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PREFACE 

The number and usefulness of digital computers is constantly 

increasing. Similarly, the demand for engineers with an under -

standing of not only the applications, but also of the internal 

structure of digital computers is also increasing. 

The availability of a quantity of computer components to the 

School of Electrical Engineering of the Oklahoma State University 

suggested that a small computer might be constructed for 

demonstration and instructional purposes in computer engineering 

courses. Before such a project could be undertaken, an overall 

organizational plan was required. Such a plan is presented in 

this paper. 

The various applications of an instructional computer will 

be examined, and from these a "design philosop·hy" will be 

developed. These criteria will then be used in formulating the 

machine organization. Although many of the components avail­

able for construction are circa 1952, the writer has attempted 

to avoid designing another 1952 computer. 

The author expresses sincere thanks to his adviser, Professor 

Paul A. Mc Collum, for his counsel and guidance. It is deeply 

appreciated. Also, the help and understanding of Professor 

'Nilliam Granet, Acting Director of the Computing Center of the 

Oklahoma State University, are gratefully acknowlepged. 

My wife, Gail, and her mother, Mrs. Martha Raper, did 

all of the typing for this paper. The irs was a true labor of love, 

and I thank them for it. 
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CHAPTER I 

INTRODUCTION: DESIGN PHILOSOPHY 

The design of a digital computer imr6lves many separate levels, 

from the formulation of the overall purposes of the computer , to the 

final design and testing of the circuits to accomplish each specific 

task. 

In this chapter, the Oklahoma State Instructional Computer (here ­

after called the OS TIC) will be examined in the three areas of construe -

tion, op_eration, and rr,aintenance. From the constraints brought out 

in this discussion, a "design philosophy" , or set of · design criteria, 

will be formulated for use in the remainder of this paper. 

The principal source of components that will be used to construct 

the OS TIC is the remnants of a digital computer given to the School 

of Electricai: Engineeriµg af the Oklahoma State University, by the 

Continental Oil Company of Ponca City, Oklahoma . Components a­

vailable inG1ude a magnetic dr ,um with read write heads, motor, 

and a heavy-duty regulated pow er supply, together with numerous 

pluggable £1ip-flop modules, diode assemblies, and other electronic 

parts. 

A number of important design parameters, such as component 

maximum operating speeds, voltage levels, and pulse shapes were 

thus already determined before the present design was conceived. 

It shou.H also be mentioned that one of the design goals was to min­

imize the number of purcha\sed components, such as flip-flops, 

and diodes, since, unlike some other computers constructed by 

universities, OSTIC will probably not receive a large amotunt of 

outside financial support . 

As the name implies, this computer is primarily intended for 

use in computer iogic design classes. It:may be noted that a ·great deal 

1 
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of the instructional value of such a machine lies in the actual 

construct.ion and testing. It is the intent that the machine will be 

built, unit by unit, by graduate students under the direction of 

faculty members. In order to be certain that these efforts are of 

greatest benefit, an overall plan must be devised (preferably 

during the early . stages of construction) that outlines the purpose, 

goals, and basic design criteria for the computer, This overall 

plan must be fairly complete and sufficiently detailed that no im­

portant questions (such as, "How does this machine add?") remain 

unanswered. At the same time, the plan must not attempt to pre­

sent an overly , detailed final design. In the first place, this 

would be much too time consuming for any one person to create; 

more , important, the individuals doing the actual constrmction 

and testing may vei;y likely find preferred ways to accomplish 

certain operations. Finally, and most important of all, the 

overall design should be straight-forward, and readily understand­

able by .persons not possessing a large amount of experience in 

the area of digital computers. Students of this background will 

not only build the machine, but will later use it to learn how a 

computer operates. 

It is anticipated that this machine will find varied applications 

in its role as an instructional computer. One of the most likely 

areas will be in classroom demonstrations. Here, the emphasis 

will be on how a digital computer functions internally, rather 

than (as is so often the ,case ) how the computer brings in data and 

(somehow) turns out answers. Class demonstration requires 

two things: first, a console so designed that the students can 

clearly see the contents of the various registers; second, a pro­

vision for slow -speed operation so that the students can see each 

step of the computation .as it is performed. Also, it is obvious 

that the derncns:ration machine should .be suffrcientty sfmple 

that it may be understood (both internally and externally-I and 
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used b y students in computer design courses. 

Another possible application for such a machine wouldb-e 

as a test computer for various research and development proj -

ects involving pulse or digital circuitry. In other words, the com­

puter might be called upon to serve as a programmable pulse 

generator. Perhaps the most important consideration here would 

be reliability. A student who is using the. computer as a device to 

test, for example, a . transistorized shift register, needs an ex­

tremely reliable machine. If the test set-up does not function 

properly, he should be quite certain that the failure is in his 

device, rather than in the computer. The example of a tran­

sistorized shift register points up another consideration: the 

OSTIC should have, in addition to a "standard" console (indicator 

lights and switches), a large patch panel where all computer 

pulses, gates, and register outputs are available for circuit use, 

together with adjustable power supply voltages. A panel of this 

type would not only be convenient for the application mentioned; 

it would be invaluable for machine maintenance. A third con­

sideration might be mentioned here: test equipinent slipuld be 

easily set up and ver-,atile in operation. The versatility may be 

taken care of by a flexible instruction list, but a large amount of 

set up time would be required if the user (who would probably 

need only a five- or ten-instruction program) had to enter each 

instruction into the drum memory, either by operating the console 

or by punching and then reading-in cards or paper tape . One 

solution to this problem might be a separate read-only memory 

of eight, sixteen, or thirty-two words, addressable by the com­

puter in a manner similar to the regular memory and physically 

provided by a bank of toggle switches on the console. 

The existence of a controls laboratory at OSU containing a 

number of analog computers suggests another possible application 
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for the OS TIC. This would be as an element in a digital control 

system, or in the area of real-time systems investigation. Here, 

the requirement is not only for reliability, but also for a high de­

gree of flexibility in both programming and in data transfer. Pro­

gra:mmin,_g flexibility would seem to imply the p.:resence of a variety 

of test and branching codes, perhaps together with some sort of 

masking or logical operations. The emphasis here would not be 

on the standard arithmetic operations of addition, s..u:b.traction, 

multiplication, and division, . but rather on the controlling func­

tions . The problem of ~ata transfer would imply flexibility in 

inpu,t/output equipment, with perhaps a number :0f buffered periph-

eral units . 

Since this machine will be a digital computer, the ,question 

of computation for problem solving might be rai:s.ed . It is antic­

ipated that the OSTIC will be used little,if at all, for this type of 

operation, since computers are already available on campus with 

much mwre speed and many programming aids. The problems 

inherent in writing even a small pr_9gram for a binary computer 

with no _compiler or .assembly routines available make such an 

application extremely unlikely, to say the least. 

f inally comes the all-importapt question of maintenance. 

This -computer will be maintained by students and technicians who 

will probably not be overly familiar with computers in general, 

and who certainly cannot be expected to become intimately 

acquainted with the operation of each individual circuit. Also, 

there will be a continuing turnover in the student personnel 

associated with maintaining the computer. The entire machine 

must be designed with this in mind; maintenance procedures, 

especially those concerned with pin-pointing malfunctioning 

units, should be extremely { simple and straight-forward. 

Upon taking all of the foregoing considerations together, 
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one finds that a fairly clear-cut design philosophy emerges. It 

becomes clear that a simple machine organization is desirable, 

from the standpoint of the graduate student whose thesis proj­

ect forms a part of the machine and who needs to understand 

its place in the overall design; from the standpoint of the school, 

since simplicity usually implies economy of components ; 

from the standpoint of the student in a computer design course, 

whose first contact with the "insides" of a computer will prob-

ably be through the OSTIC; from the standpoint of the students 

(and faculty) who use the computer; and from the standpairit 

of the maintenance personnel 1 fo-l' whom an easily understood 

machine is usually an easily repaired machine . 

The OS TIC should be an e;'l(.tre mely reliable computer, both 

because a large amount of time (and money) will probably not be 

available to make constant repairs, and because some of the areas 

of greatest benefit will be those in which the computer is used as 

a means of testing and monitoring the performance of other 

equipment . 

The final design criterion ~orces the de-sigher to make so­

called "engineering decisions". 1 This is the requirement that 

the computer be practical; in other ,words, the OSTIC should 

be not only usable, but useful. It was noted that the uses for this 

machine· ·would be primarily in the areas of demonstration, test, 

and system investigation. These applications necessitate a flex­

ible computer, with perhaps a limited arithmetic command list, 

but with an extremely flexible list of testing and data-handling 

commands. Implicit also is a rather large console, with many 

operating options. In order to justify the effort that has been and 

will be put into the design and construction of this computer, a 

machine of maximum usefulness must be the constant goal. 



CHAPTER II 

THE OVERALL SYSTEM ORGANIZATION OF THE OSTtC 

Thi s chapter presents a discussion of the overall syste m 

organization developed using the criteria presented in the pre­

ceding chapter. The basic tenets set forth in this .chapter are t he 

foundations upon which the .remainder of the <k..s..ign rests . 

Because of the requirements of component economy, sim­

plicity, and reliability, the binary m,1mber system was select­

ed for use in the OSTIC. Practically every text on digital com­

puters presents 11r1ateclal on the choice of a number system 

(1, 2, 3, 4) ; it will suffice to state here that this computer would 

be much more expensive and complicated if built as coded­

decimal machine, and further, that the use of a binary computer 

in digital instructional courses is not a dt.sa:dwantage to the 

student, since many computers in the "real world" are natural 

binary machines. 

A second fundamental decision was that the OSTIC ,should 

b e a parallel machine. "Parallel", as used here, means that 

the binary digits, or bits, of a given computer word ar e always 

transmitted and operated upon simultaneously. It was decided 

that the bits of any given word would be stored in parallel on the 

magnetic drum, that they weuld be read off of the drum in par­

allel, and that they would be moved about within the mac hine in 

parallel:. The primary consideration in selectirg;parallel oper -

ation was that the OSTIC was to be used for slow speed or step ­

by - step d e monstration in the c1las s room; it wa s fe lt that a p a rall ­

el compute r would b e mor e r e adily un d erstood by the s t u d ents 

than would a serial machine. Also, a parallel compute r can b e 

6 
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organized and built in a more straight-forward manner; if a separate 

wire is assigned to each bit, the circuit designer has fewer problems. 

Finally, it should be noted that most authors agree that a serial machine 

uses fewer ::components (1, 4); in this case, the economy consideration 

was compromised somewhat for the sake of overall design simpli city. 

The next problem was to select the method of instruction sequencing. 

Four-address, three-address, two-address, one-plus-one address, 
. 1 

and single-address computers have been built , and each system has 

its advantages. The system chosen for the OSTIC was the single­

address system, whereby the instruction word specifies the operation 

to be performed and (normally) the location of the operand. A 

special counter, called (in the OS TIC) the 11Instruction Counter" , 

keeps track of the location of the next instruction. The Instruction 

Counter is incremented at some time during the execution of each 

instruction, and it is presumed that the next instruction will always 

be placed (by the programmer) at the memory location correspond­

ing to the contents of the Instruction Counter. Again, the single- -

address system was chosen for reasons of economy and simplicity 

of design; it is not an f!xaggeration to observe that a three-or four­

address machine is a programmer's dream and a designer's night-

mare . 

Having decided upon parallel binary operation, using a magnetic 

drum memory for storage of both data and. single-address instructions, 

1· 
Some examples of computers using the various types -of address 

structure are: 

Three-address ......... , Univac File Computer 
Two-address ............ IBM 3'05 (RAMAC) 
One-plus-one address .... IBM 650 
Single-address .......... IBM 704, 709, 7090 
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the rest of the functional units of the OSTIC may be specified. It 

was decided to use a double-length, doubly-addressable accumulator, 

and to refer to the two halves as the "UPPER" (high-order) and "LOWER" 

(low -order) ACCUMULATORS. A word distributor, or "D-REGISTER" 

was chosen for temporary storage of operands and to perform miscella­

neous tasks . A register -~b store the current instruction is implicit 

in a digital computer; in the OSTIC this is called the "INSTRUCTION 

REGISTER" , and may ; pe further described as a combination of 

an "OPERATION REGISTER" and an "ADDRESS REGISTER" . The 

INSTRUCTION COUNTER has been previously mentioned; it would 

pperate in ,conjunction with an "INCREMENT REGISTER" that would 

perform operations associated with incrementing the INSTRUCTION 

COUNTER. 

In addition to the units mentioned above, an '.'AUXILIARY COUNT­

ER" wa'..fi found .to be necessary for certain operations. The possibil­

ity exists (although somewhat remote) that indexing registers might 

be added to the OSTIC;therefore, they should be included as func­

tional units. It should be noted that the input/6utpµt equipment 

(except for the console) is not considered, since its characteristics 

do not enter into the internal organization. 

Logical Piagram number 1 (Figure 1) presents the functional 

units of the OSTIC ·, and the manner in which they are tied together 

for data transmission purposes. The common point is the 11DATA 

CHANNEL" , a group of bit lines that handle all data transmission 

between the drum and any register, between registers, and betvqeeh 

input/output units and the memory. Both data words and instruction 

words pass over the DATA CHANNEL. The cycle impulses, togeth-

er with the output of the OPERATION DECODER, ADDRESS DECODER, 

or address comparison circuits (none of which are shown on Logical 

Diagram number 1) , caus e the output lines of a given unit to b e 
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gated onto the DATA CHANNEL. A moment later the input lines 

of some other unit are gated from the DATA CHANNEL. After. the 

transfer of data or an instruction has occurred, the DA TA CHANNEL 

input gate is removed, and then the DATA CHANNEL output gate 

is removed. The entire operation of this computer is based upon 

the data channel concept, since the acquisition and execution of all 

computer instructions involves basically little more than the gating 

of the proper units onto and off of the data channel in some. pre -

determined sequence. 

Upon examination of Logical Diagram number l, several other 

design concepts be!tome apparent. One of the most important is 

that since all of the operating units share the same DA TA CHANNEL, 

it is not at all difficult to make all of them addressable in the program. 

This concept is relatively new in computer design (5, 6), and while 

simplifying the construction of the machine, it vastly increases the 

flexibility of programming. 

It wil;l; b:e noted al!'iO .that::each unit communicates directly with 

the computer console, rather than indirectly through the DATA CHAN­

NEL . While this approach results in a rather imposing console 

with many indicator lights and switches, it is felt that enabling the 

student to read the contents of all units simultaneously. would be 

invaluable for classroom demonstration. The ability to enter data 

into any register by merely setting the data word in a row of toggle 

switches and pushing an "enter" button has advantages in ease of 

operation. 

The "REAO..ONLY MEMORY, as shown on Logical Diagram 

number 1, · is simply a number of rows of toggle switches mounted 

in one section of the console. Each row would correspond to one 

word of memory and would be addressable for read-out in the same 

manner as the drum memory. 

Finally, it should be pointed out that the various types of in-
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· put output units in Logical D.iagram number 1 are shown for illustra­

tion only .. It.is presumed, however, that these units or their buffers 
I " . . 

will communic~te with .the DA TA 'CHANNEL. 

The remainder of this paper will describe the method of control­

ling the operation of the various units. 
' 



CHAPTER III 

MEMORY AND TIMING 

As is true with most digital comp~ters using a rotating mag -

netic drum for the main memory, timing in the OSTIC is a func­

tion of the angular position of the drum. The drum in the OSTIC 

rotates at a nominal 3450 rpm (one revolution equals appro~imate­

ly 17. 4 millis~conds). It is 7 1/2 inches in diameter ;by 10 inche.s 'in 

length. One.hundred-twenty-eight readfjJrite heads ~re located 

aro-und the drum, and a permanently machined timing .track p:i;-o-
,' I 

viding 2560 timing pulses per drum revolution (one timing pulse 

every 6. 8 microseconds) is located at one end. 

Since it was decided to read data onto and off of the drum in 

parallel, words could be .located as des'.ired. Accordingly, the 

2560 timing pulses available were divided among 512 word _times, 

providing five timing pulses per word (see Figure 2t. One 

word time in the OS TIC is then equal to approximately 34. 0 ,, ; 

microseconds. A "home" pulse will be provided on a separate 

timing track, and "address" tracks will be permanently recorded 

with the binary word addresses 000 000 000 to 111 111 111, which 

is equivalent to words 000 to 777g, or to words 000 to 51210 

(note that the choice of 512 word times per revolution provides con-
. 9 

venient addressing, since 2 ;:; 51210) . Word location 0008 will 

immedia.~ely follow the home pulse in angular position, and loca­

tion 777g will immediately precede it. The five timing pulses 

for the ith word time will be denoted by TfO, Til, Ti 2, Tt3, and 

Ti4' or more gen~rally (where the particular word time is unimpor­

tant) as O time, 1 time, 2 time, 3 time, and 4.time. This timing 

convention will be used throughout the remainder of this paper . 

. ;12 
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The timing pulses, home pulse, and address pulses :will be _read 

by read/write heads that have had their write circuits disabl_ed. 

The pulses will go into a "CLOCK REGISTER" that will provide the 

various pulses and gates needed by the rest of the machine, as well 
' 

as providing a constant check :on the timing and address pulses to 

see that they occur in the propel'. order. 

To reduce timirig problems, the address pulses of word Ti . 
'. 

will be permanently ; recorded in such a manner .that they will be 

available fore&clff:n;g at Ti 1 time. The bits of word Ti itself 

will be written onto and read off.of the drum at T.3 time. Chap-. . . . . l 

ter 5 relates .the use of addreSf:l pulses in reading from and writing 

onto the drum. 

It was decided to use a waiui length of 18 bits in the OSTIC,: 

together with a sign bit and a parity bit. The sign bit is transmit­

ted with the word bits, but is not considered an integral pa11t of 

the word for purposes of shifting and multiplication. The parity 

bit is used only in conjun~tion with drum storage; it is generated 

by the ''PARITY REGISTER" on a "drum write'' (store) operat!on, 

ancl is checked by the PARITY REGISTER on a "drum read" 

operation. The parity mode is "even parity", as is used by most 

parity-check devices; the total number of bits in a word, including 

sign and parity bit,· is always supposed to be an even nutp.b_er. 

The use of an 18 bit word for both data and instructions bdngs 

up the question of instruction format and addressing. It was st,:\.ted 

previously ;that there were 512 word times· during one revolution of 

the dr:um. In order to represent 512 separate addresses in binary 
. . 9 . 

form, 9 bits must be used (2 ii. 512). However; it would be desira-

ble to have more .than .512 memory locations; in fact, if a total of 

twenty'bits are recorded on the drum for each w~rd (18 word bits, 

1 sign bit, 1 parity bit), a.to.tal of 20 read/write heads are all that 

are necessary to store 512 words, while some 128 rea9/write heads 
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are available. A further consideration is that since bima.ry notation 

is somewhat unwieldly for everyday use, it would be very desira­

.ble if programming of the computer could be done in oct~l (base 8) 

notation. Octal requires 3 binary bits for each octal digit; there­

fore, binary addresses must be in multiples of 3 bits if they are 

to be represented in octal form. 

In view of th~se c~nsiderations, it was decided. to use 12 bits 

of the instruction wo.rd for the data .address, and the remaining six 

bits for the operation code. This resulted in a 6 octal digit instruc­

tion (see Figure 2) the first two digits of which were the operation 

code, and the last four were the address. Further, the address. 

may be. di.viced into a "band address" for the first octal digit (first 

three bits) and a "word address" for the last three octal digits (last 

nine bits)~ The drum memory thus was planned to have six bands of 

512 words each, for a maximum (if all are used) of 3072 words of 

drum memory. 

In addition, it is proposed that OSTIC be provided with either 

·sixteen or thirty-two words (a power of two would present fewer 

problems in the address circuits) of "read-only" memory Jn the 

form of switches on the control console. These memory words 

will be addressable only on read operations; the binary system in 

the computer will allow the use of relatively. inexpe:p.sive single..; 

pole double-throw toggle switches. . The availability of a fairly 

1arge, quickly altered read-only memory would be invalua_b!e for 

demonstrations and test programs. 

It will be noted that since band numbers O and 7 are not used for 

drum addresses. there are 512 addresses of the form OXXX_g and 

and 512 .addresses of the form 7XXXg also available. It is intend­

ed therefore·, th.at the OXXX addresses be reserved for internal 

ma.chine use (register addresses, read-only memory, etc.) , 

while the. 7XXX addresses be reserved for inpu,t/output equipment. 
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It is intended that band addresses I through 6 be reserved for drum 

addresses, even though not all six bands are u·sed at first. 

The use of two octal digits for operation codes results in a poss­

ible command list of 6410 operation codes, ranging from 00 to 778 . 

If the sign of an operation were also taken into consideration, a 

.total of 1Z8fo operation codes could be used. This, however, is 

not recommended. Further discus.sion ofthis point will be found 
·u. 

in Chapter io. 
To sum?llarize·briefly, t~ drum memory is divi<led into six 

bands, numbered from one fo six.· Each ba:p.d contains.512 words, 
' . 

numbered from QOO to 777~. Each word has eighteen bits , one 

sign bit, and (on the drum only) one parity bit, for a total of tw.·enty 

bits. The instruction word uses the first two oct_al digits of the 

word £pr the operation code, and the last four for the address. The 
I 

addres~Ji; .broken down into a one digit band number (or ·band ad• 

dress)' and a three digit. word address. 

Internally, the machine uses five timing pulses per word time, 

called (for· the ith jword) Ti 0, T il, 'TiZ, Ti 3, and Ti 4. Where the· 

particular word is of no importance, 0 time,-1 time, Z time, 3 

time, and 4 time will be used. The iwCtxd address as correspond­

ing_to the addresses of the words in each band are recorded on spe­

cial address tracks; these are available at 1 time, while the conten,ts 

of the word itself are available at 3 time. 



CHAPTER IV 

CYCLES. AND CONTROL 

Almost every digital computer must perform, internally or 

externally, two basic functions. One<of these is to ~cquire, by 

some means, the next instruction to .be executed. The other is 

to execut~ that instruction. 

No matter how simple_ or how complex: the .individual instruc -

tion, the com~uter pe:rforms its operations in this manner. ·It. 

has be~n.said that a digital computer is perhaps the most complex 

form of sequential machine, since at the start of a p.rogram the 

instructions and data stored internally will (if no input is- assumed 

to occur during the program) de.termine the state of the ma.chine at 

any later; time until the ·program is completed. 
I . . . 

Thus, the computer steps through a program, finding .an in­

struction,. executing it, finding the next instruction, executing 

. it, etc. The time consumed in acquiring the next ins*'1ucti<:>n in 

the OSTIQ will .be calle~ t_he'~1iri:$truction cycle", and the time 

consumed in executing.that instruction will be ca11ed the "data 

; cycle"' althotigh data inay not always b~ transferred on all da,~a 

\cycles. 

The i:~rm 11cycle"should be further defined, since a tnisconcep-
. . 

t~on: could ·~aeiily result from it.s indiscriminate use .. As µsed hete, 
. - . ' . 

a T!~ycle'i .~$ one ot mc{:r:e whole wo:rd times, a word ·tim~:being 

~tnside~~d to run-;rom the leadi~g edge of one O time pulse to .the 

leading edge of the next O time pulse. ~ cycle may sometimes 

consist of only one word.time, as, for example, the time required 

to acq':1ire the ne:x;t instruction from the D-register (see Chapter 

5). or';_it may require mctny word times, as, for example, in the 
',1 
i 
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case of acquiring a multiplicand from drum storage, then. multi­

plying it by a multiplier in the upper accumulator. However, one 

rule is steadfast; in':the OSTIC, a cycle is always composed of an 

integral number of whole word times. 

The method of execution of the various operations in this 

computer will be illustrated by Logical Diagrams, using special 

graphical symbols. The reader is referred to Appendix A for 

an explanation of the symbols µsed. 

It is planned that the selection of the appropriate cycle (data 

or instruction) will be performed by a "CYCLE SELECTION 

FLIP-FLOP" (bistable multivibrator) as shown on Logical Dia­

gram number 2 (Figure 3). When one side of this flip-flop is 

conducting, the computer will be in the data cycle mode; when 

the other side is conducting, the ma.chine will be in the instruction 

cycle mode. 

The general operation of cycle selection is also illustrated 

in Logical Diagram No. 2. Briefly, the CYCLE SELECTION 

FLIP··FLOP is set to one mode or the other by a ·"CYCLE TURN­

ON".pulse at O time. The CYCLE-TURN ON pulse (a very sharp 

pulse 'of short duration) is allowed to set the CYCLE SELECTION 

FLIP-FLOP only when a "CYCLE END" impulse has turned on 

one of the two "CYCLE END latches" during .the prev~ous word 

time. 

A detailed description of the operation will now be presented, 

using the timing chart on Logical Diagram No. 2. lle~ding from 

left to right, it is seen that the CYCLE SELECTION FLIP-FLOP 

is assumed to .be set for data ,cycles, resulting in the DATA CYCLE 

MASTER gate being on at the start of the time interval under· 

consideration. A "DATA CYCLE END" impulse is then assumed 

(upper left corn.er of diagram, reading downward). Although this 
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pulse began at O time, it was inhibited by the CYCLE TURN--

ON pulse. At n time, however, the CYCLE TURN-ON pulse is 

not present, while the DA TA CYCLE MASTER gate is on, so .the 

DATA CYCLE END pulse turns on the "DATA.CYCLE END.latch". 

This latch is simply a resettable flip-flop. 

l\t O time of the next word time, since the DATA CYCLE END 

latch is on, the CYCLE TURN ..:oN puise is able to set \the CYCLE 

SELECTION FLIP FLOP to INSTRUCTION CYCLE. The INSTRUC­

TION .CYCLE MASTE:R,gate, turning on, causes the DA TA CYCLE 

END latch to be reset, or turned off. 

Sometime between O and 4 time of the instruction cycl~ , an 

INSTRUCTlON CYCLE END pulse occurs. Since the CYCLE 

TURN-ON pulse is not present to inhibit it, and the INSTRUCTION 

CYCLE MASTER gate is present,. the INSTRUCTION CYCLE END. 

irppulse turns on the INSTRUCTION CYCLE END latch. At 0 

time of the following word time, the CYCLE TURN ON pulse is 

gated by the AND circuit from the INSTRUCTION CYCLE END 

latch to set the CYCLE SELECTION FLIP .. FLOP to data cycle. 

The DATA CYCLE MASTER gate, turning on, resets the INSTRUC­

fTION CYCLE END latch to the off position, 

The salient points are that there exists either a .t>ATA CYCLE 

MASTER gate ~ an INSTRUCTION CYCLE MASTER gate at all 

times; that these gates remain on until set t6 turn off by CYCLE 

END impulses; that the turn-off or END impulses may occur at 

1, 2., 3, or 4 time for data cycles, or at 1, 2, . or 3 time for 

instruction cycles; and that the MASTER GATES are always on 

from O time of one word time to O time of a later word time or, 

in otq.er words, that Jhe MASTER GATES are always on for inte.­

gral multiples of word times. 

Logic~! fiagram number 3 (Figure 4) ,'· Instruc:tron Cycle 

Control, will now be examined. It will be noted that the'INSTRUC-
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. TIQN CYCLE MAS'TER gate, CYCLE TURN-QN pulse, and 

INSTRUCTION CYCLE END latch are repeated from the previous 

diagram.· 

Referring to the diagram and timing chart, it will be noted 

that as long as the INSTRUCTION CYCLE MASTER gate is on, 

tht\ WORD2TIME pulse is gated by an AND circuit to provide 

an.INSTRUCTION CYPLE gate .for the rest of the machine. In 

other words, the INSTRUCTION CYCLE MASTER gate doe"B· 

not itself provide instruction cycles• to .the rest of the computer; 

rather, it controls another impulse to provide this function. 

Als6 note that whenever the INSTRUCTION CYpLE END. latch 

has been turned on by an INSTRUCTION CYCLE END impulse, 

the WORD TIME pulse is inhibited by the CYCLE J::URN-ON . 

pulse'. This is to p:tevent signal race problems caused by a lag 

in the turning off of the INSTRUCTION CYCLE MASTER gate (7}. 

The : only other item requiii-4ing explanation on Logical 

Diagram No. 3 is the 1procedure for incrementingthe INSTRUC'~ · 

TION COUNTER. If was mentioned. previously that the location 

of the next instruction will always be found in this counter; therep 

· fore, after an instruction is acquired on an · instr.tiction cycle, 

the INSTRUCTION COUNTER should be incremented so that it 

will contain the address of the next instruction. Note that 

nothing has yet been said coneerning the size of this increment. 

Most, if not all, single address computers are constructed so as 

to take the next instruction from the location immediately fol­

lowing the last instruction. For example, an instruction might 

be stored in location 2301, the next instruction in 2302, the 

next in 2303, and so on. This.:would imply an increment of one. 

It is proposed that the OSTlC be equipped to increment the 

INSTRUCTION COUNTER by 1, 2, 4, 810, 1610, 3210' 6410• 

or 128 10 . · Since the OSTIC' s instruction counter is a binary 



23 

device, this method of variab1e incrementation is seen to ,be 

merely a matter of adding a l into the first, second, third, 

fourth, fifth, sixth, seventh, or eighth position,of the twelve­

position binary counter. It can .be shown that this relatively 

simple device will greatly increase the operating speed of the 

computer (see Chapter 11). 

The desired increment is placed in the INCREMENT 

REGISTE;R some time beforehand (see Chapter 9 for details), 
. . 

and thus the problem here is simply to provide an .IN'CREMENT 

pulse to the INCREMENT REGISTER at the proper time. This 

pulse will be gated by the INCREMENT REGISTER into the 

proper position of the INSTRUCTION COUNTER. IncremeI1ting 

is accomplished by the INSTRUCTION COUNTER INCREMENT 

pulse, oc~urring at 4 time, which is gated by the INSTRUCTION 

CYCLE MASTER gate.· If the INSTRUCTION CYCLE END latch 

is on, an AND circuit will aUow the INCREMENT pulse to eI1ter 

the INCREMENT REGISTER. It will be noted that the only time 

the INSTRUCTION COUNTER can be incremented is at 4 fime 

of the last word time of an instruction cycle; this must be so, 

because during any other part of the instt'uction cycle the machine 

will be using the contents of the INSTRUCTION CbUNTER in , 

seeking the next instruction. This also explain~ why INSTRUC' . ....: 

TION CYCLE END pulses must occur prior to 4 time. 

Logical Diagram No. 4 (Figure 5) illustrates the logic 

used on data cycles. This logic is necessarily more comple~ 

than the instruction cycle logic, because while essentially the 

only,operation performed by the computer on the instruction 

cycle is to search for and acquire the next instruction, data 

cycles involve the testing, adding, shifting, and so on,necessary 

to carry out the instructions, In general, the data cycle is 

broken up into one, two', or three sub-cycles (each of which may 
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be one or many word times in length). These sub-cycles are 

called ·11DATA FIRST CYCLE", "DATA SECOND CYCLE", and . . 

"DATA THIRD,CYCLE". Whenever.the ·c.9mputer gpes from 

instruction cycle operation to data cycle operation, the fir st 

word time of the data cycle is always a DATA FIRST CYC.L~. 

If an impulse is received during that word time to tturn on.a 

DA TA SECOND CY(l;LE, the next word time will be .a DA TA ., ·. ·. 

SECOND,CYCLE; if no such impulse is received, the machine 

will remain in DA TA FIRST CYCLE operation until either a 

TUR*ON DA TA THIRD CYCLE or a DATA CYCLE END im·pulse 

is received. If the machine is in DA TA '.THIR~ i::~CI:.E operation, 

tl}e a.nly;:itnpulae that will bring about ·a change is a DATA CYCLE 

END impulse. The computer can never go from DATA THIRD 

CYCLE back to DATA FIRST CYGL_E or DATA SECOND,CYCLE 

nor can it go from DA TA SECOND CYCLE to DA TA FIRST 

CYCLE. In other words,. the opercttion always starts with 

DATA FIRST CYCLE and proceeds (when so directed by "TURN­

ONn impulses) to DATA SECOND CYCLE:t and thence to DATA 

THIRD-CYCLE. 1The data cycle may be ended at the end of any 

word time by a DATA CYCLE END impulse at any time (other 

than O time) of that word time, regardless of the occurrence of 

a TURN-'ON impulse at any time during that word ti:me. In 

other words,. DA TA CYCLE-·END takes precedence ov~r a TURN· 

ON impulse. 
' The operation of the data cycle control will be illustrated 

using the timing chart and Logical Diagram number 4 (Figure 5)°. 

It is assumed that an instruction cycle precedes the data cycle. 

The instruction cycle ends at O time, and the DATA GYCL&' 

MASTER gate turns on. The DATA CYCLE RING COUNTER 

has been previously reset to first cycle, and the STEP ANTIC­

IPATION latch has been reset. Thus, as soon as the DATA 



:CYCLE MASTER gate is available, i_t gates the WORD TIME 

,pulse to the first cycle AND circuit. Since the DATA CY.OLE 

RING-COUNTER is set to first cycle, the WORD TIME, pulse 
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is available to the rest of the machine as a DA TA FIRST CYCLE 

pulse. The DATA FIRST CYCLE pulses are available for three 

word times. During the third word time, a TURN-ON ·DA. TA 

SECOND-CYCLE impulse is received. Since the DATA CYCLE 

MASTER gate is on, the first cycle stage of the DATA CYCLE 

RING COUNTER ·'is on , and ooth the second and third stages 

are off-;_ the TUR,N-ON pulse sets the STEP ANTIC~PATION 

latch. At O time of the next word time, the CYCLE '!['URN-ON 

puls·e is available through an AND gate controlled by the DA TA 

CYCLE MASTER gate. The CYCLE TURN ON pulse tests the 

setting of STEP ANTIC~PATION latch by means of an AND . . . 

c.ircuit. :If the STEP ANTICIPATION latch'is set, the CYCLE 

TURN Ol'f pulse momentarily inhibits the output of th'3 WORD 

TIME pulses until the DA TA CYCLE RING COUNTER can 

advance:, and also resets the STEP ANTICIPATION latch. WORD 

TIME pulse's are. then available from the DA TA SECOND CYCLE 

output. 

The .timing chart shows the DATA SECOND CYCLi: pulse's 

as being :available for two word times. During the se·cond 

word time, a TURN-ON DATA THIRD CYCLE impulse is re­

ceived, which ·{since first ?1,-nd third cycles are off, and second 

cycle is on) turns on the STEJ? ANTICIPATION latch. Later, 

during the ~e word time, a DATA CYCLE END impulse is 

received .{this pulse sequence can occur on accumulattG>r add-in 
.·•· .. . . . . 

operations, among others; s·~e Chapter 6). The DAT~ CYCLE 

END impulse turns on the DATA CYCLE END latch. At O time 

of the next word time, the CYCLE TURN'."0,N pulse is prevented 
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by the DA TA CYCLE END latch from advancing the RING 

COUNTER. Instead, the CYCLE TURN-ON pulse re·sets the 

RING COUNTER to first cycle, resets the STEP ANTICIPATION 

latch, inhibits the WORD TIME pulse (to prevent signal race 

problems), and sets the CYCLE SELEG TION FLIP-FLOP to 

data cycle (see, also, Logical Diagram number 2). 

Two w1ord times of instruction cycle are then shown on the 

timing chart. Following that come two word times of DA TA 

FIRST CYCLE pulses, followed by one word time of DATA 

~-,ECOND CYCLE. During this word time a TURN-ON DATA 

THIRD CYCLE is received, as before. Since no DA TA CYCLE 

END pulse is received, however, the CYCLE TURN-ON pulse 

can then step the RING COUNTER to third cycle and .reset the 
.. 

STEP ANTICIPATION latch. Two word times of DA TA THIRD 

CYCLE follow, during the second of which a DA TA CYCLE END 

impulse sets the DA TA CYCLE END latch. The operation of 

resetting the various latches and changing to the instruction 

cycle proceeds as before. 

It is important to remember that a data cycle may consist 

of a DA.TA FIRST CYCLE>; DA TA SECOND CYCLE, and DA TA 

THIRD CYCLE. These cycles may consist of one or more word 

times, and are changed by TURN-ON DATA SECOND CYCLE or 

TURN-ON DATA THIRD CYCLE impulses. The first cycle taken 

after the machine goes into data cycle operation is the DA TA 

FIRST CYCLE. If a DATA CYCLE END impulse occurs, data 

cycle operation ceases at the end of that word time, regardless 

of any TURN-ON pulses. 



CHAPTER V 

DA,;::TA A'CQU!SI'.I'IQN.ANI>: TR.J:\NS~ISSION 

Having developed the logic of providing controJ cycles for 
. ·.·. . I ' 

the :computer, attention will now be.directed toward the matters 
. . 

of acquiring.data and inst.~uctions for immediate use, and ~taring 

data for future use. 

Basically, the computer acquires ·a word ·for o~e of two 

purposes; either on a data cycle for use in arithmetic operations, 

in which ca'se the word would be called an·~1operand", or on an. 

instruction cycle, ·:j:n;whicb case the word would be used as. the 

next instruction. Various miscellaneous transfers of words or 

portions of words!may be made .during the execution of certain 

instructions~ but th~se will be of no concern in this chapter. 

The computer· may acquire a word from either the magnetic 

drum, which ~ill :be called a "drum read" operation, or from 

an internal registe~, :Which will be called a "non-drum read" 

operation~ Storage of words onto the magnetic dmm will be 

termed a fldrum write'' operation, and may occur only during 

a data cycle ( storage occurring duririg input operations is not 

considered here; see Chapter 10). 

Drum Read operation is illustrated on 'Logical Diagram 
; . . 

number 5 (Figure 6), and its associated timing c~art. The 
,· 

basic operation is simply that the contents of som:e .drum . 

address is desired. The address is sought, and, when found, 

the bits in .. that loc4tion are read onto the· DA TA CHANNEL 

• , and thence into the ~ppropriate register. 

Read operations· during a data cycle will only occur on 

D:ATA FIRST CYC0LES. The presence of the OPERAND gate 
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(from the OPERATION DECODER) signals that it is desired to 

read the contents of some storage location (or register) into, 
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the D-REGISTER. Read operations during an instruction cycle 

will be signaled simply by the presence of an INSTRUCTION 

CYCLE gate (since the only purpose of an instruction cycle is 

to acquire the next instruction). The contents of the desired 

storage location (or register) will be read into the INSTRUCTION 

REGISTER. 

The ADDRESS pulses are available from the read heads at 

approximately 1 time, and are compared against the contents 

of the INSTRUCTION COUNTER (on instruction cycles) or 

against the contents of the ADDRESS REGISTER (on data cycles). 

If an equal comparison is detected, the contents of the word are 

read onto the DATA CHANNEL when the bit pulses are available 

from the read heads at 3 time, and are read in from the DATA 

CHANNEL into the appropriate register. 

Using the timing chart at the bottom of Logical Di.a.gram 

number 5, it is seen that at the beginning of the interval the 

INSTRUCTION CYCLE gate is assumed to be on. At 0-1-2 

time the ADDRESS TEST pulse is gated by the INSTRUCTION 

CYCLE gate to interrogate the band number of the address 

contained in the INSTRUCTION COUNTER. If the band number 

is in the range 1 through 6, the ADDRESS TEST pulse is allowed 

to gate the ADDRESS pulses from the word address comparison 

circuitry. These ADDRESS pulses are read from the address 

track at approximately 1 time and, if the INSTRUCTION CYCLE 

gate is on, are compared with the word address portion of the 

INSTRUCTION COUNTER. If an unequal comparison occurs, 

no output results, and the comparison is made again with the 

ne:x:t set of ADDRESS pulses. If, as in the timing chart, an 

equal comparison occurs, a 1 time pulse appears at the output 
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of the w~rd address comparison circuit. ·This pulse is gated 

by the ADDRESS TEST pulse to turn on the EQUAL COMPARISON 

latch. At z .. 3_4 time the READ IN pulse, gated by the ,INSTRUC-. 

TION CYCLE gate, gates the INSTRUCTION REGISTEil to read 

in from the DA TA CH,A.NNEL. At approximately 3 time _the 

EQUAL COMP.A.RISON latch gates the bit pulses of the desired 

word into the PARITY REGISTER and thence onto the DA TA 

CHANNEL, from which they are read into the INSTRUCTION 

REGISTER. The word is always read through thejPARITY 

REGISTER onto the DATA.CHANNEL, and if the parity is in­

correct, the PARITY ERROR latch is turned on for future use. 

At 3 time the CYCLE TEST pulse tests the circuit, and since 

the INSTRUCTIO~ CYCLE gate and the EQUAL COMF>ARISON 

latch are on, the CYCLE TEST :impulses INSTRUCTION CYCLE 

END. The EQUAL COMPARISON latch, if on, is turned off at 

0 time {not shown). 

The next word time after an JNSTRUCTION CYCLE END : 

impulse is automatically a DA TA FIRST CYCLE (see Chapter 4). 

I£ the OPERAND gate is on, the DATA FIRST CYCLE impulse 

allows the ADDRESS TEST pulse to test the band address of the 

ADDRESS REGISTER and the ADDRESS pulses from the word 

address track to be compared with the word address in _the 

ADDRESS REGISTER. As is shown on the timing ,chart, several 

word times (512 maximum) may pass before the equal co~parison 

occurs. When it does occur, the ADDRESS TEST pulse prpvides 

a gate allowing the equal comparison pulse to turn on the EQUAL 

COMPARISON_ latch. At 2-3-4 time the READ-IN pulse is gated 

by the DATA FIRST CYCLE-OPERAND gate to allow the D-REGIS_-_ 

TER to be read in from the DA TA CHANNEL, and at 3 time the 

bit pulses of the desired word are gated by the EQUAL COMP.AR .. 

ISON latch to pass through .the :P.ARIX.Y REGISTER, onto the 
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DATA CHANNEL, and into the D-REGISTER. Also at 3 time .the 

CYCLE TEST pulse is gated by the DATA FIRST CYCLE ~PERAND 

gate to test the circuit. If the LOAD D-REGISTER gate were on, 

this would imply that the only operation desired was to read the 

desired word .into the D-REGISTER, and as soon as this was 

accomplished, OAT.A. CY.CLE END would .. be impulsed. It will 

be noted that TU:RN•ON DATA.SECOND CYCLE is always.im­

pulsed at 3 time of the word time during .which the operand is 

acquired,. and 'DA TA CYCLE END. is also impulsed if LOAD D 

is on. 

Non-drum read,Logical Diagram number 8<'(Figure 7),is 

similar to drum read, except that the d.esired word is .located 

somewhere other than on the magnetic drum. The operation is 
' 

exactly the same as far as the testing of the band numbers is 

concerned. However, the presence of a() band number indicates 

a non-drum location, and the operation proceeds somewhat 

differently from that point. 

Using the timing .chart on Logical Diagram number 6, it is 

found that a data cycle is the first complete cycle shown. At 

0 time the DATA FIRST CYCLE pulse is gated by the OPERAND 
; 

gate and allows .the ADDRESS TEST pulse to .test the band number 

of the ADDRESS REGISTER. The NON-DRUM READ latch is 

turned on at approximately O time (if a. 7 band number were de-

,· tected, the STORAGE SELECTION ERROR latch wquld also :be 

turned on. The NON-DRUM READ latch, together with.the DATA 

FIRST CYCLE .... OPERAND pulse, gates the contents of the ADDRESS 

REd!STER in to the ADDRESS DECODER. The DATA FIRST 

. GYCLE ... OPERAND gate also allows the READ-IN pulJe to gate 

the D-REGISTER for read-in from the DATA CHANNEL c!:t 2-3-4 

time. Meanwhile, the ADDRESS DECODER has selected the 

desired register, and at 3 time a WRITE pulse reads the contents 
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of the desired register onto the DATA CHANNEL__.a..n.a.thence 

into the D·REGISTER. Also at 3 time the CYCLE TEST pulse 

interrogates the circuit through an AND gate from the DA TA 

.FIRST CYCLE-OPERAND gate. TURN-ON DATASECOND.,CYCLE 

is always impulsed, and if the LOAD D-REGISTER gate is on, 

DATA CYCLE .END is impulsed. The NON-DRUM READ. lc!,tch 

is reset at 4 time. Note. that only one word time is needed to 

acquire a non-drum operand. 

If the INSTRUCTION CYCLE ·gate is on, the ADDRESS TEST 

pulse interrogates the band number of th~ INSTRUCTION COUNTER. 

If the .band number is 0, the NON•DRUM READ.latch is turned 

on and the .. c.ontents of the INSTRUCTION COUNTER gated into 

the ADDRESS DECODER. 'The INSTRUCTION CYCLE gate 

allows the REA.0:~N pulse to gate the INSTRUCTION REGISTER 

to read in from the DATA CHANNEL at 2-3 .. 4time, and the 

WRITE pulse, together with the ADDRESS DECODER (J)llfput, 

reads out the proper register onto the :OATA .CHANNEL. · The 

CYCLE TEST pulse passes through the INSTRUCTION CYCLE 

gate and NON-DRUM READ latch gate to impulse INSTRUCTION 

CYCLE END a.t 3 time, The NON~DRUM READ latch is reset 

at 4 time to prevent transient outputs from the ADDRESS DE -

CODER caused by the INSTRUCTION COUNTER being incre­

mented at 4 time. Note that this seemingly innocuous Logical 

Diagram implies that the contents of any register may be used 

as either data or as the next instruction. This is a feature .that 

is comparatively rare in computer design. (6). 

· The }ast cla.s s of ope1"ations cover.ed, in this chapter will be 

the "drum w 7ite" or "store 11 operatio~s, Logical Diagram number 

7, (Figure 8). In .the OSTIC, a store operation will only occur 

on a data cycle, and is only valid for a drum addr.ess. The 
' . 

operation will be illus~rated using a "store-upper accum_ulator 11 
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operation, in which the contents of the UPPER ACCUMULATOR 

will be written onto the drum in the location specified by the 

contents of the ADDRESS REGISTER, and simultaneously read 

into the D,REGISTER. 

The STORE gate allows a DATA FIRST CYCLE pulse to gate 

the ADDRESS TEST pulse at 0-1-2 time. If the band number of 

the ADDRESS REGISTER is on the drum, ;:the ADDRESS TEST 

pulse provides a gate for EQUAL COMPARISON pulses. When 

the ADDRESS pulses from the addr~ss track of the drum are 

equal to the word address portion of the ADDRESS REGISTER, 

the EQUAL COMPARISON pulse is gated by the ADDRESS TEST 

pulse to turn on the EQUAL COMPARISON latch. The DATA 

FIRST CYCLE-STORE pulse is gated by the UPPER gate to 

read the contents of the UPPER ACCUMULATOR onto the DATA 

CHANNE,L: At 2-3-4-time the READ-IN pulse is gated by the 

DATA FIRST CYCLE-STORE to allow the contents of the DATA 

CHANNEL·:to be read into the PARITY REGISTER, where the 

proper parity bit is generated. At 3 time the WRITE pulse is 

gated by the DATA FIRST CYCLE-STORE and .the EQUAL,COM .... 

PARISON latch to write the PARITY REGISTER o~tput into the 

desired drum location, and also by the UPPER gate (or LOWER, 

if on) to read the contents of the DATA CHANNEL into the D­

REGISTER. Also at 3 time.the CYCLE TEST pulse is gated by 

DATA FIRST CYCLE-STORE :land the EQUAL COMPARISON 

latch to impulse DATA CYCLE END. 

Note that a non-drum band number will cause the ADDRESS 

TEST pulse to set the STORAGE SELECTION ERROR latch and 

impulse DA TA CYCLE END. Also no,te that the presence of 

either an UPPER .or LOWER gate will cause the contents of the 

appropriate regi$ter to be stored onto the drum and read into 

the D-REGISTER simultaneously, but the presencE(of a D gate 



will cause only the contents of the D-REGISTER to be read out 

and stored. 
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To summarize, words are read into the fr-REGISTER on 

DATA FIRST CYCLES when the OPERAND gate is on, or into 

the INSTRUCTION REGISTER when the I:NSTRUCTION CYCLE 

gate is on. The contents of either a drum location or a machine 

register may be read in this manner. Store operations, on the 

other hand, are valid only for drum addresses. These also 

take place on DA TA FIRST CYCLE. The conten~ts of the UPPER 

ACCUMULATOR or LOWER ACCUMULATOR may be storeq 

on the drum and also automatically placed in the D-REGISTER. 

The contents of the D-REGIS'l'ER may also be stored on the drum. 
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CHAPTER VI 

AC.CUMULATOR OPERATIONS 

' The heart of a digital computer is the accumulator, for it 

is there that the majority of the operations' that justify the 

existence of the computer are P.erformed . 
. . 

It is not within the purview of this paper to deal extensively 

with the deta:l.led design oi'the accumulator circuits~ The writer's 

philosophy is .that the c0mputer will present various gates and 

pulses :ta the accumulator ~t the proper time, and it is .then up 

to those who design .the acc.umulator to provide the desired results 

at the proper time. 

The method of :i;-epresen.tation of·pumbers within the OSTIC · 

will be in "sign and magnitude" binary form. In other words, 

a plus 2710 would be represented as 00000000000001101-:1 with 

a O (plus) sign. A .. minus 27 10 would be 000000000000011011 · 

with a 1 1(minus) sign. Numbers will always be stored as sign 

and magnitude, and will usually be used in this form. 

The arithmetic operation performed. by the accumulator will. 

be that of binary addition of the D.ATA CHANNEL output to the 

either the UPPER a:r .,LOWER ACCUMULATOR, :.with end-around 

carry. In this case, both accumulators will be cons.idered to­

gether as a single 36 bit ACCUMULATOR with the sign bit to the 

right of the low -order position (only one sign bit is used for the 

entire ACCUMULATOR)., On 'acld and -subtract operations (but 

not multiply, shift, or Jogical operations), the sign bits will be 

added in a ma,nner similar to the magnitude bits 0£ the wo_rds, 

and a carry (if one occur.s) is allowed to propagate from the 

sign'.position into the low .;order pbsition of the LOWER and 
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from the high-order position of the UPPER into the sign position. 

This is called an ''end .. around carry"·. · ·For example, in adding 

+27}()' in the D-REGISTER to +55 10 in the LOWER, the entire 

ACCUMULATOR .-a.Iid)I).;.REGISTER would appear as 
. I. 

D-REGISTER. · .. , . OOOOOCXX)OOOOOO 11,011 Q (sign) 
&00.um.u:t.ATOR 000000000000000000000000000000110111 o 
Correct Answer 000000000000000000000000000006010010 0 

. . 

Although the ACCUMULATOR actually consists of two eight­

een-bit numbers and a sign bit, t:o.,.vj,,hich is added an eighteen-bit 

number and a sign bit, most of the remaining examples in this ... 

paper will show an AC CU MULA TOR consisting of a ten-bit word .: ... ·. •­

and a sign,. to which is added a five-bit word and a sign. The 

preceding example should serve to illustra.te_ how unwieldly 

eighteen- and thirty-six-bit examples can become. The use 

of a shorter word for purposes of explanation does not , of > 

course, alter the manner in which the operations take place. 

Consider, for example, the case in which the ACCrtrMULATOR 

conta.ins-.a-+15, and a +17 is added from the D-REGISTER into 

the LOWER. 

D-REGISTER (17) 10001 0 
AC CU MULA TOR (15) 0000001111 ~O 

(32) 0000100000 0 

Subtraction is accomplished in the OSTIC by entering the,· 

sign-and-magnitude value of the number to.be subtracted (sub­

trahend) into the D•REGISTER. The 1' s complement value of 

the· magnitude portion is then read .onto the DATA CHANNEL: .. 

and added into the ACCUMULATOR. A 1 is also added into the 

sign position. If the ACCUMULATOR has a minus sign, the mag ... 

nitude of the number. in the ACCU:MULATOR, :irritust1.'be placed in 

l's complement form before the addition operation takes 'place. 

If the sign of the result is minus ( 1), the ACCUMULATOR must 

: . . ,i.. ). 
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be complemented after addition in order :to reflect the corre.c,;t 

sign-and-magnitude answer. On subtraction, an eighteen-bit 

word composed entirely of l's fl' s complement of zero) must 

be added into the LOWER if the l' s complement of the D-

REGISTER is added into .the UPPER, and similarly, l's must 

be added into the UPPER if the complement of the D-REGISTER 

is added into the LOWER, If two negative numbers are added, 

an end-around carry from the high-order position of the UPPER 

into the sign position 1must take place and a complement cycl'e -
must be taken following the addition. If the end-around carry 

does not occur,. then a number too large for the ACCUMULATOR 

(overflow) has been generated. If two positive numbers are 

added, an . end-around carry must not take place, and no com--·-
plement cycle is necessary. If an end-around carry does take 

place, then an overflow has occurred. If two numbers of opposite 

sign are added, an overflow is simply not possible, and the 

presence of an end-around carry indicates that no complement 

cycle is needed, swhile t~e absence cf. an end-around carry in­

dicates that a complement cycle must follow. Table I w\11 

serve to illustrate .the 2hove-me.ntioned rules, using a five-bit 

·U]?PER, a frve .. bit LOWER, and .a five .. bit D-REGISTER. 

This chapter relates the logical operations necessary to 

accomplish ; sixteen possible combinations of resetting .the 

ACCUMULATOR prior to the operation, addition of the D -
. ,1 . 

REGISTER contents to the UPPER or. to .the l.,OWER, subtrac-

tion of the D-REGISTER contents from the UPPER or from the 

LOWER. Furthermore; each operation may be executed in alge­

braic fashion or by us.ing the absolute value (magnitude) of the 

operand. It is necessary, therefore, to examine the combinations 

of signs and operations which imply the use of true or comple,­

ment values. 



TABLE· i·•-'' 

·••·. BINARY ADDITION'.WITH, END,,AROlJND CARRY 

. . 11111 
0010111111 
OOllOIIUO 

0 D-REGISTER at start . 
0 ACCUMULATOR at start. 
0 Correct answer. 
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No en9,~around carry occurs. No complement cycle needed. 

Example 2. Add D to UPPER. 

01111 
0010111111 
l0l001llil 

0 D ... REGISTER at start. 
0 ACCUMULATOR at start, 
0 Correct answer. 

Note that if .the sign bit of the number added is O (plus), 
nothing need be added to the LOWER when the D-REGIS'rER 
is added to the UPPER, and vice-versa. 

Example 3~ Add D to LOWER. 

00001 
1111111111 
0000000000 

0 D-.REGISTER at start. 
O ACCUMULATOR at start. 
0 Partial Sum. 

.. 1 End-around carry. 
-o-o-0-0-0-o-o"""o"""o-o-..... 1 Inc or rec t answer. 

This example illustrates an overflow, Note that, if both 
numbers are plus, an end-around carry signals an overflow. 

Case II. Two negative numbers are added. 

Example 1. Add D to LOWER. 

11111 1 
0010111111 1 

00000 1 
11111 
1101000000 · 1 
1100100001 o 

' 1 
1100100001 1 

0011011110 1 

D-REGISTER at start. 
ACCUMULATOR at start. 
D-REGISTER complement. 
l' s added into UPPER. 

ACCUMULATOR complement. 
Partial sum. 
End-around carry. 

· Complement is.necessary. 

Corre.ct answer. 

Note that the end-around carry is necessary to correct the 
sign, and that a complement cycle is needed after addition. 
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Example 2. Add D to UPPER 

01111 _ .. :. :. .. 1 !);.REGISTER at start 
0010111111 . :J ACCU.l\/ULA TOR at start 
10000. I: o .. REGISTER Complement 

1111 l . 1 1' s added into LOWER 
1101000000 1 ACC:UNULATOR Complement 
O 101100000 O Partial ,sum 

1 End-around carry -------
0101100000 1 Complement is necessary 
1010011111 1 Correct answer 

Example 3. Add O to LOWER 

00001 1 D-REGISTER at start 
1111111111 1 ACCUMULATOR at start 

11110 1 D-REGISTER Complement 

11111--:· l's added into UPPER 
0000000000 1 AC CU MULA TOR Complement 
1111111111 0 Partial sum 
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? No end-around carry, therefore an over-
flow has occurred 

0000000000 0 Incorrect answer 

Case In Numbers of opposite signs are added. 

Example l. D-REGISTER is positive, ACCUMULATOR negative. 
Add D to LOWER. Result is negative. 

11111 0 0-REGISTER at start 
0010111111 1 ACCUMULATOR at start 

11111 0 D-REGISTER true-figure. 
1101000000 _l ACCUMULATOR Complement. 
1101011111 1 Partial sum. 

No end.around carry occurs; therefore, 
complement result. 

0010100000 l Correct answ~r. 

Example 2 .. D-REGISTER ispQsiti;ve, ACCUMULATOR negative. 
A_dd D to UPPER. Result is positive. 

11 111: . 0 D-REGISTER at start. 
0010111111 1 ACCUMULATOR at start. 

"""'1"""1 .... 1'""1'""1 __ .. _:_ .. ___ O D-REGISTER '.tt(ue-figure. 
1101000000 1 Partial sum. 

1 End-around carry means no complement. -------
1100100001 1 Correct answer. 
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I (Continued) 

ExaJinple 3. D-REGISTER is positive, ACCUMULATOR negative. 
Add ;D to UPPER~ Restilt is negative. 

10111 
1111111111 
10111: · ., : 
0000000000 
10 l l 1'00000 

0 
. 1 

0 
1 
1 

D-REGISTER at start. 
ACCUMULATOR at start. 
D7REGISTER true-figure. 
ACCUlvfULA TOR Complement. 
Partial sum. 
No· end.:.around carry, therefore complement 
resulf. · . 

O 100011111 1 Correct answer. 

Exax::nple 4 .. D-REGISTER. is positive, ACCUMULATOR negati,ve. 
Valu,es are equal. Add D to LOWER. _ Result is ze'ro. 

11011 0 D-REGISTER at start. . . . . . 

0000011011 1 ACCUMULATOR at start. 
11011 -O· D-REG!STER true ... figure. 

1111100100 l ACCUMULATOR Complement. 
1111111111 1 Partial sum. 

No end-around carry occurs; therefore, 
complement re·sult. 

0000000000 1 Correct answer. 

Note that it is possible to develop a negative zero. 
. . . . 

Example 5. D-REGISTER. is negative. ACCUMULATOR is 
positive. Ad_d D to LOWER. Result is positive. 

n111 1 D-REGISTER at start. 
0010111111 .o ACCUMULATOR at.start. 

00000 1 D~REGISTER Cci'mplenient. 
1 i 111· , .... ' ,. l' s added into UPPER. 
0010111111 0 ACCUMULATOR (not complemented). 
0010011111 1 Partial sum. 

1 End-around carry occurs; therefore, 
not complement result. 

0010100000 0 Correct arisw er. 

do 



44 

I (Oontinued) 

Example 6. Di-REGISTER is negative, ACCUMULATOR positive. 
Add D to U?PER. Result is negative. 

11111 1 I),,REGISTER at start. 
0010111111 0 ACCUMULATOR at start . 
00000 . I D-REGISTER complement. 

: • 1 I Il 1 l's added into LOWER. 
0010111111 0 ACCUMULATOR (not complemented). 
0011011110 1 Partial sum. 

No end-around carry occurs; therefore, 
cornplement result. 

1100100001 1 Correct answer. 

Example 7. D-REGISTER is negative, ACCUMULATOR positive. 
Add D to UPPER . Result is positive. 

10111 1 ·D-REGISTER at start. 
1111111111 0 ACCUW.ULA TOR at start. 
01000 ... l D-REGISTER complement. 

11111 l' s added into LOWER. 
1111111111 0 AC CU MULA TOR (not complemented). 
0100011110 1 Partial sum. 

1 End-around carry occurs.: Do not comple-
ment result. 

0100011111 0 Correct answer. 

Example 8. D-REGISTER is negative, ACCUMULATOR positive. 
·values are equal. Add D to LOWER. Result is zero. 

11011 1 D-REGISTER at start. 
0000011011 0 . ACCUMULATOR at start. 

00100 1 D-REGISTER complement, 
U llL l's added into UPPER. 
P:OO:O·O) 19.11 0 ACCUMULATOR (not complemented). ~--~---
1111111111 1 Partial sum. 

No end-around carry occurs. Complement 
result. 

0000000000 1 A correct answer of a negative zero is 
developed. 
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I ( Continued) 

Example 9. D-REGISTER is negative, ACCUMULATOR positive. 
Values are equal. Add D to UPPER. Result is zero. 

10101 1 D-REGISTER at start. 
0101000000 0 ACCUMULATOR at start. 
01010 · .. 1 D""REGISTER complement. 

11111 J's added into LOWER. 
1010100000 0 ACCUMULATOR (not complemented). 
1111111111 1 Partial sum. 

No end-around carry occurs. Complement 
result. 

0000000000 1 Correct answer. 

Example 10. Add a positive number in the D-REGISTER to a 
negative zero in the ACCUMULATOR. Result should be same as 
D-REGISTER. Use add to LOWER. 

10101 0 D-REGISTER at start . 
0000000000 . J AC CU MULA TOR at start. 

10101 0 D-REGISTER true .. figure. 
1111111111 1 ACCUMULATOR complement. 
0000010100 1 Partial sum. 

1 End-around carry occurred; therefore, do 
not complement result. 

0000010101 0 Correct answer. 

Example 11. Add a negative number in the D-REGISTER to a negative 
zero in the ACCUMULATOR. Result should be same as D-REGISTER. 
Use add to LOWER. 

10101 
0000000000 

01010 
11111 
1111111111 
1111101010 

1111101010 
0000010101 

1 
1 
1 

1 
0 
1 
1 
l 

D-REGISTER at start. 
ACCUMULATOR at start. 
D-REGISTER complement. 
1' s adde_d to LOWER, 
ACCUMULATOR complement. 
Partial sum. 
End-around carry. , , ... , . 
Gomple'ment is. necessary. 
Correct answer. 

Note that,Examples 10 and 11 illustrate that addition of a positive 
or a negative number to a negative zero will result in the proper 
sum. 
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If the operation is an "Add Magnitude" (or "Reset Add 

Magnitude") operation, the contents of the D-REGISTER will be 

given a plus sign and the true value will be added into either 

the UPPER, or into the ~OWER. If the operation is "Add" 

(or "Reset Add"), and the D-REGISTER:"is plus, the contents 

of the D-REGISTER will be given a plus sign and the true value 

will be added into either the UPPER, or into the LOWER.· 

If the operation is "Adq'i (or ''Reset Add"), and the D-REGISTER 

is minus, the C(l)htents of the P-REGISTER will be given a minus 

sign and the corpplement value will be added into either the 

UPPER, or into the LOWER. 

If the operation is a i•Subtact Magnitude" (or "Reset 

Subtract Magnitude") operation, the contents of the D-REGISTER 

will be given. a :minu~ sign and the complement value will be 

added into ,either the UPPER, or into the LOWER. If the 

operation is "Subtract" (or "Reset Subtract"), and the p .. 

REGISTER is plus, 'the contents of the D-REGIS.TER will be 

given a ,minus sign a11-d the ~omplement value will be added into 

either the UPPER, or into the LOWER. If the operation is 

11Subtractll (or "Reset Subtract") and the D-REGISTER:. is minus 

the contents of the D-REGISTER .will be g'iveri a phis s:ign 'and 

the true value will be added into either the UPPER, or into the 

LOWER. 

At this point, it will be helpful to tabulate in Table II the 

rules e~tabl'ished for 'ACCUMULATOR addition operations 

(the OS'TIC' s ,ACCUMULATOR, it will be remembered, only adds). 

Logical Diagram number 8 (Figure 9A a,nd 9-B) i;llustrates 

the embodiment of the rules in computer logic. No timing chart 

accompanies the d,iagram; it is felt that the above listed rules, 

together w'ith several detailed. examples, will better enable 

the reader to und.e.rsfani:r:the operation. 
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TABLE II 

RULES FOR ACCUMULATOR COMPLEMENT AND RESET 

Acc~mula.to.r Sign 

Plus Minus 

Reset entire Accumulator Reset entire Accumulator to 

aeset Yes l b f dd" . · . . to p us zero e _ore a 1t1on. plus zero before addition. 

gate 
Do nothing to Accun:iulator 

No 
or to sign bit. 

Take l's complement of 

entire Accumulator. Sign 

bit remains on,e. 

TABLE III 

RULES FOR ACCUMULATOR OPERATION CODE AND SIGN 

Operation 

Add Subtract 

Magnitude Read out true value of Read out complement value of 

gate is on, D onto Data. Channel. D onto Data Channel. 

Magnitude Read out true val~e of Read out complement value of 

Rot on., D + D onto Data Channel. D onto Data Channel. 

Magnitude Read out complement Read out true value of b onto 

not on, D - value of D onto Data Data Channel. 

Channel. 
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TABLE IV 

RULES FOR ACCUMULATOR ADD-IN 

Upper Gate On Lower Gate On 

True value IAdd contents of Data Add contents of Data Chaim.el into 

·read out of Channel into Upper. Lower. Add in a O sign bit. 

D-Register IAdd in O sign bit. 

Complement Add contents of Data Add contents of Data Channel into 

value rea,d 

out of D 

Channel into Upper. Lower. Add l's into Upper. Add 

Add l's into Lower. in a 1 sign bit. 

Add in a 1 si,gn bit. 

TABLE V 

RULES FOR ACCUMULATOR END-AROUND CARRY AND OVERFLOW 

True figure add- Complement add- True figure ·add-:--i:n .is 

in is on. Accu:rn- in is on. Accum- on, and Accumulator 

ulator is plus ulator is minus is - • .£!. complement 

before addition. before addition. add-in is on, and 

End- Set Overflow 

around latch. Impulse 

carry. Data Cycle .End. 

No end- Impulse Data· 

around Cycle 

carry End. 

Turn on Data 

Third Cycle. 

I 

Turn on Data 

Third Cycle. Set 

Overflow latch. 

Accumulator is +. 

Impulse Data Cycle 

End. 

Turn on Data 

Third Cycle. 
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The first example considered will be an operatio:q.,;where 

both values are plus, and no overflow results. The presence 

of an OPERAND gate and DATA FIRST CYCLE causes the . . . ' 
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computer, to find the desired operand, as described in Chapter 5. 

The RESET gate is not on, and the ACCUMULATOR sign is plus, 

so neither reset nor com]i>lement takes place.· When the operand 

is found, it is placed in the D-REGISTER and TURN-ON·DATA 

SECOND CYCLE .occurs. The DATA SECOND CYCLE pulse 

tests the signs of the ,registers, and, since both the D-REGISTER 
I 

and ACCUMULATOR are pliis, gates the D-REGISTER to read .. 

out its true figure onto the DATA CHANNEL. At 1 .. 3 time the · 
. . 

ADD~iN pulse adds the contents of the DATA CHANNEL and a "0'' 
' 

(plus) sig~ into the LOWER ACCUMULATOR and the SIGN 

POSITION, respecti'vely (second sheet). At O time of the same 

word time, a SIGN TEST pulse had set up the end-around carry 

test drcuits1and since a TRUE FIGURE READ ·OUT gate and an' 

ACCUMULATOR PLUS gate were on, turned on the SIG~S 

POSITIVE latch. No end-around carry occurs, so .the COMPLE-:. 

MENT TEST pulse at 4 time impulses DATA CYCLE END: 

The second example will be a u,:neset Subtract Maginitude 

Upper" operation'-':. using ::.a_pos!tiv.e operand. In this case, as. 

before~ the operand is acquired and placed in the D-REGISTER · 

on DATA FIRST CYCLE. Meanwhile, on the first word time 
. -~ . 

of DATA FIRST CYCLE~ the::ACCUMULATOR is reset to plus 

zero, When the operand .is found and DATA SECOND CYCLE 

is turned on, the SUBTRACT. D•REGISTER P_LUS. and MAGNI­

TUDE gates are all on, so the D-REGISTER complement read .. 

out is gated onto the DATA CHANNEL. Since the GOMPLEME~T 

READ-OUT and UPPER gates are on, a word of 18 1' s is added 

into the LOWER by ;the use of inhibit gates. The actual add-in 
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to: both,ACCUMULATORS is'accomplished by the ADD-IN pulse. 

Since -~COMPLEMENT. ADp.;IN is on, a n l 11 is added into the sign 

position at I _time by the SIGN ADD pulse (the ADD-lN pulse is 
' not used, because of possible conflicts with an end .. around carry). 

Also, the SIGN TEST pulse at O time turns cm the fisIGNS 

DIFFERENT" latch. An .end-around carry will not occur when 

any number is added to zero; therefore, the COMPLEMENT 

TEST pulse finds the END-AROUND CARRY la.tch off at 4 time 

and, since TURN-ON DA TA THIRD CYCLE has been previously 

impulsed by the SIGN ADD pulse, a DATA THIRD CYCLE pulse 
. . ' . . 

complements the ACCUMULATOR and impulses DATA CYCLE 

END. 

· The last example used will be an nAdd Lowern ·operation, 

where both the AC CU MULA TOR and the operand are minus 

beforehand. It is assumed that an overflow will occur. 

The DATA FIRST CYCLE puise finds the RESET. GATE off, 

the ADD gate on, the ACCUMULATOR MINUS gate on, and 

therefore complements the contents of the accumulator. At 4 

time the DATA FIRST cyc·LE-OPERAND gate and ACCUMULATOR 

MINUS gate allow the COMPLEMENT TEST pulse to .turn on the 

COMPLEMENT latch. This latch will remain on until 4 time of 

the next word time, when .it is turned on again by the COMPLE­

MENT TEST. The purpose of the COM;PLEMENT latch is to 

prevent continuous re-co~pleme:q.ting of the ACCUMULATOR. 

The DATA SECOND CYCLE pulse finds the ADD GATE and 

the 0;..REGISTER MIN US gates on, and_ therefore provides a 

COMPLEMENT READ-OUT gate to the D ... REGISTER. The 

COMPLEMENT READ..:.ouT and the LOWER gate cause ,l's 

to be added into the UPPER, while the conte.nts. of the DATA 

CHANNEL is being added to the LOWER by the ADI).l.lN pulse. 

A ~•:tt 11 bit is added .into the SIGN POSITION, and.the SIGN TEST 
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l 

pulsJ turns.on the "SIGNS NEGATIVE" latch, It was assumed 

that an overflow occurred; for· both :signs nega~iw.e, an over-flow 

occur'S when .an end-around carry does ~ o.ccur. At 4 time, the 

COMPLEMENT TEST pulse finds the SIGNS NEGATIVE latch ::on .. 

and the END AROUND CARRY latch off, and th.erefore turns on 

the OVERFLOW latch. The complement cycle is. still taken, 
j • 

howe\rer. 

Note that DATA THIRD CYCLE' is always turned on, and 
I . 

that DATA CYCLE END'is then impulsed if necessary. This .takes 
.;.·.·;·:'/. ~~·. 

advantage of the fac.t tha.t DA TA CYCLE END overrides any 

TURN ON pulse (s~e Chapter .. 4). Also note .that provision is 

made for a separate COMPLEMENT operation; see Chapter 7 

for further discussion. 

Multiplication in the OSTIC is accomplished by successive 

operations of shifting, testing, and addition. The multiplier 

is placed in the UPPER prior to .the start of the multiply 

operation. At the beginning of the multiply operation, the 

multiplicand is acquired and :placed in the D-REGISTER. The 

LOWER is reset to zero, and the entire.ACCUMULATOR is: 

then shifted left one position, the high .. order position of the 

UPPER being shifted into a special "Test Position" just off the 

·ACCUMULATOR, The TEST POSITION is then checked; if it 

contains a 11 111 , the conteJ:1ts of the D-REGISTER (true .va1ue) is 

added into the LOWER, and the entire ACCUMULATOR is the.n 

again shifted Jeft one position. If the test position did not 

contain a "l" when checked, only the left shift is performed. 

Following the left shift, the test position is again checked for 

a "l", and .the add-and-shift or shift-only operation is repeated. 

This testing process is repeated eighteen times,. because the 

. word .is eighteen:bits long. The sign .bits are neither added nor 

shifted; the sign is set to 11 0 11 (plus) if both the ACCUMULATOR 
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and D-1RE:GISTER have the same sign, and to·"' 111 (minus) 

otherwise. 

Two examples of multiplication, using'five-bit words, are 

presented in Table VI. 

TABLE VI 

BINARY MULTIPLICATION 

Example 1. Multiply the num.ber ouo:1.·o (+) by 11011.1 (.:.). 
Registers at beginning of Data Second Cycle: 

.01101. 0 ·· ... D_..;REGIST.-ER 
,} l!HilOOOOO 1 ACCUMULA1TOR 

?' . Test po'sition 
1 . 1011000000 1 Shift left 1 
1 1011001101 1 Add D to LOWER 
1 0110011010 I Shift left 1 
1 01101oop1 1 Add D to LOWER 
0 1101001110 1 Shift left 1 
0 1101001110 1 ; Do not add (test position contains a O) 
1 1010011100 1 Shift left 1 
1 1010101001 1 Add D to LOWER 

; 

1 010101ooio 1 Shift left 1 
1 0101011111 1 Add D to LOWER 
? 0101011111 1 Sign of answer is 1 (-) 

i 

~ote .that fiv~~bit numbers were multiplied, and a total of five 
shifts were made. To c;heck, the two numbers will be multiplied 
by the usual method; 

01101 
X 11011 

01101 
0110,1 

00000, 
01101 

01101 
0101011.111 

The multiphcand is 13 10 , and the multiplier is 2.7 10 . 
the product should be 32] 10 , which it is. 

Therefore, 

\ 

\ 
' 

\ 



VI (Continued) 

Example 2. Multiply 11111 1 (-) by 11111 1 (-) 
Registers at beginning of Data Second Cycle. 

11111 .. 1 D-REGISTER 
1111100000 0 ACCUMULATOR 

? Test position 
1 . 1 n 1000000 1 Shift left 1 
1 1111011111 .I. Add to LOWER 
1 1110111110 1 Shift left l 
1 1111011101 1 Add to LOWER 
1 1110111010 1 Shift left 1 
1 1111011001 1 Add D to LOWER 
1 1110110010 1 Shift left 1 
1 1111010001 1 Add D to LOWER 
1 1110100010 1 Shift left 1 
1 1111000001 1 Add D to LOWER 
? 1111000001 0 Sign of answer :is 0 

Note that this is the largest .Possible product of two five-bit 
numbers, and illustrates that a prod 1nct longer :than ten bits 
can never :be developed. Siir;ilarly, the largest product of two 
eighteen-bit numbers is thirty-s:i~::bits long. 

Checking: 

11111 
X 11111 

11111 
11111 

11111 
11111 

11111 
1'011101 

1011101 
11101000 1 
11111 

11T1obooo 1 

55 
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Logical diagram number 9 (Figure 10) presents the 

"Multiply" pperation. The DA TA FIRST CYCLE pulse rese.ts 

the LOWER to zeros, sets the five-position AUXILIARY 

COUNTER to O 1110 (14 10), and sets the SHIFT OR ADD latch 

to shift. DATA SECOND CYCLE then interrogates the SHIFT 

OR ADD latch for the next thirty-six word times, as is shown 

on the timing chart (only the add cycles 'are numbered; eighteen 

of these must occ~r). During the first word time DATA SECOND 

CYCLE finds the SHIFT OR ADD latch in the shift setting, so 

the entire ACCUMULATOR is shifted one position to the left, 

which brings the high-order bit of the UPPER into the TEST 

POSITION. At 4 time the MISCELLANEOUS RESET pulse sets 

the SHIFT OR ADD latch to add, and during the next word time 

a "l" bit is added into the AUXILIARY COUNTER by the ADD-

IN pulse. ::If the TEST POSITION contains a 11 111 , the contente 

of the D-REGISTER (which ie read onto the DATA CHANNEL 

on all DATA SECOND CYCLES) is added into the LOWER. The 

MISCELLANEOUS RESET pulse turns the SHIFT OR ADD latch 

back to shift at 4 time. 

The operation will continue untH •. an overflow pulse from 

th:e AUXILIARY COUNTER impulses DATA CYCLE END. The 

overflow pulse is the carry pulse out of the high-order position 

of the counter. Since the counter has five positions, the over ... 

flow pulse will occur when a 11 111 is added to a 31 10 , or in 

binary form, 11111 counter 

l 
00000 

r 

add 1 
result 
ov~;fioJ 

Note that if O 1110 is placed into the counter to begin with, 

then 10010 (18 10) added in will cause an overflow. Note also 

that the logic is so designed .that the last addition .to the LOWER 

(if signaled by a 11 111 in the TEST POSITION) occurs simultaneously. 
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with the addition to the AUXILIARY COUNTER1which causes 

the overflow. 
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Since the sign of the product is determined from th~ sign 

of the D-REGISTER and the sign of the ACCUMULATOR, setting 

the sign, should ~e the last matter taken care o.f, for otherwise 

an oscillation of s~n could occur from one word time to the 

next. The sign is t'"tierefore set up immediately when the 
\ 

multiplication begint but is not placed in the ACCUMULATOR 
.. \ . 

sign position until thJ1 overflow, which signals the end of the 
I . . 

operation, has occurrkd. 

'The titning chart illustrates the multiplication of some 

number in the D-REGISTER by 1100101111. ..•.• 01. 

Logical Diagram number 10 (Figure 11) illustrates the 

process of shifting the entire ..A.CCUMULA TOR one or more 

positions to ,e:i,ther the left or right. There is a great cleal of 

similarity between this process and the process of multipli­

cation, since the AUXILIARY, COUNTER is incremented each 

time a shift Oferation takes place, and the presence of an 

ove.rflow from the AUXILIARY COUNTER signals that the 

shifting is complete. One difference will be noticed, however. 

Since no addition takes place, the ACCUMULATOR is shifted 

at the same time that the counter is incremented., rather than 

on the following word time. 

The timing chart on Logical Diagram number 10 shows 

five different shift operations. Reading from left to right, 

the first sequence is a nine-position shift, followed by ,huts 

of five, seven, one, and zero positions. The nine-position 

shift will be described in detail. 

The DATA FIRST CYCLE :;pulse finds the SHIFT gate on, 

and so gates the l' s complement value of the. ADDRESS REGISTER 

to be read out onto the DATA CHANNEL. At 3 time of the same 
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word time, a WRITE pulse copies the contents of the DATA 

CHANNEL into the AUXILIARY COUNTER. The DATA FIRST 

CYCLE pulse also sets the SHiFT OR ADD latch to add, and 

impulses TURN-ON DA TA SECOND CYCLE.· 

The DATA SECOND CYCLE .impu.Ese finds the SHIFT OR ADD 

latch set to add, and so, together with the ADD,-IN pulse, adds a 

"1 11 bit into the AUXILIARY COUNTER. At 4 time the MISCEL;­

LANEOUS RESET pulse sets the SHIFT OR ADD .latch to shift. 

The next word time finds the DATA SECOND CYCLE pulse 

shifting the .:,ACCUMULATOR either left or right, and circular 

or non-circular, as determined by the various control gates 

(a circ1,1lar shift occurs when the bits shifted out of one end of 

the accumulator reappear, in order, at the other end). Note 

that tll,e SHIFT OR ADD latch is not set back to add, but remains 

in the shift setting. Also note that addition of 11 1'1:s'' to the 

AUXILIARY COUNTER takes place on both add and shift 

settings. When the AUXILIARY COUNTER overflows, DAT.A. 

CYCLE END is impulsed, and the operation is complete. 

In examining the theory behind this operation, it is fo.und 

that the largest number that may be stored in a five-position 

bina;y counter is 31 10 , or 11111. An overflow occurs when 

1 is added to 11111 already ; in the countet. Note that the 1' s 

complement of any five .. bit binary number is also the number· 

31' s complement. For example, the I's complement of O 1001 

(9 10) is 10110 (22 10). Therefore,·. if the l's complement of the 

desired number of shifts is entered into the AUXILIARY 

COUNTER prior to the shift operation, and if 1 · is added to the 

counter for each shift oF one position, then the counter will 
~ . 

contain 01thirty-one when the desired number of shifts has 

occurred. How ever, the -counter overflows when 1 is added to 

thirty-one, making thirty-two. Therefore, a single addition 

.1.: . 

. ... ,.·, .. ·':··.! ... \. 
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is z;nade pripr to any shifting,. so that the addition· occurring 

simultaneoualy with the last shift .wI<U.,eause:'.the coui;i,ter to ,_ . , 
' . . . . 
' 

overflow' and end the opera,tion. 

It will be noted that a data address of zero (00000) on 

a shift instruction will : a:orrectly ; result in 
,, 

a zero.:.place shift. Also,. the greatest number of shifts that 

may take place for one instruction is thirty-one ( 11111), 



CHAPTER VII 

LOGICAL OPERATIONS 

Because of the special-purpose and instructional applications 

of this computer, ,a~ repertoire of logical operations would be quite 

useful. Although actually carried out in the ACCUMULATOR, the 

nature of these operaFons is •,somewhat different from the opera-. 

tions covered _in Chapter 6. Accordingly, this chapter is devoted 

solely to logical operations. 

Logical operations, as considered here, are those operations 

involving two binary numbers, where the value of each pos·~tfon 

of the result ( 1 or 0) is dependent only upon the values in the ,_ 
corresponding position of the ori~inal numhers. All logical 

operations may be represented by a "truth table", where the value..s- · 

of the two input numbers, (which will be called, for want of a better 

name, the "A-operand" and the "B-operand") are shown along the 

top ~:nd .11:eft side, and the values of the result are shown at the 

intersection of the appropriate rows and columns. 

E:xample 1. 

·Truth Table-OR: .. adc;li'tion. 

A~operand 

~-
B-operand m. 

Sample Operation 

A-operand 
B-operand 
Result 

0011 
ffJOJ. 
-<}LU 

Since there are two possible values for the A-operand, two 

possible values.for. tneB-0p.erancf. and four possible values for the 

result, there are 16 possib1e logical operations. These are shown 

in Table VII. 

.. ... , ·, 
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TABLE VII 

BINARY LOGICAL OPERATIONS 
·A· A 

B ~: 
10 

0011 
0101 J 

0110 ~-: 

Logical Ring addition 
E~clu~ve OR (no carry) 
AB+ .AB 

0011 
0101 
0111 

OR; A+ B 
Inclusive OR 

0011 

QlQl 
0()01 

AND (Logical Multiply) 
AB 

AB= A+ B 

A 

B j 
A +B 

k 

i B 
1 

TRlYIAL 

0011 
_o 101 
0010 

0011 
0101 
10 ll 

OOll 
0101 
0011 

--oo 11 
0(101 
IOOI 

Logics.I Compare 
AB +AB 

A Bi 
1 0 

0011 
:0]0:1 
1000 

-~·OR (NOR) 
"AB= A+ B 

OOll 
O IO I. 
l llO 

Not ANP (NAND) 
AB= A+B 

A+B 

A 

f llO 

0011 
0101 
1101 

0011 
0101 
0100 

AB= A+ B 

A 

.offo 
0011 

B 0101 
1100 

TRIVIAL 
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VII (Csmtinued) 

A A 

I 0011 t 0011 
B ,oao r B 0101 

1 0101 .10,10 0 

TRIVIAL B TRIVIAL B 

A A 

f 0011 I 0011 
B 0101 0101 B --

l 1111 0 0000 

TRIVIAL :J TRIVIAL 0 

It appears that there are ;a maximum of 10 logical operations 

that one might conceivably wish to perform, and six :11don' t 

cares". (8). Consider the process of "ring addition", with a 

provision for complementing either the A-operand, the B~ 

operand, or lioth, and complementing or not complementing 

the result, as shown in Table VIII. 

B-operand 

B 
0101 .. 

·B 

1010 

TABLE VIII 

LOGICAL RING ADDITION 

A-operand -A A 
.0011 1100 
or.r.o, 1001 True Answer 
lO_OJ 0110 Complement 

,0110 1001 Complement 
ed Answer 
ed Answer 

:1.001 0110 True Answer 

TRUTH TABLE 
Logical Ring A:ad 

A 

B t . 

0 
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Apparently, only two results are available. The result, 

taking the true values of both the addend and augend,is the rip:g 

sum, while the complement of the ring sum is the logical com­

parison. This might have been deduced from Figure 5, since 

the truth table for ring addition is the same ae the complement 

of the truth .table for logical compare. Note also that there are 

two ones and two zeros in both truth tables. 

Consider now the OR operation, Again1 either the addend, 

augend, or both may be co'.mpiem:ented, and the result may or 

may not. be complemented, as shown in Table IX. 

B-OPERAND 
B 

0101 ·---·· 
B :10:1-0 

TABLE IX 

LOGlCAL OR ADDITION 

TRUTH TABLE 
OR Addition 

A 

·~ 

B lTi 
A-OPERAND -A A 

0011 1100 
,PTl l 1101 
1000 0010 
0100 0001 
1011 1110 

True Answer 
Gomplemente 
Gomplemen.te 
True Answer 

d Answer 
d Answer 

Note that this time eight different answers were obtained. 

In fact, upon examining Table VIII, it is found :that all s.ixteen 

of the possible logical operations may be obtained by the use of 

· various combinations of complement, . ring addition, OR addition, 

and (for all zero or all ones) resetting the AGGUMULA TOR to 

zeros. 

Logical Diagram number:. LL(Ftgure 12) shows the method 

of executing the''Logical Ring Add" and "Logical OR II instructions. 
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The B-operand isas:smned to have alreadyb"een placed in the 

LOWER, and the location of the A-operand is designated by the 

data address of the instruction,. It is acquired and placed in .the 

D-REGISTER.on DATA. FIRST CYCLE. Follow\ng this, the 
. . 

DATA SECOND CY,CLE pulse,. together with the presence of 

either the OR gate or the RING-ADD gate, reads out the true 
. . ' 

vaiue of the D-REGISTER onto' the.'DATA CHANNEL at 0~4 time, 

and also irripulsE:ls DA TA CYCLE END. The DA TA SECOND 

CYClE pulse is also gated to set up the .LOWER AGCUMULA TOR 

ii;, pe~fc:>rm the proper operation, since it is intended that these 

special operations will only be performed on the contents of the 

LOWER a.nd the location specified by the data address of instr1,1c -

tion. · At 1-3 time the ADD-IN pulse gates the contents of the 

DATA, CHANNEL into the LOWER, and the operation is perfo:t,med. 

The "Complement" operation is shown on Logical Diagram 

number 8 (Figure 9. -A). It is intended that a "Load D-Register" 

operation be carried out in conjunction with the complement 

operation; therefore, Logical Diagram numbers 5 and 6 are also 

involved. The complement would occur on :~he first word time 

of DATA FIRST CYCLE; the operation would be complete when 

the desired operand was found and placed in the D-REGISTER. 

It is felt that, since. complement will qe used primaril;t with 
. ' 

the "L~gical Ring Add" and "Logical OR~' operations, it would 

save time to use the same instruction to bring one of the desired 

operands into the D.;,REGISTER. See Cha,ter 11 for a further 

dis.cus sion of this topic. 



CHAPTER VIII 

TES TING AND BRANCHING OPERATIONS 

One of the fundamental concepts which makes the sfored-. 

program digital computer a powerful tool is the concept of 

internal testing and program branching .. In the OSTIC, a 

. branGh, or 11 :jump" operation, will be defined as any operation 
. I 

where the address of the next instruction is taken from the data 

address of the previous instruction, rather than from the address 

normally generated by incrementing the INSTRUCTION COUNTER· 

In general, there are a number of different types of branch codes. 

The simplest is. the "Unconditional Jump", where the computer 

"jumps'' to the instruction located in the address corresponding to 

the data address.of the jump instruction. Another type of jump 

code is .a nTest and Jump", where the c;:omputer tests some given 

condition, and then .jumps. only if the condition is. true. For 

example, a "Jump Accumulator Minus" instruction would cause 

the computer to .test the sign of the ACCUMULATOR. If the 

sign we.re minus, the computerswould jump to .the address speci­

fied; if th.e ACCU~ULA TOR were plus$ however, the jump would 

not take place, and t,he ne::,ct instruction would be taken .from the 

address :tn the INS'.J'RUCTION COUNTER. The most complex 

type of jump is the ''Copy Jump'', where the ma.chine first 

1·1copiest1 the conteep.ts of, the INSTRUCTION COUNTER into the 

D-REGISTSR:. then jumps to the \location specified by the data 

address of ·the jump instruction. This ,type of instruction is 

almost a necessity for subroutine linkage on a single-address 

computer.· 

Logical Diagi"am number lZ (Figure 13) illustrates the 
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"Up.condiUonal Jump", together·witb. a 11umber of "Test and '-Jump'' 

codes. The operation is quite straight-forward. At O .. 4 time 

of the first data-cycle word time, a DATA FIRST CYCLE pulse 

finds the BRAN.CH gate on, and is thus ,enabled to test the 

various jump gates. For example,. if the UNCONDITIONAL 

JUMP gate is on, the DATA FIRST CYCLE pulse finds a path to 

the OR circuit. Meanwhile, the DA TA FIRST CYCLE pulse has 
. . . : . 

gated the ADDRESS REGISTER contents onto the DAT~ CHANNEL, 

and at 3 time the WRITE pulse, gated by the DATA FIRST CYOLE 

pulse which traveled through the UNCONDITIONAL JUMP gate, 

reads the contents of the DATA CHANNEL into the INSTRUCTION 

COUNTER. The DATA FIRST CYCLE impulse also impulses 

DATA CYCLE END. 

As another example, consider the operation $hown on 

Logical Diagram n,umber lZ for a "Jump on Overflow" instruction. 

The BRANCH gate is on, and the OVERFLOW TEST gate is on, 

so the DATA FIRST CYCLE pulse tests the OVERFLOW latch. 

If the OVERFLOW latch is not on, nothing.happens, and since 

DATA CYCLE END is alwc;1.ys impulsed, the program continu:Es 

in regular se~uence. However, if the OVERFLOW latch is on, 

the contents of the DATA CHANNEL are read into .the INSTRUCTION 

COUNTER, and the OVERFLOW latch is turned off. Note that the 

ADDRESS REGISTER is always read out onto the DATA CHANNEL 

at ·Q .. 4 time if the BRANCH gate is on, but the DATA CHANNEL 

is read into the INSTRUCTION COUNTER at 3 time only if a jump 

is desired. This design reduces signal race problems that would 

occur if both the read-out and read ... in were conditional upon the 

jump being desired. 

Logical Diagram n,umber 13 (Figure 14) illustrates the 11Copy­

Jump" operation. Here, the DATA FIRST CYCLE pulse .through 

the BRANCH gate and the COPY JUMP gate reads out the INSTRUC-
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TION COUNTER onto the DATA CHANNEL. 
' 

It will be remembered that the contents of any internal 

machine register may be used for either data~ instructions, 

that is,' the address of :any register may be given either as a 

data address in an operation, or may be entered into the 

IN$TRUCTION COUNTER (either by means of some type of 

·~ ump" operation, or by normal incrementation of the INSTR UC-

TION COUNTER). 

Consider at this point waht would happen if a "Copy­

Jump" instruction were given with some of the various reg­

isters as the data address. For example, if the INSTRUC­

TION .COUNTER was given is the: address; then the contents 

of the INSTRUCTION COUNTER would simply be placed in 

the D..:REGISTER, and the program would continue in normal 

sequence. · Again, the D-REGISTER itself could be given as . ' 

the address of the jump, in which case the contents of the 

INSTRUCTION COUNTER would be. entered into the D­

REGISTER, following which the address of the D-REGISTER 

itself,' which, since it was the data address of the ,instruction, 
i 

would be contained in the ADDRESS REGISTER, would be 
' 

transferred into the INSTRUCTION COUNTER. Following the 

tra~sfer, the computer would go into instruction cycle 

operation, during which (it· :will be remembered fro:m Chapters 

4 and '5) the contents of the memory location specified by the 
I 

address in the INSTRUCTION COUNTER will be obtained and 

placed in the INSTRUCTION. REGISTER to serve as the next 

instruction. However, since the D-REGISTER' S address was 

given, the contents of the D-REGISTER will become the next 

instruction. · 

As was stat.ea, .DATA ,FIRST CYCLE read :out tlie INSTR UC-
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TION COUNTER at 0-4 time, and also aUows the WRITE pulse 

to read the contents of the DATA CHANNEL iri!to ~tb:e~INSTRUCTION 

COUNTER at 3 time. The DATA FIRST CYCLE pulse also impulses 

TURN-ON DA TA SECOND CYCLE. The DATA SECOND CYCLE 

pulse then reads out the ADDRESS REGISTER onto the DATA 

CHANNEL at 0-4 time and allows the WRITE pulse to read the 

contents of the DATA CHANNEL into the INSTRUCTION COUNTER 

at 3 time. The DATA SECOND CYCLE pulse also impulses DA TA 

CYCLE END. 

Logical Diag;ram number 14 (Figure 15) illustrates the "Flag 

Branching" operations. The flag operations are simply a three­

step branching sequence that provide a much greater degree of 

flexibility to computer operations than is possible with the standard 

branching operation. Essentially, the operation is simply this. 

Any one of 512 different on-off conditions (such as, "Is tape drive 

number 2 ready?'', or "Is the divide-overflow latch on?") may be 

tested by an instruction. If the designated condition is true, then 

any one of eight :program "flags", or. resettable latches, may be 

turned on, or "set". These latches will remain on until turned 

off by a specific turn-off or "reset" command. :A.rl;Y of the flags 

may be interrogated at any time by a branch c;:ommand, in the form 

of "Jump if Flag X is on". The set command is "Set Flag X if 

Switch YYY is on", and the reset command is "Reset Flag X". 

The octal instruction word format is as follows: 

07 XYYY ... ; ; Set Flag X if Switch YYY is On. 

06 X ......... Reset Flag X, 

IX ZZZZ ..... Jump to location ZZZZ if Flag Xis On. 

It is thus seen that eight separate program flags may be used, with 

512 possible conditions, or switches, being ttested. Of course, 

the choice of the digits 0, 1, 6, and 7 in the operation codes·ts 

arbitrary. 
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The operation of testing a program flag and branching if the 

flag is on is shown on Logical Diagram :number 12. The operation 

is executed in the same manner as any other test and jump opera­

tion; if the TEST FLAG X gate is on and the FLAlGX latch is on, 

the contents of the ADDRESS REGISTER is transferred to the 

INSTRUCTION COUNTER. Otherwise, operation proceeds in 

normal sequence. 

The operation of setting and resetting .a program flag is 

shown on Logical Diagram number 14 (Figure 15). If the FLAG 

gate is' on, the contents the .nine low-order binary positions of 

the ADDRESS REGISTER is gated into a SWITCH DECODER 

matrix, which accomplishes the testing of the addressed switch 

to see if it is offc or on. The next three binary positions of the 

ADDRESS REGISTER go into the FLAG NUMBER DECODER, whose 

function is to determine which of the flags (flag O through flag 7) 

is addressed by that instruction. The FLAG NUMBER DECODER 

then g..,a;,tes; the PA TA FIRST.,'CYCI:,E pulse into the set-reset 

circuitry of the proper flag. At 3 time a CYCLE TEST pulse then 

may set or reset the FLAG latch in question. If the FLAG RESET 

gate is on, the CYCLE TEST pulse is allowed to gate the reset 

line of the appropriate FLAG latch, and the DATA FIRST CYCLE 

pil;lse ..r,e.:s.e:.t.s :tp.e latch. If a Test Switch YYY" operation is called 

for, the output of the SWITCH. DECODER matrix will occur prior 

to 3 time., provided the addressed switch is on. This output, 

together with the FLAG SET gate, allows the CYCLE TEST pulse 

to gate the DATA FIRST CYCLE to set the appropriate FLAG 

latch. The DATA FIRST CYCLE pulse also imp~t~es DATA 
. -~,~~~;; ··. ·., 

CYCLE END, 
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CHAPTER IX 

MISCELLANEOUS OPERATION$ 

A number of miscellaneous operations are required to round­

out the instruction repertoire of any digital computer.. This chap­

ter will :cov:er · these, and in so doing, will complete (except 

for input/output) the list of operations presented in this paper. 

Operations of a more-or less miscellaneous character : that 

have been covered previously (and will not, therefore, be dis -

cussed again) include ''Load D-Register" and "Store D-Register" 

(Chapter 5), Shifting (Chapter 6), and 11Complement" (Chapter 7). 

A fundamental operation in any computer is the "Continuell, 

or "No Operation" instruction, ofteh referr:ed to as "no-op". 

This is simply an operation that does nothing but continue the 

program to the next instructic;tj. Because of the fact that all 

registers in the OSTIC will be addressable on both data and in­

struction cycles, it is proposed that the OSTIC have no separate 

no-op instruction. Instead, the "Copy-Jump" may serve as a 

no:..op if 00 8 is made equivalent to the "Copy-Jump" operation 

code. Then, if a no-op were desired, a 11 Copy-Jump" could be 

made to the D-REGISTER. This. would simply result in the contents 

of the INSTRUCTION COUNTER being placed in the D-REGISTER, 

and then transferred into the INSTRUCTION REGISTER. Since 

the INSTRUCTION COUNTER is a twelve-position counter, the 

INSTR,';UCTION REGISTER would appear as OOXXXX 8 , where 

xxxx8 is the octal address of the next instruction to be executed .. 

The P.O woµld cause a second copy jump to be executed, this time 

to XXXX. 

It is further proposed that. the "Halt", or stop code , on this 
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computer be a jump code. As illustrated in Logical Diagram 

number 12, a "Halt-Jump" code would place the address of the 

next instruction in the INSTRUCTION COUNTER and impulse 

MACHINE STOP (see Chapter 10). When the machine is started · 

again, the first instruction executed will be that to which the 

transfer had been made. 

Three other miscellaneous operations are shown on Logical 

Diagram number 15 (Figure 16). The first of these is the nset 

Increment" instruction.• Here, the DATA FIRST CYCLE pulse, 

gated by the SET INCREMENT gate, reads out the ADDRESS 

REGISTER onto the DATA CHANNEL. At 3 time the WRITE 

pulse reads the contents of the DATA CHANNEL into the INCREL .. 

MENT REGISTER. DATA CYCLE END is impulsed on the first 

word time by DATA FIRST CYCLE for all operations shown. 

The other two operations deal with the AUXILIARY COUNTER. 

The presence of an AUXILIARY COUNTER in the computer suggests 

that some ,.sortiof operation be designed to utilize its counting 

ability independent of such operations as multiplication and shifting. 

The "Set Auxiliary Counter" operatton simply transfers the contents 

of the ADDRESS REGISTER (which contains the data address of the 

"S.et Auxiliary Counter 11 instruction) into the AUXILIARY COUNTER. 

This is accorrl.plish!ed in one word time by a DA TA FIRST CYCLE 

pulse which, if the AUXILIARY COUNTER gate is on, reads out 

the ADDRESS REGISTER onto the DATA CHANNEL and allows 

the WRITE pulse to :ri':eaa the contents of the D~i.TA CHANNEL into 

the AUXILIARY :(:OUNTER. The other operation is the "Incre­

ment Auxiliary Counter" operation. Here, a "1'' is simply added 

into the low -order position of the AUXILIARY COUNTER. This 

operation is accolmplished in one word time by the DA TA FIRST 

CYCLE pulse which, when gated by the INCREMENT AUXILIARY 

COUNTER gate from the OPERATION DECOOER, allows a 11 111 



l.s lncreMeo, 
vx ,/, ru ~ Cn rr. :1:-,.-.--------"-'i;;,...;;~ 
(;, Ci "i,! 0.. ~ 

.,I"' r~ he 
f)t,tT'Q. c'1 de 

I:. ;,d 

lnc.re""e"T 
Re,,ne, 
Reoc.t.l-

J:n 

' I 

78 

D 
A 
T 
A 

C 
H 
A 
N 
N 
E 
L 

Figure 16. Logical Diagram number 15, Miscellaneous Operations, 



BIT pulse to be added into the AUXILIARY COUNTER _by the 

ADD IN pulse at 1-3 time. Chap;.er 11 covers the use of the 

AUXILIARY COUNTER in programming. 
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CHAPTER X 

INPUT/OUTPUT AND CONSOLE OPERATIONS 

This paper will devote little space to the question of input/out­

put(l/0) for the Ol'STIC, simply because at the time of writing no 

input/output equip;ment is available for use with the machine. It is 

anticipated, however, that some type of input/output device will be 

9btained when needed. 

Faced with not knowing even the type of input/output equipment 

(much less its specificatiohs), the system designer can only specu­

late and make recommendations. It is intended, however, that def:. 

inite "space" be left in the operation repertoire for a variety of 

inpuVoutput codes. To this end, it is recommended that all eight 

7X8 instructions be reserved for ~/o operations. Further, it is 

recommended that all 7XXX 8(data) addresses be reserved for the 

same purpose. By thus anticipating the need well in ~nee, perhaps 

the problem of having a needed I/0 instruc.tion and no place to put it 

(in the command list) will never arise. 

As far as the logical organization of I/0 operations is concerned, 

this is, at best, generalization and recommendation. Therefore, 

no Logical Diagram for 'I/0 is presented. What· would probably be done 

is that an INPUT or an OUTPUT gate would be .turned on, and then 

the contents of the OPERATION and ADDRESS DECODERS would be 

made available to the I/6 equipment for use in determining the oper­

ation to follow. It is ordinarily preferable that blocks consisting 

of several words be transferred on single 1/0 ,operations.. In this 

case, the length of the block would probably be determined by the· 

characteristics of the J/o unit or its buffer. A ."drum read" or "drum 

write" operation might be used here, with the proper number of words 

80 
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being transferred off of or onto the drum, starting with the location 

specified by the data address of the J./0 instruction. Consideration 

might also be given to the construction of a small (16 or 32 words) 

high-speed memory unit, constructed using either magnetic cores 

or, perhaps, various types of me:mory devices (to compare the 

characteristics of each). This memory could serve as a buffer for · 

variOUJ'j I/0 equipment. 

Unlike the question of input/output, the matter of the computer 

console can be discussed in more concrete ter:ms. Here, the ,ques­

tions of ease of demonstration and simplicity o.f operation arise. 

Before considering the console proper, however, it might be well 

to discu_ss some of the operating features needed. First, both the 

demonstrator and operator will require a means of displaying the 
•; 

~ontents of the various registers, and methods of changing them if 

necessary. This was previously discussed, and it was proposed 
' 

that separate display lights and entry switches be provided for each 

register. A read-only memory was also deemed desirable; this 

would cohsist simply of toggle,ewftcheel (no display .. lights are needed) • 

in groups o:f 19, each group corresponding to one computer word. 

For siow -speed operation and maintenance, lights indicating the 

setting of the CYCLE SELECTION FLIP-FI,.OP (data or instruction 

cycle) and the setting of the DA TA CYCLE iING COUNTER would 
! ' 

be useful. Similarily, an indication of the ~tatus (set or reset) of 

the eight program flags would be hartdy for purposes of, demonstra­

tion, and, of course,. the operator should know if any of the error 

latches (overflow, storage selectipn, parity,. tirrling, etc.) were set. 

Logical Diagram number 16 (Figure 17) illustrates the various 

settings and uses of an "Operation Switch" on the console, in conjunc­

tion with an 11 OPERATION" latch that would determine whether the 

machine was running, or stopped. If the OPERATION latch is set 

· to "stop", then no pulses ar.e available. As is shown, a number 
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may b~ entered into a register from the console onl'y when t'he 
\• 

OPERATION latch -is sei to stop. 'the desired numb¢r is simply 
i· 

set into the console entry switches corresponding to .the desired 

register, and the "Enter'' key fo,r that _register depre~.sed. In order 

to start the machine, the "Start" key on the cons1ble is then dep:re!=Jsed, 

allowing the "HOME" pulse to. set the OPERATION latch to r~:h. i 

The function of the OPERATION switch is merely to determine in 
. . 

what manner the computer may be stopped. On "Internal" operation, 

the machine rriay be set to stop only when the console "Stop" key is 

depressed, or :when an "internal stop" occurs·. An .internal stop may 

be a halt code, timing error, sto:rage selection error, or (if desired 

by the operatbr). an ove.rflow, or parity error. In addition, a stop 

may be desired when the contents of either the ADDRESS REGISTER 

or the OPERATION REGISTER is equal to some predetermined number 

ente.red into the console entry switches of the INSTRUCTION REGISTER. 

The former!:is termed an "address stop", a.nd the latt.e.r an "operation 

stop". Also, a stop hiay be desired w'hen instruction hav;ing a minus 

sign enters the INSTRUCTION' REGISTER , This possibility will be 

discussed more fully in C~pter 11. 

On "External" operation, the computer may be set to stop at the 
. ' 

end of every data and instruction cycie, at the end of: each word time, 

or for each timing pulse. These :modes of ope ration would be used 

for demonstration and rrtaiJ:itenance. Depression of the sta:rt key would 

cause .the computer to ope~ate until the next cycle, word, or timing 

pulse occurred, at .which time the ma.chine would again stop automati­

cally. Note that drum. operations (read and write) should not be 

allowed on word time or timing pulse operation, since to do so would 

present rather con1plicated problems in cii-cuit design. Drum 

operations on the 1iCycle" setting would be :permissahle. It should 

be pointed out that all error latches, as well as the Stop key will, of 

course, be effective for external as well as internal operation. 
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Logical Diagram number 16, being for purposes of explanation, 

does not specifically indicate this. 

It is now possible to discuss the computer console itself 

(Figure 18). This sketch presents a suggested organization plan 

for the console, while conveying some idea· of the overall appear­

ance. Note that all 19 indicator lig}its and entry switches are 

shown for only one register. Of course, all 19 would be provided 

for all registers. 

Note that the "Operation " switch (lower right side) has 

been discussed previously. The "Minus Instruction" switch, 

which governs the action taken fo:r minus instructions, is covered 

in Chapter 11. The various operating buttons might be discussed. 

"Start" and IIStop" were mentioned previously; the "Reset" 

button would stop: the machine, reset all error latc,hes (but not 

the program flags) and set all registers to plus zero. The "Load" 

button would be used for program loading. Its operation is 

covered in ;the following chapter. 

A word should be said concerning the console appearance. 

Some computer consoles have a forbidding appearance; others 

are attractive, even to the point of appearing, perhaps, to be 

less complicated than they actually are. The OSTIC' s console, 

if built as suggested, would co.ntain 152 indicator lights and 152 

toggle switches for the registers alone, plus 19 additional 

toggles for each word of read-only memory. Therefore, some 

thought should be given to the layout and ultimate appearance of 

the console prior to the start of construction. A rather bright 

indicating lamp will be needed if the machine is to be demonstra­

ted effectively before groups of more than a few students. Special 

miniature toggle switches are available, and at least one computer 

(Computer Control Company' ,s "Digital Data Processor") uses 

them ~ffectively to present a neat-appearing console. Finally, 
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all important switches and buttons should be accessable to the 

seated operator, and all indicators should be easily visible. 



CHAPTER XI 

PROGRAMMING A~D OPE.RfA TION 

Every computer must possess a method for loading the 
' ' 

initial program into me;mory. Most computers have some sort 

of built-in logic to provide .for "bootstrapping", that is' to enable 

a program to literally rea~ itself into the machine, with only 

:the console switch settings bei.:ng used. in other words, a 

me.thod of program loading that' does not presuppose anything 

in the machine memory is highly desirable. 

It is suggested that bootstrap program loading be pro­

vided for by a "Load" button on the console (Figure 18). It 

is further s:uggested that, while' the "Console Entry" toggle 
' •· 

switches for the various regist.ers not be made addressa.ble 

in the program,' the' "Data Channel Entry" switches should be 

addressable with a data address of 00008 . Also, the Read­

Only memory (which is, of, co-urse, addressable) would have 

addresses of 0001 8 , 00028 , 0003 8 , 00208 (for 16 10 words}. 

The intended action would .be as follows: Depression of the 

console "Load" key wo~ld set the INCREMENT REGISTER to 

an increment of 1, set the INSTRUCTION REGISTER to 

00 00008+, set the CYCLE SELECTION FLIP-FLOP to data 

cycle and the DATA CYCL~ RI~G COUNTER to data first cycle . 
.i 

No other regi,ster would be chaaji.ged. The desired loading 

routine would be set in the ·,iData Channel Entry" switches, . . 
and in as many of the "Read-Only Memory" switches as needed. 

Depression of the ''Start!' lcey would then cause 1), a "Copy­

Jump" to 00008 (with the .p·revious contents of the INSTRUCTION 

COUNTER placed in the 0-REGISTER), 2.), the first instruction 

87 
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of the loading routine to be taken from the 111Data Channel Entry" 

switches. Note that the INSTRUCTION CUUNTER automatically 

takes the next instruction from location ;P.QO 18 , and continues to 

take the remainder of the loading routine from the Read-Only 

memory in a 'l;imilar manner. The last instruction entered into 

the Read-Only memory would, of course, be a "Jump Unconditional" 

instruction. 

The matter of minus instructions should also be discussed. 

As was mentioned previously, it is proposed that the sign of the 

instruction word should not enter into the code structure of the 

operation. Theref~re, the sign is available for other use. The 

writer suggests, in keeping with .the goal of flexibility, that a 

number of options be available to the programmer and operator 

in relation to minus instructions. Figure .18 shows the console, 

with the "Minus Instruction" switch at the lower right.'. The 

"normal" setting is that of "Execute". For this setting, minus 

instructions are "executed" in the same manner as plus instructions. 

The minus sign presents no influence. 

The ·"Ignore" setting means simply that minus instructions 

are "ignored" by the computer. When the instruction read .into 

the INSTRUCTION REGISTER is found to be minus, the INSTRUCTION 

COUNTER is simply incremented in normal fashion and the next 

instruction sought h:nmediately. Thus no data cycle is taken for 

a minus instruction on the "Ignorij" setting. 

The "Stop" setting is quite simple. As soon as the minus 

instruction is read into the INSTRUCTION REGISTER, program 

execution is halted (see Chapter 10). Upon depression of console 

"Start'' key, the minus instruction is exec:u.ted in normal fashion, 

and the program then proceeds in regular order. 
. . . 

The "Trace"setting implies a more sophisticated operation. 

In computer terminology, a "trace," is a list of the contents of all 
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important machine registers at various points during the execution 

of a given program. The trace is used for program analysis and 

correction, or "debugging". It is proposed that the execution of a 

minus instruction for the "Trace" setting would cause the contents 

of all mac.hine registers to be transferred to a special output buffer 

at the end of the operation, following which they .~could be punched 

or printed out for future use. When the program was corrected, 

the switch could be set to "Executerr, and the minus; instructions 

would not be traced. (9). 

The last setting to be discussed is the "Interrupt" setting. 

In normal computer operation, communication with input/output 

units is completely under control of tq.e program. If an input unit 

contains information which should be transmitted to the computer, 

the transmission cannot take place until the input unit is referenced 

by some sort of "transmit" or "read" instructi,q;n... The concept 

of "program interrupt" is simply that certain input units may be 

allowed to interrupt the normal. sequence of computer operation and 

transmit data into the computer at times other than during normal 

input operations. After the input unit is through transmitting data, 

control is returned to the main program. (9, 10). The "Interrupt" 

setting is intend~d to allow these interrupt o:perations from certain 

specified inpµt/output units ,following the execution of any minus 

instruction, reg~rdless of whether the instruction is an I/0 
operation. It is anticipated that such a facility would be quite 

useful in certain areas of real-time control system investigation. 

Appendix B gives the 48 operation ,.co.des that the :writer 

feels would constitute a reasonaple and useful command list for 

the OSTIC. Although a maximum of 64 commands could be 

incorporated, it is felt that a machine such as this should 

certainly have a provision for adding new operation codes at a 

later time. 
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Chapter 7 described the use of the logical operations "Ring 

Add", "OR Add", and "Complement-Load". These operations may 

be combined to provide all ~6 of the logical operations listed in 

Table VU. F~r example, if B is in the LOWER, A is in drum 

location 1510, and the desired operation is AB, then the following 

sequence of instructions would provide AB in the LOWEI,l: 

-

Operation 

Complement-Load 

O~R Add 

if AB is desired: 

Reset Add Lower 

Add Upper 

Complement-Load 

OR Add 

Data Address 

1510 

D-REGISTER 

.LOWER 

1510 

D-REGISTER 

UPPER. 

Finally,: if all l's are desired in the LOWER, the sequence 

Reset Add Lower 

Reset Add Lower 

Complement-Load 

UPPER 

VPPER 

D-REGIST~ 
. .. .· ·.-·c · .. : . 

would require a maximum of 10 word times (.f40 :microseconds) if 

the program was in the Read-Only memory. 

It will be noted that a "divide II operation .is not included in 

the command list. This omission was intentional; it was felt that 

the extra cost of providing built-in division was not justified on 

this machine. However, a divide routine may be easily programmed, 

using the AUXILIARY COUNTER to tally the shifts. If the dividend 

(which is plus) is in the ACCUMULATOR, and the divisor (also 

plus) in the D-REGISTER, the following routine would prove 

effective. 
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Inst. Address Operation Data Address 

00018 Set Auxiliary Counter 011102 

0002 Subtract Upper D 

0003 Jump Minus 00058 

0004 Halt-Jump (Error) 

0005 Store D 1513 

0006 Add Upper D 

0007 Increment Counter 

0010 Jump Auxiliary Zera (Operation over) 

0011 Shift· Left 00018 

0012 Subtract Upper 1513 

0013 Jump Minus 0006 

0014 Add Lower 0016 

0015 Jump Unconditional 0012 

0016 008 00018 

This routine, if placed in the Read -Only memory, cWould perform 

division in almost the same manner as would a b1Iilt-in divid~ 

instruction. 

Freilich, ( 1 ~), presents comparative data on various present­

day digital corriput~rs available for process control applications. 

One method of comparison used is cos't; another is the time rec­

quired to obtain data from the 11bulk memory 11 of the machine, 

whi':h would correspond to the drum in the OSTIC, and from the 

11working mem?ry 11 , which would correspond to either a core­

storage unit or to the Read-Only memory. The average access 

. time for the bulk memory in the OS TIC is 256 word times,; or 

8. 9 milliseconds. This is lower than 10 1 of the 24 computers 

l~sted, and higher than 14 ( 10 of the ;14 h:ad times of 8. 3 

milliseconds). The Read-Only memory ;,in the OSTIC has an 

access time of one word time, or 34 microseconds. This is 

somewhat greater than anyrhaohine t~.sted, ,al~hougfo s·:iJX:!ma:chines 
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had access times of 20 microseconds or more. Twenty-one of the 

machines listed were binary computers (one was octal), 19 used 

single-address instructions, 14 had .bu\k memory capacities ofi 

4096 words or less, seven were parallel machines, and 13 used 

words .. -0£ 24 .bits or less (one used 11 bits). It might also be 

mentioned that one machine cost t4·0, 000, another cost$389, 600, 
···-

and the average price was in .the neighborhood of $1 lo, 000. It 

may be concluded that the OSTIC, as presented here, compares 

favorably with commercially available mac.hines for applications 

involving control systems (i:'esearch and experimentation. 

Another interesting comparison might be made between the 

OS TIC and the IBM 650. The drum in the 650 rotates at 12,500 

rp:i:n and has 50 words per band. The.refore, the average access 

time is 25 word times, one _iWord time being equal to approximately 

96 microseconds. For various reasons, the faste,st 650 addition 

speed is 125,000 additionSper minute. For the OSTIC, the fastest 

possible addition would re-iuire three word time\S (one to acquire 

the instruction, one to acquire the opeg:-and, and one to add). Thus, 

the OSTIC can perform 512/3 additions per drum revolution, or 

approximately 589,000 additions per minute. The 650 worst case 

is 50 word times to find the operand, and sb to find the instruc:Ubn, 

or one ·addition every other drum revolution, resulting .in 6250 

additions per minute. The OSTIC worst case is 1725 additions 

per minute. 

In closing this chapte.r, the writer strongly recomme.nds 

that, as soon as the OSTIC is -0perating, an assemblt, program be 

devised. It is felt that only in this way can the full potential · 

(especially with respect to operating speed) of the OSTIC be 

utilized. 



CHAPTER XII 

. CONSTRUCTION AND MAI!'f TENANCE 

This chapter will present some of the writer's ideas and 

suggestions regarding construction and maintenance of the 

Oklahoma State Instructional Computer. It is the writer'~ 

philosophy that maintenance must be a primary consideration at 

all stages in the design and construction of any digita.f computer. 

Back-panel wiring should be cabled, not point-to-point, 

and wire splices should never be allowed within a cable. A 

color-coding plan should be adopted early, at least for standard 

voltages and internal pulses, and should be strictly adhered to. 

Whenever any modifications, additions, or repairs (no matter how 

minor) are made to the computer, they should be immediately 

recorded in a logbook that is kept with the machine. Whenever an 

unlisted modification is sencountered, it should be traced and 

recorded promptly. 

It is further suggested that, insofar as possible, the com­

puter be built in a modular fashion. Since most flip-flops will 

be used in groups of 18, perhaps each group could be mounted, 

with indicating neon lamps, on a small panel which would plug 

into the main chassis. In that way, whole "registers 11 coulq 

be moved around for trouble shooting. In this regard, a few 

extra units of all types should be kept on hand for such use. 

Documentation(or the lack of it)has been the downfall of a 

number of computer projects such as this. Machine records 

must be kept up-to-date. In addition, it is suggested that each 

individual who has the responsibility for designing and building 

portions of this ~chine be required to submit, as part of his 
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project, a list of troublei:s.h.cloti:Q:g , testing, and repair procedures 

for the unit be constructed. 

Marginal voltage tests are very valuable procedures 

in computer maintenance. As soon as power supplies are ready, 

work should be started toward toward perfecting such procedures. 

Finally, a library of the various test a.nd de.monstration 

programs should be maintained. 
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CHAPT;ER XIII 

SUMMARY 

The philosophy and general system logic design was devel­

oped for a small magnetic-drum digital computer. The design 

was continually influenc~d bJ the proposed future applications of 

the rra. chine. That is, the machine is primarily to be used .in 

connection with the teaching ·,Q)f digital systems design, and for 

demonstrations of digital cir cults. In this light, the machine 

system logic was to be straightforward, and the concepts of con­

trol and computation were to be easily understood. In addition, 

it was to be economical to maintain, and the command list was 

was to allow considerable flexibility in the application of the 

machine. 

Perhaps the greatest contribution to a straightforward 

,. 
C . 

system concept is that of using a central data channel. This 

allows the control logic for the various operations to co:n.s·is;t 

primarily of transferring data words between the various registers 

and the data cha_nnel lines. 

The selection of binary operation and single-address instruc­

tions were "natural" selections for a machine of this type. The 

use of parallel information transmission contribhtes muc.h toward 

simplifying the control logic. Parallel operation compromises the 

economy criteria to some extent; however, it was felt that the 

req,uirement of overall simplicity in machine organization was 

the more important factor in .this particular decision. 

The representation of numbers within.the computer in sign­

and-magnitude form is consistent with the use of the machine for 
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demonstration purposes to students in computer engineering 

courses, as is the facility for performing the various binary logi-, '­

cal operations. 

Provision for a very extensi{re list of branching operations 

through the use of the program :ifil.ag concept will prove v~luable 

for experimental applications in control systems work. Flexibil­

ity is also provided through the availability of a. number of operat­

ing options for minus instructions. Operating speed m~y be in­

creased conside:ra.bly through the variable inc:rerrientation of the 

instruction counter. 

In conclusion, it is· felt that the computer design presented , 

herein compares favorably with commercially.available computers 

of similar memory capacity. The flexibility inherent in the design 

bf the OS TIC computer should allow a wide 'va:riety of us efu1 and 

worthwhile applications wit9ipthe School of Electrical Engin~ering 

of the 'Oklahoma State University. 
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APPENDIX A 

GRAPHICAL SYMBOLS 

Listed below are the graphical symbols used in the Logical Dia-

grams accompanying this paper. An explanation accompanies each. 

AND Circuit 
B C 

See Gorn ( 12.), for further discussi.cn. 

C D = AB Note that A 

A -~E--i'!!--31--i~'T!'-.,;.. 
B 

A E = AC passes through 

F---

I= FGH 

D E 
G~H 

T used is 

I 

the connector. 

The arrowhead conven-

that the darkened arrow-

I OR Circuit head represents the signal or 

J 

K~~K 

pulse of the longer dura-

tion. 

TEST, Is the signal present (yes or no) ? No operation of the logic 

Is /= 9vdl· 
Co...,,/'a nun 

J..tt ..,.eJ, . o,,? 

EXPLANATION 

,vr n "" 
5re/J 
A ., r, e~ j,'#t 7/1111 

D- Re11s.e.r 
Tr.ue. - F1Bvte.­
Read- OvT. 

~'l~ll' I 
,,.,, dependent upon the pres -

/:l,p - () 

Pio of the signal is valid if 

the i,ignal is not present, 

A rectangular symbol or not on. 

conveys information as 

to the action to be taken. 

REGISTER: An oval symbol always represents an 

internal machine register, or its contents. 

PULSE: A triang'llar symbol always represents a 

pulse. The timing of the pulse is shown at
1 
the top. 
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APPENDIX B 

COMMAND LIST 

· The following operations . .constitute the command list 

suggested for incorporation i:p:to: .t~e OS TIC. The name of each 

operation is .1isted, together with ·the number of word-times re .. 

quired for execut~on 1, Operation Decoder ou~put gates required, 

pertinent Logical Diagram number·s, and a brief d~scription .uf 

the c;,pera;tion. 2 

1 
T.he abbreviations 1.used:in co11-nection with the word·times _ 

required are as follows: 

Op - Operand required, If located on the drum, from one 
t,o_ 5'12 word-times are required for acquisition, , with 
an. average of 256 required. If located in the rea.d­
only memory or an internal register, one word-time 

. required for acquisition. 

C - Complement cycle, using one additional word-:time~ . 
. will be required if negative answer .is developed. 

N - =Number of l's in word ('~x~luding sign bit). 

S .. Number ofl?ositions des.ired on a shift. 

2 Th:~ ibbreviations us~d .in connection with the operation 
descriptions are as follows: 

XXXX refers to the contents of a register or a drum .. 
location. 

ABCD refers to the data address 6£ the instruction in 
octal form. A refers .to the first octal digit, B to the 
second, C to the third, a.nd D to the fourth. 
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Qper~Uon Timing Decoder Gates 

, ARITHMETIC CODES: 

Add Upper Op,:+ l + C Operand, Add, Upper 

Add Lower Op+ 1 + C Operand, Add, Lower 

ReSet Add Lower Op+ 1 + C Operand, Add, Lower, 
Reset 

Add Magnitude Lower Op+ 1 + C Operand, Add-, Lower, 
Magnitude 

Subtract Upper Op+ 1 + C Operand, Subtract, 
Upper 

Subtract Low er Op+ 1 + C .- Operand, Subtract, 
Lower 

Reset Subtract Lower Op+ 1 + C Operand, Subtrac:t, 
Lower, Reset 

Subtract Magnitude . Op+ 1 + C Operand, Subtract 
Lower Lower, Magnitude 

Reset Multiply Op+ 1 + N Operand, Multiply 
+ 18 

_/ 

Logics 

5, 6, 8 

5, 6, 8 

5, 6, ,8 
,, ," 

5, 6, 8 

5, 6, 8 

5, 6, 8 

5, 6, 8 

5, 6, 8 

5, 6, 9 

Description 

Add XXXX~to Upper. 

Add XXXX to Lower. 

Reset entire 
AGcumulatbr to: plus " 
~ero', 'theri' add -xxx'x 
to Lower{ : ''. 

- -· --- ·--

Add I XXXX J to 
Lower 

SubtractXXXX from 
Uppe'r 

Subtract XXXX from 
Lower~ 

- Reset entire Accumu-
lator to plus zero, 
then subtract XXXX 
from Low er. 

' 
Subtract I XXXX I 
from Lower. 

Reset Lower Accumu 
· lator to zero. 
Multiply XXXX by 
Upper. 

I-' 
0 
0 
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Operation Timing Decoder ·Gates 

-
LOAD AND STORE CODES: 

LoadD Op Operand, Lpad D 

Sto:te D Op Store, D 

Store Upper Op Store, Upper 

. 
Store Lower Op Store, Lower 

LOGICAL CODES: 

Complement Load Op Operand, Complement 

Ring.Add Op+ 1 Operand, Ring Add 

OR Add Op+ 1 Operand, OR 

SHIFT CODES: 

Shift Left 1+S Shift, Left, Shift 

Shift Right Circular 1 + S Shift Right Circular 

Logics 

5, 6 

7 

7 
' 

7 

5, 6, 8 

5, 6, 11 

10 

10 

-
Description 

Place XXXX in D. 

Place Din XXXX 
(drurq only) 

Place lJpper in D and 
in xxxX':(dru m only) 

__ Place Lower in D and 
in XXXX (drum only) 

Plac ~. XXXX in D; 
take 1' s complement 
of entire Accumulator 
(except ..sign) 

Shift entire Accumu-
lator CD: places left) 
32 10 maximum . 

Shift entire Accumu-
lc:1.tor CD places right 
(32 10, maximum). · Bits 
shifted off right end 
enter left end. 

-0 -



Operation Tim in~ .J?ecqder:~O?d:e s .. 

.. 

BRANCH ·CODE'S: ': 
···-·· 

Jump Unconditional 1 · Branch; Unconditioned 
Jump 

Jump 'Minus 1 Branch, Minus Test 

Jump Zero --1 Branch, Accumulator 
.. Zero Test 

,· ·-

· Jump 011 Ovi~:tf}o.w 1 Branch, .Overflow Test 
.,,.,. 

Jump on Parity Error 1 Branch, Parity Test 

/ 

iump on z era Auxiliary 1 Branch, Auxiliary Test 
. . 

Jump Flag O (or 1-7) 1 Branch Flag O (,or .t-7) 
· 8 code~ ··totat .. Test 

Copy Jump 2 Branch, Copy-Jump 

- -

· Lpgics 

12 

12 

12 

12 

12 

12 

12 

13 

p~ s~_+}_ption 

Set Instruction Counter 
to ABCD. 

If Accumulator sign 
is minus, set Ins.true-
tio,n_ Counter to ABCD. 

If entire Accumulator 
is ·zero (plus or minus) 
set Ins_truction Counter 

to ABCD. 

If Overflow Latch is on, 
. turn to off and set 
InstruGtion Counter. to 
ABCD. 

-If Parity Error latch 
is on,. turn off and set 
Instruction Counter to 
ABCD. 

If Auxiliary Counter is 
zero, set Instruction 
Counter to ABCD. 

_If Program Flag O : 
(or 1-7) is on, set 
Instruction Counter 
to ABcn: 

Copy contents of 
Instruction Counter into 
D, then set Instruction 
Counter to ABCD. 

-

.... 
0 
N 



Operation Timing Decoder Gates 

PROGRAM FLAG CODES: 

Set Flag O (or i-7) 1 Flag, Flag Set 

Res et FJ;a.g O · (or 1-7) 1 Flag,. Flag Reset 

M-15,C.ELLANEOUS CODES: 
..... - · .. 

Set Increm:ent 1 Set Increme.nt 
-

.. 

Set Counter 1 Auxiliary Counter 

Increment Counter 1 Increment Auxiliary 
Counter 

Halt-Jump 1 Branch, Unconditioned 
Jump, Halt 

. INPUT/OUTPUT CODES: 

Eight c;odes, 70 through 77 
;' . 

Logic!:! 

14 

14 

15· 

15 

15 

12 

-,-
Description 

·-

Turn on Program Flag 
A if condition BCD -is 

' true. 

Tur-n off Program 
Flag A 

Set Increment Register 
to BCP, 

Set Auxiliary Counter 
to CD {3 ~ 10 maximum). 

Add 1 to Auxiliary 
Counter. 

Set Instructio.n Counter 
to ABCD, then stop 
machine . 

""" 0 
w 



APPENDIX C 

LIST OF PULSES 

All machine pulses appearing .in the Logical DiagEam,a 

are listed by name. Timings, diagram numbers, and a brief 

descrip:t;:i@n of the function of eac:h pulse accompany the listing. 
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Name Timi;ng 

I 
Add-in pulse I - 3 

Address pulses 1 

Address Test 0 -1 .. 2 

Complement Test 4 

Cycle Test 3 

Cycle Turn~On 0 

Data Fir st· Cycle 0-4 

Data Second Cycle 0 -1.4 
. 

Data Thirfl Cycle 0 - 4 

Instruction Counter Increment 4 

Miscellaneous Reset 4 

11 111 Bit 0 -4 

Read-in 2 - 3 -4 

Sign Add 1 
' 

Sign Test 0 

Word Pulses 3 

I Word Time 0 - 4 

: Write 3 
i 

''o"Bi t 0 - 4 

Logics 

8, 9, IO, I I, 15 

5, 7 

5, 6, 1 

8 

5, 6. 7, fl, 14 

2, 3, 4 

All except numbers 
1, 2, 16 

4, 8, 9, 10, 11, 12, · 13 

4, 8 

3 

9, 10 

8, 9, 10, 15 

5, 6, 7 

8 

8 

5, 7 

3, 4 

6, 7, 10, 12, 13, 15 

8, 9 

' Purpose 

Add into various registers. 

Address of words available. 

Test band number. 

T~st for Complement cycle. 

Determine next cycle. Flag 
operations. 

Change cycle settings. 

Fir st operation on data cycle., 

Second operation on data cycle. 

Third opera tion on data cycle. 

As name implies. 

Reset various latches. 

. Adding II l'"s 11 • 

Data transmissibn. 

Add -'in sign bit 

Set up end-around carry logic. 

Word bits from read heads. 

Provide cycle· gates. 

Write onto drum and into 
Registers. 

Adding 111 0' s 11 

-0 
I.Tl 
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APPENDIX D 

LIST OF LATCHES 

All machine latches appearing in the Logical Diagrams are 

listed by name. Time turned, time turned off, diagram numbers, 

and a brief description of the function of each latch accompany 

the listin;g.., 



Time Time 

Name 
Turned Turned 
On .. · .. Off 

Complement 4 4 

Cycle Selection Flip-Flop 0 0 

Data Cycle End any 
except 0 0 

Data Cycle Ring Counter 0 0 

: 

End-Around Carry prior 0 
to 4 

Equal Comparison I 0 
I 
! Program Flags O - 7 3 3 

! 
I 
i i Instruction Cycle End any 0 

i except 
I 

i 0 and 4 
I 
I 
I Non-Drum Read 0 - '1 4 

Operation iJ - 4 0 - 4 

,i Overflow 4 0 

Parity Error 3 

Shift-or-Add 0,4 0,4 

Signs Different 0 0 

Logics 
-· 

. -

8 

2, 3, 4 

all except 
,l F3 ;::: i.6 ': 

4, 5, 6, 8, 
IO, 13 

8 

5, 7 

14 

2, 3, 5, 
6 

6 

12)16 

8, 12 

5, 12 

9, 10 

8 

Use .. 
: 

Prevent re-complement. 

Set mac_hine in either data or 
instruction cycle mode. 

Set up change .to instruction cycle. 

Set up data first, second, third cycle. 

Indicat'e that an end-around carry 
has occurred. 

Set up 9rum read or write 

Various purposes {available to 

programmer). 

Set up change to data cycle 

Set up acquisition of non-drum words. 

Sets ma0chirre to stop or ~n. 

Indicates Accumulator overflow nn 
addition. 

Word read fromJ;l:i;um has incorrect 
parity. 

Operations involving shifting. 

End-arou:q.d carry and complement. 

I 

I 
I 
! 
I 

i 

..... 
0 
-.J 



Name 

Signs Negative 

Signs Positive 

Step Anticipation 

Storage Selection Error 

., 

Time 
Turned 
On 

0 

0 

Time 
Turned 
Off 

0 

0 

any 
exceptO 0 

0 - 1 0 

Logics 

8 

8 

4 

6, 7, 12 

Use 

End-around carry and ~rflow. 

End-around carry and overflow. 

Set up data cycle change. 
.... __ , 

,Indicate incorrect data address. 

-0 
00 
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