TO STUDY THE EFFECT OF SOIL RESISTANCE AND SUPPORT MOVEMENT 

ON THE STIFFNESS OF THE FRAMES, 
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TABLE A. I 

FORTRAN PROGRAM USED TO ANALYZE STRAIN 
AND DEFLECT I ON DATA 

C 0000 0 PROJECT 633 140 0 GILJ•ZIL-5J~IZl(-5l+ZIL-411/2• 
C 0000 0 RESULTS FROM RIGID FRAMES 141 0 YILJ=GILl*BM 
C 0000 0 JAMES FRIESEN OKLA STATE UNIV 142 0 IFIYIB)t14i,145t143 

5 0 DIMENSION YIBl,SYIB),SYYIB), 143 0 CB=2• 
5 1 SXYIB) ,Q14) ,GIB) tZ{5) 144 0 GO TO 146 

10 0 READ,C,Cl,ADD,ADDltTDP,TDE,K i45 0 CB=lo 
15 0 REAO,N,Nl,AX,TAX,BM,TBM,KIND 146 0 Yl4J=IY16)+YIB)l/CB 
16 0 READ,AA,AB~AC~AD,AE,AF 150 0 PUNCH,CODE,Yl3l,TEAX,Yl4lt 
17 O' NE=l .}50 1 TEBM,X 
20 0 P=N+Nl 155 0 CONTINUE 
25 ·O SX•O 160 0 D0l75L•l,4tl 
30 0 SXX=O 165 0 SYIL)=SYIL)+Y!Ll 
35 0 D051J=l,B 170 0 SYYILl=SYYCLl+(YCLl*YCLl l 
40 0 YI ,H=O 175 0 SXYILl=SXY(L)+IYILl*Xl 
45 0 SYIJl=O 180 0 IF1Nll205,205,181 
50 0 SYYIJl=O 181 0 GO TO 11821205) ,NE 
51 0 SXYCJ)=O 182 0 NE=2 
52 0 D01751=1,N. 185 0 C=Cl 
55 0 READ,U,Zll) ,z121,zc31 ,Zl4l, 190 0 N=Nl 
55 1 Zl5l,CODE 191 0 ADD=ADD1 
56 0 BC=U&°ADD 200 0 GO TO 52 
60 0 X=BC*C 205 0 Qlll=TDP 
65 0 SX=SX+X 210 0 QC2l=TDE 
70 0 sxx=SXX+CX*XI 215 0 QJ3J=TAX 
75 0 GO TOlll0,80),K 220 0 QC4)=T6M 
80 0 TP=TDP*X 234 0 DEMON=SXX-(SX*SXJ/P 
81 0 TE=TDE*X 236 0 IF(K~1)285,24D,237 
82 0 Wl=AB-Z 111 237 0 KK=l 
83 0 W2=AC-Zl2) 238 D KKK=2 
84 D W3=AD-Zl3) 239 0 GO TO 243 
85 0 W4=Zl4)-AE 240 D KK=3 
86 0 W5:Z(5J-AF 241 0 KKK=4 
90 ~ Ylll•Wl-(W2+W3J/2o0 242 0 GO TO 243 
95 0 Y(2J•(W4+W5l/2o 243 0 D0275M=KK,.KKK, 1 

100 0 PUNCH,CODE,Ylll,TP,Y(2l,TE,X 245 0 TOP=SXY(Ml-(SYCMl*SX)/P 
105 0 GO TO 155 250 0 B=TOP/DEMO/\i 
110 0 TEBM=TBM*X 255 0 A=(SY(Ml/Pl-B*ISX/P) 
115 0 TEAX=TAX*X 260 0 BOT=SYYCMl-lSYIMl*SY(Mll/P 
120 0 D0126L=5,7,2 262 D IF(B0Tl265,263,265 
125 p G(Ll=o0010-(Z(L-4)+Z(L-3))/2o0 263 0 RR•99999999 
126 0 YCL)=GILl*AX 264 0 GO TO 270 
127 D IFIYl7ll128,13D,128 265 0 RR=IB)*ITOP/BOTI 
128 D CA=2o 270 0 W,;Q(M) 
129 0 GO TO 131 275 0 PUNCH ,A, B ,1'1 ,RR ,M, Kl ND 
130 0 CA=l• 280 0 GO TO 10 
131 0 Yl3l=IYl5l+YC7J)/CA 285 0 END 
135 0 D0141L=6,8t2 



T.l\'BLE A, 11 

riOll'.f'.RAN PR(J~RAM UJJED.' TO CALCULATE:= STANDARD DEV I AT I ON 
or THE MEAN, AND' STUDENT' s j VALUES 

C 0000 0 PROJECT 633 
C 0000 O OKLAHOMA STATE UNIVERSITY 
C 0000 0 JAMES FRIESEN 

5 0 READ,N,KODE 
10 0 DF=N-1 
11 0 M=N-1 
12 0 SB=O.O 
13 0 SBB=OeO 
15 0 D030L=l,N,1 
20 0 READ,A,B,W,RR,J,KJND 
25·0 SB=SB+B 
30 O SBB=SBB+<B*Bl 
31 O P=N 
35 0 TOP=SBB-(SB*SB)/P 
40 0 SXX=TOP/DF 
45 O SX=SQRTF(SXX) 
50 O SXXB=SXX/P 
55 0 SXB=SQRTF(SXXBJ 
60 0 XB=SB/P 
65 0 Tl=(XB-W)/SX 
70 0 T2=(XB•W)/SXB 
71 0 NA=l 
72 0 NB=2 
75 0 PUNCH,XB,SX,Tl,M,NA,KODE 

END 
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EXPLANATION OF CODING SCHEME 
AND TABLE CONTENTS 

CODE: THE COD I NG SCHEME FOR TABLES Bo I, B, 11, AND B, 111 

EXAMPLE: 

11 I I I I 

'-[____ POSITION ON FRAME AT WHICH 
MEASUREMENTS WERE MADE. 

01 = DEFLECTION AT PEAK 
02 = DEFLECTION AT HAUNCH 

I I, 22, 33, 44' AND 55 = 
STRAIN MEASUREMENTS AND 
POSITIONS ARE SHOWN IN 
FIGURE 20. 

c._ _____ TYPE OF FRAME LOAD I NG 

I I 
22 

33 

44 

GRAVITY LOADING 
SUPPORT ROTATION OF 

HINGELESS FRAME 
TRANSLATIONAL SUPPORT 

MOVEMENT OF HINGELESS FRAME 
LATERAL SUPPORT MOVEMENT OF 

TWO-HINGED FRAME 

,.._ _______ TYPE OF FRAME 

[J HINGELESS FRAME 
22 TWO-HINGED FRAME 
32 TWO-HINGED FRAME WITH END FIXED 
42 TWO-HINGED FRAME WITH EXTRA 

FASTENINGS BETWEEN MEMBER SECTIONS 

MEAN VALUE:* THE ARITHMETIC MEAN OF THE REGRESSION VALUES FOR EACH 
CYCLE OF LOADING. 

THEORETICAL VALUES:* THE THEORETICAL VALUE DETERMINED ANALYTICALLY. 

*NOTE. THE ABOVE VALUES ARE GIVEN AS: 
MEASUREMENTS 

DEFLECTION= IN/UNIT OF LOADING 
AXIAL LOAD= LB/UNIT OF LOADING 
BENDING MOMENT= FT-LB/UNIT OF LOADING 

LOADING 
GRAVITY= LB TOTAL APPLIED TO FRAME 



SUPPORT ROTATION= RADIANS AT EACH SUPPORT 
TRANSLATIONAL MOVEMENTS= FT AT EACH SUPPORT 
LATERA~ MOVEMENT= FT AT EACH SUPPORT 

PERCENT DIFFERENCE: THE PERCENT.DIFFERENCE BETWEEN THE MEAN VALUE 
AND THEORETICAL VALUE BASED ON THE THEORETICAL VALUE. 

STANDARD DEVIATION OF THE MEAN: THE STANDARD DEVIATION FOR THE MEAN 
VALUE OF THE REGRESSION VALUES FOR EACH CYCLE OF LOADING. 

PROBABILITY: THE PROBABILITY OF THE EXPERIMENTAL VALUE NOT HAVING 
THE SAME VALUE AS THE THEORETICAL VALUE. 

90 
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TABL[ B. I 

DEFLECT I ON.RESULTS AT THE PEAK 
AND HAUNCH 

MEAN THEORETICAL PERCENT STANDARD f"ROB-CODE 
VALUE VALUES DIFFERENCE DEVIATION ABILITY 

OF THE MEAN 

111101 45.6oox10-5 34.17ox10-5 +3g;45 I. 3999x I o-5 100 
113301 . ·10~948 B.5500 '+2 .06 . 16591 100 
112201 42.987 59.300 -27.51 .78014 100 
221101 59.929x10-~ 52.64ox10-~ +13.85 .66678x10-~ 100 
321101 51.81ox10- 52.640xl0- + 9.82 .32414xl0- 100 
224401 6.6833 9.0400 -26.07 . 19790 100 
421101 52.995x10-~ 52. 64ox Io-~ + .6~ .28332x10-~ <60 
111102 13,721x10- 11.3oox 10- +21.4 .35312x10- 100 
113302 3.4066 4. 1810 -18.52 . 12301 100 
112202 13.3217 . 19.640 -32. 18 .35~50 100 
221102 17.781x10-5 17.46ox10-5 + 1.84 . 16 99x 10-5 95.9 
321102 16.~54x10-5 · 17 .46ox 10-5 - 2.90 . 138oox .1 o-5 99.3 
224402 2. 046 2.~920 + 0.53 .36381 <60 
421102 15.771x10-5 17. 6ox I0-5 - 9.67 .24296x10-5 90.5 



CODE MEAN 
VALUE 

I II II I .71433 
111122 .53304 
11113~ .56571 
11114 . 18362 
111155 .35220 
112211 ... 9359.6 
l 12222 30311 
1122~~ -~0607 
1122 - 0881 
112255 23834 
113311 -1468.4 
113322 1750.8 
11333~ -4604.2 
11334 -8977. 8 
113355 467.77 
221111 .52219 
221122 .60451 
2211 ~~ . 48265 
2211 -.08833 
224411 -69~.59 
224422 ~8 .29 
2244~~ I .91 I 

.2244. -4458.6 
321 I I I .538io 
32 J 122 .509 3 
32113~ .51681 
32114 -.03681 

TABLE B. I I 

RESULTS OF AXIAL FORCES JN 
. FRAME MEMBERS 

THEORETICAL PERCENT 
VALUES D1 FF ER ENCE 

.50000 +42.87 

.50000 + 6.61 

. 70890 --20.20 

. 70890 -74. 19 

.50000 --29.56 
0 
0 

-52324 
-52324 

-41 .51 
-21,87 

0 
0 
0 

-561 I .3 -17.95 
-5611.3 +59.99 

0 
.50000 + 4.44 
.50000 +2~.34 

- . 27695 + 7. · 27 
-.27695 -68. 11 

0 
0 

-7.980 I +425. 19 
-7.9801 +55771 

.50000 + 7.~8 

.50000 + I. 8 

.27695 +86.61 
- . 27695 -86.71 
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STANDARD PROB-
DEVIATION ABILITY 

OF THE MEAN 

.25903 78.5 

. 16683 <60 

. 19227 76. J 

. 1~635 99.3 

.o 860 92.9 
1,340 67.6 
I 666 95.6 
16795 87.2 
11930 81.0 
1~278 92.2 

14 I .3 81.6 
4~~·55 99.5 
4 .22 95.7 
825.77 .99.~ 
782.7~ 70. 
.0372 ~ l· 5 I. 1222 I. I 
.055,, 99.7 
.039 6 100 
1033.8 83. J 

376.88 91.4 
1285.0 .::'..60 

. 1618. I 98.4 
.02461 91.0 
.06638 <60 
.03423 . 100 
• J 1431 97.. 8 
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TABLE B. 111 

RESULTS OF BEND.I.NG MOMENTS 
J~ FRAME MEMBERS 

STANDARD 

CODE MEAN THEORETICAL PERCENT DEVIATION PROB-
VALUE VA LU.ES .DIFFERENCE OF THE MEAN ABILITY 

111111 1.0958 1.51~8 -27.71 .0387~ , 100 
I.I I 122 - I .4705 -1.~9 9 + ~.42 .0209 99.6 
II II~~ -1.6692 -1. 520 +I .96 .02584 100 
I .I II . 1.08i4 .82610 +31.63 .03164 100 

:\ 111155 .388 2 .55598 -30.07 .03062 100 
112211 --407112 -523520 -'22.24 5093.4 100 
112222 = II 780~ -153500 -23,25 2474.o 100 
1122~~ --~5681 - 0.59 1974.6 <60 
1122 1~~~~4 J. 9887 --20.68 2769.2 100 
112255 -30~~~3 -401160 -'23,95 3116.5 100 
113311 - 3 · 3 - 46 62 - 17. II 1255.0 100 
113322 --4792.3 -7138.0 -~2.86 599.94 99.6 
1133~~ 4776. I 3352.2 + 2.48 668.17 . 95.6 
II 33 2~596 25398 -11 .70 372.32 99.8 
113355 - 2 168 - 33763 -16.57 . 116~.o 99.5 
221111 -.2~303 -.2~53~ - 0.94 .00 42 100 
221122 - I. 165 -1. 73 - 3.0 ;00633 100 
2211 ~~ -1.8812 -1. 6256 +15,17 ;02112 100 
2211 1.3944 I .2935 + 7. 0 .01483 100 
224411 1223.6 840.9~ +45.51 1~3.69 . 98.1 
224422 7261.6 i205. + o.7i 2 3. 13 l.60 
2244~~ 10127 . 350.4 +21.2 242.41 100 
2244. 12152 11832 + 2.71 586.01 70.0: 
321111 .1~257 .2~53~ -35, 18 .00251 100 
321122 -1. 650 -1. 73 - o.45 ;01051 76.8 
32 II~~ - I .9023 - I .6256 +17.02 .00905 100 
32 II I ,3937 1.2935 .+ 7.75 .00959 100 
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TABLE C, I 

ANALYSIS OF VARIANCE IN PRELIMINARY 
TESTS DUE TO DEFLECTION 

SOURCE DEGREES SuM OF MEAN VARIANCE SIGN. 
FREEDOM SQUARES SQUARE RATIO . LEVEL 

TOTAL 15 .00101194 

FRAME MEMBERS 3 .00096158 .00032053 59.756 100 

CYCLE .00000812 .00000812 I .5138 73.0 

LOAD I NG .00000484 .00000484 .9023 

ERROR 10 . 00005364 .000005364 

TABLE C, I I 

ANALYSIS OF VARIANCE IN PRELIMINARY 
TESTS DUE TO STRAIN GAGE READINGS 

SOURCE DEGREES Su~ OF MEAN VARIANCE SIGN. 
FREEDOM SQUARES SQUARE RATIO LEV.EL 

TOTAL 31 .00537082 

FRAME MEMBERS 3 .00040541 .00013514 .7494 

GAGE POSITION . I .00041760 .00041760 2.3156 83.2 

CYCLE .00003916 ,00003916 .2171 

LOAD I NG .00000015 .00000015 .00083 

ERROR 25 .0045085 .00018034 



TABLE C. I JI 

ANALYSIS OF VARIANCE DUE TO 
.DEFLECTION AT THE PEAK 

·SOURCE DEGREES SUM OF MEAN VARIANCE -SIGN. 
FREEDOM SQUARES SQUARE RATIO LEVEL 

COMBI.NATION OF 
HI NGELESS AND 
Tt;:.to-H I NGED 

TREATMENT. TOTAL 23 · 13.9765x10:~ _8 
EN() CONDITION I . 12.3229x10~8 12.3229xJow8 14.314 99.5 
LOAD CYCLE 2 . 1243xJO 8 .06215xlO 8 .oi219 
INTERACT I ON 2 I .~293x10-8 ,76465x10~8 • 882 55.9 
ERROR 18 15. 965x10- .8609x10-

HINGELESS 

TOTAL · 11 2.586ox10--~ 
FRAME 3 . 7488x .1 o- 8 .2~960 .4.o~ .92.5 
CYCLE 2 I, 480 Ix I o= 8 .7 005 12.4 99.7 
ERROR 6 .3571xlO .05951 

' . 
Two-HINGED 

TOTAL , 11 58.693 
rn AME . 3 20.506 6.8~5 I .97- ~-0 
CY.CLE 2 17.~60 .8.6 o 2.50 .3 
ERROR 6 20. 27 3.471 



TABLE C IV 

ANALYSIS OF VARIANCE DUE TO 
DEFLECTION AT THE HAUNCH 

So UR CE DEGREES 
FREEDOM 

SuM OF 

SQUARES 

MEAN 
SQUARE 

COMBINATION OF 
HiNGELESS AND 
Two-HINGED 

TRtAtMENT TOTAL 23 
END CONDLTION I 
LOAD CYCLE 2 
INTERACTION 2 
ERROR 18 

HINGELESS 

TOTAL 
FRAME 
CY CLE 
ERROR 

Two-HINGED 

TOTAL 
FRAME 
CYCLE 
ERROR 

I I 

3 
2 
6 

I I 

3 
2 
6 

258.684 
74.888 

148.006 
35.790 

3.594 
2.252 

.823 

.519 

24.963 
74.003 
5.965 

.7504 

.4115 

.0865 

VARIANCE 
RATIO 

4. 18 
12 .41 

Si GN. 
LEVEL 

100 
100 

99.5 

93.0 
99.7 
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TABLE C.V 

ANALYSIS OF VARIANCE DUE TO BENDING 
MOMENTS AT POS IT I ON 22 

SOURCE DEGREES SUM OF MEAN VARIANCE SIGN. 

FREEDOM SQUARES SQUARE RATIO LEV EL 

COMBINATION OF 
HlNGELESS AND 
Two-HINGED 

TREATMENT TOTAL 23 .78186 
END CONDITION I .71843 .71843 362.84 100 
LOAD CYCLE 2 .02011 .0100~ 5.076 98.3 
INTERACTION 2 .00767 .0038 I -939 80.5 
ERROR 18 . 03565 .00198 

HINGELESS 

TOTAL 11 .058.13 
FRAME 3 .01256 .00417 I .30 62.7 
CYCLE 2 .02630 .01315 4. 10 91 .9 
ERROR 6 .01927 .00321 

Two-HINGED 

TOTAL I I .00530 
FRAME 3 .00206 .00103 3.55 90.9 
CYCLE 2 .00148 .00074 2.55 80.8 
ERROR 6 .00176 .00029 
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TABLE C.VI 

ANALYSIS OF VARIANCE DUE TO BENDING 
MOMENTS AT POSITION 33 

SOURCE DEGREES SUM OF MEAN VARIANCE SIGN. 
FREEDOM SQUARES SQUARE RATIO LEV EL 

COMBINATION OF 
HINGELESS AND 
Two-HINGED 

TREATMENT TOTAL 23 .. 41670 
END CONDITION I .26969 .26969 44.43 100 
LOAD CYCLE 2 .02l8' .01390 2.29 85.0 
INTERACTION 2 .09 60 .04930 8. 13 .99.6 
ERROR 18 . 10934 .00607 

HINGELESS 

TOTAL I I .08812 
FRAME 3 .02716 .00905 I .87 

lti CYCLE 2 .03191 .01~96 3.30 
ERROR 6 .02905 .00 84 

Two-HINGED 

TOTAL I I .05889 
FRAME 3 .02524 .00841 1.81 73.2 
CYCLE 2 .00575 .00288 .62 
ERROR 6 .02790 .00465 
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TABLE C.V JI 

ANALYSIS OF VAR I ANCE DUE TO BEND I NG 
MOMENTS AT POSITION 44 

SOURCE DEGREES SuM OF MEAN VARIANCE SIGN. 

FREEDOM SQUARES SQUARE RATIO LEVEL 

COMBINATION OF 
HJNGELESS AND 
Two-HI NG rn 

TREATMENT TOTAL 23 . 7267 
END CONDITION I .5655 .5655 65.60 100 
LOAD CYCLE 2 ,.00019 .000095 
INTERACTION 2 .00580 .00290 .34 
ERROR 18 . 15521 .00862 

HINGELESS 

TOTAL I I . 13218 
FRAME 3 . 10330 .0344~ 7.79 98. I 
CYCLE 2 .00236 .0011 .27 
ERROR 6 . 02652 .00442 

Two-HINGED 

TOTAL l I .02904 
FRAME 3 .02194 .007~1 12.60 ~9-5 
CYC!--E 2 .003E51 .OOk6 3.21 _7,5 
ERROR 6 .ooj49 .00058 
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TABLE C.VIJ I 

ANALYSIS OF VARIANCE DUE TO PINNED AND RESTRAIN~D 
SUPPORTS OF TWO-HINGED FRAMES 

SOURCE DEGREES SUM OF MEAN VARIANCE SIGN. 
FREEDOM SQUARES SQUARE RATIO LEV EL 

. DEFLECTION AT 
THE PEA-K~ 

PINNED VS. 
RESTRAINED 17. 978x I0-5 I 7 . 97 8x I o-5 4.65 95.2 
PINNED + 
RESTRAINED 16 61.849x10-5 3.866x10-5 

DEFLECTION AT 
THE HAUNCH 

PINNED VS. 2.938x10~5 2.938x10-5 9.73 .99.3 
RESTRAINED 
PINNED+ 16 4.825x10-5 .302x10-5 
RESTRAINED 
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