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PREFACE

The number and usefulness of digital computers is constantly

increasing. Similarly, the demand for engineers with an under-
standing of not only the applications, but also of the internal
structure of digital computers is also increasing.

The availability of a quantity of computer components to the
School of Electrical Engineering of the Oklahoma State University
suggested that a small computer might be constructed for
demonstration and instructional purposes in computer engineering
courses. Before such a project could be undertaken, an overall
organizational plan was reguired. Such a plan is presented in
this-paper.

The various applications of an instructional computer will
be examined, and from these a ''design philosophy'" will be
developed. These criteria will then be used in formulating the
machine organization. Although many of the components avail -
able for construction are circa 1952, the writer has attempted
to avoid designing another 1952 computer.

The author expresses sincere thanks to his adviser, Professor
Paul A. Mc Collum, for his counsel and guidance. It is deeply
appreciated. Also, the help and understanding of Professor
William Granet, Acting Director of the Computing Center of the
Oklahoma State University, are gratefully acknowledged.

My wife, Gail, and her mother, Mrs. Martha Raper, did
all of the typing for this paper. Theirs was a true labor of love,

and I thank them for it.
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CHAPTER I

INTRODUCTION: DESIGN PHILOSOPHY

The design of a digital computer involves many separate levels,
from the formulation of the overall purposes of the computer, to the
final design and testing of the circuits to accomplish each specific
task.

In this chapter, the Oklahoma State Instructional Computer (here-
after called the OSTIC) will be examined in the three areas of construc-
tion, operation, and maintenance. From the constraints brought out
in this discussion, a ''design philosophy' , or set of design criteria,
will be formulated for use in the remainder of this paper.

The principal sourceé of components that will be used to construct
the OSTIC is the remnants of a digital computer given to the School
of Electrical En'gine.efi’-ng of the Oklahoma State University, by the
Continental Oil Company of Ponca City, Oklahoma. Components a--
vailable include a magnetic drrum with read write heads, motor,
and a heavy-duty regulated power supply, together with numerous
pluggable flip-flop modules, diode assemblies, and other electronic
parts.

A number of important design parameters, such as component
maximum operating speeds, voltage levels, and pulse shapes were
thus already determined before the present design was conceived.

It should also be mentioned that one of the design goals was to min-
imize the number of purchased components, such as flip-flops,
and diodes, since, unlike some other computers constructed by
universities, OSTIC will probably not receive a large amolunt of
outside financial support.

As the name implies, this computer is primarily intended for

use in computer logic design classes. It may be noted that a greatdeal



of the instructional value of such a machine lies in the actual
construction and testing. It is the intent that the machine will be
built, unit by unit, by graduate students under the direction of
faculty members. In order to be certain that these efforts are of
greatest benefit, an overall plan must be devised (preferably
during the earljr_ stages of construction) that outlines the purpose,
goals, and basic design criteria for the computer. This overall
plan must be fairly complete and sufficiently detailed that no im-
portantquestions (such as, "How does this machine add?'") remain
unanswered. At the same time, the plan must not attempt to pre-
sent an overly detailed final design. In the first place, this
would be much too time consuming for any one person to create;
more. important, the individuals doing the actual constriuction
and testing may very likely find preferred ways to accomplish
certain operations. Finally, and most important of all, the
overall design should be straight-forward, and readily understand-
able by persons not possessing a large amount of experience in
the area of digital computers. Students of this background will
not only build the machine, but will later use it to learn how a
computer operates.

It is anticipated that this machine will find varied applications
in its role as an instructional computer. One of the most likely
areas will be in classroom demonstrations. Here, the emphasis
will be on how a digital computer functions internally, rather
than (as is so often the case ) how the computer brings in data and
(somehow) turns out answer s. Class demonstration requires
two things: first, a console so designed that the students can
clearly see the contents of the various registers; second, a pro-
vision for slow-speed operation so that the students can see each
step of the computation as it is performed. Also, it is obvious
that the demaonstration machine should be sufficiently simple

that it may be understood (both internally and externally) and



used by students in computer design courses.

Another possible application for such a machine would be
as a test computer for various research and development proj -
ects jnvolving pulse or digital circuitry. In other words, the com-
puter might be called upon to serve as a programmable pulse
generator. Perhaps the most important consideration here would
be reliability. A student who is using the computer as a device to
test, for example, a transistorized shift register, needs an ex-
tremely reliable machine., If the test set-up does not function
properly, he should be quite certain that the failure is in his
device, rather than in the computer. The example of a tran-
sistorized shift register points up another consideration: the
OSTIC should have, in addition to a '""standard' console (indicator
lights and switches), a large patch panel where all computer
pulses, gates, and register outputs are available for circuit use,
together with adjustable power supply voltages. A panel of this
type would not only be convenient for the application mentioned;
it would be invaluable for machine maintenance. A third con-
sideration might be mentioned here: test equipment should be
easily set up and verdatile in operation. The versatility may be
taken care of by a flexible instruction list, but a large amount of
set up time would be required if the user (who would probably
need only a five- or ten-instruction program) had to enter each
instruction into the drum memory, either by operating the console
or by punching and then reading-in cards or paper tape. One
solution to this problem might be a separate read-only memory
of eight, sixteen, or thirty-two words, addressable by the com-
puter in a manner similar to the regular memory and physically
provided by a bank of toggle switches on the console.

The existence of a controls laboratory at OSU containing a

number of analog computers suggests another possible application



for the OSTIC. This would be as an element in a digital control
system, or in the area of real-time systems investigation. Here,
the requirement is not only for reliability, but also for a high de-
gree of flexibility in both programming and in data transfer. Pro-
gramming flexibility would seemto imply the presence of a variety
of test and branching codes, perhaps together with some sort of
masking or logical operations. The emphasis here would not be
on the standard arithmetic operations of addition, subtraction,
multiplication, and division, but rather on the controlling func-
tions. The problem ofdata transfer would imply flexibility in
input/output equipment, with perhaps a number ‘of buffered periph-
eral units.

Since this machine will be a digital computer, the guestion
of computation for problem solving might be raised. It is antic-
ipated that the OSTIC will be used little,if at all, for this type of
operation, since computers are already available on campus with
much more speed and many programming aids. The problems
inherent in writing even a small program for a binary computer
with . no compiler or assembly routines available make such an
application extremely unlikely, to say the least.

Finally comes the all-important question of maintenance.
This ecomputer will be maintained by students and technicians who
will probably not be overly familiar with computers in general,
and who certainly cannot be expected to become intimately
acquainted with the operation of each individual circuit. Also,
there will be a continuing turnover in the student personnel
associated with maintaining the computer. The entire machine
must be designed with this in mind; maintenance procedures,
especially those concerned with pin-pointing malfunctioning
units, should be extremely  simple and straight-forward.

Upon taking all of the foregoing considerations together,



one finds that a fairly clear-cut design philosophy emerges. It
becomes clear that a simple machine organization is desirable,
from the standpoint of the graduate student whose thesis proj-
ect forms a part of the machine and who needs to understand
its place in the overall design; from the standpoint of the school,
since simplicity usually implies eéonomy of components;

from the standpoint of the student in a computer design course,
whose first contact with the '"insides'' of a computer will prob-
ably be through the OSTIC; from the standpoint of the students
(and faculty) who use the computer; and from the standpoint

of the maintenance personnel, for whom an easily understood
machine is usually an easily repaired machine.

The OSTIC should be an extre mely reliable computer, both
because a large amount of time (and money) will probably not be
available to make constant repairs, and because some of the areas
of greatest benefit will be those in which the computer is used as
a means of testing and monitoring the performance of other
equipment.

The final design criterion forces the designer to make so-
called "engineering decisions'. This is the requirement that
the computer be practical; in other words, the OSTIC should
be not only usable, but useful. It was noted that the uses for this
machine 'would be primarily in the areas of demonstration, test,
and system inyestigation. These applications necessitate a flex-
ible computer, with perhaps a limited arithmetic command list,
but with an extremely flexible list of testing and data-handling
commands. Implicit also is a rather large console, with many
operating options. In order to justify the effort that has been and
will be put into the design and construction of this computer, a

machine of maximum usefulness must be the constant goal.



CHAPTER II

THE OVERALL SYSTEM ORGANIZATION OF THE OSTIC

This chapter presents a discussion of the overall system
organization developed using the criteria presented in the pre-
ceding chapter. The basic tenets set forth in this chapter are the
foundations upon which the remainder of the design rests.

Because of the requirements of component economy, sim-
plicity, and reliability, the binary number system was select-
ed for use in the OSTIC. Practically every text on digital com-
puters presents anaterial on the choice of a number system
(1,2, 3, 4) ; it will suffice to state here that this computer would
be much more expensive and complicated if built as coded-
decimal machine, and further, that the use of a binary computer
in digital instructional courses is not a disadwantage to the
student, since many computers in the ''real world'" are natural
binary machines.

A second fundamental decision was that the OSTIC should
be a parallel machine. ''Parallel', as used here, means that
the binary digits, or bits, of a given computer word are always
transmitted and operated upon simultaneously. It was decided
that the bits of any given word would be stored in parallel on the
magnetic drum, that they weuld be read off of the drum in par-
allel, and that they would be moved about within the machine in
parallel. The primary consideration in selecting‘parallel oper-
ation was that the OSTIC was to be used for slow speed or step-
by-step demonstration in the ¢lassroom; it was felt that a parall-
el computer would be more readily understood by the students

than would a serial machine. Also, a parallel computer can be



organized and built in a more straight-forward manner; if a separate
wire is assigned to each bit, the circuit designer has fewer problems.
Finally, it should be noted that most authors agree that a serial machine
uses fewer:components (1, 4); in this case, the economy consideration
was compromised somewhat for the sake of overall design simplicity.

The next problem was to select the method of instruction sequencing.
Four -address, three-address, two-address, one-plus-one address,
and single-address computers have been builtl , and each system has
its advantages. The system chosen for the OSTIC was the single-
address system, whereby the instruction word specifies the operation
to be performed and (normally) the location of the operand. A
special counter, called (in the OSTIC) the 'Instruction Counter',
keeps track of the location of the next instruction. The Instruction
Counter is incremented at some time during the execution of each
instruction, and it is presumed that the next instruction will always
be placed (by the programmer) at the memory location correspond-
ing to the contents of the Instruction Counter. Again, the single-
address system was chosen for reasons of economy and simplicity
of design; it is not an exaggeration to observe that a three-or four-
address machine is a programmer's dream and a designer's night-
mare.

Having decided upon parallel binary operation, using a magnetic

drum memory for storage of both data and single-address instructions,

1Some examples of computers using the various types of address
structure are

Three-address ......... . Univac File Computer
Two-address............IBM 305 (RAMAC)
One-plus-one address....IBM 650
Single-address..........IBM 704, 709, 7090



the rest of the functional units of the OSTIC may be specified. It

was decided to use a double-length, doubly-addressable accumulator,
and to refer to the two halves as the "UPPER" (high-order) and "LOWER"
(low-order) ACCUMULATORS. A word distributor, or "D-REGISTER"
was chosen for temporary storage of operands and to perform miscella-
neous tasks. A register to store the current instruction is implicit

in a digital computer; in the OSTIC this is called the "INSTRUCTION
REGISTER'" , and may be further described as a combination of

an "OPERATION REGISTER'" and an "ADDRESS REGISTER'" . The
INSTRUCTION COUNTER has been previously mentioned; it would
pperate in conjunction with an "INCREMENT REGISTER'" that would
perform operations associated with incrementing the INSTR UCTION
COUNTER.

In addition to the units mentioned above, an "AUXILIARY COUNT-
ER'" was found to be necessary for certain operations. The possibil-
ity exists (although somewhat remote) that indexing registers might
be added to the OSTIC;therefore, they should be included as func-
tional units. It should be noted that the input/butput equipment
(except for the console) is not considered, since its characteristics
do not enter into the internal organization.

Logical Diagram number 1 (Figure 1) presents the functional
units of the OSTIC, and the manner in which they are tied together
for data transmission purposes. The common point is the '"DATA
CHANNEL'" , a group of bit lines that handle all data transmission
between the drum and any register, between registers, and betweeh
input/output units and the memory. Both data words and instruction
words pass over the DATA CHANNEL. The cycle impulses, togeth-
er with the output of the OPERATION DECODER, ADDRESS DECODER,
or address comparison circiits (none of which are shown on Logical

Diagram number 1) , cause the output lines of a given unit to be
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gated onto the DATA CHANNEL. A moment later the input lines

of some other unit are gated from the DATA CHANNEL. After the
transfer of data or an instruction has occurrea, the DATA CHANNEL
input gate‘ is removed, and then the DATA CHANNEL outpﬁt gate

is removed. The entire operation of this computer is based upon

the data channel concept, since the acquisitibn and execution of all
computer instructions involves basicallly little more than the gatiﬁg
of the proper units onto and off of the data channel in sofnef_ pre-
determined sequence.

Upon examination of Logical Diagram number 1, several other
design concepts begome apparent. One of the most important is
that since all of the operafing units share the same DATA,.CHA.NNEL,
it is no‘t at all difficult to make all of them addressable in the program.
This concept is relatively new in computer design (5, 6), and while
simplifying the construction of the machine, it vastly increases the
flexibility of programming.

It will;, be notéd also thatieach unit communicates directly with
the computer console, rather than indirectly through the DATA CHAN-
NEL . While this approach results in a rather imposing console
with many indicator lights and switches, it is felt that enabling the
studenf to read the contents of all units simultaneously would be
invaluable for classroom demonstration. The ability to enter data
into any register by merely setting the data word in a row of toggle
switches and pushing an ""enter' button has advantages in ease of
operation.

The "READ~ONLY MEMORY, as shown on Logical Diagram
number.1l, is simply a number of rows of toggle switches mounted
in one section of the consoie. Each row would correspond to one
word of memory and would be addressable for read-out in the same
manner as the drum memory. |

Finally, it should be pointed out that the various types of in-
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put output units in Logical Diagram number 1 are shiown for illustra-
tion only. It.is presufned, hOwev:er., that these units or their bﬁffers
will communicate with the DATA CHANNEL. |

The remainder of this paper will de_scribe the metﬁod 6f‘cox.1trpl--

ling the operation of the various units.



CHAPTER III

MEMORY AND TIMING

As is true with most digital computers using a rotating mag -
netic drum fdr the main memory, timing in the OSTIC is a func-
tion of the angular position of the drum. The drum in the OSTIC
rotates at a nominal 3450 rpm (one revolution equals approximate-
ly 17. 4 miilisgconds). It is 7 1/2inches in diameter by10 inches in
length. One-l;undred—twenty-eight read/wfzrite heads ;.re loca ted
around the drum, and a permanently machined timing track pro-
viding 2560 timing pulses per drum revolution (one ':tir!ning pulse
every 6.8 microseconds) is located at one end. )

 Since it was decided to read data onto and off of the drum in
parallel, words could be located as desired. Accordingly, the
2560 timing pulses available were divided among 512 word times,
providing five timing pulses per word (see Figure 2). One
word time in the OSTIC is then equal toapproximzai;‘vely 34.0 ¢
microseconds. A "home' pulse will be provided on a sepa;rate
timing track, and 'address' tracks will be permanently recorded
with the binary word addresses 000 000 000 to 111 111 111, which
is equivalent to words 000 to 777g, or to words 000 to 5121g
(note that‘the chbice .‘of 512 word times per revolution provides con-
venient addressihg, since 29 =51210) . Word location 000g will
immediaﬁ;ely follow the home pulse in angular position, and loca-
tion 777g will immediately precede it. The five timing pulses
for the ith word time will be denoted by Tj0, T;l, T,2, Ti3.’ and
Ti4’ or more generally (where the particular word time is unimpor-
tant) as 0 time, 1 time, 2 time, 3 time, and 4 time. This timing

convention will be used throughout the remainder of this paper.
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The timing pulses, home pulse, and address pulses will be read
by read/write heads that have had their write circuits disabled.
The pulses will go into a "CLOCK REGISTER" that will provide the
var.ious pulses and gates needéd by the rest of the machine, as well
as providing a constant check ‘on the timing and address pulses to
see that they occur in the proper, order.

To reduce timing pvroblems,‘ﬁhe address pulses of Word Ti
will be perma_nentiy :recorded in such a manher_zthat they will be
available for checking at T; 1 time. The bits of word T; itself
will be written onto and read off of the drum at Ti3 ti_me. Chap-
ter 5 relates the use of address pulses in reading from and writing
onto the drum.

' It was decided to use a word length of 18 bits in the OSTIC,
together with a sign bit and a parity bit. The sign bit is transmit-
ted Wi.t_h.the word bits, but is not considered an integral part of
the wo‘rd for purposes of shifting and multiplication. The parity
bit is used only in conjunction with drum storage; it is generated
by the "PARITY REGISTER" on a '"'drum write' (store) operation,
and is checked by the PARITY REGISTER on a '"drum read"
operation. The parity mode is "even parity', as is used by most
parity-check devicés; the total number of bits in a word, including
sign and parity bit, is always supposed to be an even number.

The use of an 18 bit word for both data and instructions brings
up the question of instruction format and addressing. It was stated
preiriously that there were 512 word times during one revolution of
the drum. In order to represent 512 separate addresses in binary
fdrm, 9 bits must be used (295: 512). However,; it would be desira-
ble to have more ,tha.‘nv.512 memory locations; in fact, if a total af
‘ ord (18 word bits,

\

1 sign bit, 1 parity bit), a total of 20 read/write heads are all that

twenty bits are recorded on the drum for eachw

are necessary to store 512 words, while some 128 read/write heads
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are available. A further consideration is that since binary notation
is somewhat unwieldly for everyday use, it would be very desira-
ble if programming of the computer could be done in octal (base 8)
notation. Octal reguires 3 binary bits for each octal digit; there-
fore, Binary addresses must be in multiples of 3 bits if they are

to be represented in octal form.

In view of these considerations, it was decided to use 12 bits
of the instruction word for the data address, and the remaining six
bits for the operation code. This resulted in a 6 octal digit instruc-
tion (see Figure 2) the first two digits of which were the operation
code, and the last four were the address. Further, the address .
may be divided into a '""band address' for the first octal digit (first
three bits) and a "'word address' for the last three octal digits (last
nine bits). The drum memory thus was planned to have six bands of
512 words each, for a maximum (if all are used) of 3072 words of
drum memory.

In addition, it is proposed that OSTIC be provided with either
sixteen or thirty-two words (a power of two would present fewer
problems in the address circuits) of '"read-only'" memory in the
form of switches on the control console. These memory words
will be addressable only on read operations; the binary system in
the computer will allow the use of relatively inexpensive single-
pole double-throw toggle switches. The availability of a fairly
large, quickly altered read-only memory would be invaluable for

demonstrations and test programs.
| It will be noted that since band numbers 0 and 7 are not used for
drum addresses, there are 512 addresses of the form 0XXXg and
and 512 addresses of the form TXXXg also available. It is intend-
ed therefore, that the 0XXX addresses be reserved for internal
machine use (register addresses, read-only memory, etc.) ,

-while the 7XXX addresses be reserved for input/output equipment.



16

It is intended that band addresses 1 through 6 be reserved for drum
addresses, even though not all six bands are used at first.

The use of two octal digits for operation codes results in a poss- -
ible command list of 6410 operation codes, ranging from 00 to 17g-
If the sign of an operation were also taken into consideration, a
total of 128 10 operation codes could be used. This, however, is
not recommended. Further discussion of. thls point will be found
in Chapter 10. |

To summarize'brieﬂy, thp drum memory ié divided into six
bands, numb_éred from one to six. Each band contains. 512 words,
numbered from QOO to 777‘8 . Each word has eighteen bits , one
sign bit, and (on the drum only) one parity bit, for a total of twenty
bits. The insti'uction word uses the first two octal digits of the
word fpr the operation code, and the last four for the address. Th_e
addreé__:_sj_.:}_s broken down into a one digit band number (or band ads
dress) and a. three digit word address.

Int_ernaliy, the machine uses five timing puises per word time,
called ‘(for'the ith jword) T;0, Til’ T;2, T;3, and T;4. Where the
particular word is of no importance, 0 time, 1 time, 2 time, 3
time, and 4 time will be used. The*waxd addresses correspond-
ing to the addresses of the words in each band are recorded on spe-
cial address tracks; these are available at 1 time, while the contents

of the word itself are available at 3 time.



CHAPTER IV

CYCLES AND CONTROL

Almost every digital computer must perform, internally or
externally, two basic functions. Oneiof these is to acquire, by -
some means, the next instruction to be executed. The other is
to execute that instruction.

No matter how simple:of how complex the individual instruc-
tion, the computer performs its operations in this manner. It
has been,_sai'd‘ that a digitalﬂcomputer is perhaps thé most complex
form of 'séquential machine, since at the start of a program the
instructions and data stored internally will (if no input 1s assumed
to accur during the program) determine the state of the machine at
any later time until the "prog’fam is completed. 7

Thus, the computer steps thfough a program, finding é.n in-
struction, executing it, finding the next instruction, executing
-it, etc. The time consumed in acquiring the next instruction in
the OSTIC will be called the Minstruction cycle", and the time
consumed in e’xecuting, that instruction will be called the ''data
" _cycle", although data may not always be transferred on all data
v:':‘_cycles o | |
| The term "cycle"should be further defined, since a misconcep-
tion could easily resulf from its indis‘crim‘inate ﬁ‘se. As -ps’ed here,

"cycle" is one. or m_____mg_whole word times, a word tlrne being
cons1dered to run from the leadmg edge of one 0 t1me pulse to .the
leading edge of the next 0 time pulse. A cycle may sometlmes
consist of only one \&ord time, as, for example, the time required
to acquire the next instruction fr_6m the D-register (see Cha;}':)ter

5), or'it may require many word titmes, as, for example, in the

17
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case of acquiring a multiplicand from drum storage, then multi-
plying it by a multiplier in the upper accumulator. However, one

rule is steadfast; in‘the OSTIC, a cycle is always composed of an

integral number of whole word times.

The method of execution of the various .operatiéns in this
computer will be illustrated by Logical Diagrafns, using special
graphical symbols.‘ The reader is referred to Appendix A for
an explaﬁation of the symbols used.

It is planned that the selection of the appropriate cycle (data
or instruction) will be performed by a "CYCLE SELECTION
FLIP-FLOP"‘(bistable multivibrator) as shown on Logical Dia-
gram number 2 (Figure 3). When one side of this flip-flop is
conducting, the computer will be in the data cycle mode; when
the other side is conducting, the machine will be in the instruction
cycle mode.

The general operation of cycle selection is also illustrated
in Logical Diagram No. 2. Briefly, the CYCLE SELECTION
FLIP-FLOP is set to one mode or the other by a "CYCLE TURN-
| ON'".pulse at 0 time. The CYCLE-TURN ON pulse (a very sﬁérp
pulse of short duration) is allowed to set the CYCLE SELECTION
FLIP-FLOP only when a "CYCLE END'" impulse has turned on
one of the two "CYCLE END latches' during the previous word
time.

A detailed description of the operation will now be presented,
using the timing chart on Logical Diagram No. 2. Reading from
left to right, it is seen that the CYCLE SELECTION FLIP-FLOP
is assumed to be set for data cycles, resulting in the DATA CYCLE
MASTER gate be-ing on at the start of the time interval under’
consideration. A "DATA CYCLE END' impulse is then assumed

(upper left corner of diagram, reading downward). Although this
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pulse began at 0 time, it was inhibited by the CYCLE TURN-

ON pulse. At 0 time, however, the CYCLE TUR‘N-ON pulse is

" not present, while the DATA CYCLE MASTER gate is on, so the
DATA CYCLE END pulse furns on the ‘”DATACYCLE END latch'.
This 1atc1'; is simply a .resetta,ble flip-flop.

At 0 time of the next word time, since the DATA .CYCLE END
latch is on, the CYCLE TURN<ON pulse is able to éet sthe CYCLE
SELECTION FLIP FLOP to INSTRUCTION CYCLE. The INSTRUC-
TION .CYCLE MAS_TER,gate, turning on, causés the DATA CYCLE
END latch to be reset, or turned off. |

vSometime between .0 and 4 time of the instruction cycle , an
INSTRUCTION CYCLE END pulse occurs. Since the CYCLE
TURN-ON pulse is not present to inhibit it, and the INSTRUCTION
CYCLE MASTER gate is present.,l'the INSTRUC TION CYCLE END
impulse turns on the INSTRUCTION CYCLE END latch. At 0
time of the following word time, the CYCLE TURN ON pulsé is
gated by the AND circuit from the INSTRUCTION CYCLE END
latch to set the CYCLE SELECTION FLIP-FLOP to data cycle.
The DATA CYCLE MASTER gate, turning on, resets the INSTRUC-
TION GYCLE END latch to the off position. | L

The salient po1nts are that there ex1sts either a DATA CYCLE
MASTER gate or an INSTRUCTION CYCLE MASTER gate at all
times; thaf these gates remain on until set t6 turn off by CYCLE
END ifnpulées; that the turn-off or END impulses may occur at
1, 2, 3, or 4:tirhe for data cycles, or atl, 2, or 3 time for
instruction cycles; and that the MASTER GATES are always on
from 0 time of ohe word time to 0 time of a later word time or,
in other words, that the MASTER GATES are always on for inte-
gral multlples of word tlmes.

. Loglca.l ]ngrarn number 3 (Flgure 4), Instruction Cycle

Control, vblll now be exarnlned It will be noted that the’ INSTRUC-
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 TION CYCLE MASTER gate, CYCLE TURN-ON pulse, and
'INSTRUCTION .CYCLE END latch are repeati_t'ed from the previous
diagram. " |

Referring to the aiag:é,m and timing chart, it.will be noted
that as long as the‘INSTR.UCTIONCYCLE‘MASTE_R gate is on,
thd W‘ORD;"I"IME pulse is gated/by an AND circuit to provide
ar INSTRUCTION CYCLE gate for the rest of the machine. In
other words, the lINSTRﬂCTiON CYCLE MASTER gate does
not itself provide instruction cycles to the rest of the computer;
rather, ‘it controls anothey impulge to provide this function.
Also note that whenever the INSTRUCTION .CYCLE END latch
has been turned on by an INSTRUCTION CYCLE END impulse,
the WORD TIME puise is inhibited by the CYCLE TURN:ON'
pulse. This is to prevent signal race problems cau.sed by a lag
in the turning off of the INSTRUCTION CYCLE MASTER gate (7].

The * only other item requiring explanation on Logical
Di#gram No. 3 is the’procedure for incrementing the INSTRUCH
TION COUNTER. If was mentioned previously that the location
of the next instruction will always be found in this couynter; there-
- fore, after an instruction is acquired on an ' instmfaction cycle,
the INSTRUCTION COUNTER should be incremen/ted so that it
will contain the address of the next instrubction. Note that
nothing has yet been said coneerning the size of this increment.
Most, if not all, éingle address computers are constructed so as
to take the next instruc.:tiron from the location immediately fol-
lowing 'the last instruction. For example, an instruction might
be stored in location 2301, the next instruction in 2302, the
next in 2303, and so on. THis,,:&vould imply an increment of one.
It is proposed that the OSTiC.be equipped to increment the
INSTRUCT_ION COUNTER by 1, 2, 4, 819, 1649, 3244 6410

or 12810. - Since the OSTI,Cis instrlic_tion counter is a binary
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device, this method of variable incrementation is seen to be
merely a matter of adding al into the first, second, third,
fourth, fifth, sixth, seventh, or eighth position of the twelve-
position binary counter. It can be shown that this relatively
simpie device will greatly increase the operating speed of the
computer (see Ché,pter 11}.

The desired increment is placed in the INCREMENT
REGISTER some time beforehand (see Chapter 9 for details),
and thus éhe problem here is simply to provide a.nv INCREMENT
pulse to the INCREMENT REGISTER at the proper time. This
pulse will be gated by the INCREMENT REGISTER into the
proper position of the INSTRUCTION COUNTYER. Incrementing
is accomplished by the INSTRUC TION COUNTER INCREMENT
pulse, occurring at 4 time, which is gated by the INSTRUCTION
CYCLE MASTER gate. If the INSTRUCTION CYCLE END latch
is on, an AND circuit will allow the INCREMENT pulse to enter
the INCREMENT REGISTER. It willl be noted that the only time
the INSTRUCTION COUNTER can be incremented is at 4 time
of the last word time of an instruction cycle; this must be so,
because during any other part of the instruction cycle the machine
will be using the contents of the INSTRUCTION COUNTER in |
seeking the next instruction. This also explaing why INSTRUC'~
TION CYCLE END pulses must occur prior to 4 time.

Logical Diagram No. 4 (Figure 5) illustrates the logic
used on data cycles.. This logic is necessarily more complex
thah the instruction cycle logic, because while essentially the
only operation performed by the computer on the instruction
cycle is to search for and acciuire the next instruction, data
cycles involve the testihg, adding, shiffing, and so on,necessary
to carry out the instrué}:ions. In general, the data cycle is

broken up into one, two, or three sub=cycles (each of which may
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be one or many word times in length). These sub-cycles are
called "DATA FIRST CYCLE", "DATA SECOND CYCLE", and
"DATA THIRD CYCLE". Wheneverthe computer goes from
instruction cycle dperation to data cy/cule operation, the first
word time of the data cycle is always a DATA FIRST CYCLE,
If an impulse is received dufing that word time to #urn on a
DATA SECOND CYCLE, the next word time will be a DATA
SECONDCYCLE; if no such impulse is received, the machine
will remain in DATA FIRST CYCLE operation until either a
TURN-ON DATA THIRD CYCLE or a DATA CYCLE END impulse
is received. If the machine is in DATA THIRD CYCLE dperation,
the only impulse that will bring about a change is a DATA CYCLE
END impulse. The computer can never go from DATA THIRD
CYCLE back to DATA FIRST CYCLE or DATA SECOND CYCLE
nor can it go from DATA SECOND CYCLE to DATA FIRST
CYCLE. In other words, the operation always starts with
DATA FIRST CYCLE and proceeds (when so directed by "TURN-
ON™ impulses) to DATA SECOND CYCLE, and thence _tol DATA
THIRD CYCLE. The data cycle may be ended at the end of any
word time by a DATA CYCLE END impulse at any time (other
than 0 time) of that word time, regardless of the occurrence of
a TURN-ON impulse at any time during that word time. In
other wofds', DATA CYCLE END takes precedencei over a TURN-
ON impulse. 4

The operation of the data cycle control will be illustrated
using the timing chart and Logical Diagram number 4 (Figure 5).
It is assumed that an ins.t‘ruction cycle precedes thé data cycle.
The instruction cycle ends at 0 timé, and the DATA CYCLE
MASTER gate turns on. The DATA CYCLE RING COUNTER
has been previously reset to first cyé,le, and the STEP ANTIC-
IPATION latch has been reset. Thus, as soon as the DATA
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‘CYCLE MASTER gate is available, it gates the WORD TIME
.pulse to the first cycle AND circuit. Since the DATA CYGLE

" RING COUNTER is set to first cycle, the WORD TIME pulse
s available to the rest of the machine as a DATA FIRST CYCLE
pulse. The DATA FIRST CYCLE pulses are available’for three
word times. During the third word time, a TURN-ON DATA
SECOND CYCLE impulse is received. Since the DATA CYCLE
MASTER gate is on, the first cycle stage of the DATA CYCLE
RING COUNTER “is on , and boththe second and third staées
are off; the TURN-ON pulse sets the STEP ANTICIPATION
latch. At 0 time of the next word time, the CYCLE TURN-ON
pulse is available through an AND gatke controlled by the DATA

' C?CLE MAST.ER gate. The CYCLE TURN ON pulse tests the

| sefting of STEP ANTICIPATION latch by means of an AND
circuit. :If the STEP ANTICIPATION latchis set, the CYCLE
TURN ON pulse mvomenta,rily inhibits the output of the WORD

TIME pulses until the DATA CYCLE RING COUNTER can
advance, and also resets the STEP ANTICIPATION latch. WORD
TIME pulses are then available from the DATA SECOND CYCLE
output.

The timing chart shows the DATA SECOND CYCLE pulses
as being available for two word times. During the second
word time, a TURN-ON DATA THIRD CYCLE impulse is re-
ceived, which (since first and third cycles are off, and second
cycle is on) turns on the STEP ANTICIPATION latch. Later,
vduring the séme word time, a DATA CYCLE END impulse is

~received (this pulse seguence can occur on‘ac»cumulati.or a,dd-in
‘ operations, among others; see Chapter 6).' Thev DATSA.CYCLE
END impulse turns on the DATA CYCLE END latch. At 0 time
of the next word time, the CYCLE TURN-ON pulse is prevented
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by the DATA CYCLE END latch from advancing the RING
COUNTER. Instead, the CYCLE TURN-ON pulse resets the
RING COUNTER to first cycle, resets the STEP ANTICIPATION
latch, inhibits the WORD TIME pulse (to prevent signal race
problems), and sets the CYCLE SELECTION FLIP-FLOP to
data cycle (see, also, Logical Diagram number 2).

Two word times of instruction cycle are then shown on the
timing chart. Following that come two word times of DATA
FIRST CYCLE pulses, followed by one word time of DATA
SECOND CYCLE. During this word time a TURN-ON DATA
THIRD CYCLE is received, as before. Since no DATA CYCLE
END pulse is received, however, the CYCLE TURN-ON pulse
can then step the RING COUNTER to third cycle and reset the
STEP ANTICIPATION latch. Two word times of DATA THIRD
CYCLE follow, during the second of which a DATA CYCLE END
impulse sets the DATA CYCLE END latch. The operation of
resetting the various latches and changing to the instruction
cycle proceeds as before.

It is important to remember that a data cycle may consist
of a DATA FIRST CYCLE', DATA SECOND CYCLE, and DATA
THIRD CYCLE. These cycles may consist of one or more word
times, and are changed by TURN-ON DATA SECOND CYCLE or
TURN-ON DATA THIRD CYCLE impulses. The first cycle taken
after the machine goes into data cycle operation is the DATA
FIRSTTCYCLE. If a DATA CYCLE END impulse occurs, data
cycle operation ceases at the end of that word time, regardless

of any TURN-ON pulses.



CHAPTER V
DA-TA ACQUISITION.AND TRANSMISSION -

Having developed the logic of providing control cycles for
d the matters

the computer, attention Wﬂi now be directed towar
of acq’uiring.‘data a,nd' inst_rﬁctions for immédiate use, and storing
data for future use. |

Basically, the computer acquires a word for one of two
purposes; either on a data ¢ycle for use in arithmetic operations,
in which case the word would be called an".’operand”, -or on an
instruction cycle, in'which case the word would be used as the
next instruction. Vafioﬁs miscellaneous transfers of words or
portions of words may be made during the execution lbf certain
instructions, but thesé will be of no concern in this chapter.
The computer may acquire a word from either the magnetic
drum, which will :be called a ”"drurr.x read" operation, or from
an internal register, which will be called a "non-drum read'
operation. Storage of woi'ds onto the magnetic drum w111 be
termed a "drum write" operation; and may occur only during
a data cycle (Storage occurring during input operations is not
_ considered hére; see Chapter 10). | @

‘Drum Read operation is illustrated on :Logical Diagram
number SJ(Figu're 6), and its associated timing cl@i'art. The
basic operation is simply that the contents of sorr‘x.’el drum .
address 1s desired. The address is sought, and, when found,
the bits in that location are read onto the DATA CHANNEL
, and theﬁce into the appropriate register. _ "

Read operatidn‘s‘dhring a data éycle will only occur on

DATA FIRST CYCLES. The presence of the OPERAND gate

28
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(from the OPERATION DECODER) signals that it is desired to
read the contents of some storage .location (or register) into

the D-REGISTER. Read operations during an instruction cycle
will be signaled simply by the‘ presence of an INSTRUCTION
CYCLE gate (since the only purpose of an instruction cycle is

to acquire the next instruction). The contents of ﬁhe desired
storage location (or régister) will be read into the INSTRUCTION
- REGISTER.

The ADDRESS pulses are available from the read heads at
approximately 1 time, and are compared against the contents
of the INSTRUCTION COUNTER (on instruction cycles) or
against the contents of the ADDRESS REGISTER (on data cycles).
If an equal comparison is detected, the contents of the word are
read onto the DATA CHANNEL when the bit pulses are available
from the read heads at 3 time, and are read in from the DATA
CHANNEL into the appropriate register.

Using the timing chart at the bottom of Logical D‘i,é;gram
number 5, it is seen that at the beginning of the interval the
INSTRUCTION CYCLE gate is assumed to be on. At 0-1-2
time the ADDRESS TEST pulse is gated by the INSTRUCTION
CYCLE gate to interrogate the band number of the address
contained in the INSTRUCTION COUNTER. If the band number
is in the range 1 through 6, the ADDRESS TEST pulse is allowed
to gate the ADDRESS pulses from the word address comparison
circuitry. These ADDRESS pulses are read from the address
track at approximately 1 time and, if the INSTRUCTION CYCLE
gate is on, are compared with the word address portion of the
INSTRUCTION.COUNTER. If an unequal comparison occurs,
no output results, and the comparison is made again with the
next set of ADDRESS pulses. If, as in the timing chart, an

equal comparison occurs, a 1l time pulse appears at the output
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" of the word address comparison circuit. -This pulse is gated

by the ADDRESS TEST pulse to turn on the EQUAL COMPARISON
latch. At 2-3-4 time the READ IN pulse, gated by the INSTRUC-
TION CYCLE gate, gates the INSTRUCTION REGISTE';{ to read
in from the DATA CHANNEL. At approximately 3 time the
EQUAL COMPARISON latch gates the bit pulses of the c‘iesired
word into the PARITY REGISTER and thence onto the DATA
CHANNEL, from which they are read into the INSTRUCTION
REGISTER. The word is always read through the PARITY
REGISTER onto the DATA‘CHANNEL, and if the parity is in-
cofrect; the PARITY ERROR latch is turned on for future use.
.At 3 time the CYCLE TEST pulse tests the circ_uit, and since

the INSTRUCTION CYCLE gate and the EQUAL COMPARISON
latch are on, the"CYCLE TEST :impulses INSTRUCTION CYCLE
END. The EQUAL COMPARISON latch, if on, is turned off at

0 time (not shown).

The next word time after an INSTRUCTION CYCLE END .
impulse is automatically a DATA FIRST CYCLE (see Chapter 4).
If the OPERAND gate is on, the DATA FIRST CYCLE impulse
allows the ADDRESS TEST pulse to test the band address of the
ADDRESS REGISTER and the ADDRESS pulses from the word
address track to be compared with the word address in the
ADDRESS REGISTER. As is shown on the timing chart, several
word times (512 maximum) may pass before the equal compa.riason
' occurs. When it does occur, the ADDRESS TEST pulse provides
a gate allowing the equal comparison pulse to turn on the E"Q‘UA.L
COMPARISON latch. At 2-3-4 time the READ-IN pulse is gated
by the DATA FIRST CYCLE-OPERAND gate to allow the D—REGIS'—"
TER to be read in from the DATA CHANNEL, and at 3 time the
bit pulses of the desired word are gated by the EQUAL COMPAR-
ISON latch to pass through the :PABJIY REGISTER, onto the
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DATA CHANNEL, and into the D-REGISTER. Also at 3 time the
CYCLE TEST pulse is gated by the DATA FIRST CYCLE-OPERAND
gate to test the circuit. If the LOAD D-REGISTER gate were on, .
this would imply that the only operation desired was to read the
desired word into the D—REGISTER, and as soon as this was
accomplished, DATA CYCLE END would be impulsed. It will

be noted that TURN-ON DATA SECOND CYCLE is always im-
pulsed at 3 time of the word time during which the operand is
‘acquired, and DATA.CYCLE END is also impulsed if LOAD D

is on.

Non-drum read, Logical Diagram number 8/(Figure 7),is
similar to drum read, except that the desired §vord is .located
somewhere other than on the ma/,gnetic drum. The operation is
exactly the same as far as the testing of the band numbers is
concerned. However, the presence of a ) band number indicates
a non-drum location, and the operation proceeds somewhat
differently from that point.

Using the timing chart on Logical Diagram number 6, it is
found that a data cycle is the first complete cycle shown. At
0 time the DATA FIRST CYCLE pulse is gated by the OPERAND 5
gate and allows the ADDRESS TEST pulse to test the band num]ioer \
of the ADDRESS REGISTER. The NON-DRUM READ latch is
turned on at approximately 0 time (if a 7 band number were de-

" tected, the STORAGE SELECTION ERROR latch would also he
turned on. The NON-DRUM READ latch, together with the DATA
FIRST CYCLE«OPERAND pulse, gates the contents of the ADDRESS
REGISTER in to the ADDRESS DECODER. The DATA FIRST
CYCLE«OPERAND gate also allows the READ-IN pul's;’e'.to gate

the D-REGISTER for read-in from the DATA CHANNEL at 2-3-4
time. Meanwhile, the ADDRESS DECODER has selected the

desired register, and at 3 time a WRITE pulse reads the contents
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of the desired register onto the DATA CHANNEL_axnd thence

into the D-REGISTER. Also at 3 .time the CYCLE TEST pulse
interrogates the circuit through an AND gate from the DATA

FIRST CYC.-LE-OPERAND gate. TURN-ON DATA SECOND.CYCLE
is always impulsed; and if the LOAD D-REGISTER gate is onm,
DA.TA CYCLE END is impulsed. The NON-DRUM READ latch

is feSet at 4 time. Note that only one word time is needed to

acquire a non-drum operand.

If the INSTRUCTION CYCLE gate is on, the ADDRESS TEST
pulse interrogates the band number of the INSTRUCTION.COUNTER,
If the band number is 0, the NON-DRUM READ latch is turned
on and the .contents of the INSTRUCTION COUNTER gated into
the ADDRESS DECODER. The INSTRUCTION CYCLE gate
allows the REAII;'IN pulse to gate the INSTRUCTION REGISTER
to read in from the DATA CHANNEL at 2-3-4 time, and the
WRITE pulse, together with the ADDRESS DECODER output,
reads out the proper register onto the DATA CHANNEL. The
CYCLE TEST pulse passes through the INSTRUCTION CYCLE
gate and NON-DRUM READ latch gate to impulse INSTRUCTION
CYCLE END at 3 time. The NON-DRUM READ latch is reset
at 4 time to prevent transieﬁt outputs from the ADDRESS DE -
CODER caused by the INSTRUCTION COUNTER being incre-
mented at 4 time. Note that this seemingly innocuous Logical
Diagram implies that the contents of any register may be used
as either data or as the next instruction. This is a feature that
is comparé,tively rare in computer desigﬁ.' (6).

The }ast cia_ss of operations coveréd in this chapter will be
thel ”d.rurjn write' of ”store'v‘ operatibns, Logical Diagram number
7, (Figufe 8).  In the OSTIC, a store operation will only occur
on é,‘giata cycle, and is only valid for a drum address. The

operation will be illustrated uSing a ""store-upper accumulator"
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operation, in which the contents of the UPPER ACCUMULATOR
will be written onto the drum in the location specified by the
contents of the ADD.RESS REGISTER, and simultaneously read
jato the D-REGISTER.. | |

The STORE gate allows a DATA FIRST CYCLE pulse to gate
the ADDRESS TEST pulse at 0-1-2 time. If the band number of
the ADDRESS REGISTER is on the drum, ‘:_th.e ADDRESS TEST
pulse provides a gate for EQUA'_L COMPARISON pulses. When
the ADDRESS pulses from the a.’ddrés_s triick of the drum are
equal to the word address portion of the ADDRESS REGISTER,
the E’QUALCOMPARI.SON pulse is gated by the ADDRESS TEST
pulse to turn on the EQUAL COMPA'RISON; latch. The DATA
FIRST CYCLE-STORE pulse is gated by the UPPER gate to
read the contents of the UPPER ACCUMULATOR onto the DATA
CHANNEL. At 2-3-4-time the READ-IN pulse is gated by the
DATA FIRST CYCLE -ST‘ORE to allow the contenté of the DATA
CHANNEL to be read into the PARITY REGISTER, where the
proper parity bit is bgenerated. At 3 time the WRITE pulse is
gated by the DATA FIRST CYCLE-STORE and the EQUAL COM-
PARISONll‘atch to write the PARITY REGISTER output into.the
desired drum location, and also by the UPPER gate (or LOWER,
if on) to read the contents of the DATA CHANNEL into the D~
REGISTER. Also at 3 time the CYCLE TEST pulse is gated by
DATA FIRST CYCLE-STORE fand the EQUAL COMPARISON
latch to impulse DATA CYCLE END.

Note that Ia. non-drum band number will cause the ADDRESS
TEST pulse to set the STORAGE SELECTION ERROR latch and
impulse DATA CYCLE END. Also note that the presence of
either an UPPER or LOWER gate will cause the contents of the
appropriate register to be stored onto the drum and read into

the D-REGISTER simulfaneously, but the presenceg of a D gate
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will cause only the contents of the D-REGISTER to be read out
and stored.

_ To summarize, words are read into the D-REGISTER on
DATA FIRST CYCLES when the OPERAND gate is on, or into
the INSTRUCTION REGISTER when the INSTRUCTION CYCLE
gate is on.' The conteri_ts of either a drullpn location of a machine
register may be read in this manner. 'St;ore operatiéns, on the
other hand, are valid 'only for drum addresses. Theée also
take place on DATA FiRST CYCLE. The contentd of the UPPER
ACCUMULATOR or LOWER ACCUMULATOR may be stored

on the drum and also automatically placea in the D-REGISTER.
The contents of the D-REGISTER may also be stored on the drum.
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CHAPTER VI
ACCUMULATOR OPERATIONS

The heart of:' a digital computer is the’ aécumula.tor, for it
is there that the majority of the operations that justify the
existence of the computer are .;'S_e‘rfo‘rmed .

It is not within the purview of this paper to deal extensively
with the detailed design of! the accumulator circuits. The writer’s
philosophy is that the computer will present various gates and
pulsés ‘t¢ the accumulator at the proper time, and it is then up
to those who design the accumulator to provide.the desired results
at the i)roper time, _

The method of representation of ‘humbers within the O:‘STIC
will be in "'sign and magnitude' binary form. In other words,

a plus 2719 _wbuld be represented as 000000000000011011 with
a 0 (plus) sign. A minus 27;, would be 000000000000011011
with a 1 i(minus) sign. Numbers will always be stored as sign
and magnitude, and will usﬁa,lly be used in this form.

The arithmetic operation performed by the accumulator will
be that of binary addition of the DATA CHANNEL output to the
either the UPPER 5t LOWER ACCUMULATOR, ‘with end-around
carry. In this case, both accumulators will be considered to-
gether as a single 36 bit ACCUMULATOR with the sign bit to the
right of the low -order position (only one sign bit is used for the
entire ACCUMﬁLATOR). .- On add and subtract operations (but
not multiply, shift, of logical operatioﬁs), the sign bits will be
added in 'avma_nner similar to the magnitude bits of the words,
and a carry (if one occurs) is allowed to propagate from the

sign'position into the low -order position of the LOWER and
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from the high-order position of the UPPER into the sign position.
This is called an "end-around carry™. - For example, in adding
+27j4 in the D-REGISTER to +55_  in the LOWER, the entire

10
ACCUMULATOR .and:D-REGISTER wpuld appear as

D-REGISTER | 0000000000000011011 § (sign)
ACCUMULATOR 000000000000000000000000000000110111 0
Correct Answer 000000000000000000000000000008010010 0

Altho.ugh the ACCUMULATOR actually consists of two eight-

een-bit numbers and a sign bit, ‘tD..:WHich is added an eighteen-bit

number and a sign bit, most of the remaining examples in this -

paper will show an ACCUMULATOR consisting of a ten-bit word :. ..

and a sign, to which is added a five-bit word and a sign. The
preceding example should serve to illustrate how unwi_eldly
eighteen- and thirty-six-bit examples can become. The use

of a shorter word for purposes of explanation does not , of : .
course, alter the manner in which the operations take place.
 Consider, for example, the case in which the ACCUMULATOR
containg.a +15, and a +17 is added from the D-REGISTER into
the LOWER.

D-REGISTER (17) 10001 0
ACCUMULATOR (15) 0000001111 .0
(32) 0000100000 0

Subtraction is accomplished in the OSTIC by enfering the
sign-and-magnitude value of the number to be subtracted (sub-
trahend) into the D-REGISTER. The 1’s complement value of
the magnitude portion is then read onto the DATA CHANNEL -
and added into the ACCUMULATOR. A 1 is also added into the
sign position. If the ACC-UMTJLATOR has a minus sign, the mag-
nitude of the number in the ACCUMULATOR must'be placed in
1’s complement form before . the addition operation takes place.

If the sign of the result is minus (1), the ACCUMULATOR must

R P
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be complemented after addition in order fo reflect the 'c;)rre.c_,‘t
sign-and-magnitude answer. On subtraction, an eighteen-bit
word composed entirely of 1’ s (lfé complement of zero) must
be added into the LOWER if the 1’s complement of the D~
REGISTER is added into the UPPER, and similarly, 1’ s must
be added into the UPPER if the complement of the D-REGISTER
is added into the LOWER. If two negative numbers are added,
an end-arouna carry {rom the high-order position of the UPPER
into the sign position 'rg_g_s_t_take place and a complement cycle
Amust be taken following the addition. If thé end-around carry
does bnot occur, then a number too large for the ACCUMULATOR
(overflow) has been generated. If two positive numbers are

added, an . end-around carry must not take place, and no com-

plement cycle is necessary. If an end-around carry does take
place, then an ovérflow has occurred. If two numbers of opposite
sign are added, an overflow is simply not possible, and the
presence of an end-around carry indicates that no complement
cycle is needed, :-while the absence of an end-around carry in-
dicates that a complemer;t cycle must follow. Table I wi\ll

serve to illustrate the :above-mentioned rules, using a five-bit
UPPER, a five-bit LOWER, and a five-bit D-REGISTER.

This chapter relates the logical operations necessary to
accomplish ; sixteen possible combinations of resetting the
ACCUMULATOR prior to the operation, addition of the D -
REGISTER contents to the UPPER or to the LOWER, subtrac-
tion of the D-REGISTER contents from the UPPER or from the
LOWER. Furthermore, each operation may be executed in alge-
braic fashion or by usi.ng the absolute value (magnitude) of the
operand. It is necessary, therefore, to examine the combinations
of signs and operations which imply the use of true or comple-

ment values.
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TABLE I |
©:.BINARY ADDITION. WITH.END-AROUND CARRY
11111 0 D-REGISTER at start.

0010111111 0 ACCUMULATOR at start.
0011011110 0 Correct answer.

No end-around carry occurs. No complement cycle needed.

Example 2. Add D to UPPER.

01111 0 D-REGISTER at start. .
0010111111 O ACCUMULATOR at start.
I0I00ITIII O Correct answer.

Note thatif the sign bit of the number added is 0 (plus),
nothing need be added to the LOWER when the D-REGISTER
is added to the UPPER, and vice-versa.

Example 3. Add D to LOWER.

00001 O D-REGISTER at start.
1111111111 0 ACCUMULATOR at start.
0000000000 0O Partial Sum.

1 End-around carry.

OOﬁUUIiGOOb ‘1 'Incorrect answer.

This example illustrates an overflow. Note that, if both
numbers are plus; an end-around carry signals an overflow.

Case II. Two negative numbers are added.
Example 1., Add D to LOWER.

11111 1 D-REGISTER at start.
0010111111 1 ACCUMULATOR at start.

00000 1 D-~REGISTER complement,
11111 1’ s added into UPPER.
11010000000 1 ACCUMULATOR complement.
TI0O0I00001 0 Partial sum.

1 End-around carry.
ITO0T0000I 1 Comiplement is.necessary.

0011011110 1 Correct answer.

Note that the end-around carry is necessary to correct the
sign, and that a complement cycle is needed after addition.
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© 111 {Continued)

Example 2. Add D to UPPER

01111 ... 1 D-REGISTER at start
0010111111 1 ACCUMULATOR at start
10000 .- 1. D-REGISTER Complement

11111 .1 1’ s added into LOWER
1101000000 1 ACCUMULATOR Complement
0101100000 O Partial Sum

1 End-around carry
0101100000 1 Complement is necessary
1010011111 1 Correct answer
Example 3. Add D fo LOWER

00001 1 D-REGISTER at start
1111111111 1 ACCUMULATOR at start

11110 1 D-REGISTER Complement
11111 - - 1’s added into UPPER
0000000000 1 ACCUMULATOR Complement
1111111111 O Partial sum

? No end-around carry, therefore an over-
flow has occurred '

0000000000 O Incorrect answer

Case III Numbers of opposite signs are added.

Example 1. D-REGISTER is positive, ACCUMULATOR negative.
Add D to LOWER. Result is negative.

11111 0 DREGISTER at start
0010111111 1 ACCUMULATOR at start

11111 0 D-REGISTER true-figure.
.1101000000 1 ACCUMULATOR Complement.
1101011111 1 Partial sum.

No end-around carry occurs; therefore,
'~ complement result.

0010100000 1 Correct answer.

Example 2. D-REGISTER ispesitive, ACCUMULATOR negative.
Add D to UPPER. Result is positive. : '

11111 . 0 D-REGISTER at start.
0010111111 1 ACCUMULATOR at start.
11111 0 D-REGISTER ‘true-figure.
1101000000 1 Partial sum. :
' 1 End-around carry means no complement.
1100100001 1 Correct answer.
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I (Continued)

Example 3. D-REGISTER is positive, ACCUMULATOR negative.
Add D to UPPER: Result is negative.

10111 0 D-REGISTER at start.
1111111111 1 ACCUMULATOR at start.
10111, .7, 0 D-REGISTER true-figure.
0000000000 1 ACCUMULATOR Complement.
1011100000 1 Partial sum.

resu
0100011111 1 Correct answer.

No elilg;around carry, therefore complement

Example 4. D-REGISTER is positive, ACCUMULATOR negative.
Values are equal. Add D to LOWER. Result is zédro.

. 11011 0 D-REGISTER at start.
0000011011 1 ACCUMULATOR at start. -
11011 0 D-REGISTER true-figure.
1111100100 1 ACCUMULATOR Complement.
1111111111 1 Partial sum.

No end-around carry occurs; therefore,
complement result.
0000000000 1 Correct answer.

Note that it is possible to develop a negative zero.
Example 5. D-REGISTER is negative. ACCUMULATOR is-
positive. Add D to LOWER, Result is positive.

11111 1 D-REGISTER at start.

0010111111 ACCUMULATOR at start.
' 00000 D-REGISTER Complement.

11111 %#*= 1’5 added into UPPER.,

0010111111 ACCUMULATOR (not complemented).

0010011111 Partial sum.

' 1 End-around carry occurs; therefore, do

not complement result,
0010100000 O Correct answer,

— O

(=]

—
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1 (Continued)

Example 6. D~REGISTER is negative, ACCUMULATOR positive.
Add D to UPPER. Result is negative.

11111 1 D~-REGISTER at start.
0010111111 0 ACCUMULATOR at start.
00000 . 1 D-REGISTER complement.
CULITI 1’ s added into LOWER.
0010111111 0 ACCUMULATOR (not complemented).
0011011110 1 Partial sum. '
> No end-around carry occurs; therefore,

compiement result.
1100100001 1 Correct answer.

Example 7. D-REGISTER is negative, ACCUMULATOR positive.
Add D to UPPER . Result is positive.

10111 1 D-REGISTER at start.
1111111111 ACCUMULATOR at start.
01000 ... - D-REGISTER complement.
11111 1’s added into LOWER.
1111111111 ACCUMULATOR (not complemented).
0100011110 Partial sum.
End-around carry occurs.. Do not comple-
ment result.
0100011111 O Correct answer.

w~ O

o

[ WP

Example 8. D-REGISTER is negative, ACCUMULATOR positive.
Values are equal. Add D to LOWER. Result is zero.

11011 1 D-REGISTER at start.
0000011011 0 ACCUMULATOR at start.
00100 1 D-REGISTER complement.
| 5 . 1’ s added into UPPER.
0000011011 Q0@ ACCUMULATOR (not complemented).
1111111111 1 Partial sum.
No end-around carry occurs. Complement
result. .
0000000000 1 A correct answer of a negative zero is
developed.
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I (Continued)

D-REGISTER is negative, ACCUMULATOR positive.

Values are equal. Add D to UPPER. Result is zero.

10101
0101000000
01010 -~

11111
1010100000

1

1111111111

0000000000

Example 10.

1

D-REGISTER at start.

ACCUMULATOR at start.

D-REGISTER complement.

1’ s added into LOWER.

ACCUMULATOR (not complemented).
Partial sum.

No end-around carry occurs. Complement

" result.

Correct answer.

Add a positive number in the D-REGISTER to a

negative zero in the ACCUMULATOR. Result should be same as
D-REGISTER. Use add to LOWER.

10101
0000000000

0

10101 O
1111111111 1
0000010100 1

1
0000010101 O

Example 11.
Use add to LOWER.

10101
0000000000
01010

1111y o
1111111111

Pt et

1111101010

1111101010

0000010101

] ] b O 4

D-REGISTER at start.

1 ACCUMULATOR at start.

D-REGISTER true-figure.
ACCUMULATOR complement.

Partial sum.

End-around carry occurred; therefore, do
not complement result.

Correct answer.

Add a negative number in the D-REGISTER to a negative
zero in the ACCUMULATOR. Result should be same as D-REGISTER.

D-REGISTER at start.
ACCUMULATOR at start.
D-REGISTER complement.
1’s added to LOWER,
ACCUMULATOR complement.
Partial sum.

End-around carry. .
Complement is necessary.
Correct answer.

Note that.Examples 10 and 11 illustrate that addition of a positive
or a negative number to a negative zero will result in the proper

sum.
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If the operation is an ""Add Magnitude' (or "Reset Add
Magnitude") operation, the contents of the D~REGISTER will be -
given a plus sign and the true value will be added into either
the UPPER, or into the LOWER. If the operation is "Add"

(or "Reset Add'"), and _th_e D-REGISTERis plus, the contents

of the D-REGISTER will be given a pius sign and the true value
will be added into either the UPPER, or into the LOWER.

If the operation is ""Add" (or "Reset Add'"), and the D-REGISTER
is minus, the contents of the D-REGISTER will be given a minus
sign and the complement value will be added into either the
UPPER, or into the LOWER.

If the operation is a "Subtact Magnitude' (or "Reset
Subtract Magnitude”) operation, the contents of the D-REGISTER
will be given .a ‘minus sign and the complement value will be
added into either the UPPER or into the LOWER If the
operation is "Subtract' (or "Reset Subtract'), and the D~
REGISTER is plus, the contents of the D-REGISTER will be
given a minus sign and the complement value will be added into
either the UPPER, or i‘nto the LOWER. If the operation is
"Subtracf” (or "Reset Subtract') and the D‘REGISTERf.is minus
the contents of the D-REGISTER .{ViII.'bé given a pluas sign 'ahd
the true value will be added into either the UPPER, or into the
LOWER.

At this point, it will be helpful to tabulate in Table II the
rules established for ACCUMULATOR addition operations
(the OS’TIC’ s ACCUMULATOR, it will be remembered, only adds).

Logical Diagram number 8 (Figure 9A and 9-B) flustrates
the embodiment of the rules in computer logic. No timing chart
accompanies the diagram; it is felt that the above listed rules,
together with several deteiled, examples, will better enable

the reader to undérstand the operation.



TABLE II

RULES FOR ACCUMULATOR COMPLEMENT AND RESET

Accumulator Sign

Plué

Minus

Reset entire Accumulator

,Rgsef Yes to plus zero before addition.| plus zero before addition.
gate v ~
Do nothing to Accumulator Take 1’ s complement of
en? | No

or to sign bit.

entire Accumulator. Sign

bit remains one.

TABLE III

RULES FOR ACCUMULATOR OPERATION CODE AND SIGN

Operation

Add

Subtract

Magnitude fRead out true value of

gate is on. | D onto Data. Channel.

Read out complement value of

D onto Data Channel.

Magnitude || Read out true valu.é of

not on, D + | D onto Data Channel.

Read out complement value of

D onto Data Channel.

Magnitude || Read out complement
not on, D - | value of D onto Data

Channel.

Read out true value of D onto

Data Channel.

Reset entire Accumulator to




True value
tread out of

D-Register

TABLE IV

RULES FOR ACCUMULATOR ADD-IN

Upper Gate On

Lower Gate On

IAdd contents of Data
Channel into Upper.

Add in 0 sign bit.

Lower.

Add- contents of Data Channel into

Add in a 0 sign bit.

Complement

value read

out of D

Add contents of Data
Channel into Upper.
Add 1’ s into Lower.

Add in a 1 sign bit.

TABLE V

Add contents of Data Channel into
Lower. Add 1’ s into Upper. Add

inag 1 sign bit.

RULES FOR ACCUMULATOR END-AROUND CARRY AND OVERFLOW

True figure add-
in is on. Accum-
ulator is plus

before addition,

Complement add-
in is on. Accum-
ulator is minus

before addition.

True figure'add-in is
on, and Accumulator
is -, or complement

add-in is on, and

Accumulator is +.

End- Set Overflow Turn on Data Impulse Data Cycle
around latch. Impulse Third Cycle. End.

carry. Data Cycle End. !

No end- | Impulse Data Turn on. Data Turn on Data
around Cycle Third Cycle. Set Third Cycle.
carry End. Overflbw latch.
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The first example considered will be an operatioq;gwhere
both values aré plus, and no overflow results. The presence
of an OPERAND gate and 'DATA FIRST CYCLE causes the
computer, to find the desired operand, as describéd in Chapter 5.
The RESET gate is not on, and the ACCUMULATOR sign is plus,
so neither reset nor complement takes place. W‘bhen the operand
is found, it is placed in the D-REGISTER and TURN-ON DATA
SECOND CYCLE occurs. The DATA SECOND CYCLE pulse
tests the signs of the registers, and, since bcevt‘:h.the D-REGISTER
and ACCUMULATOR are plus, gates the D-REGIST-ER to read. |
out its true figure onto the DATA CHANNEL. At 1-3 time the
ADD-IN pulse adds the contents of the DATA CHANNEL and a "0
(plus) sign into the LOWER ACCUMULATOR and the SIGN
POSITION, respectively (second sheet). At 0 time of the same
word time, a SIGN TEST pulse had set up the end-around carry
fest circuits,and since a TRUE FIGURE READ OUT gate and an~
ACCUMULATOR PLUS gate were on, turned on the SIG/NS
POSITIVE latch. No end-around carry occurs, so the COMPLE-
MENT TEST pulse at 4 time impulses DATA CYCLE END:
/ The second example will be a "Reset Subtract Maginitude
Upper" operation,: using .a positive operand. In this case, as.
before, the operand is acquired and placed in the D-REGISTER
on DATA FIRST CYCLE. Meapwhile, on the first word time
of DATA FIRST CYCLE, the ACCUMULATOR is reset to plus
zero., When the operand‘_is found and DATA SECOND CYCLE
is turned on, the SUBTRACT, D-REGISTER PLUS, and MAGNI-
TUDE gates are all on, so the D-REGISTER complemenﬁ read-
out is gated onto the DATA CHANNEL. Since the C-OMPLEME@T
READ-OUT and UPPER gates are on, a word of 18 1’ s is added
into the LOWER by :the use of inhibit gates. The actual add-in
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to both ACCUMULATORS is accomplished by the ADD-IN pulse.
Since tCOMPLEMENT_ADDJN is on, a 1" is added into the sign
position at 1 time by the SiGN ADD pulse (the ADD-IN pulse is
not used; because of possible conflicts with an end-around cairry).
Also, the SIGN TEST pulse at 0 time turns on the "SIGNS
DIFFERENT” latch. An end-é,round carry will not occur when
any number is added to zero; therefore, the COMPLEMEN'_I“
TEST pulse finds the END-AROUND CARRY latch off at 4 time
and, since TURN—ON DATA THIRD CYCLE has beeﬁ previously
impulsed by the SIGN ADD pulse, é DATA THIRD CYCLE pﬁlse
complements the'ACCUM‘ULATOR and impulses DATA CYCLE
END. |

The last example used will be an "Add Lower" operation,
where both the ACCUMULATOR and the operand are minus
beforeﬁand. It is assumed that an overflow will occur.

The DATA FIRST CYCLE pulse finds the RESET GATE off,
the ADD gate on, the ACCUMULATOR MINUS gate on, and
therefore complements the contents of the accumulator. At 4
time the DATA FIRST CYCLE-OPERAND gate and ACCUMULATOR
MINUS gate allow the COMPLEMENT TEST pulse to .turn on the
COMPLEMENT latch. This latch will remain on until 4 time of
the next word time, when it is turned on again by the COMP'LE-
MENT TEST. The purpose of the COMPL:EMENT latch is to
prevent continuous re-complementing of the ACCUMULATOR.

The DATA SECOND CYCLE pulse finds the ADD GATE and
the D-REGISTER MIN US gates on, and therefore provides a
COMPLEMENT READ-OUT gate to the D-REGISTER. The
COMPLEMENT READ-OUT and the LOWER gate‘ cause:l’s
to be added into.the UPPER, while the contents of the DATA
CHANNEL is being added to the LOWER by the ADD-IN pulse.
A "™1" bit is added into the SIGN POSITION, and the SIGN TEST
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pulse‘f turns on the "SIGNS NEGA"TIVE‘" latch. It was assumed
that an overflow occurred; for both signs nega_tiéve, an over -flow
occur's‘when: an end-around carry does x_19_t_ occur. At 4 time, the.
COMPLEMENT TEST pulse finds the SIGNS NEGATIVE latch on.
and the END AROUND CARRY latch off, and therefore turns on
the O;VERFLOW latch. The complement cyclé is still taken,
however. ' . -

Note that DATA THIRD CYCLE'is always turned on, and
' that DATA CYCLE END is th;a;_l impulsed if necessary. This takes
advantage of the fact that DATA CYGLE END overrides any
TURN ON pulse (sée"’Chaptér...‘l)'. Also note _tiqat provision is
made for a separate -COMPLEMENT operation; see Chapfer 7
for further discussion.

Multiplication in the OSTIC is accomplished by successive
operations of shifting, testing, and addition. The multiplier
is placed in the UPPER prior to the start of the multiply
operation. At the beginning of the multiply operation, the
multiplicand is acquired and placed in the D-REGISTER. The
LOWER is reset to zero, and the entire ACCUMULATOR is.
then shifted left one position, the high-—order position of the
UPPER beiﬁg shifted into a special "Test Position'" just off the
" ACCUMULATOR, The TEST POSITION is then checked; if it
contains a '"1", the contents of the D-REGISTER (true value) is
added into the LOWER, ané the entire ACCUMULATOR is the,ﬁ
again shifted left one position. If the test position did not
confain a "1" when checked, only the left shift is performed.
Following the left shift, the test position is again checked for
a "1", and the add-and~shift or shift-only operation is repeated.
This testing process is repeated eighteen times‘, because the
word is eight_eenf’sits long. The sign bits are neither added nor

shifted; the s'ign-is set to "0" (plus) if both the A.CCUMULATOR



and D-REGISTER have the same sign, and to "1" (minus)

otherwise.

Two examples of multiplication, using five-bit words, are

presented in Table VI.

Example 1.

N ke = e OO o

| 01101
1101100000

1011000000

1011001101
0110011010
0110100111
1101001110
1101001110
1010011100
1010101001
0101010010
0101011111
0101011111

TABLE VI
BINARY MULTIPLIGA TION

Multiply the number 01101. 0 (+) by 11011.1 (-).
Registers at beginning of Data Second Cycle:

OA
1.

. D-REGISTER

ACCUMULATOR
Test position

Shift left 1

Add D to LOWER
Shift left 1

Add D to LOWER
Shift left 1

.Do not add (test pos1t10n contains a 0)
Shift left 1

Add D to LOWER
Shift left 1

Add D to LOWER
Sign of answer isl ()

Note that five-bit numbers were multiplied, and a total of five

shifts were made.

by the usual method:’

X

01
011

To check, the two numbers will be multiplied

01101
11011
01101
01101
00000:

101
01

‘ 0101011111
The multlpl icand is 13
the product should be 3

2,

, and the multiplier is 27

10° Therefore,
0’ which it is.



V1 (Continued)
Example 2. Multiply 11111 1 (-) by 11111 1,(-)
Registers at beginning of Data Second Cycle.

S 1111l .. 1 D-REGISTER
1111100000 0 ACCUNMULATOR

? Test position

1 . 1111000000 1 Shift left 1

1 11110111117 1 Add to LOWER

1 1110111110 1 Shift left 1

1 1111011101 1 Add to LOWER

1 1110111010 1 Shift left 1

1 1111011001 1 Add D to LOWER
1 1110110010 1 Shift left 1 ,

1 1111010001 1 Add D to LOWER
1 1110100010 1 Shift left 1

1 1111000001 1 Add D to LOWER
? 11110060001 0 Sign of answer is 0

Note that this is the largest possible product of two five-bit
numbers, and illustrates that a product longer :than ten bits
can never be developed. Similarly, the largest product of two
eighteen-bit numbers is thirty-six:bits long.

Checking:

11111
x 11111
11111
11111
11111
11111
11111
Iol1i101
1011101
111010001
11111
1171000001




56

Logical diégram number 9 (Figure 10) presents the
""Multiply' operation. The DATA FIRST CYCLE pulse resets
the LOWER to zeros, sets the five-position AUXILIAR;Y
COUNTER to 01110 (1410), and sets the SHIFT OR ADD latch
to shift. DATA SECOND CYCLE then interrogates the SHIFT
OR ADD latch for the next thirty-six wo’rd times, as is shown
on the timing chart (only the add cycles are numbered; eighteen
of theée must occﬁr). . During the first word time DATA SECOND
CYCLE finds the SHIFT OR ADD latch in the shift setting, so
the entire ACCUMULATOR is shifted one position to the left,
which brings the high-order bit of thé UPPER into the TEST
POSITION. At 4 time the MISCELLANEOUS RESET pulse sets
the SHIF T OR ADD latch to add, and during the next word time
a "1" bit is added into the AUXILIARY COUNTER by the ADD-
IN pulse.’ If the TEST POSITION contains a '"'1", the contents
of the D-REGISTER (which is read onto the DATA CHANNEL
on all DATA SECOND CYCLES) is added into the LOWER. The
MISCELLANEOUS RESET pulse turns the SHIF T OR ADD latch
back to shift at 4 time.

The operation will continue until: an overflow pulse from
the AUXILIARY COUNTER impulses DATA CYCLE END. The
overflow pulse is the carry pulse out of the high-order position
of the counter. Since the counter has five positions, the over-
flow pulse will occur when a '"1" is added to a 3110, or in
binary form, 11111 counter

1 addl
. 00000 result
I overflow

Note that if 01110 is placed into the counter to begin with,
then 10010 (1810) added in will cause an overflow. Note also
that the logic is so designed that the last addition to the LOWER
(if signaled by a ""1" in the TEST POSITION) occurs simultaneously.
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with the addition to the AUXILIARY COUNTER,which causes
the overflow.

Since the sign of the product is determined from the sign
of the D-REGISTER and the sign of the ACCUMULATOR, Setting
the sign, should be the last matter taken care of, for otherwise
an oscillation of si\gn could occur from one word time to the
next. The sign is é‘t\lerefore set up immediately when the
multiplication begin\s\, but is not placed in the ACCUMULATOR
sign position until ,théx\ overflow, which signals the end of the
operation, has occ,urr‘;‘z;d.

The timing chart illuétrates the multiplication of some
number in the D-REGISTER by 1100101111...... 0l.

Logica.l.Diagram number 10 (Figure 11) illustrates the
process of shifting the entire ACCUMULA TOR one or more
positions to «ither the left or right. There is a great deal of
similarity between this process and the process of multii)li-
cation, since the AUXILIARY COUNTER is incremented each
time a shift operation takes place, and the presence of an
overflow from the AUXILIARY COUNTER signals that the
shifting is complete. One difference will be noticed, however.
Since no addition takes place, the ACCUMULATOR is shifted
at the same time that the counter is incremented., rather than
on the following word time.

The timing chart on Logical Diagram number 10 shows
five different shift operations. Reading from left to right,
the first sequence is a nine-position shift, followed by ghifts
of five, seven, one, and zero positions. The nine-position
shift will be described in defail.

The DATA FIRST CYCLE _pulse finds the SHIFT gate on,
and so gates the 1’ s complement value of the ADDRESS REGISTER
to be read out onto the DATA CHANNEL. At 3 time of the same
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word time, a WRITE pulse copies‘the' contents of the DATA
'CHANNEL into the AUXILIARY: COUNTER. The DATA FIRST
CYCLE pulse also sets the Si—IIFT OR ADD latch to add, and
impulses TURN-ON DATA SECOND.CYCLE.

The DATA SECOND CYCLE impulse finds the SHIFT OR ADD
 latch set to add, and so, together with the ADD-IN pulse, adds a
"1" bit into thev AUXILIARY COUNTER. At 4 time the MISCEL&A—'
LANEOUS RESET pulse sets the SHIFT OR ADD latch to shift. _
The next word time finds the DATA SECOND CYCLE pulse
shifting the ,:ACC’UMU:LATOR_ either left or right, and circular
or non~-circular, as determined by the various control gates
(a circuylar shift occurs when the bits shifted ou{: of one end of
the accumulator reappear, in‘ordevr_, at the other eﬁd). Note
that the SHIF T OR ADD latch is not set back to add, but remains
in the shift setting. Also note.that addition of H1%N to the
AUXILIARY ;COUNTER takes place on both add and shift
settings. When the AUXILIARY COUNTER overflows, DATA
CYCLE ENVD is‘/impulsed, and the operatinn is complete,

In examining the theory behind this operation, it is found
ﬁhé.t the largest numiwer that may be stored in a five-position
bina;gr counter is 3110, or 11111. An overflow occurs when
1 is added to 11111 already ;in the counter. Note that the 1’ s
complerhent of any five-bit binary number is also the nuinber»
31 s complerhent. For example, the 1's complement of 01001

(910) is 10110 (22..). Therefore, if the 1’ s complement of the

10
desired number of shifts is entered into the AUXILIARY

COUNTER prior to the shift operation, and if 1 is added to the
counter for each shift of one position, then the counter will
conta.in?fhirty-one when the desired number of shifts has

_ occ_:urre‘d. However, the counter overflows when 1 is added to
thirty-one, making fhirty~two. Therefore, a single addition

. P ‘ .
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is made prior tb ahy shifting, so that the additioﬁ.occurring
Simultanéously w‘ith the last shift will:eause’the counter to . .
ovexiflow ,b and end the operation,

It will be noted that a data address of zero (00000) on
a shift instruction will ; correctly result in |
a zero-place shift. ‘l Also, the greatest number of éhifts that

may take place for one instruction is thirty-one (11111).



CHAPTER VII .

LOGICAL OPERATIONS

Because of the special-purpose and instructional applications
of this computer,.a. repertoire of logical operations would be guite
useful. Although actually carried out in the ACCUMULATOR, the
nature of these operat’iions is xsomewhat different from the opera-
tions covered in Chapfer 6. Accordingly, this chapter is devoted
solely to logical operations.

Logical operations, as considered here, are those operations
involving two binary mimbers, where the value of each position
of the result (1 or 0) is dependent only upon the values in the
corresponding position of the oriéinal numbers, All logical
operations may be represented by. a '""truth table', where the valwms. . -
of the two input numbers, (which will be called, for want of a better
name, the '"A-operand' and the "B-operand') are shown along the
top and left side, and the values of the result are shown at the

intersection of the appfopriate rows and columns.

Example 1. Sample Operation
. Truth Table-OR:addition, A-operand 0011
B-operand 0101
A-operand Result 0111
011 :
B-operand Q0|1
REDER N

Since there are two possible values for the A-Opéraﬁd',v two
possible valuesfor the Booperand, and four possible values for the
result, there are 16 possible logical operations. These are shown

in Table VII.
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TABLE VII
BINARY LOGICAL OPERATIONS

A f A
"B ol 0011 . o 1 .. 0011
%Ei’ o101, . 7 B ©O1 0401
11l o110, " 7 1ot 1001
Logical Ring addition | Logical Compare
Exclusive OR (no carry) AB +AB
AB + AB .
A : A
. 1 0011 oj1 0011
B offo o101 _ BIE o101
ahi 0111 1olo 1000
OR; A+ B Not OR _(NOR)
Inclusive OR "TAB=A+ B
A A
1 0011 ’ il 0011
B j%% 0101 B Ol 0101
1ol 0001 il 1110
AND (Logical Multiply) Not AND (NAND)
AB AB = A+B
A | A
oL 0011 B Jil 0011
B 0oL 0101 ' " é%o 0101
00 0010 1th 1101
AB=A+B A+B
A A
1 0011 - ppr oo1t
B g1l 0101 | qijo  olol
tol1 1011 1o 0100
A +B AB=A+B
K ‘ A
oL 0011 1 0011
B ol 0101 B 4ohk 0101
ol 0011 110 1100

TRIVIAL TRIVIAL
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VII (Continued)

- A A
ol 0011 01 0011
B 900 0101 B OII  o0l0l
Ui 0101 ' 1lolo ~10-10
TRIVIAL B | TRIVIAL B
A A
D1 0011 op}1 0011
B Ol 0101 B 0pp 010l
1111 1111 1010 0000
TRIVIAL =1 TRIVIAL O

It ajppears that there are a maximum of 10 logical operations
that one might conceivably wish to perform, and six don’t
cares''. (8). Consider the process of '"ring addition'", with a
provision for complementing either the A -operand, the B~
operand, or both, and complementing or not complementing

the result, as shown in Table VIII,

TABLE VIII
LOGICAL RING ADDITION

A -operand
B-operand A A
0011 1100
B 0.0 1001 | True Answer
0101 1001 0110 | Complemented Answer
‘B 0110 1001 | Complemented Answer
1010 1001 - 0110} True Answer

TRUTH TABLE
Logical Ring Add
A

I
B T
10
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Apparently, only two results are available. The result,
taking the true values of both the addend and‘ augend,is the ring
sum, while the complement of the ring sum is the logical com-
parison. This might have been deduced from Figure 5, since
the truth table for ring addition is the same as the complement
of the truth table for logical compare. Note also that there are
two ones and two zeros in both truth tables.

Consider now the OR operation, Again,either the addend,
augend, or both may be cofnplem‘ented, and the result may or

may not be complemented, as shown in Table IX.

TABLE IX
LOGICAL OR ADDITION

TRUTH TABLE
OR Addition

A

{0
11

— L=l =

A-OPERAND _
A A
B-OPERAND 0011 1100
B D111 1101 | True Answer _
o101 1000 0010 | Complemented Answer
B 1010 0100 0001 | Complemented Answer
' 1011 1110 | True Answer

Note that this time eight different answers were obtained.
In fact, upon examining Table VIII, it is found that all sixteen
of the possible logical operations may be obtained by the use of
various combinations of complement, ring addition, OR addition,
and (for all zero or all ones) resetting the ACCUMULATOR to
zeros. ,

Logical Diagram number;‘l;l.,(Firgure 12) shows the method

of executing the'Logical Ring Add" and "Liogical OR" instructions.
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The B-operand isiassumed to have alreadybeen placed in the
LOWER, and the location of the A-operand is designated by the
data address of the instruction, It is acquired and placed in the
D-REGISTER on DATA FIRS’T CYCLE. Followi}ng this, the
DATA SECOND CYCLE pulse, together with the presence of
either the OR gate or the RING-ADD gate, reads out the true
value of the D-REGISTER onto the' DATA CHANNEL 4t 0-4 time,
and also impulses DATA CYCLE END. The DATA SECOND
CYGI.E pulse is also gated to set up the LOWER ACCUMULATOR
to perform the proper operation, since it is intended that these
spec1a1 operations will only be performed on the contents of the
LOWER and the location specified by the data address of 1nstruc-
tion. At 1-3 time the ADD-IN pulse gates the contents of the
DATA CHANNEL into the LOWER, and the operation is perfogmed.
The "Complement' operation is shown on Logical Diagram
number 8 (Figure 9-A). It is intended that a ""Lioad D-Register"
operation be carried out in conjunction with the complement
operation; therefore, Logical Diagram numbers 5 and 6 are also
involved. The complement would occur on :the first word time
of DATA FIRST CYCLE; the operation would be complete when
the desired operand was found and placed in the D-REGISTER.
It is felt that, since complement will be used primaril_y with
the "Legical Ring Add'" and "Logical OR'' operations, it would
save time to use the same instruction to bring one of the desired
operands into the D-REGISTER. See Chapter 11 for a further

discussion of this topic.



CHAPTER VIII
TESTING AND BRANCHING OPERA TIONS

One of the fundamental concepts which makes the stored-
program ‘digital c.omputer d powerful tool is. the concept of |
internal testing and program branching. In the OSTIC, a
-branch, or "jump'" operation, will be defined as any operation
where the address of the next instruction is taken from the data
address of the previou:s instruction, rather than from the address
norma.lly generated by incrementing the INSTRUCTION COUNTER.
In general, there are a number of'differe,nt 'types of branch codes.
The simplest is the "Unconditional Jump'", where f:he computer
“jumps" to the instruection located in the add'r“e»ss corresponding to
the data address of the jumi) instruction. Another type of jump
code is a "Test and Jump', where the computer tests some given
condition, and then jumps only if the condition is true. For
example, a "Jump Accumulator Minus' instruction would cause
the computer to test the sign of the ACCUMULATOR. If the
sign were minus, the computer‘,@ould jump.t'b the address speci-
fied; if the ACCUN,IULATOVR were plus, howe'ﬂrer‘, the jump would
not take place, and the next instruction would be taken from the
address in the INSfI'RUCTION COUNTER. The most complex
type of jump is the 'Y'Copy Jump', where the machine first
"copies'' the conte@fs oftthé INSTRUCTION COUNTER into the
D-REGISTER; then jumps to the location specified by the data
abddress‘ of ‘the jump 'instruction. This type of instruction is
almost a necessitf for subroutine linkage on a single-address
computer. ’

Logical Diagram number 12 (Figure 13) illustrates the
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"Unconditional Jump', together with a number of "Test and Jump"
codes. The operation is quite sftraight-fo.rward. At 0-4 t‘im.e
of the first data-cycle word time, a DATA FIRST CYCLE pulse
finds the BRAN."CH‘gate'on, and is thus enabled to test the
various jump gates. For example, if the UNCONDITIONAL
JUMP gate is on, the DATA FIRST CYCLE pulse finds a path to
the OR circuit. Meanwhile, the DATA'FIRST CYCLE- pulse has
gated the ADDRESS REGISTER contents onto the DATA CHANNEL,
and at 3 time the WRITE pulse, gated by the DATA FIRST CYGLE
pulse which traveled through the UNCONDITIdNAL JUMP gate,
reads the contents of the DATA CHANNEL into the INSTRUCTION
COUNTER. The DATA FIRST CYCLE impulse also impulses
DATA CYCLE END.

As another example, consider the operation shown on
Logical Diagram number 12 for a "Jump on Overflow" instruction.
The BRANCH gate is on, and the OVERFLOW TEST gate is on,
so the DATA FIRST CYCLE pulse tests the OVERFLOW latch.
If the OVERFLOW latch is not on, nothing happens, and since
DATA CYCLE END is always impulsed, the program continu®s
in regular sequence. However, if the OVERFLOW latch is on,
thé contents of the DATA CHANNEL are read into the INSTRUCTION
COUNTER, and the OVERFLOW latch is turned off. Note that the
ADDRESS REGISTER is always read out onto the DATA CHANNEL
At 0-4 time if the BRANCH gate is on, but the DATA CHANNEL
is read into the INSTRUCTION COUNTER at 3 tifne only if a jump
is desired. This design reduces signal race problems that would
occur if both the read-out and read~in were conditional upbn the
jump being desired.

Logical Diagram number 13 (Figure 14) illustrates the "Copy -
Jump'' operation. Here, the DATA FIRST CYCLE pulse through
the BRANCH gate and the COPY JUMP gate reads out thellNSTRUCs
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TION COUNTER onto the DATA CHANNEL.
It will be remembered that the contents of any internal

machine register may be used for either data or instructions,
that is, the address of any register may be given either as a
data address in an operation, or may be entered into the
INSTRUCTION COUNTER (either by means of some type of
'S ump'' operation, or by normal incrementation of the INSTRUC-
TION COUNTER).

Consider at this point waht would happen if a "Copy-
Jump'" instruction were given with some of the various reg-
isters as the data address. For example., if the INSTRUC-
TION COUNTER was given is the address, then the contents
of the INSTRUCT’ION ‘COUNTER would simply be placed in
the D-REGISTER, and the program would continue in normal
sequénce. Again, the D-REGISTER itself could be given as
the address of the jump, in which case the contents of the
INSTRUCTION COUNTER would be: entered into the D-
REGISTER, following which the address of the D-REGISTER
itself, which, since it was the data address of the :instruction,
would be coi;qtained in the ADDRESS REGISTER, would be
transferred into the INSTRUCTION COUNTER. Following the
transfer, the computer would go into instruction cycle
operation, during which (it will be remembered from Chapters
4 and '5) the contents of the memory location specified by the
address in the INSTRUCTION COUNTER will be obtained and
placed in the INSTRUCTION.REGISTER to serve as the next
instruction. However, since the D'-REGISTER’S address was
given, the contents of the D-REGISTER will become the next
instruction . |

. 'As was stated, DATA FIRST CYCLE read out the INSTRUC-
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TION COUNTER at 0-4 time, and also allows the WRITE pulse

to read the contents of the DATA CHANNEL into the INSTRUC TION
COUNTER at 3 time. The DATA FIRST CYCLE pulse also impulses
TURN-ON DATA SECOND CYCLE. The DATA SECOND CYCLE
pulse then reads out the ADDRESS REGISTER onto the DATA
CHANNEIL at 0-4 time and allows the WRITE pulse to read the
contents of the DA.TA CHANNEL into the INSTRUCTION COUNTER
at 3 time. The DATA SECOND CYCLE pulse also impulses DATA
CYCLE END. ‘

Logical Diagram number 14 (Figure 15) illustrates the "Flag
Branching' operations. The flag o.pera\t?'ibns are simply a three-
step branching sequence that provide a much greater degree of
flexibility to computer operations than is possible with the standard
branching operation. Essentially, the operation is simply this.
Any one of 512 different on-off donditioné (such as, '"Is tape drive
number 2 ready?'", or '"Is the divide-overflow latch on?'")may be
tested by an instruction. If the designated condition is true, then
any one of eight program 'flags!', or resettable latches, may bé
turned on, or ''set'. These latches will remain on until turned
off by a spe“cific' tufn—-off or "reset" command. Any of the flags
may be interrogated at any time by a branch command, in the form
of "Jump if Flag X is on'". The set command is "Set Flag X if
Switch YYY is on'", and the reset command is ""Reset Flag X''.

The octal instruction word formatis. as follows:

07 XYYY.....Set Flag X if Switch YYY is On.
06 X......... Reset Flag X,
IX ZZZZ. . ... Jump to location ZZZZ if Flag X is On.

It is thus seen that eight separavte‘ program flags may be used, with
512 possible conditions, or switches, being ttested. Of course,
the choice of the digits 0, 1,6, and 7 in the operation codes is .

arbitrary.
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The operation of testing a program flag and branching if the
flag is on is shown on Logical Diagram number 12. The operation
is executed in the sarhe manner as any other test and jump opera-
tion; if the TEST FLAG X gate is on and the FLAG X latch is on,
the contents of the ADDRESS REGISTER is transferred to the
INSTRUCTION COUNTER. Otherwise, operation proceeds in
norma’l sequence.

The operation of setting and resétting a program flag is
shown on Logical Diagram number 14 (Figure 15). If the FLAG
gate is on, the contents the nine low -order binary positions of
the ADDRESS REGISTER is gated into a SWITCH DECODER
matrix, which accomplishes the testing of the addressed switch
to see if it is off. or on. The next three binary positions of the
ADDRESS REGISTER go into the FLAG NUMBER DECODER, whose
function is to determine which of the flags (flag 0 through flag 7)
is addressed by that instruction. The FLAG NUMBER DECODER
then 'g_)at;e.s; the DATA FIRST. CYCILE pulse into the set-resetv
circuitry of the proper flag. At 3 time a CYCLE TEST pulse then
may set or reset the FLAG latch in question. If the FLAG RESET
gate is on, the CYCLE TEST pulse is allowed to gate the reset
line of the appropriate FLAG latch, and the DATA FIRST CYCLE
pulse resets the 1a‘—tch. If a Test Switch YYY' operation is called
for, the output of the SWITCH DECODER matrix will occur prior
to 3 time, provided the addressed switch is on. This output,
together with the FLLAG SET gate, allows the CYCLE TEST pulse
to gate the DATA FIRST CY»CLE to set the appropriate FLAG
latch. The DATA FIRST CYCLE pulse also irrigp;ses DATA
CYGLE END. B
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CHAPTER IX

MISCELLANEOUS OPERATIONS

A number of miscellaneous operations are reguired to round-
out the instruction repertoire of any digital computer. This chap-
ter will' :co\}ér.- these, and in so doing, will complete (except
for input/output) the list of operations presented in this paper.

Operations of a more-or less miscellaneous character :that
have been covered previously (and will not, therefore, be dis -
cussed again) include '""Lbad D-Register' and '"Store D-Register"
(Chapter 5), Shifting (Chapter 6), and Complement' (Chapter 7).

A fundamental operation in any computer is the "Continue',
or '"No Operation' instruction, often referred to as ''no-op''.

This is simply an operation that does nothing but continue the
program to the next instructiai. Because of the fact that all
registers in the OSTIC will be addressable on both data and in-
struction cycles, it is proposed that the OSTIC have no separate

no-op instruction. Instead, the "Copy-Jump' may serve as a

no=op if 008 is made equivalent to the "Copy-Jump' operation

code. Then, if a no-op were desired, a "Copy-Jump' could be
made to the D-REGISTER. This would simply result in the contents
of the INSTRUCTION COUNTER being placed in the D-REGISTER,
and then transferred into the INSTRUCTION REGISTER. Since

the INSTRUCTION COUNTER is a twelve-position counter, the
INSTR,UCTION REGISTER would appear as OOXX'XX8 ,where
XXXX8 is the octal address of the next instruction to be executed.
The 00 would cause a second copy jump to be executed, this time

to XXXX. :
It is further proposed that the "Halt", or stop code , on this
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computer be a jump code. As illustrated in Logical Diagram
number 12, a "Halt-Jump‘.' code would place the address of the
next instruction in the INSTRUCTION COUNTER and impulse
MACHINE STOP (see Chapter 10). When the machine is started
again, the first instruction executed will be that to which the
transfer had been maae.

Three other miscellaneous operations a‘re. shown on Logical
Diagram number 15 (Figuré 16). The first of these is the ''Set
Increment"! instruction;f' Here, the DATA FIRST CYCLE pulse,
gated by the SET INCREMENT gate, reads out the ADDRESS
REGISTER onto the DATA CHANNEL. At 3 time the WRITE
pulse reads the contents of the DATA CHANNEL into the INCRE ~
MENT REGISTER, DATA CYCLE END is impulsed on the first

"word time by DATA FIRST CYCLE for all operations shown.

The other two operations deal with the AUXILIARY COUNTER.
The presence of an AUXILIARY COUNTER in the computer suggests
that some sort'of operation be designed to utilize its counting
ability independent of such operations as multiplication and shifting.
The "Set Auxiliary Counter' operation simply transfers the contents
of the ADDRESS REGISTER (which contains the data address of the
"Set Auxiliary Counter' instruction) into the AUXILIARY COUNTER.
This is accomiplishled in one word time by a DATA FIRST CYCLE
pulse which, if the AUXILIARY COUNTER gate is on, reads out
the ADDRESS REGISTER onto the DATA CHANNEL a,nc:{ allows
the WRITE pulse to tead the contents of the DA'TA CHANNEL into
the AUXILIARY IZQOUNTER, The other operation is the "Incre-
meﬁt Auxiliary Counter' operation. Here, a NI s simply added.
into the low-order position of the AU‘XIL‘JZARY COUNTER. This
operation is accomplished in .one word time by the'DATA FIRST
CYCLE pulse which, when gated by the INCREMENT AUXILIARY
COUNTER gate from the OPERATION DECODER, allows a "1
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BIT pulse to be added into the AUXILIARY COUNTER. by the
ADD IN pulse at 1-3 time. Chapter 11 covers the use of the
AUXILIARY COUNTER in programming.
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CHAPTER X

INPUT/OUTPUT AND CONSOLE OPERATIONS

This paper will devote little space to the question of input/out-
put(I/O) for the OSTIC, simply because at the time of writing no
input/output equipment is available for use with the machine. It is
anticipated, howe\}erb, that some type of input/ouf:p'ut device will be -
obtained when needed.

Faced with not knowing even the type of input/output equipment
(much less its specifications), the system designer can only specu-
late and make recommendations. It is intended, ho:wever, thaf def- "
inite "'space'' be left in the operation repertoire for a variety of
inpui/o-utput codes. To this end, it is recommended that all eight
7X 8 instructions be reserved for I/O operations. Further, it is
recommended that all 7XXX8(data) addresses be reserved for the
same purpose. By thus anticipating the need well in adwance, perhaps
the problem of having a needed I/O instruction and no place to put it
-(invthe command list) will never arise.

As far as the logical organization of I/O operations‘ is concerned,
this is, at best, generalization and recommendation. Therefore,
no Logical Diagram for I/O is presented. What would probably be done *
is that an INPUT or an OUTPUT gate would be turned on, and then
the contents of the OPERATION and ADDRESS DECODERS would be
made available to the I/O equipment for use in determining the oper-
ation to follow. It is ordinarily preferable that blocks consisting
of several words be transferred on single -I/O‘ operations.. In this
case, the length of the block would probably be determined by the-
characteristics of the ]/O unit or its buffer. A '"drum read' or "drum

write! operation might be used here, with the proper number of words
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being transferred off of or onto the drum, starting with the location
specified by the data address of the i/O instruction. Consideration
might also be given to the construction of a small (16 or 32 words)
high-speed fnemory unit, constructed using either magnetic cores
or, perhaps, various types of memory devices (to compare the
characteristics of each). This memory could serve as a buffer for
various I/O équipment.

Unlike the quéstion of input/output, the matter of the computer
console can . be discussed in more concrete terms. Here, the ‘ques-
tions of ease of demonstration and simplicity of operation arise.
Before considering the console proper, however, it might be well
'to discuss some of the operating f_eature‘s needed. First, both the
demonstrator and operator will require a means of displaying the
contents of the various registers, and methodsof cilanging them if
necessary. This was pr_eﬁously discussed, and it was proposéd
that separate display lights and entry switches be prévided for each
register. A read-only memory was also deemed desirable; this
would consist simply of toggle switches (no display . lights are needed)
in groups of 19, each groui) corresponding to one computer word.
For slow-speed operation and maintenance, lighfs indicating the
setting of the CYCLE SELECTION ‘FLIP-F“LOIVJ (data or instruction
cycle) and the setting of the DATA CYCLE RING COUNTER would
be useful. Similarily, an indication of the :_status (set or reset) of
the eight program flags would be handy.for purposes of demonstra-
tion, and, of course, the operator shouid know if any of the error
latches (overflow, storage selection, parity, timing, etc.) were set.

Logical Diagram number 16 (Figure 17) illustrates the various
settings and uses of an "Operation Switch'" on the console, in conjunc-
tion with an "' OPERA TION" latch that would determine whether the
machine was running, or stopped. If the OPERATION latch is set

to ""stop', then no pulses are available. As is shown, a number
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may be entered into a register from the console only when t‘hé
OPERATION latch is set to stop. The desired number is simply

set into the console entry switches c\orresponding to the desirea |
register, and the "Enter'" key for that Arégister depressed. In order
to start the machine, the "'Start" key on the c_on's‘fble i then depressed,
allowing the "HOME" pulse to set the OPERATION latch to run. ;
The function of the OPERATION switch is merely to determine in

what manner the computer méy be stopped. On "Internal" operafion,
the machine may be set to stop only;‘when the console "Stop'" key is
depressed, or when an "internal stop' occurs. An intérnal stop may
be a halt code, timing er‘for, storage ‘s‘elec‘tion error, or (if desired

by the operatbr) an overflow, or parity error. In addition, a stop

may be desired when the contents of either the ADDRESS REGISTER

or the OP_ERATION REGISTER is equal to some predetefmined number
entered into the console entry switches of the INSTRUCTION REGISTER.
The former, is termed an "address stop', and the latter an ''operation
stop''. Also, a stop may be desired when instruction having a minus
sign enters the INSTRUC TION .REGIS'_TER . This possibility will be
discussed more fully in Chaptér 11. ' ‘

On "External' operation, the computer may be set to stop at the
end of every data and instruction cycie, at thé, end of . each word time,
or for each timing pulse. These modes of ope ratioh wouid be used
for demonstration and maintenance. Depression of the start key would
cause .the computer to operate until the next cycle, word, or timing
pulse occurred, at which time the machine would again stop automati-
cally. Note that drum operations (read and write) should not be
allowed on word time or timing pulse operation, since to do so would
present rather complicated problemsvin citcuit design. Drum
operations on the '""Cycle' setting would be pernﬁssabl_e. It should
be pointed out that all error 1afches, as well as the Stop key will, of

course, be effective for external as well as internal operation.
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Logical Diagram number 16, being for purposes of explanation,
does not specifically indicate this. |

It is now possible to discuss the computer console itself
(Figure 18). This sketch presents a suggested organization plan
for the console,while conveying some idea of the overall appear-
ance. Note that all 19 indicator lights and entry switches are
shown for-only one register. Of course, all 19 would be provided
for all registers. |

Note that the "Operation " switch (lower right side) has
been discussed previously. The '"Minus Instruction'' switch,
which governs the action taken fotr minus instructions, is covered
in Chapter 11. The various operating buttons might be discussed.
'""Start' and "'Stop' were mentioned previously; the ""Reset"
button would stop;the machine, reset all error latches (but not
the program flags) and set all registers to plus zero. The ""Load"
button would be used for program loading. Its operation is
covered in;the following chapter.

A word should be said concerning the console appearance.
Some computer consoles have a forbidding appearance; others
are attractive, even to the point of appearing, perhaps, to be
less complicated than they actually are. The OSTIC’ s console,
if built as suggested, would contain 152 indicator 1ights and 152
toggle switches for the registérs alone, plus 19 additional
toggles for each word of read-only memory. Therefore, some
thought should be given to the layout and ultimate appearance of
the console prior to the start of construction. A rather bright
indicating lamp will be needed if the machine is to be demonstra-
ted effectively before groups of more than a few students. Special
miniature toggle switches are available, and at least one computer
(Computer Control Company’ s '""Digital Data Processor') uses

them effectively to present a neat-appearing console. Finally,
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all important switches and buttons should be accessable to the

seated operator, and all indicators should be easily visible.



CHAPTER XI

PROGRAMMING AND OPERA TION

Every computer must possess a method for loading the
initial program into mémdry. Most computérs have some sort
of built-in logic to provide for 'bootstrapping', thé,t is, to enable
a program to literally reald itself into the machine, with only
the console switch settings being used. In other words, a
method of program loading that does not presuppose anything
in the machine memory is highly desirable.

It is suggested that bootstrap program loading be pro-
vided for by a '"Load'' button on the console (Figure 18). It
is further suggested that, while the '""Console Entry' toggle
switches foi' the various registers not be made addressa_b.1e
in the program, the "Data Channel Entry" switches should be

addressable with a data address of 0000, . Also, the Read-

g
Only memory (which is, of: coﬁrse, addressable) would have
addresses of 00018, 0002.8' 00038" 00208 (for 1610 words).

The intended action would be as follows: Depression of the
 console "'Loé.d" key w.ou;ld set the INCREMENT REGISTER to
an increment of 1, set the INSTRUCTION REGISTER to

00 0000g+, set the CYCLE SEI;ECTION FLIP-FLOP to data
cycleand the DATA CYCLE RING COUNTER to data first cycle.
No other register would be chai;ged. The desired loading
routine would be set in t.he ‘."Da;ta Channel Entry' switches,

and in as many of .the: "Reéd-Only Mel;nory" switches as needed.
Depression of the "Start" key would then cause 1), a "Copy-

Jump' to 0000, (with the previous contents of the INSTRUCTION

8 .
COUNTER placed in the D-REGISTER), 2), the first instruction’

\
|

87



88

of the loading routine to be taken from the "'Dadata Channel Entry"
switches. Note that the INSTRUCTION C'OUNTER automatically
takes the next instruction from location {00 18’ and continues to

take the remé.inder of the loading routine from the Read-Only
memory in a similar manner. The last instruction entered into

the Read-Only memory would, of course, be a "Jump Unconditional"
instruction.

| The matter of minus instructions should also be discussed.

As was mentioned previously, it is proposed that the sign of the
instruction word should not enter into the code structu-re of the
operation. Therefore, the sign is available for other use. The
writer suggests, inv keeping with the goal of flexibility, that a
number of options be available to the programmer and opérator

in relation to minus instructions. Figure 18 shows the console,
with the '"Minus Instruction'" switch at the lower right.' The
"normal' setting is that of "Execute'. For this setting, minus
instructions are "executed' in the same manner as plus instructions.
The minus sign presents no influence. |

The ''Ignore'’ setting means simply that minus instructions
are 'ignored'" by the computer. When the instruction read into
the INSTRUCTION REGISTER is found to be minus, the INSTRUCTION
COUNTER is simply incremented in normal fashion and the next
instruction sought immediately. Thus no data cycie is taken for
a minus instruction on the ''Ignorg" setting.

The "'Stop'" setting is quité simple. As soon as the minus
instruction is read into the INSTRUCTION REGISTER, program
execution is halted (see Chapter 10). Upon depression of console
"Start' key, the minus instruction is executed in normal fashion,
and the program then proceeds in regular order.

The "Trace''setting impliés'a more sophisticated operation.

In computer terminology, a 'trace/!' is a list of the contents of all
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important machine registers at various points during the execution
of a given program. The trace is used for program analysis and
correction, or '"debugging'. It is proposed that the execution of a
minus instruction for the '"Trace' setting would cause the contents
of all machine registers to be transferred to a special output buffer
at the end of the operation, following which they .-could be punched
or printed out for future use. When the program was c.orrected,
the switéh could be set to "Execute', and the minus; instrugtions
would not be traced. (9).
The last setting to be discussed ié the "Interrupt'" setting.
In normal computer operation, communication with input/output
units is completely under control of the program. If an input unit
contains information which should be transmitted to the computer,
the transmission cannot take place until the input unit is referenced
by some sort of "transmit! or "read" instructigmn. The concept
of "program interrupt! is simply that certain input units may be
allowed to interrupt the normal sequence of computer operation and
transmit data into the computer at times other than during normal.
input operations. After the input unit is through transmitting data,
control is returned to the main program. (9, 10). The ”Interrupt“'
setting is intended to allow these interrupt operations from certain
specified input/output units following the execution of any minus
instruction, regardless of whether the instruction is an I/O ”
operation. It is anticipated that such a facility would be quite
useful in certain areas of real-time control system investigation.
Appendix B gives the 48 operation codes that the writer
feels would constitute a reasonable and useful command list for
the OSTIC. Although a maximum of 64 commands could be
incorporated, it is felt that a machine such as this should
certainly have a provision for adding new operation codes at a

later time.
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Chapter 7 described the use of the logical operations '"Ring
Add", "OR Add", and "Complement-Load'. These operations may
be combined to provide all 16 of the logical operations listed in
Table VII. For example, if B is in the LOWER, A is in drum
location 1510, and the desired operation is AB, then the following

sequence of instructions would provide AB in the LOWER:

Operation Data Address
Complement-Load 1510
OR Add D-REGISTER

if K-]_s;is desired:

Reset Add Lower LOWER

Add Upper 1510
Complement-Load D-REGISTER
OR Add UPPER.

Finally, if all 1’s are desired in the LOWER, the sequence

Reset Add Lower UPPER
Reset Add Lower UPPER
Complement-ILoad D-REGISTER

would require a maximum of 10 word times (34b fhic:i'oseconds) if
the program was in the Read-Only memory.
It will be noted that a ''divide ! operation is not included in
the command list. This omission was intentional; it was felt that
the extra cost of providing built-in division was not justified on
this machine. However, a divide routine may be easily programmed,
using the AUXILIARY COUNTER to tally the shifts. If the dividend
(which is plus) is in the ACCUMULATOR, and the divisor (also
plus) in the D-REGISTER, the following routine would prove

effective.



Inst. Adaress
- 00018
0002
0003
0004
0005
0006
0007
0010
0011
0012
0013
0014
0015
0016

Operation
Set Auxiliary Counter
Subtract Upper
Jump Minus
Halt-Jump
Store D
Add Upper
Increment Counter
Jump Auxiliary Zero
Shift Left
Subtract Upper
Jump Minus
Add Lower
Jump Uﬁconditiohal

008
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Data Address

011’102

D

'00058 |

(Error)
1513

D

(Operation over)

00018

1513

0006

0016

0012

00018

This routine, if placed in the Read -Only memory, would perform

division in almost the same manner as would a built-in divide

instruction.

Freilich, (lﬁ), presents c'bmparative data on various present-

day digital computers available for process control applications.

One method of comparison used is cost; another is the time re:-

quired to obtain data from the ''bulk memory" of the machine,

whic;h would correspond to the drum in the OSTIC, and from the

"working mem?ry“, which would correspond to either a core-

storage unit or to the Read-Only memory. The average access

time for the bulk memory in the’OSTIC is 256 word times, or

8.9 milliseconds. This is lower than ld?of the 24 computers.

listed, and higher than 14 (10 of the 14 had times of 8.3

milliseconds). The Read -Only memory'}f;."tnbthe OSTIC has an

access time of one word time, or 34 microseconds. This is

somewhat greater than 'any rhachine 1“i,st,e’d',-_-,although::;.s-ixl‘rhsanhines
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had access times of 20 microseconds or more. Twenty-one of the
machines listed were binary computers (one was octal), 19 used
single-address instructions, 14 had bulk memory capacities of:
4096 words or less, seven were parallel machines, and 13 used
words-of 24 bits or less {one used 11 bits). It might also be
mentioned that one machine cost $4’0, 000, another co§t$389, 600,
and the average price was in the neighborhood of $l 16, 000. 1t
may be concluded that the OSTIC, as presented here, compares
favorably with commercially available machines for applications
involving control systems - fresearch and experimentation.

Another interesting comparison might be made between the
OSTIC and the IBM 650. The drum in the 650 rotates at 12, 500
rpm and has 50 words per band. Therefore, the average access
time is 25'word_times, one:}word time being equal to approximately
96 microseconds. For various reasons, the fastast 650 addition
speed is 125, 000 additionSper minute. For the OSTIC, the fastest
possible addition would rejquire three word time's (one to acquire
the instruction, one to acquire the operand, and one to add). Thus,
the OSTIC can perform 512/3- additions per drum revolution, or
approximately 589,000 additions per minute. The 650 worst case
is 50 word times to find the operand, and 50 to find the instructibn,
or one addition every other drum revolution, resulting in 6250
additions per minute. The OSTIC worst case is 1725 additions
per minute.

In closing this chapter, the writer strongly recommends
that, as soon as the OSTIC is operating, an assembly program be

devised. It is felt that only in this way can the full potential -
| (especially with respect to operating speed) of the OSTIC be

utilized.



CHAPTER XII
' CONSTRUCTION AND MAINTENANCE

This chapter will present some of the writer’ s ideas and
suggestions regarding construction and ’maintenance of the |
Oklahoma State Instructional Computer. It is the writer’5
philosophy that maintenance must be a primary consideration at
all stages in the design and construction of ‘é,vny digital computer.

-‘ Back-panel wiring should be cabled, not point-to-point,
and wire splices should never be allowed within a cable. A
color-coding plan should be adopted early, at least for standard
voltages and internal pulses, and should be strictly adhered to.
Whenever any modifications, additions, or repairs (no matter how
minor) are made to the computer, they should be immediately
récorded in a logbook that is kept with the machine. Whenever an
unlisted modification 1s encountered, it should be traced and
recorded promptly. |

It is further suggested that, insofar as possible, the com-
puter be built in a modular fashion. Since most flip-flops will
be used in groups of 18, perhaps each group could be mounted,
with indicating neon lamps, on a small panel which would plug
into the main chassis. In that way, whole- "bregisters" could
be bn"xoved around fof trouble shooting. In this regaré, a few’
extra units of all types should be kept on hand for such use.

Documentation(or the lack of it)ha.s been the downfall of} a
number of corn.'puter‘ projects such as this. Machine records
must be kept up—to-date. In addition, it is suggested that each
individual who has the responsibility for designing and building

portions of this machine be required to submit, as part of his

93



94

project, a list of trouble:shodting , testing, and repair procedures
for the unit be constructed.
Marginal voltage tests are very valuable procedures
in corﬁputer maintenance. As §oon as power supplies are ready,
work should be started toward toward perfecting such procedures.
Finally, a library of the various test and demonstration

programs should be maintained.
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'CHAPTER XIII

| SUMMARY

The philosophy and general sy‘stem logic design was devel-
oped for a small magnefic—drum digital computer. The design
was continually influenced by the proposed future applications of
the ma chine. bThat is, thé machine is primarily to be used in
connection with the teaching of digital systems design, and for
demonstrations of digital circults. In this light, the machine
system logic was to be straightforward, and the concepts of con-
trol and computation were to be easily understood. In addition,
it was to be economical to maintain, and the command list was
was to allow considerable flexibility in the application of the
machine. '

Perhaps the greatest contribution to a straightforward
system concept is that of using a central data channel. This
allows the control logic for the various operations to consist
primarily of transferring data words between the various registers
and the data channel lines,

The selection of binary operation and single-address instruc-
tions were ''natural'’ selections for a machine of this type. The
use of parallel information transmission contrihutes much toward
simplifying the control logic. Parallel operation compromises the
economy criteria to some extent; however, it was felt that the .. . =
requirement of overall simplicity in machine organization was
the more important factor in this particular decision.

The representation of numbers within the computer in sign-

and-magnitude form is consistent with the use of the machine for
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demonstration purposes to students in computer engineering
courses, as is the facility for performing the various binary log#=:
cal operations. ' |

Provision for a very extensive list of bfanching operations
through the use of the program‘ #Hag concept will prove Qaluable
- for experimental applications in control systems work. Flexibil-
ity is also provided through the availability of a number of operat-
ing opf:ions for minus instructions. Operating speed ma;yvbe in-
creased coﬁsiderably through the variable inci‘erﬁehtatiéﬁ of the
instruction counter.

In cohclusion, it is felt that the computer design presented .-
herein compares favorably with com&nercially‘avaﬂable computers
of similar memory capacity. The flexibility inherent in the design
of the OSTIC computer should allow a wide variety of useful and
worthwhile applications wit@i@the School of Electrical Engineering

of the Oklahomia State University.
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APPENDIX A
GRAPHICAL SYMBOLS
Listed below are the graphical symbols used in the Logical Dia-

grams accompanying this paper. An explanation accompanies each.

AND Circuit See Gorn (12), for further discussim.
| cl D = AB Note that A
B : E = AC passes through

the connector.

The arrowhead conven-
H I =FGH used is that the darkened a.rrow—

head represents the signal or

‘ pulse of the longer dura-
K ____{ >—‘ Mo
' ‘tion. ’

No operation of the logic

I OR Circuit

Is Egual Eqeal | ! _
Campnrteom :.7,» ] —o dependent upqn the pres
Flip -
,:/,ﬁ', [ of the signal is valid if
EXPLANATION ' the signal is not present,
o om A rectangular symbol or not on.
Step . :
Anvicspec ziom conveys information as

!

D- Reqister
N True = anuw
Read - Our.

to the action to be taken.

REGISTER: An oval symbol always represents an

internal machine register, or its contents.

PULSE: A triangylar symbol alv_véys represents a

@ pulse. The timing of the pulse is shown at the top.
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APPENDIX B

COMMAND LIST

" The following operations constitute the command list
suggested for incorporation into: the OSTIC. The name of each

| operation is listed, together with the number of word-times.re-~

quired for ex‘ecutivon‘l, Operation Decoder output gates required,

pertinent Logical Diagram numbers, and a brief description of

fhe operation. 2

The abbreviations used’in connection with the word-times.
required are as follows:

Op - Operand required, If located on the drum, from one
to 512 word-times are required for acquisition, . with
an average of 256 required. If located in the read-
only memory or an internal register, one word-time
required for acquisition.

C - Complement cycle, using one additional word-time,.
will be required if negative answer is developed.

N -:Number of 1’ s in word (excluding sign bit).

S - Number of,;?oéitions desired on a shift.

Theé abbreviations used in connection with the operation
descriptions are as follows:

XXXX refers to the contents of a register or a drum ..
location.

ABCD refers to the data address of the instruction in
octal form. A refers to the first octal digit, B to the
second, Cvto the third, and D to the fourth.



Operation Timirig Decoder Gates Logics Description
"ARITHMETIC CODES:
Add Upper Op+ 1 + C | Operand, Add, Upper 5, 6, 8 | Add XXXX:to Upper.
Add Lower _ Op +1 +C Operand, Add, v‘Lower 5, 6, 8 Add XXXX to Lower.
Reset Add Lower Op + 1 + C | Operand, Add, Lower,| 5, 6, 8 Reset entire
Reset v chufnul‘éftf)'r to plus -
zero, then'add XXXX
to-Loweri. - . i
Add Magnitude Lower Op + 1+ C | Operand, Add, Lower,| 5, 6, 8 Add [XXXX ! to
' ‘ : Magnitude A ‘ Lower v
Subtract Upper ' Op + 1 + C | Operand, Subtract, 5,6, 8 Subtract-XXXX from
' Upper ' Upper
Subtract Lower Op+1+C '| Operand, Subtract, 5, 6, 8 Subtract XXXX from
Lower ’ Lower:
Reset Subtract Lower Op + 1 + C | Operand, Subtract, 5, 6, 8 | Reset entire Accumu-
Lower, Reset lator to plus zero,
then subtract XXXX
from Lower.
Subtract Magnitude Op +1 +C ’ vOp.erand, Subtract 5, 6, 8 Subtract QX'XXXI
Lower Lower, Magnitude “from Lower,
Reset Multiply Op + 1+ N | Operand, Multiply 5, 6, 9 Reset Lower AccumuH
+18 " lator to zero.

Multiply XXXX by

Upper.

00T
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Decoder Gates

Shift Right Circular

Operation Timing Logics Description

| LOAD AND STORE CODES: i |

Load D Op Operand, Lypad D 5, 6 Place XXXX in D.

Btore D Op Store, D 7 Place D in XXXX

C {drum only)

Store Upper Op Store, Upper -7 Place Uppe'r in D and
inVXXXer(drum only)

Store Lower Op Store, Lower 7 Place Lower in Dand
in XXXX (drum only)

LOGICAL CODES: _ v

be'fnplement Load Op Operand, Complement | 5, 6, 8 | Place XXXX in D;

' take 1’ s complement
of entire Accumulator
(except sign)

Ring Add Op+1 Operand, Ring Add 5, 6, 11

JOR Add Op +1 Operand, OR

SHIFT CODES:

Shift Left 1+S Shift, Left, Shift 10° Shift entire Accumu-
lator CD- places left,

v 3210 maximum .
1 +S Shift Right Circular 10 Shift entire Accumu-

lator CD ptaces right
(32,5 maximum). Bitg
shifted off right end

enter left end.

10T



. Decoder Gafes

~ Operation Timing . Logics Description
BRANCH CODES:
Jump Unconditionai 1 "Brandh, Unconditioned 12 Set Instruction Counter
Jump to ABCD.
Jump Minus 1 Branch, Minus Test 12 If Accumulator sign
' is minus, set Instruc-
tion -Counter to ABCD.
Jump Zero 1 Branch, Accumulator 12 If entire Accumulator
' Zero Test is ‘zero (plus or minus)
| set Instruction Counter
to ABCD.
Jump on Ovierflow 1 Branch, Overflow Test |12 ~If Overflow Latch is on,
S - - _turn to off and set
Instruction Counter to
. . . ‘ ABCD.
Jump on Parity Error 1 Branch, Parity Test 12 1f Parity Error latch
is on, turn off and set
Instruction Counter to
. ABCD.
Jump on Zero Auxiliary 1 Branch, Auxiliary Test |12 If Auxiliary Counter is
zero, set Instruction
Counter to ABCD.
Jump Flag 0 (or 1-7) 1 Branch Flag 0 (or 1-7) |12 If Program Flag0
| 8 codeg ‘total .. ' Test (or 1-7) is on, set
Instructiqn Counter
_ to ABCD.
Copy Jump 2 Branch, Copy-Jump 13 Copy contents of

Instruction Counter into
D, then set Instruction
Counter to ABCD.

20T



Jump, Halt

Operation Timing Decoder Gates Logics Description
- PROGRAM FLAG CODES: o
Set Flag 0 {or 1-7) 1 Flag, Flag Set 14 Turn on Program Flag
' A if condition BCD is
‘1true.
Reset Flag 0 (or 1-7) 1 Flag, Flag Reset 14 Turn off Frogram
. ’ Flag A
MI_SQELLANEOUS CODES:
Set Increment 1 Set Increment - 15 ' Set Increment Register
_ to BCD.
Set Counter 1 Auxiliary Counter 15 Set Auxiliary Counter
| : to CD {3 1 10 maximumy}.
Increment Counter 1 Increment Auxiliary 15 Add 1 to Auxiliary
Counter " Counter.
Halt-Jump 1 Branch, Unconditioned | 12 Set Instruction Counter

to ABCD, then stop
machine.

INPUT/OUTPUT CODES:

Eight codes, 70 through 77

€01
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APPENDIX C

LIST OF PULSES

All machine pulses appeAring,in the Logical Diagrams
are listed by name. Timihgé, diagram numbers, and a brief

description of the function of each pulse accompany the listing.



J Name

Timing _Lo‘g'ics Purpose
Add-in ptﬂse 1 -3 |8, 9,‘ 10, li, 15 Add into various registers.
Address pulses 1 5, 7 Address of words available -
Address Test 0 -1w215, 6, -,? _ Test band numbér.
Complement Test 4 8 Test for Complement cycle.
Cycle Test | 3 5,6, 7, I3, 14 : _Determiné next cycle. Flag
‘ operations. : :
Cycle Turnv-—'Or.x 2, 3, 4 Change cycle settings.
'Data:-Fir'st"Cycle ' 0-4 All except numbers First operation on data cycle.
. . 1, 2, 16 '
Data Second Cycle 0 -4 4, 8,9, 10, 11, 12, 13 | _Sécond 6peratio’n on data cycle.
Data Third Cycle 0-4 4,8 ' vahird opera fion on data cycle.
Inst‘rucvtion Counter Increment| 4 3 " As name imp_lies,.
Miscellaneous Reset 4 9, 10 Reset various latches.
nin Bit 0-4 8,9, 10, 15 ' Adding "M
Read-in 2 -3 -445, 6, 7 Data transmission.
Sign Add 1 18 'Add-in sign bit
Sign Test 0 8 Set up end-around carry iogic.
Word Pulses 3 5, 7 - Word bit‘sv from read heads.
Word Time 0 -4 3, 4 Provide cycle-gates.
! Write 3 6, 7, 10, 12, 13, 15 Write onto drum and into
Registers.
"0"Bit 0-4 |8,9 Adding 0’ s"

S01
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APPENDIX D

LIST OF LATCHES

All machine latches appearing in the Logical Diagrams are .
listed by name. Time turned, time turned off, didgram numbers, -
and a brief description of the function of each latch accompany

the listing,



Time Time
Name ‘I.‘urn"ed” Turned ,POgJ..CS Use
Complement 4 4 8 Prevent re~complement.
Cycle Selection Flip-Flop 0 0 2, 3, 4 Set machine in either data or
' instruction cycle mode.
Data Cycle End any all except | Set up change to instruction cycle.
except 0{ 0 4;.35:16 '
Data Cycle Ring.Counter 0 0 4, 5, 6, 8, ‘Set up data first, second, third cycle.
SRR 10, 13 ' - '
End-Around Carry‘ prior 0 8 Indicate that an end-around carry
to 4 has occurred. ' :
Equal Comparison i 0 5, 1 Set up drum read or write
'Program Flags 0 - 7 3 3. 14 Various purposes (available to'
- programmer).
. Instruction Cycle End any 0 2, 3, 5, Set up change to data cycle
except 6 :
0 and 4
Non-Drum Read 0-1 4 6 Set up acgyuisition of non-drum words.
.Operation 0- 4 -4 12,16 Sets machine to stop or wun.
Overflow 4 0 8, 12 Indicates Accumulator overflow nn
addition.
Parity Error 3 5, 12 Word read fronrt doim has incorrect
“parity.
Shift-or-Add 0,4 0,4 9, 10 Operations involving shifting.
Signs Differenf 0 8 End-around carry and complement.

LO1



Time Time
Name Turned Turned Logics Use

On Off S
Signs Negative 0 0 8 End_—a.round carry and overflow.
Signs Positive 0 0 8 End-around carry and overflow.
Step Anticipation any Set iip data cycle change.

except 00 4 o S
Storage’Selection Error 0-1 0 6, 7, 12 Indicate incorrect data address.

801
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