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CR.APTER I 

INTRODUCTION 

Little is known experimentally or theoretically about the basic 

phenomena of gas in the mixing region of a supersonic axi-symmetric 

free jet with turbulence, Considerable theoretical and experimental 

work has been done in the past on free jet mixing but principally for 

two-dimensional (plane) constant pressure flow. The free jet must vary 

from free ·stream velocity (Ucoo) at the inside edge of the mixing region 

to zero velocity at the outside edge. Experimental work on free jet 

mixing is still needed for determining the rate of spread of the mixing 

region. This spreading rate constant (a) is used in missile base pres­

sure calculations, in ejector calcu-lations,.and in rocket exhaust flow 

problems, a is the only experimental information required by the well 

known mixing theory of Korst (1) 1 . Values of a as a function of Mach 

number are currently based on very meager data, and this principally for 

plane flow, the most reliable probably being that given by Liepmann and 

Laufer (2), A straight line approximation of a versus Mach number is 

commonly used by extending a straight line from Tollmein's (3) value 

(a= 12 at M = O) through a grouping of experimentally determined values 

of a near M = 1. 6 which vary from 15 to l 7. (see Figure · 2). 

In connection with contract work being performed for the Sandia 

1 ( ) Refers to Selected Bibliography. 
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Corporation on non-steady, axi-symmetric base pressure problems, more 

exact knowledge of ~ values became imperative. Sandia agreed to run 

velocity profiles on axi-symmetric free jets exhausting into the atmos­

phere at Mach numbers of 0.70, 0.85, 0.95, l.50, and 2.00. M = 2 re­

quires a supply pressure of about eigh,t atmospheres to produce the de­

sired free.jet. Above this Mach number, the ratio of supply pressure 

to jet pressure rises rapidly, becoming about 37:l at M = 3. To obtain 

data at higher Mach numbers, Oklahoma State University agreed to develop 

a constantpressure axi-symmetric free jet in a low pressure mixing 

chamber, The free jet was to be several diameters long with M = }. 

Values of ~ at various. axial stations froni ·the nozzle exit were ·to be 

determined, These data were to be correlated with those supplied by the 

Sandia Corporation, 

The purpose of this thesis was to design and develop a self-ejecting 

free jet chamber and to determine the value of ~ for the axi-symmetric 

free jet .at a value of M = 3. In the testing, the stagnation tempera­

ture-of the free jet was equal to that of the surrounding air. Measure­

ments of total pressure were taken by moving a pressure probe across the 

mixing zone at various axial stations from the nozzle exit, i.e., the 

point where the mixing of the free jet with the still air first occurs. 

From these pressure readings, assuming negligible static pressure grad­

ient across the mixing zone, the velocity variation across the mixing 

zone was determined, These data provided the necessary information for 

the calculation of thespreading parameter ~. A full description of 

the e.xperimental apparatus is given, together with the resulting veloc­

ity profiles and calculated values of the spreading parameter. 
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CHAPTER II 

THEORY 

A, Physical Description of Turbulent-Free Jet Mixing 

Axi-symmetric turbulent free jet mixing occurs very frequent_ly and 

greatly affects the adjacent flow field. A few examples of this type 

of flow are: 

1. Flow past the blunt base of a projectile. 

2. Jet flow at the base of a missil_e. 

3, Separated flow inside an over-expanded nozzle. 

4. Flow resulting from the -sudden expansion of a round duct. 

Situations often exist in which combinations of the above are involved, 

especially 1 with 2 or 3. The distinguishing property of free 

turbulent jets is the.absence of solid flow boundaries and hence the 

.absence of a laminar sub-layer. A free jet boundary occurs between two 

streams moving.at different velocities in the-same direction. Such a 

·surface of discontinuity in the velocity of flow is unstable and gives 

rise·to a zone of turbulent mixing downstream of the-point where-the 

·two streams first meet. The width of this mixing region increases 

linearly with x for plane jet flow, x being the-streamwise distance 

from the point where·the free jet mixing starts. The free jet spreads 

out-and its-average velocity decreases, but the·total momentum remains 

constant. It has been found that the rate of spread of the mixing region 

for a supersonic free jet is less than the rate of spread of a subsonic 

3 
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free jet (i.e., ~ is larger). A short distance downstream of the mix­

ing region, the original boundary layer loses its identity; and the flow 

results only from the occurrence of the mixing region, the undisturbed. 

free jet, and still air. 

An important occurrence of free jet mixing is that resulting from 

a sudden recession.of a guiding wall, resulting in a downstream facing 

surface,. referred to as a "base." In subsonic flow, the pressure at 

the base of a sudden enlargement is about equal to the pressure of the 

entering jet. For supersonic velocities, i1I11Iiediately downstream of the 

sudden enlargement, the base pressure is generally quite different from 

the pressure of the entering jet. Mixing theories ·exist which have 

proven useful in calculating the base pressure·of a missile. An improp­

er calculation could cause an error in design resulting in the recircu­

lation of hot nozzle exhaust gases back toward the base which in turn 

could cause .a failure of the missile. This problem is greatly magnified 

on missiles with multiple nozzles arranged in a circular pattern. 

To obtain a physical understanding of the·spreading rate parameter, 

first consider- compressible flow over a suddenly recessed plane wall. 

Base Region 

Figure A, Two-Dimensional Compressible Free Jet. 
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Along the mixing region, a short distance downstream of the corner, the 

velocity pro·file becomes fully developed. (See Figure A.) This means 

that the velocity profiles at diffe~ent distances x can be made con-

gruent by a suitable choice of a width scale factor. The velocity in 

the mixing region is now a function of only one variable which is de-

fined as 1\_= ~ y/x, the position parameter. A rough estimate of the 

distance for the velocity profile to become fully developed is ten 

boundary layer thicknesses, (3). 

B. Analysis of the Velocity Profile of a Free Jet Mixing Region 

\ 

By simpl;ifying assumptions, such as negligible static pressure 

gradient in the transverse direction, it is permissible to study free 

jet mixing problems with the aid of the two-dimensional plane boundary 

layer equations: 

1) 

2) 

. au.. dLL 'cu.. 
Equation of Motion: ~ + Ll ox. + ,r ~ :: 

Continuity Equation: ~~- + ;),r 
or 2>1t = O 

Consider the case where two streams whose constant velocities are U00 

and U.'.., , respectively, where U "° > U.:0 . Down.stream of the point of 

encounter (x = O), the·streams will form a mixing region. The first 

solution to the problem under consideration was given by Tollmieh (3), 

for plane, laminar, incompressible jet mixing. He made use of Prandtl's 

mixing length hypothesis for turbulent shear. 

3) 

Goertler (4) 

1:'.' ::f ~2 1~1~ o~ ot 
arrived at a simpler solution by using Prandtl.' s hypothesis 

for the shearing stress. 

4) 1:' =fE. du. 
~ "a' 

5) E. =Cb (t{~- V."") 
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Here, virtual kinematic viscosity is assumed constant over the entire 

width of the mixing region and approximately constant in the x-direction, 

The incompressible ·solution obtained,;by Goertler was 

where . O" = 11 y /x and 

1l 2. 

7) .v,.f 1l. = } 5 e - ~ J ~ . 
0 

If U !.o O, the above equation reduces to 

8) ~-=~(1+~1l) 
Subs ti tu ting for erf 1/_ and letting p = ~ one obtains 

. l:. 'U.., 
0- ~ 

I I s 2. 9) ¢ = T + fl e -~ J.~ ' 
0 

For compressible·turbulent flow. equation 8) has been shown by Korst (1) 

to be·valid but now O" is a function of Mach number. This equation 

can also be used for axi-synnnetric compressible flow providing the 

radius is large compared to the width of the mixing region. 

C. Eval~ation of Spreading Parameter Constant (o-). 

Evaluation of O" may be performed from considering the-slope at 

the inflection point in the velocity profile. For 

10) 

2 

-(o-Wx) 
e = 0 V 
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Thus, the inflection point·occurs when y = O, and the·slope of the·curve 

at y = O is 

11) (c!) c/J) 
J. f 11=0 

Solving for 

12) CT = X- ff (li_) 
J.13- ~=o 

( J¢_) can be approximated by drawing a tangent to the·experimentally 
J 1t ;::o 

determined curve of u/U= versus y/x at y = ·o and u/U= 

ure B, it is easily seen that (J.¢ \ ~ 6.¢ ~. I 
7'if"l11==0 - 61 - 2. ~J 

·Thus; (T = x.fi 
2. '11i 

= 0.5. By Fig-

This method is acceptable in principle; but in practice, this is not 

the most accurate method. A more accurate method is described later. 

In.fle.ction Point 

Tangent at the Inflection Point 

Figure B, Determination .of the Jet Spreading Parameter, 
~, from the Velocity Profile. 
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D. Published Values of the Jet Spreading Parameter 

Tollmien (3) considered the mixing of an incompressible, two­

dimensional free jet at constant velocity with the adjacent still air. 

As previously mentioned, Tollmien discovered that the plot of dimension­

less velocity (u/Uo0) versus dimensionless distance (rr y/x) closely 

approximates a Gaussian error function, where rr is the calculated value 

that will fit the experimental measurements to the error function. 

Tollmien's value of rr was found to be 12. Liepmann (2) determined 

experimentally the velocity distribution in the mixing region and the 

rate, of spread, both into the jet and into the·surrounding air, for a 

two-dimensional incompressible jet, He verified Tollmien's spreading 

rate parameter value of rr = 12. Abramovich (6) developed the theory 

of free turbulence propagation and boundary layer theory for a plane­

parallel free-subsonic jet in which the compressibility effects were 

included, No rr determination was reported, Gooderum (7) presented 

the results of the mixing of a two-dimensional supersonic free jet of 

M = 1.6 and Pjet·= 1,5 Pstill air by measuring the density variations 

by an interferometer across the mixing zone in the. region near the noz­

zle, The experimentally determined value of the spreading rate-param­

eter was found to be 15, Pai (8) determined that for turbulent. jet 

mixing in two-dimensional compressible flow of M = 1, 7 that rr = 17. 

Pai worked with a rectangular jet-exhausting into the atmosphere. Two 

other values for rr were obtained at the University of Maryland in 

1954 by an optical study of two-dimensional jet mixing at M = 1.6 and 

1.8. (9). For bothMach:numbers, rr was 17.2. 

Four-scattered data points existing for the·s:preading rate param~ter 

for compressible flow are· shown in Figure· 2. Th~se values ~ere a,11 



determined for the same Mach number range -- and only for two-dimensional 

flow. Tripp ( 10) suggested using a straight line approximation of CJ" 

versus Mach number by extending a straight line from Tollmien's value 

·through this scattered grouping of experimentally determined values of 

CJ", (See Figure 2.) CJ" was thus approximated by CJ"= 12 + 2.758M. 

Although this linear equation for CJ" is based upon very meager data, 

it is being widely used. Goethert (11) used this linear formula for 

9 

CJ" in his recent article on base flow on missiles with clustered rockets, 

even though the Mach number was well above that of the-existing data 

points and the nozzles were axi-synunetric. 



CHAPTER III 

DESCRIPTION OF APPARATUS 

As explained previously, it was required to produce a shock free, 

unbounded jet for axi-symmetric compressible flow. One requirement was 

that the exit pressure of the nozzle be the· same as the pressure of the 

media into which the compressible jet was flowing. Supply-stagnation 

pressure to the nozzle was not-sufficient to satisfy this requirement 

for M = 3, the Mach number desired.for the tests, with flow into the 

atmosphere. Thus,. exit pressure being less than atmospheric pressure, 

it was necessary to exhaust the nozzle into a low pressure area. 

Rather than produce this low pressure area with a vacuum pump, it was 

decided that the same effect could be produced by a self-ejecting 

supersonic diffuser. Therefore, design components consisted of: 

A. Supersonic axi-symmetric nozzle 

B, Free jet ~ixing cha~ber 

C. Self-ejecting supersonic diffuser (ejector) 

D. I~strumentation for pressure probe 

A. Design of the Axi-symmetric Supersonic Nozzle 

In order to generate a uniforfu, shock~free jet, .one must maintain 

.a uniform profile.at the nozzle exit. The nozzle mu.st be carefully de­

signed since uniform flow fields are not easily produced. The nozzle 

was designed by the Foelsch (12) method with a throat diameter of 

10 
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0,55 inches, an exit diameter of 1.132 inches, and a design Mach num­

ber of three. Nozzle contour dimensions are given in Appendix A, along 

with the design equations used. The nozzle was constructed of brass 

with no allowance made for the thickness of,the boundary layer since 

the total length of the nozzle wi:ts quite small. The nozzle was oper­

ated with high pressure; dried, cooled air supplied to a large plenum 

chamber in which the ·stagnation pressure level was contrblled. The 

nozzle exit velocity profile was checked for uniformity by measuring 

the pressure variation across the flow at the exit. The resulting uni­

form pressure profile is shown in Figure 9. 

B. Free Jet Mixing Chamber 

The mixing chamber or vacuum chamb~r was designed from a i2-inch 

long, 1/4-inch wall thickness, 6-inch outside diameter cylindrical 

section of lucite, Lucite was chosen to enable an observer to s·ee 

inside the mixing chamber during tests. Initial tests of the mixing 

chamber showed that it would not withstand the high compressive forces 

produced by the vacuum (about -11 psig) without dangerous deformation. 

This problem was solved by putting a reinforcing ring around the outside 

of the mixing chamber. This kept the cross-section of the chamber cir­

cular and enabled it to withstand the large compressive forces. The 

ring also provided a very adequate guide for the pressure probe, A 

diagram _of the mixing chamber is shown in Figure 8. 

C, Self-Ejecting Supersonic Diffusei 

The d.e.sign of the ejector was the most critical. This unit keeps 

the pressure of the mixing chamber equal to that of the exhausting jet 
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which is a necessary condition to maintain the desired supersonic axi­

synunetric free jet. An ejector that is too efficient will produce a 

chamber pressure lower than the nozzle exit pressure resulting in an 

under-expanded nozzle. Similarly, an ejector with too low an efficien­

cy will result in an over-expanded nozzle since the nozzle exit pres­

sure will be less than the chamber pressure. The ejector was designed 

so that it could be moved from a position just downstream of the noz­

zle exit to its operating position several diameters downstream of the 

nozzle exit. The final ejector designed was constructed of a straight 

section of 1 1/!+ inch diameter standard steel pipe followed by an alu­

minum expansion section. The expansion section had a 4 1/2 degree 

· divergence angle and a 3. 47: 1 exit to inlet area ratio. (See. Figure 7,) 

The major problem encountered while designing the ejector was that of 

maintaining supersonic flow with the ejector inlet several diameters 

downstream of the nozz.le exit. Several different designs were tried 

before satisfactory results were obtained, The first ejector consisted 

of only a. straight 12-inch section of 1 1/4 inch diameter standard 

steel pipe. This ejector produced a strong shock in the exit portion 

of the nozzle. causing subsonic flow in the mixing chamber. An expan­

sion cone with an exit to inlet area ratio of four and a six-degree 

divergence angle was added to this straight section. A test then 

showed that this unit was also unsatisfactory. Next, the ejector was 

modified from a fixed position type to a variable type in hopes that 

one could "pick up" the shock near the nozzle and obtain supersonic 

flow in the mixing region by slowly backing the ejector away from the 

nozzle to its operating position. After several design attempts with 

unsatisfactory results, Kline's ( 13) article on optimum design of 



straight walled diffusers was consulted, and the final workable de!sign 

for the expansion cone obtained. 

The inlet diameter of the ejector was determined by estimating 

1L of the streamline ( j) which defines the mass flow from the nozzle, 

Calculating er from the approximate linear formula er = 12 + 2. 758M, 

and knowing the desired operating position .x, the inlet diameter of 

the ejector was calculated from the formula 
' n. 

D = 0,55 + 2 (x)(·a=-). To 

obtain 'l'(_, p was obtained for M = 3 from a chart of p vs C2 . (1). 

C2 was calculated from the formula 

which in turn gave Pj = 0.670. 

Thus J p = 0. 670 = ~ ( 1 + erf Y(_ ) , 

and 11.. = 0. 311. 

Therefore, D = 1. 132 + 2(8) (0,3ll) = l.38 inches. 
(20. 27). 

9 =- o. 043 
5+ 9 

'l'his method gave a very good initial estimate of the necessary size of 

the inlet diameter. By trial and error, the diameter that gave satis-

factory.results was found to be a slightly larger one of 1.50 inches. 

D. Instrumentation for Pressure Probe 

By conside:r;ing the static pressure constant across the mixing 

region, one need only measure the·existing static pressure in.the 

mixing chamber and the total pressure variation across the mixing re-

gion to determine the velocity profile. Thus, the·instrumentation 

consisted of a total pressure probe constructed from -0,039-inch diameter 

stainless steel hypodermic tubing mounted on a 1/8 inch diameter brass 

rod. The hypodermic tubing was mounted transverse to the flow stream. 

The end of the tubing was sealed and a .0071-inch diameter hole 
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drilled in the side of the·tube. The tube was oriented such that the 

hole faced upstream, and was then advanced along its own axis. (See 

Figures 6 and 8.) This was the third probe design used. The first 

was a pitot-static probe mounted in a brass wedge. This probe proved 

to be too large, resulting in a strong shock pattern which destroyed 

the·supersonic free jet mixing region. The second probe was an L-shaped 

total pressure probe that was also unsatisfactory since drag ca,ised it 

to bend and turn giving erroneous data, 

The total pressure probe was mounted through a hole drilled in 

the wall of the lucite mixing chamber and advanced across the mixing 

region by means of a threaded, hand-advanced, mechanical pusher. One­

quarter turn of the pusher advanced the probe 1/96th of an inch into 

the mixing region. Static pressures were taken at the nozzle exit, 

at the mixing chamber wall, and from the total pressure probe before 

it entered the mi:x:ing region. (See Figure 8.) All pressures were re­

corded from readings on mercury manometers. 



CHAPTER.IV 

EXPERI:MENTAL PROCEDURE 

The experimental investigation was performed on a plenum chamber 

(Figure 10) operated by a 170 horsepower natural gas engine that drove 

a two-stage compressor. The speed of the power unit which. controlled 

plenum c.hamber pressure was regulated remotely from the control panel 

(Figure 11) by air. All te.sts were performed at Mach numbers of approx-

imately three. The power unit was started and time allowed for plenum 

chamber pressure to stabilize at the desired operating pressure. Ref-

erence re.adings of the mercury manometers and barom~t;ric pressure were 

recorded before each test run. The flow system and pressure lines were 

checked for leaks and i.nstruments inspected to insure proper operation. 

A zero reference reading was taken before advancing Fhe, probe into the 
I 

mixing region. The plenum chamber pressure was adjusted to make the 

three static pressure readings as close as possible insuring a.uniform 

velocity profile in the test region. The total pressure probe was 

then. advanced across the mixing region by means of the hand-operated 

advancing mechanism, (See Figure 6.) One full turn of the advancing 

mechanism advanced the total pressure probe 4/96ths of an inch into 

the mixing region ( in tl1e y-direction). Between advancements of the 

probe, approximately two minutes were allowed for stabilization. Total 

pressure readings were taken from a point outside the mixing region to 

the axis of the axi-symme.tric flow so that the uniformity of the velocity 

. 15 
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profile could be checked, Since there was only a small difference be­

tween the mixing region temperature and room temperature, it was assumed 

that adiabatic flow existed. Velocity profiles were measured from axial 

station (x = 0) to axial station (x = 4.625 inches) which was just a 

little over eight radii from the nozzle exit. Lack of a higher plenum 

chamber pressure prevented velocity profile measurementsat larger axial 

stationso 



CHAPTER V 

METHOD OF CALCULATION 

A pressure probe inserted into a supersonic flow produces a shock 

wave at the upstream side of the·probe. Thus, the total pressure re-

corded in the ·supersonic portion of the mixing region was the stagnation 

pressure, (p0y), just downstream of a normal shock wave. In the·sub­

sonic portion, there is n.o s·hock wave produced by the probe· so that 

supply total pressure is obtained, The ratio of the ·static pressure 

before the shock (Px) to the total pressure after the ·shock (p0y) gave 

M*, defined as the ratio of u/c*. M*c:,o was calculated from the measured 

total pressure of the free stream. M* "'O was cross-checked by another 

pressure ratio of static pressure to plenum chamber pressure 

For each position y of the total pressure probe, a corresponding 

value of 4/U 00 was determined giving the mi~ing region velocity pro-

file which was made dimensionless by plotting u/U o0 versus y/x. The 

y/x = O axis was shifted to coincide ·with the portion of the curve where 
I 

u/U o0 ,:::::: 0. 5. Thus, a new plot 1.J./U 00 versus y '/x was obtained, This 

was necessary since 11. = er r/x is only true when coordi:r~ates are such 

that 'Yl, = O when p,= 0.5. er was now calcU:lated for each po~ition 
. J . 

y'/x by determining the corresponding value o.f 'rt_ from me'asured p, 

y/x, and the previously derived equation p = 1/2 + 1/2 erf 'yt. This 

method is more practical than the method des.cribed in part 3 of the 

theory providing that 1l is 0I1,ly calculated for p values in the 

17 
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ranges p = 0. 15 top= 0.45 and p - 0,55 top= 0.85. When p is be-

tween 0. 45 and 0,55, both 1l and y/x are very small. 

errors in p or y/x can produce large errors in· er. 

than 0. 15 and greater than 0.85, small changes in 1l 

There£ ore, sma 11 

When ·¢_ is less 

result in very 

large changes in y'/x which again .may result in poor values of rr. 

The average value of er for 1( in the range 0. 15 to O 45 and 0.55 to 

0. 85 was determined by, this method for axial station x = 1. 44, 2. 219, 

3,347, 4.625 inches. 



CHAPTER VI 

RESULTS AND ANALYSIS OF THE TEST DATA 

A total of ten runs were made at five axial stations. A plot of 

these data (er versus y-'/x) is shown in Figure 1. From these data, a 

value of er for each axial station was computed. A plot of er versus 

x/R is shown in Figure 4. Also included in this plot are er values 

obt~ined from the·Sandia Corporation tests at M = 0.70, 0.85, 0.95, 

1.5, and 2.0. It is evident that er increases from axial station 

zero until the boundary layer effect is damped out and then stabilizes 

at a relatively constant value. Actually, er values for low x/R haye 

little meaning since the assumed error function profile had not y~t 

develope.d from the boundary layer shape. er values from O. S. U. tests 

at axial stations near the nozzle do not follow the ·same trend as San­

dia Corporation values at the lower Mach numbers. This may be due to 

the magnified boundary. layer effect of the higher· speed. The dashed 

line in Figure 4 indicates the actual cr variation expec1:ed at M = 3. 

An axial station large enough to produce a mixing region width of 

the same order of magnitude as the radius of the exhausting jet was 

desired but was not obtained due to it~sufficient plenum .chamber pres­

sure. However, it is believed that when this happens, the er value 

will start to decrease. An _indication of this is shown.in Figure 4. 

To verify this phenomenon, the Sandia Corporation will iater run axial 

stations x/R of 12 and 16 at M = 1,5 and M = 2.0. A plot of er versus 
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Mach number utilizing previously published results and the results of 

this experimental analysis, along with that-of Sandia, is shown in Fig-

ure 2. These data points indicate that er is not a linear function of 

Mach number as previously assumed by Tripp but is almost constant for 

the incompressible range (M = 0,7) and then a quickly increasing func-

tion of Mach number. A plot of er versus Mach number (Figure 3) more 

clearly shows the·trend of the spreading rate parameter for the free 

jet as M is incr~ased, 

A correction for the initial boundary layer thickness was attempted 

by extrapolating selected p lines on profiles at two axial stations to 

the apparent origin of the linearly spreading mixing region. The 6X 

correction was determined to be approximately l.38 inches, Using this, 

turbulent 
boundary 
layer 

· apparent origin of mixing region 

_ -¢-.::.o*B 

I I _;---1----L - - - ¢= o. 2. 
2.219---i I 

.t/-.~2.5~ 

Figure C, Bounda-ry Layer Carree tion. 

corrected values of er were computed. These are .shown _in Figure 5. 

· These values are not believed ·to be very accurate· since the axial sta-

tions used were close ·together and the divergence angle was small. Thus, 

a small error in y/x could cause a very large error in the corrected x 

distance, It may be noted that previous investigators performed no 

such correction. 



CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

Test data show that Tripp's approximated linear formula for er is 

not as accurate as current usage of the spreading rate·parameter requires, 

The er values arrived at in this thesis, correlated with Sandia Corpo­

ration data, indicate that er values for Mach numbers less than 1.6 

are.actually smaller than those obtained by Tripp's linear formula, 

er = 12 + 2.758M, while er values for Mach numbers greater than 1.6 

are actually larger than those obtained by"Tripp's formula. Figure 1 

shows the dimensionless velocity profiles. The boundary layer effect 

can be seen for axial stations near the nozzle; namely, x/R = 3.920 

and x/R == 2.544. Figure 2 shows the variation of er with Mach number. 

The constancy of er for subsonic flow was not anticipated, but is rea­

sonable if one recalls that compressibility effects are negligible be­

low M. = 0.7. Figure 3 shows the inverse jet spreading parameter ver -

sus Mach number. Note that (1/er) seems to become asymtotic to O at 

high Mach numbers. Figure 4 shows the variation of er with dimension­

less distance from the nozzle. 

Recorrnnendations for further experimental investigations are: 

l, Evaluation of er for higher Mach numbers. 

2. Evaluation of er at·sufficient·distances from .the nozzle·so 

that the axi.-symmetri.c effect may be stl.].died,. i.e., at a dis­

tance that is large enough for the width of the mixing region 

. 21 
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to be of the same order of magnitude as the radius of the noz-

zle. This is to be accomplished for M = 1.5 and M 

the Sandia Corporation, with ~/R of about 12 to 16. 

2.0 by 

30 Values of ~ exist only for turbulent mixing. Chapman (14) 

shows that a different fully-developed profile exists for lam­

inar mixing for which ~ values are unknown. Values of ~ 

for this type of flow at high Mach numbers may be needed in 

the. near future since laminar separated boundary layers become 

more stable at hypersonic conditions. 



LO 

0.9 

o.8 

0.7 

o.6 

~ 0.5 

o.4 

0.3 

0.2 

o. 1 

0 

-0. 10 -0.08 

"' ,_ 
-

II' 
,_ 

I 

-0.06 -0.04 -0.02 

..... 
r-

~ 

0. 

Y/X 

1\ 

• LI 
; \ 

i, .. 
., 

n 
~ 

D · x /R = 2. 5 44 

• x/R = 3. 920 

l::. x/R = 6. 072 

0 x/R = 8.171 

T-r- . ... -- ~· --- ... 

0.02 0.04 0.06 

Figure L Dimensionless Velocity Profiles for Mach Number 3, 

ii'.' 
I ll!i .., 

0.08 

':' 

0. 10 
i\) 
\fl 



25 

24 

23 

22 

21 

20 

19 

18 
er 

17 

16 

15 

1~ 

13 
" 

.... 
12 

11 I 

0 

IJ 
I, 

7 

I/ 

V ., 

II 
I, 

-.. 

~-,, 
·c ata ·, rom' current OS 0 ·-

" and: Sandia Corp~·tests 

• reference 3 

.··. D reference 7 
"" :J 

I 9 · reference 8 

A reference 9 

--- Tripp's linear 
appro~imation 

-· 

r 

l 2 3 
Mach Number 

Figure 2. Jet Spreading Rate Parameter Versus Mach Number. 

.. 
.... 

. 

,~ 

.4 

f\) 
.;.:-



l'· • "+ 

. 12 

. 10 

1 
;; .os 

.06 

004 

o·'.) 

0 
0 

'-CJ - I:( 

"' "" ,_ -,-~ ~ - "' "" - - ,~ 

... ,-

I 

1 

= 
== 

i 

0 
'-

,-~ 
I'- ,.... ,_ 

Symbols 
same as 
Figure 

Maieh Number 

- ~ 

" .... 
-'-

r-, 

indicated are 
those in 

2. 

3 

Figure 3, Inverse Jet Spreading Rate Parameter Versus Mach Number. 

4 
[\) 
\JI 



25 

24 

23 LJ l L 111 J I I Ii IJ ± I I Li:± Litt! I I I I I I I I l:H:t:LI I I I I I I I I v1 I I I I I I I I I I I I I I I I I I I I I I I' l"'Bls - ~ " M-;;,,s- I I I I I I I I I I' I I I I ' I I I I I 
j., v 

17 
I/ 

T, 

22 I# 
V 

1.- I] 

21 17 

17 

20 
I/ 

V 

19 
I/ u 

18 
v Ir"'. 

I,, V Ir 

17 
11111111111111:til 1111111111111 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ITIIM=2.0I I I I I I I I I I I I I I I I I I I I I I I I I I 

l7 

l ? 
V 

I/ 

15 
7 -1';1,=-/,~i I I I I I I I I I I I I I I I I I I I I I I I I 

14 
I,, 

13 .~ 111111 tvttn 111 n, 111111111111111111111111111111111111111111111111111111111111111111111111111111111 

:: IIUlt~JfmlHUltrn~iH~iHHUlmlmliB-~~f~I I I I I I I I I I I I I I I I I I I lffl 
1 2 3 4 5 6 7 8 . 9 10 11 

x/R [\) 
0', 

Figure 4. Variation of cr wit~ Dimensionless Distance. 



36 

35 

34 

33 

32 

31 

30 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I le 

29 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I~ 

er 

28 

27 

2~ ,..., 

25 

24 

23 

22 
0 1 2 3 !, -.- 5 6 7 8 

x/R 

Figure 5, er Value for Mach Number 3 with Attempted Boundary Layer Correction. 

9 10 I\) 
---3 



F\G\JRE 6 

ADVANC\NG t'v~ECHANISM AMO PRESSURE PROBE 
,, 

12. --1 
I 

I I I 11 h i 1-·- - --·-J----- --\t-' -. -~~-----~ C"r-:---------, 

g~ 

PER rNCH 

- - ---- -·-- -~ - r··- ?'·'.'' ·'>"l 

SCA.LE \O: I 

l 011)., s~ 

SIi.VER SOLOEG!. 

- ,0071 01"' 

[\) 
CD 



-1ro 
0 
N 

_, .... 
N 

1-c---~-~l I to r-

1 · ·r-... ·.·~.4···.·.· 
I 

. I 

r---··, ~·~. 

29 

ct 
Lu 
(f) 

:J 
LI-
LI--01 I'-,-. 

0 
LJJ z ci 

0 :::) 

(j) 0 

0::: LL 

Ld 
Cl. 
::::, 
en 



I I . 

\ : 

,· 

\ r 
'I \, 
" I 

; ! 
i 

, I 
,-j 

ii 
!1 
Ii 

I 
i ., . 

,/, 
I 

i 

/. 

}- . 

z 
:::, 

<.D w 
:z LJJ 
- '0:: 
~ ::, 
(f) (9 

w·.•C: l-;; 

30 



70 

60 .. 

" 

j 

I 

'd 50 ....... 
I-'• 
~ n .;:;' 

fl) 
{'I) 

0 40 
H, 

~ 
l'"'l 
f'l r:: 
Ft 
'< . '- 30 
Ill 
o' 
{'I) 

0 
I-' r:: 
rt 

20 m 
'-"--' 

10 

0 
0 0.125 0.25 

- I 

I 

0.'575 0.50 0.025 0.7') 0. I) 
y (inches) 

Figure 9. Nozzle Exit Pressure Profile. 

1, 
~ 

' 

75 1.00 1. 12 5 
- 5 

\.J.J 
I-' 



Figure 10. Experimental Apparatus 

\..,.) 
l\) 



• 

Figure 11. Control Panel 

w w 



34 

Figure 12. Mixing Chamber 
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APPENDIX 

NOZZLE CONTOUR DIMENSIONS 

R 

--x~-

X ' ( inches) R. ' (inches) X(inches) R( inches) X(inches) .· R( inches) 

00000 005778 0.0000 0.5659 2.0196 0. 44.52 
00041 005306 Oo 1165 0. 5623 2o 1921 o.4240 
,0541 0, 1~344 0,3198 0, 5557 .2.3460 o.4017 
, 1041 0,3849 o.4874 0. 51~88 2.4838 0. 3786 
. 1541 . o. 3505 006471 0.5408 2.5465 0.3667 
. 2041 0. 3251 o.8168 0. 5346 2.6167 0.3546 
.2541 Oo.3060 1. 1256 0.5189 2.6403 0.3473 
. 30!+1 002920 1. 3'733 Oo 5023 2. 9378 0.2765 
.3541 0, 2825 1. 6145 004844 3,0030 0.2750 
0 404.1 002769 108275 o.4654 
. 4541 002750 

.37 
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