
THE PHILOSOPHY AND SYS TE 1'i ORGANIZATION

OF A SMALL DIGITAL COMPUTER

By

JOHN LEE FIKE, JR. ,,

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1961

Submitted to the Faculty bf the Graduate School
of the Oklahoma State University

in partial fulfillment of the re-1uirements
for the degree of

WASTER OF SCIENCE
August, 1962

THE PHILOSOPHY AND SYSTEM ORGANIZATION

OF A SMALL DIGITAL COMPUTER

Thesis Approved: .

~(811/1~
Th~sis Advisor . . .

I

Dean of th.e Graduate School

504412

OKLAHOMA
STATE UNIVERSITY

LIBRARY

NOV 7 1962

PREFACE

The number and usefulness of digital computers is constantly

increasing. Similarly, the demand for engineers with an under -

standing of not only the applications, but also of the internal

structure of digital computers is also increasing.

The availability of a quantity of computer components to the

School of Electrical Engineering of the Oklahoma State University

suggested that a small computer might be constructed for

demonstration and instructional purposes in computer engineering

courses. Before such a project could be undertaken, an overall

organizational plan was required. Such a plan is presented in

this paper.

The various applications of an instructional computer will

be examined, and from these a "design philosop·hy" will be

developed. These criteria will then be used in formulating the

machine organization. Although many of the components avail­

able for construction are circa 1952, the writer has attempted

to avoid designing another 1952 computer.

The author expresses sincere thanks to his adviser, Professor

Paul A. Mc Collum, for his counsel and guidance. It is deeply

appreciated. Also, the help and understanding of Professor

'Nilliam Granet, Acting Director of the Computing Center of the

Oklahoma State University, are gratefully acknowlepged.

My wife, Gail, and her mother, Mrs. Martha Raper, did

all of the typing for this paper. The irs was a true labor of love,

and I thank them for it.

iii

TABLE OF CONTENTS

Chapter

I• INTRODUCTION: DESIGN PHILOSOPHY •

I: I. THE OVERA~L SYSTEM ORGANIZATION ,
OF THE OSTIC •• • ••••

Page

• • • • • 1

' "
• • 6

III• MEMORY AND TIMING • • • • • •• 12

IV• CYCLES AND CONTROL •••••• • • • . . . •• 1 7

v. DATA ACQUISITION AND TRANSMISSION. • • ••• 28

VI• ACCUMULATOR . OPERATlONS • • • • • • • • • • • 38

VI I• LOGICAL OPERATIONS • • • · • • . . . ••• 62

V IIL. TESTING AND BRANCHING OPERATIONS. • • • • • 68

IX. MISCELLANEOUS OPERATIONS ••••••••••• 76

X. INPUT /OUTPUT AND CONSOLE OPERATIOtf •••• 80

XI. PROGRAMMING AND OPERATION •••••

XI I. CONSTRUCTION AND MAINTENANCE • • •

xrn. • st;rM,MllRY •••• .• • • • • • . . .

. . . • 87

• • 93

• 95 • • •

BIBl,iIOGRA:~~ · • • • • . . . • • • • 97

APPiNDIX ,A: • 98

APPENDIX B • • • . • • . . • • • • • • • • • • • • . . 99

APPENDIX C • . 104

APPENDIX D • . • . • • . . • • . • • • • • • • • • . .106

iv

LIST OF TABLES

Table Page

I • Binary Addition With End-Around Carry •· • • • • • • • • .41

II; Rules for Accumulator Complement and Reset • • • • • • 47

III. Rules for Accumulator Operation Code and Sign. • • • • • 47

IV. Rules for Accumulator Add-In ••• • • • 0 •. • • . •· .
V. Rules for Accumulator End-Around Carry and Overflow• •

VI • Binary Multiplication •••

VII. Binary L.ogical Operations·

VIII • Logical Ring Addition ~ , •

f' a • t t t O • • • I • t • • t

• • • • • • • • • • • • • • • •

t I • I • t a t· a .. • • • I I: <t

IX • Logical OR Addition • • • • • • • • .. • • • ••••• • •

V

48

48

54

63

64

65

LIST OF FIGURES

Figure Page

I. Logd.calDiagram number 1, Data Channel • • • • • 9

II• Memory, Timing, and Words • • • • • • • • • • • 1 J

I[. Logical Diagram number 2, Master Cycle Control • 19

IV. Logical Diagram number 3, Instruction Cycle Control 21

V. Logical Diagram number 4, Data Cycle Control • • 24

VI. Logical Diagram number 5, Drum Read •• • • • • 29

VII, Logical Diagram number 6, Non-Drum Read , • • 33

VIII. Logical Diagram number 7, Drum Write • • • • • • 35

IX.,.A. Logical Diagram number 8, sheet 1, Addition,
Subtraction, and Complement •• • • • • • • • • 49

IX-B. Logical Diagram number 8, sheet 2 • • • • • • • • 50

. X • Logical Diagram number 9, Multiplication, • • • • 57

Xl • Logical Diagram number 10, Shifting • • • • • • • 59

XIL. Logical Diagram number 11, Logical Operations • 66

XIU . • Logical Diagram number 12, Branch Codes • • • • 69

XIV .. Logical Diagram number 13, Copy-Jump •••

XV • Logical Diagram number 14 , Flag Branching

XVL .• Logical Diagram number 15, Miscellaneous ,
Oper·ations ••• • , , • • • • •. , , , •

• • •

• • •

' . .

71

74

78

XVU. Logical Diagram number 16, Timing and Stepping • 82

.XVIIt. Console • • • • •• • • ••• • • , • • • .. • • • • 85

Vl

CHAPTER I

INTRODUCTION: DESIGN PHILOSOPHY

The design of a digital computer imr6lves many separate levels,

from the formulation of the overall purposes of the computer , to the

final design and testing of the circuits to accomplish each specific

task.

In this chapter, the Oklahoma State Instructional Computer (here ­

after called the OS TIC) will be examined in the three areas of construe -

tion, op_eration, and rr,aintenance. From the constraints brought out

in this discussion, a "design philosophy" , or set of · design criteria,

will be formulated for use in the remainder of this paper.

The principal source of components that will be used to construct

the OS TIC is the remnants of a digital computer given to the School

of Electricai: Engineeriµg af the Oklahoma State University, by the

Continental Oil Company of Ponca City, Oklahoma . Components a­

vailable inG1ude a magnetic dr ,um with read write heads, motor,

and a heavy-duty regulated pow er supply, together with numerous

pluggable £1ip-flop modules, diode assemblies, and other electronic

parts.

A number of important design parameters, such as component

maximum operating speeds, voltage levels, and pulse shapes were

thus already determined before the present design was conceived.

It shou.H also be mentioned that one of the design goals was to min­

imize the number of purcha\sed components, such as flip-flops,

and diodes, since, unlike some other computers constructed by

universities, OSTIC will probably not receive a large amotunt of

outside financial support .

As the name implies, this computer is primarily intended for

use in computer iogic design classes. It:may be noted that a ·great deal

1

2

of the instructional value of such a machine lies in the actual

construct.ion and testing. It is the intent that the machine will be

built, unit by unit, by graduate students under the direction of

faculty members. In order to be certain that these efforts are of

greatest benefit, an overall plan must be devised (preferably

during the early . stages of construction) that outlines the purpose,

goals, and basic design criteria for the computer, This overall

plan must be fairly complete and sufficiently detailed that no im­

portant questions (such as, "How does this machine add?") remain

unanswered. At the same time, the plan must not attempt to pre­

sent an overly , detailed final design. In the first place, this

would be much too time consuming for any one person to create;

more , important, the individuals doing the actual constrmction

and testing may vei;y likely find preferred ways to accomplish

certain operations. Finally, and most important of all, the

overall design should be straight-forward, and readily understand­

able by .persons not possessing a large amount of experience in

the area of digital computers. Students of this background will

not only build the machine, but will later use it to learn how a

computer operates.

It is anticipated that this machine will find varied applications

in its role as an instructional computer. One of the most likely

areas will be in classroom demonstrations. Here, the emphasis

will be on how a digital computer functions internally, rather

than (as is so often the ,case) how the computer brings in data and

(somehow) turns out answers. Class demonstration requires

two things: first, a console so designed that the students can

clearly see the contents of the various registers; second, a pro­

vision for slow -speed operation so that the students can see each

step of the computation .as it is performed. Also, it is obvious

that the derncns:ration machine should .be suffrcientty sfmple

that it may be understood (both internally and externally-I and

3

used b y students in computer design courses.

Another possible application for such a machine wouldb-e

as a test computer for various research and development proj -

ects involving pulse or digital circuitry. In other words, the com­

puter might be called upon to serve as a programmable pulse

generator. Perhaps the most important consideration here would

be reliability. A student who is using the. computer as a device to

test, for example, a . transistorized shift register, needs an ex­

tremely reliable machine. If the test set-up does not function

properly, he should be quite certain that the failure is in his

device, rather than in the computer. The example of a tran­

sistorized shift register points up another consideration: the

OSTIC should have, in addition to a "standard" console (indicator

lights and switches), a large patch panel where all computer

pulses, gates, and register outputs are available for circuit use,

together with adjustable power supply voltages. A panel of this

type would not only be convenient for the application mentioned;

it would be invaluable for machine maintenance. A third con­

sideration might be mentioned here: test equipinent slipuld be

easily set up and ver-,atile in operation. The versatility may be

taken care of by a flexible instruction list, but a large amount of

set up time would be required if the user (who would probably

need only a five- or ten-instruction program) had to enter each

instruction into the drum memory, either by operating the console

or by punching and then reading-in cards or paper tape . One

solution to this problem might be a separate read-only memory

of eight, sixteen, or thirty-two words, addressable by the com­

puter in a manner similar to the regular memory and physically

provided by a bank of toggle switches on the console.

The existence of a controls laboratory at OSU containing a

number of analog computers suggests another possible application

4

for the OS TIC. This would be as an element in a digital control

system, or in the area of real-time systems investigation. Here,

the requirement is not only for reliability, but also for a high de­

gree of flexibility in both programming and in data transfer. Pro­

gra:mmin,_g flexibility would seem to imply the p.:resence of a variety

of test and branching codes, perhaps together with some sort of

masking or logical operations. The emphasis here would not be

on the standard arithmetic operations of addition, s..u:b.traction,

multiplication, and division, . but rather on the controlling func­

tions . The problem of ~ata transfer would imply flexibility in

inpu,t/output equipment, with perhaps a number :0f buffered periph-

eral units .

Since this machine will be a digital computer, the ,question

of computation for problem solving might be rai:s.ed . It is antic­

ipated that the OSTIC will be used little,if at all, for this type of

operation, since computers are already available on campus with

much mwre speed and many programming aids. The problems

inherent in writing even a small pr_9gram for a binary computer

with no _compiler or .assembly routines available make such an

application extremely unlikely, to say the least.

f inally comes the all-importapt question of maintenance.

This -computer will be maintained by students and technicians who

will probably not be overly familiar with computers in general,

and who certainly cannot be expected to become intimately

acquainted with the operation of each individual circuit. Also,

there will be a continuing turnover in the student personnel

associated with maintaining the computer. The entire machine

must be designed with this in mind; maintenance procedures,

especially those concerned with pin-pointing malfunctioning

units, should be extremely { simple and straight-forward.

Upon taking all of the foregoing considerations together,

5

one finds that a fairly clear-cut design philosophy emerges. It

becomes clear that a simple machine organization is desirable,

from the standpoint of the graduate student whose thesis proj­

ect forms a part of the machine and who needs to understand

its place in the overall design; from the standpoint of the school,

since simplicity usually implies economy of components ;

from the standpoint of the student in a computer design course,

whose first contact with the "insides" of a computer will prob-

ably be through the OSTIC; from the standpoint of the students

(and faculty) who use the computer; and from the standpairit

of the maintenance personnel 1 fo-l' whom an easily understood

machine is usually an easily repaired machine .

The OS TIC should be an e;'l(.tre mely reliable computer, both

because a large amount of time (and money) will probably not be

available to make constant repairs, and because some of the areas

of greatest benefit will be those in which the computer is used as

a means of testing and monitoring the performance of other

equipment .

The final design criterion ~orces the de-sigher to make so­

called "engineering decisions". 1 This is the requirement that

the computer be practical; in other ,words, the OSTIC should

be not only usable, but useful. It was noted that the uses for this

machine· ·would be primarily in the areas of demonstration, test,

and system investigation. These applications necessitate a flex­

ible computer, with perhaps a limited arithmetic command list,

but with an extremely flexible list of testing and data-handling

commands. Implicit also is a rather large console, with many

operating options. In order to justify the effort that has been and

will be put into the design and construction of this computer, a

machine of maximum usefulness must be the constant goal.

CHAPTER II

THE OVERALL SYSTEM ORGANIZATION OF THE OSTtC

Thi s chapter presents a discussion of the overall syste m

organization developed using the criteria presented in the pre­

ceding chapter. The basic tenets set forth in this .chapter are t he

foundations upon which the .remainder of the <k..s..ign rests .

Because of the requirements of component economy, sim­

plicity, and reliability, the binary m,1mber system was select­

ed for use in the OSTIC. Practically every text on digital com­

puters presents 11r1ateclal on the choice of a number system

(1, 2, 3, 4) ; it will suffice to state here that this computer would

be much more expensive and complicated if built as coded­

decimal machine, and further, that the use of a binary computer

in digital instructional courses is not a dt.sa:dwantage to the

student, since many computers in the "real world" are natural

binary machines.

A second fundamental decision was that the OSTIC ,should

b e a parallel machine. "Parallel", as used here, means that

the binary digits, or bits, of a given computer word ar e always

transmitted and operated upon simultaneously. It was decided

that the bits of any given word would be stored in parallel on the

magnetic drum, that they weuld be read off of the drum in par­

allel, and that they would be moved about within the mac hine in

parallel:. The primary consideration in selectirg;parallel oper -

ation was that the OSTIC was to be used for slow speed or step ­

by - step d e monstration in the c1las s room; it wa s fe lt that a p a rall ­

el compute r would b e mor e r e adily un d erstood by the s t u d ents

than would a serial machine. Also, a parallel compute r can b e

6

7

organized and built in a more straight-forward manner; if a separate

wire is assigned to each bit, the circuit designer has fewer problems.

Finally, it should be noted that most authors agree that a serial machine

uses fewer ::components (1, 4); in this case, the economy consideration

was compromised somewhat for the sake of overall design simpli city.

The next problem was to select the method of instruction sequencing.

Four-address, three-address, two-address, one-plus-one address,
. 1

and single-address computers have been built , and each system has

its advantages. The system chosen for the OSTIC was the single­

address system, whereby the instruction word specifies the operation

to be performed and (normally) the location of the operand. A

special counter, called (in the OS TIC) the 11Instruction Counter" ,

keeps track of the location of the next instruction. The Instruction

Counter is incremented at some time during the execution of each

instruction, and it is presumed that the next instruction will always

be placed (by the programmer) at the memory location correspond­

ing to the contents of the Instruction Counter. Again, the single- -

address system was chosen for reasons of economy and simplicity

of design; it is not an f!xaggeration to observe that a three-or four­

address machine is a programmer's dream and a designer's night-

mare .

Having decided upon parallel binary operation, using a magnetic

drum memory for storage of both data and. single-address instructions,

1·
Some examples of computers using the various types -of address

structure are:

Three-address , Univac File Computer
Two-address IBM 3'05 (RAMAC)
One-plus-one address IBM 650
Single-address IBM 704, 709, 7090

8

the rest of the functional units of the OSTIC may be specified. It

was decided to use a double-length, doubly-addressable accumulator,

and to refer to the two halves as the "UPPER" (high-order) and "LOWER"

(low -order) ACCUMULATORS. A word distributor, or "D-REGISTER"

was chosen for temporary storage of operands and to perform miscella­

neous tasks . A register -~b store the current instruction is implicit

in a digital computer; in the OSTIC this is called the "INSTRUCTION

REGISTER" , and may ; pe further described as a combination of

an "OPERATION REGISTER" and an "ADDRESS REGISTER" . The

INSTRUCTION COUNTER has been previously mentioned; it would

pperate in ,conjunction with an "INCREMENT REGISTER" that would

perform operations associated with incrementing the INSTRUCTION

COUNTER.

In addition to the units mentioned above, an '.'AUXILIARY COUNT­

ER" wa'..fi found .to be necessary for certain operations. The possibil­

ity exists (although somewhat remote) that indexing registers might

be added to the OSTIC;therefore, they should be included as func­

tional units. It should be noted that the input/6utpµt equipment

(except for the console) is not considered, since its characteristics

do not enter into the internal organization.

Logical Piagram number 1 (Figure 1) presents the functional

units of the OSTIC ·, and the manner in which they are tied together

for data transmission purposes. The common point is the 11DATA

CHANNEL" , a group of bit lines that handle all data transmission

between the drum and any register, between registers, and betvqeeh

input/output units and the memory. Both data words and instruction

words pass over the DATA CHANNEL. The cycle impulses, togeth-

er with the output of the OPERATION DECODER, ADDRESS DECODER,

or address comparison circuits (none of which are shown on Logical

Diagram number 1) , caus e the output lines of a given unit to b e

INPUT /OUT PUT UNITS INPUT / O UTPUT U N I TS

ON-LINE

PRINTER

Indu1ng

Re131STt.,.~

!"<
L _

Req 1s-re..-

In-s,.,....,,1",on
CounTl!.r

Ins,r-ucr,on Reg.
Op . Re9 .JAdclr-. Re9

I I

.,.

·o
REGISTER

rl ·- - - - - - - ·- - - - - - _, _!l~I~ I~ L_A~S

.....

DaTct

/

0

Cho.hrie I h>{o

0 0 0 O

I h STrvc. ·non·
CounTer

/ \ /

'
Index,n':!

0 0 :~ I _Q O O V
0 IJ I nc rt.Me.n"T R~.

/)4(.. ,, " ') L.(')) ' .I' : o · . . o · .' o - · o: ' ' • • • • I ~ '

0 0 O

~-Avir 1T1e,•.r'I

Coun.,.er
..,.

'
.,,

~ - 0
0 ~)

~ 0- ~ - o
;:,

.r nsT,.vc T• ori Re,. D Re ~ 15 Tc:..-

" ,I'

' '
(/ ./

' - -c_--- - ----
- · EnTrB Sw,Tchej

-cco-N-SOLE=.t

l nd 1cc:.. To~ L1<.3 hT.s

Figure 1. Logical Diagram number l, Dat a Channe l.

CARD
R EADE R

-+-

Upper
Acc umvlo. ro r

0 O 0 0

,?r~ ..
Acc uMv la -ror
/ ' ' '

0 0 0 0

/

' ' '

Lower
'Ac.c umvl~Tor

.,

/

/

'\.

/ /

/ / /

' '\ '

'
/

.,

0
):>
- \
)>

(')

I
"J>
z

' Z
I rn
r

_,

'°

10

gated onto the DATA CHANNEL. A moment later the input lines

of some other unit are gated from the DATA CHANNEL. After. the

transfer of data or an instruction has occurred, the DA TA CHANNEL

input gate is removed, and then the DATA CHANNEL output gate

is removed. The entire operation of this computer is based upon

the data channel concept, since the acquisition and execution of all

computer instructions involves basically little more than the gating

of the proper units onto and off of the data channel in some. pre -

determined sequence.

Upon examination of Logical Diagram number l, several other

design concepts be!tome apparent. One of the most important is

that since all of the operating units share the same DA TA CHANNEL,

it is not at all difficult to make all of them addressable in the program.

This concept is relatively new in computer design (5, 6), and while

simplifying the construction of the machine, it vastly increases the

flexibility of programming.

It wil;l; b:e noted al!'iO .that::each unit communicates directly with

the computer console, rather than indirectly through the DATA CHAN­

NEL . While this approach results in a rather imposing console

with many indicator lights and switches, it is felt that enabling the

student to read the contents of all units simultaneously. would be

invaluable for classroom demonstration. The ability to enter data

into any register by merely setting the data word in a row of toggle

switches and pushing an "enter" button has advantages in ease of

operation.

The "REAO..ONLY MEMORY, as shown on Logical Diagram

number 1, · is simply a number of rows of toggle switches mounted

in one section of the console. Each row would correspond to one

word of memory and would be addressable for read-out in the same

manner as the drum memory.

Finally, it should be pointed out that the various types of in-

11

· put output units in Logical D.iagram number 1 are shown for illustra­

tion only .. It.is presumed, however, that these units or their buffers
I " . .

will communic~te with .the DA TA 'CHANNEL.

The remainder of this paper will describe the method of control­

ling the operation of the various units.
'

CHAPTER III

MEMORY AND TIMING

As is true with most digital comp~ters using a rotating mag -

netic drum for the main memory, timing in the OSTIC is a func­

tion of the angular position of the drum. The drum in the OSTIC

rotates at a nominal 3450 rpm (one revolution equals appro~imate­

ly 17. 4 millis~conds). It is 7 1/2 inches in diameter ;by 10 inche.s 'in

length. One.hundred-twenty-eight readfjJrite heads ~re located

aro-und the drum, and a permanently machined timing .track p:i;-o-
,' I

viding 2560 timing pulses per drum revolution (one timing pulse

every 6. 8 microseconds) is located at one end.

Since it was decided to read data onto and off of the drum in

parallel, words could be .located as des'.ired. Accordingly, the

2560 timing pulses available were divided among 512 word _times,

providing five timing pulses per word (see Figure 2t. One

word time in the OS TIC is then equal to approximately 34. 0 ,, ;

microseconds. A "home" pulse will be provided on a separate

timing track, and "address" tracks will be permanently recorded

with the binary word addresses 000 000 000 to 111 111 111, which

is equivalent to words 000 to 777g, or to words 000 to 51210

(note that the choice of 512 word times per revolution provides con-
. 9

venient addressing, since 2 ;:; 51210) . Word location 0008 will

immedia.~ely follow the home pulse in angular position, and loca­

tion 777g will immediately precede it. The five timing pulses

for the ith word time will be denoted by TfO, Til, Ti 2, Tt3, and

Ti4' or more gen~rally (where the particular word time is unimpor­

tant) as O time, 1 time, 2 time, 3 time, and 4.time. This timing

convention will be used throughout the remainder of this paper .

. ;12

13

THE MAGNETIC DRUM

&v,d Ho..,,e

-----~--r··'
\,JORD STRUC.TURE

BINAR'(I o I I I I 0 I 0 000 I I 00 I

~ w PAR ITV
BIT

OCTAL 5 7 2 0 6 3
Sa.ncl No. Wotcl Ad,l. t s.

OPERATION DATA ADORE'SS l!J
IN $TRUCTION F'ORMAT

---32.51-4~ ----
WO RD TtMr IO~C> TtMi

4- 0 2 4 0 2

TIMING PUL..5ES

$U6GESTE.D B~ND Al)DRE5.SE5

Bo.l'ld nv""' ber Use.

0 Rc, 1!.Te.1 1 Rt.a.d-•·'~ J\,\t""'' ' ~

I Ba.nd I
2 Ban ol 2
3 Ba.,., d 3
4- B,..,.,d +
'5 6a..n d s
(p BCl."d 6
7 J t'lf>V'r / Ou, pv-r E 1>'" P"'· O'\T

Figure 2. Memory, Timing, and Words.

14

The timing pulses, home pulse, and address pulses :will be _read

by read/write heads that have had their write circuits disabl_ed.

The pulses will go into a "CLOCK REGISTER" that will provide the

various pulses and gates needed by the rest of the machine, as well
'

as providing a constant check :on the timing and address pulses to

see that they occur in the propel'. order.

To reduce timirig problems, the address pulses of word Ti .
'.

will be permanently ; recorded in such a manner .that they will be

available fore&clff:n;g at Ti 1 time. The bits of word Ti itself

will be written onto and read off.of the drum at T.3 time. Chap-. l

ter 5 relates .the use of addreSf:l pulses in reading from and writing

onto the drum.

It was decided to use a waiui length of 18 bits in the OSTIC,:

together with a sign bit and a parity bit. The sign bit is transmit­

ted with the word bits, but is not considered an integral pa11t of

the word for purposes of shifting and multiplication. The parity

bit is used only in conjun~tion with drum storage; it is generated

by the ''PARITY REGISTER" on a "drum write'' (store) operat!on,

ancl is checked by the PARITY REGISTER on a "drum read"

operation. The parity mode is "even parity", as is used by most

parity-check devices; the total number of bits in a word, including

sign and parity bit,· is always supposed to be an even nutp.b_er.

The use of an 18 bit word for both data and instructions bdngs

up the question of instruction format and addressing. It was st,:\.ted

previously ;that there were 512 word times· during one revolution of

the dr:um. In order to represent 512 separate addresses in binary
. . 9 .

form, 9 bits must be used (2 ii. 512). However; it would be desira-

ble to have more .than .512 memory locations; in fact, if a total of

twenty'bits are recorded on the drum for each w~rd (18 word bits,

1 sign bit, 1 parity bit), a.to.tal of 20 read/write heads are all that

are necessary to store 512 words, while some 128 rea9/write heads

15

are available. A further consideration is that since bima.ry notation

is somewhat unwieldly for everyday use, it would be very desira­

.ble if programming of the computer could be done in oct~l (base 8)

notation. Octal requires 3 binary bits for each octal digit; there­

fore, binary addresses must be in multiples of 3 bits if they are

to be represented in octal form.

In view of th~se c~nsiderations, it was decided. to use 12 bits

of the instruction wo.rd for the data .address, and the remaining six

bits for the operation code. This resulted in a 6 octal digit instruc­

tion (see Figure 2) the first two digits of which were the operation

code, and the last four were the address. Further, the address.

may be. di.viced into a "band address" for the first octal digit (first

three bits) and a "word address" for the last three octal digits (last

nine bits)~ The drum memory thus was planned to have six bands of

512 words each, for a maximum (if all are used) of 3072 words of

drum memory.

In addition, it is proposed that OSTIC be provided with either

·sixteen or thirty-two words (a power of two would present fewer

problems in the address circuits) of "read-only" memory Jn the

form of switches on the control console. These memory words

will be addressable only on read operations; the binary system in

the computer will allow the use of relatively. inexpe:p.sive single..;

pole double-throw toggle switches. . The availability of a fairly

1arge, quickly altered read-only memory would be invalua_b!e for

demonstrations and test programs.

It will be noted that since band numbers O and 7 are not used for

drum addresses. there are 512 addresses of the form OXXX_g and

and 512 .addresses of the form 7XXXg also available. It is intend­

ed therefore·, th.at the OXXX addresses be reserved for internal

ma.chine use (register addresses, read-only memory, etc.) ,

while the. 7XXX addresses be reserved for inpu,t/output equipment.

16

It is intended that band addresses I through 6 be reserved for drum

addresses, even though not all six bands are u·sed at first.

The use of two octal digits for operation codes results in a poss­

ible command list of 6410 operation codes, ranging from 00 to 778 .

If the sign of an operation were also taken into consideration, a

.total of 1Z8fo operation codes could be used. This, however, is

not recommended. Further discus.sion ofthis point will be found
·u.

in Chapter io.
To sum?llarize·briefly, t~ drum memory is divi<led into six

bands, numbered from one fo six.· Each ba:p.d contains.512 words,
' .

numbered from QOO to 777~. Each word has eighteen bits , one

sign bit, and (on the drum only) one parity bit, for a total of tw.·enty

bits. The instruction word uses the first two oct_al digits of the

word £pr the operation code, and the last four for the address. The
I

addres~Ji; .broken down into a one digit band number (or ·band ad•

dress)' and a three digit. word address.

Internally, the machine uses five timing pulses per word time,

called (for· the ith jword) Ti 0, T il, 'TiZ, Ti 3, and Ti 4. Where the·

particular word is of no importance, 0 time,-1 time, Z time, 3

time, and 4 time will be used. The iwCtxd address as correspond­

ing_to the addresses of the words in each band are recorded on spe­

cial address tracks; these are available at 1 time, while the conten,ts

of the word itself are available at 3 time.

CHAPTER IV

CYCLES. AND CONTROL

Almost every digital computer must perform, internally or

externally, two basic functions. One<of these is to ~cquire, by

some means, the next instruction to .be executed. The other is

to execut~ that instruction.

No matter how simple_ or how complex: the .individual instruc -

tion, the com~uter pe:rforms its operations in this manner. ·It.

has be~n.said that a digital computer is perhaps the most complex

form of sequential machine, since at the start of a p.rogram the

instructions and data stored internally will (if no input is- assumed

to occur during the program) de.termine the state of the ma.chine at

any later; time until the ·program is completed.
I . . .

Thus, the computer steps through a program, finding .an in­

struction,. executing it, finding the next instruction, executing

. it, etc. The time consumed in acquiring the next ins*'1ucti<:>n in

the OSTIQ will .be calle~ t_he'~1iri:$truction cycle", and the time

consumed in executing.that instruction will be ca11ed the "data

; cycle"' althotigh data inay not always b~ transferred on all da,~a

\cycles.

The i:~rm 11cycle"should be further defined, since a tnisconcep-
. .

t~on: could ·~aeiily result from it.s indiscriminate use .. As µsed hete,
. - . ' .

a T!~ycle'i .~$ one ot mc{:r:e whole wo:rd times, a word ·tim~:being

~tnside~~d to run-;rom the leadi~g edge of one O time pulse to .the

leading edge of the next O time pulse. ~ cycle may sometimes

consist of only one word.time, as, for example, the time required

to acq':1ire the ne:x;t instruction from the D-register (see Chapter

5). or';_it may require mctny word times, as, for example, in the
',1
i

17

18·

case of acquiring a multiplicand from drum storage, then. multi­

plying it by a multiplier in the upper accumulator. However, one

rule is steadfast; in':the OSTIC, a cycle is always composed of an

integral number of whole word times.

The method of execution of the various operations in this

computer will be illustrated by Logical Diagrams, using special

graphical symbols. The reader is referred to Appendix A for

an explanation of the symbols µsed.

It is planned that the selection of the appropriate cycle (data

or instruction) will be performed by a "CYCLE SELECTION

FLIP-FLOP" (bistable multivibrator) as shown on Logical Dia­

gram number 2 (Figure 3). When one side of this flip-flop is

conducting, the computer will be in the data cycle mode; when

the other side is conducting, the ma.chine will be in the instruction

cycle mode.

The general operation of cycle selection is also illustrated

in Logical Diagram No. 2. Briefly, the CYCLE SELECTION

FLIP··FLOP is set to one mode or the other by a ·"CYCLE TURN­

ON".pulse at O time. The CYCLE-TURN ON pulse (a very sharp

pulse 'of short duration) is allowed to set the CYCLE SELECTION

FLIP-FLOP only when a "CYCLE END" impulse has turned on

one of the two "CYCLE END latches" during .the prev~ous word

time.

A detailed description of the operation will now be presented,

using the timing chart on Logical Diagram No. 2. lle~ding from

left to right, it is seen that the CYCLE SELECTION FLIP-FLOP

is assumed to .be set for data ,cycles, resulting in the DATA CYCLE

MASTER gate being on at the start of the time interval under·

consideration. A "DATA CYCLE END" impulse is then assumed

(upper left corn.er of diagram, reading downward). Although this

MASTEi~ CYCLE. CONTROL 19

MOI., Oc;c;ur

An~ Time.
li l(C~P•. 0

TUl"'l"I

on Doi,t:t
C LI c.le..

,.J

Enol

~nd
· Loc.Tch
T,.,.-., eel
OF-~ !,~
l"C"(' ,

':t··

No.-e: This 1091c.
show,.. o"' lo91ca.l
01Q.r:, tr'«.-s 110. 3 ,
r h s,rv (-ritJ',t C'Jde.

('1nol no.4, 1)0.T(.t

I

L - .- -

!:°LIP­
FI..O P

ol$o

":,t.s

Ma':) o, ..
0.J'l'i ,., e..

Tu l"n
on InsT.

C~cle..
End

-rh

-

lcnc:.h
T..,,,..,,u,I

- -

(Ve.-., F,,) OCilT01. Ctjc.lC

OH· I,':,

.o~ Tt;I

IN~T

I

C~c.le-..2.r Tuw-.,-c,., ..;e. pu lsu
I I

..• D.o.TQI.. ,c;'J c.le._,_E.nd~ .t~p"l•c. .

I

--~----·-·-···
0

I

---1
I

_J

I I I .

\ .

---- 1,Qa.1q.. c':4·1· :---------·--·--------f--. .c. ____ .. - . - ------··· ... -- ------··
. · E" ..I I."·" , h . I .,. _ _, . . ---- - t--- r rwr h . .o.:r.,o .. _c 'i ~ __ i;._n_g __ t-.iu,.k.~----

-- _ -------1 r ... u\~.u.~_,,_ __ , _e..!A __ E.t.1.d _ _J.Ol,.,'l'&.h.. --·-·

Figure 3. Logical Diagram number 2, Master Cycle Control. ·

20

pulse began at O time, it was inhibited by the CYCLE TURN--

ON pulse. At n time, however, the CYCLE TURN-ON pulse is

not present, while the DA TA CYCLE MASTER gate is on, so .the

DATA CYCLE END pulse turns on the "DATA.CYCLE END.latch".

This latch is simply a resettable flip-flop.

l\t O time of the next word time, since the DATA CYCLE END

latch is on, the CYCLE TURN ..:oN puise is able to set \the CYCLE

SELECTION FLIP FLOP to INSTRUCTION CYCLE. The INSTRUC­

TION .CYCLE MASTE:R,gate, turning on, causes the DA TA CYCLE

END latch to be reset, or turned off.

Sometime between O and 4 time of the instruction cycl~ , an

INSTRUCTlON CYCLE END pulse occurs. Since the CYCLE

TURN-ON pulse is not present to inhibit it, and the INSTRUCTION

CYCLE MASTER gate is present,. the INSTRUCTION CYCLE END.

irppulse turns on the INSTRUCTION CYCLE END latch. At 0

time of the following word time, the CYCLE TURN ON pulse is

gated by the AND circuit from the INSTRUCTION CYCLE END

latch to set the CYCLE SELECTION FLIP .. FLOP to data cycle.

The DATA CYCLE MASTER gate, turning on, resets the INSTRUC­

fTION CYCLE END latch to the off position,

The salient points are that there exists either a .t>ATA CYCLE

MASTER gate ~ an INSTRUCTION CYCLE MASTER gate at all

times; that these gates remain on until set t6 turn off by CYCLE

END impulses; that the turn-off or END impulses may occur at

1, 2., 3, or 4 time for data cycles, or at 1, 2, . or 3 time for

instruction cycles; and that the MASTER GATES are always on

from O time of one word time to O time of a later word time or,

in otq.er words, that Jhe MASTER GATES are always on for inte.­

gral multiples of word times.

Logic~! fiagram number 3 (Figure 4) ,'· Instruc:tron Cycle

Control, will now be examined. It will be noted that the'INSTRUC-

INSTRUCT.ION CYCLE CONTROL

WORO
TIME

0

Se,-
C':lcle.

Se. lec-r,
Flip-Fl..,.
To Do.-ro.

Turn On
!n$Tr11CTIO

C~Gle.
End

LctTCh

s lnsT.
Cyde. E:l"\d

l..a.TCh On~

Loe:," ab o ... · Ga. Tt.

Shovvn ""' 01..lTf)UT

I., o, I Cll I O !=-
1) 1()1 '""'"' no, 2, Opert:tT10
MasTer l':fclc Dec.ode

.__....,.,,..,,.__, ·conT••I

2 '3 4- o 2 3 4-

In Tr

!nc~,.,.enT
Reg Is ,e.r

2 3. 4 0

I
1,

. C'jc.lc.; ______ . Tu,..,, - 01i ----~------

. ____ j;_n_s.. r.._,,.., C.1j-d£. ___ E .. ~- -- - - I

21

.l..io.1 :r. ~., t.,. .o .,_ ______ Co."-,"''"'!: .:i.~,,.~.-~.e-~.r. __ ... -.-···-··· ------1 -------·- --·-- ..

Figure 4. Logical Diagram numb• r 3, Instruction Cycle Control.

22

. TIQN CYCLE MAS'TER gate, CYCLE TURN-QN pulse, and

INSTRUCTION CYCLE END latch are repeated from the previous

diagram.·

Referring to the diagram and timing chart, it will be noted

that as long as the INSTRUCTION CYCLE MASTER gate is on,

tht\ WORD2TIME pulse is gated by an AND circuit to provide

an.INSTRUCTION CYPLE gate .for the rest of the machine. In

other words, the INSTRUCTION CYCLE MASTER gate doe"B·

not itself provide instruction cycles• to .the rest of the computer;

rather, it controls another impulse to provide this function.

Als6 note that whenever the INSTRUCTION CYpLE END. latch

has been turned on by an INSTRUCTION CYCLE END impulse,

the WORD TIME pulse is inhibited by the CYCLE J::URN-ON .

pulse'. This is to p:tevent signal race problems caused by a lag

in the turning off of the INSTRUCTION CYCLE MASTER gate (7}.

The : only other item requiii-4ing explanation on Logical

Diagram No. 3 is the 1procedure for incrementingthe INSTRUC'~ ·

TION COUNTER. If was mentioned. previously that the location

of the next instruction will always be found in this counter; therep

· fore, after an instruction is acquired on an · instr.tiction cycle,

the INSTRUCTION COUNTER should be incremented so that it

will contain the address of the next instruction. Note that

nothing has yet been said coneerning the size of this increment.

Most, if not all, single address computers are constructed so as

to take the next instruction from the location immediately fol­

lowing the last instruction. For example, an instruction might

be stored in location 2301, the next instruction in 2302, the

next in 2303, and so on. This.:would imply an increment of one.

It is proposed that the OSTlC be equipped to increment the

INSTRUCTION COUNTER by 1, 2, 4, 810, 1610, 3210' 6410•

or 128 10 . · Since the OSTIC' s instruction counter is a binary

23

device, this method of variab1e incrementation is seen to ,be

merely a matter of adding a l into the first, second, third,

fourth, fifth, sixth, seventh, or eighth position,of the twelve­

position binary counter. It can .be shown that this relatively

simple device will greatly increase the operating speed of the

computer (see Chapter 11).

The desired increment is placed in the INCREMENT

REGISTE;R some time beforehand (see Chapter 9 for details),
. .

and thus the problem here is simply to provide an .IN'CREMENT

pulse to the INCREMENT REGISTER at the proper time. This

pulse will be gated by the INCREMENT REGISTER into the

proper position of the INSTRUCTION COUNTER. IncremeI1ting

is accomplished by the INSTRUCTION COUNTER INCREMENT

pulse, oc~urring at 4 time, which is gated by the INSTRUCTION

CYCLE MASTER gate.· If the INSTRUCTION CYCLE END latch

is on, an AND circuit will aUow the INCREMENT pulse to eI1ter

the INCREMENT REGISTER. It will be noted that the only time

the INSTRUCTION COUNTER can be incremented is at 4 fime

of the last word time of an instruction cycle; this must be so,

because during any other part of the instt'uction cycle the machine

will be using the contents of the INSTRUCTION CbUNTER in ,

seeking the next instruction. This also explain~ why INSTRUC':

TION CYCLE END pulses must occur prior to 4 time.

Logical Diagram No. 4 (Figure 5) illustrates the logic

used on data cycles. This logic is necessarily more comple~

than the instruction cycle logic, because while essentially the

only,operation performed by the computer on the instruction

cycle is to search for and acquire the next instruction, data

cycles involve the testing, adding, shifting, and so on,necessary

to carry out the instructions, In general, the data cycle is

broken up into one, two', or three sub-cycles (each of which may

.J

DATA CYCLE

_./

I

CONTROL

Rese.T
CounTe."

To

ON

Turn
On

Oa:ra.
C'jc. le

l=nd L..a-rc

. Sn C~t.
No-r.r.: A .5~ IH.,...,

Por-r,.,., • F, Th;& F"l1p-Fli,
lo9ic IS C1l5o To

show.., c;., 1'1o.$Ter lns1r11, ·
C!jclo. Co.,-rr•f,
t..0'3" .. , o, .. ~ no, 2

Figure 5. Logical Diagram number 4, Data Cycle Control.

ZS

be one or many word times in length). These sub-cycles are

called ·11DATA FIRST CYCLE", "DATA SECOND CYCLE", and . .

"DATA THIRD,CYCLE". Whenever.the ·c.9mputer gpes from

instruction cycle operation to data cycle operation, the fir st

word time of the data cycle is always a DATA FIRST CYC.L~.

If an impulse is received during that word time to tturn on.a

DA TA SECOND CY(l;LE, the next word time will be .a DA TA ., ·. ·.

SECOND,CYCLE; if no such impulse is received, the machine

will remain in DA TA FIRST CYCLE operation until either a

TUR*ON DA TA THIRD CYCLE or a DATA CYCLE END im·pulse

is received. If the machine is in DA TA '.THIR~ i::~CI:.E operation,

tl}e a.nly;:itnpulae that will bring about ·a change is a DATA CYCLE

END impulse. The computer can never go from DATA THIRD

CYCLE back to DATA FIRST CYGL_E or DATA SECOND,CYCLE

nor can it go from DA TA SECOND CYCLE to DA TA FIRST

CYCLE. In other words,. the opercttion always starts with

DATA FIRST CYCLE and proceeds (when so directed by "TURN­

ONn impulses) to DATA SECOND CYCLE:t and thence to DATA

THIRD-CYCLE. 1The data cycle may be ended at the end of any

word time by a DATA CYCLE END impulse at any time (other

than O time) of that word time, regardless of the occurrence of

a TURN-'ON impulse at any time during that word ti:me. In

other words,. DA TA CYCLE-·END takes precedence ov~r a TURN·

ON impulse.
' The operation of the data cycle control will be illustrated

using the timing chart and Logical Diagram number 4 (Figure 5)°.

It is assumed that an instruction cycle precedes the data cycle.

The instruction cycle ends at O time, and the DATA GYCL&'

MASTER gate turns on. The DATA CYCLE RING COUNTER

has been previously reset to first cycle, and the STEP ANTIC­

IPATION latch has been reset. Thus, as soon as the DATA

:CYCLE MASTER gate is available, i_t gates the WORD TIME

,pulse to the first cycle AND circuit. Since the DATA CY.OLE

RING-COUNTER is set to first cycle, the WORD TIME, pulse

26

is available to the rest of the machine as a DA TA FIRST CYCLE

pulse. The DATA FIRST CYCLE pulses are available for three

word times. During the third word time, a TURN-ON ·DA. TA

SECOND-CYCLE impulse is received. Since the DATA CYCLE

MASTER gate is on, the first cycle stage of the DATA CYCLE

RING COUNTER ·'is on , and ooth the second and third stages

are off-;_ the TUR,N-ON pulse sets the STEP ANTIC~PATION

latch. At O time of the next word time, the CYCLE '!['URN-ON

puls·e is available through an AND gate controlled by the DA TA

CYCLE MASTER gate. The CYCLE TURN ON pulse tests the

setting of STEP ANTIC~PATION latch by means of an AND . . .

c.ircuit. :If the STEP ANTICIPATION latch'is set, the CYCLE

TURN Ol'f pulse momentarily inhibits the output of th'3 WORD

TIME pulses until the DA TA CYCLE RING COUNTER can

advance:, and also resets the STEP ANTICIPATION latch. WORD

TIME pulse's are. then available from the DA TA SECOND CYCLE

output.

The .timing chart shows the DATA SECOND CYCLi: pulse's

as being :available for two word times. During the se·cond

word time, a TURN-ON DATA THIRD CYCLE impulse is re­

ceived, which ·{since first ?1,-nd third cycles are off, and second

cycle is on) turns on the STEJ? ANTICIPATION latch. Later,

during the ~e word time, a DATA CYCLE END impulse is

received .{this pulse sequence can occur on accumulattG>r add-in
.·•·

operations, among others; s·~e Chapter 6). The DAT~ CYCLE

END impulse turns on the DATA CYCLE END latch. At O time

of the next word time, the CYCLE TURN'."0,N pulse is prevented

27

by the DA TA CYCLE END latch from advancing the RING

COUNTER. Instead, the CYCLE TURN-ON pulse re·sets the

RING COUNTER to first cycle, resets the STEP ANTICIPATION

latch, inhibits the WORD TIME pulse (to prevent signal race

problems), and sets the CYCLE SELEG TION FLIP-FLOP to

data cycle (see, also, Logical Diagram number 2).

Two w1ord times of instruction cycle are then shown on the

timing chart. Following that come two word times of DA TA

FIRST CYCLE pulses, followed by one word time of DATA

~-,ECOND CYCLE. During this word time a TURN-ON DATA

THIRD CYCLE is received, as before. Since no DA TA CYCLE

END pulse is received, however, the CYCLE TURN-ON pulse

can then step the RING COUNTER to third cycle and .reset the
..

STEP ANTICIPATION latch. Two word times of DA TA THIRD

CYCLE follow, during the second of which a DA TA CYCLE END

impulse sets the DA TA CYCLE END latch. The operation of

resetting the various latches and changing to the instruction

cycle proceeds as before.

It is important to remember that a data cycle may consist

of a DA.TA FIRST CYCLE>; DA TA SECOND CYCLE, and DA TA

THIRD CYCLE. These cycles may consist of one or more word

times, and are changed by TURN-ON DATA SECOND CYCLE or

TURN-ON DATA THIRD CYCLE impulses. The first cycle taken

after the machine goes into data cycle operation is the DA TA

FIRST CYCLE. If a DATA CYCLE END impulse occurs, data

cycle operation ceases at the end of that word time, regardless

of any TURN-ON pulses.

CHAPTER V

DA,;::TA A'CQU!SI'.I'IQN.ANI>: TR.J:\NS~ISSION

Having developed the logic of providing controJ cycles for
. ·.·. . I '

the :computer, attention will now be.directed toward the matters
. .

of acquiring.data and inst.~uctions for immediate use, and ~taring

data for future use.

Basically, the computer acquires ·a word ·for o~e of two

purposes; either on a data cycle for use in arithmetic operations,

in which ca'se the word would be called an·~1operand", or on an.

instruction cycle, ·:j:n;whicb case the word would be used as. the

next instruction. Various miscellaneous transfers of words or

portions of words!may be made .during the execution of certain

instructions~ but th~se will be of no concern in this chapter.

The computer· may acquire a word from either the magnetic

drum, which ~ill :be called a "drum read" operation, or from

an internal registe~, :Which will be called a "non-drum read"

operation~ Storage of words onto the magnetic dmm will be

termed a fldrum write'' operation, and may occur only during

a data cycle (storage occurring duririg input operations is not

considered here; see Chapter 10).

Drum Read operation is illustrated on 'Logical Diagram
; . .

number 5 (Figure 6), and its associated timing c~art. The
,·

basic operation is simply that the contents of som:e .drum .

address is desired. The address is sought, and, when found,

the bits in .. that loc4tion are read onto the· DA TA CHANNEL

• , and thence into the ~ppropriate register.

Read operations· during a data cycle will only occur on

D:ATA FIRST CYC0LES. The presence of the OPERAND gate

28

Is
Opercir,J
Gene On ?

.rs

ConTenTs

DRUM RE.AD
Att""'' t.1., I .,.;,..'-

Address
Pulses

0 r:, l n ST r\le T I On ~iE--~11.4al,,,....tl.J0....::;,.s::;::l~IOO:l.tlLC,l~[m@, ~ '

Couri '1"er

Co,,,-e,.,-rs
,oF- Addr-c.bs

-Reg,• Te.r

Is
Loa.d D
Lo..,-eh On?

Tur.n Oti

Dena. Sec.ond
C!lc. le

ltt1puh!
Da. Ta.

C~c.le End

Turn$ lff
Q't O '1'\Mt.

Cha.11 ... el

Rego~Tu·

Rea.d- 1n

rorn Oa..T ..
Cho.Me I

lrnp~ lse
InsTrvc.T1on
C'::lc..le. li"nd

1----""""'1--"'-~-"'--_.._ __ ---,f"---- ----- .. , .. --------------------(

/.I.I) llll.J,.J!.!,.!.•L .. - t•\ -JI . --- . -------:::::rAftli ~V:;:jp -- _ p~&~\-... : . 1 -----------------------
1 A l<t 1---~t~·--~. ~-l_c_ ___ _

-- ------------:-------- - \Si-r,,..._..,.T,.__...,_,...:..,.._...,.=i,......,......,o ... __ ""t'<""''-~'-9--

·---------

-- --------------------! .. _____ ------~------------- -r A 1r.r OA-r,. ~ "'c ... o ___________ _

1--------~N1r"-~!.t.-EbLL_ ____ _ ____________ ------ ______))6.,'1..L.J..l'.Ut..£1.1.0

NO

29

D
A
T
A

C
H
A
N
N
E
L

· Turn On
Pa. r ,.,.':1
E.r..-o.- LCllTc.h

Figure 6. Logical Diagram number 5, Drum Read.

(from the OPERATION DECODER) signals that it is desired to

read the contents of some storage location (or register) into,

30

the D-REGISTER. Read operations during an instruction cycle

will be signaled simply by the presence of an INSTRUCTION

CYCLE gate (since the only purpose of an instruction cycle is

to acquire the next instruction). The contents of the desired

storage location (or register) will be read into the INSTRUCTION

REGISTER.

The ADDRESS pulses are available from the read heads at

approximately 1 time, and are compared against the contents

of the INSTRUCTION COUNTER (on instruction cycles) or

against the contents of the ADDRESS REGISTER (on data cycles).

If an equal comparison is detected, the contents of the word are

read onto the DATA CHANNEL when the bit pulses are available

from the read heads at 3 time, and are read in from the DATA

CHANNEL into the appropriate register.

Using the timing chart at the bottom of Logical Di.a.gram

number 5, it is seen that at the beginning of the interval the

INSTRUCTION CYCLE gate is assumed to be on. At 0-1-2

time the ADDRESS TEST pulse is gated by the INSTRUCTION

CYCLE gate to interrogate the band number of the address

contained in the INSTRUCTION COUNTER. If the band number

is in the range 1 through 6, the ADDRESS TEST pulse is allowed

to gate the ADDRESS pulses from the word address comparison

circuitry. These ADDRESS pulses are read from the address

track at approximately 1 time and, if the INSTRUCTION CYCLE

gate is on, are compared with the word address portion of the

INSTRUCTION COUNTER. If an unequal comparison occurs,

no output results, and the comparison is made again with the

ne:x:t set of ADDRESS pulses. If, as in the timing chart, an

equal comparison occurs, a 1 time pulse appears at the output

31

of the w~rd address comparison circuit. ·This pulse is gated

by the ADDRESS TEST pulse to turn on the EQUAL COMPARISON

latch. At z .. 3_4 time the READ IN pulse, gated by the ,INSTRUC-.

TION CYCLE gate, gates the INSTRUCTION REGISTEil to read

in from the DA TA CH,A.NNEL. At approximately 3 time _the

EQUAL COMP.A.RISON latch gates the bit pulses of the desired

word into the PARITY REGISTER and thence onto the DA TA

CHANNEL, from which they are read into the INSTRUCTION

REGISTER. The word is always read through thejPARITY

REGISTER onto the DATA.CHANNEL, and if the parity is in­

correct, the PARITY ERROR latch is turned on for future use.

At 3 time the CYCLE TEST pulse tests the circuit, and since

the INSTRUCTIO~ CYCLE gate and the EQUAL COMF>ARISON

latch are on, the CYCLE TEST :impulses INSTRUCTION CYCLE

END. The EQUAL COMPARISON latch, if on, is turned off at

0 time {not shown).

The next word time after an JNSTRUCTION CYCLE END :

impulse is automatically a DA TA FIRST CYCLE (see Chapter 4).

I£ the OPERAND gate is on, the DATA FIRST CYCLE impulse

allows the ADDRESS TEST pulse to test the band address of the

ADDRESS REGISTER and the ADDRESS pulses from the word

address track to be compared with the word address in _the

ADDRESS REGISTER. As is shown on the timing ,chart, several

word times (512 maximum) may pass before the equal co~parison

occurs. When it does occur, the ADDRESS TEST pulse prpvides

a gate allowing the equal comparison pulse to turn on the EQUAL

COMPARISON_ latch. At 2-3-4 time the READ-IN pulse is gated

by the DATA FIRST CYCLE-OPERAND gate to allow the D-REGIS_-_

TER to be read in from the DA TA CHANNEL, and at 3 time the

bit pulses of the desired word are gated by the EQUAL COMP.AR ..

ISON latch to pass through .the :P.ARIX.Y REGISTER, onto the

32

DATA CHANNEL, and into the D-REGISTER. Also at 3 time .the

CYCLE TEST pulse is gated by the DATA FIRST CYCLE ~PERAND

gate to test the circuit. If the LOAD D-REGISTER gate were on,

this would imply that the only operation desired was to read the

desired word .into the D-REGISTER, and as soon as this was

accomplished, OAT.A. CY.CLE END would .. be impulsed. It will

be noted that TU:RN•ON DATA.SECOND CYCLE is always.im­

pulsed at 3 time of the word time during .which the operand is

acquired,. and 'DA TA CYCLE END. is also impulsed if LOAD D

is on.

Non-drum read,Logical Diagram number 8<'(Figure 7),is

similar to drum read, except that the d.esired word is .located

somewhere other than on the magnetic drum. The operation is
'

exactly the same as far as the testing of the band numbers is

concerned. However, the presence of a() band number indicates

a non-drum location, and the operation proceeds somewhat

differently from that point.

Using the timing .chart on Logical Diagram number 6, it is

found that a data cycle is the first complete cycle shown. At

0 time the DATA FIRST CYCLE pulse is gated by the OPERAND
;

gate and allows .the ADDRESS TEST pulse to .test the band number

of the ADDRESS REGISTER. The NON-DRUM READ latch is

turned on at approximately O time (if a. 7 band number were de-

,· tected, the STORAGE SELECTION ERROR latch wquld also :be

turned on. The NON-DRUM READ latch, together with.the DATA

FIRST CYCLE OPERAND pulse, gates the contents of the ADDRESS

REd!STER in to the ADDRESS DECODER. The DATA FIRST

. GYCLE ... OPERAND gate also allows the READ-IN pulJe to gate

the D-REGISTER for read-in from the DATA CHANNEL c!:t 2-3-4

time. Meanwhile, the ADDRESS DECODER has selected the

desired register, and at 3 time a WRITE pulse reads the contents

NON.,.-DRUM READ

1s
Op•r-a..,d

Go<.Te. On?.

If bo.nd ••· •s 7,
T"r"' '" ,e,,.r,t •

vrn On
Non-Dru
Read

Lo.Tc.h

· '.h Non­
Drurn Re.oc.d

LC'tTGh o .. r
TUr"'S O a.-r
4 'T '

!s L.oQ.d
0 Re':)lf'T'H

Ga.-re. Ot1?

Turn On
5Torar..,c. Selec
,o"' li<rr-o, l-1J.Te~

INSTRIIGTION. t:'(C..LE 6 l''TE

Impulse.
Da:roz. C':1,;.le

E:nd

~VY-'?. 'On
Da.Ta. Suo.,,l

Cyc..le.

!Mpulse
Ins'T'r-ve.-r,o"

C1:jc.le. End

.,_ ____ .,.____ Al)DIU:SS. :r_e,,.,s,_,.T ___ _._ _________________ _

1------------~DRIIM .. HIIILO'f.l!.,._ -------

ReAll ••~ ·'-•T•

• I ~------- :.i;:Ns.:r1hn.l~.I\I -· C.'l"C.L e_J!iQ_ __________ .

\)I\TA (,'('G 'f fJ .

I>_,._ eye~.-
_____ ··---------··-· -··---· -·- -------"e_.111,..p...,.,. __________ _

a 3 + 0 I ~ 3 + 0 I a 1J 4
,, ..

Figure 7. "!-,ogical Diagram number 6, Non-Drum Read

33

34

of the desired register onto the DATA CHANNEL__.a..n.a.thence

into the D·REGISTER. Also at 3 time the CYCLE TEST pulse

interrogates the circuit through an AND gate from the DA TA

.FIRST CYCLE-OPERAND gate. TURN-ON DATASECOND.,CYCLE

is always impulsed, and if the LOAD D-REGISTER gate is on,

DATA CYCLE .END is impulsed. The NON-DRUM READ. lc!,tch

is reset at 4 time. Note. that only one word time is needed to

acquire a non-drum operand.

If the INSTRUCTION CYCLE ·gate is on, the ADDRESS TEST

pulse interrogates the band number of th~ INSTRUCTION COUNTER.

If the .band number is 0, the NON•DRUM READ.latch is turned

on and the .. c.ontents of the INSTRUCTION COUNTER gated into

the ADDRESS DECODER. 'The INSTRUCTION CYCLE gate

allows the REA.0:~N pulse to gate the INSTRUCTION REGISTER

to read in from the DATA CHANNEL at 2-3 .. 4time, and the

WRITE pulse, together with the ADDRESS DECODER (J)llfput,

reads out the proper register onto the :OATA .CHANNEL. · The

CYCLE TEST pulse passes through the INSTRUCTION CYCLE

gate and NON-DRUM READ latch gate to impulse INSTRUCTION

CYCLE END a.t 3 time, The NON~DRUM READ latch is reset

at 4 time to prevent transient outputs from the ADDRESS DE -

CODER caused by the INSTRUCTION COUNTER being incre­

mented at 4 time. Note that this seemingly innocuous Logical

Diagram implies that the contents of any register may be used

as either data or as the next instruction. This is a feature .that

is comparatively rare in computer design. (6).

· The }ast cla.s s of ope1"ations cover.ed, in this chapter will be

the "drum w 7ite" or "store 11 operatio~s, Logical Diagram number

7, (Figure 8). In .the OSTIC, a store operation will only occur

on a data cycle, and is only valid for a drum addr.ess. The
' .

operation will be illus~rated using a "store-upper accum_ulator 11

Is
STor-e GOI.Te ·)-14.C.:....-E:::.....i,;.._::;.

On?

Con Ten.Ts

oi:. Adc.lreu
Re.~1~-rer

Se, STora~

Se.lec.T1•"
l:,rr-or

Is
Upfer ~a..,-,

On?

ls
Lowe.- Gci.n

01">?

I Pt.TA

DRUl'1 \AIRITE
Arr•oll'"'"T•I:, I T(Me

• 8~PRiU , :r_1u.::r__.._._-4 ________ -----·--.-----
J:rw1p11 ls C.

0ClTOI. C~t:.le.
_____ ~-- _Al>..PRG'cH_.PV)..H$ l

E.l'leJ

Re91ner
Reci.d-In

f-rom
DQ.TQ.

Upp•" .
Accvmvla.T
Rea."4-ov-r

Lowe.r
Acc.vl'llvlo r
Rca.rJ-ooT

R1i131sTe'"
Recul-ou..-

TO DtllT/.11.

Ch~n~e.l

Figure 8. Logical Diagram number 7, Drum Write

35

.36

operation, in which the contents of the UPPER ACCUMULATOR

will be written onto the drum in the location specified by the

contents of the ADDRESS REGISTER, and simultaneously read

into the D,REGISTER.

The STORE gate allows a DATA FIRST CYCLE pulse to gate

the ADDRESS TEST pulse at 0-1-2 time. If the band number of

the ADDRESS REGISTER is on the drum, ;:the ADDRESS TEST

pulse provides a gate for EQUAL COMPARISON pulses. When

the ADDRESS pulses from the addr~ss track of the drum are

equal to the word address portion of the ADDRESS REGISTER,

the EQUAL COMPARISON pulse is gated by the ADDRESS TEST

pulse to turn on the EQUAL COMPARISON latch. The DATA

FIRST CYCLE-STORE pulse is gated by the UPPER gate to

read the contents of the UPPER ACCUMULATOR onto the DATA

CHANNE,L: At 2-3-4-time the READ-IN pulse is gated by the

DATA FIRST CYCLE-STORE to allow the contents of the DATA

CHANNEL·:to be read into the PARITY REGISTER, where the

proper parity bit is generated. At 3 time the WRITE pulse is

gated by the DATA FIRST CYCLE-STORE and .the EQUAL,COM

PARISON latch to write the PARITY REGISTER o~tput into the

desired drum location, and also by the UPPER gate (or LOWER,

if on) to read the contents of the DATA CHANNEL into the D­

REGISTER. Also at 3 time.the CYCLE TEST pulse is gated by

DATA FIRST CYCLE-STORE :land the EQUAL COMPARISON

latch to impulse DATA CYCLE END.

Note that a non-drum band number will cause the ADDRESS

TEST pulse to set the STORAGE SELECTION ERROR latch and

impulse DA TA CYCLE END. Also no,te that the presence of

either an UPPER .or LOWER gate will cause the contents of the

appropriate regi$ter to be stored onto the drum and read into

the D-REGISTER simultaneously, but the presencE(of a D gate

will cause only the contents of the D-REGISTER to be read out

and stored.

37

To summarize, words are read into the fr-REGISTER on

DATA FIRST CYCLES when the OPERAND gate is on, or into

the INSTRUCTION REGISTER when the I:NSTRUCTION CYCLE

gate is on. The contents of either a drum location or a machine

register may be read in this manner. Store operations, on the

other hand, are valid only for drum addresses. These also

take place on DA TA FIRST CYCLE. The conten~ts of the UPPER

ACCUMULATOR or LOWER ACCUMULATOR may be storeq

on the drum and also automatically placed in the D-REGISTER.

The contents of the D-REGIS'l'ER may also be stored on the drum.

38

CHAPTER VI

AC.CUMULATOR OPERATIONS

' The heart of a digital computer is the accumulator, for it

is there that the majority of the operations' that justify the

existence of the computer are P.erformed .
. .

It is not within the purview of this paper to deal extensively

with the deta:l.led design oi'the accumulator circuits~ The writer's

philosophy is .that the c0mputer will present various gates and

pulses :ta the accumulator ~t the proper time, and it is .then up

to those who design .the acc.umulator to provide the desired results

at the proper time.

The method of :i;-epresen.tation of·pumbers within the OSTIC ·

will be in "sign and magnitude" binary form. In other words,

a plus 2710 would be represented as 00000000000001101-:1 with

a O (plus) sign. A .. minus 27 10 would be 000000000000011011 ·

with a 1 1(minus) sign. Numbers will always be stored as sign

and magnitude, and will usually be used in this form.

The arithmetic operation performed. by the accumulator will.

be that of binary addition of the D.ATA CHANNEL output to the

either the UPPER a:r .,LOWER ACCUMULATOR, :.with end-around

carry. In this case, both accumulators will be cons.idered to­

gether as a single 36 bit ACCUMULATOR with the sign bit to the

right of the low -order position (only one sign bit is used for the

entire ACCUMULATOR)., On 'acld and -subtract operations (but

not multiply, shift, or Jogical operations), the sign bits will be

added in a ma,nner similar to the magnitude bits 0£ the wo_rds,

and a carry (if one occur.s) is allowed to propagate from the

sign'.position into the low .;order pbsition of the LOWER and

39

from the high-order position of the UPPER into the sign position.

This is called an ''end .. around carry"·. · ·For example, in adding

+27}()' in the D-REGISTER to +55 10 in the LOWER, the entire

ACCUMULATOR .-a.Iid)I).;.REGISTER would appear as
. I.

D-REGISTER. · .. , . OOOOOCXX)OOOOOO 11,011 Q (sign)
&00.um.u:t.ATOR 000000000000000000000000000000110111 o
Correct Answer 000000000000000000000000000006010010 0

. .

Although the ACCUMULATOR actually consists of two eight­

een-bit numbers and a sign bit, t:o.,.vj,,hich is added an eighteen-bit

number and a sign bit, most of the remaining examples in this ...

paper will show an AC CU MULA TOR consisting of a ten-bit word .: ... ·. •­

and a sign,. to which is added a five-bit word and a sign. The

preceding example should serve to illustra.te_ how unwieldly

eighteen- and thirty-six-bit examples can become. The use

of a shorter word for purposes of explanation does not , of >

course, alter the manner in which the operations take place.

Consider, for example, the case in which the ACCrtrMULATOR

conta.ins-.a-+15, and a +17 is added from the D-REGISTER into

the LOWER.

D-REGISTER (17) 10001 0
AC CU MULA TOR (15) 0000001111 ~O

(32) 0000100000 0

Subtraction is accomplished in the OSTIC by entering the,·

sign-and-magnitude value of the number to.be subtracted (sub­

trahend) into the D•REGISTER. The 1' s complement value of

the· magnitude portion is then read .onto the DATA CHANNEL: ..

and added into the ACCUMULATOR. A 1 is also added into the

sign position. If the ACCUMULATOR has a minus sign, the mag ...

nitude of the number. in the ACCU:MULATOR, :irritust1.'be placed in

l's complement form before the addition operation takes 'place.

If the sign of the result is minus (1), the ACCUMULATOR must

: . . ,i..).

40

be complemented after addition in order :to reflect the corre.c,;t

sign-and-magnitude answer. On subtraction, an eighteen-bit

word composed entirely of l's fl' s complement of zero) must

be added into the LOWER if the l' s complement of the D-

REGISTER is added into .the UPPER, and similarly, l's must

be added into the UPPER if the complement of the D-REGISTER

is added into the LOWER, If two negative numbers are added,

an end-around carry from the high-order position of the UPPER

into the sign position 1must take place and a complement cycl'e -
must be taken following the addition. If the end-around carry

does not occur,. then a number too large for the ACCUMULATOR

(overflow) has been generated. If two positive numbers are

added, an . end-around carry must not take place, and no com--·-
plement cycle is necessary. If an end-around carry does take

place, then an overflow has occurred. If two numbers of opposite

sign are added, an overflow is simply not possible, and the

presence of an end-around carry indicates that no complement

cycle is needed, swhile t~e absence cf. an end-around carry in­

dicates that a complement cycle must follow. Table I w\11

serve to illustrate .the 2hove-me.ntioned rules, using a five-bit

·U]?PER, a frve .. bit LOWER, and .a five .. bit D-REGISTER.

This chapter relates the logical operations necessary to

accomplish ; sixteen possible combinations of resetting .the

ACCUMULATOR prior to the operation, addition of the D -
. ,1 .

REGISTER contents to the UPPER or. to .the l.,OWER, subtrac-

tion of the D-REGISTER contents from the UPPER or from the

LOWER. Furthermore; each operation may be executed in alge­

braic fashion or by us.ing the absolute value (magnitude) of the

operand. It is necessary, therefore, to examine the combinations

of signs and operations which imply the use of true or comple,­

ment values.

TABLE· i·•-''

·••·. BINARY ADDITION'.WITH, END,,AROlJND CARRY

. . 11111
0010111111
OOllOIIUO

0 D-REGISTER at start .
0 ACCUMULATOR at start.
0 Correct answer.

41

No en9,~around carry occurs. No complement cycle needed.

Example 2. Add D to UPPER.

01111
0010111111
l0l001llil

0 D ... REGISTER at start.
0 ACCUMULATOR at start,
0 Correct answer.

Note that if .the sign bit of the number added is O (plus),
nothing need be added to the LOWER when the D-REGIS'rER
is added to the UPPER, and vice-versa.

Example 3~ Add D to LOWER.

00001
1111111111
0000000000

0 D-.REGISTER at start.
O ACCUMULATOR at start.
0 Partial Sum.

.. 1 End-around carry.
-o-o-0-0-0-o-o"""o"""o-o-..... 1 Inc or rec t answer.

This example illustrates an overflow, Note that, if both
numbers are plus, an end-around carry signals an overflow.

Case II. Two negative numbers are added.

Example 1. Add D to LOWER.

11111 1
0010111111 1

00000 1
11111
1101000000 · 1
1100100001 o

' 1
1100100001 1

0011011110 1

D-REGISTER at start.
ACCUMULATOR at start.
D-REGISTER complement.
l' s added into UPPER.

ACCUMULATOR complement.
Partial sum.
End-around carry.

· Complement is.necessary.

Corre.ct answer.

Note that the end-around carry is necessary to correct the
sign, and that a complement cycle is needed after addition.

••; . I• · : .: • I (Coritini.tect)

Example 2. Add D to UPPER

01111 _ .. :. :. .. 1 !);.REGISTER at start
0010111111 . :J ACCU.l\/ULA TOR at start
10000. I: o .. REGISTER Complement

1111 l . 1 1' s added into LOWER
1101000000 1 ACC:UNULATOR Complement
O 101100000 O Partial ,sum

1 End-around carry -------
0101100000 1 Complement is necessary
1010011111 1 Correct answer

Example 3. Add O to LOWER

00001 1 D-REGISTER at start
1111111111 1 ACCUMULATOR at start

11110 1 D-REGISTER Complement

11111--:· l's added into UPPER
0000000000 1 AC CU MULA TOR Complement
1111111111 0 Partial sum

42

? No end-around carry, therefore an over-
flow has occurred

0000000000 0 Incorrect answer

Case In Numbers of opposite signs are added.

Example l. D-REGISTER is positive, ACCUMULATOR negative.
Add D to LOWER. Result is negative.

11111 0 0-REGISTER at start
0010111111 1 ACCUMULATOR at start

11111 0 D-REGISTER true-figure.
1101000000 _l ACCUMULATOR Complement.
1101011111 1 Partial sum.

No end.around carry occurs; therefore,
complement result.

0010100000 l Correct answ~r.

Example 2 .. D-REGISTER ispQsiti;ve, ACCUMULATOR negative.
A_dd D to UPPER. Result is positive.

11 111: . 0 D-REGISTER at start.
0010111111 1 ACCUMULATOR at start.

"""'1"""1 1'""1'""1 __ .. _:_ .. ___ O D-REGISTER '.tt(ue-figure.
1101000000 1 Partial sum.

1 End-around carry means no complement. -------
1100100001 1 Correct answer.

43

I (Continued)

ExaJinple 3. D-REGISTER is positive, ACCUMULATOR negative.
Add ;D to UPPER~ Restilt is negative.

10111
1111111111
10111: · ., :
0000000000
10 l l 1'00000

0
. 1

0
1
1

D-REGISTER at start.
ACCUMULATOR at start.
D7REGISTER true-figure.
ACCUlvfULA TOR Complement.
Partial sum.
No· end.:.around carry, therefore complement
resulf. · .

O 100011111 1 Correct answer.

Exax::nple 4 .. D-REGISTER. is positive, ACCUMULATOR negati,ve.
Valu,es are equal. Add D to LOWER. _ Result is ze'ro.

11011 0 D-REGISTER at start.

0000011011 1 ACCUMULATOR at start.
11011 -O· D-REG!STER true ... figure.

1111100100 l ACCUMULATOR Complement.
1111111111 1 Partial sum.

No end-around carry occurs; therefore,
complement re·sult.

0000000000 1 Correct answer.

Note that it is possible to develop a negative zero.
. . . .

Example 5. D-REGISTER. is negative. ACCUMULATOR is
positive. Ad_d D to LOWER. Result is positive.

n111 1 D-REGISTER at start.
0010111111 .o ACCUMULATOR at.start.

00000 1 D~REGISTER Cci'mplenient.
1 i 111· , ' ,. l' s added into UPPER.
0010111111 0 ACCUMULATOR (not complemented).
0010011111 1 Partial sum.

1 End-around carry occurs; therefore,
not complement result.

0010100000 0 Correct arisw er.

do

44

I (Oontinued)

Example 6. Di-REGISTER is negative, ACCUMULATOR positive.
Add D to U?PER. Result is negative.

11111 1 I),,REGISTER at start.
0010111111 0 ACCUMULATOR at start .
00000 . I D-REGISTER complement.

: • 1 I Il 1 l's added into LOWER.
0010111111 0 ACCUMULATOR (not complemented).
0011011110 1 Partial sum.

No end-around carry occurs; therefore,
cornplement result.

1100100001 1 Correct answer.

Example 7. D-REGISTER is negative, ACCUMULATOR positive.
Add D to UPPER . Result is positive.

10111 1 ·D-REGISTER at start.
1111111111 0 ACCUW.ULA TOR at start.
01000 ... l D-REGISTER complement.

11111 l' s added into LOWER.
1111111111 0 AC CU MULA TOR (not complemented).
0100011110 1 Partial sum.

1 End-around carry occurs.: Do not comple-
ment result.

0100011111 0 Correct answer.

Example 8. D-REGISTER is negative, ACCUMULATOR positive.
·values are equal. Add D to LOWER. Result is zero.

11011 1 D-REGISTER at start.
0000011011 0 . ACCUMULATOR at start.

00100 1 D-REGISTER complement,
U llL l's added into UPPER.
P:OO:O·O) 19.11 0 ACCUMULATOR (not complemented). ~--~---
1111111111 1 Partial sum.

No end-around carry occurs. Complement
result.

0000000000 1 A correct answer of a negative zero is
developed.

45

I (Continued)

Example 9. D-REGISTER is negative, ACCUMULATOR positive.
Values are equal. Add D to UPPER. Result is zero.

10101 1 D-REGISTER at start.
0101000000 0 ACCUMULATOR at start.
01010 · .. 1 D""REGISTER complement.

11111 J's added into LOWER.
1010100000 0 ACCUMULATOR (not complemented).
1111111111 1 Partial sum.

No end-around carry occurs. Complement
result.

0000000000 1 Correct answer.

Example 10. Add a positive number in the D-REGISTER to a
negative zero in the ACCUMULATOR. Result should be same as
D-REGISTER. Use add to LOWER.

10101 0 D-REGISTER at start .
0000000000 . J AC CU MULA TOR at start.

10101 0 D-REGISTER true .. figure.
1111111111 1 ACCUMULATOR complement.
0000010100 1 Partial sum.

1 End-around carry occurred; therefore, do
not complement result.

0000010101 0 Correct answer.

Example 11. Add a negative number in the D-REGISTER to a negative
zero in the ACCUMULATOR. Result should be same as D-REGISTER.
Use add to LOWER.

10101
0000000000

01010
11111
1111111111
1111101010

1111101010
0000010101

1
1
1

1
0
1
1
l

D-REGISTER at start.
ACCUMULATOR at start.
D-REGISTER complement.
1' s adde_d to LOWER,
ACCUMULATOR complement.
Partial sum.
End-around carry. , , ... , .
Gomple'ment is. necessary.
Correct answer.

Note that,Examples 10 and 11 illustrate that addition of a positive
or a negative number to a negative zero will result in the proper
sum.

46

If the operation is an "Add Magnitude" (or "Reset Add

Magnitude") operation, the contents of the D-REGISTER will be

given a plus sign and the true value will be added into either

the UPPER, or into the ~OWER. If the operation is "Add"

(or "Reset Add"), and the D-REGISTER:"is plus, the contents

of the D-REGISTER will be given a plus sign and the true value

will be added into either the UPPER, or into the LOWER.·

If the operation is "Adq'i (or ''Reset Add"), and the D-REGISTER

is minus, the C(l)htents of the P-REGISTER will be given a minus

sign and the corpplement value will be added into either the

UPPER, or into the LOWER.

If the operation is a i•Subtact Magnitude" (or "Reset

Subtract Magnitude") operation, the contents of the D-REGISTER

will be given. a :minu~ sign and the complement value will be

added into ,either the UPPER, or into the LOWER. If the

operation is "Subtract" (or "Reset Subtract"), and the p ..

REGISTER is plus, 'the contents of the D-REGIS.TER will be

given a ,minus sign a11-d the ~omplement value will be added into

either the UPPER, or into the LOWER. If the operation is

11Subtractll (or "Reset Subtract") and the D-REGISTER:. is minus

the contents of the D-REGISTER .will be g'iveri a phis s:ign 'and

the true value will be added into either the UPPER, or into the

LOWER.

At this point, it will be helpful to tabulate in Table II the

rules e~tabl'ished for 'ACCUMULATOR addition operations

(the OS'TIC' s ,ACCUMULATOR, it will be remembered, only adds).

Logical Diagram number 8 (Figure 9A a,nd 9-B) i;llustrates

the embodiment of the rules in computer logic. No timing chart

accompanies the d,iagram; it is felt that the above listed rules,

together w'ith several detailed. examples, will better enable

the reader to und.e.rsfani:r:the operation.

47

TABLE II

RULES FOR ACCUMULATOR COMPLEMENT AND RESET

Acc~mula.to.r Sign

Plus Minus

Reset entire Accumulator Reset entire Accumulator to

aeset Yes l b f dd" . · . . to p us zero e _ore a 1t1on. plus zero before addition.

gate
Do nothing to Accun:iulator

No
or to sign bit.

Take l's complement of

entire Accumulator. Sign

bit remains on,e.

TABLE III

RULES FOR ACCUMULATOR OPERATION CODE AND SIGN

Operation

Add Subtract

Magnitude Read out true value of Read out complement value of

gate is on, D onto Data. Channel. D onto Data Channel.

Magnitude Read out true val~e of Read out complement value of

Rot on., D + D onto Data Channel. D onto Data Channel.

Magnitude Read out complement Read out true value of b onto

not on, D - value of D onto Data Data Channel.

Channel.

: \·\ ·,~ ..

48

TABLE IV

RULES FOR ACCUMULATOR ADD-IN

Upper Gate On Lower Gate On

True value IAdd contents of Data Add contents of Data Chaim.el into

·read out of Channel into Upper. Lower. Add in a O sign bit.

D-Register IAdd in O sign bit.

Complement Add contents of Data Add contents of Data Channel into

value rea,d

out of D

Channel into Upper. Lower. Add l's into Upper. Add

Add l's into Lower. in a 1 sign bit.

Add in a 1 si,gn bit.

TABLE V

RULES FOR ACCUMULATOR END-AROUND CARRY AND OVERFLOW

True figure add- Complement add- True figure ·add-:--i:n .is

in is on. Accu:rn- in is on. Accum- on, and Accumulator

ulator is plus ulator is minus is - • .£!. complement

before addition. before addition. add-in is on, and

End- Set Overflow

around latch. Impulse

carry. Data Cycle .End.

No end- Impulse Data·

around Cycle

carry End.

Turn on Data

Third Cycle.

I

Turn on Data

Third Cycle. Set

Overflow latch.

Accumulator is +.

Impulse Data Cycle

End.

Turn on Data

Third Cycle.

ADDITION, SUBTRACTION,~ COMPL~ME.NT

Is
D- Re.~·~·u,

M1nu.S ?

Is

Se.e Lo9ic.ci.l
l---9'-E::-f:,......,~D 1a. 9 rCL m $ 5 ~ 6

For · Operands

F1'J ure.

from D-
Re,uTe, Re'3i$Te.-

(. o Mp le.rri en T ~~~;---;~~o1o:--,1---3>

Ga. -re Oh?

Tvrn.
On

CoM ple .. c•
1...a:rch

Is
Cornpleme..,..- ~~-+-~

Lcnc.h On? 110

C0Mplemen1
Accv r11.,\a. -ror-

..
'(,: .

Resc.T
Aa:vM v let -r o"'
TO ~e. .. ~

See. Seeo .. d
Pa.Cje. For 51'ift . -ro

Oper~"TIOl'l$ Lower
cu,ol ~nol-Ar,v"J Au.urotulaw
Cet.rr~,

Figure 9-A. Logical Diagram number 8-
1 . . .

Addition, Subtraction, and .. Compleme:rit.

49

D
A
T
A
C
H
A
N
N
E:
l

I!:.
ccumvl~~o~~:e~\;1-~~~~1----l----'-----.i----1-.e::::._J;._::,,.·

Plu!>?

L,
C(Vl>IIJ /t,1.Tf?r

Mmv~?

lo; True­
~"}" re Rea J-)--i...._-it---.E-il!:-'7""--c-l---l--.::rl:......;;;,.._-1----1~~~

01.11 ().,?

I$ Co,.,,plt- -
l~c.ad -

Ou, On?

Is Add \
'2£ 5vbTf~CTrJ''-'---::IU::----~-,f--,-+----f-----+---,---,--~~-./:-..;;..-l~....S:.~

Ga-re On?

•-

Turn c,n Turn on Tv,.n on Cornrle;,,O•T
··s "s,~.,. s ''S,'11"1' 1c,ns

Accv'"" '"'"' l)iH·trtn-r Ne.~anve'' Pos 1-r 1ve"

la.Tc. h 1.-o. TCj.,. Lcl.Tc. \., (:;,a.Te

All Is "S,'.lns
Tor.,(.d Pos1·nv e" l..a. -rc~)-Hl"~---1-.,,,,::~~

Acc.umu lo.
Tor 5•';Jn

Pos1·roon.

Co.,r1e, ,.,.,.,
l...owc.r

0 Time.

rs "S,l}VIS

N e90.-r"'~ ''
Lani. On?

Is "S113ns
O,f'-e,c .. ,"

h"'-T<h

On?

Se-r
Over !=low

la.Tch

Figure 9-B. Logical Diagram number 8-

Addition, Subtraction, and Complement,

Turi\ on
Do.TlllTh,,.d

C.'1c.le

lmpul!'.e.
Da.:ra.
C~c.le. L:ncl

50

The first example considered will be an operatio:q.,;where

both values are plus, and no overflow results. The presence

of an OPERAND gate and DATA FIRST CYCLE causes the . . . '

51

computer, to find the desired operand, as described in Chapter 5.

The RESET gate is not on, and the ACCUMULATOR sign is plus,

so neither reset nor com]i>lement takes place.· When the operand

is found, it is placed in the D-REGISTER and TURN-ON·DATA

SECOND CYCLE .occurs. The DATA SECOND CYCLE pulse

tests the signs of the ,registers, and, since both the D-REGISTER
I

and ACCUMULATOR are pliis, gates the D-REGISTER to read ..

out its true figure onto the DATA CHANNEL. At 1 .. 3 time the ·
. .

ADD~iN pulse adds the contents of the DATA CHANNEL and a "0''
'

(plus) sig~ into the LOWER ACCUMULATOR and the SIGN

POSITION, respecti'vely (second sheet). At O time of the same

word time, a SIGN TEST pulse had set up the end-around carry

test drcuits1and since a TRUE FIGURE READ ·OUT gate and an'

ACCUMULATOR PLUS gate were on, turned on the SIG~S

POSITIVE latch. No end-around carry occurs, so .the COMPLE-:.

MENT TEST pulse at 4 time impulses DATA CYCLE END:

The second example will be a u,:neset Subtract Maginitude

Upper" operation'-':. using ::.a_pos!tiv.e operand. In this case, as.

before~ the operand is acquired and placed in the D-REGISTER ·

on DATA FIRST CYCLE. Meanwhile, on the first word time
. -~ .

of DATA FIRST CYCLE~ the::ACCUMULATOR is reset to plus

zero, When the operand .is found and DATA SECOND CYCLE

is turned on, the SUBTRACT. D•REGISTER P_LUS. and MAGNI­

TUDE gates are all on, so the D-REGISTER complement read ..

out is gated onto the DATA CHANNEL. Since the GOMPLEME~T

READ-OUT and UPPER gates are on, a word of 18 1' s is added

into the LOWER by ;the use of inhibit gates. The actual add-in

52

to: both,ACCUMULATORS is'accomplished by the ADD-IN pulse.

Since -~COMPLEMENT. ADp.;IN is on, a n l 11 is added into the sign

position at I _time by the SIGN ADD pulse (the ADD-lN pulse is
' not used, because of possible conflicts with an end .. around carry).

Also, the SIGN TEST pulse at O time turns cm the fisIGNS

DIFFERENT" latch. An .end-around carry will not occur when

any number is added to zero; therefore, the COMPLEMENT

TEST pulse finds the END-AROUND CARRY la.tch off at 4 time

and, since TURN-ON DA TA THIRD CYCLE has been previously

impulsed by the SIGN ADD pulse, a DATA THIRD CYCLE pulse
. . ' . .

complements the ACCUMULATOR and impulses DATA CYCLE

END.

· The last example used will be an nAdd Lowern ·operation,

where both the AC CU MULA TOR and the operand are minus

beforehand. It is assumed that an overflow will occur.

The DATA FIRST CYCLE puise finds the RESET. GATE off,

the ADD gate on, the ACCUMULATOR MINUS gate on, and

therefore complements the contents of the accumulator. At 4

time the DATA FIRST cyc·LE-OPERAND gate and ACCUMULATOR

MINUS gate allow the COMPLEMENT TEST pulse to .turn on the

COMPLEMENT latch. This latch will remain on until 4 time of

the next word time, when .it is turned on again by the COMPLE­

MENT TEST. The purpose of the COM;PLEMENT latch is to

prevent continuous re-co~pleme:q.ting of the ACCUMULATOR.

The DATA SECOND CYCLE pulse finds the ADD GATE and

the 0;..REGISTER MIN US gates on, and_ therefore provides a

COMPLEMENT READ-OUT gate to the D ... REGISTER. The

COMPLEMENT READ..:.ouT and the LOWER gate cause ,l's

to be added into the UPPER, while the conte.nts. of the DATA

CHANNEL is being added to the LOWER by the ADI).l.lN pulse.

A ~•:tt 11 bit is added .into the SIGN POSITION, and.the SIGN TEST

53

l

pulsJ turns.on the "SIGNS NEGATIVE" latch, It was assumed

that an overflow occurred; for· both :signs nega~iw.e, an over-flow

occur'S when .an end-around carry does ~ o.ccur. At 4 time, the

COMPLEMENT TEST pulse finds the SIGNS NEGATIVE latch ::on ..

and the END AROUND CARRY latch off, and th.erefore turns on

the OVERFLOW latch. The complement cycle is. still taken,
j •

howe\rer.

Note that DATA THIRD CYCLE' is always turned on, and
I .

that DATA CYCLE END'is then impulsed if necessary. This .takes
.;.·.·;·:'/. ~~·.

advantage of the fac.t tha.t DA TA CYCLE END overrides any

TURN ON pulse (s~e Chapter .. 4). Also note .that provision is

made for a separate COMPLEMENT operation; see Chapter 7

for further discussion.

Multiplication in the OSTIC is accomplished by successive

operations of shifting, testing, and addition. The multiplier

is placed in the UPPER prior to .the start of the multiply

operation. At the beginning of the multiply operation, the

multiplicand is acquired and :placed in the D-REGISTER. The

LOWER is reset to zero, and the entire.ACCUMULATOR is:

then shifted left one position, the high .. order position of the

UPPER being shifted into a special "Test Position" just off the

·ACCUMULATOR, The TEST POSITION is then checked; if it

contains a 11 111 , the conteJ:1ts of the D-REGISTER (true .va1ue) is

added into the LOWER, and the entire ACCUMULATOR is the.n

again shifted Jeft one position. If the test position did not

contain a "l" when checked, only the left shift is performed.

Following the left shift, the test position is again checked for

a "l", and .the add-and-shift or shift-only operation is repeated.

This testing process is repeated eighteen times,. because the

. word .is eighteen:bits long. The sign .bits are neither added nor

shifted; the sign is set to 11 0 11 (plus) if both the ACCUMULATOR

54

and D-1RE:GISTER have the same sign, and to·"' 111 (minus)

otherwise.

Two examples of multiplication, using'five-bit words, are

presented in Table VI.

TABLE VI

BINARY MULTIPLICATION

Example 1. Multiply the num.ber ouo:1.·o (+) by 11011.1 (.:.).
Registers at beginning of Data Second Cycle:

.01101. 0 ·· ... D_..;REGIST.-ER
,} l!HilOOOOO 1 ACCUMULA1TOR

?' . Test po'sition
1 . 1011000000 1 Shift left 1
1 1011001101 1 Add D to LOWER
1 0110011010 I Shift left 1
1 01101oop1 1 Add D to LOWER
0 1101001110 1 Shift left 1
0 1101001110 1 ; Do not add (test position contains a O)
1 1010011100 1 Shift left 1
1 1010101001 1 Add D to LOWER

;

1 010101ooio 1 Shift left 1
1 0101011111 1 Add D to LOWER
? 0101011111 1 Sign of answer is 1 (-)

i

~ote .that fiv~~bit numbers were multiplied, and a total of five
shifts were made. To c;heck, the two numbers will be multiplied
by the usual method;

01101
X 11011

01101
0110,1

00000,
01101

01101
0101011.111

The multiphcand is 13 10 , and the multiplier is 2.7 10 .
the product should be 32] 10 , which it is.

Therefore,

\

\
'

\

VI (Continued)

Example 2. Multiply 11111 1 (-) by 11111 1 (-)
Registers at beginning of Data Second Cycle.

11111 .. 1 D-REGISTER
1111100000 0 ACCUMULATOR

? Test position
1 . 1 n 1000000 1 Shift left 1
1 1111011111 .I. Add to LOWER
1 1110111110 1 Shift left l
1 1111011101 1 Add to LOWER
1 1110111010 1 Shift left 1
1 1111011001 1 Add D to LOWER
1 1110110010 1 Shift left 1
1 1111010001 1 Add D to LOWER
1 1110100010 1 Shift left 1
1 1111000001 1 Add D to LOWER
? 1111000001 0 Sign of answer :is 0

Note that this is the largest .Possible product of two five-bit
numbers, and illustrates that a prod 1nct longer :than ten bits
can never :be developed. Siir;ilarly, the largest product of two
eighteen-bit numbers is thirty-s:i~::bits long.

Checking:

11111
X 11111

11111
11111

11111
11111

11111
1'011101

1011101
11101000 1
11111

11T1obooo 1

55

56

Logical diagram number 9 (Figure 10) presents the

"Multiply" pperation. The DA TA FIRST CYCLE pulse rese.ts

the LOWER to zeros, sets the five-position AUXILIARY

COUNTER to O 1110 (14 10), and sets the SHIFT OR ADD latch

to shift. DATA SECOND CYCLE then interrogates the SHIFT

OR ADD latch for the next thirty-six word times, as is shown

on the timing chart (only the add cycles 'are numbered; eighteen

of these must occ~r). During the first word time DATA SECOND

CYCLE finds the SHIFT OR ADD latch in the shift setting, so

the entire ACCUMULATOR is shifted one position to the left,

which brings the high-order bit of the UPPER into the TEST

POSITION. At 4 time the MISCELLANEOUS RESET pulse sets

the SHIFT OR ADD latch to add, and during the next word time

a "l" bit is added into the AUXILIARY COUNTER by the ADD-

IN pulse. ::If the TEST POSITION contains a 11 111 , the contente

of the D-REGISTER (which ie read onto the DATA CHANNEL

on all DATA SECOND CYCLES) is added into the LOWER. The

MISCELLANEOUS RESET pulse turns the SHIFT OR ADD latch

back to shift at 4 time.

The operation will continue untH •. an overflow pulse from

th:e AUXILIARY COUNTER impulses DATA CYCLE END. The

overflow pulse is the carry pulse out of the high-order position

of the counter. Since the counter has five positions, the over ...

flow pulse will occur when a 11 111 is added to a 31 10 , or in

binary form, 11111 counter

l
00000

r

add 1
result
ov~;fioJ

Note that if O 1110 is placed into the counter to begin with,

then 10010 (18 10) added in will cause an overflow. Note also

that the logic is so designed .that the last addition .to the LOWER

(if signaled by a 11 111 in the TEST POSITION) occurs simultaneously.

Is

ls
Muh,pl':1

On?

0

4- "O"

Is
CC:UM u la.Tor
('/1,'1 V5

Is

L
O-Re~, s-te,

M1vi11) 7

Is
D-Re~is-Tt'

P !vs?

w ... --.. ·······---···-·-·T.lt1£. _________ , ______ _

CYCLE

~I\ULTI PLICI-\TI ON

Does
Te~T
Pos1-r1oh
Cor,,-e<1n a.

r

Sh,h
En·nn

-------Accu ... vl ,
I Plue<!
/e..~T.

Rese-r

---11----11---11----n-----------.....at lowu

D«Tl>l C.'1d'---L"'------------------
3 A (, 7 8 IC> 17 18

TO
l.tZ..ro.

57

D
Rc':j1SYer

Trut- I="•,;~,..
Re<Ld

OuT

D
c- - _., A
- l:>vo,tlo..!

Pvh•
I A

UPPER

mpvU(

Da.TIX

(':le.le
Ent.I

Figure):10. Logical Diagram number 9, Multiplication.

with the addition to the AUXILIARY COUNTER1which causes

the overflow.

58

Since the sign of the product is determined from th~ sign

of the D-REGISTER and the sign of the ACCUMULATOR, setting

the sign, should ~e the last matter taken care o.f, for otherwise

an oscillation of s~n could occur from one word time to the

next. The sign is t'"tierefore set up immediately when the
\

multiplication begint but is not placed in the ACCUMULATOR
.. \ .

sign position until thJ1 overflow, which signals the end of the
I . .

operation, has occurrkd.

'The titning chart illustrates the multiplication of some

number in the D-REGISTER by 1100101111. ..•.• 01.

Logical Diagram number 10 (Figure 11) illustrates the

process of shifting the entire ..A.CCUMULA TOR one or more

positions to ,e:i,ther the left or right. There is a great cleal of

similarity between this process and the process of multipli­

cation, since the AUXILIARY, COUNTER is incremented each

time a shift Oferation takes place, and the presence of an

ove.rflow from the AUXILIARY COUNTER signals that the

shifting is complete. One difference will be noticed, however.

Since no addition takes place, the ACCUMULATOR is shifted

at the same time that the counter is incremented., rather than

on the following word time.

The timing chart on Logical Diagram number 10 shows

five different shift operations. Reading from left to right,

the first sequence is a nine-position shift, followed by ,huts

of five, seven, one, and zero positions. The nine-position

shift will be described in detail.

The DATA FIRST CYCLE :;pulse finds the SHIFT gate on,

and so gates the l' s complement value of the. ADDRESS REGISTER

to be read out onto the DATA CHANNEL. At 3 time of the same

i.::

Is
Ler"T SI,, r;T

On~

.Is
R19n"T si:...~,.

On?

ls
Crrcvlt:i.r

Sh,h O.,?

Turi'\ 011
DllLTIIL Sec.• ,I

C 'j ,le

SHIFTING

.or
Add
La.,.,h

f.T TO

Sh,~.,.
AccvM•/t11.Tor
I Pl cue. R 1&3kT

. Sh1~T

Accu1>1.,llll,..,
I Pl(;cte L.eh

Get re
C1reuf(lr

si..,r.,.

Add
One. ,o
Av,.,l,a.r'J
Cvunreir

Address
Re.:,,ne,
Comp le.me

Rea.d ·OuT

59

D
A
T
A
C
1-1
A
N
N
£
L

Ov~r~l,w P11lse
I

I

lrtipulse
D111TOi Ci,de

~VI"
)-. -··

o+,e Ff Corte CtCLft. .. -..: .. ------- --------- -·-i- - ·-'
'1 -·----,-----·------ .. .i---------------··--------· ·---"'-"'H...,F_,_ _________________ _

·---.-MI.SLl!.l..!-.fl.fllJ~I/JlL_1f.FI ""!'·-···---··-·-··------·----· ----------···.··-····-------·- '--· .•---- ·.- -·· ----

Figure 11. Logical Diagram number 10, Shiftin~·

60

word time, a WRITE pulse copies the contents of the DATA

CHANNEL into the AUXILIARY COUNTER. The DATA FIRST

CYCLE pulse also sets the SHiFT OR ADD latch to add, and

impulses TURN-ON DA TA SECOND CYCLE.·

The DATA SECOND CYCLE .impu.Ese finds the SHIFT OR ADD

latch set to add, and so, together with the ADD,-IN pulse, adds a

"1 11 bit into the AUXILIARY COUNTER. At 4 time the MISCEL;­

LANEOUS RESET pulse sets the SHIFT OR ADD .latch to shift.

The next word time finds the DATA SECOND CYCLE pulse

shifting the .:,ACCUMULATOR either left or right, and circular

or non-circular, as determined by the various control gates

(a circ1,1lar shift occurs when the bits shifted out of one end of

the accumulator reappear, in order, at the other end). Note

that tll,e SHIFT OR ADD latch is not set back to add, but remains

in the shift setting. Also note that addition of 11 1'1:s'' to the

AUXILIARY COUNTER takes place on both add and shift

settings. When the AUXILIARY COUNTER overflows, DAT.A.

CYCLE END is impulsed, and the operation is complete.

In examining the theory behind this operation, it is fo.und

that the largest number that may be stored in a five-position

bina;y counter is 31 10 , or 11111. An overflow occurs when

1 is added to 11111 already ; in the countet. Note that the 1' s

complement of any five .. bit binary number is also the number·

31' s complement. For example, the I's complement of O 1001

(9 10) is 10110 (22 10). Therefore,·. if the l's complement of the

desired number of shifts is entered into the AUXILIARY

COUNTER prior to the shift operation, and if 1 · is added to the

counter for each shift oF one position, then the counter will
~ .

contain 01thirty-one when the desired number of shifts has

occurred. How ever, the -counter overflows when 1 is added to

thirty-one, making thirty-two. Therefore, a single addition

.1.: .

. ... ,.·, .. ·':··.! ... \.

,.:c
I,;

61

is z;nade pripr to any shifting,. so that the addition· occurring

simultaneoualy with the last shift .wI<U.,eause:'.the coui;i,ter to ,_ . ,
'
'

overflow' and end the opera,tion.

It will be noted that a data address of zero (00000) on

a shift instruction will : a:orrectly ; result in
,,

a zero.:.place shift. Also,. the greatest number of shifts that

may take place for one instruction is thirty-one (11111),

CHAPTER VII

LOGICAL OPERATIONS

Because of the special-purpose and instructional applications

of this computer, ,a~ repertoire of logical operations would be quite

useful. Although actually carried out in the ACCUMULATOR, the

nature of these operaFons is •,somewhat different from the opera-.

tions covered _in Chapter 6. Accordingly, this chapter is devoted

solely to logical operations.

Logical operations, as considered here, are those operations

involving two binary numbers, where the value of each pos·~tfon

of the result (1 or 0) is dependent only upon the values in the ,_
corresponding position of the ori~inal numhers. All logical

operations may be represented by a "truth table", where the value..s- ·

of the two input numbers, (which will be called, for want of a better

name, the "A-operand" and the "B-operand") are shown along the

top ~:nd .11:eft side, and the values of the result are shown at the

intersection of the appropriate rows and columns.

E:xample 1.

·Truth Table-OR: .. adc;li'tion.

A~operand

~-
B-operand m.

Sample Operation

A-operand
B-operand
Result

0011
ffJOJ.
-<}LU

Since there are two possible values for the A-operand, two

possible values.for. tneB-0p.erancf. and four possible values for the

result, there are 16 possib1e logical operations. These are shown

in Table VII.

.. ... , ·,

62

TABLE VII

BINARY LOGICAL OPERATIONS
·A· A

B ~:
10

0011
0101 J

0110 ~-:

Logical Ring addition
E~clu~ve OR (no carry)
AB+ .AB

0011
0101
0111

OR; A+ B
Inclusive OR

0011

QlQl
0()01

AND (Logical Multiply)
AB

AB= A+ B

A

B j
A +B

k

i B
1

TRlYIAL

0011
_o 101
0010

0011
0101
10 ll

OOll
0101
0011

--oo 11
0(101
IOOI

Logics.I Compare
AB +AB

A Bi
1 0

0011
:0]0:1
1000

-~·OR (NOR)
"AB= A+ B

OOll
O IO I.
l llO

Not ANP (NAND)
AB= A+B

A+B

A

f llO

0011
0101
1101

0011
0101
0100

AB= A+ B

A

.offo
0011

B 0101
1100

TRIVIAL

63

64

VII (Csmtinued)

A A

I 0011 t 0011
B ,oao r B 0101

1 0101 .10,10 0

TRIVIAL B TRIVIAL B

A A

f 0011 I 0011
B 0101 0101 B --

l 1111 0 0000

TRIVIAL :J TRIVIAL 0

It appears that there are ;a maximum of 10 logical operations

that one might conceivably wish to perform, and six :11don' t

cares". (8). Consider the process of "ring addition", with a

provision for complementing either the A-operand, the B~

operand, or lioth, and complementing or not complementing

the result, as shown in Table VIII.

B-operand

B
0101 ..

·B

1010

TABLE VIII

LOGICAL RING ADDITION

A-operand -A A
.0011 1100
or.r.o, 1001 True Answer
lO_OJ 0110 Complement

,0110 1001 Complement
ed Answer
ed Answer

:1.001 0110 True Answer

TRUTH TABLE
Logical Ring A:ad

A

B t .

0

65

Apparently, only two results are available. The result,

taking the true values of both the addend and augend,is the rip:g

sum, while the complement of the ring sum is the logical com­

parison. This might have been deduced from Figure 5, since

the truth table for ring addition is the same ae the complement

of the truth .table for logical compare. Note also that there are

two ones and two zeros in both truth tables.

Consider now the OR operation, Again1 either the addend,

augend, or both may be co'.mpiem:ented, and the result may or

may not. be complemented, as shown in Table IX.

B-OPERAND
B

0101 ·---··
B :10:1-0

TABLE IX

LOGlCAL OR ADDITION

TRUTH TABLE
OR Addition

A

·~

B lTi
A-OPERAND -A A

0011 1100
,PTl l 1101
1000 0010
0100 0001
1011 1110

True Answer
Gomplemente
Gomplemen.te
True Answer

d Answer
d Answer

Note that this time eight different answers were obtained.

In fact, upon examining Table VIII, it is found :that all s.ixteen

of the possible logical operations may be obtained by the use of

· various combinations of complement, . ring addition, OR addition,

and (for all zero or all ones) resetting the AGGUMULA TOR to

zeros.

Logical Diagram number:. LL(Ftgure 12) shows the method

of executing the''Logical Ring Add" and "Logical OR II instructions.

LOGICAL OPERATIONS

Is•
Opera.nd

6a-Te. Or?

.See lo91c .. l
D,a.~.-o..~ noa. 5 ~6

---~-of'_ oha.inln~ oper-ci.n"'.

Ls OR
&7..Te
o.,?

Is
Rin!r Add

Go.,.e On?

Se1' vp
,__-+----R1n13 Adol1T10~

,n,.o 1-.owe ..

Se"f up OR
-------------l---.a.1 Adol 1T1on i"n.,.11

Lower

lmpvlse.
DtJtT"t.1. Cyc.le

End

D­
REG15Te

True.-h1v

R,a.cl-0'"

Upper

ccumv-

/o:ror.

Figure 12. Logical Diagram number 11, Logical Operations,

66

D
A
T
A

C.
H
A
N
N
E
L

I'

67

The B-operand isas:smned to have alreadyb"een placed in the

LOWER, and the location of the A-operand is designated by the

data address of the instruction,. It is acquired and placed in .the

D-REGISTER.on DATA. FIRST CYCLE. Follow\ng this, the
. .

DATA SECOND CY,CLE pulse,. together with the presence of

either the OR gate or the RING-ADD gate, reads out the true
. . '

vaiue of the D-REGISTER onto' the.'DATA CHANNEL at 0~4 time,

and also irripulsE:ls DA TA CYCLE END. The DA TA SECOND

CYClE pulse is also gated to set up the .LOWER AGCUMULA TOR

ii;, pe~fc:>rm the proper operation, since it is intended that these

special operations will only be performed on the contents of the

LOWER a.nd the location specified by the data address of instr1,1c -

tion. · At 1-3 time the ADD-IN pulse gates the contents of the

DATA, CHANNEL into the LOWER, and the operation is perfo:t,med.

The "Complement" operation is shown on Logical Diagram

number 8 (Figure 9. -A). It is intended that a "Load D-Register"

operation be carried out in conjunction with the complement

operation; therefore, Logical Diagram numbers 5 and 6 are also

involved. The complement would occur on :~he first word time

of DATA FIRST CYCLE; the operation would be complete when

the desired operand was found and placed in the D-REGISTER.

It is felt that, since. complement will qe used primaril;t with
. '

the "L~gical Ring Add" and "Logical OR~' operations, it would

save time to use the same instruction to bring one of the desired

operands into the D.;,REGISTER. See Cha,ter 11 for a further

dis.cus sion of this topic.

CHAPTER VIII

TES TING AND BRANCHING OPERATIONS

One of the fundamental concepts which makes the sfored-.

program digital computer a powerful tool is the concept of

internal testing and program branching .. In the OSTIC, a

. branGh, or 11 :jump" operation, will be defined as any operation
. I

where the address of the next instruction is taken from the data

address of the previous instruction, rather than from the address

normally generated by incrementing the INSTRUCTION COUNTER·

In general, there are a number of different types of branch codes.

The simplest is. the "Unconditional Jump", where the computer

"jumps'' to the instruction located in the address corresponding to

the data address.of the jump instruction. Another type of jump

code is .a nTest and Jump", where the c;:omputer tests some given

condition, and then .jumps. only if the condition is. true. For

example, a "Jump Accumulator Minus" instruction would cause

the computer to .test the sign of the ACCUMULATOR. If the

sign we.re minus, the computerswould jump to .the address speci­

fied; if th.e ACCU~ULA TOR were plus$ however, the jump would

not take place, and t,he ne::,ct instruction would be taken .from the

address :tn the INS'.J'RUCTION COUNTER. The most complex

type of jump is the ''Copy Jump'', where the ma.chine first

1·1copiest1 the conteep.ts of, the INSTRUCTION COUNTER into the

D-REGISTSR:. then jumps to the \location specified by the data

address of ·the jump instruction. This ,type of instruction is

almost a necessity for subroutine linkage on a single-address

computer.·

Logical Diagi"am number lZ (Figure 13) illustrates the

68

BRANCH

Is
B t-a..1"\c..h

(.,o...,.e On?

I!> Uppe.,
?er-o Ten·

On?

Is

Is Ove,,.-
~low Tes..-

01'l?

..ts
5-rt..-ci., ..

Te~"! 011!

.Is
Pal"tT~ ieJ1'

Ori?

I~ Avi,
CoV'ITe,,.

T~H' Oti

Is
F'la.9 Te)"!'

On?

CODES
69

lMT•
Ct!>U.l'ITer

Re..a.d ~
ll'l.

Tvrr, °""
0\A:!r' ~low

D
A'
T
A

C
H
A
N
N
E.
L

ln,pul~ I 1t1pulse.
DCt.--rq

Mc:i~h.~e C'jc..le- !

E:. "cJ

Figure 13. Log1cal Diagram number 12, Branch Co.des.

70

"Up.condiUonal Jump", together·witb. a 11umber of "Test and '-Jump''

codes. The operation is quite straight-forward. At O .. 4 time

of the first data-cycle word time, a DATA FIRST CYCLE pulse

finds the BRAN.CH gate on, and is thus ,enabled to test the

various jump gates. For example,. if the UNCONDITIONAL

JUMP gate is on, the DATA FIRST CYCLE pulse finds a path to

the OR circuit. Meanwhile, the DA TA FIRST CYCLE pulse has
. . . : .

gated the ADDRESS REGISTER contents onto the DAT~ CHANNEL,

and at 3 time the WRITE pulse, gated by the DATA FIRST CYOLE

pulse which traveled through the UNCONDITIONAL JUMP gate,

reads the contents of the DATA CHANNEL into the INSTRUCTION

COUNTER. The DATA FIRST CYCLE impulse also impulses

DATA CYCLE END.

As another example, consider the operation $hown on

Logical Diagram n,umber lZ for a "Jump on Overflow" instruction.

The BRANCH gate is on, and the OVERFLOW TEST gate is on,

so the DATA FIRST CYCLE pulse tests the OVERFLOW latch.

If the OVERFLOW latch is not on, nothing.happens, and since

DATA CYCLE END is alwc;1.ys impulsed, the program continu:Es

in regular se~uence. However, if the OVERFLOW latch is on,

the contents of the DATA CHANNEL are read into .the INSTRUCTION

COUNTER, and the OVERFLOW latch is turned off. Note that the

ADDRESS REGISTER is always read out onto the DATA CHANNEL

at ·Q .. 4 time if the BRANCH gate is on, but the DATA CHANNEL

is read into the INSTRUCTION COUNTER at 3 time only if a jump

is desired. This design reduces signal race problems that would

occur if both the read-out and read ... in were conditional upon the

jump being desired.

Logical Diagram n,umber 13 (Figure 14) illustrates the 11Copy­

Jump" operation. Here, the DATA FIRST CYCLE pulse .through

the BRANCH gate and the COPY JUMP gate reads out the INSTRUC-

h
Brc:q, ch Go. ,-e>-ll>E-+.--3>------lllEs::-~?'

On? 'j~•

Is
Copy-Jur-np

Go.Te Oh?

Turn- 01'1
DdTO. Seu~d

C~c.le

ll"'lpvlH
\)~TOl C':lde

E"'d

COPY-JUMP

D~
Re~1s,-~r
Rc.t.1.J-

,n

71

0
A
T
A.

C
,-........----1-1

Arl cJ,,e~,
Re~ui"e,

Ree1.d~ovT

A
N
N
E
l

•.•• '$

Figure 14: Logical Diagiam numbe; 13, Copy.:Jump.

72

TION COUNTER onto the DATA CHANNEL.
'

It will be remembered that the contents of any internal

machine register may be used for either data~ instructions,

that is,' the address of :any register may be given either as a

data address in an operation, or may be entered into the

IN$TRUCTION COUNTER (either by means of some type of

·~ ump" operation, or by normal incrementation of the INSTR UC-

TION COUNTER).

Consider at this point waht would happen if a "Copy­

Jump" instruction were given with some of the various reg­

isters as the data address. For example, if the INSTRUC­

TION .COUNTER was given is the: address; then the contents

of the INSTRUCTION COUNTER would simply be placed in

the D..:REGISTER, and the program would continue in normal

sequence. · Again, the D-REGISTER itself could be given as . '

the address of the jump, in which case the contents of the

INSTRUCTION COUNTER would be. entered into the D­

REGISTER, following which the address of the D-REGISTER

itself,' which, since it was the data address of the ,instruction,
i

would be contained in the ADDRESS REGISTER, would be
'

transferred into the INSTRUCTION COUNTER. Following the

tra~sfer, the computer would go into instruction cycle

operation, during which (it· :will be remembered fro:m Chapters

4 and '5) the contents of the memory location specified by the
I

address in the INSTRUCTION COUNTER will be obtained and

placed in the INSTRUCTION. REGISTER to serve as the next

instruction. However, since the D-REGISTER' S address was

given, the contents of the D-REGISTER will become the next

instruction. ·

As was stat.ea, .DATA ,FIRST CYCLE read :out tlie INSTR UC-

73

TION COUNTER at 0-4 time, and also aUows the WRITE pulse

to read the contents of the DATA CHANNEL iri!to ~tb:e~INSTRUCTION

COUNTER at 3 time. The DATA FIRST CYCLE pulse also impulses

TURN-ON DA TA SECOND CYCLE. The DATA SECOND CYCLE

pulse then reads out the ADDRESS REGISTER onto the DATA

CHANNEL at 0-4 time and allows the WRITE pulse to read the

contents of the DATA CHANNEL into the INSTRUCTION COUNTER

at 3 time. The DATA SECOND CYCLE pulse also impulses DA TA

CYCLE END.

Logical Diag;ram number 14 (Figure 15) illustrates the "Flag

Branching" operations. The flag operations are simply a three­

step branching sequence that provide a much greater degree of

flexibility to computer operations than is possible with the standard

branching operation. Essentially, the operation is simply this.

Any one of 512 different on-off conditions (such as, "Is tape drive

number 2 ready?'', or "Is the divide-overflow latch on?") may be

tested by an instruction. If the designated condition is true, then

any one of eight :program "flags", or. resettable latches, may be

turned on, or "set". These latches will remain on until turned

off by a specific turn-off or "reset" command. :A.rl;Y of the flags

may be interrogated at any time by a branch c;:ommand, in the form

of "Jump if Flag X is on". The set command is "Set Flag X if

Switch YYY is on", and the reset command is "Reset Flag X".

The octal instruction word format is as follows:

07 XYYY ... ; ; Set Flag X if Switch YYY is On.

06 X Reset Flag X,

IX ZZZZ Jump to location ZZZZ if Flag Xis On.

It is thus seen that eight separate program flags may be used, with

512 possible conditions, or switches, being ttested. Of course,

the choice of the digits 0, 1, 6, and 7 in the operation codes·ts

arbitrary.

DATA

ls
F I a..9 Ga Te)!,!<l9)E-~~

On?

CohTer>Ts

o(c AdolreP
Rc51 ~,er

Is
FI c,".) Rese-r

Getn Or>?

FLAG BRANCHING

Sw,Tch Dec.ode,.
f'lla ,,.,'l(

(Dec.oJeJ lcwr 9 b1Ts

c,F Addresl ~ Ten·s

Oo-rpur i

Acld,wecl
Svv1Tcl., i,

C)

FI....AG NuM&H
oe.cooe11

(DecoolH f1 r1T 3 b1TJ

o~ Address)

Figure 15. Logical Diagram number 14, Flag Branching,.

74

Fla':)
0

Fla.13
I

Fla~
3

Flo. '1
4

F '"''3
7

75

The operation of testing a program flag and branching if the

flag is on is shown on Logical Diagram :number 12. The operation

is executed in the same manner as any other test and jump opera­

tion; if the TEST FLAG X gate is on and the FLAlGX latch is on,

the contents of the ADDRESS REGISTER is transferred to the

INSTRUCTION COUNTER. Otherwise, operation proceeds in

normal sequence.

The operation of setting and resetting .a program flag is

shown on Logical Diagram number 14 (Figure 15). If the FLAG

gate is' on, the contents the .nine low-order binary positions of

the ADDRESS REGISTER is gated into a SWITCH DECODER

matrix, which accomplishes the testing of the addressed switch

to see if it is offc or on. The next three binary positions of the

ADDRESS REGISTER go into the FLAG NUMBER DECODER, whose

function is to determine which of the flags (flag O through flag 7)

is addressed by that instruction. The FLAG NUMBER DECODER

then g..,a;,tes; the PA TA FIRST.,'CYCI:,E pulse into the set-reset

circuitry of the proper flag. At 3 time a CYCLE TEST pulse then

may set or reset the FLAG latch in question. If the FLAG RESET

gate is on, the CYCLE TEST pulse is allowed to gate the reset

line of the appropriate FLAG latch, and the DATA FIRST CYCLE

pil;lse ..r,e.:s.e:.t.s :tp.e latch. If a Test Switch YYY" operation is called

for, the output of the SWITCH. DECODER matrix will occur prior

to 3 time., provided the addressed switch is on. This output,

together with the FLAG SET gate, allows the CYCLE TEST pulse

to gate the DATA FIRST CYCLE to set the appropriate FLAG

latch. The DATA FIRST CYCLE pulse also imp~t~es DATA
. -~,~~~;; ··. ·.,

CYCLE END,

76

CHAPTER IX

MISCELLANEOUS OPERATION$

A number of miscellaneous operations are required to round­

out the instruction repertoire of any digital computer.. This chap­

ter will :cov:er · these, and in so doing, will complete (except

for input/output) the list of operations presented in this paper.

Operations of a more-or less miscellaneous character : that

have been covered previously (and will not, therefore, be dis -

cussed again) include ''Load D-Register" and "Store D-Register"

(Chapter 5), Shifting (Chapter 6), and 11Complement" (Chapter 7).

A fundamental operation in any computer is the "Continuell,

or "No Operation" instruction, ofteh referr:ed to as "no-op".

This is simply an operation that does nothing but continue the

program to the next instructic;tj. Because of the fact that all

registers in the OSTIC will be addressable on both data and in­

struction cycles, it is proposed that the OSTIC have no separate

no-op instruction. Instead, the "Copy-Jump" may serve as a

no:..op if 00 8 is made equivalent to the "Copy-Jump" operation

code. Then, if a no-op were desired, a 11 Copy-Jump" could be

made to the D-REGISTER. This. would simply result in the contents

of the INSTRUCTION COUNTER being placed in the D-REGISTER,

and then transferred into the INSTRUCTION REGISTER. Since

the INSTRUCTION COUNTER is a twelve-position counter, the

INSTR,';UCTION REGISTER would appear as OOXXXX 8 , where

xxxx8 is the octal address of the next instruction to be executed ..

The P.O woµld cause a second copy jump to be executed, this time

to XXXX.

It is further proposed that. the "Halt", or stop code , on this

77

computer be a jump code. As illustrated in Logical Diagram

number 12, a "Halt-Jump" code would place the address of the

next instruction in the INSTRUCTION COUNTER and impulse

MACHINE STOP (see Chapter 10). When the machine is started ·

again, the first instruction executed will be that to which the

transfer had been made.

Three other miscellaneous operations are shown on Logical

Diagram number 15 (Figure 16). The first of these is the nset

Increment" instruction.• Here, the DATA FIRST CYCLE pulse,

gated by the SET INCREMENT gate, reads out the ADDRESS

REGISTER onto the DATA CHANNEL. At 3 time the WRITE

pulse reads the contents of the DATA CHANNEL into the INCREL ..

MENT REGISTER. DATA CYCLE END is impulsed on the first

word time by DATA FIRST CYCLE for all operations shown.

The other two operations deal with the AUXILIARY COUNTER.

The presence of an AUXILIARY COUNTER in the computer suggests

that some ,.sortiof operation be designed to utilize its counting

ability independent of such operations as multiplication and shifting.

The "Set Auxiliary Counter" operatton simply transfers the contents

of the ADDRESS REGISTER (which contains the data address of the

"S.et Auxiliary Counter 11 instruction) into the AUXILIARY COUNTER.

This is accorrl.plish!ed in one word time by a DA TA FIRST CYCLE

pulse which, if the AUXILIARY COUNTER gate is on, reads out

the ADDRESS REGISTER onto the DATA CHANNEL and allows

the WRITE pulse to :ri':eaa the contents of the D~i.TA CHANNEL into

the AUXILIARY :(:OUNTER. The other operation is the "Incre­

ment Auxiliary Counter" operation. Here, a "1'' is simply added

into the low -order position of the AUXILIARY COUNTER. This

operation is accolmplished in one word time by the DA TA FIRST

CYCLE pulse which, when gated by the INCREMENT AUXILIARY

COUNTER gate from the OPERATION DECOOER, allows a 11 111

l.s lncreMeo,
vx ,/, ru ~ Cn rr. :1:-,.-.--------"-'i;;,...;;~
(;, Ci "i,! 0.. ~

.,I"' r~ he
f)t,tT'Q. c'1 de

I:. ;,d

lnc.re""e"T
Re,,ne,
Reoc.t.l-

J:n

' I

78

D
A
T
A

C
H
A
N
N
E
L

Figure 16. Logical Diagram number 15, Miscellaneous Operations,

BIT pulse to be added into the AUXILIARY COUNTER _by the

ADD IN pulse at 1-3 time. Chap;.er 11 covers the use of the

AUXILIARY COUNTER in programming.

79

CHAPTER X

INPUT/OUTPUT AND CONSOLE OPERATIONS

This paper will devote little space to the question of input/out­

put(l/0) for the Ol'STIC, simply because at the time of writing no

input/output equip;ment is available for use with the machine. It is

anticipated, however, that some type of input/output device will be

9btained when needed.

Faced with not knowing even the type of input/output equipment

(much less its specificatiohs), the system designer can only specu­

late and make recommendations. It is intended, however, that def:.

inite "space" be left in the operation repertoire for a variety of

inpuVoutput codes. To this end, it is recommended that all eight

7X8 instructions be reserved for ~/o operations. Further, it is

recommended that all 7XXX 8(data) addresses be reserved for the

same purpose. By thus anticipating the need well in ~nee, perhaps

the problem of having a needed I/0 instruc.tion and no place to put it

(in the command list) will never arise.

As far as the logical organization of I/0 operations is concerned,

this is, at best, generalization and recommendation. Therefore,

no Logical Diagram for 'I/0 is presented. What· would probably be done

is that an INPUT or an OUTPUT gate would be .turned on, and then

the contents of the OPERATION and ADDRESS DECODERS would be

made available to the I/6 equipment for use in determining the oper­

ation to follow. It is ordinarily preferable that blocks consisting

of several words be transferred on single 1/0 ,operations.. In this

case, the length of the block would probably be determined by the·

characteristics of the J/o unit or its buffer. A ."drum read" or "drum

write" operation might be used here, with the proper number of words

80

81

being transferred off of or onto the drum, starting with the location

specified by the data address of the J./0 instruction. Consideration

might also be given to the construction of a small (16 or 32 words)

high-speed memory unit, constructed using either magnetic cores

or, perhaps, various types of me:mory devices (to compare the

characteristics of each). This memory could serve as a buffer for ·

variOUJ'j I/0 equipment.

Unlike the question of input/output, the matter of the computer

console can be discussed in more concrete ter:ms. Here, the ,ques­

tions of ease of demonstration and simplicity o.f operation arise.

Before considering the console proper, however, it might be well

to discu_ss some of the operating features needed. First, both the

demonstrator and operator will require a means of displaying the
•;

~ontents of the various registers, and methods of changing them if

necessary. This was previously discussed, and it was proposed
'

that separate display lights and entry switches be provided for each

register. A read-only memory was also deemed desirable; this

would cohsist simply of toggle,ewftcheel (no display .. lights are needed) •

in groups o:f 19, each group corresponding to one computer word.

For siow -speed operation and maintenance, lights indicating the

setting of the CYCLE SELECTION FLIP-FI,.OP (data or instruction

cycle) and the setting of the DA TA CYCLE iING COUNTER would
! '

be useful. Similarily, an indication of the ~tatus (set or reset) of

the eight program flags would be hartdy for purposes of, demonstra­

tion, and, of course,. the operator should know if any of the error

latches (overflow, storage selectipn, parity,. tirrling, etc.) were set.

Logical Diagram number 16 (Figure 17) illustrates the various

settings and uses of an "Operation Switch" on the console, in conjunc­

tion with an 11 OPERATION" latch that would determine whether the

machine was running, or stopped. If the OPERATION latch is set

· to "stop", then no pulses ar.e available. As is shown, a number

Srop ke'1
(Co,Hole)

Sra.•T l(e':)

((on sole)

TIM I NG (STEPPING

I NTE::: RNA l.-

OPERATION
SWITCH

((oh sole)

C'jc.le)T17p
(Wh~,, C'j,I•
Sel«,.,•" Fl,p­
"-E!ep. • es2

EXT!:: RNAL

\Nord
-·--··------'

'TO S-r,

Cans o le- ~ \'\,-r '::J 5 w I -r c hes V1J-~2

fo.- SOM!!- Cov,,,r,u,er R.,,s,er

''"''"1
P v Is c

I-la.I-

Figure 17. Logical Diagram numbe:i;- 16, Timing and Stepping.

\
83

may b~ entered into a register from the console onl'y when t'he
\•

OPERATION latch -is sei to stop. 'the desired numb¢r is simply
i·

set into the console entry switches corresponding to .the desired

register, and the "Enter'' key fo,r that _register depre~.sed. In order

to start the machine, the "Start" key on the cons1ble is then dep:re!=Jsed,

allowing the "HOME" pulse to. set the OPERATION latch to r~:h. i

The function of the OPERATION switch is merely to determine in
. .

what manner the computer may be stopped. On "Internal" operation,

the machine rriay be set to stop only when the console "Stop" key is

depressed, or :when an "internal stop" occurs·. An .internal stop may

be a halt code, timing error, sto:rage selection error, or (if desired

by the operatbr). an ove.rflow, or parity error. In addition, a stop

may be desired when the contents of either the ADDRESS REGISTER

or the OPERATION REGISTER is equal to some predetermined number

ente.red into the console entry switches of the INSTRUCTION REGISTER.

The former!:is termed an "address stop", a.nd the latt.e.r an "operation

stop". Also, a stop hiay be desired w'hen instruction hav;ing a minus

sign enters the INSTRUCTION' REGISTER , This possibility will be

discussed more fully in C~pter 11.

On "External" operation, the computer may be set to stop at the
. '

end of every data and instruction cycie, at the end of: each word time,

or for each timing pulse. These :modes of ope ration would be used

for demonstration and rrtaiJ:itenance. Depression of the sta:rt key would

cause .the computer to ope~ate until the next cycle, word, or timing

pulse occurred, at .which time the ma.chine would again stop automati­

cally. Note that drum. operations (read and write) should not be

allowed on word time or timing pulse operation, since to do so would

present rather con1plicated problems in cii-cuit design. Drum

operations on the 1iCycle" setting would be :permissahle. It should

be pointed out that all error latches, as well as the Stop key will, of

course, be effective for external as well as internal operation.

84

Logical Diagram number 16, being for purposes of explanation,

does not specifically indicate this.

It is now possible to discuss the computer console itself

(Figure 18). This sketch presents a suggested organization plan

for the console, while conveying some idea· of the overall appear­

ance. Note that all 19 indicator lig}its and entry switches are

shown for only one register. Of course, all 19 would be provided

for all registers.

Note that the "Operation " switch (lower right side) has

been discussed previously. The "Minus Instruction" switch,

which governs the action taken fo:r minus instructions, is covered

in Chapter 11. The various operating buttons might be discussed.

"Start" and IIStop" were mentioned previously; the "Reset"

button would stop: the machine, reset all error latc,hes (but not

the program flags) and set all registers to plus zero. The "Load"

button would be used for program loading. Its operation is

covered in ;the following chapter.

A word should be said concerning the console appearance.

Some computer consoles have a forbidding appearance; others

are attractive, even to the point of appearing, perhaps, to be

less complicated than they actually are. The OSTIC' s console,

if built as suggested, would co.ntain 152 indicator lights and 152

toggle switches for the registers alone, plus 19 additional

toggles for each word of read-only memory. Therefore, some

thought should be given to the layout and ultimate appearance of

the console prior to the start of construction. A rather bright

indicating lamp will be needed if the machine is to be demonstra­

ted effectively before groups of more than a few students. Special

miniature toggle switches are available, and at least one computer

(Computer Control Company' ,s "Digital Data Processor") uses

them ~ffectively to present a neat-appearing console. Finally,

t-rj
OQ
~
Ii
CD

.....
00 .
()
0
::s
Cll
0
~

CONSOLE

OKLAHOMA STATE UN\VERSITY INSTRUCTIONAL COt'1PUTE.R
INCREMl;i[IJT Re:&1$TliR lNS'i"Rl/lTIPN ~EG wre~ READ-ONLY MS.MORY

0 0 0 0 0 0 0 0 0 0 0 C 0 0 C C 0 0 I \ \ I \ \ I \ \ 000\

En"<er ~,,,
\ \ \ \ \ ' ' ' I. 0 / \ \ / \ I \ \ I 0 '\ I

'
t \ I \ I \

oooz..

INSTR UC.TION COVI\I TeR. UPPER A-CC.VMVl,.I_TC>~
I I ' I . I I 0 0 0 C 0 0 0 0 0 0 C 0 0 0 C 0 C 0

' \ \
0003

l:n-r•• En-.•r

'
I '\ I

'
I \ I \ 0 I ,' ' ' \ ' ' \ ' 0 ' \ ' \ I \ \ \ \

0004

AVl'ill,.IAK1 \...UUNTr...l(1-oWER ACC.VMUMToi

0 o· 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0

'
I

' \ \ I \ ' \ oo o5

e;:..,,e,. ~n'Te,

I .._ \ I

' ' ' '\ ' 0 '
I

' \
.,

'
.,

' '\ 0 I \ ·' \ \ I

"' \ \ 000"

~ASTER D- REG1s,-i;.R 5WITCH~.S
C.'(C 1-E' DATA CYCL£S

0 0 0 0 0 0 0 0 0
OPERATl<>I\I MINUS 11,JST.

PATA
l=I~.!,~ SE'~ON I> ,1-11 ~ I)

Norm« I ,C'l'C I... E: ~,c;e~\,,~c.. I.. 1,,.•rC. 0 0 0 £.,,. .. .r ..
0 TIMING ' \ / • I \ '

I

' 0 {) •WOl!D -0- ST• I"
\l'tST~l/CTIIIN 0 ' z. 3 4 Adolr~H ST/p I '

0 0 0 0 0 0 DAT/~ CI-IAN N EL
~ PUI-SE' r,,.,.,,...r,. T~ei.c.e..

PROGRAM F"LAG5 oooc·oooo 00000000 oo CPEKA-TIN6 BUTTONS
0 0 0 C. C C.. C e 0000
C> i 2 3 4- s ' 7

1,1,,111,111,11,1,
l=.wne.r S'Top STt:tfT Rei,, "'""'"'

- 9' ~ 0 0 · 0 0 0 0 0 0 ' . :,,
11 :) Pt1.r•" '1 Ove,fl•w ';:...-.,.._,~

ERR.OR LATCHE.S

00
u,

86

all important switches and buttons should be accessable to the

seated operator, and all indicators should be easily visible.

CHAPTER XI

PROGRAMMING A~D OPE.RfA TION

Every computer must possess a method for loading the
' '

initial program into me;mory. Most computers have some sort

of built-in logic to provide .for "bootstrapping", that is' to enable

a program to literally rea~ itself into the machine, with only

:the console switch settings bei.:ng used. in other words, a

me.thod of program loading that' does not presuppose anything

in the machine memory is highly desirable.

It is suggested that bootstrap program loading be pro­

vided for by a "Load" button on the console (Figure 18). It

is further s:uggested that, while' the "Console Entry" toggle
' •·

switches for the various regist.ers not be made addressa.ble

in the program,' the' "Data Channel Entry" switches should be

addressable with a data address of 00008 . Also, the Read­

Only memory (which is, of, co-urse, addressable) would have

addresses of 0001 8 , 00028 , 0003 8 , 00208 (for 16 10 words}.

The intended action would .be as follows: Depression of the

console "Load" key wo~ld set the INCREMENT REGISTER to

an increment of 1, set the INSTRUCTION REGISTER to

00 00008+, set the CYCLE SELECTION FLIP-FLOP to data

cycle and the DATA CYCL~ RI~G COUNTER to data first cycle .
.i

No other regi,ster would be chaaji.ged. The desired loading

routine would be set in the ·,iData Channel Entry" switches, . .
and in as many of the "Read-Only Memory" switches as needed.

Depression of the ''Start!' lcey would then cause 1), a "Copy­

Jump" to 00008 (with the .p·revious contents of the INSTRUCTION

COUNTER placed in the 0-REGISTER), 2.), the first instruction

87

88

of the loading routine to be taken from the 111Data Channel Entry"

switches. Note that the INSTRUCTION CUUNTER automatically

takes the next instruction from location ;P.QO 18 , and continues to

take the remainder of the loading routine from the Read-Only

memory in a 'l;imilar manner. The last instruction entered into

the Read-Only memory would, of course, be a "Jump Unconditional"

instruction.

The matter of minus instructions should also be discussed.

As was mentioned previously, it is proposed that the sign of the

instruction word should not enter into the code structure of the

operation. Theref~re, the sign is available for other use. The

writer suggests, in keeping with .the goal of flexibility, that a

number of options be available to the programmer and operator

in relation to minus instructions. Figure .18 shows the console,

with the "Minus Instruction" switch at the lower right.'. The

"normal" setting is that of "Execute". For this setting, minus

instructions are "executed" in the same manner as plus instructions.

The minus sign presents no influence.

The ·"Ignore" setting means simply that minus instructions

are "ignored" by the computer. When the instruction read .into

the INSTRUCTION REGISTER is found to be minus, the INSTRUCTION

COUNTER is simply incremented in normal fashion and the next

instruction sought h:nmediately. Thus no data cycle is taken for

a minus instruction on the "Ignorij" setting.

The "Stop" setting is quite simple. As soon as the minus

instruction is read into the INSTRUCTION REGISTER, program

execution is halted (see Chapter 10). Upon depression of console

"Start'' key, the minus instruction is exec:u.ted in normal fashion,

and the program then proceeds in regular order.
. . .

The "Trace"setting implies a more sophisticated operation.

In computer terminology, a "trace," is a list of the contents of all

89

important machine registers at various points during the execution

of a given program. The trace is used for program analysis and

correction, or "debugging". It is proposed that the execution of a

minus instruction for the "Trace" setting would cause the contents

of all mac.hine registers to be transferred to a special output buffer

at the end of the operation, following which they .~could be punched

or printed out for future use. When the program was corrected,

the switch could be set to "Executerr, and the minus; instructions

would not be traced. (9).

The last setting to be discussed is the "Interrupt" setting.

In normal computer operation, communication with input/output

units is completely under control of tq.e program. If an input unit

contains information which should be transmitted to the computer,

the transmission cannot take place until the input unit is referenced

by some sort of "transmit" or "read" instructi,q;n... The concept

of "program interrupt" is simply that certain input units may be

allowed to interrupt the normal. sequence of computer operation and

transmit data into the computer at times other than during normal

input operations. After the input unit is through transmitting data,

control is returned to the main program. (9, 10). The "Interrupt"

setting is intend~d to allow these interrupt o:perations from certain

specified inpµt/output units ,following the execution of any minus

instruction, reg~rdless of whether the instruction is an I/0
operation. It is anticipated that such a facility would be quite

useful in certain areas of real-time control system investigation.

Appendix B gives the 48 operation ,.co.des that the :writer

feels would constitute a reasonaple and useful command list for

the OSTIC. Although a maximum of 64 commands could be

incorporated, it is felt that a machine such as this should

certainly have a provision for adding new operation codes at a

later time.

90

Chapter 7 described the use of the logical operations "Ring

Add", "OR Add", and "Complement-Load". These operations may

be combined to provide all ~6 of the logical operations listed in

Table VU. F~r example, if B is in the LOWER, A is in drum

location 1510, and the desired operation is AB, then the following

sequence of instructions would provide AB in the LOWEI,l:

-

Operation

Complement-Load

O~R Add

if AB is desired:

Reset Add Lower

Add Upper

Complement-Load

OR Add

Data Address

1510

D-REGISTER

.LOWER

1510

D-REGISTER

UPPER.

Finally,: if all l's are desired in the LOWER, the sequence

Reset Add Lower

Reset Add Lower

Complement-Load

UPPER

VPPER

D-REGIST~
. .. .· ·.-·c · .. : .

would require a maximum of 10 word times (.f40 :microseconds) if

the program was in the Read-Only memory.

It will be noted that a "divide II operation .is not included in

the command list. This omission was intentional; it was felt that

the extra cost of providing built-in division was not justified on

this machine. However, a divide routine may be easily programmed,

using the AUXILIARY COUNTER to tally the shifts. If the dividend

(which is plus) is in the ACCUMULATOR, and the divisor (also

plus) in the D-REGISTER, the following routine would prove

effective.

.91

Inst. Address Operation Data Address

00018 Set Auxiliary Counter 011102

0002 Subtract Upper D

0003 Jump Minus 00058

0004 Halt-Jump (Error)

0005 Store D 1513

0006 Add Upper D

0007 Increment Counter

0010 Jump Auxiliary Zera (Operation over)

0011 Shift· Left 00018

0012 Subtract Upper 1513

0013 Jump Minus 0006

0014 Add Lower 0016

0015 Jump Unconditional 0012

0016 008 00018

This routine, if placed in the Read -Only memory, cWould perform

division in almost the same manner as would a b1Iilt-in divid~

instruction.

Freilich, (1 ~), presents comparative data on various present­

day digital corriput~rs available for process control applications.

One method of comparison used is cos't; another is the time rec­

quired to obtain data from the 11bulk memory 11 of the machine,

whi':h would correspond to the drum in the OSTIC, and from the

11working mem?ry 11 , which would correspond to either a core­

storage unit or to the Read-Only memory. The average access

. time for the bulk memory in the OS TIC is 256 word times,; or

8. 9 milliseconds. This is lower than 10 1 of the 24 computers

l~sted, and higher than 14 (10 of the ;14 h:ad times of 8. 3

milliseconds). The Read-Only memory ;,in the OSTIC has an

access time of one word time, or 34 microseconds. This is

somewhat greater than anyrhaohine t~.sted, ,al~hougfo s·:iJX:!ma:chines

92

had access times of 20 microseconds or more. Twenty-one of the

machines listed were binary computers (one was octal), 19 used

single-address instructions, 14 had .bu\k memory capacities ofi

4096 words or less, seven were parallel machines, and 13 used

words .. -0£ 24 .bits or less (one used 11 bits). It might also be

mentioned that one machine cost t4·0, 000, another cost$389, 600,
···-

and the average price was in .the neighborhood of $1 lo, 000. It

may be concluded that the OSTIC, as presented here, compares

favorably with commercially available mac.hines for applications

involving control systems (i:'esearch and experimentation.

Another interesting comparison might be made between the

OS TIC and the IBM 650. The drum in the 650 rotates at 12,500

rp:i:n and has 50 words per band. The.refore, the average access

time is 25 word times, one _iWord time being equal to approximately

96 microseconds. For various reasons, the faste,st 650 addition

speed is 125,000 additionSper minute. For the OSTIC, the fastest

possible addition would re-iuire three word time\S (one to acquire

the instruction, one to acquire the opeg:-and, and one to add). Thus,

the OSTIC can perform 512/3 additions per drum revolution, or

approximately 589,000 additions per minute. The 650 worst case

is 50 word times to find the operand, and sb to find the instruc:Ubn,

or one ·addition every other drum revolution, resulting .in 6250

additions per minute. The OSTIC worst case is 1725 additions

per minute.

In closing this chapte.r, the writer strongly recomme.nds

that, as soon as the OSTIC is -0perating, an assemblt, program be

devised. It is felt that only in this way can the full potential ·

(especially with respect to operating speed) of the OSTIC be

utilized.

CHAPTER XII

. CONSTRUCTION AND MAI!'f TENANCE

This chapter will present some of the writer's ideas and

suggestions regarding construction and maintenance of the

Oklahoma State Instructional Computer. It is the writer'~

philosophy that maintenance must be a primary consideration at

all stages in the design and construction of any digita.f computer.

Back-panel wiring should be cabled, not point-to-point,

and wire splices should never be allowed within a cable. A

color-coding plan should be adopted early, at least for standard

voltages and internal pulses, and should be strictly adhered to.

Whenever any modifications, additions, or repairs (no matter how

minor) are made to the computer, they should be immediately

recorded in a logbook that is kept with the machine. Whenever an

unlisted modification is sencountered, it should be traced and

recorded promptly.

It is further suggested that, insofar as possible, the com­

puter be built in a modular fashion. Since most flip-flops will

be used in groups of 18, perhaps each group could be mounted,

with indicating neon lamps, on a small panel which would plug

into the main chassis. In that way, whole "registers 11 coulq

be moved around for trouble shooting. In this regard, a few

extra units of all types should be kept on hand for such use.

Documentation(or the lack of it)has been the downfall of a

number of computer projects such as this. Machine records

must be kept up-to-date. In addition, it is suggested that each

individual who has the responsibility for designing and building

portions of this ~chine be required to submit, as part of his

93

94

project, a list of troublei:s.h.cloti:Q:g , testing, and repair procedures

for the unit be constructed.

Marginal voltage tests are very valuable procedures

in computer maintenance. As soon as power supplies are ready,

work should be started toward toward perfecting such procedures.

Finally, a library of the various test a.nd de.monstration

programs should be maintained.

· 95

;•

)

CHAPT;ER XIII

SUMMARY

The philosophy and general system logic design was devel­

oped for a small magnetic-drum digital computer. The design

was continually influenc~d bJ the proposed future applications of

the rra. chine. That is, the machine is primarily to be used .in

connection with the teaching ·,Q)f digital systems design, and for

demonstrations of digital cir cults. In this light, the machine

system logic was to be straightforward, and the concepts of con­

trol and computation were to be easily understood. In addition,

it was to be economical to maintain, and the command list was

was to allow considerable flexibility in the application of the

machine.

Perhaps the greatest contribution to a straightforward

,.
C .

system concept is that of using a central data channel. This

allows the control logic for the various operations to co:n.s·is;t

primarily of transferring data words between the various registers

and the data cha_nnel lines.

The selection of binary operation and single-address instruc­

tions were "natural" selections for a machine of this type. The

use of parallel information transmission contribhtes muc.h toward

simplifying the control logic. Parallel operation compromises the

economy criteria to some extent; however, it was felt that the

req,uirement of overall simplicity in machine organization was

the more important factor in .this particular decision.

The representation of numbers within.the computer in sign­

and-magnitude form is consistent with the use of the machine for

96

demonstration purposes to students in computer engineering

courses, as is the facility for performing the various binary logi-, '­

cal operations.

Provision for a very extensi{re list of branching operations

through the use of the program :ifil.ag concept will prove v~luable

for experimental applications in control systems work. Flexibil­

ity is also provided through the availability of a. number of operat­

ing options for minus instructions. Operating speed m~y be in­

creased conside:ra.bly through the variable inc:rerrientation of the

instruction counter.

In conclusion, it is· felt that the computer design presented ,

herein compares favorably with commercially.available computers

of similar memory capacity. The flexibility inherent in the design

bf the OS TIC computer should allow a wide 'va:riety of us efu1 and

worthwhile applications wit9ipthe School of Electrical Engin~ering

of the 'Oklahoma State University.

97

"BIBLIOGRAPHY

(1). Ledley, Robe:rt Steven. · Digital Computer · .
and Control Syste'm Engineeri~g. New 'York Mc Graw­
Hill Book Company, 1960.

(2)

(3).

(4).

(5).

(6).

(7).

(8).

(9).

(10).

(11).

. II 2).

Flores, Ivah. -Computer Logic:· The Functional Design of
Digital Compute.rs. Englewooq Cliffs, New Jersey:­
Prentice Hall,. Inc. , 1960 ~

Phister, Montgome.ryi Jr· .. Logical Design "pf Digital
. Compute:rs. New Yo:rk: John Wiley and-Sons, Inc., L9,58' ..

. '

Richards, R. K;. Arithmetic Operations in Digital/Computers.
Princeton: D. Van Nostrand Compan~ .Inc., 1955.

Buchholz, W~rnei:. Planning a Compµter System: Project.
Stretch. New York: McG;-aw-Hill Book Company, 1962.

Beckman, F, S., F. P. Brooks, Jr., and W. J. Lawless, Jr.
"Developments in the :Logical Org"nization of Computer
Aritl;lmetic and Co:q.trol Units". _ The Proceedings of the
IRE, XLIX (Januar'y, 1961), 53-66. --

Kaiser, C. ,Joseph. 11 Blini.ination, of-Signal ·Race Go.riditio.nis ~

in Digital Design!(.. soii'd si:a.te be·idgn, ·1Ii '(.ianua·r-y,. °1962),
29-34. ·- ..

Brobks, F. P., Jr., C. A. Blaauw, a.nd W. Buchholz.
"Processing Data in Bits and Pieces". IRE Transactions
on Electi'onic Computers, VIII (June, 1959), 118'."24.

Brooks, F. P., Jr. "The E~ed1t~ Ope~ations - A 'Fouirth
Mode of Instruction Sequencing". Communications of
t,h.~ As.sociatiqn for Computi~f Machinery, III (March,
1960), 168-6?. -- -

Turner, L'. R .. , and J. H:. Rawlings. · "Realization of Randomly
Timed Computet'.·Jnput and Output by Means of an Interrupt

. I .

Feature". IR,,E Transactio,ns on Electronic Computer;
VII (June, 19$8), 141-49.

Freilich, Arthur. 11 1962 Computer Control Sur~~y".
Eiectroriic Industries, XXI (June, 1962), 15-18.

Gorn, Saul,: P. Z. Inge'rman, and J. B. 1Crozier. "On the
; Construction of Micro.-Ffow charts 11 • Communications
of the Association~ Computing Machinery, II (October,
1959), 27-32.

98

APPENDIX A

GRAPHICAL SYMBOLS

Listed below are the graphical symbols used in the Logical Dia-

grams accompanying this paper. An explanation accompanies each.

AND Circuit
B C

See Gorn (12.), for further discussi.cn.

C D = AB Note that A

A -~E--i'!!--31--i~'T!'-.,;..
B

A E = AC passes through

F---

I= FGH

D E
G~H

T used is

I

the connector.

The arrowhead conven-

that the darkened arrow-

I OR Circuit head represents the signal or

J

K~~K

pulse of the longer dura-

tion.

TEST, Is the signal present (yes or no) ? No operation of the logic

Is /= 9vdl·
Co...,,/'a nun

J..tt ..,.eJ, . o,,?

EXPLANATION

,vr n ""
5re/J
A ., r, e~ j,'#t 7/1111

D- Re11s.e.r
Tr.ue. - F1Bvte.­
Read- OvT.

~'l~ll' I
,,.,, dependent upon the pres -

/:l,p - ()

Pio of the signal is valid if

the i,ignal is not present,

A rectangular symbol or not on.

conveys information as

to the action to be taken.

REGISTER: An oval symbol always represents an

internal machine register, or its contents.

PULSE: A triang'llar symbol always represents a

pulse. The timing of the pulse is shown at
1
the top.

99

APPENDIX B

COMMAND LIST

· The following operations . .constitute the command list

suggested for incorporation i:p:to: .t~e OS TIC. The name of each

operation is .1isted, together with ·the number of word-times re ..

quired for execut~on 1, Operation Decoder ou~put gates required,

pertinent Logical Diagram number·s, and a brief d~scription .uf

the c;,pera;tion. 2

1
T.he abbreviations 1.used:in co11-nection with the word·times _

required are as follows:

Op - Operand required, If located on the drum, from one
t,o_ 5'12 word-times are required for acquisition, , with
an. average of 256 required. If located in the rea.d­
only memory or an internal register, one word-time

. required for acquisition.

C - Complement cycle, using one additional word-:time~ .
. will be required if negative answer .is developed.

N - =Number of l's in word ('~x~luding sign bit).

S .. Number ofl?ositions des.ired on a shift.

2 Th:~ ibbreviations us~d .in connection with the operation
descriptions are as follows:

XXXX refers to the contents of a register or a drum ..
location.

ABCD refers to the data address 6£ the instruction in
octal form. A refers .to the first octal digit, B to the
second, C to the third, a.nd D to the fourth.

,,

Qper~Uon Timing Decoder Gates

, ARITHMETIC CODES:

Add Upper Op,:+ l + C Operand, Add, Upper

Add Lower Op+ 1 + C Operand, Add, Lower

ReSet Add Lower Op+ 1 + C Operand, Add, Lower,
Reset

Add Magnitude Lower Op+ 1 + C Operand, Add-, Lower,
Magnitude

Subtract Upper Op+ 1 + C Operand, Subtract,
Upper

Subtract Low er Op+ 1 + C .- Operand, Subtract,
Lower

Reset Subtract Lower Op+ 1 + C Operand, Subtrac:t,
Lower, Reset

Subtract Magnitude . Op+ 1 + C Operand, Subtract
Lower Lower, Magnitude

Reset Multiply Op+ 1 + N Operand, Multiply
+ 18

_/

Logics

5, 6, 8

5, 6, 8

5, 6, ,8
,, ,"

5, 6, 8

5, 6, 8

5, 6, 8

5, 6, 8

5, 6, 8

5, 6, 9

Description

Add XXXX~to Upper.

Add XXXX to Lower.

Reset entire
AGcumulatbr to: plus "
~ero', 'theri' add -xxx'x
to Lower{ : ''.

- -· --- ·--

Add I XXXX J to
Lower

SubtractXXXX from
Uppe'r

Subtract XXXX from
Lower~

- Reset entire Accumu-
lator to plus zero,
then subtract XXXX
from Low er.

'
Subtract I XXXX I
from Lower.

Reset Lower Accumu
· lator to zero.
Multiply XXXX by
Upper.

I-'
0
0

\.

.. ,c,,

Operation Timing Decoder ·Gates

-
LOAD AND STORE CODES:

LoadD Op Operand, Lpad D

Sto:te D Op Store, D

Store Upper Op Store, Upper

.
Store Lower Op Store, Lower

LOGICAL CODES:

Complement Load Op Operand, Complement

Ring.Add Op+ 1 Operand, Ring Add

OR Add Op+ 1 Operand, OR

SHIFT CODES:

Shift Left 1+S Shift, Left, Shift

Shift Right Circular 1 + S Shift Right Circular

Logics

5, 6

7

7
'

7

5, 6, 8

5, 6, 11

10

10

-
Description

Place XXXX in D.

Place Din XXXX
(drurq only)

Place lJpper in D and
in xxxX':(dru m only)

__ Place Lower in D and
in XXXX (drum only)

Plac ~. XXXX in D;
take 1' s complement
of entire Accumulator
(except ..sign)

Shift entire Accumu-
lator CD: places left)
32 10 maximum .

Shift entire Accumu-
lc:1.tor CD places right
(32 10, maximum). · Bits
shifted off right end
enter left end.

-0 -

Operation Tim in~ .J?ecqder:~O?d:e s ..

..

BRANCH ·CODE'S: ':
···-··

Jump Unconditional 1 · Branch; Unconditioned
Jump

Jump 'Minus 1 Branch, Minus Test

Jump Zero --1 Branch, Accumulator
.. Zero Test

,· ·-

· Jump 011 Ovi~:tf}o.w 1 Branch, .Overflow Test
.,,.,.

Jump on Parity Error 1 Branch, Parity Test

/

iump on z era Auxiliary 1 Branch, Auxiliary Test
. .

Jump Flag O (or 1-7) 1 Branch Flag O (,or .t-7)
· 8 code~ ··totat .. Test

Copy Jump 2 Branch, Copy-Jump

- -

· Lpgics

12

12

12

12

12

12

12

13

p~ s~_+}_ption

Set Instruction Counter
to ABCD.

If Accumulator sign
is minus, set Ins.true-
tio,n_ Counter to ABCD.

If entire Accumulator
is ·zero (plus or minus)
set Ins_truction Counter

to ABCD.

If Overflow Latch is on,
. turn to off and set
InstruGtion Counter. to
ABCD.

-If Parity Error latch
is on,. turn off and set
Instruction Counter to
ABCD.

If Auxiliary Counter is
zero, set Instruction
Counter to ABCD.

_If Program Flag O :
(or 1-7) is on, set
Instruction Counter
to ABcn:

Copy contents of
Instruction Counter into
D, then set Instruction
Counter to ABCD.

-

....
0
N

Operation Timing Decoder Gates

PROGRAM FLAG CODES:

Set Flag O (or i-7) 1 Flag, Flag Set

Res et FJ;a.g O · (or 1-7) 1 Flag,. Flag Reset

M-15,C.ELLANEOUS CODES:
..... - · ..

Set Increm:ent 1 Set Increme.nt
-

..

Set Counter 1 Auxiliary Counter

Increment Counter 1 Increment Auxiliary
Counter

Halt-Jump 1 Branch, Unconditioned
Jump, Halt

. INPUT/OUTPUT CODES:

Eight c;odes, 70 through 77
;' .

Logic!:!

14

14

15·

15

15

12

-,-
Description

·-

Turn on Program Flag
A if condition BCD -is

' true.

Tur-n off Program
Flag A

Set Increment Register
to BCP,

Set Auxiliary Counter
to CD {3 ~ 10 maximum).

Add 1 to Auxiliary
Counter.

Set Instructio.n Counter
to ABCD, then stop
machine .

""" 0
w

APPENDIX C

LIST OF PULSES

All machine pulses appearing .in the Logical DiagEam,a

are listed by name. Timings, diagram numbers, and a brief

descrip:t;:i@n of the function of eac:h pulse accompany the listing.

104

!
i

Name Timi;ng

I
Add-in pulse I - 3

Address pulses 1

Address Test 0 -1 .. 2

Complement Test 4

Cycle Test 3

Cycle Turn~On 0

Data Fir st· Cycle 0-4

Data Second Cycle 0 -1.4
.

Data Thirfl Cycle 0 - 4

Instruction Counter Increment 4

Miscellaneous Reset 4

11 111 Bit 0 -4

Read-in 2 - 3 -4

Sign Add 1
'

Sign Test 0

Word Pulses 3

I Word Time 0 - 4

: Write 3
i

''o"Bi t 0 - 4

Logics

8, 9, IO, I I, 15

5, 7

5, 6, 1

8

5, 6. 7, fl, 14

2, 3, 4

All except numbers
1, 2, 16

4, 8, 9, 10, 11, 12, · 13

4, 8

3

9, 10

8, 9, 10, 15

5, 6, 7

8

8

5, 7

3, 4

6, 7, 10, 12, 13, 15

8, 9

' Purpose

Add into various registers.

Address of words available.

Test band number.

T~st for Complement cycle.

Determine next cycle. Flag
operations.

Change cycle settings.

Fir st operation on data cycle.,

Second operation on data cycle.

Third opera tion on data cycle.

As name implies.

Reset various latches.

. Adding II l'"s 11 •

Data transmissibn.

Add -'in sign bit

Set up end-around carry logic.

Word bits from read heads.

Provide cycle· gates.

Write onto drum and into
Registers.

Adding 111 0' s 11

-0
I.Tl

106

APPENDIX D

LIST OF LATCHES

All machine latches appearing in the Logical Diagrams are

listed by name. Time turned, time turned off, diagram numbers,

and a brief description of the function of each latch accompany

the listin;g..,

Time Time

Name
Turned Turned
On .. · .. Off

Complement 4 4

Cycle Selection Flip-Flop 0 0

Data Cycle End any
except 0 0

Data Cycle Ring Counter 0 0

:

End-Around Carry prior 0
to 4

Equal Comparison I 0
I
! Program Flags O - 7 3 3

!
I
i i Instruction Cycle End any 0

i except
I

i 0 and 4
I
I
I Non-Drum Read 0 - '1 4

Operation iJ - 4 0 - 4

,i Overflow 4 0

Parity Error 3

Shift-or-Add 0,4 0,4

Signs Different 0 0

Logics
-·

. -

8

2, 3, 4

all except
,l F3 ;::: i.6 ':

4, 5, 6, 8,
IO, 13

8

5, 7

14

2, 3, 5,
6

6

12)16

8, 12

5, 12

9, 10

8

Use ..
:

Prevent re-complement.

Set mac_hine in either data or
instruction cycle mode.

Set up change .to instruction cycle.

Set up data first, second, third cycle.

Indicat'e that an end-around carry
has occurred.

Set up 9rum read or write

Various purposes {available to

programmer).

Set up change to data cycle

Set up acquisition of non-drum words.

Sets ma0chirre to stop or ~n.

Indicates Accumulator overflow nn
addition.

Word read fromJ;l:i;um has incorrect
parity.

Operations involving shifting.

End-arou:q.d carry and complement.

I

I
I
!
I

i

.....
0
-.J

Name

Signs Negative

Signs Positive

Step Anticipation

Storage Selection Error

.,

Time
Turned
On

0

0

Time
Turned
Off

0

0

any
exceptO 0

0 - 1 0

Logics

8

8

4

6, 7, 12

Use

End-around carry and ~rflow.

End-around carry and overflow.

Set up data cycle change.
.... __ ,

,Indicate incorrect data address.

-0
00

-VITA

John Lee Fike, ;fr. ·

Candidate for the Deg·ree of

Master of Science

. . .

Thesis: . THE PHILOSOPHY AND SYSTEM OROl-\NIZATION OF
·.- ' -~.
A SMALL DIGITAL COMPUTER

Major Field: Electrical Engineering

Biographical:

· Personal Data: Born .in Mu.skogee, Oklahoma, .December
l, 1937, the son of John L. and La Rue Huggans Fike.

Education: Attended eleme·ntary schools in Muskogee;
graduated from M:uskogee Central High School in
May, 1955. Attended the Oklahoma State University
and one semester of evening classes at the University,.
of Tulsa; received the Bachelor of Science Degree ·
from the Oklahoma State Univertiity in May, 1961,
with a major in Electrical Engineering; completed
·r·equirements for the Master of Science degree in
August, 1962.

I
Professional Experience: Employed by Internationil

Business Machines Corporation from MarGh, f957,
until August, 1958, as a Customer Engineer; c.

eniployed during the ,summer of 1959 by Jhell-Oil
Company,. as a Programmer; employed/during the
summer of 1960, by the Radio Corporation of •
America; e.mployed by the School of Electrical ··
Engineering of the Oklahoma State University from
September, 1961, until M,y, 1962, as a Graduate
Assistant; employed during all other periods siri.ce
September, 1958, a.s a Student or Graduate Assistant
by the Oklahoma State University Computing Center.

Professional. Organizations:

Eta Kappa Nu; Sigma Tau; Oklahoma Society: of
Professional Engineers and National Society of
:Pr0fessional Engineers (Junior Member); The
Institute of Radio Engineers and the Association for
Computing Machinery (Student Member)

