
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 
the text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of th is reproduction is dependent upon the quality of the 
copy subm itted. Broken or indistinct print, colored or poor quality illustrations 
and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a  complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and continuing 
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations appearing 
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

UMI*





UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE

AN INVESTIGATION INTO THE PROPERTIES AND BEHAVIORS
OF

ALKYLDIPHENYL OXIDE DISULFONATE SURFACTANTS

A Dissertation 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment o f  the requirements for the 

degree o f 

Doctor o f  Philosophy

By

Laura Lei Wesson 
Norman, Oklahoma 

2001



UMI Number: 3004872

UMI
UMI Microform 3004872 

Copyright 2001 by Bell & Howell Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and  Learning Company 
300 North Z eeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Copyright by Laura Lei Wesson 2001 
All Rights Reserved



AN INVESTIGATION INTO THE PROPERTIES AND BEHAVIORS OF SELECT 
ALKYLDIPHENYL OXIDE DISLTLFONATE SURFACTANTS

A dissertation APPROVED FOR THE 
SCHOOL OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE

BY



ACKNOWLEDGMENTS

I would like to acknowledge the many people who have contributed to the completion of 

my degree. First, I would like to thank my committee members who have contributed 

much to this dissertation. I have appreciated their input during my years at the University 

o f  Oklahoma. I have received help on many occasions from the ofiBce staff in the 

Chemical Engineering and Material Science office. They have included Rick Wheeler, 

Sherry Childress, Susan Cates, Donna King, Terri Colliver, and Carolyn Seratte. I must 

also acknowledge the input from my fellow graduate students who have included John 

O’Haver, Cheryl Haskins Rodriguez, Bita Phillipi, Karolina Ho, Russell Hooper, Phillip 

Howard and Greg Davis. O f course, none o f this would have been possible without the 

support of my husband, Neal, and the tolerance o f my children: David, Rachel, Matthew 

and Nathan. I only wish my son Kristopher were here to celebrate the completion of this 

journey. Finally, and most importantly I am thankful for the many mercies and abundant 

grace God has bestowed upon my family and myself during my studies.

IV



Table of Contents

PROLOGUE

P. 1 Overview o f Surfactants.................................................................................................... 1
P.2 Overview o f Alkyldiphenyl Oxide Sulfonates.............................................................. 6

P.3 References.........................................................................................................................17
P.4 Figures............................................................................................................................... 19

CHAPTER 1 Determination of Critical Micelle Concentrations for Several 
Alkyldiphenyl Oxide Disulfonate Surfactants

1.1 Abstract............................................................................................................................. 23
1.2 Introduction...................................................................................................................... 24
1.3 Materials............................................................................................................................25
1.4 Experimental....................................................................................................................25
1.5 Results and Discussion...................................................................................................27

1.5.1 Critical Micelle Concentrations............................................................................ 27
1.5.2 Surface Tensions at the CMC................................................................................ 31
1.5.3 Surface Excess Concentration...............................................................................31
1.5.4 Area per Molecule at the Air/Water Interface.....................................................32
1.5.5 Timed Surface Tension Values............................................................................. 33

1. 6  Conclusions...................................................................................................................... 34
1.7 References........................................................................................................................ 35
1 . 8  Figures............................................................................................................................... 36
lA  Appendix: Surface Tension Data................................................................................... 43

CHAPTER 2 Preparation of Microemulsions Using Salinity and Modified
Lipophilic Scans with Allq^ldiphenyl Oxide Disulfonate Surfactants

2.1 Abstract............................................................................................................................ 48
2.2 Introduction......................................................................................................................49

2.2.1 Microemulsion.........................................................................................................49
2.2.2 Solubilization........................................................................................................... 53

2.3 Materials........................................................................................................................... 56
2.3.1 Salinity Scans........................................................................................................... 56
2.3.2 Modified Lipophilic Scans.....................................................................................56

2.4 Experimental................................................................................................................... 57
2.4.1 Salinity Scans........................................................................................................... 57
2.4.2 Modified Lipophilic Scans.....................................................................................57

2.5 Results and Discussion.................................................................................................. 58
2.5.1 Traditional Salinity Scans.......................................................................................58

2.5.1.1 A lkanes...................................................................................................59
2.5.1.2 Chlorinated Hydrocarbons................................................................... 60



2.5.2 Modified Lipophilic Scans.................................................................................... 60
2.5.2.1 Modified Lipophilic Scan: Salinity S cans ..........................................60
2.5.2.2 Modified Lipophilic Scans: Temperature Studies.............................62
2.5.2.3 Modified Lipophilic Scans: Solubilization........................................ 64

2 . 6  Conclusions........................................................................................................................6 6

2.7 References.......................................................................................................................... 6 8

2 . 8  Figures.................................................................................................................................69
2A Appendix: Equations used for Preparing Systems for Salinity Scans......................77
2B Appendix: Range o f Component Concentrations and Visual Descriptions for

Traditional Salinity Scans................................................................................................ 82
2B. 1 Alkane Scans............................................................................................................83
2B.2 Chlorinated Hydrocarbon Scans............................................................................8 6

2C Appendix: Summary o f Traditional Salinity Scan Observations............................. 8 8

2C.1 D A D S........................................................................................................................ 89
2C.2 M A D S.......................................................................................................................89
2C.3 M AM S.......................................................................................................................89
2C.4 D A M S.......................................................................................................................89

2D Appendix: Data and Corrected Calculations From the Thesis o f  Sangaroon
Aowiriyakul.......................................................................................................................90

CHAPTER 3 S urfactant Adsorption in Porous M edia

3.1 Abstract............................................................................................................................. 113
3.2 Introduction...................................................................................................................... 114
3.3 Solid Surface Chem istry................................................................................................ 117

3.3.1 Types o f  Solids......................................................................................................118
3.3.2 Electrical Characteristics and the Electrical Double Layer............................120
3.3.3 Electrical Double Layer........................................................................................121

3.4 Mechanisms o f  Surfactant Adsorption......................................................................... 125
3.4.1 Single Surfactant Systems....................................................................................125
3.4.2 Mixed Surfactant Systems................................................................................... 131

3.5 Experimental Studies......................................................................................................133
3.5.1 Fundamental Adsorption Studies........................................................................133

3.5.1 . 1  Cationic Surfactant onto Q uartz........................................................ 134
3.5.1 . 2  Cationic Surfactants onto Silica........................................................ 135
3.5.1.3 Anionic Surfactant onto Alumina and Kaolinite.............................136
3.5.1.4 Mixture o f Anionic Surfactants onto Alumina................................137
3.5.1.5 Cationic Surfactants onto Porous Silicas......................................... 138

3.5.2 Applied Adsorption Studies.................................................................................139
3.5.2 . 1  Anionic Surfactants onto Kaolinite and Elite.................................. 140
3.5.2.2 Anionic Surfactant onto Kaolinite.....................................................140
3.5.2.3 Anionic Blends onto Sand and Clay................................................. 141
3.5.2.4 Cationic and Anionic Surfactants onto Carbonates........................143
3.5.2.5 Ethoxylated Sulfate Surfactants onto Mineral Oxides and

Sandstone Cores.................................................................................. 145

VI



3.5.2.6 Mixed Anionic Surfactants onto East Vacuum Grayburg-San
Andres Unit (EVGSAU) and Baker Dolomite C ores.....................147

3.5.3 Adsorption o f  Alkyldiphenyl Oxide Mono and Disulfonate Surfactants.... 150
3.5.3.1 Anionic Surfactant Blend and Amphoteric Surfactants onto Berea 

Sandstone, Indiana Limestone, Baker Dolomite, and Quartz 150
3.5.3.2 Anionic Surfactants onto Canadian River Alluvium (CRA) and

Alumina................................................................................................. 153
3.5.3.3 Adsorption onto Canadian River Alluvium (CRA ).........................154
3.5.3.4 Adsorption onto Alumina..................................................................... 156

3.6 Summary...........................................................................................................................161
3.7 Acknowledgment.............................................................................................................162
3 . 8  References........................................................................................................................ 163
3.9 Figures............................................................................................................................... 169

CHAPTER 4 Adsolubilization and Solubilization of 2-Naphthoi by Alkyldiphenyl 
Oxide Disulfonate Surfactants

4.1 Abstract........................................................................................................................... 181
4.2 Introduction....................................................................................................................182
4.3 Materials..........................................................................................................................183
4.4 Experim ental..................................................................................................................184

4.4.1 Adsolubilization....................................................................................................184
4.4.2 Solubilization.........................................................................................................185

4.5 Results and D iscussion................................................................................................ 187
4.5.1 Behavior o f Naphthol in the Absence of Surfactant...................................... 187
4.5.2 Adsorption o f surfactants in the presence o f  naphthol....................................189
4.5.3 Adsolubilization....................................................................................................190
4.5.4 Solubilization.........................................................................................................196

4.5.4.1 Comparison o f Adsolubilization and Solubilization Parameters o f 
Alkyldiphenyl Oxide Disulfonate Surfactants to
Other Surfactants............................................................................... 197

4.5.4.2 Comparison o f Adsolubilization and Solubilization Parameters o f
Alkyldiphenyl Oxide Disulfonate Surfactants.............................. 199

4.5.5 Two-Site Adsolubilization Model...................................................................... 202
4.6 Conclusions....................................................................................................................204
4.7 References...................................................................................................................... 207
4.8 Figures............................................................................................................................. 209
4A Appendix; Data for Adsolubilization and SED....................................................... 220
4B Appendix: Comparison o f Km Values Based on Initial

Naphthol Concentrations............................................................................................. 229

VII



List of Figures

Figure P-1 Micelle shapes......................................................................................................... 20
Figure P-2 Changes in select physical properties upon micelle formation (adapted from

Rosen, 1989)........................................................................................................................ 21
Figure P-3 General structure o f alkyl diphenyl ether sulfonates......................................... 22
Figure 1-1 Surface Tension Curve for CIO MADS /  0 M  N aC l...............................37
Figure 1-2 Surface Tension Curve for CIO MADS /  0.15 M NaCl......................... 37
Figure 1-3 Surface Tension Curve for C12 MADS /  0 M  N aCl...............................38
Figure 1-4 Surface Tension Curve for C12 MADS / 0.15 M NaCl......................... 38
Figure 1-5 Surface Tension Curve for CIO DADS / 0 M  NaCl......................................... 39
Figure 1-6 Surface Tension Curve for CIO DADS / 0.9 M NaCl......................................39
Figure 1-7 Surface Tension Curve for C16 MADS /  0 M  NaCl...............................40
Figure 1 - 8  Surface Tension Curve for C16 MADS /  0.15 M NaCl......................... 40
Figure 1-9 Time Studies for 1.82x10"^ M C16 MADS/0.15 M NaCl using KRÜSS

tensio meter...........................................................................................................................41
Figure 1-10 Time Studies for 1.82x10"^ M C16 MADS/0.15 MNaCl using rod

tensiometer...........................................................................................................................42
Figure 2 - 1  Relationships between phase behavior, interfacial tension, and solubilization

parameter (Wu et al, 2000)............................................................................................... 70
Figure 2-2 Orientation o f molecules located at the oil-water interface due to the presence

o f  lipophilic linker molecules............................................................................................71
Figure 2-3 Schematic o f salting out of ionic amphiphiles: T-e for ionic amphiphiles

(Kahlweit, 1995)..................................................................................................................72
Figure 2-4 Phase behavior seen in traditional salinity scan of CIO DADS + sec-butanol/

heptane, R=0.67, 24°C........................................................................................................73
Figure 2-5 Phase diagram o f alkyldiphenyl oxide disulfonate/octanoic acid/PCE for

R=0.86 at 24 °C...................................................................................................................74
Figure 2-6 Phase diagram o f alkyldiphenyl oxide disulfonate/octanoic acid/PCE for

R=0.86 at 24, 35 and 45 °C............................................................................................... 75
Figure 2-7 Schematic o f salting out of alkyldiphenyl oxide mono- disulfonate + octanoic

acid systems......................................................................................................................... 76
Figure 3-1 Guoy-Chapman model o f the electrical double layer and the potential

distribution......................................................................................................................... 170
Figure 3-2 Typical four-region adsorption isotherm for a monoisomeric surfactant 171
Figure 3-3 Two-region adsorption isotherm o f dodecylamine on quartz......................... 172
Figure 3-4 Adsorption isotherm o f DPC onto Aerosil 0X 50. (Goulob et al., 1997)......173
Figure 3-5 Mixed adsorption isotherms of CgS0 4  and C 12SO4  onto a-alumina (Lopata et

al., 1988).............................................................................................................................174
Figure 3-6 Structure o f the alkyldiphenyl oxide sulfonate surfactant where R are alkyl

chains o f  C6 , CIO, C12, or C16...................................................................................... 175
Figure 3-7 Alkyldiphenyl oxide sulfonate adsorption onto CRA, all components........ 176
Figure 3-8 Alkyldiphenyl oxide sulfonate adsorption onto CRA, CIO components..... 177
Figure 3-9 Alkyldiphenyl oxide sulfonate adsorption onto CRA, MADS components. 178
Figure 3-10 Alkyldiphenyl oxide sulfonate adsorption onto alumina, all components. 179 
Figure 3-11 Allqrldiphenyl oxide sulfonate adsorption onto alumina, all components. 180

v iii



Figure 4-1 Semiequilibriura dialysis cell description and terminology............................ 2 1 0

Figure 4-2 Adsorption o f 2-naphthol onto porous alumina in the absence o f surfactant.
 211

Figure 4-3 Adsolubilization of 2-naphthol by CIO DADS. Values in the legends indicate
the initial surfactant concentrations (xlO'^M)................................................................212

Figure 4-4 Adsolubilization o f 2-naphthol by CIO MADS. Values in the legends
indicate the initial surfactant concentrations (xlO^^M)................................................ 213

Figure 4-5 Adsolubilization and solubilization o f 2-naphthol by C12 MADS...............214
Figure 4-6 Adsolubilization and solubilization o f 2-naphthol by C16 MADS...............215
Figure 4-7 Solubilization of 2-naphthol by C12 MADS and C16 MADS........................216
Figure 4-8 Change in Kadm with initial 2-naphthol concentration......................................217
Figure 4-9 Adsolubilization and solubilization o f 2-naphthol by C12 MADS and C16

M ADS..................................................................................................................................218
Figure 4-10 Aggregation numbers for the C12 MADS/naphthol adsolubilization 219

IX



PROLOGUE

This section is included to introduce the reader to the class o f  chemicals known as 

surfactants and to alkyldiphenyl oxide sulfonate surfactants in particular. This Prologue 

was included to avoid repeating introductory information in the chapters that follow.

P .l Overview of Surfactants

Surface active agents or surfactants are characterized by several unique chemical 

and physical properties. Structurally, surfactant molecules are composed of at least two 

chemical groups: one group being lyophobic (solvent-hating), and the second lyophilic 

(solvent-loving). If  water is the solvent these groups are referred to as hydrophobic and 

hydrophilic and are commonly referred to as the tail group and head group, respectively.

Structures suitable for lyophobic and lyophilic groups depend on the solvent o f  

interest. In polar solvents such as water the lyophilic group may be ionic or highly polar 

in nature; whereas, suitable lyophobic groups may include branched or straight-chain 

hydrocarbon, fluorocarbon, or siloxane residues. In less polar solvents the opposite is 

generally true. The ionic or polar groups may act as the lyophobe, and the lypophile may 

be hydrocarbon, fluorocarbon, or siloxane residues.

Surfactants are commonly divided into classes according to differences in the 

charge on the hydrophilic group as shown in Table P-1



Table P-1 Classes of Surfactants
Class C hatte on Surface-Active 

Portion
Example

Anionic Negative
CH3 (CH2 )iiS 0 3 'N a^ 

Sodium dodecylsulfonate

Cationic Positive
CH3 (CH2)i5N" (CH3)3 B f 

Cetyltrimethyl ammonium bromide

Zwitterionic Positive and Negative
RNT(CH3)2CH2C00-

N-Alkylbetaines

Nonionic None

R -{ ^ -(0 C H 2 C H 2 )„0 H

R

The favoring of one solvent medium over another by the groups composing the 

surfactant molecule leads to the surface activity exhibited by these chemical compounds. 

In order to lower the energy in a system, the disfavored moiety is removed to whatever 

extent possible from the solvent. This is exhibited by the concentration o f surfactant 

molecules at surfaces and interfaces. The tendency to concentrate in these areas gives 

rise to several o f the surfactant characteristics commonly utilized everyday in household, 

industrial, and laboratory applications. The most common household applications 

include the cleaning of hard and soft surfaces such as dishwashing, laundry, and personal 

care. Common industry applications include drilling muds used in the petroleum 

industry, ore flotation, subsurface remediation, electronic printing, drug delivery, and 

biotechnology. Research continues to look for answers to fundamental questions 

concerning surfactant behavior as well as practical and/or possible industrial applications.

The concentration of surfactant monomers at a surface or interface is not the only 

interesting behavior exhibited by surfactants. They also self-aggregate within the bulk 

solution, which is another means o f removing the disfavored moiety from close contact



with the solvent. At low concentrations the surfactant molecules exist in the bulk 

solution as individual surfactant molecules or monomers, but at a given concentration 

designated as the critical micelle concentration (CMC), the monomers self-aggregate into 

structures known as micelles.

The value o f  the CMC is controlled by the structure o f the surfactant, temperature, 

electrolyte concentration, concentration of other organic compounds, and the presence o f 

a second liquid phase. Micelle formation is driven by the hydrophobic effect. This effect 

is due to the strong interaction between individual water molecules. The free energy o f  

the system is reduced when the hydrophobic portions o f the surfactants are removed from 

intimate contact with the solvent and there is a reduction in the number o f water 

molecules with limited rotational orientations.

In general, as the hydrophobicity of the surfactant increases the value o f the CMC 

decreases. Ionic surfactants have higher CMC’s than nonionic surfactants with identical 

hydrophobic groups. This can be viewed as a result o f  having to overcome the electrical 

repulsion between the like-charged head groups. The addition o f an electrolyte to a 

solution containing an ionic surfactant results in a lower CMC value as compared to an 

ionic surfactant solution with no electrolyte present. The electrolyte lowers the repulsion 

between the head groups by compressing the electrical double layer around these groups. 

With less repulsion between the like-charged head groups, the formation of micelles is 

facilitated. The presence of an electrolyte also affects other aspects o f surfactant 

chemistry including surfactant precipitation, Krafft points and hardness tolerance. While 

the CMC decreases with increasing electrolyte concentration, the Krafft point increases. 

The Krafft point is the temperature at which the solubility o f an ionic surfactant becomes



equal to the CMC. Hardness tolerance may increase with added electrolyte, since the 

additional electrolyte may decrease the surfactant monomer concentration.

In aqueous systems the surfactant monomers are arranged with the hydrophilic 

portion on the exterior o f  the micelle, in close contact with surrounding water molecules. 

The hydrophobic portion o f the surfactant monomers lies in the interior o f  the micelle, 

creating a pseudo-oil phase. In referring to the different regions within a micelle the 

following terms have been introduced: the surface which is the area surrounding the 

exterior o f  the head groups, the core which is comprised o f  the tail groups, and the 

palisade layer which is the region where the head groups and the tail groups join. In this 

region a small section o f the tail group is in contact with the surrounding solvent.

Much research has focused on the specific shape o f the micelle. The shapes 

include spherical, elongated cylindrical, rod-like micelles with hemispherical ends 

(prolate ellipsoids), and vesicles. Vesicles are spherical structures consisting o f  lamellar 

micelles arranged in one or more concentric spheres (Rosen, 1989). These common 

micelle shapes are shown in Figure P-1. In non-polar solvents reverse micelles form. As 

their name implies, these micelles are formed with the polar head groups facing the 

interior o f  the micelle and the nonpolar tail groups extending into the bulk solution. Any 

water in the solution tends to locate in the interior o f the reverse micelles i.e. in the 

vicinity o f the polar head groups. Reverse micelles tend to be more loosely organized 

than their micelle counterparts.

The onset o f  micelle formation is reflected by dramatic changes in several 

physical properties o f  the surfactant solution. These include equivalent conductivity, 

detergency, osmotic pressure, and surface and interfacial tensions. A classic example o f



these changes is shown in Figure P-2 (Rosen, 1989). The most common properties 

measured in order to determine the onset of micellization are conductivity, surface 

tension, light scattering, and refractive index.

O f all the properties which exhibit dramatic changes upon micelle formation, the 

changes in surface and interfacial tensions and the changes in solubilization which are 

directly related to detergency are o f particular interest to the research results presented in 

the following chapters.

As shown in Figure P-2, the surface and interfacial tensions show a rapid decrease 

then plateau as the surfactant concentration increases. The rapid decrease is due to 

surfactant monomers exchanging with solvent molecules at the air-liquid interface.

System equilibrium involves this single exchange. At the CMC and higher surfactant 

concentrations equilibrium involves the exchange o f  monomers at the interface and 

monomer-micelle exchange. Any surfactant added to the system beyond the CMC is 

involved in micelle formation and does not contribute to the interfacial exchanges.

The ability to form micelles has several practical applications. Solutes that are 

not very soluble in polar solvents, such as water, show a marked increase in solubility or 

solubilization when an appropriate surfactant is added to the solution. An appropriate 

surfactant must consist o f a hydrophobe capable o f  forming a micelle of sufficient size to 

solubilize the solute.

The ability o f  nonionic surfactant micelles to form aggregates large enough to 

phase separate forms the basis o f a separation technique. The phase separation is 

associated with the cloud point temperature. As a solution o f nonionic surfactant is 

heated, the micelles grow in aggregation number until the phase separation is possible.



p.2 Overview of Alkyldiphenyl Oxide Sulfonates

The research presented in the following chapters focuses on the alkyldiphenyl 

oxide sulfonate surfactant series manufactured by Dow Chemical Company. The alkyl 

chains can be linear or branched alkyl chains and range in lengths o f  6  to 24 carbons.

The most common lengths are 10, 12, and 16 carbons. These surfactant molecules can be 

comprised of one or two alkyl chains and one or two sulfonate groups with the following 

designations: monoalkyl disulfonates (MADS), dialkyl disulfonates (DADS), monoalkyl 

monosulfonate (MAMS), and dialkyl monosulfonate (DAMS). The general structure of 

these surfactants is shown in Figure P-3. A literature search revealed several 

designations for these surfactants: DOWFAX disuLfonated alkyldiphenyloxide, DPOS 

(Dawe and Oswald, 1989); alkyl diphenyl disulfonates, DPDS (Rouse et al., 1993 and 

1995); alkyldiphenyl oxide disulfonates (Quencer and Loughney, 2001); and alkylated 

diphenyloxide disulfonates, ADPOD (Quencer, 1992). The Chemical Abstracts 

designation and their CAS# are shown in Table P-2.

Table P-2 Chemical Abstracts Designations
Surfactant CAS# Designation
CIO MADS 036445-71-3 Decyl (sulfophenoxy) benzene sulfonic acid, disodium salt
CIO DADS 070146-13-3 Oxybis (decylbenzenesulfonic acid), disodium salt
C12MADS 114673-92-6 Dodecane, (phenoxy phenyl)-, ar, ar disulfo deriv., 

disodium salt
C16MADS 065143-89-7 Hexadecyl (sulfophenoxy) benzene sulfonic acid, 

disodium salt

These surfactants have received attention, in part, due to their very low CMC’s 

and lack o f precipitation or slow rate o f precipitation by several common electrolytes 

(Dawe and Oswald, 1989; Yin, 1994; Quencer and Loughney, 2001). The properties of 

the individual surfactant components and the commercially available mixtures continue



to be examined. Characterization o f these surfactants is complicated by the lack of 

monoisomeric samples. All o f  the surfactants in this series are mixtures o f  isomers. 

Commercial mixtures are usually comprised o f the mono- and dialkyl disulfonate 

components. Two o f the most common commercial mixtures are designated as 3B2 and 

8390 that are mixtures o f CIO and C l 6  components, respectively. Pertinent physical 

properties o f select individual components and commercial mixtures are given in Table 

P-3.

Table P-3 Properties of the Dowfax™ surfactants.
Surfactant M olecular W eight (avg.) C M C (M )

8390 636 2 .2 0 x 1 0 '^*
3B2 542 2 .2 1 x 1 0 ^*

CIO DADS 617* 1.33x W * *
CIO MADS 523* .1.40x10"^**
C12MADS 551* 1.30x10"'**
C16MADS 600* 2.53x10"'**

* Dowfax™ product literature. Values determined in 0.1 N NaCl
** The values of the CMC shown in this table are values obtained by DOW with no additional electrolyte 

at room temperature during the early development of these surfactants. Later research indicated these 
values were not entirely accurate and more current values are reported in the first chapter of this work.

Alkyldiphenyl oxide sulfonates were first identified in 1937, but a commercially 

viable synthesis process was not developed until 1958 (Quencer and Loughney, 2001). 

Traditional uses o f  these surfactants that were listed by Quencer and Loughney (2001) 

included:

1. Emulsion polymerization to yield faster run times with less reactor waste and 
smaller particle size,

2. Acid dying o f nylon carpet fiber as leveling agents to promote an even 
distribution o f dye,

3. Crystal habit modification to alter crystal shape and size,
4. Cleaning formulations to provide solubilization in strongly acidic, caustic and 

bleach environments.



The results o f  several studies involving these surfactants conducted since the early 

1990’s are summarized in the paragraphs that follow and are meant to illustrate some of 

the fondamental properties o f  the alkyldiphenyl oxide sulfonate surfactants and their 

effectiveness in specific applications.

Perhaps the most well known fondamental study characterized several o f  the CIO 

components (Rosen et al., 1992). This study investigated several properties (including 

surface tensions, CMC values, areas per molecule at the interface, wetting time, foaming, 

solubilization, and hydrotropy) o f  purified samples o f  CIO MADS, DADS, MAMS, 

DAMS, and TrAMS. The CMC values that were reported for the MADS, MAMS, and 

DADS components were 3.7x10^, 3.2x10'^, and 1.0x10'^ M, respectively. The surface 

tension measurements were conducted at 25°C, in 0.1 N  NaCl for the MAMS and DADS 

and 1 N NaCl for the MADS, all using the Wilhelmy plate method.

The MADS and DADS components were found to be readily soluble in water 

while the MAMS and DAMS components were soluble in hexane. Wetting times 

increased in the order MAMS < DADS < MADS, and initial foams heights decreased in 

the order MAMS > DADS > MADS. Solubilization for three water insoluble surfactants, 

a silicon-based surfactant, an alcohol ethoxylate, and an alkylphenol ethoxylate were 

found to decrease in the order DADS > MAMS > MADS.

The solubilities of octanol in the linear C 16, CIO, and C6  disulfonate components; 

and in the branched C12 disulfonate component were reported by Quencer (1992). The 

results were presented relative to results obtained with sodium lauryl sulfate. The 

solubility o f the octanol was reported to increase with decreasing alkyl chain length: C6  > 

C 1 0 C 1 6 .  A simultaneous decrease in liquid crystal formation was also reported. For

8



the branched C l2 component, the octanol solubility was lower than that seen with the 

three linear components, and high water concentrations were needed to achieve higher 

octanol solubilities relative to the lauryl sulfate.

There have been several studies published examining the suitability o f the 

alkyldiphenyl oxide sulfonate surfactants in specific applications, primarily for 

detergency and environmental uses. A detailed discussion o f  the detergency properties o f 

these surfactants, has been reported by Quencer and Loughney (2001). This discussion 

includes most aspects o f  detergency applications as well as environmental and safety 

concerns. Only a few highlights are presented here. On dust-sebum swatches a linear 

C l 6  alkyldiphenyl oxide disulfonates yielded a higher detergency score than a C12 linear 

alkylbenzenesulfonate over a broad concentration range. This was true even for varying 

hardness levels.

The disulfonated surfactants were reported to show a lack o f precipitation by 

divalent counterions, while the monosulfonated components readily precipitated. In 

relation to foaming, the disulfonates are considered moderate foamers. The foam profile 

o f  the C16 disulfonate was lower than that o f the C12 linear alkylbenzenesulfonate over 

the range of test conditions.

In tests conducted to establish the stability o f sodium hypochlorite (bleach) in the 

presence of several types of surfactants, the alkyldiphenyl oxide disulfonates systems 

remained stable after 319. days. Of the surfactants tested, only 2-ethyl hexyl sulfate 

exhibited similar stability.

The work by Quencer and Loughney concluded with a discussion o f the 

environmental and safety concerns. The C16 alkyldiphenyl oxide disulfonate produced



no dermal irritation during the 3 days that the test rabbits were dosed. Degradation in 

activated sludge led to the classification of the CIO and C l 6  alkyldiphenyl oxide 

disulfonates as biodegradable and a commercial C12 branched and C6  alkyldiphenyl 

oxide disulfonates as non-biodegradable.

Several studies have examined various aspects o f the alkyldiphenyl oxide 

sulfonate surfactants in order to determine the potential for their use in surfactant- 

enhanced environmental remediation, an application having its origin in the enhanced oil 

recovery (EOR) field. In relation to the use o f the these surfactants in EOR, two patents 

have been granted for the use o f these surfactants blended with other surfactants for 

mobility control in gas flooding or miscible gas flooding operations (Dawe et al., 1993; 

Oswald and Robson, 1989).

Research focusing on the suitability o f the alkyldiphenyl oxide sulfonate 

surfactants for remediation has examined the effectiveness o f these surfactants in 

solubilization and mobilization. If the study is application specific surfactant adsorption 

is usually done in conjunction with solubilization and mobilization. In order to be cost 

effective and competitive with other technologies, the loss o f surfactant to adsorption 

must be minimized.

Early work tended to examine the performance o f these surfactants for ideal 

contaminants and real soils. For example, the adsorption o f C12 MADS onto Canadian 

River alluvium was reported to be significantly lower than that seen for sodium 

dodecylbenzene sulfonate (SDBS), and C l2 MADS was not precipitated by the calcium 

that had been added to the system to provide a common background matrix. To avoid 

precipitation, the adsorption o f the SDBS was carried out with no calcium added to the
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system, but the adsorption o f  the SDBS was still significantly higher than the C l 2 MADS 

adsorption (Rouse et al., 1993). In the same study solubilization results for naphthalene 

in SDBS, CIO, C12, and C16 MADS were also reported and indicated that the C12 and 

C l 6  components had a higher solubilization o f naphthalene than the SDBS, while the 

solubilization by the CIO MADS was approximately equal to that observed for the SDBS.

In an attempt to more accurately reflect the dynamic conditions encountered in 

subsurface applications, solubilization studies were conducted using semiequilibrium 

dialysis cells (Rouse et al., 1995). Three unsaturated hydrocarbons with varying degrees 

o f  polarity, naphthalene, 1 -naphthol, and naphthane (decalin), were solubilized in 

Dowfax 8390. It was reported that as the mole fraction o f the hydrocarbon increased, the 

micelle-water partition coefGcient, Km, increased for naphthane, decreased for naphthol, 

and remained relatively constant for naphthalene. Km is the ratio o f the mole fraction o f 

hydrocarbon in the micellar pseudo-phase versus the mole fraction o f hydrocarbon in the 

aqueous phase.

Also reported were the results using sodium dodecyl benzenesulfonate (SDBS). 

For naphthol and naphthalene the mole fractions o f the hydrocarbons in the SDBS’ 

micellar phases were lower that that achieved with the Dowfax 8390.

The adsorption o f  the CIO MADS, C l 2 MADS, CIO DADS, and C16 MADS 

components onto Canadian River alluvium and the solubilization o f  phenanthrene by 

these same surfactants were examined by Sabatini et al. (2000). As expected, the 

solubilization o f  the phenanthrene increased with increasing alkyl chain length. While 

for a constant alkyl chain length (CIO) and varying the number o f  alkyl and sulfonate 

groups, the degree o f solubilization increased in the order MADS< MAMS < DADS.
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Adsorption isotherms indicated generally Langmurian adsorptions with the disulfonates 

sorbing less than monosulfonates and less sorption for the shorter alkyl chain lengths.

Dowfax 8390 was used in a field demonstration in the solubilization and removal 

o f  non-aqueous phase liquids (NAPL) at Hill Air Force Base, Utah (Knox et al., 1999). 

The demonstration was conducted in a 3-D cell consisting of steel sheetpiUng driven into 

an underlying impermeable layer. Despite problems with the cell (excessive leakage 

through the sheetpiling) contaminant extraction was as high as 58% with ten pore 

volumes o f surfactant flushing. It was stated that although more efficient solubilization 

systems exist, the Dowfax 8390 system was very user-firiendly and that the degree of 

solubilization was still significantly greater than that seen with water alone (less than 1 % 

in the same number o f pore volumes)

The next several studies involved examining the behavior o f the alkyldiphenyl 

oxide sulfonate surfactants in what are known as Winsor Type microemulsion systems.

A basic system consists of an aqueous phase (w), oil phase (o), an electrolyte, and a 

surfactant. The Type designation is determined by the phase in which the surfactant is 

located. In Winsor Type I systems (o/w) the surfactant is located in the aqueous phase. 

In Winsor Type II systems (w/o) the surfactant is located in the oil phase, and in Winsor 

Type m  systems the surfactant has formed a separate or third phase situated between the 

oil and aqueous phases, i.e. a middle phase microemulsion. Bourrel and Schecter (1988) 

provide a comprehensive discussion concerning the Winsor formulations and how they 

can be achieved.

Based on observations made for the Dowfax 8390 performance at Hill Air Force 

Base, a study aimed at increasing the solubility enhancement of the Dowfax™
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components was undertaken (Carter et al., 1998). Several methods including using a 

cosurfactant, adding an electrolyte, and forming middle-phase microemulsions were 

evaluated. The contaminants used were phenanthrene and tetrachloroethylene; while the 

surfactants were CIO MAMS, CIO MADS, C12 MAMS, C 1 2  MADS, C16 MADS, and 

C20-24 MADS. The results indicated that the formation of the middle-phase 

microemulsion produced the greatest enhancement. The middle-phase microemulsions 

were produced using an electrolyte (NaCl), isobutanol, a cosurfactant 

(octylphenylethoxylate or nonylphenylethoxylate Igepal surfactants) and one o f the 

alkyldiphenyl oxide sulfonate surfactants.

Although the study by Carter et al. demonstrated the effectiveness of the 

alkyldiphenyl oxide sulfonate middle-phase microemulsion systems, the use o f  an alcohol 

is generally not desirable for use in remediation applications. There are several areas of 

concern associated with the use o f alcohols in remediation. There are the precautions and 

special equipment required for the handling o f flammable substances, and the difficulties 

in separating the alcohol fl"om the contaminant in order to recycle the alcohol. Recycling 

is usually required in order to keep the surfactant remediation process economically 

feasible. The desired use of the alkyldiphenyl oxide sulfonate surfactants in remediation 

necessitated the development o f alcohol-fi’ee microemulsions. This was accomplished by 

Aowiriyakul (1998) and extended by Wu et al. (2000). The results obtained by 

Aowiriyakul indicated that the formation o f alcohol-ffee microemulsions was possible 

with Dowfax 8390, and details o f  this study are presented as part o f Chapter 2 o f this 

dissertation.
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Wu et al. (2000) reported that several combinations o f surfactants, C16 MADS 

and Dowfax 8390, and adjuncts were prepared in order to examine systems that enhanced 

the solubilization o f  tetrachloroethylene (PCE), and decane. For example, for PCE it was 

found that the amount of PCE that could be solubilized increased in the order: molar C16 

MADS-AOT < C16 MADS-AOT super solubilization system < C16 MADS-AOT 

middle-phase microemulsion system. Super solubilization was described as systems as 

close as possible to the Winsor Type I-in  boundary but still within the Type I area. The 

desirability o f formulating a system in this region is being able to take advantage o f  the 

“swollen” micelles that have a larger capacity for oil solubilization than normal micelles 

while avoiding the ultra-low interfacial tensions (TFT) obtained in Winsor Type III 

systems. Ultra-low EFT’s would be undesirable in remediation situations in which 

downward migration of the contaminant would be undesirable.

The final area of study to be presented concerns the CIO DADS component that 

qualifies as a gemini surfactant (Rosen et al., 1992, 1993b; Rosen and Tracy, 1998). 

Gemini surfactant molecules contain at least two identical head groups and two identical 

tail groups. A recent review discusses the various properties o f gemini surfactants and 

the differences between them and their monologue counterparts (Rosen et al., 1998). 

Gemini surfactants are characterized by much lower CM C’s than their monologue 

counterparts, closer packing o f their hydrophobic groups, and stronger interaction with 

oppositely charged surfactants at the aqueous solution/air interface.

As stated at the beginning o f this section, the CIO DADS was shown to solubilize 

water-insoluble nonionic surfactants o f the alcohol ethoxylate, alkylphenol ethoxylate, 

and N-alkylpyrrolidone types more efficiently and more effectively than its monologue

14



counterparts (Rosen, 1992). This observation is repeated now in light o f the significance 

now placed on the gemini structure. Draves skein wetting tests involving the same water- 

insoluble surfactants and CIO DADS found that the water-insoluble surfactants mixed 

with CIO DADS had significantly lower wetting times than either o f  the surfactants 

alone. For example, mixtures containing 20% CIO DADS and at an overall concentration 

o f 1 g/L had wetting times o f less than 15 s, and a mixture containing 50% CIO DADS 

had wetting times ranging fi'om 10.0 to 17.5 s. This is in contrast to  wetting times for 

solutions containing a single surfactant o f approximately 1 2 0  s for the water-insoluble 

surfactants and 430 s for the CIO DADS (Rosen and Zhu, 1993a).

The interaction and synergism between several o f the CIO components, DADS, 

MAMS, and MADS with a second surfactant containing a single hydrophilic and a single 

hydrophobic group were examined (Rosen et al., 1993b). The surfactants containing a 

single hydrophilic and a single hydrophobic group were: N-dodecyl-N-benzyl-N- 

methylglycine; N,N-dimethyl-1 -tetradecanamine oxide; and a polyoxyethylenated n- 

dodecyl alcohol with a homogenous head group o f  seven oxyethylene units (C 12H 25 

(OC2H 4 )?OH). The interaction of the two surfactants in each o f the systems was 

determined by calculating the (3 parameters, which are a measure o f  these interactions. 

These parameters can be calculated for mixed monolayer formation at the air/solution 

interface (P°) and for mixed micelle formation (P*"). The conclusions presented were that 

for binary mixtures o f  the CIO components with the non-anionic surfactants the attractive 

interaction in mixed monolayers at the solution/air interface increased in the order:

MAMS < MADS < DADS, but in mixed micelles o f  the same mixtures the DADS 

component showed weaker interaction. Based on the stronger interaction o f the CIO
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DADS with the non-anionic surfactants at the solution/air interface and the weaker 

interaction in mixed micelle formation, the DADS has a greater probability of exhibiting 

synergism in surface tension reduction, but a lower probability o f  showing synergism in 

mixed micelle formation.

The following chapters present several o f the physical properties and behaviors 

exhibited by individual alkyldiphenyl oxide sulfonate surfactants and the commercially 

available alkyldiphenyl oxide sulfonate mixture DOWFAX 8390 beginning with the most 

fundamental to surfactant research, values of the CMC. The reported results are meant to 

compliment the work that has already been accomplished with these surfactants.
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Chapter 1

Determination o f  Critical Micelle Concentrations for Several 
Alkyldiphenyl Oxide Disulfonate Surfactants

1.1 Abstract

The critical micelle concentrations (CMC) for several alkyldiphenyl oxide 

disulfonate surfactants were determined in deionized water and in sodium chloride 

solutions. The CMC’s ranged from 10"® to 10"* M with some values not following 

expected trends. Other values discussed are the surface tensions at the CMC, surface 

excess concentrations (molecule/m^), and surface area per molecule at the air/water 

interface. The results are discussed in terms of the surfactants actually being mixed 

surfactant systems. The effect o f  adding the sodium chloride on the above values is also 

discussed.
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1.2 Introduction

As discussed in the Prologue, surfactants exist in solution as individual molecules 

or monomers until a critical concentration is reached at which the monomers begin to self

aggregate. This concentration is designated as the critical micelle concentration (CMC) 

and is one o f the most fundamental physical properties o f surfactant solutions. Table 1-1 

contains several CMC values reported and the conditions under which they were 

determined for various alkyldiphenyl oxide sulfonate surfactants.

Table 1-1 Reported CMC Values
Component CMC(M) Reported Conditions Method
CIO MAMS® 3.2x10'^ 25° C; O.lNNa^ Wilhelmy plate
CIO DADS® 1.0x10'" 25° C; O.lNNa* Wilhelmy plate
CIO MADS® 3.7x10-" 25° C; 1.0 NNa" Wilhelmy plate

3B2‘’ 4.0x10'" RT Capillary rise
C12 MADS" 5.0x10'" RT Capillary rise

8390" 6.3x10'" RT Capillary rise
8390® 3x10" RT Estimated from SED

CIO DADS" 1.54x10'" 36° C; 0 M Na" Max. bubble tensiometer
CIO DADS" 1.26x10" 36° C; 8.6x10"" MNa" Max. bubble tensiometer
CIO DADS" 5.89x10"" 36° C: 3.4x10 " MNa" Max. bubble tensiometer
CIO DADS" 2.88x10"" 36° C; 0.01 MNa" Max. bubble tensiometer
CIO DADS" 2.33x10"" 36° C; 0.025 M Na* Max. bubble tensiometer
CIO DADS" 1.80x10"" 36° C; 0.05 MNa" Max. bubble tensiometer
CIO DADS" 1.43x10"" 36° C; 0.1 MNa" Max. bubble tensiometer
CIO DADS" 1.14x10"" 36° C; 0.2 M Na* Max. bubble tensiometer
CIO DADS" 5.37x10" 36° C,OMK* Max. bubble tensiometer
CIO DADS" 2.09x10" 36° C, 0.05 MK* Max. bubble tensiometer
CIO DADS" 1.48x10"' 36° C,0.1MK* Max. bubble tensiometer
CIO DADS" 1.00x10"" 36° C, 0.2 M K* Max. bubble tensiometer
CIO MADS® 1.40x10"" RT Calm tensiometer
C12MAD® 1.30x10"" RT Calm tensiometer

C16 MADS® 2.53x10"" RT Calm tensiometer
CIO DADS' 1.33x10"" RT Calm tensiometer

10%CI6 DADS. 3B2 is a commercial mixture of CIO components containing 15-35% CIO MADS and 5-10% C16 DADS 
'R ousc et al 1995 **Yin 1994 ^Quencer, 1995

The purpose of the current research was to determine the CMC’s of CIO MADS, 

C12 MADS, C16 MADS and CIO DADS components in order to attempt to resolve
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differences between reported CMC values and to verify the adsorption behaviors observed 

for several o f the components. The observed behavior o f surfactant adsorption is such 

that an increase in adsorption is observed until the CMC is reached. At the CMC the 

surfactant adsorption remains constant or plateaus with any further increase in surfactant 

concentration. The results o f  the adsorption studies in relation to the CMC’s are 

presented in Chapter 3, Section 3.5.3.4 (Table 3-3).

1.3 Materials

The CMC’s were determined for CIO MADS, CIO DADS, C12 MADS and C16 

MADS. These surfactants are part o f  the Dowfax™ suite o f surfactants and were 

provided by DOW Chemical, Midland, MI at approximately 35% active by weight. They 

were used as received. Sodium chloride, ACS grade, was purchased from Fisher 

Scientific and also used as received. Deionized water was manufactured in-house.

1.4 Experimental

From the 35% active solutions, stock solutions o f approximately 10% active were 

prepared using deionized water. Two series o f solutions were prepared, one in DI water 

and the other in sodium chloride, with surfactant concentrations ranging from lO"® M  to 

0.1 M. For the MADS surfactants the sodium chloride concentration was 0.15 M, and for 

the DADS surfactant the sodium chloride concentration was 0.09 M. Previous research 

had shown the DADS surfactant to be susceptible to “salt-shock” or complex phase 

behavior in the presence o f higher concentrations o f sodium chloride. The lower salt 

concentration avoided this undesirable behavior. These two sodium chloride 

concentrations were chosen to compliment the adsorption studies discussed in Chapter 3.
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The surface tensions were measured on a KRÜSS digital tensiometer. Model K 10 

T using a plate method based on the Wilhelmy method. Prior to each measurement, the 

sample vessels were cleaned using a No-Chromix acid solution, triple rinsed and oven 

dried. The plate was rinsed with DI water and flamed to remove any trace contamination.

A circulation bath was used to maintain a constant temperature o f 22° C, although 

some fluctuation was unavoidable. Approximately 25 mL o f  the surfactant solution was 

poured into the sample vessel, and the temperature was allowed to equilibrate. Preparing 

the tensiometer for each measurement required a null adjustment. The tensiometer was 

placed in the “Zero” mode. In this mode the digital display was zeroed then the balance 

beam o f the force measuring unit was brought to the zero position. Measuring the surface 

tension was accomplished by raising the sample vessel so that the solution surface was 

approximately 1 mm from the bottom edge o f the plate, checking the null adjustment, 

placing the tensiometer in the “Run” mode and raising the vessel just until the plate 

contacted the solution. At this point the tensiometer begins measuring the surface tension. 

The plate is tom  out of the solution by a dial m otor until the lower edge o f the plate again 

exactly reaches the level o f the solution surface. As the surface tension changes, either 

due to changes in temperature or enrichment o f  the surfactants at the surface, the display 

was capable o f indicating the actual surface tension. This feature proved very useful due 

to the long equilibration times exhibited by the MADS and DADS surfactants.

The change in the surface tension with time was observed during timed studies 

using the inverted vertical pull surface tension method (Christian et al., 1998) for the 

following solutions: C16 MADS at 0.1925, 3.07x10'^, 4.56xlO '\ and 1.82x10'^ M  each in
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0.15 M  NaCl. For comparison, a  timed study was also performed with 1.82x10"^ M C16 

MADS in 0.15 MNaCI.

The surface tension measurements using the inverted vertical pull surface tension 

method were performed in two different ways: by leaving the sample on the balance until 

equilibrium was reached and by removing the sample from the balance and taking a “fresh’' 

reading at each time interval. The time intervals for each method were such that 

measurements were taken at short durations initially, and as the amount o f change in the 

surface tension decreased the time intervals were lengthened. Measurements on the 

KRÜSS were conducted by leaving the plate in the solution until equilibrium was 

established. The change in the time intervals was adjusted in the same manner as the 

inverted vertical pull method.

1.5 Results and Discussion

1.5.1 Critical Micelle Concentrations

Plots of surface tension (y) versus log concentration (C) were prepared for each 

surfactant, and linear regressions were performed on the data points comprising the two 

linear sections of these plots. The CMC’s were then determined from the intersection of 

these two regression lines. These plots are shown in Figure 1-1 through Figure 1-8, and 

complete lists of data points for each surfactant are provided in Appendix 1 A.

Table 1-2 contains the CMC values determined by DOW Chemical and the values 

determined in this study.
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Table 1-2 CMC Values (M)
Surfactant CMC* CMC** CMC***
CIO MADS 1.40x10'^ 8.24x10'^ 2.58x10'^
C12MADS 1.30x10“̂ 3.05x10'^ 1.26x10'^
C16MADS 2.53x10-^ 1.08x10" 8.12x10-®
CIO DADS 1.33x10'^ 1.69x1 O'* 4.96x10"®

* Values obtained by DOW Chemical with no additional electrolyte (Quencer, 1995).
** Values obtained in the current study with no additional electrolyte.

*** Values obtained in the current study in 0.15 M NaCl for the MADS components and 0.09 M NaCl for 
the DADS component.

The values determined in the current study tend to be lower than previous values 

reported. In addition to the differences in the temperatures used in the different studies, 

there are the differences in the times allowed for equilibration. Most o f  the previous 

studies employed methods that involve relatively short times for equilibration. The only 

study that mentioned equilibration times o f several hours was that by Rosen et al. (1992), 

but there are several key differences between that study and this. These include 

temperature and salinity, but most notably the surfactants. Rosen et al. used purified 

surfactants while the current study did not.

The CMC’s determined in this study can be explained, in a large part, based on the 

composition of each of the surfactants which were shown in the following table. This 

information was provided by DOW Chemical for samples received fi'om 1992 to 2000 and 

is considered confidential and is therefore not present in the final version o f  this 

dissertation.

Table 1-3 Composition of Dowfax Surfactants (Weight Percent*)______

CONFIDENTIAL
INFORMATION
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For solutions prepared in DI water and sodium chloride the behavior o f the two 

CIO components is as expected. As the number o f  alkyl chains increases, the CMC 

decreases. Rosen et ai. (1992) reported values o f  3.7x10"* M  in 1 N NaCl for the CIO 

MADS and 1.0x10'^ M in 0.1 N NaCl for the CIO DADS which are an order o f magnitude 

greater than the values obtained here for the electrolyte systems, but are close to the 

current values for the DI solutions. There are several differences between the Rosen study 

and the current study. First, surfactants used in the Rosen study were said to be purified 

and to have a 99.7 % disulfonate content while the surfactants in this study were mixtures 

o f  the MADS, DADS and, in some cases, DAMS components. Second, the equilibration 

times are significantly different. Rosen et al. commented that in some cases equilibration 

took several hours. Times for the current study averaged 10 hours. Third, the 

temperature used was 25°C while the current temperature was 22°C. Fourth, surfactant 

solutions used in the current study contained trace amounts o f  sodium sulfate, with 

concentrations on the order o f  10'^ M for solutions at the CMC.

Assuming ideal mixing for the CIO components and also assuming the value o f  the 

CIO MADS /  0.0 M  NaCl is accurate; the following equation for ideal mixing was used to 

calculate a CMC for the CIO DADS surfactant:

Where Ci is CIO MADS; Cz is CIO DADS and a  is 0.217. Ignoring the 7% DAMS 

content, the CMC for the CIO DADS was calculated to be 1.38x10'^ M which is similar to 

the value determined experimentally.
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It would be expected that for the three MADS surfactants, CIO, 012, and 016, the 

value o f the OMO would decrease due to the increasing alkyl chain length. This is true for 

those solutions prepared in 0.15 M NaOl but not for those in deionized water. For the 

solutions prepared in deionized water the observed behavior can be explained, in part, by 

the component breakdown for each of the surfactants. Assuming the general rule o f 

thumb for OMO’s halving with the addition o f each methylene group, and using the values 

for the 016 MADS as a base; the expected values for the OlO and 012 MADS would be 

greater by one and two orders o f  magnitude, respectively. The estimated OMO for the 

OlO MADS is 6.9x10'^M and for the 012 MADS, 1.7x10'^M. These values are higher 

than expected and indicate that the OMO determined for the 016 MADS may be too high.

When sodium chloride is added to the MADS solutions, the OMO’s for the 010, 

012, and 016 surfactants are reduced by factors o f  69, 59, and 99% relative to the 

deionized water systems. Relative to each other the OMO’s o f the MADS components in 

NaOl decrease with increasing chain length, as would be expected. Using the 016 MADS 

0.15M NaOl as a basis, estimated OMO’s for the OlO- and 012 MADS without DADS 

would be 5.2x10^ and 1.3x10*^ M, respectively. These estimations are based on the 

general rule o f thumb that the OMO of an ionic surfactant is halved by the addition o f one 

methylene group to a straight-chain hydrophobic group attached to a single terminal 

hydrophilic group (Rosen, 1989).
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1.5.2 Surface Tensions at the CMC

Surface tensions at the CMC’s (ycMc) were also determined from the intersection 

o f the two lines comprising the surface tension curves. These values are provided in Table 

1-4. In comparing the two systems, it can be seen that there is a small increase in ycmc 

upon the addition o f  NaCl for all o f the surfactants.

Surfactant Y CMC* Y CM C**

Cio MADS 27.6 31.6
Ci2 MADS 35.1 37.2
Ci6 MADS 38 .4 39.7
Cio DADS 28.6 31.1

* Values obtained in the current study with no additional electrolyte.
** Values obtained in the current study in 0.15 M NaCl for the MADS components and 0.09 M NaCl for 
the DADS component.

1.5.3 Surface Excess Concentration

Estimates o f the surface excess concentrations (Ti) were calculated using the 

following equations provided in Rosen (1989). For 1 ; 1 ionic surfactants in swamping 

amount of electrolytes the following applies:

AI
2.303 RT

d Y

5 log C l
( 1-2)

Where dy!d\o% C\ is the slope of a plot of x(in mN m'^) versus log Ci, is the gas 

constant (8.31 Jmof* K‘ )̂, Tis the absolute temperature, and F is in mol/1 OOOm̂ . 

For 1:1 ionic surfactants containing no other solutes the following applies:

/  A
T i  =  -

1
4.606 RT V a log C 1

(1-3)
J  T
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Using equations (1-2) and (1-3), the following adsorption densities were calculated 
for the surfactants at both salinities examined.

Table 1-5 Adsorption Densities (mol/lOOOm^ I*

Surfactant mol/lOOOm^** moi/lOOOm^***
Cio MADS 3.20x10'^ 6.92x10'^
Ci2 MADS 2.97x10-' 5.98x10'"
Ci6 MADS 1.17x10" 3.22x10'^
Cio DADS 2.77x10'^ 3.81x10'"

*** Values obtained in the current study in 0.15 M NaCl for the MADS components and 0.09 M NaCl for 
the DADS component.

When using equations (1-2) and (1-3), care must be taken to ensure that they are 

suitable for the surfactant systems in question. For the electrolyte systems in this study the 

concentration o f the sodium chloride was 0.15 M  and 0.09 M, several orders greater than 

the CMC’s o f the surfactants. Therefore, equation (1-2) is applicable.

Sodium sulfate is present in the surfactant solutions received from Dow Chemical, 

and the weight percents present in each surfactant are shown in Table 1-2. At the CMC 

the concentration o f the sodium sulfate is only one or two orders below the CMC’s. This 

being the case, the values o f the densities calculated from equation (1-3) should be treated 

as estimates. Since the concentrations ofNazS0 4  in each surfactant are on the same order, 

the direction o f change seen in the adsorption densities for these systems is still valid.

1.5.4 Area per Molecule at the Air/Water Interface

Using the adsorption densities calculated above the surface areas were calculated 
from the following equation (Rosen, 1989) with the results shown in 
Table 1-6:

Where a l  is in square angstroms, AT is Avogadro’s number, and Fi is in mol/lOOOm^.
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Table 1-6 Area per molecule (À )̂
Surfactant Area per molecule* (A )̂ Area per molecule** (Â )̂
Cio MADS 52.0 24.0
Ci2 MADS 55.9 27.8
Ci6 MADS 142.2 51.6
Cio DADS 60.0 43.5

* Values obtained in  the current study with no additional electrolyte.
** Values obtained in the current study in 0.15 M NaCl for the MADS components and 0.09 M NaCI for 

the DADS component.

For both systems the areas increase with increasing chain length. The area for the 

CIO DADS would be greater except for the amount of MADS present in the system. The 

area for the CIO DADS in deionized water is only slightly greater than the area for the 

CIO MADS indicating the strong influence o f the MADS on the equilibrium surface 

composition o f  the DADS surfactant. In the saline solutions the difference in the areas for 

the CIO components is greater than their areas in deionized water. It would be expected 

that the CIO MADS molecules would have less repulsion for each other and therefore 

compress to a smaller area in a saline environment relative to the DADS. Hence the larger 

area for the CIO DADS/ 0.09 M  NaCl.

1.5.5 Timed Surface Tension Values

Unfortunately, the timed studies using the inverted vertical pull surface tension 

method did not provide the information sought. Measurements conducted by removing 

the sample vial from the balance and taking a “fresh” reading at each time interval 

indicated essentially no change in the surface tension with time. Measurements taken by 

leaving the sample on the balance for the duration indicated that the surface tension 

decreased and then began to increase, but at the point of increase the rod broke free of the 

solution surface.



Timed surface tension measurements were taken on the KRÜSS to examine the 

change in the surface tension with time as the surface came to equilibrium. As seen in 

Figure 1-9 the time needed to reach equilibrium was just over 20 hours for the 1.82x10'® 

M  CI6 MADS. While this time was on the upper end of the range o f  times needed to 

reach equilibrium for the different surfactant solutions, it was not atypical o f the changes 

that had been observed for different surfactant solution. Plots o f y versus time for 

1.82x10"® M C16 MADS for the two different methods are shown in Figure 1-9 and 

Figure 1-10 and are shown for comparison.

1.6 Conclusions

It was interesting to note in Table 1-1 that the more dynamic methods used in the 

determination of CMC’s, i.e. those that allow for only short equilibration times, tended to 

have much higher CMC’s. So the question arises as to the surfactant composition at the 

surface at any given time as equilibrium is approached. Since difihxsion coefficients are 

inversely proportional to the molecular volumes, components with larger molecular 

volumes would be expected to have smaller diSusion coefficients. This o f  course has 

implications for the applications in which these surfactants are used.

The CMC values determined for the CIO, C12 and C16 MADS and for the CIO 

DADS can be explained on the basis o f their compositions and follow expected trends. As 

the alkyl chain length increases, the CMC decreases. The values determined for the areas 

per molecule for the MADS components were smaller than expected but did show 

increasing surface area as the alkyl chain length increased from 10 to 16.
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lA  Appendix: Surface Tension Data
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CIO MADS Surface Tension Data

Table lA.1-1 Data for 0.0 M NaCI

Surfactant Concentration (M) Log(M ) Surface Tension (mN/m)

9.30x10'^ -6.03 72.6
2.33x10-^ -5.63 71.4
4.65x10-^ -5.33 72.5
7.95x10-^ -5.10 58.8
1.16x10'^ -4.94 59.0
2.48x10'^ -4.61 46.4
4.65x10'^ -4.33 45.3
9.45x10'^ -4.02 32.2
9.58x10“* -3.02 29.9
9.85x10-' -2.01 31.0
9.85x10'^ -1.01 35.2
1.28x10* -0.89 35.2
1.42x10'* -0.85 35.6
1.78x10'* -0.75 35.8
2.67x10'* -0.57 36.3

Table lA.1-2 Data for 0.15 M NaCl

Surfactant concentration (M) Log(M) Surface Tension (mN/m)

9.58x10'" -6.01 72.6
2.40x10"'* -5.62 67.0
4.79x10''* -5.32 60.0
6.31x10"^ -5.20 49.1
7.95x10''* -5.10 45.4
1.20x10'" -4.92 46.0
1.49x10'" -4.83 39.9
4.79x10'" -4.32 32.8
9.93x10" -4.00 31.6
1.02x10" -2.99 31.0
9.83x10'" -2.01 34.6
9.83x10'** -1.01 36.0
1.42x10'* -0.85 36.5
1.78x10'* -0.75 36.5
2.67x10* -0.57 36.6
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C12 MADS Surface Tension Data

Table lA.2-1 Data for 0.0 M NaCl

Surfactant Concentration (M) Log(M ) Surface Tension (mN/m)

2.42x10-^ -5.62 70.0
4.84x10^ -5.32 63.2
6.27x10-^ -5.20 54.5
7.84x10-^ -5.11 45.5
9.81x10"^ -5.01 51.7
1.26x10'^ -4.90 49.0
1.83x10'^ -4.74 43.6
4.84x10-3 -4.32 37.6
1.05x10-4 -3.98 36.4
5.11x10*4 -3.29 34.2
7.50x10^ -3.12 33.9
9.90x10"* -3.00 34.6
9.85x10*" -2.01 36.3
3.00x10*^ -1.52 38.4
5.00x10*^ -1.30 37.6
1.00x10** -1.00 38.9

Table lA.2-2 Data for 0.15 M NaCI

Surfactant Concentration (M) Log(M ) Surface Tension (mN/m)

9.72x10*’ -6.01 68.6
2.43x10*® -5.61 61.4
2.50x10^ -5.60 60.5
3.19x10*® -5.50 52.8
4.78x10*® -5.32 52.2
5.82x10*® -5.24 48.2
7.84x10*® -5.11 44.2
1.20x10*3 -4.92 41.8
4.86x10*3 -4.31 35.0
9.29x10*3 -4.03 34.2
5.35x10*4 -3.27 36.9
4.97x10*" -2.30 38.6
3.00x10*** -1.52 36.8
5.00x10*** -1.30 36.5
1.00x10** -1.00 38.3
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C16 MADS Surface Tension Data

Table lA.3-1 Data for 0.0 M NaCI

Surfactant Concentration (M) Log(M ) Surface Tension (mN/m)

5.59x10'^ -6.25 72.6
1.12x10-^ -5.95 72.1
2.80x10*^ -5.55 72.7
5.59x10"* -5.25 68.1
1.40x10'^ -4.85 62.7
2.16x10'^ -4.67 58.7
3.89x10'^ -4.41 52.6
5.59x10^ -4.25 55.5
7.58x10'* -4.12 51.6
l.lOxlO-"" -3.96 47.2
1.00x10'* -3.00 47.2
9.54x10'^ -2.02 47.0
4.00x10-2 -1.40 39.8
9.58x10-2 -102 40.8
1.16x10'* -0.94 41.1
1.93x10'* -0.72 40.3

Table lA.3-2 Data for 0.15 M NaCI

Surfactant Concentration (M) Log(M ) Surface Tension (mN/m)

1.43x10-2 -6.84 71.8
2.86x10-2 -6.54 66.3
3.94x10-2 -6.40 56.1
5.72x10-2 -6.24 59.1
9.57x10-2 -6.02 54.1
1.14x10"* -5.94 56.0
1.91x10"* -5.72 50.3
2.86x10"* -5.54 49.8
5.72x10"* -5.24 46.8
1.43x10'* -4.84 44.1
5.72x10* -4.24 44.7
1.16x10-4 -3.94 44.8
l.OlxlO'J -3.00 40.0
9.81x10'* -2.01 38.5
9.61x10-2 -1.02 39.0
1.93x10'* -0.72 39.9
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CIO DADS Surface Tension Data

Table lA.4-1 Data for 0.0 M NaCI

Surfactant Concentration (M) Log(M ) Surface Tension (mN/m)

5.32x10'’ -6.27 68.3
1.06x10^ -5.97 64.9
2.66x1 Q-̂ -5.58 58.7
3.99x10“® -5.40 49.2
5.32x10-® -5.27 44.2
7.98x10-® -5.10 38.4
1.33x10'® -4.88 32.5
5.32x10'® -4.27 29.3
1.03x10“' -3.99 28.9
1.96x10“* -3.71 28.5
4.89x10“* -3.31 28.7
9.79x10^ -3.01 30.0

Table lA .4-2 Data for 0.09 M NaCI

Surfactant Concentration (M) Log (M) Surface Tension (mN/m)

2.56x10'** -7.59 72.5
7.68x10'* -7.11 72.5
1.02x10“’ -6.99 64.2
2.56x10“’ -6.59 61.1
3.84x10“’ -6.42 53.3
5.12x10“’ -6.29 50.0
7.68x10“’ -6.11 52.8
1.02x1 O'® -5.99 42.0
2.56x10-® -5.59 38.4
5.12x10-® -5.29 31.4
1.28x10'® -4.89 30.7
5.12x10'® -4.29 30.0
8.11x10'® -4.09 30.0
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Chapter 2

Preparation of Microemulsions Using Salinity and 
Modified Lipophilic Scans with Alkyldiphenyl Oxide Disulfonate

Surfactants

2.1 Abstract

Traditional salinity scans were conducted in an attempt to force select mono- and 

dialkyldiphenyl oxide mono and disulfonate surfactants into undergoing the I-IH-II and I- 

IV -n phase transitions. They were not entirely successful. A few surfactant systems 

underwent the I/HE transition, but even when saturated with electrolyte, the type III 

microemulsions formed were under optimum and the formation o f gels and precipitates 

was also observed. Modified lipophilic scans were conducted based on the concept of 

lipophilic linkers. The linker chosen was octanoic acid. In the presence of the linker the 

surfactants were able to undergo I-IH-II and I-IV-II phase transitions, but gels were still 

present in many systems. The gels tended to occur at lower surfactant concentrations. 

For the systems containing CaClz, the optimum solubilization potentials averaged 2.93 

mL/g at 24°C, 2.87 mL/g at 35°C, and 2.75 mL/g at 45°C. For the systems containing 

MgClz.ôHzO+CaClz, the optimum solubilization potentials averaged 3.03 mL/g at 24°C, 

2.86 mL/g at 35°C and 45°C.

The material contained in this chapter is a  compilation o f research conducted by 
the author and Ms Sangaroon Aowiriyakul.
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2.2 Introduction

2.2.1 Microemulsion

In systems containing electrolyte, hydrocarbon, water, and a water soluble 

amphiphilic compound (usually a surfactant) there exists the possibility o f inducing the 

amphiphile to transition from the water-rich phase into the hydrocarbon or oil-rich phase. 

This transition has traditionally been described in terms o f  the Winsor nomenclature. The 

designation ’’Winsor type T’ is used to describe a microemulsion system consisting o f two 

phases, one water-rich and the other oil-rich, with the bulk of the surfactant located in the 

water-rich phase. Any oil located within the water-rich phase exists as an oil in water 

(o/w) microemulsion, regardless of the diameter of the oil “drops”. Under certain 

conditions the surfactant will form a third phase which is an amphiphilic-rich phase 

containing emulsified water and oil in equihbrium with excess oil and water phases. This 

system is designated as a Winsor type HI microemulsion. Upon formation o f  the type HI, 

the surfactant-rich phase (also called the middle phase) contains primarily water, but as the 

transition continues the middle phase takes up increasing amounts o f oil. The system is 

said to be at its optimum when equal amounts o f water and oil are solubilized within the 

middle phase region. As more oil is solubilized, a second two-phase system (type II) is 

formed. In this second two-phase system the surfactant is located primarily in the oil-rich 

phase with any water within the oil phase existing as a water in oil (w/o) microemulsion.

At sufficiently high surfactant concentrations the type I system may transition directly into 

a single-phase system designated as a Winsor type IV and then to a type II. The Winsor 

type IV system is single surfactant phase with no excess phases.
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The transition of a hydrocarbon/water/eiectrolyte/surfactant system from type I to 

type n  can be brought about by several means. A detailed description for promoting these 

transitions is provided by Bourrel and Schecter (1988). Included in this description are 

two o f  the most common methods that involve changing the salinity in so-called salinity 

scans or the changing of the temperature. Figure 2-1 is an illustration o f the changes in 

interfacial tension and solubilization with increasing salinity and the corresponding changes 

in the appearances o f  the microemulsions.

Fundamental microemulsion research typically used alkanes as the hydrocarbon. 

From the many studies using alkanes o f various carbon lengths, it was observed that the 

behavior o f  the microemulsion system was strongly dependent on the number o f carbon 

atoms o f the alkane. Many results were presented on the basis of the alkane carbon 

number (ACN). The concept o f  the ACN became such a standard that as microemulsion 

research expanded to include other types o f oils, the term equivalent alkane number 

(EACN) was coined. Originally, EACN values were based on matching interfacial tension 

minima. An oil is said to be equivalent to an alkane that produces an interfacial tension 

minimum under the same conditions as the oil. However, equivalent does not mean that 

the oil o f interest and its equivalent alkane behave identically. The EACN is used to 

provide a point o f  reference and has proven to be very useful.

In many hydrocarbon/water/surfactant/electrolyte systems examined, additives 

were often required to prevent the precipitation o f  the surfactant or the formation o f gels. 

The most common additives were alcohols and secondary surfactants. The role o f the 

alcohol was traditionally discussed in terms o f its distribution within the regions o f the 

microemulsion systems. Alcohols are known to be amphiphilic in nature, and because of
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this amphiphilic nature a portion o f  the alcohol molecules will be located at the interface 

between the oil-rich phase and the surfactant-rich phase. The alcohol molecules will be 

oriented with their polar groups located between the ionic groups o f the surfactant 

molecules and nearby water molecules and with their hydrocarbon groups located among 

the hydrocarbon groups of the surfactant. The remaining portion o f the alcohol is 

distributed between the oil- and water-rich phases with the distribution into each phase 

depending on the hydrophilic/amphiphilic and lipophilic characters o f the alcohol (Bourrel 

and Schecter 1988).

Kahlweit et al. (1991) proposed that alcohols should be considered as cosolvents 

rather than cosurfactants. It was stated that as cosurfactants alcohols were considered to 

act mainly on the properties o f the interfacial layer, but viewing alcohols as cosolvents that 

distribute between the water- and oil-rich bulk phases serves to emphasize the role o f the 

alcohol in decreasing the effective hydrophilicity of the amphiphile and the effective 

hydrophobicity o f the oil. The distribution of the alcohol depends heavily on the carbon 

number o f  the alcohol and on the carbon number of the oil. Alcohols that are heavily 

concentrated in the water-rich phase serve to make the components in that phase more 

hydrophilic; while alcohols that tend to concentrate in the oil-rich phase produce an 

oil/alcohol mixture that is less hydrophobic than the pure oil. Because the alcohol is 

partially miscible with water, the alcohol also serves to make the water phase components 

less hydrophilic.

Kahlweit et al. (1995) reported the results of creating microemulsions o f an anionic 

surfactant at fixed temperature, oil, and brine using alkyl poly (glycol ethers). The 

microemulsion formulation with ionic surfactants was accomplished using so-called
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lipophilic scans. This procedure involves using a sufficiently lipophilic ionic surfactant and 

varying its effective lipophilicity by mixing it with either a less lipophilic or more lipophilic 

medium chain alcohol in order to affect the hydrophobicity o f the system.

The concept o f changing the hydrophobicity o f the oil has also been addressed 

with the concept o f  lipophilic linkers (Graciaa et al, 1993a). A lipophilic linker was 

defined as an amphiphilic substance with a small hydrophilic group and a large 

hydrophobic group; such a substance would have an overall hydrophilic-lipophilic balance 

(HDLB) that is very low. The HLB method was developed to relate the balance between 

the hydrophilic and lipophilic portions o f the surfactant to the émulsification behavior of 

the surfactant. The HLB-value has served as one basis o f comparison between 

surfactants.

Lipophilic linkers are located in the oil phase near the oil/water interface rendering 

the oil phase at the interface more polar than the bulk oil phase and are oriented 

perpendicular to  the oil/water interface with their hydrophilic groups directed toward the 

interface. This perpendicular positioning of the linker molecules forces the neighboring oil 

molecules to be more ordered which results in enhanced interactions between neighboring 

oil molecules and between the surfactant and oil molecules. This orientation is shown in 

Figure 2-2. The examination of alcohols (Graciaa et al, 1993b) as lipophilic linkers led to 

the conclusion that long chain alcohols (above C8) do act as lipophilic linkers while 

shorter chain alcohols act as cosurfactants. It was also pointed out that an increase in 

either the lipophilic linker concentration or the lipophilicity of the linker would result in an 

increase in the orientation in the oil layer next to the interface with a resultant increase in 

solubilization.
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2.2.2 Solubilization

The formulation o f microemulsion systems has had as its focus the improved 

solubilization o f compounds by a surfactant system. Compounds that show very low 

solubilities in aqueous solutions are known to have greater solubilities in solutions 

containing surfactants. In developing a  suitable microemulsion system the solubilization 

capacity o f the system must be considered. Reed and Healy (1977) defined the 

solubilization parameters as;

SPo =  V(/Vs (2-1)

SPw — VwA ŝ (2-2)

Where SPo and SPw are solubilization parameters for oil and water, respectively; Vq and 

Vw are volumes of oil and water, respectively, solubilized in the micellar solution; and Vs 

is the volume of surfactant in the micellar solution, excluding the alcohol volume (if an 

alcohol is present). This definition makes sense for nonionic surfactants that are liquid at 

room temperature but is awkward to apply to many ionic surfactants.

A modified solubilization parameter was used in this study. The solubilization 

parameter is defined per unit mass o f surfactant rather than per unit volume, as follows:

SPo — V q/M s (2-3)

SPw — Vw/Ms (2-4)

Where Ms is the total mass (grams) o f  surfactant(s) present. In this definition the mass of 

any alcohol present is excluded in the calculation o f  Ms. However, the masses o f  any co

surfactants are included (Wu, 1996).

As the system undergoes the I-HI-II transition there is a corresponding change in 

the solubilization parameters, SPo and SPw. Curves o f  these parameters intersect inside
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the three-phase domain at a point where equal amounts o f oil and water are solubilized i.e. 

SPo=SPw. The corresponding solubilization parameter is denoted as the optimum 

solubilization parameter, SP*, and the salinity at this point as the optimum salinity, s*.

Since the alkyldiphenyl oxide disulfonates used in this study were known to be 

mixtures o f  isomers, the initial premise for this research was that the presence o f the 

dialkyl monosulfonate components might make these mixtures lipophilic enough to 

undergo the I-HI-II transition without the addition of alcohol or other additives. The 

ability to formulate microemulsions without additives would make such a surfactant 

system a more viable candidate for use in subsurface remediation. The interest in these 

surfactants arose from their high hardness tolerances and low adsorptions that make them 

suitable for subsurface remediation. Based on this premise, the initial microemulsion 

research evaluated the phase behavior of many systems containing alkyldiphenyl oxide 

disulfonate surfactants with several types o f  oils. The final part o f  this research was based 

on the concepts proposed by Salager and Kahlweit with a focus on the development of 

alcohol-free microemulsions by varying the hydrophilicity o f  the oil phase through the 

addition o f a long chain organic acid.

Kahlweit (1995) summarized procedures for systematically searching for 

appropriate amphiphiles to form microemulsions based on a distribution coefficient Kc. 

Where Kc=Cb/ca, and the terms Ca and Cb are the amounts o f amphiphile in the oil and 

water phases, respectively. The alkyldiphenyl oxide disulfonates used in the current study 

are more soluble in water than in oil, i.e. Kc«l - In an attempt to shift this ratio such that 

Kc»l, a long-chain organic acid was chosen. Selection o f the specific acid used was based 

on the HLB values o f the surfactant and o f  the acid.
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Although the emphasis o f  the Kahlweit (1995) work was the preparation o f 

microemulsions at fixed temperature, oil carbon number, and electrolyte concentration, 

relationships between temperature, electrolyte concentration, and Kc for ionic surfactant 

systems were discussed. One such relationship was between temperature (T) and 

electrolyte concentration in the brine [e = salt/(salt + H2O)]. At fixed oil and amphiphile, 

the amount of salt required for traversing the three-phase interval (Ae) increases with 

decreasing Kc. Hence, on a T-e plot, Ae shapes a cusp that ascends and widens for ionic 

amphiphiles (Figure 2-3). For a given oil and temperature, the amount o f salt required 

decreases with increasing lipophilicity o f the amphiphile, which makes the cusp in Figure 

2-3 move to the left.

Several of the alkyldiphenyl oxide sulfonate surfactants are known for their low 

surface sorption, low precipitation potential, and strong electrolyte resistance which are 

favorable characteristics for many applications including groundwater remediation. Their 

most notable drawback is the relatively low solubilization enhancement for hydrophobic 

non-aqueous phase liquids (Carter et al., 1998). Middle phase microemulsions formulated 

with these surfactants required the use of additives (cosurfactants and isobutanol) due to 

their highly hydrophilic nature (Carter et al., 1998 and Wu, 1996). In light of the concepts 

proposed by Salager and Kahlweit, it was felt that it was worthwhile to re-examine the 

formulation of alcohol-fi*ee microemulsions using the alkyldiphenyl oxide disulfonate 

surfactants. The use o f  alcohols in microemulsion formulations has long been a concern.

In many applications such as environmental remediation the use o f alcohols is undesirable. 

There are concerns about special precautions and equipment required for flammable 

substances and more importantly the inability o f  separating the alcohol from the
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contaminant in order to recycle the alcohol. There are also difiBculties that arise with not 

being allowed to discharge any alcohol into municipal waste systems. Therefore, the 

development o f alcohol-free microemulsions would greatly enhance the scope o f 

environmental applications for tlie alkyldiphenyl oxide disulfonate surfactants and offer 

insight into the microemulsion formulation of other highly water soluble surfactants.

2.3 Materials

2.3.1 Salinity Scans

Salinity scans were conducted with alkyldiphenyl oxide mono and disulfonate 

surfactants listed under the trade name of DOWFAX7“ Surfactants provided by Dow 

Chemical Co., Midland, MI. The specific surfactants used for the salinity scans consisted 

o f CIO MADS, C12 MADS, C16 MADS and CIO DADS, and CIO MAMS. Additives 

included dioctyl sulfbsuccinates (Aerosol OT, AOT) and sec-butanol both purchased from 

Fisher Scientific. Sodium chloride (NaCl), ACS grade, was purchased from Fisher 

Scientific and used without further purification. The hydrocarbons used were pentane, 

heptane, hexane, octane, dodecane, orthodichlorobenzene (ODCB), and perchloroethylene 

(PCE). Each o f the hydrocarbons was purchased from Sigma and used as is. Deionized 

water was manufactured in-house.

2.3.2 Modified Lipophilic Scans

Preparation o f microemulsions using a modification o f the lipophilic scanning 

technique described by Kahlweit (1995) used DOWFA)C^ 8390, a commercial surfactant 

which is approximately 35% active. The surfactant is a mixture o f 15-35 w/w% C l6
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MADS and 5-10 w/w% C16 DADS (Material Safety Data Sheet: 001177). 

Perchloroethylene (PCE), ACS grade, was purchased from Aldrich Chemical Company. 

Octanoic acid, ACS grade, was purchased from Aldrich Chemical Company. Anhydrous 

calcium chloride (CaCk), desiccant grade, was purchased from Fisher Scientific. 

Magnesium chloride, hexa-hydrate (MgClyôHzO), ACS grade, was purchased from J.T. 

Baker Inc.

2.4 Experimental

2.4.1 Salinity Scans

Salinity scans were conducted at room temperature. The systems were prepared in 

15 ml test tubes by weighing in each component. When all components had been added, 

the test tubes were closed with screw-top caps and gently inverted several times to insure 

thorough mixing then allowed to equilibrate. Visual examination was used to determine 

the type o f system formed. The desired mass o f  each component was determined by 

spreadsheet calculations that were based on designating a weight percent o f surfactant 

plus co-surfactant (if a co-surfactant was used) and calculating the needed amount o f the 

other components for a given range o f  electrolyte weight percents. Calculations were 

based on a water-to-oil ratio (WOR) of 1, and the equations used for several o f  the 

systems are provided in Appendix 2A.

2.4.2 Modified Lipophilic Scans

The modified lipophilic systems were prepared in 15 ml graduated test tubes using 

a W 0R=1. The water phase consisted o f water and the commercial mixture o f  C l 6

57



MADS and C16 DADS, and the oil phase contained PCE and octanoic acid. Octanoic 

acid was weighed-in relative to  the surfactant into the tubes. PCE was added to make the 

oil volume 5 ml and then 5ml o f  the aqueous surfactant solution was added. Solid 

electrolyte was added to the system until the I-III-II or I-IV-II transition was complete or 

until a gel formed. The test tubes were shaken by hand until the solutions were 

homogeneous then allowed to equilibrate. The weight ratios of surfactant to octanoic acid 

were 0.86 or 1.15. The weight ratio o f surfactant to additive is commonly referred to as 

the R-ratio, and this designation will be used in the following discussion. Systems were 

prepared with either calcium chloride alone or an equal molar ratio o f magnesium chloride 

hexa-hydrate and calcium chloride. All systems prepared were observed at room 

temperature, 35°C and 45°C with the type o f systems formed being determined by visual 

inspection.

Several computational errors were found in the in the original results reported by 

Ms Aowiriyakul. Appendix 2D contains the masses/volumes she had recorded in her 

thesis (Aowiriyakul, 1998) and corrected values for concentrations, overall weight 

percents, relative volumes, and solubilization parameters.

2.5 Results and Discussion

2.5.1 Traditional Salinity Scans

Traditional salinity scans were conducted using the individual mono and di

alkyldiphenyl oxide mono and disulfonate surfactants with alkanes and chlorinated 

hydrocarbons as the oil phases. The range o f concentrations and details o f  the results of 

the visual examinations o f the individual systems are provided in Appendices 2B and 2C.
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2.5.1.1 Alkanes

Salinity scans were conducted using various alkanes as the oil phase. The MADS 

components remained Winsor type I even when the system was saturated with sodium 

chloride. The exceptions were a few o f the systems made with some o f  the C l 6 MADS 

and a few o f the systems containing sec-butanol.

The systems prepared with the DADS components and alkanes did produce type 

DI’s with two notable features. All o f the type HTs were below optimum (i.e. the middle 

phase contained more water than oil), and all o f  the systems exhibited complex phase 

behavior, primarily gels and precipitates. A typical phase diagram for these systems is 

shown in Figure 2-4.

The implication of the type Hi’s below optimum is that the system is just above the 

I/m  transition i.e. at a salt concentration below that needed to form an optimum type m  

in which equal parts o f oil and water are solubilized within the type m  layer. The position 

o f the type m remained close to the I/m transition even in systems saturated with sodium 

chloride. This behavior o f the DADS components lead to the conclusion that the DADS 

were too hydrophilic to form optimum systems with alkanes comprising the oil phase, and 

that they might perform better with chlorinated hydrocarbons as the oil phase since the 

chlorinated hydrocarbons would be better solvents. When the CIO DADS/octane systems 

were heated to 60°C for 24 hours, all o f the precipitate dissolved; but there remained 

droplets o f  unknown composition clinging to the test tube wall near the octane layer.

Upon cooling to room temperature, some precipitate reformed; but not to the degree 

originally present.
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2.5.1.2 Chlorinated Hydrocarbons

After it became apparent that optimum formulations were not going to be possible 

using alkanes as the oil phase, the behavior o f  the components with chlorinated 

hydrocarbons was examined. The chlorocarbon research focused on the MADS and 

DADS components. The MAMS and DAMS were not studied because o f  their tendency 

to form gels and precipitates. As with the alkanes, the MAD S/chlorocarbon systems 

resulted in only type I systems, but the DADS component, however, yielded some type 

HE’S. An important difference between the chlorocarbon and alkane scans for the DADS 

is the type HTs exhibited significantly less complex behavior. Another notable difference 

in the DADS systems was the “cleaner” behavior o f the C12 DADS versus either the CIO 

or C16 DADS, i.e. the C12 systems showed less complex phases than either the CIO or 

C l6 systems.

2.5.2 Modified Lipophilic Scans

2.5.2.1 Modified Lipophilic Scan: Salinity Scans

As stated in Section 2.3.2, electrolyte was added until the I-HI-II o r the I-IV-H 

transition was complete or a gel had formed. Although the continuous addition o f 

electrolyte changes the WOR, this change from W 0R=1 was ignored. The maximum 

amount o f electrolyte added resulted in a volume increase o f 0.6 mL that resulted in a 

WOR increase to 1.12. For the following discussion surfactant refers to the commercial 

surfactant mixture (DOWFAX™ 8390) plus octanoic acid, all weight percents are 

reported as overall weight percents unless stated otherwise, and the WOR values are 

based on values determined before any electrolyte was added.
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Initial studies were conducted at 24°C using CaClz as the electrolyte and a 

surfactant to octanoic acid ratio o f 0.86. Surfactant concentrations ranged from 4.33 to 

38.47%. At the lower surfactant concentrations (4.33—25.82%) the systems underwent 

the I -m  n  transition with gels present in the type II region. At surfactant concentrations 

above 25.82% the transitions were I-IV-II with no gel formation in the type II region. A 

plot o f  the phase boundaries for this system is shown in Figure 2-5. Also shown is the 

value o f  (S+A)* which is the minimum amount in weight percent o f  (surfactant+octanoic 

acid) required to produce a type IV microemulsion. The open circles lying in the center o f 

the type m  region o f the phase diagram indicate an estimate for the optimum condition for 

each (S+A). These midpoints indicate the location at which equal volumes o f PCE and 

water are solubilized in the middle phase region. The accuracy o f  these estimates will be 

discussed in Section 2.5.2.3.

Note also that the phase diagram has the same rotated appearance as is seen in 

systems containing alcohol. For systems containing alcohol the rotated appearance is due 

to the increase in the interfacial alcohol concentration arising from an increase in the 

surfactant+alcohol concentration while the surfactant to alcohol ratio is held constant.

This increased alcohol concentration increases the surfactant-oil interaction at the expense 

o f  the surfactant-water interaction, a condition which favors the I/m transition (Bourrel 

and Schecter, 1988). This same situation arises in the current study: as the concentration 

o f  surfactant+octanoic acid is increased, while holding their ratio constant, the 

concentration of octanoic acid at the interface increases.

In an attempt to eliminate the gel formation seen in the system shown in Figure 2- 

5, the surfactant to octanoic acid ratio was increased to 1.15. This rendered the system
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less hydrophobic, requiring a greater electrolyte concentration to force the surfactant to 

transition from one type to another. For example at R=0.86, the system containing 400 

mM alkyldiphenyl oxide disulfonate required 4.83% CaClz to transition from type I to type 

in  while at R=1.15, 6.18% CaCl; was required. Similar increases were seen at the other 

surfactant concentrations. Unfortunately, the change in the alkyldiphenyl oxide 

disulfonate to octanoic acid ratio did not eliminate the gel formation. Gels were present in 

the type H region for surfactant concentrations less than 21%. Increasing R to 1.15 did 

lower the surfactant concentration required for type IV  formation from 28.5 to 25.3%.

In a further attempt to avoid gel formation in the type U region, a mixed 

electrolyte was used. Equal molar amounts of CaClz and magnesium chloride hexahydrate 

(MgClz ôHzO) were used. It was found that the amount o f  mixed electrolyte needed to 

force a transition from type I to type m  for both R=0.86 and R=1.15 was much greater 

than the single electrolyte system. At 24% surfactant and R=0.86, only 4.83% CaClz was 

required in the single electrolyte system, while at the same conditions 9.21% 

CaClz+MgClzôHzO was required to transition from type I to type m . On a water-free 

basis (CaCk+MgCk) the overall weight percent was 6.05% which is still greater than for 

the single electrolyte system.

2.S.2.2 Modified Lipophilic Scans: Temperature Studies

The same systems that were prepared and examined at 24°C were examined at 35° 

and 45°C. The relative volumes of the middle phases decreased slightly upon heating to 

35°C. Upon heating to 45°C there was either a small decrease or no change seen in the 

relative volume o f  the middle phase compared to the volumes seen at 35°C. The increase
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in temperature extended the surfactant concentrations at which the systems existed as type 

m ’s; i.e. type IV ’s did not form until higher surfactant concentrations were attained. For 

example, for the R=0.86, CaClz system, a type IV formed at 28.5% surfactant at 24°C 

while at 35 and 45°C the type IV did not form until the surfactant concentration was 

38.4%. The affect o f  temperature on the position o f the phase boundaries is shown in 

Figure 2-6.

The amount o f electrolyte required to produce a type DI was reduced by about 

10% in all systems while the amount o f CaClz required to produce a type IV increased 

slightly at the higher temperatures. This is not in complete agreement with the 

conclusions reached by Kahlweit (1995). According to Kahlweit at fixed oil and 

amphiphile concentrations the amount of electrolyte required to  traverse the three-phase 

region increases with increasing temperature as shown in Figure 2-3. It can also be seen 

from this figure that the amount of salt needed to produce the I-EQ transition increases and 

that the width o f  the type EH region increases slightly with increasing temperature for ionic 

surfactants. As seen in Figure 2-6, the alkyldiphenyl oxide disulfonate-octanoic acid 

systems do not completely follow this behavior. While the width o f the type HI region 

does increase with increasing temperature, it does so with a decreasing electrolyte 

concentration. This relationship is shown schematically in Figure 2-7. For a given 

surfactant concentration, s (the fraction o f electrolyte in the brine required to form a type 

HI) decreases with increasing temperature. The boundaries shown in Figure 2-6 are 

merely suggestive. As will be discussed in the following section, there is the distinct 

possibility that the exact locations of the I/EH and HI/H boundaries were not accurately 

determined. This is even more of a possibility at the elevated temperatures since no
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additional systems were prepared at electrolyte concentrations other than those for the 

24°C study. Since the locations o f these borders are the basis o f  this discussion, the 

accuracy in knowing these locations is imperative.

Another point that must be considered is the effect o f  the octanoic acid on the 

phase behavior o f  this system. Studies to determine the role o f the octanoic acid would 

include creating systems o f the same compositions with careful attention paid to accurately 

locating the phase transitions. Creating systems using carboxylic acids o f different carbon 

lengths would be suggested.

2.5.2.3 Modified Lipophilic Scans: Solubilization

The preparation o f the middle phase microemulsions without the use o f  an alcohol 

was very promising, but the usefulness o f such systems is determined by the degree of 

increased solubilization over other micellar systems if any such increase exists. After the 

microemulsion systems were prepared, the solubilization parameters were determined 

when possible. In many solutions the presence o f  gels and other complex phase behavior 

prevented the solubilization parameters from being calculated. The following discussion is 

based on the results for all surfactant concentrations from the CaClz, R=0.86 at 24, 35, 

and 45°C data; and for alkyldiphenyl oxide disulfonate concentrations 440 mM and greater 

at all temperatures for CaCb, R=1.15; and MgClzdHzO+CaClz, R=0.86 and R=1.15. The 

data and calculated values for this discussion are shown in Appendix 2D-VII through 2D-

xxn.

Using the definitions o f optimum as presented in Section 2.1.2, it was found for 

the CaClz at R=0.86, 24°C that as the surfactant concentration increased, the optimum
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salinity (s*) decreased. This would be expected from the rotation apparent in the phase 

diagram shown in Figure 2-5. For this same system at 24°C the optimum solubilization 

parameter (SP*) decreased from 3.09 mL/g at 440 mM alkyldiphenyl oxide disulfonate to 

2.25 mL/g at 220 mM and then increased to  3.08 mL/g at 80 mM. This trend was not 

seen at 35°C, but was seen to a lesser extent at 45°C. For the electrolyte systems studied 

there was a small, but noticeable, decrease in SP* with increasing temperature. This 

behavior can be attributed to the affect o f increasing temperature on ionic surfactants. As 

the temperature increases, the interaction per unit area o f interface decreases because the 

area occupied per surfactant molecule increases. This is due primarily to a decrease in 

restriction o f the movement o f water molecules in the presence of a hydrocarbon or any 

apolar compound (hydrophobic effect) that reduces the adsorption driving force and the 

solvency in correspondingly reduced. As a consequence, the solubilization at optimum is 

expected to decrease, (Bourrel and Schecter, 1988).

Changing the electrolyte to MgClz bHiO+CaClz had little affect on the values of 

SP* when compared to those seen in the CaClz systems. Although there are only a few 

data points to compare, it is interesting to note that the values of s* (grams) for the CaCb 

systems are approximately half of the values o f s* seen for the MgClfôHiO+CaCla 

systems at R=1.15. Basing the comparison on the normalities of s* for the mixed 

electrolyte systems on a water-free basis and for the CaClz systems does not greatly 

change this relationship. See the data in Appendix 2D.

For the CaClz, R=0.86, 24°C, the optimum value o f s* at each surfactant 

concentration estimated from the phase boundary diagram shown in Figure 2-5 are
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compared to those calculated based on the solubilization parameters. The values are 

shown in Table 2-1.

Table 2-1 Comparison of values determined for s*.

Concentration of (S+A) 
weight %

Estimate of s* from phase 
boundary (gram/liter)

Estimate of s* from 
solubilization parameters

3.89 1.38 1.45
5.9 1.36 1.40
11.2 1.19 1.12
14.7 1.09 0.974
18.3 0.993 0.80
24.4 0.684 0.748

The different values of s* obtained from the phase boundary diagram indicate that 

the exact locations o f the I/TH, I/IV, IQ/ll and IV/n boundaries were not seen at the 

electrolyte concentrations used in this study. The gap between successive electrolyte 

concentrations is not so large as to affect the preceding discussion on the results o f  

modified lipophilic scan portion of this study.

2.6 Conclusions

From the traditional salinity scan studies several conclusions could be reached 

about the alkyldiphenyl oxide disulfonate surfactants studied. In order to form a type in , 

the alkane chain length must be shorter than the surfactant chain length. This is true for 

the systems studied using the traditional salinity scans, but is not necessarily true for all 

microemulsion systems. Refer to the discussion o f alkane carbon numbers in Bourrel and 

Schecter (1988, Chapter 6). Based on the number o f times gels and precipitates were 

observed, it was determined that the presence of the low water soluble impurities such as 

DAMS and to some extent DADS led to the undesirable phase behavior. Cleaner systems 

were observed in those systems containing higher concentrations o f highly water soluble
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impurities such as the MADS. The inability of completing the I/IQ/II transition indicated 

the necessity o f lowering either the hydrophilicity o f  the surfactant or lowering the 

hydrophobicity o f  the oil.

Lowering the hydrophobicity o f the oil was accomplished by the addition o f  the oil 

soluble octanoic acid. The addition o f  this lipophilic linker facilitated the ability o f the 

commercial mixture of C16 MADS and C16 DADS to undergo the I-DI-II transition. The 

formation o f  Type IV systems was also accomplished. This had not been achieved in 

previous research with these surfactants. Unfortunately, the gels seen in the traditional 

salinity scans were not eliminated by the addition of octanoic acid. It is possible that the 

solubility o f  the DADS component o f the surfactant was exceeded. No separate study 

was performed examining the solubility o f the octanoic acid alone under the same 

conditions o f  the surfactant/octanoic acid systems. Perhaps using a lipophilic linker with a 

different HLB would prevent the gel formation. Using other surfactants from this suite 

would also shed light on the exact component responsible for the gel formation. The CIO 

and C12 MADS are known to more water soluble than the C16, and it may be possible to 

use octanoic acid with either o f these to further investigate the gel formation in mono and 

di-alkyldiphenyl oxide mono and di-sulfonate surfactants. The concept o f lipophilic linkers 

should allow for microemulsion formulations using compounds that to date have not been 

able to form such systems.
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Figure 2-1 Relationships between phase behavior, interfacial tension, and 
solubilization parameter (Wu et al, 2000).
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Figure 2-2 Orientation of molecules located at the oil-water interface due to the 
presence of lipophilic linker molecules.
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► 8

Figure 2-3 Schematic of salting out of ionic amphiphiles: T-e for ionic amphiphiles 
(Kahlweit, 1995).
The numerals indicate the number of phases present with 2_indicating an oil-in- 
water emulsion and the line overhead indicating an water-oil-emulsion
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Figure 2-4 Phase behavior seen in traditional salinity scan of CIO DADS + sec- 
butanol/ heptane, R=0.67, 24“C.
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75



Figure 2-7 Schematic o f salting out of alkyldiphenyl oxide mono- disulfonate + 
octanoic acid systems.

76



2A Appendix: Equations used for Preparing Systems for 
Salinity Scans

Note: The equations in the following appendices were solved for the masses needed to 
prepare the systems for salinity scans. The equations are based on the solubility of each 
component, physical state (i.e. solid or liquid), and the presence or absence o f  a co
surfactant. A sample spreadsheet is included to illustrate the recipes that were generated 
for these scans. The spreadsheets were arranged such that the surfactant to co-surfactant 
ratio and the range of weight percents o f electrolyte were specified and the amounts 
(mass) o f  each component were calculated. The limit on how many systems could be 
created for a given set of conditions was indicated when one o f the variable masses 
became negative.

The variables used in the following equations are defined as follows;

M r = total mass o f  the system 
W = mass o f the electrolyte
y  = mass o f the oil
Y = mass o f the surfactant
H  =  mass o f the cosurfactant
Z  = mass o f water 
FS = weight firaction o f the surfactant 
FN = weight fi-action o f the electrolyte 
SSR = surfactant to co-surfactant ratio 
p  -  density
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2A.1 System: Solid electrolyte - water soluble liquid surfactant

The following set of equations was solved for V and W for systems formulated 

with a total o f  6 ml (3 ml of the water phase and 3 ml o f the oil phase).

FN =
• 7 m .

3 = y +  ^  + z
/  P noCI

Solving these equations for Y and W produces the following solutions:

V p  + 3 /9• oil ' H20

f
1 _

r  =
^ ’ KttCW J

J - p  + p  - p
FS gr.sltn ^  hzo ^  sarf̂

^  P oll +   ̂P h 20 +  ̂ P ^ r f  -  P h2 ^

W =

V p  +3>p' oil ‘ H20
T L p  . p
FS gr.sltn • H20 ^ airf

FN
1 - H20

^ • HaCP

^ P ^ r f 'P n ù
P NoCl-̂

l ^ p  + p  _ p
FS gr.slttj Hio f̂ suif
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2A.2System: Liquid electrolyte — water soluble liquid surfactant

The following equations were solved for Y and W. Assuming 10 mi systems with 5 

ml each for the oil and water phases.

FS =
Y  n lurf gr.sltn

M r

gr.NaCl

FN =
.vaci g r .s ltn

M r

5 = Y + W + Z

Solving these for Y and W results in the following: 

V p  4- fp  — p  \w  4- 5 p
oi l V S a C l   r  H ZOY =

1 - p  + / 0
FS ^ ^ r f  g r .s l tn  ^su rf i

^ P c Æ P su rf-  P hz}

H 2 0

W =

ff20
1

P
gr.surf

FS^surf gr.sltn i^hzo-  P  +  p
• s u r f  • H

H 2 0

1 gr. NaCl {Psurf -  P h2 X P moCI ~ P h2^
P NaCl rrf c-//»i P NaCP P H20 1 g r .S U rfFN ^ g r . s l t n

P.FS ^surf gr.sltn ^surf~Prurf^ Pi1120
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2A.3 System: liquid electrolyte - water soluble liquid surfactant - water 
soluble liquid co-surfactant

The following equations were solved for Y, W and H. Assuming 6 ml systems with 

3 ml each for the oil and water phases.

FS =
gr.sltn cos-urfj

W r

 W r------

3 = Y + W- ^ H^ Z

gr.surf
Y P . * -

gr.sltn

" P .cosurf

Solving for 7, W and H results in the following:

7  =

1
FS

P . *
gr.surf']

 ̂grsuif grsltn
P^rf gr.slt}i SSR

P  p  p
rsurf gr.sltn r'surft'HlO m-sltn

o   -------------+-SSR
"co su rf

SSR* p
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w  = gr.NaCl 
f̂ waci gr.sltn

FN — o  + o  + i p  — p  j* X.
r  SaCl '  H 2 0  V  H 2 0  r 'N a C l  j

Where X  is defined as shown below:

X  =

p  ^ p  , £ £ ï 2 : . _ L _ p  - p  p  — L
riurf Hsurf grsltn SSR h'swrft-'Hio grsltn SSR* p

1
FS

r
_ g rsu r f  ̂ ^ g r su r f

Psurf grsltn SSR grsltn
Q  P surf ̂  g rsu rf  , _  , PsurfpHTO ^g rsu rf
•surf SSR grsltn  ’ NIO CCD* y-» orvltnSSR* P

/  co su rf
grsltn

Y n
^  gr

SSR P cosurf
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2B Appendix: Range of Component Concentrations and 
Visual Descriptions for Traditional Salinity Scans
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2B.1 Alkane Scans 

C16 MADS

Octane 2-12% MADS 3-15% NaCl
Decane 2-12% MADS 3-15% NaCl
Dodecane 2-12% MADS 1 -15% NaCl

No middle phases, all type I’s, but the aqueous/oil interface flattened dramatically with 
increasing NaCl.

CIO DADS

Heptane 1-3% DADS 2-18% NaCl
Hexane 0.5-3% DADS 2-14% NaCl
Octane 1-3% DADS 2-14% NaCl

Precipitation present in all tubes; formation of gels; precipitates with middle phases. The 
octane scans were heated to 60° C, and all the precipitates and gels dissolved. Upon 
cooling to room temperature some o f the precipitates reformed, but the gels did not.

CIO DADS/sec-Butanol

Hexane 0.2-3% (S+B) 2-18% NaCl
Heptane 1-4% (S+B) 2-16% NaCl

No gel formation, cleaner middle phases than those in the CIO DADS scans, if precipitate 
present it tended to form on the top of the middle phase. Heptane for ^ %  (S+B) no 
precipitate formed.

NOTE: The CIO DADS/sec-butanol results are for a CIO DADS:sec-butanol ratio o f  4:6. 

CIO DADS/AOT

Heptane 1-7% (S+S) 2-20% NaCl
Hexane 1-7% (S+S) 0-20% NaCl
Octane 3% (S+S) 0-17% NaCl

Middle phase formation at all percentages o f (S+S); no gel formation, but precipitate 
tended to occur within the middle phase not at the two interfaces; precipitation worse at 
>14% NaCl; Precipitation with hexane worse than with heptane.

NOTE: The CIO DADS/AOT results are fo ra  CIO DADS : AOT ratio o f 1:1. Preliminary 
scans were performed using ratios of 3:1 and 1:2. The 3:1 ratio did not lessen the 
complex phase behavior exhibited by the CIO DADS scans while the 1:2 ratio did not 
contain enough o f the DADS in order to distinguish the Winsor type.
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CIO DADS/sec-Butanol

Heptane 6-10% (S+A) 2-22% NaCl

Tended to from clean type Hi’s at low percentages o f  NaCl and 10% (S+A); high 
percentages o f NaCl o f the 6 and 8% (S+A) formed some precipitates.

C16 MADS

Octane 3% MADS 0-18% NaCl

No middle phases. Clean type I systems.

C12 MADS

Octane 3% MADS 0-18% NaCI

No middle phases. Clean type I systems.

CIO MADS

Octane 3% MADS 0-18% NaCl

No middle phases. Clean type I systems.

C16 MADS/sec-Butanol

Octane 3-8% (S+A) 2-16% NaCI
Decane 3-8% (S+A) 2-16% NaCl

Clean type I systems except 8% (S+A) and 16% NaCl that formed very weak type Hi’s in 
both alkane scans.

C6 MAMS

Pentane 3 and 5% MAMS 2-16% NaCl
Hexane 3 and 5% MAMS 2-16% NaCl

No middle phases. Type I systems with precipitates and gels in systems containing more 
than 2% NaCl.

CIO MAMS

Octane 3 and 4% MAMS 2-16% NaCl
Hexane 3 and 5% MAMS 2-16% NaCl

No middle phases. Type I systems with precipitates in all systems.

84



CIO MAMS/CIO MAMS

Heptane 3 and 4% (S+S) 2-16% NaCI
Octane 3 and 4% (S+S) 2-16% NaCI

Types I and III systems. In all scans precipitates were present and located at the 
interfaces.

C I6 DADS

Octane 4 and 9% DADS 2-14% NaCl
Decane 3 and 4% DADS 2-14% NaCl

Types I and HI systems. The type HI system formed at 4 and 9% DADS with 2 and 3% 
NaCl in octane, and for 7% DADS with 3% NaCl in decane. All o f  the systems exhibited 
extreme complex phase behavior.

CIO DADS +  CIO DAMS

Heptane 1 and 3% (S+S) 2, 8, and 14% NaCl

Types 1 and IH and possible a very weak type H. There is some yellow coloration in the 
heptane as well as the aqueous layer. Gels and/or precipitates in most systems.

CIO DADS

Hexane 0.58 and 1.15% DADS 0.09% DAMS
Heptane 0.58 and 1.07% DADS 0.07 -  0.08% DAMS
Octane 0.57 and 1.09% DADS 0.07 -  0.08% DAMS

No middle phases. Type I systems with organic layers that tended to remain clear while 
the aqueous layer was either clear or slightly cloudy. In all systems gels were present at 
the aqueous/oil interface.
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2B.2 Chlorinated Hydrocarbon Scans 

CIO MADS

ODCB 3% MADS 4-12% NaCl

No middle phases. Type I systems fairly clean, no gels or precipitates.

C12 MADS

ODCB 1 and 3% MADS 0-12% NaCl

No middle phases. Type I systems fairly clean, no gels or precipitates.

€ 1 6  MADS

ODCB 1 - 13% MADS 2 - 14% NaCl

No middle phases. Type I systems fairly clean, no gels or precipitates except in the 13% 
MADS with 10 and 14% NaCl.

CIO DADS

ODCB 0.5 - 3% MADS 0 -  12% NaCl
PCE 0.5 -  1% DADS 0 -  12% NaCl

Precipitation present in all tubes, and gels were present in several. Type I ll’s at most 
percentages o f NaCl.

C12 DADS

ODCB 0.5 - 3% MADS 4 -  12% NaCl
PCE 0.5 -  1% DADS 0 -  12% NaCl

In the ODCB scans, type H i’s were formed in all systems. At 0.5% DADS the systems 
were clean, but there was cloudiness and complex behavior in the 1 and 3% DADS scans. 
For the PCE systems, type Hi’s were also formed in all tubes except for the systems 
containing 0% NaCl. There was some precipitate in the 1% DADS scans but overall these 
systems were cleaner than the CIO DADS’
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C16 DADS
ODCB 0.5% MADS 0 -  12% NaCl
PCE 0.5% DADS 4 -  12% NaCI

For the ODCB systems there were no middle phases. The type I systems tended to have 
precipitates or gels present at the aqueous/oil interface. With PCE the systems were all 
type I except for those containing 8 and 12% NaCl. In the type I system at 4% NaCl there 
was a large amount o f precipitate/gel.

CIO MAMS
ODCB 1 and 3% DADS 0-12% NaCl

No middle phases. The type I systems tended to from precipitate/gels.
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2C Appendix: Summary of Traditional Salinity Scan
Observations
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2C.1 DADS

Alkane systems: Formed type I and type m  systems. Gels and/or precipitates in all 
systems that did not contain a co-surfactant. The addition o f a co-surfactant such as sec- 
butanol or Aerosol OT lessened the undesired phase behavior but did not eliminate it. The 
DADS were also susceptible to “salt shock”.

Chlorocarbon systems: Formed Type I and Type HI systems. Gels and/or precipitates in 
all systems. No co-surfactant scans were performed. The C l2 systems were considerably 
cleaner than either the CIO or the C l6 systems.

2C.2 MADS

Alkane systems: Formed Type I systems in systems with no co-surfactant, with the 
exception o f the first shipment o f C16 MADS. Neither the C12 nor the CIO formed Type 
i n  systems. The interfaces o f  all o f the MADS’ systems flattened dramatically with 
increasing NaCl concentration. In a few o f  the systems the interface was almost 
nonexistent. Addition o f sec-butanol produced Type I systems except in systems o f 8% 
MADS and 16% NaCl. These two systems were very weak Type H i’s. No complex 
phase behavior was seen.

Chlorocarbon systems: Formed Type I systems. Most o f the systems contained no gels or 
precipitates with the exception o f the high percentage C16 system.

2C.3 MAMS

Alkane systems: Formed Type I systems with gel and/or precipitated in most systems. In 
low percentage (2%) NaCl systems Type HI systems were formed with gels present. Use 
as a co-surfactant lessened the complex phase behavior exhibited by the CIO DADS.

Chlorocarbon systems: Formed Type I systems with gels and/or precipitates present. No 
co-surfactant scans were performed.

2C.4 DAMS

Alkane systems: Attempts to achieve optimum systems without NaCl resulted in Type I 
systems with gels at the interfaces but no precipitates.

Chlorocarbon systems: No scans were performed.
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2D Appendix: Data and Corrected Calculations From the 
Thesis of Sangaroon Aowiriyakul

Note: Equations used in the following pages:

Preparation o f Systems:

g, DFX= mM DFX *mole/1000mmole * 643 g/mole * 5 mL /  1000 mL/L
R = g DFX / g octanoic acid
mL octanoic acid = g octanoic acid / 0.91 g/mL
Total g before salt =  5 g aqueous phase + g octanoic acid + g PCE

Assuming the density o f the aqueous phase is 1 mL/cc

Overall weight percents:

Wt% CaCb = g CaCli / (5 + g PCE + g octanoic acid + g PCE)
Wt% (DFX+octanoic acid) = (g DFX + g octanoic acid) / (5 + g  PCE + g

octanoic acid + g CaCL)

Relative Volumes:

Relative lower = lower/upper
Relative middle = (middle -  lower) /  upper
Relative upper = (upper — next lower interface) /  upper

Solubilization Parameters:

Vo = 5 -  lower (if lower > 5 left blank)
Vw = Middle — 5 (if middle < 5 left blank) OR 
Vw = Lower — 5 (if lower > 5)

Appendices 2D-VTII to 2D-XVin are arranged by concentration o f surfactant.
For concentrations o f 80 — 340 mM surfactant, there is data for Part I at 24, 
35, 45 °C
For concentrations o f440 -  625 mM surfactant there is data for Parts I, H, HI, 
and rV at 24, 35, 45 °C.
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Appendix 2D-I Original data and corrected values for sample preparation
for single electrolyte systems

P art I: CaClz Scan, R  = 0.86
g octanoic mL octanoic total mass

mM DFX g DFX acid R acid gP C E before salt
40 0.13 0.15 0.86 0.16 7.85 2.14
80 0.26 0.30 0.86 0.33 7.58 4.33
120 0.39 0.45 0.86 0.49 7.32 6.55
160 0.51 0.60 0.86 0.66 7.05 8.81
220 0.71 0.82 0.86 0.90 6.65 12.25
280 0.90 1.05 0.86 1.15 6.25 15.86
340 1.09 1.27 0.86 1.40 5.85 19.50
440 1.41 1.64 0.86 1.80 5.19 25.82
500 1.61 1.87 0.86 2.05 4.79 29.82
520 1.67 1.94 0.86 2.13 4.65 31.16
580 1.86 2.17 0.86 2.38 4.25 35.33
625 2.01 2.33 0.86 2.56 3.95 38.47

'a rt EE: C aC b Scan, R  = 1.15
g octanoic mL octanoic total mass

mM DFX g DFX acid R acid gPC E before salt
80 0.26 0.22 1.17 0.24 7.72 12.94
120 0.39 0.34 1.13 0.37 7.52 12.86
220 0.71 0.62 1.14 0.68 7.02 12.64
280 0.90 0.78 1.15 0.86 6.72 12.50
340 1.09 0.95 1.15 1.04 6.42 12.37
440 1.41 1.23 1.15 1.35 5.92 12.15
500 1.61 1.40 1.15 1.54 5.62 12.02
520 1.67 1.46 1.15 1.60 5.52 11.98
580 1.86 1.62 1.15 1.78 5.22 11.84
625 2.01 1.75 1.15 1.92 4.99 11.74
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Appendix 2D-II Original data and corrected values for sample preparation
for mixed electrolyte systems

P art HI: MgCl^ dHzO + CaClz Scan, R  = 0 . 8 6

g octanoic mL octanoic total mass
mM DFX g DFX acid R acid gP C E before salt

80 0.26 0.30 0 . 8 6 0.33 7.58 1 2 . 8 8

1 2 0 0.39 0.45 0 . 8 6 0.50 7.32 12.77
2 2 0 0.71 0.82 0 . 8 6 0.91 6.65 12.47
280 0.90 1.05 0 . 8 6 1.17 6.25 12.30
340 1.09 1.27 0 . 8 6 1.41 5.85 1 2 . 1 2

440 1.41 1.64 0 . 8 6 1.82 5.19 11.83
500 1.61 1.87 0 . 8 6 2.08 4.79 1 1 . 6 6

520 1.67 1.94 0 . 8 6 2.16 4.65 11.59
580 1 . 8 6 2.17 0 . 8 6 2.41 4.25 11.42
625 2 . 0 1 2.33 0 . 8 6 2.59 3.95 11.28

» t  IV: MgClz 6 H 2 O  + C aC h Scan, R = 1.15
g octanoic mL octanoic total mass

mMDFX g DFX acid R acid gP C E before salt
80 0.26 0 . 2 2 1.17 0.24 7.72 12.94

1 2 0 0.39 0.34 1.13 0.38 7.52 1 2 . 8 6

2 2 0 0.71 0.62 1.14 0.69 7.02 12.64
280 0.90 0.78 1.15 0.87 6.72 12.50
340 1.09 0.95 1.15 1.06 6.42 12.37
440 1.41 1.23 1.15 1.37 5.92 12.15
500 1.61 1.40 1.15 1.56 5.62 1 2 . 0 2

520 1.67 1.46 1.15 1.62 5.52 11.98
580 1 . 8 6 1.62 1.15 1.80 5.22 11.84
625 2 . 0 1 1.75 1.15 1.94 4.99 11.74

92



Appendix 2D-III Original data and corrected values for overall weight
percents. Part I, CaCli scan, R =  0.86

80 mMDFX 120 mM DFX
g CaCl, wt% C aCh wt% (DFX+octanoic acid) gCaCU vvt% CaCU wt% (DFX+octanoic acid)

1.1 7.87 3.99 1 7.26 6.07
1.2 8.52 3.96 1.1 7.99 6.03
1.25 8.85 3.94 1.2 8.71 5.98
1.3 9.17 3.93 1.25 9.08 5.96
1.4 9.80 3.90 1.3 9.44 5.94

1.45 10.12 3.89 1.4 10.17 5.90
1.5 10.43 3.87 1.5 10.98 5.86

1.57 10.87 3.86 1.55 11.26 5.84
1.6 11.05 3.85 1.6 11.62 5.82

220 mM DFX 280 mM DFX
g CaClz wt% CaClz wt% (DFX+octanoic acid) g CaCk wt% CaCl? wt% (DFX+octanoic acid)

0.8 6.03 11.51 0.75 5.75 14.94
0.9 6.73 11.42 0.8 6.11 14.86

1 7.42 11.34 0.9 6.82 14.77
1.11 8.11 11.25 1.1 8.21 14.55
1.25 9.11 11.13 1.3 9.56 14.34
1.4 10.09 11.01 1.4 10.22 14.24
1.5 10.74 10.93 1.5 10.87 14.13
1.6 11.37 10.86

340 mM DFX 440 mM DFX
g CaCU wt% CaCh wt% (DFX+octanoic acid) g CaClz wt% CaClz wt% (DFX+octanoic acid)

0.65 5.09 18.51 0.55 4.44 24.67
0.7 5.46 18.43 0.6 4.83 24.57
0.8 6.19 18.29 0.9 7.07 24.00
0.9 6.91 18.15 1.1 8.51 23.62
1.1 8.32 17.88
1.2 9.01 17.74
1.3 9.69 17.61
1.4 10.36 17.48

500 mM DFX 5 2 0  m M DFX
g CaCk wt% CaCli wt% (DFX+octanoic acid) g CaClz wt% CaClz wt% (DFX+octanoic acid)

0.5 4.11 28.6 0.1 0.86 30.9
0.55 4.50 28.48 0.2 1.70 30.63
0.6 4.89 28.36 0.3 2.52 30.38
0.7 5.66 28.14 0.4 3.34 30.12

0.5 4.14 29.87
580 mM DFX 625 mM DFX
g CaClz wt% CaClz wt% (DFX+octanoic acid) gCaClz wt% CaCk wt% (DFX+octanoic acid)

0.025 0.22 35.25 0 0 38.47
0.05 0.44 35.18 0.025 0.22 38.38
0.4 3.38 34.13 0.4 3.42 37.15
0.5 4.19 33.85 0.5 4.24 36.84
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Appendix 2D-IV Original data and corrected values for overall weight
percents. Part n, CaCli scan, R = 1.15

80 mM DFX 120 mM DFX
gCaCl2 wt% CaCIz \vt% (DFX+octanoic acid) g CaClz wt% CaCU wt% (DFX+octanoic acid)

1.1 7.83 3.40 1 7.22 5.24
1.2 8.49 3.37 1.1 7.88 5.20
1.3 9.13 3.35 1.2 8.53 5.16
1.4 9.76 3.33 1.3 9.18 5.13
1.5 10.39 3.30 1.4 9.82 5.09
1.6 11.00 3.28 1.5 10.45 5.05

1.6 11.07 5.02
220 mM DFX 280 mM DFX
g CaClz wt% CaCIz wt% (DFX+octanoic acid) g CaCU vvt% CaCU wt% (DFX+octanoic acid)

0.9 6.03 11.51 0.9 6.72 12.54
1 6.73 11.42 1 7.41 12.45

1.15 7.42 11.34 1.3 9.42 12.18
1.6 8.11 11.25 1.4 10.07 12.09
1.7 9.11 11.13 1.5 10.71 12.00

340 mM DFX 440 mM DFX
g CaCl: wt% CaCli wt% (DFX+octanoic acid) g CaCU wt% CaCU vvt% (DFX+octanoic acid)

0.7 5.36 15.63 0.7 5.45 20.58
0.8 6.07 15.51 0.8 6.18 20.42
1.1 8.17 15.17 0.9 6.90 20.27
1.3 9.51 14.95 1 7.60 20.11
1.5 10.81 14.73
1.6 11.45 14.62

500 mM DFX 5 2 0  tn M  D F X
gCaClz wt% CaCU wt% (DFX+octanoic acid) g CaCU wt% CaCU wl% (DFX+octanoic acid)

0.7 5.5 23.64 0.3 2.44 25.50
0.788 6.15 23.48 0.4 3.23 25.30
0.802 6.25 23.46 0.7 5.52 24.70
0.9 6.97 23.28 0.8 6.26 24.51

580 mM DFX 625 mM DFX
g CaClz wt% CaClz wt% (DFX+octanoic acid) g CaCU wt% CaCU wt% (DFX+octanoic acid)

0.1 0.84 29.19 0.038 0.32 31.92
0.2 1.66 28.94 0.05 0.42 31.89
0.6 4.82 28.01 0.6 4.86 30.46
0.7 5.58 27.79 0.7 5.63 30.22
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Appendix 2D-V Original data and corrected values for overall weight
percents. Part EH, MgClz'ôHzO + CaClz scan, R = 0.86

80 mM 120 mM

R

MgCli6H20+CaCl2

hydrated water-free 
wt% wt%

DFX-i- 
octanoic acid 

wt% R

MgClv6HiO+CaCli

hydrated water-free 
wt% wt%

DFX+ 
octanoic acid 

wt%
2.0 13.44 8.82 3.74 2.0 13.54 8.89 5.66
2.1 14.02 9.20 3.72 2.1 14.12 9.27 5.62
2.2 14.59 9.58 3.69 2.3 15.26 10.02 5.55
23 15.15 9.95 3.67 2.5 16.37 10.75 5.47
2.4 15.71 1031 3.65 2.7 17.45 11.46 5.40
2.5 1635 10.67 3.62 2.8 1738 11.81 537
2.6 16.80 11.03 3.60
2.7 1733 1138 3.58
2.8 17.86 11.72 3.55

220 mM 280 mM
MgCl2-6H20+CaCli MgCI:6H:0+CaCI:

DFX+ DFXz-
hydrated water-free octanoic acid hydrated water-free octanoic acid

R wt% wt% wt% R wt% wt% wt%
1.3 9.44 6.20 11.09 1.2 8.89 5.84 14.45
1.4 10.09 6.63 11.01 1.4 10.22 6.71 14.24
1.5 10.74 7.05 1033 1.5 10.87 7.14 14.13
1.7 12.00 7.88 10.78 1.8 12.77 8.38 13.83
1.9 13.22 8.68 10.63 2.4 1633 10.72 13.27
2.5 16.70 1036 10.20 2.5 16.89 11.09 13.18
2.7 17.80 11.68 10.07 2.6 17.45 11.46 13.09
2.8 1834 12.04 10.00 2.8 18.54 12.17 12.92

3.0 19.61 12.87 12.75

340 mM 440 mM
MgCl2'6H20+CaCl2 MgCI:6H:0+CaClz

DFX+ DFX+
hydrated water-free octanoic acid hydrated water-free octanoic acid

8 wt% wt% wt% g wl% wt% Wl%
1.1 832 5.46 17.88 1.1 8.51 5.58 23.62
1.2 9.01 5.91 17.74 1.2 9.21 6.05 23.44
13 9.69 6.36 17.61 2.3 16.28 10.69 21.62
1.7 12.30 8.08 17.10 2.4 16.87 11.07 21.47
2.5 17.10 11.23 16.16
2.6 17.66 11.60 16.05

500 mM 520 mM
MgCl2'6H20+CaCl2 MgCli6HiO+CaCl2

DFX+ DFX+
hydrated water-free octanoic acid hydrated water-free octanoic acid

8 wt% wt% wt% 8 wt% wt% wt%
1.0 7.90 5.19 27.47 1.0 734 5.21 28.69
1.1 8.62 5.66 27.25 1.1 8.67 5.69 28.46
1.7 12.72 8.35 26.03 1.4 10.78 7.08 27.80
1.8 1337 8.78 25.84 1.5 11.46 7.52 27.59

580 mM 625 mM
MgCl26H20+CaCl2 MgClî'6HiO+CaCl2

DFX-t- DFX+
hydrated water-free octanoic acid hydrated water-free octanoic acid

R wt% wt% wt% g wt% wt% wt%
0.075 0.65 0.43 35.10 0.0 0.00 0.00 38.47

0.1 0.87 037 35.02 0.05 0.44 0.29 38.30
0.9 731 4.80 32.75 0.1 0.88 0.58 38.13
1.0 8.05 5.29 32.49 0.8 6.62 4 35 3532

0.9 739 4.85 35.63
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Appendix 2D -VI Original data and corrected values for overall weight
percents. Part IE, MgCl2'6H20 + CaCl2 scan, R =  1.15

80 mM 120 mM

g

MgCli'ôHiO+CaCli

hydrated water-fiee 
wt% wt%

DFX-i- 
octanoic acid 

wt% g

MgCIïSHiO+CaClz

hydrated water-free 
wt% wt%

DFX+ 
octanoic acid

Wl%
2.1 13.96 9.17 3.17 1.9 12.87 8.45 4.92
2.3 15.09 931 3.13 2.0 13.46 8.84 4.88
2.4 15.65 10.27 3.11 2.1 14.04 9.22 4.85
2.5 16.19 10.63 3.09 2 3 15.17 9.96 4.79
2.6 16.73 1038 3.07 2.5 16.28 10.68 4.73
2.8 17.79 11.68 3.03 2.6 16.82 11.04 4.69
2.9 1831 12.02 3.01 2.7 1735 11.39 4.66

220 m.M 280 mM
.MgCl26HiO+CaCli MgCli6H;C>+CaCIi

DFX- DFX-
hydrated water-fiee octanoic acid hydrated water-free octanoic acid

R wt% Wl% wt% g wt% wt% wt%
1-5 10.61 6.96 939 1.5 10.71 7.03 12.00
1.6 1134 738 932 1.6 1135 7.45 11.92
1.7 11.85 7.78 9.26 1.7 11.97 7.86 11.83
1.9 13.07 8.58 9.13 1.8 12.59 8.26 11.75
2.0 13.66 8.97 9.07 2.1 1438 9.44 11.51
2.1 1435 935 9.00 2.6 17.22 1130 11.13
2.7 17.60 11.55 8.65 2.7 17.76 11.66 11.05
2.8 18.13 11.91 8.60
2.9 18.66 12.25 8.54
3.0 19.18 12.59 8.49

340 mM 440 mlVI
MgCIi6H;0+CaCl2 MgCl2-6H;0+CaCIi

DFX- DFX-
hydrated water-free octanoic acid . hydrated water-free octanoic acid

g vvt% wt% wt% g wt% wt% wt%
1.4 10.17 6.67 14.84 1.4 10.33 6.78 19.52
1.5 10.81 7.10 14.73 1.5 10.99 7.21 1937
1.7 12.08 733 14.52 2.3 15.92 10.45 1830
2.6 1737 11.40 13.65 2.4 16.49 10.83 18.18
2.8 18.46 12.12 13.47
2.9 1839 12.47 1338

500 mM 520 mM
MgCl2'6H20+CaCl2 MgCl26HzOrCaCI:

DFX- D FX-
hydrated water-free octanoic acid hydrated water-free octanoic acid

g wt% wt% wt% g wt% wt% wt%
13 9.76 6.41 22.58 1.3 9.79 6.43 23.58
1.4 10.43 6.85 22.41 1.325 9.96 6.54 23.54
1.7 12.39 8.13 21.92 135 10.13 6.65 23.49
1.8 13.02 8.55 21.76

580 mM 625 mM
MgCl26H20+CaCl2 MgCIz^HzO+CaCIî

DFX- D FX -
hydrated water-free octanoic acid hydrated water-free octanoic acid

g wt% wt% wt% g wt% wt% wl%
0.3 2.47 1.62 28.70 0.05 0.42 0.28 31.89
0.4 3.27 2.15 28.47 0.1 0.84 0.55 31.75
1.2 9.20 6.04 26.72 1.1 8.57 5.92 29.28
13 9.89 6.49 26.52 1.2 9.27 6.09 29.05
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Appendix 2D-VIL Original data and corrected values for excess volumes
and solubilization parameters: Part I (R = 0.86), CaClz
scan, 80 mM DFX

At T = 24 °C Relative
Lower

Relative
Middle

Relative
Upperg, CaCU Lower Middle Upper Vo Vw SPo SPw

1.1 4.5 10.3 0.44 0.56 0.50 1.92
1.2 4.4 4.7 10.5 0.42 0.03 0.55 0.60 2.31

1.25 4.4 6.7 10.3 0.43 0.22 0.35 0.60 1.70 2.31 6.54
1.3 4.4 6.5 10.4 0.42 0.20 0.38 0.60 1.50 2.31 5.77
1.4 4.4 6 10.4 0.42 0.15 0.42 0.60 1.00 2.31 3.85

1.45 4.2 5.8 10.3 0.41 0.16 0.44 0.80 0.80 3.08 3.08
1.5 4.7 5.9 10.3 0.46 0.12 0.43 0.30 0.90 1.15 3.46

1.57 5.2 5.9 10.4 0.50 0.07 0.43 0.90 3.46
1.6 7.5 10.4 0.72 0.28 2.50 9.62

A tT  = 35 °C Relative
Lower

Relative
Middle

Relative
Uppergr CaCL Lower Middle Upper Vo Vw SPo SPw

1.1 4.5 7.5 10.3 0.437 0.291 0.272 0.50 2.50 1.92 9.62
1.2 4.4 6.1 10.4 0.423 0.163 0.413 0.60 1.10 2.31 4.23

1.25 4.5 6.2 10.4 0.433 0.163 0.404 0.50 1.20 1.92 4.62
1.3 4.4 6.1 10.4 0.423 0.163 0.413 0.60 1.10 2.31 4.23
1.4 4.4 5.9 10.4 0.423 0.144 0.433 0.60 0.90 2.31 3.46

1.45 4.3 5.8 10.4 0.413 0.144 0.442 0.70 0.80 2.69 3.08
1.5 4.7 5.9 10.3 0.456 0.117 0.427 0.30 0.90 1.15 3.46

1.57 5.2 6 10.4 0.500 0.077 0.423 1.00 3.85
1.6 7.5 10.4 0.721 0.279 2.50 9.62

At T = 45 °C Relative
Lower

Relative
Middle

Relative
Upperg, CaCL Lower Middle Upper Vo Vw SPo SPw

1.1 4.5 6.6 10.4 0.433 0.202 0.365 0.50 1.60 1.92 6.15
1.2 4.4 6.1 10.4 0.423 0.163 0.413 0.60 1.10 2.31 4.23

1.25 4.5 6.1 10.4 0.433 0.154 0.413 0.50 1.10 1.92 4.23
1.3 4.4 5.9 10.4 0.423 0.144 0.433 0.60 0.90 2.31 3.46
1.4 4.4 5.8 10.4 0.423 0.135 0.442 0.60 0.80 2.31 3.08

1.45 4.3 5.7 10.4 0.413 0.135 0.452 0.70 0.70 2.69 2.69
1.5 4.7 5.8 10.4 0.452 0.106 0.442 0.30 0.80 1.15 3.08

1.57 5.3 6 10.4 0.510 0.067 0.423 1.00 3.85
1.6 7.6 10.4 0.731 0.269 2.60 10.00
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Appendix 2D-VUE Original data and corrected values for excess volumes
and solubilization parameters: Part I (R =  0.86), CaCli 
scan, 120 mMDFX

A tT  = 24 °C Relative Relative Relative
g, CaCI: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1 4.1 10.2 0.40 0.60 0.90 2.31
1.1 3.8 8.3 10.3 0.37 0.44 0.19 1.20 3.30 3.08 8.46
1.2 3.9 7 10.3 0.38 0.30 0.32 1.10 2.00 2.82 5.13

1.25 3.9 6.7 10.3 0.38 0.27 0.35 1.10 1.70 2.82 4.36
1.3 4 6.5 10.2 0.39 0.25 0.36 1.00 1.50 2.56 3.85
1.4 3.8 6.2 10.2 0.37 0.24 0.39 1.20 1.20 3.08 3.08
1.5 3.8 6.1 10.4 0.37 0.22 0.41 1.20 1.10 3.08 2.82

1.55 4.1 6.2 10.4 0.39 0.20 0.40 0.90 1.20 2.31 3.08
1.6 0.05 10.5 0.0048 0.9952 4.95 12.69

A tT  = 35°C Relative Relative Relative
g, CaCl, Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1 4.1 8.1 10.3 0.40 0.39 0.21 0.90 3.10 2.31 7.95
1.1 4 7.1 10.4 0.38 0.30 0.32 1.00 2.10 2.56 5.38
1.2 3.9 6.5 10.3 0.38 0.25 0.37 1.10 1.50 2.82 3.85
1.25 4 5.9 10.4 0.38 0.18 0.43 1.00 0.90 2.56 2.31
1.3 4 6.3 10.3 0.39 0.22 0.39 1.00 1.30 2.56 3.33
1.4 3.9 6.1 10.3 0.38 0.21 0.41 1.10 1.10 2.82 2.82
1.5 3.8 6 10.5 0.36 0.21 0.43 1.20 1.00 3.08 2.56

1.55 4.1 6.2 10.4 0.39 0.20 0.40 0.90 1.20 2.31 3.08
1.6 0.05 10.5 0.0048 0.9952 4.95 12.69

At T = 45 °C Relative Relative Relative
g, CaCk Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1 4.1 7.3 10.4 0.39 0.31 0.30 0.90 2.30 2.31 5.90
1.1 4 6.9 10.4 0.38 0.28 0.34 1.00 1.90 2.56 4.87
1.2 4 6.4 10.4 0.38 0.23 0.38 1.00 1.40 2.56 3.59

1.25 4.5 6.3 10.4 0.43 0.17 0.39 0.50 1.30 1.28 3.33
1.3 4 6.2 10.3 0.39 0.21 0.40 1.00 1.20 2.56 3.08
1.4 4 6 10.3 0.39 0.19 0.42 1.00 1.00 2.56 2.56
1.5 3.8 5.9 10.5 0.36 0.20 0.44 1.20 0.90 3.08 2.31

1.55 4.1 6.1 10.4 0.39 0.19 0.41 0.90 1.10 2.31 2.82
1.6 0.08 10.5 0.0076 0.9924 4.92 12.62
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Appendix 2D-EX Original data and corrected values for excess volumes
and solubilization parameters: Part I (R =  0.86), CaCb 
scan, 220 mM DFX

A tT  = 24°C Relative Relative Relative
g, CaCli Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.8 3.2 10.3 0.31 0.69 1.80 2.54
0.9 3.1 9.7 10.3 0.30 0.64 0.06 1.90 4.70 2.68 6.62

1 3.1 8.4 10.3 0.30 0.51 0.18 1.90 3.40 2.68 4.79
1.1 3 7.6 10.3 0.29 0.45 0.26 2.00 2.60 2.82 3.66

1.25 3.4 6.6 10.4 0.33 0.31 0.37 1.60 1.60 2.25 2.25
1.4 2.7 6.1 10.3 0.26 0.33 0.41 2.30 1.10 3.24 1.55
1.5 2.8 6.5 10.4 0.27 0.36 0.38 2.20 1.50 3.10 2.11
1.6 3.5 10.5 0.33 0.67 1.50 2.11

At T = 35 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.8 3.2 9.1 10.2 0.31 0.58 0.11 1.80 4.10 2.54 5.77
0.9 3.1 8.6 10.3 0.30 0.53 0.17 1.90 3.60 2.68 5.07

1 3.1 7.8 10.3 0.30 0.46 0.24 1.90 2.80 2.68 3.94
1.1 3 7.2 10.3 0.29 0.41 0.30 2.00 2.20 2.82 3.10

1.25 2.9 6.9 10.4 0.28 0.38 0.34 2.10 1.90 2.96 2.68
1.4 2.2 6.5 10.4 0.21 0.41 0.38 2.80 1.50 3.94 2.11
1.5 2.9 6.4 10.4 0.28 0.34 0.38 2.10 1.40 2.96 1.97
1.6 3.6 10.7 0.34 0.66 1.40 1.97

A tT  = 45 “C Relative Relative Relative
g, CaCl2 Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.8 3.3 8.1 10.2 0.32 0.47 0.21 1.70 3.10 2.39 4.37
0.9 3.2 7.8 10.3 0.31 0.45 0.24 1.80 2.80 2.54 3.94
1 3.1 7.3 10.4 0.30 0.40 0.30 1.90 2.30 2.68 3.24

1.1 3.1 7 10.4 0.30 0.38 0.33 1.90 2.00 2.68 2.82
1.25 3 6.3 10.5 0.29 0.31 0.40 2.00 1.30 2.82 1.83
1.4 2.8 6.4 10.4 0.27 0.35 0.38 2.20 1.40 3.10 1.97
1.5 3 6.1 10.5 0.29 0.30 0.42 2.00 1.10 2.82 1.55
1.6 4.3 10.5 0.41 0.59 0.70 0.99
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Appendix 2D -X  Original data and corrected values for excess volumes
and solubilization parameters: Part I (R =  0.86), CaClz 
scan, 280 mM DFX

lAt T = 24 °C Relative Relative Relative
g, CaCl2 Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.75 2.7 10.3 0.26 0.74 2.30 2.56
0.8 2.6 9.7 10.2 0.25 0.70 0.05 2.40 4.70 2.67 5.22
0.9 2.6 8.7 10.2 0.25 0.60 0.15 2.40 3.70 2.67 4.11
1.1 2.4 7.6 10.3 0.23 0.50 0.26 2.60 2.60 2.89 2.89
1.3 2.1 7 10.4 0.20 0.47 0.33 2.90 2.00 3.22 2.22
1.4 1.9 6.3 10.4 0.18 0.42 0.39 3.10 1.30 3.44 1.44
1.5 4.7 10.5 0.45 0.55 0.30 0.33

At T = 35 °C Relative Relative Relative
& CaCL Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.75 2.7 9.4 10.3 0.26 0.65 0.09 2.30 4.40 2.56 4.89
0.8 2.6 8.9 10.3 0.25 0.61 0.14 2.40 3.90 2.67 4.33
0.9 2.6 8.2 10.3 0.25 0.54 0.20 2.40 3.20 2.67 3.56
1.1 2.4 7.3 10.3 0.23 0.48 0.29 2.60 2.30 2.89 2.56
1.3 2.1 6.9 10.4 0.20 0.46 0.34 2.90 1.90 3.22 2.11
1.4 1.9 6.2 10.4 0.18 0.41 0.40 3.10 1.20 3.44 1.33
1.5 4.9 10.4 0.47 0.53 0.10 0.11

AtT = 45°C Relative Relative Relative
g, CaCL Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.75 2.8 8.5 10.3 0.27 0.55 0.17 2.20 3.50 2.44 3.89
0.8 2.6 8.2 10.3 0.25 0.54 0.20 2.40 3.20 2.67 3.56
0.9 2.6 7.7 10.3 0.25 0.50 0.25 2.40 2.70 2.67 3.00
1.1 2.4 7.1 10.3 0.23 0.46 0.31 2.60 2.10 2.89 2.33
1.3 2.1 6.8 10.4 0.20 0.45 0.35 2.90 1.80 3.22 2.00
1.4 1.9 6.6 10.4 0.18 0.45 0.37 3.10 1.60 3.44 1.78
1.5 5.5 10.4 0.53 0.47 0.50 0.56
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Appendix 2D-XI Original data and corrected values for excess volumes
and solubilization parameters: Part I (R =  0.86), CaCb 
scan, 340 mM DFX

AtT = 24 °C Relative Relative Relative
g, CaCl. Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.65 2 10.2 0.20 0.80 3.00 2.75
0.7 2 10 10.2 0.20 0.78 0.02 3.00 5.00 2.75 4.59
0.8 1.9 9.1 10.2 0.19 0.71 0.11 3.10 4.10 2.84 3.76
0.9 1.8 8.4 10.2 0.18 0.65 0.18 3.20 3.40 2.94 3.12
1.1 1.5 7.5 10.3 0.15 0.58 0.27 3.50 2.50 3.21 2.29
1.2 1.4 7.4 10.4 0.13 0.58 0.29 3.60 2.40 3.30 2.20
1.3 1.3 7.1 10.4 0.13 0.56 0.32 3.70 2.10 3.39 1.93
1.4 8.7 10.4 0.84 0.16 3.7 3.39

AtT = 35 °C Relative Relative Relative
g, CaCL Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.65 3.1 9.7 10.2 0.30 0.65 0.05 1.90 4.70 1.74 4.31
0.7 2.1 9.3 10.2 0.21 0.71 0.09 2.90 4.30 2.66 3.94
0.8 1.9 8.6 10.2 0.19 0.66 0.16 3.10 3.60 2.84 3.30
0.9 1.8 8.1 10.3 0.17 0.61 0.21 3.20 3.10 2.94 2.84
1.1 1.5 7.4 10.3 0.15 0.57 0.28 3.50 2.40 3.21 2.20
1.2 1.4 7.3 10.4 0.13 0.57 0.30 3.60 2.30 3.30 2.11
1.3 1.3 7 10.4 0.13 0.55 0.33 3.70 2.00 3.39 1.83
1.4 7.7 10.4 0.74 0.26 2.7 2.48

AtT = 45°C Relative Relative Relative
g, CaCl2 Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.65 2.1 8.9 10.3 0.20 0.66 0.14 2.90 3.90 2.66 3.58
0.7 2.1 8.6 10.3 0.20 0.63 0.17 2.90 3.60 2.66 3.30
0.8 1.9 8.1 10.3 0.18 0.60 0.21 3.10 3.10 2.84 2.84
0.9 1.8 7.8 10.4 0.17 0.58 0.25 3.20 2.80 2.94 2.57
1.1 1.5 7.3 10.4 0.14 0.56 0.30 3.50 2.30 3.21 2.11
1.2 1.4 7.2 10.4 0.13 0.56 0.31 3.60 2.20 3.30 2.02
1.3 1.3 6.5 10.5 0.12 0.50 0.38 3.70 1.50 3.39 1.38
1.4 7.1 10.5 0.68 0.32 2.1 1.93
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Appendix 2D-XII Original data and corrected values for excess volumes
and solubilization parameters: 440 mM DFX, Parts I
(R =  0.86) and II 1.15), CaCli scan

R — 0*86
A tT  =  24 °C Relative Relative Relative

g, C aCU Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0.55 0.65 10.1 0.06 0.94 4.35 3.09
0.6 0.8 9.8 10.1 0.08 0.89 0.03 4.20 4.80 2.98 3.40
0.9 0.25 8.2 10.3 0.02 0.77 0.20 4.75 3.20 3.37 2.27
1.1 7.7 10.3 0.75 0.25 2.70 1.91

A tT  =  35 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.55 0.6 j 9.3 10.2 0.06 0.85 0.09 4.40 4.30 3.12 3.05
0.6 0.9 9 10.2 0.09 0.79 0.12 4.10 4.00 2.91 2.84
0.9 0.7 7.8 10.3 0.07 0.69 0.24 4.30 2.80 3.05 1.99
1.1 0.4 7.4 10.4 0.04 0.67 0.96 4.60 2.40 3.26 1.70

At T = 45 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.55 0.6 9.2 10.3 0.06 0.83 0.11 4.40 4.20 3.12 2.98
0.6 0.9 8.9 10.2 0.09 0.78 0.13 4.10 3.90 2.91 2.77
0.9 0.7 7.8 10.3 0.07 0.69 0.24 4.30 2.80 3.05 1.99
1.1 0.4 7.4 10.4 0.04 0.96 4.60 2.40 3.26 1.70

R =1.15
At T = 24 °C Relative Relative Relative

g.CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0.7 0.9 10.1 0.09 0.91 4.10 2.91
0.8 0.5 9.8 10.2 0.05 0.91 0.04 4.50 4.80 3.19 3.40
0.9 0.7 9.3 10.2 0.07 0.84 0.09 4.30 4.30 3.05 3.05

1 8.4 10.2 0.82 0.18 3.40 2.41

At T = 35 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.7 0.9 9.2 10.2 0.09 0.81 0.91 4.10 4.20 2.91 2.98
0.8 0.5 8.9 10.2 0.05 0.82 0.13 4.50 3.90 3.19 2.77
0.9 0.7 8.7 10.2 0.07 0.78 0.15 4.30 3.70 3.05 2.62

1 7.9 10.4 0.76 0.24 2.90 2.06

A tT  = 45 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.7 0.9 9.1 10.2 0.09 0.80 0.91 4.10 4.10 2.91 2.91
0.8 0.5 8.8 10.3 0.05 0.81 0.15 4.50 3.80 3.19 2.70
0.9 0.95 8.6 10.3 0.09 0.74 0.17 4.05 3.60 2.87 2.55

1 8 10.4 0.77 0.23 3.00 2.13
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Appendix 2D-XDI Original data and corrected values for excess volumes
and solubilization parameters: 440 mM DFX, Parts m
(R = 0.86) and IV (R = 1.15), MgClfôHiG+CaClz scan

R = 0.86
At T = 24 ®C Relative Relative Relative

g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
1.1 1.3 10.5 0.12 0.88 3.70 2.62
1.2 1.1 10.3 10.6 0.10 0.87 0.03 3.90 5.30 2.77 3.76
2.3 0.3 7.4 11.1 0.03 0.64 0.33 4.70 2.40 3.33 1.70
2.4 7.7 11.2 0.69 0.31 2.70 1.91

At T = 35 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.1 1.3 9.9 10.5 0.12 0.82 0.06 3.70 4.90 2.62 3.48
1.2 1.2 9.6 10.6 0.11 0.79 0.09 3.80 4.60 2.70 3.26
2.3 0.4 7.4 11.1 0.04 0.63 0.33 4.60 2.40 3.26 1.70
2.4 7.7 11.3 0.68 0.32 2.70 1.91

At T = 45 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.1 1.3 9.7 10.6 0.12 0.79 0.08 3.70 4.70 2.62
1.2 1.2 9.5 10.7 0.11 0.78 0.11 3.80 4.50 2.70 3.19
2.3 0.45 7.4 11.2 0.04 0.62 0.34 4.55 2.40 3.23 1.70
2.4 7.8 11.4 0.68 0.32 2.80 1.99

R = 1.15
At T = 24 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.4 1 10.7 0.09 0.91 4.00 2.84
1.5 1 10.4 10.7 0.09 0.88 0.03 4.00 5.40 2.84 3.83
2.3 0.64 7.9 11.1 0.06 0.65 0.29 4.36 2.90 3.09 2.06
2.4 8.1 11.3 0.72 0.28 3.10 2.20

At T = 35 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.4 1.1 9.9 10.7 0.10 0.82 0.07 3.90 4.90 2.77 3.48
1.5 1.1 9.5 10.8 0.10 0.78 0.12 3.90 4.50 2.77 3.19
2.3 0.8 7.7 11.2 0.07 0.62 0.31 4.20 2.70 2.98 1.91
2.4 7.8 11.3 0.69 0.31 2.80 1.99

A tT  =  45°C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.4 1.1 9.7 10.8 0.10 0.80 0.10 3.90 4.70 2.77 3.33
1.5 1.1 9.3 10.9 0.10 0.75 0.15 3.90 4.30 2.77 3.05
2.3 0.8 7.7 11.3 0.07 0.61 0.32 4.20 2.70 2.98 1.91
2.4 7.8 11.4 0.68 0.32 2.80 1.99
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Appendix 2D-XIV Original data and corrected values for excess volumes
and solubilization parameters: 500 mM DFX, Parts I
(R =  0.86) and II (R =  1.15), CaCb scan

R = 0.86
A tT  =  24 °C Relative Relative Relative

g, CaClz Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0.5 0.05 10.1 0.0050 0.9950 4.95 3.07
0.55 10.2 10.2 1.0000 0.0000 5.20 3.23
0.6 9.6 10.2 0.9412 0.0588 4.60 2.86
0.7 8.9 10.1 0.8812 0.1188 3.90 2.42

A tT  = 35°C Relative Relative Relative
g, CaCk Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.5 0.18 9.4 10.1 0.0178 0.9129 0.0693 4.82 4.40 2.99 2.73
0.55 0.1 9.2 10.2 0.0098 0.8922 0.0980 4.90 4.20 3.04 2.61
0.6 0.3 8.8 10.2 0.0294 0.8333 0.1373 4.70 3.80 2.92 2.36
0.7 0.24 8.4 10.2 0.0235 0.8000 0.1765 4.76 3.40 2.96 2.11

A tT = 45°C Relative Relative Relative
g, CaClz Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.5 0.18 9.4 10.2 0.0176 0.9039 0.0784 4.82 4.40 2.99 2.73
0.55 0.1 9.2 10.2 0.0098 0.8922 0.0980 4.90 4.20 3.04 2.61
0.6 0.32 8.8 10.3 0.0311 0.8233 0.1456 4.68 3.80 2.91 2.36
0.7 0.24 8.4 10.3 0.0233 0.7922 0.1845 4.76 3.40 2.96 2.11

R =1.15
At T =  24 °C Relative Relative Relative

g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0.7 0.2 10.1 0.0198 0.9802 4.80 2.98

0.788 0.3 9.9 10.2 0.0294 0.9412 0.0294 4.70 4.90 2.92 3.04
0.802 0.1 9.8 10.2 0.0098 0.9510 0.0392 4.90 4.80 3.04 2.98
0.9 9.5 10.2 0.9314 0.0686 4.50 2.80

At T = 35 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.7 0.2 9.2 10.1 0.0198 0.8911 0.0891 4.80 4.20 2.98 2.61
0.788 0.35 9.2 10.2 0.0343 0.8676 0.0980 4.65 4.20 2.89 2.61
0.802 0.22 9 10.2 0.0216 0.8608 0.1176 4.78 4.00 2.97 2.48

0.9 0.22 8.7 10.3 0.0214 0.8233 0.1553 4.78 3.70 2.97 2.30

At T = 45 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.7 0.22 9.1 10.1 0.0218 0.8792 0.0990 4.78 4.10 2.97 2.55
0.788 0.51 9.1 10.3 0.0495 0.8340 0.1165 4.49 4.10 2.79 2.55
0.802 0.24 9 10.3 0.0233 0.8505 0.1262 4.76 4.00 2.96 2.48

0.9 0.24 8.7 10.3 0.0233 0.8214 0.1553 4.76 3.70 2.96 2.30
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Appendix 2D-XV Original data and corrected values for excess volumes
and solubilization parameters; 500 mM DFX, Parts El
(R =  0.86) and IV (R =  1.15), MgClfOHzO+CaClz scan

R = 0.86
A tT  = 24 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1 0.3 10.4 0.0288 0.9712 4.70 2.92
1.1 0.33 9.9 10.5 0.0314 0.9114 0.0571 4.67 4.90 2.90 3.04
1.7 0.3 8.5 10.9 0.0275 0.7523 0.2202 4.70 3.50 2.92 2.17
1.8 8.3 10.9 0.7615 0.2385 3.30 2.05

At T = 35 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1 0.3 9.9 10.5 0.0286 0.9143 0.0571 4.70 4.90 2.92 3.04
1.1 0.37 9.4 10.5 0.0352 0.8600 0.1048 4.63 4.40 2.88 2.73
1.7 0.4 8.4 10.9 0.0367 0.7339 0.2294 4.60 3.40 2.86 2.11
1.8 0.32 8.2 10.9 0.0294 0.7229 0.2477 4.68 3.20 2.91 1.99

A tT  = 45 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1 0.3 9.8 10.5 0.0286 0.9048 0.0667 4.70 4.80 2.92 2.98
1.1 0.38 9.35 10.6 0.0358 0.8462 0.1179 4.62 4.35 2.87 2.70
1.7 0.47 8.2 11 0.0427 0.7027 0.2545 4.53 3.20 2.81 1.99
1.8 0.32 8.1 11 0.0291 0.7073 0.2636 4.68 3.10 2.91 1.93

R =1.15
At T = 24 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.3 0.5 10.6 0.0472 0.9528 4.50 2.80
1.4 0.15 10.4 10.7 0.0140 0.9579 0.0280 4.85 5.40 3.01 3.35
1.7 0.14 9.1 10.9 0.0128 0.8220 0.1651 4.86 4.10 3.02 2.55
1.8 8.8 10.9 0.8073 0.1927 3.80 2.36

At T = 35 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.3 0.5 10 10.6 0.0472 0.8962 0.0566 4.50 5.00 2.80 3.11
1.4 0.37 9.5 10.7 0.0346 0.8533 0.1121 4.63 4.50 2.88 2.80
1.7 0.4 8.6 10.9 0.0367 0.7523 0.2110 4.60 3.60 2.86 2.24
1.8 0.2 8.3 10.9 0.0183 0.7431 0.2385 4.80 3.30 2.98 2.05

A tT  = 45°C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.3 0.55 9.8 10.7 0.0514 0.8645 0.0841 4.45 4.80 2.76 2.98
1.4 0.37 9.4 10.8 0.0343 0.8361 0.1296 4.63 4.40 2.88 2.73
1.7 0.4 8.6 11 0.0364 0.7455 0.2182 4.60 3.60 2.86 2.24
1.8 0.2 8.3 11 0.0182 0.7364 0.2455 4.80 3.30 2.98 2.05
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Appendix 2D-XVI Original data and corrected values for excess volumes
and solubilization parameters: 520 mM DFX, Parts I
(R =  0.86) and II (R =  1.15), CaCl2 scan

R =  0.86
At T = 24 °C Relative Relative Relative

g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0.1 0.75 10 0.0750 0.9250 4.25 2.54
0.2 10 10 1.0000 0.0000 5.00 2.99
0.4 10.2 10.2 1.0000 0.0000 5.20 3.11
0.5 10 10.2 0.9804 0.0196 5.00 2.99

At T = 35 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.1 1.8 10.1 0.1782 0.8218 3.20 1.92
0.2 1.25 10 0.1250 0.8750 3.75
0.4 0.02 10 10.2 0.0020 0.9784 0.0196 4.98 5.00 2.99
0.5 9.2 10.2 0.9020 0.0980 4.20 . 2.51

At T =  45 °C Relative Relative Relative
R, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.1 1.85 10.2 0.1814 0.8186 3.15 1.89
0.2 1.3 10.1 0.1287 0.8713 3.70 2.22
0.4 0.02 10 10.3 0.0019 0.9689 0.0291 4.98 5.00 2.99
0.5 9.3 10.2 0.9118 0.0882 4.30 2.57

R =1.15
A tT  =  24°C Relative Relative Relative

g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0.3 0.06 10 0.0060 0.9940 4.94 2.96
0.4 10.1 10.1 1.0000 0.0000 5.10 3.05
0.7 10.1 10.1 1.0000 0.0000 5.10 3.05
0.8 9.7 10.2 0.9510 0.0490 4.70 2.81

At T = 35 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.3 0.3 9.7 10 0.0300 0.9400 0.0300 4.70 4.70 2.81 2.81
0.4 0.75 10.2 10.4 0.0721 0.9087 0.0192 4.25 5.20 2.54 3.11
0.7 9.4 10.1 0.9307 0.0693 4.40 2.63
0.8 9.5 10.2 0.9314 0.0686 4.50 2.69

At T = 45 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.3 0.3 9.6 10 0.0300 0.9300 0.0400 4.70 4.60 2.81 2.75
0.4 0.8 10.2 10.4 0.0769 0.9038 0.0192 4.20 5.20 2.51 3.11
0.7 9.3 10.2 0.9118 0.0882 4.30 2.57
0.8 9.5 10.3 0.9223 0.0777 4.50 2.69
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Appendix 2D-XVII Original data and corrected values for excess 
volumes and solubilization parameters: 520 mM 
DFX, Parts HI (R = 0.86) and IV (R = 1.15), 
MgClz'OHzO+CaCli scan

R — 0.86
A.t T = 24 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1 0.1 10.5 0.0095 0.9905 4.90 2.93
1.1 0.04 10.2 10.6 0.0038 0.9585 0.0377 4.96 5.20 2.97 3.11
1.4 0.08 9 10.6 0.0075 0.8415 0.1509 4.92 4.00 2.95 2.40
1.5 8.8 10.6 0.8302 0.1698 3.80 2.28

At T = 35 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1 0.15 9.8 10.5 0.0143 0.9190 0.0667 4.85 4.80 2.90 2.87
1.1 0.2 9.5 10.6 0.0189 0.8774 0.1038 4.80 4.50 2.87 2.69
1.4 0.2 8.7 10.7 0.0187 0.7944 0.1869 4.80 3.70 2.87 2.22
1.5 0.4 8.3 10.6 0.0377 0.7453 0.2170 4.60 3.30 2.75 1.98

At T = 45 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1 0.15 9.7 10.6 0.0142 0.9009 0.0849 4.85 4.70 2.90 2.81
1.1 0.2 9.4 10.6 0.0189 0.8679 0.1132 4.80 4.40 2.87 2.63
1.4 0.2 8.7 10.8 0.0185 0.7870 0.1944 4.80 3.70 2.87 2.22
1.5 0.4 8.3 10.7 0.0374 0.7383 0.2243 4.60 3.30 2.75 1.98

R = 1.15
At T = 24 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.3 0.35 10.7 0.0327 0.9673 4.65 2.78
1.325 0.001 10.75 10.8 0.0001 0.9953 0.0046 5.00 5.75 2.99 3.44
1.35 10.6 10.8 0.9815 0.0185 5.60 3.35

At T = 35 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.3 0.4 10.7 10.7 0.0374 0.9626 0.0000 4.60 5.70 2.75 3.41
1.325 0.3 9.7 10.7 0.0280 0.8785 0.0935 4.70 4.70 2.81 2.81
1.35 0.18 9.5 10.8 0.0167 0.8630 0.1204 4.82 4.50 2.89 2.69

At T = 45 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

1.3 0.42 9.8 10.7 0.0393 0.8766 0.0841 4.58 4.80 2.74 2.87
1.325 0.3 9.5 10.7 0.0280 0.8598 0.1121 4.70 4.50 2.81 2.69
1.35 0.18 9.5 10.8 0.0167 0.8630 0.1204 4.82 4.50 2.89 2.69
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Appendix 2D-XV1II Original data and corrected values for excess 
volumes and solubilization parameters: 580 mM 
DFX, Parts I (R =  0.86) and E (R = 1.15), CaCb 
scan

R = 0.86
A tT = 24°C Relative Relative Relative

g, CaCU Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0.025 0.18 10 0.0180 0.9820 4.82 2.59
0.05 9.8 9.8 1.0000 0.0000 4.80 2.58
0.1 9.9 9.9 1.0000 0.0000 4.90 2.63
0.4 10 10 1.0000 0.0000 5.00
0.5 9.8 10.2 0.9608 0.0392 4.80

AtT = 35 °C Relative Relative Relative
g, CaCU Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.025 0.6 10 0.0600 0.9400 4.40 2.37
0.05 0.5 10 0.0500 0.9500 4.50 2.42
0.1 0.5 10 0.0500 0.9500 4.50 2.42
0.4 10 10.2 0.9804 0.0196 5.00 2.69
0.5 9.3 10.2 0.9118 0.0882 4.30 2.31

At T = 45 °C Relative Relative Relative
g, CaCU Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.025 0.6 10.1 0.0594 0.9406 4.40 2.37
0.05 0.5 10.1 0.0495 0.9505 4.50 2.42
0.1 0.5 10.1 0.0495 0.9505 4.50 2.42
0.4 9.9 10.2 0.9706 0.0294 4.90 2.63
0.5 9.3 10.3 0.9029 0.0971 4.30 2.31

R =1.15
At T = 24 °C Relative Relative Relative

g, CaCU Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0.1 0.7 10 0.0700 0.9300 4.30 2.31
0.2 10 10 1.0000 0.0000 5.00 2.69
0.6 10.1 10.1 1.0000 0.0000 5.10 2.74
0.7 10.1 10.1 1.0000 0.0000 5.10 2.74

At T = 35 °C Relative Relative Relative
g, CaCU Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.1 1 10.1 0.0990 0.9010 4.00 2.15
0.2 0.08 9.8 9.9 0.0081 0.9818 0.0101 4.92 4.80 2.65 2.58
0.6 9.8 10.1 0.9703 0.0297 4.80 2.58
0.7 9.4 10.3 0.9126 0.0874 4.40 2.37

At T = 45 °C Relative Relative Relative
g, CaCU Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.1 1.1 10.1 0.1089 0.8911 3.90 2.10
0.2 0.08 10.1 10.2 0.0078 0.9824 0.0098 4.92 5.10 2.65 2.74
0.6 9.8 10.2 0.9608 0.0392 4.80 2.58
0.7 9.4 10.3 0.9126 0.0874 4.40 2.37
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Appendix 2D-XIX Original data and corrected values for excess 
volumes and solubilization parameters: 580 mM 
DFX, Parts 01 (R =  0.86) and IV (R =  1.15), 
MgClfôHiG+CaCU scan

R = 0.86
A tT  =  24 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.075 0.7 10.1 0.0693 0.9307 4.30 2.31
0.1 9.9 9.9 1.0000 0.0000 4.90 2.63
0.9 10.5 10.5 1.0000 0.0000 5.50 2.96

1 10.1 10.5 0.9619 0.0381 5.10 2.74

At T =  35 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.075 0.95 10.1 0.0941 0.9059 4.05 2.18
0.1 0.4 10.2 0.0392 0.9608 4.60 2.47
0.9 9.8 10.5 0.9333 0.0667 4.80 2.58

1 9.5 10.5 0.9048 0.0952 4.50 2.42

At T =  45 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.1 1 10.1 0.0990 0.9010 4.00 2.15
0.2 0.4 10.2 0.0392 0.9608 4.60 2.47
0.6 9.8 10.6 0.9245 0.0755 4.80 2.58
0.7 9.5 10.6 0.8962 0.1038 4.50 2.42

R =1.15
At T =  24 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.3 0.22 10.2 0.0216 0.9784 4.78 2.57
0.4 10.2 10.2 1.0000 0.0000 5.20 2.80
1.2 10.6 10.6 1.0000 0.0000 5.60 3.01
1.3 10.3 10.7 0.9626 0.0374 5.30 2.85

At T = 35 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.3 0.72 10.2 0.0706 0.9294 4.28 2.30
0.4 0.6 10.3 0.0583 0.9417 4.40 2.37
1.2 10 10.7 0.9346 0.0654 5.00 2.69
1.3 9.6 10.7 0.8972 0.1028 4.60 2.47

AtT = 45 °C Relative Relative Relative
g, Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.3 0.75 10.3 0.0728 0.9272 4.25 2.28
0.4 0.64 10.4 0.0615 0.9385 4.36 2.34
1.2 10 10.8 0.9259 0.0741 5.00 2.69
1.3 9.5 10.8 0.8796 0.1204 4.50 2.42
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Appendix 2D-XX Original data and corrected values for excess 
volumes and solubilization parameters: 625 mM 
DFX, Parts I (R = 0.86) and E (R = 1.15), CaClz 
scan

R = 0.86
At T = 24 °C Relative Relative Relative

g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0 9.9 9.9 1.0000 0.0000

0.025 9.8 9.8 1.0000 0.0000 4.80 2.39
0.4 10.1 10.1 1.0000 0.0000 5.10 2.54
0.5 9.6 10.1 0.9505 0.0495 4.60 2.29

A tT  =  35°C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0 0.2 10 0.0200 0.9800 4.80 2.39
0.025 9.8 9.8 1.0000 0.0000 4.80 2.39

0.4 9.9 10.2 0.9706 0.0294 4.90 2.44
0.5 9.4 10.1 0.9307 0.0693 4.40 2.19

At T = 45 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0 0.2 10.1 0.0198 0.9802 4.80 2.39
0.025 9.8 9.8 1.0000 0.0000 4.80 2.39

0.4 9.9 10.2 0.9706 0.0294 4.90 2.44
0.5 9.3 10.2 0.9118 0.0882 4.30 2.14

R = 1.15
At T = 24 °C Relative Relative Relative

g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw
0.038 0.0001 10.1 0.0000 1.0000
0.05 10 10 1.0000 0.0000 5.00 2.49
0.6 10.1 10.1 1.0000 0.0000 5.10 2.54
0.7 9.9 10.2 0.9706 0.0294 4.90 2.44

At T = 35 °C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.038 0.6 10.1 0.0594 0.9406 4.40 2.19
0.05 0.01 10 0.0010 0.9990 4.99 2.48
0.6 9.8 10.2 0.9608 0.0392 4.80 2.39
0.7 9.7 10.2 0.9510 0.0490 4.70 2.34

A tT = 45°C Relative Relative Relative
g, CaCl: Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.038 0.6 10.2 0.0588 0.9412 4.40 2.19
0.05 0.01 10 0.0010 0.9990 4.99 2.48
0.6 9.8 10.2 0.9608 0.0392 4.80 2.39
0.7 9.3 10.3 0.9029 0.0971 4.30 2.14
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Appendix 2D-XXI Original data and corrected values for excess 
volumes and solubilization parameters: 625 mM 
DFX, Parts m  (R =  0.86) and IV (R = 1.15), 
MgCl2'6 H2 0 +CaCl2 scan

R. — 0.86
At T = 24 °C Relative Relative Relativej
g,Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0 9.9 9.9 1.0000 0.0000 4.90 2.44
0.05 9.9 9.9 1.0000 0.0000 4.90 2.44
0.1 10 10 1.0000 0.0000 5.00 2.49
0.8 10 10 1.0000 0.0000 5.00 2.49
0.9 10.3 10.5 0.9810 0.0190 5.30 2.64

At T = 35 °C Relative Relative Relative
g,Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0 0.2 10 0.0200 0.9800 4.80 2.39
0.05 0.14 10 0.0140 0.9860 4.86 2.42
0.1 0.12 10.1 0.0119 0.9881 4.88 2.43
0.8 10.2 10.4 0.9808 0.0192 5.20 2.59
0.9 9.8 10.5 0.9333 0.0667 4.80 2.39

A tT = 4 5  °C Relative Relative Relative
g,Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0 0.2 10.1 0.0198 0.9802 4.80 2.39
0.05 0.14 10.1 0.0139 0.9861 4.86 2.42
0.1 0.13 10.2 0.0127 0.9873 4.87 2.42
0.8 10.3 10.5 0.9810 0.0190 5.30 2.64
0.9 9.8 10.6 0.9245 0.0755 4.80 2.39

R =1.15
At T = 24 °C Relative Relative Relative
gJvIg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.05 0.0001 10 0.0000 1.0000 5.00 2.49
0.1 10 10 1.0000 0.0000 5.00 2.49
1.1 10.6 10.6 1.0000 0.0000 5.60 2.79
1.2 10.75 10.8 0.9954 0.0046 5.75 2.86

At T = 35 °C Relative Relative Relative
g,Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.05 0.4 10 0.0400 0.9600 4.60 2.29
0.1 0.35 10 0.0350 0.9650 4.65 2.31
1.1 10.1 10.6 0.9528 0.0472 5.10 2.54
1.2 10 10.7 0.9346 0.0654 5.00 2.49

A tT =  45 °C Relative Relative Relative
g,Mg+Ca Lower Middle Upper Lower Middle Upper Vo Vw SPo SPw

0.05 0.4 10.1 0.0396 0.9604 4.60 2.29
0.1 0.35 10.1 0.0347 0.9653 4.65 2.31
1.1 10.1 10.7 0.9439 0.0561 5.10 2.54
1.2 10 10.8 0.9259 0.0741 5.00 2.49
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Appendix 2D-XXII Corrected values for optimum solubilization 
parameters (SP*) and optimum salinities (s*)

mM DFX, 
Part

s*
CaCl? or 

MgCIz.ôHzb+CaCl? 
grams

s*

MgCk+CaCl?
grams

SP*

24 °C 
iriL/g

SP*

35 °C 
mL/g

SP*

45 °C  
mL/g

440 ,1 0.68 3.09
340.1 0.80 2.84
340,1 0.88 2.92
340,1 0.93 2.98
280,1 0.97 2.75
280,1 1.05 2.81
280,1 1.10 2.89
220,1 1.12 2.69
220,1 1.17 2.89
220,1 1.25 2.25
120,1 1.40 2.56
120,1 1.40 2.82
120.1 1.40 3.08
80,1 1.45 2.69
80,1 1.45 3.08

440,11 0.90 3.05
440, n 0.71 2.95
440, U 0.70 2.91
500, n 0.80 3.00
520, n 0.30 2.81
520, n 0.31 2.79
440, m 1.62 1.06 2.98
440, m 1.49 0.98 2.85
440, m 1.47 0.97 2.83
500,01 1.20 0.79 2.90
500, in 1.05 0.69 2.90
500, m 1.03 0.67 2.91
520, m 1.16 0.76 2.96
520, m 0.98 0.64 2.91
520, m 0.94 0.62 2.92
440, IV 1.89 1.24 2.96
440, rv 1.73 1.14 2.83
440, IV 1.67 1.10 2.81
500, IV 1.53 1.00 3.02
500, IV 1.38 0.91 2.86
500, rv 1.36 0.89 2.83
520.rv 1.36 0.89 3.36
520, rv 1.33 0.87 2.81
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Chapter 3 
Surfactant Adsorption in Porous Media

3.1 Abstract

An overview o f some o f the significant findings o f surfactant adsorption research is 

presented. Subjects include the importance o f  surfactant adsorption in petroleum 

applications, some history o f surfactant adsorption research, the mechanisms that have 

been proposed to explain observed adsorption behavior, and a review o f several significant 

surfactant adsorption studies. The emphasis o f  this review is on the understanding o f the 

mechanisms o f  surfactant adsorption as they relate to applications o f surfactants in 

petroleum processes.

Note: Portions o f this chapter have been published in Surfactant, Fundamentals 
and Applications in the Petroleum Industry, Laurier L. Schramm, Editor. The current 
version has been formatted for this dissertation. Portions o f  section 3.5.3 have been edited 
to examine the adsorption behavior o f the alkyldiphenyl oxide sulfonate surfactants onto 
positively and negatively charged surfaces and the adsorption mechanisms demonstrated 
by these surfactants in their adsorption onto alumina.
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3.2 Introduction

Surfactants have a variety o f applications in the petroleum industry, and surfactant 

adsorption is a consideration in any application where surfactants come in contact with a 

solid surface. In enhanced or improved oil recovery (EOR or lOR) surfactants can be 

used in classic micellar/polymer (surfactant) flooding, alkaline/surfactant/polymer (ASP) 

flooding or in foams for mobility control o r blocking and diverting. Surfactants can act in 

several ways to enhance oil production: by reducing the interfacial tension between oil 

trapped in small capillary pores and the water surrounding those pores, thus allowing the 

oil to be mobilized; by solubilizing oU (some micellar systems); by forming emulsions o f oil 

and water (alkaline methods); by changing the wettability o f the oil reservoir (alkaline 

methods) or by simply enhancing the mobility o f the oil (Taber et al., 1997). In selecting a 

suitable surfactant for any EOR application, one o f the criteria for economic success is 

minimizing surfactant loss to adsorption. Factors affecting surfactant adsorption included 

temperature, pH, salinity, type o f surfactant and types o f solids found in the reservoir. 

Usually the only factor that can be manipulated for EOR is the type o f surfactant to be 

used; the other factors being determined by reservoir conditions.

When an oil reservoir is first produced, forces such as overburden pressure and 

evolution o f gases dissolved in the reservoir oil cause spontaneous production o f oil 

because o f the pressure gradient between the interior o f  the reservoir and the production 

well. This spontaneous production is commonly referred to as primary recovery. 

Following the completion of the primary recovery phase, 60 to 80% of the oil originally in 

the reservoir commonly remains in the formation. Production has ceased because a
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pressure gradient no longer exists to mobilize the oil. Secondary recovery consists of 

water-flooding to displace the remaining oil from the injection to the production well.

Nevertheless, a point is soon reached where the amount o f oil produced by water- 

flooding is insufiRcient to justify the operating costs o f  the project. At this time it is 

common for 30 to 60% of the original reservoir oil to remain in the formation. The oil is 

trapped in the pores of the rock by capillary forces arising from the high oil/water 

interfacial tension. Additional water injected into the formation simply bypasses the 

trapped oil droplets on its way to the production well, following the path o f least 

resistance to the flow.

It has long been known that surfactants lower oil/water interfacial tensions, thus 

reducing capillary forces such as those trapping the remaining oil. This raises the 

possibility o f releasing trapped oil droplets by injecting surfactants into the reservoir.

Early demonstrations of the technical feasibility o f enhanced oil recovery by surfactant 

flooding (sometimes referred to as micellar or chemical flooding) were done in the 

laboratory by Novosad et al. (1982) and in field tests by Lake and Pope (1979) and by 

Holm (1982). In addition to the technical feasibility, economic feasibility must also be 

determined; however, the economic feasibility depends on a complex o f factors such as oil 

prices, international economies, and the cost o f  the surfactants. Generally, the cost of the 

surfactant is the single most expensive item in the cost of a chemical flood. These costs 

include both the initial investment in purchasing the surfactant, as well as the cost o f 

replacing surfactant that has been lost to adsorption. It is frequently found that the 

amount o f surfactant adsorbed accounts for most o f the cost of the surfactant. Since these 

surfactants are synthesized from petroleum, their costs will rise at least as fast as that of
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the oil they are used to produce. So simply waiting for oil prices to increase will not 

necessarily make EOR economically feasible. The oil produced by a chemical flood must 

then be sufficient to replace the oil used for the surfactant (unless some means of 

recovering the surfactant from the reservoir is feasible), to pay for the price o f producing 

the surfactant &om the oil, to pay for all the additional engineering, equipment and 

operating costs during the several years the flood is occurring, and to provide a reasonable 

return on investment. All o f these demands must be satisfied in a  volatile oil market in 

which oil prices may fluctuate between the beginning o f a surfactant flood and the time the 

tertiary oil is finally produced. Producing more barrels o f oil for each kilogram of 

surfactant injected into the reservoir is a technological problem that has direct bearing on 

the economics o f  the process. Understanding and controlling the amount o f surfactant 

adsorbed directly affects project economics. The following is a sample calculation that 

illustrates just how substantial the costs associated with losing surfactant to adsorption can 

be.

An area one acre (4047 m^) by 3 meters deep is to be swept with a surfactant 

solution. Core samples reveal that the subsurface is approximately 70% solid material 

having a density o f 2.5 g/cc. Thus approximately 2.12x10*° grams o f  solid material are 

available for adsorption o f the surfactant. If  the specific area o f  this solid were 0.5 m^/g 

then the surface area o f the solid would be 1.06x10*° m .̂ Assuming surfactant adsorption 

reaches bilayer coverage at a density o f  1 molecule per 0.5 nm^ o f  available surface area 

which is typical for an ionic surfactant, then approximately 3.5x10^* moles o f surfactant 

would be adsorbed onto the solid. If  the surfactant had an average molecular weight o f 

500 g/mol this would result in 1.76x1 O'* kilograms o f surfactant being adsorbed.
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Assuming a purchase price o f $2/kg for this surfactant, then the resultant loss to 

adsorption would be $34,300. I f  this surfactant were being used to produce oil worth 

$18/bbl then I960 barrels would have to be produced just to compensate for the adsorbed 

surfactant. Looking at this situation in terms o f  EOR, if there is 50% residual saturation 

and EOR is expected to remove 50% o f the residual or 5727 barrels o f  oil, then the cost o f  

the surfactant loss to adsorption would account for approximately one-third of the total 

value o f the oil recovered by EOR. Obviously, it is critical to the economic success o f  an 

EOR project that adsorption be minimized in the design o f the project; to do so requires 

an understanding o f  surfactant adsorption mechanisms.

In the first part o f  this chapter, reviews o f the background research on surfactant 

adsorption and the mechanisms involved in surfactant adsorption are presented. In the 

second part o f the chapter, several pertinent experimental studies are presented which 

illustrate the mechanisms o f surfactant adsorption in various systems. As already stated, 

there are multiple factors that affect adsorption. These factors will now be presented, 

beginning with the characteristics o f the solid materials commonly used in adsorption 

studies.

3.3 Solid Surface Chemistry

Many surfactants adsorb onto a solid due, in a large part, to the electrostatic 

interactions between charged sites on the solid surface and the charged head groups o f  the 

ionic surfactants. The adsorption o f nonionic surfactants is discussed later in this chapter. 

The structures o f several solids used in adsorption research and the electrical properties
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associated with them are discussed in this section. Most mineral surfaces in reservoirs can 

assumed to be charged.

3.3.1 Types of Solids

There have been a variety o f solids used in surfactant adsorption research. These 

solids have included “ideal” reservoir materials such as alumina (AI2O3) and silica (SiOz); 

and “real” materials such as kaolinite clays, river alluvium, and sandstones.

There are several crystalline phases o f alumina arising from the different 

configurations possible for the aluminum and oxygen ions. The surface charge on alumina 

in contact with a surfactant solution arises indirectly from the crystal structure o f the 

alumina. The most commonly used alumina in adsorption studies has been a-alumina or 

corundum which has a rhombohedral crystal structure comprising a hexagonal close- 

packed array of oxygen ions with aluminum ions on two-thirds o f  the octahedral sites 

(Greenwood et al., 1997). The other two forms o f  alumina are the rj-phase, which has a 

cubic structure, and the 0-phase, which has a monoclinic structure.

Crystalline silica can exist as quartz, cristobalite, and tridymite, with quartz being 

the form most commonly used in adsorption studies. Many studies also use amorphous 

silicon oxides. The quartz crystal consists o f silica tetrahedra with the silicon ions located 

in the center and the oxygen ions located at the comers. The tetrahedra are arranged to 

form interlinked helical chains (Greenwood et al., 1997). The different forms o f quartz are 

distinguished by the differences between the angles formed by the Si-O-Si bond, with the 

a-form being the most common.
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Kaolinite is a clay niineral with the chemical formula: Al2(0H)4Si20s (Greenwood 

et al-, 1997) or (OH)gSi4Al4 0 io (Grim, 1968). The basic unit o f kaolinite consists o f  a 

single silica tetrahedral sheet and a single alumina octahedral sheet such that the oxygen 

atoms at the tips o f the silica tetrahedrons and one o f the oxygen atoms o f the alumina 

octahedral sheet form a common layer.

River alluvium from the Canadian River in Cleveland County, Oklahoma has been 

used in several recent adsorption studies (Palmer et al., 1992, Rouse et al., 1996; Sabatini 

et al., 2000). Palmer et al. (1992) profiled the alluvium and found that it consisted o f 91% 

sand, 2% silt and 7% clay.

An adsorption medium often considered typical o f reservoir solids is sandstone 

which is an agglomeration of individual minerals with quartz as the primary component. 

Other minerals comprising sandstone include chert, fieldspar, mica, illite, kaolinite and 

calcium carbonate. A common type o f sandstone used in adsorption research is Berea 

sandstone (Novosad, 1982; Mannhardt et al., 1992).

Other solids used in surfactant adsorption research include mtile (Xi02) (Bohmer 

et al., 1992b and 1992c; Koopal et al., 1995; Lee and Koopal, 1996), carbonates, and 

graphite (Zhu et al., 1990; Manne et al., 1994; Manne et al., 1995; Krishnakumar and 

Somasundaran, 1996). Studies with carbonates have included purified calcium and 

magnesium carbonate (Tabatabai et al., 1993) and Indiana limestone (Mannhardt et al., 

1992) and Baker dolomite (Mannhardt et al., 1992 and Tsau et al., 1994).

With the exception o f graphite, the common characteristic of the solids used in 

adsorption research is the capacity o f the surface o f these solids to have an electrical 

surface charge. This capacity arises from the interaction between the oxygen atoms in the
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stmcture and water molecules. It is especially significant to note that under typical 

reservoir conditions carbonates and sandstones have opposite charges.

3.3.2 Electrical Characteristics and the Electrical Double Layer

Electrical surface charges arise from charge imbalances due to imperfections in the 

crystal structure and preferential adsorption o f counter or potential determining ions 

(Fuerstenau, 1970; van Olphen, 1963). At low surfactant concentrations the surface 

charge largely determines the surfactant adsorption. However, as the surfactant 

concentration increases other factors such as the tendency of the surfactant to aggregate, 

become significant.

Imperfections in the crystal structure include isomorphous replacement o f  ions 

within the crystal lattice, broken bonds, dislocations, and lattice defects (Fernandez,

1978). Ion replacement leads to a charge imbalance within the lattice resulting in a 

charged surface. A common substitution is the replacement of silicon atoms in kaolinite 

by aluminum atoms.

When a surface is fractured, bonds between layers, such as the alumina-silica layers 

in kaolinite or the metal-oxygen bonds in alumina, can be broken, leaving ions with 

unsatisfied valance conditions. The resulting charge can be either negative or positive 

depending on the type o f bond broken. A related source of surface charge is the partial 

dissolution o f  the solid surface by water. This also leaves surface ions with unsatisfied 

valences.

Lattice defects are holes within the lattice due to missing ions. The missing ions 

leave the lattice with unbalanced charges. Charge imbalances can also arise in crystal
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structures due to dislocations. There are two types o f dislocations. In the screw 

dislocation a section o f  a crystal is skewed one atom spacing. In the edge dislocation an 

extra plane of atoms has been inserted into a section o f a crystal. The charge imbalances 

arise at the sites o f  the dislocations.

Charge imbalances and broken bonds are accommodated by chemical adsorption of 

water by the solid surface. The chemically adsorbed water molecule forms an amphoteric 

site on the surface. Deprotonation o f the group leaves a negative charge on the surface. 

Protonation o f the amphoteric group leads to a positive charge on the surface. This 

charging mechanism makes ± e  surface charge highly dependent on the pH o f  the 

contacting solution.

3.3.3 Electrical Double Layer

One of the earliest theories proposed for explaining interactions o f charged 

particles at the solid/liquid interface was the electrical double layer theory developed to 

describe the formation o f a charge on a mercury electrode surface. In early studies o f 

surfactant adsorption on minerals, the surfactant concentrations were low enough that 

there were no interactions between surfactant monomers on the solid surface. The simple 

electrical double layer model developed for mercury electrodes was adequate for 

describing the adsorption behavior. When the surfactant concentrations increased to 

levels where surfactants began to interact with one another at the surface, this theory 

could no longer describe the adsorption behavior. The addition o f  higher electrolyte 

concentrations also affected the ability o f  this theory to describe adsorption behavior. The 

equations shown on the following pages provide an introduction to the kinds o f
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interactions that must be considered in describing adsorption behavior. In addition this 

theory serves as a starting point for many of the more complex models o f surfactant 

adsorption. Some discussion o f current models is provided in the next section.

The adsorption o f counterions or potential determining ions at relatively low 

concentrations can be described by the electrical double layer which develops in response 

to a charge on the mineral surface. An electrical potential exists across an interface when 

there is an unequal distribution o f charges across that interface. This unequal distribution 

results in each side o f  the interface acquiring net charges o f opposite sign.

The idea o f the electrical double layer was proposed by Helmholtz in 1879, and 

modified by Stem in 1924 (Rosen, 1989). In the Stem modification the counterions in the 

solution, opposite in charge relative to the surface, were divided into two layers: [1] a 

layer o f ions adsorbed close to the surface (generally referred to as the Stem layer) and [2] 

a diffuse layer o f counterions sometimes referred to the Gouy layer. As shown in Figure 

3-1, the potential decreases rapidly within the Stem layer (5) and more gradually within 

the diffuse layer (d). The net charge in the Stem layer plus the Gouy layer is equal and 

opposite in sign to the surface charge. For minerals the surface charge is primarily 

controlled by the pH and the nature o f the mineral.
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The difilise layer charge, CTd, which extends out from the plane 5 seen in Figure 3- 

1, can be described by the following:

l2 skT I  . Z e  VJ/

2 k T
(3-1)

Where e is the dielectric constant o f  water, k is Boltzmann’s constant, T  is the absolute 

temperature, Z  is the valence charge including the sign o f the adsorbing ion, e is the 

elemental charge, 'Fs is the electrical potential at the plane a distance ô from the surface 

(the Stem plane) and no is the number of ions/cc in the bulk phase (where the electrical 

potential is zero).

The adsorption o f counterions at the plane 5 from the surface can be described by 

the Gouy-Chapman equation as:

kT
(3-2)

Where Fs is the adsorption density, r  is the radius o f  the adsorbed ion, C is the 

concentration o f  ions in the bulk, and Wg is the work required to bring ions from the bulk

solution to the plane 5 and is comprised of electrostatic and interaction terms;

(3-3)

In equation (3-3) Ze'Pg is the electrical work o f bringing the ion into the Stem plane, 

and (|> is the free energy change associated with the partial removal o f the alkyl chain for a 

surfactant from the water phase. Assuming for an alkyl chain o f  n carbon atoms:
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- L .  .  " ^  (3-4)
k T k T

Where <|> is the interaction energy per CHz group between adjacent chains of adsorbed 

surfactant molecules. This interaction begins when the bulk surfactant concentration 

reaches the hemimicelle concentration which is the concentration at which the first 

surfactant aggregates form on the solid surface. Details o f  the concept o f the hemimicelle 

are presented in the next section o f  this chapter.

In applying these equations to surfactant adsorption research for surfactant 

concentrations greater tlian the hemimicelle concentration, Somasundaran et al. (1964) put 

equation (3-2) into logarithmic form and differentiated to  give;

/

d X n Y ' s  L  ̂ ^ dn
d X n C  ^  ̂ d Xn C k T  d X n C

Where n is the number o f  carbon atoms and dn/d In C indicates that the effective number 

o f carbon atoms that can be removed totally from the aqueous environment by chain-chain 

association increases as the surface coverage increases, (van Olphen, 1963)

The concept o f  the electrical double layer works well in describing the behavior o f 

simple ions like Na" or Cl' or single ions like surfactants when a non-electrostatic term is 

added to the adsorption potential. For potential determining ions such as BT and GHT 

however, the “site-binding” model is frequently used. This model is used to describe the 

development o f a surface charge at a mineral/solution interface. It requires knowing the 

reactions responsible for surface charge development and the potential-charge 

relationships at the interface. It also limits the concentration o f  the surface species to  the

124



total number o f  sites available on the surface. These interactions are specific for individual 

systems (Davis et al., 1978; James et al., 1982; Hankins et al., 1996).

The adsorption o f  ET and OH" at the surface affects the charge on the surface of 

the solid. The charge on the surface can be negative, positive or neutral. The neutral 

condition is referred to as the point o f zero charge or pzc. The pzc is the pH at which the 

net charge on the surface is zero. At a pH value above or below the pzc the surface is 

negatively or positively charged, respectively. In the case o f alumina with a pzc of 

approximately 9 (Fuerstenau, 1970), the surface is positively charged at a pH less than 9 

and negatively charged for pH values greater than 9. For silica the pzc is 2-3 (Fuerstenau, 

1970), so the surface is negative above pH 3. For kaolinite the pzc is approximately 4.5 

(Fernandez, 1978). I f  adsorption is desirable then the surfactant and surface should have 

opposite charges. I f  adsorption in undesirable, which is the case for applications such as 

EOR, then it may be advantageous to have a surfactant with the same charge as the solid. 

Surfactants will still adsorb on like charged surfaces, however, especially at high 

concentrations (above the CMC) and in the presence o f  multivalent counterions.

3.4 Mechanisms of Surfactant Adsorption

3.4.1 Single Surfactant Systems

Surfactant adsorption at the solid-liquid interface has been studied for several 

decades. Much o f the early work reported in the literature was based on selecting the 

most effective surfactant for purifying ores by flotation. These studies focused on 

determining the interactions that bring about adsorption and determining the structures of 

the surface aggregates formed. Currently there is general agreement on the interactions
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that bring about adsorption, but there is still extensive discussion concerning the structure 

o f the surfactant surface aggregates.

Some o f the experimental techniques employed in these studies have included 

determining the change in surfactant concentration in the bulk solution upon adsorption, 

zeta potential measurements, and probe techniques (electron spin resonance and 

fluorescence). Attempts to describe the adsorption behavior exhibited in the adsorption 

isotherms has led to the development o f several mathematical models. (Somasundaran et 

al., 1964; Scamehom et al., 1982a; Harwell et al., 1985; Zhu et al., 1989; Bohmer et al., 

1992). To date, none o f the models are capable o f fully accounting for all o f the 

phenomena that afifect surfactant adsorption without introducing ad hoc assumptions and 

adjustable parameters, but they have offered some interesting insights.

M ost adsorption studies have employed the surfactant depletion method with the 

results being presented as isotherms which are simply plots o f the amount o f surfactant 

adsorbed per gram o f solid or per surface area o f solid versus the equilibrium surfactant 

concentration at a constant temperature. These plots can be constructed using log-log, 

linear-log or linear-linear scales with the most common choice being the log-log scale. 

Bohmer and Koopal (1992b) present a discussion o f the advantages and disadvantages for 

the different scales. The log-log scale can be used to obtain information over wide ranges 

of adsorption and surfactant concentrations, and the plots generally have abrupt changes in 

slope with increasing surfactant concentration. A typical four-region isotherm constructed 

on a log-log scale for a monoisomeric anionic surfactant is shown in Figure 3-2. The 

reasons for the changes in slope are discussed below.
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N ot all log-log isotherms seen in the literature consist o f four regions. Some o f  the 

earliest adsorption studies were conducted by de Bruyn in 1955, Shinoda in 1963, and 

Jaycock and Ottewill in 1963 using surfactant concentrations well below the CMC, and 

the reported isotherms consisted o f  only two regions (Somasundaran et al., 1964). Further 

studies showed that at higher surfactant concentrations log-log isotherms exhibited three 

distinct regions (Somasundaran et al., 1966) and at still higher concentrations four regions 

(Scamehom et al., 1982b; Chandar et al., 1987). It is important to note that the exact 

shape o f the isotherm will depend on several factors including the type o f surfactant, the 

charge on the surface, and the presence or absence o f  additional compounds including 

electrolytes, co-surfactants, hydrotropes or alcohols.

The mechanisms driving surfactant adsorption are generally discussed in terms o f  

the four-region isotherms. At low surfactant concentrations, designated as region I (see 

Figure 3-2), the adsorption behavior can usually be described by Henry’s Law, i.e. linear 

with a slope o f one. This is also the region where the simple Stem/Gouy double-layer 

model is appropriate. Early work by de Bruyn (1955) and Gaudin and Morrow (1954), 

and Gaudin and Fuerstenau (1955) determined that in this region surfactant monomers 

adsorbed as individual ions with no interaction between the adsorbed molecules. This 

conclusion was based on the zeta potential measurements o f  quartz/dodecylammonium 

chloride systems at low surfactant concentrations being nearly identical to the zeta 

potential measurements o f quartz/sodium chloride systems (Gaudin and Fuerstenau,

1955). Today, it is known that the surface-surfactant interaction depends on the type o f 

surfactant. For nonionic surfactants the interactions involve hydrogen bonding between 

surface hydrogen atoms and proton acceptors in the head groups and hydrophobic
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bonding between the hydrocarbon tails o f  surfactants and the surface. Scamehom et al. 

(1982a) and Harwell et al. (1985) showed that a tail-surface interaction involving 

adsorbed monomers affects the value of the Henry’s Law coefiBcient. For ionic 

surfactants there are electrostatic interactions between the head groups o f the surfactants 

and charged sites on the surface. This electrostatic attraction is typically described in 

terms o f the interaction of the charged surfactant ion with the electrical double layer o f the 

solid.

The mechanism dominating adsorption in region II was described by Gaudin and 

Fuerstenau (1955) as being due to the association o f the adsorbed surfactants into patches 

at the solid/liquid interface. These associations were attributed to tail-tail interactions, 

which are the same hydrophobic interactions by which micelle formation is described 

today.

The region I/region II break corresponds, therefore, to the surfactant 

concentration at which the first surfactant aggregates form on the surface. This 

concentration is referred to as the hemimicelle concentration (HMC) (Somasundaran and 

Fuerstenau, 1966) or as the critical admicelle concentration (CAC) (Harwell et al., 1985). 

This aggregate formation can be viewed as a two-dimensional phase transition occurring 

on the highest energy patches on the solid surface (Scamehom et al., 1982a). The 

CAC/HMC varies with surfactant chain length and branching in the same manner as CMC 

varies with these parameters (Wakamatsu and Fuerstenau, 1968). If  the system contains 

ionic surfactants, the addition o f an electrolyte will decrease the CAC in the same manner 

that electrolytes reduce the critical micelle concentration (CMC) (Bitting and Harwell, 

1987). A note o f  practical application; in systems with added electrolyte care must be
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taken to avoid precipitation o f the surfactant by the electrolyte (Amante et al., 1991). The 

presence o f a precipitate is easily hidden by the solid material upon which adsorption is 

supposed to be occurring, and the decrease in surfactant concentration due to precipitation 

could be interpreted as greater surfactant adsorption than what is actually occurring. 

Familiarity with the precipitation phase boundaries o f the surfactant for a given electrolyte 

or preliminary precipitation analyses using the surfactant and electrolyte concentrations of 

interest may eliminate this error.

In region HI a decrease in the slope relative to the slope in region II is seen. There 

have been several theories proposed to explain this change. This change in slope was 

attributed to the surfactant ions having filled all o f the surface sites by the end o f region II 

with further adsorption being due to association between first and second layer 

hydrocarbon chains in region HI (Somasundaran et al., 1964; Somasundaran and 

Fuerstenau, 1966). The observed change in slope was also attributed to a reversal in 

surface charge due to the adsorbed surfactant ions. Scamehom et al. (1982a) proposed 

that bilayer formation began in region II and continued into region IQ but at a different 

rate. This can also be viewed as adsorption taking place on the least energetic patches on 

the surface in region m .

Region IV or plateau adsorption generally begins at or near the critical micelle 

concentration (CMC) and is characterized by little or no increase in adsorption with 

increasing surfactant concentration. In this region micelles exist in the bulk solution and 

act as a chemical potential sink for any additional surfactant added to the system. Most 

researchers agree that the surfactant aggregates have a bilayer structure when the solution 

concentration exceeds the CMC. The total adsorption above the CMC may still be
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substantially less than complete a  bilayer, however, and depends strongly on surface 

charge and, therefore, pH.

There have been several surfactant structures proposed in attempts to describe the 

adsorption isotherm. Two o f them have been mentioned already, the hemimicelle and 

local bilayer or admicelle. Gaudin and Fuerstenau (1955) introduced the term hemimicelle 

to describe the adsorption behavior they had observed in region n . Hemimicelles can be 

described as aggregates of adsorbed surfactant molecules in which the surfactant 

monomers are arranged in a single layer with the head groups facing the solid surface.

This structure was proposed to explain the increased adhesion o f  bubbles to the surface of 

minerals in region II of the adsorption isotherm. The bilayer structure consists o f 

surfactant monomers arranged such that the head groups o f  the first layer are facing the 

surface and those o f the second layer face the surrounding solution. The tail groups of the 

two layers interact in the same manner as they do in micelles. The bilayer structure was 

first proposed in the 1940’s (Gaudin and Fuerstenau, 1955). In 1985 the term admicelle 

was introduced and was used to describe surfactant surface aggregates which were bilayer 

in structure and had formed without an intermediate hemimicelle structure existing at a 

lower surfactant concentration (Harwell et al., 1985). Such structures almost certainly 

dominate at the CMC when the total surface coverage is well below complete bilayer 

coverage.

Some additional structures that have been proposed are the surface micelles 

proposed by Gao et al. (1987), and the hemicylinders and cylinders proposed by Manne et 

al. (1994; 1995). Surface micelles are aggregates described as spheres with only one 

surfactant monomer adhering to the solid surface. The hemicylinder and cylinder
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structures were based on atomic force microscopy (AFM) images o f several surfactant 

systems involving adsorption o f cetyltrimethylammonium bromide on pyrolitic graphite 

(Manne et al., 1994), tetradecyltrimethylammonium bromide (C14TAB) on silica, Ci4TAB 

and didocecyl dimethylammonium bromide on mica (Manne and Gaub, 1995), and 

C14TAB, hexadecyltrimethylammonium hydroxide, and sodium dodecylsulfate on gold 

(Jaschke et al., 1997). These cylindrical structures are arranged such that the head groups 

o f the surfactants are facing outward.

As the study o f surfactant adsorption has evolved, the debate over the exact 

structure o f the adsorbed surfactant aggregates has become more confused rather than 

becoming clarified. Until the recent advent of AFM studies most o f the debate had 

focused on monolayer (hemimicelle) and bilayer (admicelle) structures. Current literature 

indicates that many researchers are beginning to believe that the structure o f the adsorbed 

surfactant depends on the system being studied. Somasundaran and Kunjappu (1989) 

introduced the term solloid to describe any surfactant aggregates at the solid-liquid 

interface without attempting to define its morphology. Despite the uncertainty or at least 

the complexity o f  the structure o f adsorbed surfactant aggregates, it is clear that micelle

like aggregates form spontaneously at concentrations well below the bulk CMC. Also, a 

complete bilayer is formed at the maximum adsorption o f surfactants adsorbing onto 

surfaces of opposite charge.

3.4.2 Mixed Surfactant Systems

Most surfactant systems used in the petroleum industry are comprised o f more 

than one surfactant. The similarities and differences between pure component and mixed
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surfactant systems have been presented by Harwell and Scamehom (1993). As adsorption 

behavior from single surfactant systems mirrors the behavior o f  micelle formation in 

solution, so too does adsorption from mixed surfactant systems mirror mixed micelle 

behavior. Since there is no interaction between surfactant molecules in region I, 

adsorption in this region for a mixed surfactant system is driven by the same interactions 

as for single surfactant systems, and the surfactants adsorbing from a mixture will behave 

as their pure components; but as the surfactant concentrations increase, the position o f the 

region I/region II break may shift relative to the break in the single component adsorption 

isotherms. Adsorption from a mixture may fall in region U when the adsorption o f either 

pure component would still be in region I. This behavior is exactly analogous to the 

lowering o f the CMC in mixed surfactant systems.

The position of the remainder o f the isotherm (regions II, IE and IV) relative to 

the adsorption isotherms o f the pure component wiU depend on the types and amounts of 

surfactants in the mixture. When surfactants o f  similar head groups are mixed, the 

adsorption o f the mixture will vary monotonically between the adsorptions o f the pure 

components. This is the same as the CMC o f the mixture varying monotonically with the 

mole fraction o f each component. If  the mixture exhibits negative deviations from ideal 

mixing behavior such as when ionic and nonionic surfactants are mixed, then the CAC will 

also exhibit negative behavior. That is the mixture CAC will be lower than either o f the 

CAC’s o f the pure components. If anionic and cationic surfactants are mixed then 

deviations more negative than those seen for ionic-nonionic systems will be seen. This 

results in CAC’s that will again be lower than that o f  either o f  the pure components 

adsorptions. To summarize: mixtures exhibiting nonideal behavior can produce the same
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surface coverage but with lower total surfactant concentrations relative to the pure 

component systems.

3.5 Experimental Studies

Surfactant adsorption research covers many disciplines. Theoretical studies 

include attempts to create models capable o f accounting for every facet o f  surfactant 

adsorption including determining the structure o f the adsorbed aggregates and determining 

the mechanisms driving the adsorption process. Practical studies focus on evaluating 

surfactant systems suitable for applications like ore flotation, improved oil recovery, in situ 

and ex-situ soil remediation (a field which has its origins in EOR), cleaning applications, 

surfactant based separation processes, and wetting. Often the results obtained from a 

study have both theoretical and practical applications.

The literature review in this section is intended as an introduction to the types of 

research that have been done; and is divided into the following sections: (3.5.1) general 

adsorption studies with an emphasis on those results which were significant in furthering 

the basic understanding of surfactant adsorption; (3.5.2) applied studies with an emphasis 

on EOR and related fields; and (3.5.3) recent studies involving alkyldiphenyl oxide 

sulfonate surfactants.

3.5.1 Fundamental Adsorption Studies

This section presents a few o f the studies which were fundamental to 

understanding the mechanisms o f surfactant adsorption and several recent studies which 

have served to expand our basic knowledge.
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3.5.1.1 Cationic Surfactant onto Quartz

In the early 1950’s attempts were made to move the ore flotation process from an 

art to a science. These attempts were driven by the more complex ores being mined and 

the recognized need for a systematic approach to selecting a suitable collector (surfactant) 

for a given ore. The purpose o f the collector was to promote adhesion o f ore fines to 

bubbles sparged into a slurry o f ore. The early studies focused on quartz using 

dodecylammonium acetate concentrations which spanned what are now termed regions I 

and n  adsorption.

Figure 3-3 is the isotherm which Gaudin and Bloecher (1950) obtained. They 

noted that the observed change in slope in the isotherm occurred slightly below the bulk 

critical micelle concentration (CMC), and that the adsorption was reversible. They also 

found that the amount adsorbed in a flotation process which resulted in almost complete 

recovery o f the oxide was under 5% of the amount required for monolayer coverage.

Based on zeta potential measurements o f dodecylammonium chloride adsorption 

onto quartz (Gaudin and Fuerstenau, 1955), it was proposed that the observed change in 

the adsorption behavior was due to the association of the adsorbed surfactants into 

patches at the solid/liquid interface. It was hypothesized that these aggregates of adsorbed 

surfactant formed for the same reasons surfactant monomers associate to form micelles in 

solution, and the term hemimicelle was introduced. The aggregates were proposed to be 

“half’ micelles on the surface because the surface now spontaneously dewet to allow 

bubble attachment. Zeta potential measurements showed that the surface potential 

changed from negative to positive in systems containing multivalent ions. This change in 

potential was also observed in systems containing dodecylammonium ions. Based on
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these observations it was proposed that the association o f adsorbed ammonium ions acted 

as multivalent cations.

Continuing research led to the application of electrical double layer theory to 

describe surfactant adsorption. This theory was applied to sodium dodecyl sulfonate 

adsorption onto alumina (Somasundaran and Fuerstenau, 1966; Chandar et al., 1987). 

Region III adsorption was observed and attributed to the surfactant ions having filled all o f 

the first layer sites by the end o f region II with further adsorption being due to association 

between o f the first layer hydrocarbon chains and second layer hydrocarbon chains. The 

region n/EQ transition was attributed to reversal of the surface charge leading to repulsion 

o f  the surfactant ions from the surface in region III thus reducing the electrical component 

o f the adsorption potential. For a time after these studies, researchers tended to focus on 

the electrical interactions between the surfactant ions and the surface while other features, 

such as patchwise adsorption and the presence of bilayers, were overlooked.

3.5.1.2 Cationic Surfactants onto Silica

The effect o f  surfactant types on the adsorption mechanism was illustrated by a 

study o f dodecylpyridinium chloride (DPC) and cetylpyridinium chloride (CPC) onto 

silica. (Goulob and Koopal, 1997) Due to the more hydrophobic nature of the silica 

surface relative to rutile and alumina, both the head and tail groups o f DPC and CPC can 

interact with the solid surface. Adsorptions were conducted with various pH values and 

salt concentrations. The resulting isotherms, on a logarithmic scale, consisted o f four 

regions, but the shape o f the isotherms depended on the potassium chloride concentration 

and the pH. Figure 3-4 illustrates the differences in these isotherms relative to the typical
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isotherm shown in Figure 3-2 for varying pH values. Adsorption of DPC onto the 

commercial silica Aerosil was also conducted at two salt concentrations (0.00 IM  and 

0. IM). For both salt concentrations used, the slopes o f the region I adsorptions were 

approximately one, and the region IV plateau adsorption was only slightly higher for the 

higher salt system. For the low salt system region II appeared as a pseudoplateau. This 

behavior was attributed to both the head and tail groups adsorbing onto to the surface and 

thus inhibiting adsorption. For the high salt concentration there was no pseudo-plateau 

but a steep increase in the slope as is typically seen for surfactant adsorption on mineral 

oxides. This steep increase in the slope was attributed to the salt ions being able to screen 

the headgroup repulsion. As in micelle formation this screening allows the head groups to 

approach each other more closely and facilitate surfactant aggregation. Similar results 

were obtained for tétraméthylammonium bromide (TMAB) and cetyltrimethylammonium 

bromide (CTAB) (Goulob et al., 1996).

3.5.1.3 Anionic Surfactant onto Alumina and Kaolinite

A study involving the adsorption behavior o f isomerically pure alkylbenzene 

sulfonates onto alumina and kaolinite and the development o f a predictive patchwise 

adsorption model to explain the observed isotherm examined the underlying forces causing 

surfactant adsorption and provided information which could aid in minimizing the loss of 

surfactant to adsorption in EOR (Scamehom et al., 1982a). The resulting isotherms did 

not exhibit apparent adsorption maxima or minima that had been seen in previous studies. 

The presence o f maxima and minima in earlier studies were attributed to using surfactants 

which were not monoisomerically pure and to the interactions which occur between the
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isomers in mixed micelles during adsorption. This is analogous to the minima observed in 

surface tensions curves for mixed surfactant systems. The agreement between the 

theoretical calculations and experimental data was good for both mineral oxide systems 

except for the region just prior to  the plateau region for the kaolinite isotherms. The 

structures predicted by the patchwise adsorption model were unassociated molecules in 

region I, hemimicelles then mixtures o f hemimicelles and bilayers in region n , and bilayers 

in regions m  and IV.

A second aspect o f  this work was comparing the plateau adsorption on alumina at 

varying pH values to bilayer values calculated from adsorption densities for monolayers. 

The monolayer values were estimated to range from 1.94 to 2.87 molecules/100 Â .̂

These estimates were determined from surface tension data, film pressure studies on 

sodium dodecyl sulfonate, and sulfonate head group densities for cubic packing. When 

the plateau adsorption values were compared with adsorption densities for bilayer 

coverage calculated from the monolayer values it was observed that the plateau adsorption 

values fell in between the values calculated for bilayer coverage below pH 7 but fell below 

the bilayer range for adsorption above pH 7, thus indicating the formation o f bilayers at 

pH values far below the pzc o f approximately 9. As the pH approaches the pzc it is only 

natural that there would not be complete bilayer coverage since the charge on the surface 

is becoming less positive.

3.5.1.4 Mixture of Anionic Surfactants onto Alumina

Most EOR surfactants are mixtures of isomers, but these mixtures are too complex 

for application o f basic theory. In contrast, the effectiveness o f ideal solution theory in
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explaining region II adsorption for binary mixtures o f anionic surfactants has been 

demonstrated (Lopata et al., 1988). These controlled isomeric mixtures allow application 

o f  the ideal solution theory. The application o f  this theory utilized a reduced adsorption 

equation for mixtures o f  anionic surfactants (Scamehom et al., 1983). The parameters for 

this reduced equation were obtained from the individual adsorption isotherms for sodium 

octyl sulfate (C8 SO4), sodium decyl sulfate (C10SO4) and sodium dodecyl sulfate (C12SO4) 

onto a-alumina at 30°C. The alumina had a surface area o f  160mVg and the pH was 

adjusted to produce an equilibrium pH o f  8.4. This pH results in a positive charge to the 

alumina surface leading to high adsorption o f  the anionic surfactants. Figure 3-5 

illustrates the agreement between ideal solution theory and experimental data for a binary 

mixture o f C8 SO4/C 12SO4 . Agreement was also demonstrated for a binary mixture o f 

C 10SO4 and C 12SO4  on y-alumina (Roberts et al., 1986). Regular solution theory has been 

shown to describe adsorption o f mixtures o f anionics and nonionics (Lopata, 1987). One 

important observation in these mixture studies is the reinforcement o f the view that micelle 

formation and mixed micelle formation play a central role in the behavior o f  such systems, 

as proposed earlier by Trogus et al. (1979). Another important conclusion is that mixed 

admicelle and hemimicelle formation is very similar to that o f  mixed micelle formation.

3.5.1.5 Cationic Surfactants onto Porous Silicas

Remarkably, while many o f the studies o f surfactant adsorption have been on 

porous materials, little attention has been paid to the effect o f pore size on the isotherms. 

Indeed, all o f  the models o f surfactant adsorption that have been developed ignore the 

effect of pore structure on the electrical double layer, treating the surface as a plane.
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Recently, the influence of pore size on the adsorption of cationic surfactants onto porous 

and nonporous silicas was examined in a study using the cationic surfactants 

hexadecylpyridinium chloride and dimethylbenzyltetradecylanunonium chloride (TBzCl) 

(Treiner and Montocone, 1995). The porous silicas were Sorbsil C30 from Rhone- 

Poulenc with an average pore volume o f 0.6 ml/g and Sipemat SOS from Degussa-France 

with a pore volume o f 0.003 ml/g. The corresponding BET surface areas are 700 and 450 

m^/g, respectively. It might be expected that the higher surface area silica would have the 

highest plateau adsorption, but this was not the case. For TBzCl in 0.01 mol/L NaCl the 

maximum adsorption on the Sorbsil C30 was 5.5x10"^ mol/g and on Sipemat 50S it was 

9x10"  ̂mol/g. This behavior was attributed to the Sipemat 50S having large pore 

diameters while the Sorbsil had small diameters. This behavior had been seen in a 

previous study (Giordano et al., 1993) using a nonionic surfactant, Triton X-100 adsorbed 

onto various silicas with well characterized pore radii. Again, as the BET surface areas 

increased, the pore radii decreased and the plateau adsorption decreased.

3.5.2 Applied Adsorption Studies

This section deals primarily with the application o f surfactant adsorption to EOR 

processes and related fields. From early work involving the formation o f optimum 

microemulsions (three phase or Winsor Type lU systems) to the current use of surfactants 

in other tertiary processes such as foam, CO2 , steam, and alkaline floods, surfactant 

adsorption has always played a significant role in surfactant selection. The following are 

just a few o f the many articles that have involved studies o f surfactant adsorption. These
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articles range from having surfactant adsorption as the primary topic to those in which 

adsorption is but one facet o f the work being presented.

3.5.2.1 Anionic Surfactants onto Kaolinite and Elite

In the investigation of the adsorption o f sodium dodecylbenzenesulphonate 

(SDBS) and sodium dodecyl sulphate (SDS) onto asphalt covered kaolinite and illite 

surfaces, Siffert et al. (1992) observed Langmuir type I isotherms for SDS adsorption 

onto Na^ kaolinite and Na* illite while the SDBS exhibited a maximum in adsorption with 

a decrease beginning near the CMC. Adsorption maxima were observed near the CMC 

for both surfactants in the Ca^" kaolinite and Ca^  ̂illite systems. The adsorption behavior 

was explained as precipitation of the calcium salt o f the surfactants (an idea supported by 

other studies), and the interaction o f the aromatic ring in SDBS with the asphalt. This 

interaction favors desorption o f the asphalt rather than adsorption of the SDBS The 

amount of asphalt desorbed by SDBS was twice that desorbed by SDS. Other 

explanations for adsorption maxima include mixed micelle formation (Trogus et al., 1979) 

and electrostatic repulsion of micelles from the bilayer covered surface 

(Ananthapadmanabhan and Somasundaran, 1983).

3.5.2.2 Anionic Surfactant onto Kaolinite

The adsorption of a petroleum sulfonate surfactant, TRS 10-80, onto Na-kaolinite 

was conducted in batch experiments at low-to-medium salinity and under conditions in 

which liquid-crystal suspensions formed in alcohol containing brines (Bavière et al., 1991). 

TRS 10-80 was described as not being very brine-soluble. The adsorption studies were
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conducted at 30°C with pH values ranging from 7 to 13. The alcohol used was 2-butanol 

and its concentration was held constant at 30g/l.

The adsorption o f systems containing NaCl alone and NaCl-NazCOs were 

markedly different. For NaCl systems (26.2 and 2 1  g/1 NaCl) the adsorption isotherms are 

marked by maxima o f approximately 55 and 40 g/1, respectively. The maxima for both 

systems occurred at an equilibrium sulfonate concentration slightly below 5 g/1. In 

contrast the NaCl-NazCOs adsorption plateaued at approximately 1 0  mg/1.

Other findings presented in this study include 1) the observation that sodium 

hydroxide while producing a higher pH than sodium carbonate, (12.2 versus 11.3) did not 

decrease the adsorption as effectively as sodium carbonate; 2 ) the substitution o f SO4" 

ions for Cl" ions at constant ionic strength strongly diminishes sulfonate adsorption; 3) 

adding sodium silicates to the NaCl brines was said to give adsorption results similar to 

those with NazCOs (no data was presented) while systems containing phosphates gave 

adsorptions of less than 5 mg/g, and in some systems negative adsorption was observed.

Some of the conclusions presented were that for these systems, the pH dependent 

part o f  adsorption is small, the decrease in the adsorption was correlated with the lowering 

o f the sulfonate activity, and sodium carbonate reduces sulfonate adsorption more than 

sodium hydroxide.

3.S.2.3 Anionic Blends onto Sand and Clay

Following a successful enhanced oil recovery demonstration using a surfactant 

blend in a foam flood, research was conducted to examine the fate o f  the blends in core 

studies (Dawe and Oswald, 1991). The surfactant blend was composed o f alpha olefin
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sulfonates (AOS’s) and the DOWFAX® surfactant 3B2. This surfactant is a disulfonated 

alkyldiphenyloxide (DPOS). This line o f surfactants is discussed in more detail in the 

Section 3.5 o f  this chapter.

It was pointed out that the use o f  AOS’s was desirable for EOR applications due 

to their low cost, but that they tend to precipitate in the presence on such cations as 

calcium and magnesium. The DPOS surfactant, on the other hand, does not tend to 

precipitate in the presence o f the cations because o f  the disulfonate anion.

Solubility experiments indicated that a 50:50 blend of the surfactants was soluble 

in 90, 000 ppm Ca’̂ ; sufScient for most conditions encountered in oil reservoirs. 

Adsorption studies on sand indicated that the pure surfactants had maximum adsorptions 

o f approximately 150 and 50 pgrams/gram for AOS and DPOS respectively; while the 

50:50 blend had a maximum adsorption o f  about 75 pgrams/gram. This reduced 

adsorption for the disulfonate is consistent with the role o f surface charge in surfactant 

adsorption mechanism.

In static studies using the clay monmorillonite, surfactant adsorption as a function 

o f  blend composition was examined. It was found that when the blend consisted o f more 

than 30% DPOS, total adsorption was suppressed, again consistent with reduction of 

adsorption when charge repulsion between surface and surfactant is increased.

Column studies were conducted on sand using each of the pure surfactants, and a 

50:50 blend o f the surfactants in a 5% (weight to volume) sodium chloride solution. In 

each o f the three cases the surfactant solution was injected in 1/4 pore volume slugs and 

the effluent continuously monitored. The DPOS was the least adsorbed, the AOS the
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most adsorbed, and the degree of adsorption o f the blend fell between the two pure 

surfactant adsorptions, but was still much less than the AOS adsorption.

Conclusions concerning the adsorption work presented were that the blend 

provided increased calcium tolerance and losses o f surfactant due to precipitation by 

calcium and adsorption onto reservoir rocks can be reduced by the presence of the 

disulfonate.

3.S.2.4 Cationic and Anionic Surfactants onto Carbonates

The adsorption onto several carbonates o f the cationic surfactants, cetylpyridinium 

chloride (CPC) and dodecyl pyridinium chloride (DPC) were compared to the adsorption 

o f the anionic surfactant sodium dodecyl sulfate (SDS) (Tabatabai et al., 1993). It was 

expected that cationic surfactants would exhibit adsorption lower than anionic surfactants 

on carbonate minerals, which tend to be positively charged. The carbonate solids were a 

synthetic calcite (CaCOs) and natural dolomite (CaMgCOs).

The surface charges on these carbonate minerals was attributed to preferential 

dissolution of lattice ions, Mg^*, Ca^  ̂and COs^' and the adsorption o f KT or OKT which 

may act as potential determining ions for carbonates. Therefore, the adsorption was 

conducted using various concentrations o f MgCb, CaCb, NazCOg, but no attempt was 

made to regulate the pH, although the pH was measured. The average pH value of the 

MgClz and CaCIz systems was approximately 8.0, and the average pH o f the NazCOs 

systems was approximately 10.0. The pzc of the calcite was 9.2 and the pzc of the 

dolomite was 7.4 (Gonzalez, 1989).
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The adsorption behaviors o f the CPC and DPC on the two carbonates were 

markedly different. DPC exhibited region I (linear) adsorption over the entire range o f 

surfactant concentrations examined, up to the CMC, with the exception o f  the 

DPC/calcite/ MgClz system. For this system there was approximately zero adsorption 

until the equilibrium surfactant concentration reached approximately 4500 pmolar. At this 

concentration the adsorption was measured as a negative value. Negative adsorption was 

explained as the repelling o f the like-charged surfactant from the surface and the 

subsequent concentration of surfactant in the region o f the solution from which the analyte 

sample was collected.

CPC with no electrolyte present had nearly constant adsorption (0.05 - 0.1 

pmole/gram) on calcite. Adsorptions from 0.05 M MgCb onto calcite and from 0.05 M 

CaClz onto calcite resulted in nearly constant adsorptions at approximately 0.05 

pmole/gram until the equilibrium surfactant concentration approached 200 pmolar, then 

the adsorption became negative. In contrast, adsorption isotherms for the dolomite 

system were more like the traditional isotherm shown in Figure 3-2. For the system with 

no additional electrolyte the adsorption values ranged from approximately 0.01 - 2.0 

pmole/gram. Adsorption values from 0.05 M  MgClz ranged from 0.02 - 0.35 

pmole/gram. While the values from 0.05 CaClz ranged from 0.2-0.4 pmole/gram.

The adsorption isotherms o f anionic SDS on the carbonates indicated typical 

surfactant adsorption behavior with the plateau adsorption occurring at 9-10 pmole/gram 

for the system containing no additional electrolyte, and in the MgCli solutions on both 

carbonates. The maximum adsorption for both carbonate systems containing Na2 C0 3  was 

approximately 4 pmole/gram while the CaCk systems were approximately 5 pmole/gram.
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The conclusions reached by the authors were that the addition o f  lattice ions from 

the solid enhances the adsorption o f  the anionic surfactant while reducing the adsorption 

o f  a cationic surfactant by directly affecting the surface charge. The enhancement o f  the 

anionic surfactant adsorption arises from the decrease in the electrostatic repulsion 

between the head groups of the adsorbed surfactant molecules due to the addition o f the 

divalent cations. This effect would not, o f  course, be observed in the cationic surfactant 

systems.

Further, Just as in micelle formation, the addition o f counterions can reduce the 

repulsion between the head groups o f  the anionic surfactants by compressing the electrical 

double layer between them. This compression acts to increase the adsorption. This 

increase in adsorption was not observed for addition o f divalent cations to the cationic 

surfactants systems, however.

The authors proposed that a reduction in surfactant losses for EOR in carbonate 

reservoirs would be possible by using a cationic surfactant with an appropriate 

concentration o f added multivalent electrolyte where the cations were also lattice ions for 

the mineral. In addition to lower adsorption losses the cationic surfactant offer good 

corrosion inhibiting capabilities and antibacterial properties. Unfortunately, cationic 

surfactants are more expensive than anionic surfactants; however, to the author’s 

knowledge the economics o f the proposed application have never been examined.

3.5.2.S Ethoxylated Sulfate Surfactants onto Mineral Oxides and Sandstone Cores

Various features of anionic surfactant systems in EOR have been illustrated in a 

series o f studies using ethoxylated sulfates as the primary surfactants with additives that
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included co-surfactants, alcohols, electrolytes, polyethylene oxide and polymers (Austad et 

al., 1991a, b, c, 1992a, b, 1994, and Fjelde et al., 1995). The solids included kaolinite, 

quartz, sandstone cores, Berea cores, and oil containing reservoir cores.

The initial study (Austad et al., 1991a) examined the adsorption o f commercial 

mixtures o f polyethylene oxide nonyl-phenolether sulfates, C9-Ph-(E0 )x-S0 3 Na and their 

corresponding nonionic surfactants, Cg-Ph-(EO)x-OH with x = 2, 4, 5.5,6, and 9. The 

nonionic surfactant is present as unreacted feed in the production of the sulfated material. 

These studies also examined the adsorption behavior of an isomerically pure polyethylene 

oxide nonyl-phenolether sulfate, Cg-Ph-(EO)4-S0 3 Na. The adsorption isotherms for the 

commercial surfactant systems containing less than 30 mol % anionic surfactant indicated 

that the plateau adsorption decreases, on a mole basis, as the number o f EO-groups 

increases. An additional observation was that as the amount o f nonionic surfactant 

increases there is an increase in adsorption in regions H through IV, with the increase 

being greater for quartz than for kaolinite. When comparing the adsorption o f the 

isomerically pure sulfate with sulfate/nonionic mixtures, it was observed that both anionic 

and nonionic surfactants adsorbed onto kaolinite and quartz, but adsorption of the 

nonionic was approximately 50% greater on both solids. Since the quartz is negatively 

charge, this is again consistent with our understanding of the central role o f electrostatics 

in surfactant adsorption.

A later study (Austad et al., 1992a) focused on the nonequilibrium adsorption of 

C9-Ph-(E0 )6-S 0 3 Na, 88 mol% sulfonate and 12 mol% unconverted nonionic surfactant, 

with a polymer, xanthan, onto oil-containing sandstone cores from the North Sea.

Addition o f the polymer reduced the surfactant adsorption by 80% relative to adsorption
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without xanthan, yet there was no complex formation between the surfactant and the 

xanthan. This study reflects one o f the current trends o f using systems containing 

surfactant/polymer mixture and emphasizes the need for system specific adsorption studies 

in EOR applications.

A later study (Austad et al., 1997) examined the effects o f  the polymer on 

surfactant adsorption in a low tension polymer water flood (LTPWF). The surfactant was 

a alkylpropoxyethoxy sulfate, C i2-i5-(PO)4-(EO)2-0 SO3' Na", and the polymers were 

xanthan and a copolymer of acrylamide and sodium 2-acrylamido-2-methylpropane 

sulfonate (AN 125 fi-om Floerger). The solid materials were sandstone cores from a 

North Sea oil reservoir, Berea, and Bentheim cores. For these systems the xanthan caused 

a 20% reduction in the adsorption o f the surfactant. It was also observed that surfactant 

adsorption appeared to increase as the water wettability decreased under LTPWF 

conditions and also as the salinity o f the brine increased. No mechanism was presented to 

explain the effect o f  wettability on surfactant adsorption; however, it was proposed that 

the polar components in the crude oil were adsorbed onto the solid surface and would not 

be displaced under the LTPWF conditions. The effect o f the brine was explained as a 

reduction in lateral electrostatic repulsion among adsorbed surfactant ions which causes a 

closer packing o f the adsorbed molecules, thus facilitating formation o f admicelles.

3.S.2.6 Mixed Anionic Surfactants onto East Vacuum Grayburg-San Andres Unit 
(EVGSAU) and Baker Dolomite Cores

The surfactant CHASER™ CD 1045 (Chevron Chemical Co.) described only as a 

mixed surfactant was adsorbed onto EVGSAU and Baker dolomite cores as part o f a
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study examining COi-foam in mobility control (Tsau et al., 1994). The adsorption portion 

o f this study was conducted at room temperature and atmospheric conditions.

On Baker dolomite cores the results o f  four studies were reported. The 

differences between the studies were the presence or absence of additional electrolytes 

(4% brine) and the porosity of the cores. Comparing the adsorption o f  the surfactant from 

distilled water versus from the 4% brine solution for cores with similar porosity indicates 

that the adsorption from the distilled water was slightly less than the adsorption from the 

brine solution. For example, for cores with porosities averaging 18.8 % with equilibrium 

surfactant concentrations o f approximately 2180 ppm, the adsorption was 3200 Ib/acre-ft 

for the distilled water system and 3577 Ib/acre-ft for the 4% brine system. The adsorption 

was described as “reasonably Langmurian,” meaning that the slope decreased as 

adsorption increased. For the distilled water systems, the adsorption appears to be just 

beginning to plateau at the maximum o f the surfactant concentration range studied. The 

brine systems exhibit an adsorption plateau o f approximately 3500 Ib/acre-ft. The 

differences in the adsorption behavior between the distilled water and brine systems were 

attributed to the brine shifting the surface charge o f calcite towards less negative or even 

positive values. Any anionic surfactant would tend to adsorb to a greater extent under 

increased electrolyte concentrations.

The adsorption behavior of the C H A SE R ^ CD 1045 onto EVGSAU cores was 

similar to the behavior seen for the dolomite cores. For the distilled water it appears that 

the adsorption is just beginning to plateau, but greater surfactant concentrations would 

have to be studied in order to confirm this. For the 4% brine system the adsorption

148



plateaus at slightly greater than 2000 lb/ acre-ft which is less than the adsorption seen on 

the dolomite cores.

In a similar study using Chaser™ CD-1045 for COz-Ibam applications, the 

adsorption o f the surfactant onto Baker dolomite was determined (Contracts.., 1996).

The dolomite used in this study was similar in porosity to the previous study discussed but 

the studies were conducted using synthetic South Camden Unit (SCU). The average 

surfactant adsorption was approximately 420 Ib/acre-ft which is considerable lower than 

that reported for the East Vacuum Grayburg-San Andres Unit. The composition o f the 

brine was not provided in this report, but it may be at least part o f  the reason for the great 

difference between the two adsorption studies conducted on Baker dolomite.

There are two additional types o f chemical flooding systems that involve 

surfactants which are briefly mentioned here. One o f these systems utilizes surfactant- 

polymer mixtures. One such study was presented by Osterloh et al. (1992) that examined 

anionic PO/EO surfactant microemulsions containing polyethylene glycol additives 

adsorbed onto clay. The second type o f chemical flood involves the use of sodium 

bicarbonate. The aim o f  the research was to demonstrate that the effectiveness of sodium 

bicarbonate in oil recovery could be enhanced with the addition o f surfactant. The 

surfactant adsorption was conducted in batch studies using kaolinite and Berea sandstone 

(Peru et al., 1990). It was determined that the presence o f  a  low concentration o f 

surfactant was effective in maintaining the alkalinity even after long exposures to reservoir 

minerals. Also, the presence o f the sodium bicarbonate is capable o f reducing surfactant 

adsorption.
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3.5.3 Adsorption of All^ldiphenyl Oxide Mono and Disulfonate Surfactants

This section examines the adsorption behavior o f alkyldiphenyl oxide sulfonate 

surfactants on several different solid surfaces both negatively and positively charged. 

Several aspects o f  adsorption are discussed including surface charge and porosity.

3.5.3.1 Anionic Surfactant Blend and Amphoteric Surfactants onto Berea 
Sandstone, Indiana Limestone, Baker Dolomite, and Quartz.

The first study to be presented examined the adsorption behavior o f two 

amphoteric surfactants, a betaine (Empigen BT) and a sulfobetaine (Varion CAS); and a 

50:50 blend o f a Cio diphenyl oxide disulfonate (DOWFAX® 3B2), and a C 14-16 a-olefin 

sulfonate (Mannhardt et al., 1992). The anionic surfactant blend was designated as DOW 

XS84321.05. As a reminder the Cm diphenyl ether disulfonate surfactant is one isomer in 

a suite of surfactants that differ in their degree o f alkylation and sulfonation and in their 

alkyl chain lengths. This suite consists of monoalkyl disulfonates (MADS), dialkyl 

disulfonates (DADS), monoalkyl monosulfonates (MLAMS), and dialkyl monosulfonates 

(DAMS). The Cm diphenyl oxide disulfonate is a mixture o f CIO MADS and CIO DADS. 

The general structure o f these surfactants is shown in Figure 3-6.

The adsorption studies were conducted on core samples o f Berea sandstone, 

Indiana limestone. Baker dolomite, and quartz sand from three brines (a sodium chloride 

solution o f 2.32% and two synthetic reservoir brines with total dissolved solids o f 2.1 and 

10.5%). Conclusions were based on the maximum or plateau adsorption values obtained, 

and these values are shown in Table 3-1.
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Table 3-1 Plateau adsorption values (mg/g) from adsorption isotherms*
Rock Type Brine Surfactant Types'*

Anionic Betaine Sulfobetaine
Sandstone 2.1% ID S 0.11 1.31 1.30
Sandstone 10.5% TDS 0.26 1.12 -

Sandstone 2.32% NaCl 0.03 0.94 1.29

AGSCO Quartz 2.1% TDS 0.15 0.23 -

AGSCO Quartz 10.5% TDS 0.15 0.09 -

Indiana Limestone 2.1% TDS 0.37 0.31 0.21
Indiana Limestone 10.5% TDS 0.30 0.33 -

Indiana Limestone 2.32% NaCl 0.21 0.12 0.19

Baker Dolomite 2.1% TDS 0.13 0.38 0.32
Baker Dolomite 2.32% NaCl 0.12 0.37 0.34
“Taken from Table 5 of Mannhardt et al. (1992).
‘’Anionic surfactant (DOW XS84321.05); betaine (Empigen BT); sulfobetaine (Varion CAS).

As shown in Table 3-1, the anionic surfactant blend gave the lowest adsorption 

onto sandstone and onto the dolomite for all three o f the brine conditions examined.

While onto quartz, the adsorption o f the anionic surfactant remained constant for both o f 

the synthetic reservoir brines tested with amounts in between those seen for the betaine 

surfactant. For limestone the adsorption o f the anionic and the betaine were 

approximately the same in the two synthetic reservoir brines, but both were greater than 

the adsorption o f the sulofbetaine. For adsorption onto limestone from the brine solution 

the anionic adsorption was greater than the betaine and slightly greater than that o f the 

sulfobetaine.

Upon examining the adsorption data from the reservoir brines, there was no 

consistent pattern seen in the adsorption behavior. Based on this it was concluded that the 

tendency o f surfactant adsorption to increase with increasing salt concentration is minor
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and that the trends in adsorption can be explained solely on the basis o f  the interaction of 

the charge on the surfactant with the solid surface charges.

The surface charge on the solid depended, in part, on the brine solution

surrounding the surface. Electrophoretic mobilities were determined in the 2.1% TDS and

the 2.32% NaCl brines, and at pH 7 the following trend was observed:

Berea clays < quartz < dolomite < limestone 
(most negative)................................ (least negative)

The Berea sandstone had been spUt into clay and quartz fractions, but the Berea whole 

rock was still more negative relative to the other core listed for this study. Even though 

the trend was the same for both brines, the divalent cations in the 2.1% TDS brine 

produced less negatively charged surfaces than did the NaCl brine. This behavior was 

attributed to adsorption o f these ions into the Stem layer or, in the case of carbonates, to

preferential dissolution of COj over Ca^  ̂or Mg^" in the presence of excess divalent 

cations in the aqueous phase. It was also noted that adsorption o f metal hydroxide ions or 

mineral transformation reactions at the solid surface may play a role.

A detailed discussion was presented on the relationship between surfactant 

adsorption and the solid surface charge. For the anionic surfactant, as expected, as the 

surface became increasingly positive the adsorption increased. This increase in positive 

charge occurs either when the rock type was changed in the order shown above while 

keeping the brine fixed or when divalent cations are added to the brine for a fixed rock 

type.

Some o f  the conclusions presented were that the anionic surfactant blend exhibits 

low adsorption levels on sandstone, but adsorbs more strongly onto dolomite and
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limestone. Divalent cations increase the adsorption o f  the anionic surfactant and the 

betaine on sandstone and limestone under constant ionic strength conditions, but the 

adsorption o f the sulfobetaine was affected very little by the presence o f the divalent 

cations. Increasing the total dissolved solids at constant ionic composition gave mixed 

results, increasing the adsorption for some surfactant/rock combinations, but decreasing it 

for others. See Table 3-1. In terms o f adsorption levels, the anionic surfactant appears to 

be the best choice o f  the systems studied for applications in sandstone and dolomite 

reservoirs. In limestone reservoirs, the sulfobetaine would be best, particularly in the 

presence o f hardness ions. Finally the trends in the adsorption of the anionic surfactant 

appear consistent with the electrostatic mechanisms.

3.5 3.2 Anionic Surfactants onto Canadian River Alluvium (CRA) and Alumina

The second study on alkyldiphenyl oxide sulfonate surfactants to be discussed was 

conducted in order to determine strategies for designing surfactants in order to minimize 

adsorption. The adsorption studies were conducted on Canadian River alluvium (CRA) 

(Sabatini et al., 2000) and on alumina at room temperature. CRA consists primarily o f 

sand and is expected to behave similarly to sandstone cores. The anionic surfactants were 

supplied by DOW and used as received. The alkyl groups used in the CRA and alumina 

studies were linear and included alkyl chain lengths o f C6, CIO, C12, and C16. The 

DAMS components and the CI2 and C l6 DADS were not studied due to their low water 

solubilities.
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3.S.3.3 Adsorption onto Canadian River Alluvium (CRA)

The adsorption studies done on CRA were part o f a larger study focused on 

examining the behavior o f  the alkyldiphenyl oxide sulfonate surfactants in soil remediation 

processes (Sabatini et al., 2000). For the adsorption onto CRA, the surfactants studied 

consisted of CIO, and C16 MADS; CIO DADS; and CIO MAMS.

Prior to use, the CRA was crushed and sieved. The BET (N2 ) surface area was 

determined to be 4.63 m^/g with an average pore diameter o f 55.52 Â. Five grams o f soil 

were used with 0.1 ml o f a calcium chloride solution (0.005M) added and allowed to dry. 

Previous research had shown the calcium chloride to be necessary to get the soil fines to 

separate from the bulk solution. When the soil was dry, 25 mL o f each surfactant solution 

(1/5 to 10 times the CMC) was added. The CMC values for the individual components 

are given in Table 3-2.

Surfactant Avg. MW (g/mol) CMC (M)*
CIO-MAMS 423 3.53x10"'
CIO-MADS 523 1.40x10"*
Cl 0-DADS 617 1.33x10"*
C12-MADS 551 1.30x10"*
C16-MADS 600 2.53x10"*

^Reported by Dow Chemical and determined at room temperature and native electrolyte 
conditions.

The samples were placed on a finger-tip shaker for 24 hours then centrifuged for 

20 minutes. The amount o f adsorption was determined by calculating the change in 

surfactant concentration in the bulk solution. The equilibrium surfactant concentrations 

were determined by HPLC with a UV detector set at 254 nm and methanol as the mobile
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phase. Prior to analysis on the HPLC, all samples were passed through a 0.2 pm syringe 

filter to remove any suspended soil particles.

As shown in Figure 3-7, the greatest adsorption is shown by the CIO MAMS 

component (4.91 mg/g). The higher adsorption o f the CIO MAMS is attributed to  the 

monosulfonated component having less electrostatic and steric hindrances than the 

disulfonated components. The maximum adsorption o f the CIO MADS was 0.6 mg/g, 

considerably lower than the 4.91 mg/g seen for the CIO MAMS. The more hydrophobic 

nature o f the MAMS relative to the MADS component arises fi"om the absence o f  the 

second sulfonate group. This greater degree of hydrophobicity is the source o f the 

increase in adsorption.

Figure 3-8 depicts the adsorption isotherms o f  the three CIO components. For the 

reasons stated above, the monosulfonate had the greatest adsorption (4.91 mg/g). While 

between the two disulfonated components (MADS and DADS), the dialkyl component 

had the greatest amount o f adsorption (2.25 versus 0.6 mg/g). This is due to the greater 

hydrophobicity o f  the dialkyl component. The difference seen in the maximum adsorption 

o f the MAMS and DADS components, 4.91 and 2.25 mg/g, respectively, is due to both 

steric hindrances caused by the second alkyl group and the more ionic nature o f the DADS 

component due to the second sulfonate group.

The adsorption isotherms of the CIO and C l 6 MADS components are shown in 

Figure 3-9. It can be seen that the adsorption increases at lower surfactant 

concentration with increasing chain length, from CIO to C16 (0.6 to 1.83 mg/g). This 

increase is attributed to increasing hydrophobicity with increasing chain length.
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Adsorption studies have been conducted with other alkyldiphenyl oxide sulfonate 

surfactants on CRA. Rouse et al. (1996) studied the adsorption o f  DOWFAX® 8390, a 

commercially available C l6 surfactant, and found a maximum adsorption o f 4.3 mg/g 

while the maximum adsorption o f  the C16 MADS component was 1.8 mg/g. The 

commercial product contains approximately 35 wt% active component. The increase in 

the dialkylated component in the commercial mixture is responsible for its greater 

maximum adsorption compared to the C16 MADS.

The adsorption behavior o f the CIO DADS relative to the C16 MADS is worth 

special note. Comparing initial concentrations, it is seen that at lower surfactant 

concentrations the C l 6 has the greatest amount o f adsorption; however, as the plateau 

region is approached the CIO adsorption exceeds that o f the C l 6. Since they are both 

disulfonates this behavior can be attributed to the difference in chain lengths and the 

degree o f alkylation, both o f which are directly related to the hydrophobicity o f  the 

surfactants. At the lower surfactant concentrations the longer chain length dominates the 

adsorption, but at higher concentrations the dialkylation dominates.

3.S.3.4 Adsorption onto Alumina

The goal of the adsorption studies on alumina was to study the adsorption o f the 

alkyldiphenyl oxide sulfonate surfactants on a positively charged alumina substrate, 

leading to high adsorption and bilayer formation. The primary purpose for this study was 

to determine the initial surfactant concentrations that were to be used in adsolubilization 

studies that are discussed in Chapter 4. For the adsolubilization studies, the desired initial 

surfactant concentrations would be those that produced adsorptions that were less than
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the plateau amounts, i.e. prior to region 4 adsorption. The adsorptions o f the CIO, C l 2, 

and C16 MADS and the CIO DADS components were studied.

The alumina used was manufactured by LaRoche and has a BET (N2 ) surface area 

o f  301.83 m^/g and an average pore diameter o f 105.08 Â. Due to the high surface area, 

only 0.05 grams o f  alumina and 30 ml o f surfactant solution were used. These quantities 

allowed enough surfactant to remain in the bulk solution at equilibrium to be analyzed.

The surfactant feed concentrations ranged from approximately 1/5 to 10 times the CMC 

with NaCl concentrations o f 0.15 M for the MADS solutions and 0.09 M for the DADS 

solutions. The pH o f the alumina/ surfactant solutions was measured and adjusted to 

values ranging from 2.3 to 3.5 using sulfriric acid. The pH was allowed to equilibrate 

without further adjustment. The vials were placed on a table-top type shaker for 24 hours. 

The alumina in the adsorption solutions was allowed to  settle prior to analysis. 

Centrifuging was found not to be effective in separating the alumina from the surfactant 

solutions. The equilibrium pH was then measured. The equilibrium surfactant 

concentrations were determined by HPLC using methanol as the mobile phase and a UV 

detector with the wavelength varying from 254 to 264 nm depending on the surfactant. 

Prior to injection into the HPLC the solutions were passed through a 0.2 pm syringe filter 

to remove any suspended alumina.

O f the MADS components the order of increasing adsorption was CIO, C l 2, and 

C l 6. This is in agreement with adsorption studies o f sodium alkylsulfonates onto alumina 

conducted by Wakamatsu and Fuerstenau (1968). From the isotherms shown in Figure 3- 

10, the behavior o f the C16 and C12 MADS are very similar, noticeably the sharp increase 

in adsorption just prior to the plateau region. The CIO MADS component has a more
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graduai increase with no sharp break before apparently plateauing. The third, fourth and 

eighth data points o f  the CIO MADS isotherm were at lower feed pH’s than the remaining 

points on the curve. The effect o f varying feed pH’s on C l 2 and C l 6 MADS was not as 

noticeable as on the CIO MADS.

As discussed in Section 3.4.1 and shown graphically in Figure 3-2, log-log plots o f 

adsorption results are often constructed in order to clearly observe regions o f  adsorption 

exhibited by a particular surfactant. The adsorption curves shown in Figure 3-11 o f the 

same adsorption data discussed above indicate that region 1 adsorption was not seen for 

any o f the components. For the C 12 MADS and CIO DADS, regions 2, 3 and 4 were 

observed. For the C16 MADS: region 4 was clearly observed, but there were insufficient 

data points to determine if the other points were in region 2 or 3. The same can be said 

for the CIO MADS, but it could also be argued that the last o f the data points lie within 

region 3 and that plateau adsorption was not observed.

In order to test the notion that region 4 adsorption began at or near the CMC, the 

CMC’s for each o f  the surfactants were determined at the same salinities that the 

adsorption studies were conducted. From Figure 3-10 the CMC’s were estimated to fall 

in the ranges shown in Table 3-3:

Table 3-3 Estimated Critical Micelle Concentrations
Surfactant Critical Micelle Concentration (M)
CIO MADS 2x10"* to 3x10^
CI2M ADS 8x10" to 1.6x10"^
C16MADS 6x10 " to 1.4x10"^
CIO MADS 1.4x10"^ to 2.4x10"*

The values shown in Table 3-3 are greater than the values shown in Table 1-2 of 

Chapter 1 by at least an order of magnitude. It was hoped that the CMC’s determined
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from the surface tension curves would correspond to the CMC’s suggested in Figure 3-10, 

but they do not. As a matter o f  fact, they correspond more closely to the values shown in 

Table 1-1 o f  Chapter 1. There are several possible explanations. There were some 

differences between the temperatures o f the surface tension measurements and the 

adsorption studies. Since these are mixtures, it is also possible that the more active 

species at the air/water interface is not the most active at the solid/water interface.

I f  the emphasis o f this study had been on the theoretical aspects of surfactant 

adsorption, additional samples containing less than 1/10*CMC solutions or systems 

containing more surfactant solution and/or less alumina would have to have been prepared 

and analyzed for all o f  the surfactants. In the current study the lower concentrations were 

close to the experimental error limits o f liquid chromatography analysis. For the CIO 

MADS systems containing greater than 10*CMC initial surfactant concentrations would 

have been required to adequately span the adsorption regions.

There were several observations made concerning the effect pH had on the 

adsorption on alumina. Adsorption of the DADS component onto alumina was very 

sensitive to variations in the feed pH that was exhibited by the several points that did not 

fit smoothly on the isotherm. See Figure 3-10. It was also noted that for any o f  the 

surfactants if the feed pH was at or below 2.5 or 2.6 the final pH was usually below 3.0, 

but if the feed pH approached 3.0 the finzd pH would approach 4.0.

In general the alkyldiphenyl oxide sulfonate components adsorbed as expected on 

the CRA and alumina surfaces. The oppositely charged alumina with the higher surface 

area had significantly greater adsorption than that on the CRA. See Table 3-4 for the 

actual values. The monosulfonates showed the greatest amount o f  adsorption due to the
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lack o f  electrostatic and steric hindrances. In the series o f MADS components there was 

increasing adsorption with increasing chain length due to increasing hydrophobicity.

Table 3-4 Maximum Adsorptions of Alkyldiphenyl Oxide Sulfonate Surfactants
Surfactant CRA Alumina

CIO-MAMS 4.91 mg/g (1.16x10'^ mol/g) -

CIO-MADS 0.6 (1.15x10^ 236.5 mg/g (4.52x10"" mol/g)
C l 0-DADS 2.25 (3.66x10^) 237.0 (3.86x10-^)
C12-MADS - 299.1 (5.43x10*^)
C16-MADS 1.83 (3.05x10-^) 527.5 (8.79x10-^)

In comparing all o f the adsorption studies involving the alkyldiphenyl oxide 

sulfonate surfactants discussed in this section it can be seen that adsorption onto 

negatively charge surfaces such as sandstone (Berea clays) result in adsorption amounts 

that are much less than adsorption onto positively charged surfaces such as limestone, 

CRA and alumina. Also, the studies on the CRA indicate that the purer components had 

significantly less soil adsorption than the commercially available C l6 MADS surfactant 

mixture.

In EOR or soil remediation projects this smaller amount o f surfactant loss to the 

soil could amount to significant cost savings, but as with all commercial applications the 

economics o f the higher costs associated with producing purer products must be weighed 

against profit losses associated with losing surfactant to adsorption.

While the alkyldiphenyl oxide sulfonate surfactants discussed above have many 

properties favorable for EOR and remediation applications, like all surfactants their use 

will be determined by their behavior under conditions specific to the application. In 

general their adsorption values were lower than that exhibited by many other surfactants, 

and their salinity tolerance has been demonstrated. As discussed in the prologue there is a
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lot o f  interest in the class o f surfactants described as gemini surfactants. The CIO DADS 

surfactant used in the current study can be classified as a gemini, but is worth noting that 

for this particular suite o f surfactants the components which are not “true gemini” 

surfactants tend to have the more favorable adsorption properties, monoalkyl versus 

dialkyl components.

3.6 Summary

Surfactants are used extensively in enhanced oil recovery. Applications include 

micellar floods or flooding in conjunction with polymers, alkalies, steam, or carbon 

dioxide. Another application is the generation o f foams for mobility control or blocking 

and diverting. For each of these applications care must be taken in selecting the 

surfactants. Surfactants tend to be a major portion o f the costs associated with EOR, and 

losing surfactant to adsorption leads to substantial economic losses.

Surfactant adsorption depends on many factors. Factors discussed in this chapter 

include the electrical nature o f  the solid surface, pH o f the system, and the structure of the 

surfactant. For most o f the solids in the various studies reviewed, the charge on the 

surface is determined in large part by the pH o f the system. Adsorption is enhanced in 

those systems in which the solid surface and the surfactant have opposite charges, and the 

greater the surface charge the greater the surfactant adsorption. Higher surface area solids 

tend to have increased adsorption, but pore size can also affect the degree o f adsorption. 

Care must be taken to avoid confusing precipitation o f the surfactant for adsorption; 

hence, familiarity with the solubility o f a surfactant in the presence o f  counterions is 

necessary.
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The studies reviewed for this chapter are examples o f the types o f studies that have 

been done on surfactant adsorption. They included those upon which fundamental 

theories and models have been developed as well as those used to develop practical 

applications of surfactants in the field o f enhanced oil recovery.
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Figure 3-1 Guoy-Chapman model o f the electrical double layer and the potential 
distribution.
Where 5 is the Stern plane within which counterions are adsorbed close to the 
surface and d is the diffuse layer of counterions.
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Figure 3-3 Two-region adsorption isotherm of dodecylamine on quartz 
(Gaudin et ai., 1950).
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Figure 3-6 Structure of the alkyldiphenyl oxide sulfonate surfactant where R are 
aliq'l chains of C6, CIO, C12, or C16.
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Chapter 4
Adsolubilization and Solubilization o f  2-Naphthol by 

Alkyldiphenyl Oxide Disulfonate Surfactants

4.1 Abstract

The adsolubilization o f 2-naphthoI by alkyldiphenyl oxide disulfonate surfactants 

was conducted on porous alumina, and solubilization studies were conducted using semi

equilibrium dialysis cells. For the C l2 MADS as the average feed concentrations o f 

increased, the admicellar mole fractions o f 2-naphthol decreased, while the partition 

coefficient decreased. The adsolubilization behavior and the admicellar aggregation 

numbers calculated for the C12 MADS surfactant suggest the possibility o f perimeter 

adsorption. This was not the case for the C l6 MADS surfactant in which the admicellar 

mole fractions o f 2-naphthol for the two Cl 6 MADS feed concentrations overlapped each 

other and also overlapped the micellar mole fractions o f  2-naphthol over most o f  the 

values o f the aqueous naphthol mole fractions. This indicates that the admicelles formed 

by the C16 MADS are more micelle-like in structure than the C l2 MADS i.e. no edge- 

sites are available for naphthol adsorption in the C16 MADS. In the solubilization of 2- 

naphthol the C12 MADS and C16 MADS surfactants behaved almost identically. The 

surfactants used in the current study had admicellar or micellar partition coefficients for 2- 

naphthol that were greater or approximately equal to the partition coefficients as those for 

cetylpyridinium chloride on silica, sodium dodecyl sulfate, and sodium dodecylbenzene 

sulfonate on alumina.
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4.2 Introduction

The presence o f surfactant micelles in solution is known to enhance the apparent 

solubility o f hydrophobic organic compounds by the process o f solubilization. 

Solubilization is the dissolving of an organic solid by reversible interaction with the 

micelles o f a surfactant in an aqueous solution. The amount o f an organic compound that 

can be solubilized depends on the surfactant structure, aggregation number, micelle 

geometry, ionic strength and chemistry, temperature, solubilizate chemistry and 

solubilizate size. Those surfactants that produce larger micelles or have lower CMC’s 

tend to have greater degrees o f solubilization. For ionic surfactants, increased 

temperatures tend to promote solubilization, but the behavior o f nonionic surfactants is 

more complex. Less polar solubilizates tend to solubilize better, but larger solubilizates 

may not solubilize as well as smaller compounds. This is especially true o f those 

solubilizates that solubilize in the core or interior o f the micelle.

Mukeijee (1979) proposed a two-state model for solubilization in which there is a 

distribution between a dissolved state in the nonpolar hydrocarbon pseudophase o f  the 

interior o f the micelle and an adsorbed state at the micellar-water interface (commonly 

referred to as the palisade layer). Based on the polarity of the solubilizate it would be 

expected that nonpolar solubilizates would tend to locate in the core o f the micelle while 

more polar or polarizable solubilizates would tend to locate in the palisade layer.

If solubilization occurs in conjunction with surfactant adsorption onto a solid the 

process is known as adsolubilization (Harwell, 1985). Lee et al. (1990) reported on the 

findings o f Yeskie (1988) that the incorporation o f alcohols into admicelles produced high 

ratios of alcohol to surfactant adsorption at lower surfactant coverages. Enhanced
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surfactant adsorption below the CMC and a slight decrease in the plateau adsorption o f  

the surfactant were also reported. Based on the observations o f alkane and alcohol 

adsolubilizations, it was concluded that for the C12 anionic surfactants studied alcohols 

can be incorporated into the core and at the hydrophobic perimeter of the admicelle 

aggregates on the solid surface while alkanes are incorporated only into the core o f  the 

admicelles.

The objectives o f the current research were to  evaluate the adsolubilization 

behavior o f  a polar hydrocarbon at two different levels o f  surfactant surface coverage on a 

porous mineral oxide. Both o f the surfactant surface coverages were below the plateau 

(region IV) o f surfactant adsorption. The adsolubilization was then followed with 

solubilization studies using the same hydrocarbon. Finally, the various aspects o f  the 

adsolubilization and solubilization behaviors were compared.

4.3 Materials

The surfactants used were alkyldiphenyl oxide disuLfonates that included CIO 

DADS, CIO MADS, C12 MADS and C16 MADS which are described in the Prologue. 

These surfactants were provided by DOW Chemical, Midland, MI and were approximately 

35% active by weight. They were used as received. Sodium Chloride, ACS grade, was 

purchased from Fisher Scientific and also used as received. 2-Naphthol, 99%, was 

purchased from Aldrich and used as received. Alumina with a BET surface area o f 301.83 

m^/g and an average pore diameter o f  105.08 Â was provided by LaRoche, Baton Rouge, 

LA. Methanol, HPLC grade, was purchased from Fisher Scientific.
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Semi-equilibrium dialysis (SED) cells (5 mL) and cellulose dialysis membrane 

filters with an average molecular weight cutofif o f 6000 dalton were purchased fi-om Fisher 

Scientific. A description o f  an SED cell is given in Section 4.4.2.

4.4 Experimental

4.4.1 Adsolubilization

Adsolubilization studies were conducted using 0.5 grams o f  alumina and 30 mL of 

surfactant/naphthol solutions in 40 mL vials. The surfactant/naphthol solutions were 

prepared in 0.15 M  NaCl with a constant surfactant concentration and increasing naphthol 

concentrations. The naphthol concentrations ranged from 0.0 to 3.5x10'^ M. It was 

desired that the surfactant concentrations selected would produce equilibrium surfactant 

concentrations that were below the CMC, i.e. below bilayer coverage and with different 

degrees o f coverage o f the alumina surface. The initial surfactant concentrations were 

based on the adsorption isotherms shown in Figure 3-11, and the feed concentrations 

selected are shown in Table 4-1.

Table 4-1 Initial Surfactant Concentrations Used in Adsolubilization Studies.
Surfactant CIO DADS CIO MADS C12MADS C16M ADS

Initial
Concentrations

(M)

1.92x10"*
1.01x10'^

4.35x10"*
7.42x10"*
7.26x10"*

3.94x10"*
5.99x10"*
6.79x10"*

8.60x10"*
1.43x10'^

After the surfactant/naphthol solutions were added onto the alumina, the pH was 

adjusted to approximately 3.3. After pH adjustment, the vials were placed on a tabletop 

shaker for a total o f  24 hours. The CIO DADS, CIO MADS and C12 MADS systems 

were allowed to  equilibrate without further pH adjustment, but for the C16 MADS
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systems the pH was adjusted 3-4 times in order to force the final pH to be approximately 

3.4. Maintaining tighter control o f the pH resulted in no experiments having to be 

repeated for the C l6 systems, which was not the case for the other surfactant systems.

At the end of the 24 hours, the vials were removed from the shaker, and the 

alumina was allowed to settle. When the supernatant was essentially clear o f  alumina, 3 

mL was passed through a 0.2 pm syringe filter and discarded. A second 3 mL was passed 

through the same filter and collected for analysis. The feed solutions and the supernatant 

solutions were analyzed on a Shimadzu high performance liquid chromatograph (HPLC) 

with a Waters UV detector. The mobile phase was 55 % methanol and the UV 

wavelength was 254 nm. Data collection for the CIO DADS, CIO MADS and C12 

MADS was done by a Hewlett-Packard integrator. Model HP 3396 Series in  and for the 

C16 MADS using Variants STAR chromatography software. Version 4.51.

4.4.2 Solubilization

Solubilization studies were conducted using SED cells with cellulose dialysis 

membranes. A SED cell (Figure 4-1) consists o f Plexiglas halves each having a 5 mL void 

and a threaded access port. When assembled the two voids are separated by a cellulose 

dialysis membrane. This membrane allows the movement o f surfactant monomers and 

solubilizate fi'om the retentate to the permeate side. The key to this method is that the 

monomeric solubilizate concentrations are the same on both sides of the membrane. This 

allows for the assumption of equal activity coefficients o f the solubilizate on both sides of 

the membrane. In an ideal dilute solution the solubilizate activity equals the concentration
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o f  the solubilizate monomer. From this, solubilization constants can be determined from 

SED data (Christian et al., 1985).

Initial surfactant concentrations were chosen that were well above the CMC. The 

initial concentrations were 1.34x10'^ M  for the CIO DADS, and 2.50x10 " M for the C12 

and C16 MADS. These concentrations were approximately 20 times the CMC reported 

by DOW for C l2 MADS and 10 times the CMC reported by DOW for the C16 MADS 

and CIO DADS.

Naphthol concentrations ranged from 0.0 to 6x10'^ M. As with the 

adsolubilization surfactant/naphthol solutions, the solubilization solutions were prepared in 

0.15 M NaCl for the MADS surfactants while the CIO DADS was prepared in 0.09 M  

NaCl. The retentate side o f the cell was filled with surfactant/naphthol/NaCl solution and 

the permeate side was filled with a solution of NaCl. Due to the unavoidable flexing o f  the 

membrane, filling the two chambers was done in alternating 1 mL increments. This helped 

insure equal volumes in both chambers. The final 0.5 mL o f  each chamber was filled using 

a syringe. The narrower diameter o f  the needle allowed any air bubbles present in the 

chamber to move up and out o f  the chambers through the access ports. The chambers 

were sealed with stainless steel bolts covered with parafilm. The cells were allowed to sit 

at room temperature for 24 hours. Similar work (Rouse et al., 1995) had shown this to be 

an acceptable time frame for these types o f surfactants and solute. At the end o f the 24 

hours, the solutions in the retentate and permeate chambers were extracted using a 

disposable pipette. The feed, permeate, and retentate solutions were then analyzed using 

the same HPLC procedure described in the previous section. Since these are closed 

systems, mass balances were performed on each o f the samples.
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4.5 Results and Discussion

4.5.1 Behavior o f Naphthol in the Absence o f Surfactant

The adsolubilization behavior o f alumina/naphthol systems was analyzed at the 

same salinity and pH o f the surfactant/naphthol/alumina systems. Initial naphthol 

concentrations ranged from 6.66x10"^ to 2.64x10'^ M. It should be pointed out that in the 

current study the naphthol/alumina systems were not studied in a systematic manner. The 

samples evaluated were prepared as naphthol blanks during individual surfactant analyses. 

While the results presented suggest a degree o f interaction between naphthol and alumina, 

the following discussion is presented as the basis for not taking these results into account 

in the adsolubilization results. Table 4-2 lists the results o f these analyses.

Table 4-2 Adsorption Results of Naphthol/Alumina Blanks
Equilibrium 

Concentration (M)
Mole naphthol adsorbed/ 

gram alumina
plïfinal

5.82x10-* 5.06x10-' 5.15
5.89x10-* 5.37x10"' 4.65
8.99x10"* 2.13x10"* NA
9.42x10^ 3.28x10"* 3.21
1.84x10'^ 5.76x10"' 3.82
2.52x10'^ 1.33x10"* 3.66

From Table 4-2 and the data in Tables 4A-2 through 4A-4 it can be seen that the 

apparent amount o f  naphthol adsorbed in the absence o f  surfactant is less than the amount 

o f naphthol adsolubilized in the presence of surfactant for the same initial concentration of 

naphthol, but is still on the same order o f magnitude. The pK, o f  2-naphthol is 9.51, and 

at the pH values used in the current study the naphthol would be expected to be 

undissociated, and interaction with the alumina would not be expected based on 

electrostatic interactions. Nor is this apparent relationship due to the final pH values. As
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shown in Table 4-2, there was a sizable range o f  final pH values; but while the lowest pH 

value corresponded to the system with the greatest amount o f  “adsorption”, there is no 

trend o f decreasing adsorption with increasing pH. The error bars shown in Figure 4-2 are 

used to indicate errors o f ±10% which are a common for HPLC analysis. As discussed in 

section 4.5.3 there was great concern about the HPLC analysis, in particular the 

calibration curves used to determine the equilibrium concentrations and the procedure 

used to assure the accuracy o f the adsolubilization results. It appears that in order to 

assure the accuracy o f the adsolubilization results that involve the concentrations o f  the 

surfactants and naphthol, the accuracy o f the naphthol blank solution analyses is suspect.

While several adsolubilization studies have been conducted with 2-naphthol, the 

interaction o f naphthol with the solid surface (porous and nonporous silicas) is not 

discussed in detail. Any interaction is presented as being very small or nil, but no 

numerical values are provided (Treiner and Monticone, 1994 and Esumi et al., 1996). In 

the study presented by Nayyar (1993) a naphthol/alumina system was analyzed. The 

alumina used had a reported surface area of 155 mVg and fi'om the data provided the 

naphthol adsorption was calculated to be 7.74x10"^ mole/gram. Unfortunately, there was 

no adjustment o f the pH to a lower value as was done in the current study and in the 

studies reported by Treiner and Monitcone (1994) and Esumi et al. (1996). Based on the 

concerns about the HPLC analysis and no apparent chemical explanation for any 

naphthol/alumina interaction, the “adsorption” values for the 2-naphthol were ignored for 

the analysis o f  the adsolubilization data.
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4.5.2 Adsorption of surfactants in the presence of naphthol

The effect o f naphthol on the surfactant adsorption was examined by determining 

the surfactant adsorptions that would have been seen in the absence o f naphthol which 

were determined from the surfactant adsorption isotherms from Figure 3-11 and were 

based on the average initial surfactant concentrations used in the adsolubilization studies. 

The expected surfactant adsorptions from the adsorption isotherms and the actual 

surfactant adsorptions in the presence of naphthol are shown in Table 4-3.

Table 4-3 Surfactant Adsorption onto Alumina
Surfactant Average initial 

concentration (M)
Mole/gram
(expected)

Mole/gram
(actual)

CIO MADS 4.25x10^ 1.1x10"* 1.68x10-4
7.40x10^ 3.1x10-4 2.83x10"*
3.94x10-4 2.1x10-4 2.04x10"*

C12MADS 5.99x10-4 3.2x10-4 3.27x10-4
6.80x10-4 3.5x10-4 3.36x10-4

C16MADS 8.60x10-4 6.0x10-4 4.04x10"*
1.43x10-4 8.7x10-4 6.93x10"*

CIO DADS 1.92x10-4 9.1x10': 1.06x10-4
1.01x10^ 4.6x10-4 5.23x10"*

The expected and actual adsorption amounts were very similar with the exception 

for the C16 MADS where the actual adsorptions were 67% and 79% o f their expected 

value. This difference is attributed to lower equilibrium pH values from the adsorption 

studies. For the other surfactants the similarity o f the adsorption values in the presence of 

naphthol and those obtained without naphthol indicate that the presence o f the naphthol 

has little effect on the adsorption of the surfactant.
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4.5.3 Adsolubilization

In order to quantify the adsolubilization capabilities o f  the surfactants the partition 

coefiBcient, Kadm, will be used. Kadm is a ratio o f the mole fraction o f  the adsolubilizate in 

the admicellar pseudophase, Xadm, to the mole fraction o f adsolubilizate in the aqueous 

phase, Xa- Kadm was calculated using Equation 4-1 ;

Where Xadm is calculated from:

^  ^{mole! g ram )^ i/ .
^  «6, y^m ole  /  gram)^i + {mole /  gram)^^ )  ̂ ^

and Xa from:

=  0 0 1 :0 5  (4-3)

Csol
equi is the equilibrium concentration in Molarity, 0.01805 is the molar volume of 

water in L/mol at 25 °C, and the super- and subscripts sol and surf refer to solubilizate 

and surfactant, respectively. It should be noted that Equation 4-3 is applicable for dilute 

solutions. Alternate definitions reported in the literature include:

X a  = ^ p { c  +55.55) (N ayyaretal., 1994)

and,

X a  = ̂ p { ( f  +  Se, + 55.55) Gt al., 2000)

Where C e , and Se, are the equilibrium adsolubilizate and surfactant concentrations, 

respectively and 55.55 is the inverse molar volume of water. Equation 4-3 was chosen to
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compliment the calculations for the solubilization data which are presented in the next 

section, but the acceptability o f the dilute solution assumption was checked by calculating 

Xa from all three equations for several systems and comparing the final values. Selected 

values are shown in Table 4-4. It can be seen that there is little or no difference between 

the values of Xa calculated from the three different equations, and the assumption o f  a 

dilute solution is acceptable.

Table 4-4 Comparison of X, for C16 MADS (8.60xl0~* M initial concentration)
Sample Xa (Eqn. 4-3) Xa (Nayyar) Xa (Esumi)

1 5.42x10-’ 5.41x10*’ 5.41x10*’
3 1.48x10^ 1.14x10'^ 1.14x10^
5 2.80x10^ 2.79x10^ 2.79x10^
7 4.75x10^ 4.74x10^ 4.74x10^

Plots o f  Xa versus Xadm and of Xadm versus Kadm were constructed and are shown in 

Figure 4-3 through 4-6. From the plots o f  Xadm versus Kadm, shown in Figure 4-5 and 4-6, 

a sharp increase in Kadm at the lowest values of Xadm was observed. For example, in the 

adsolubilization o f 2-naphthol in C12 MADS (feed concentration 5.99x10"* M) at a Xadm 

o f  0.24 the Kadm was 109613 while at Xadm o f 0.38 the Kadm was 44603. Similar decreases 

were seen for the other C12 MADS system and for the C16 MADS. This same trend had 

been observed in a  solubilization study o f a commercial mixture o f C16 MADS and C16 

DADS (Dowfax® 8390) and 1-naphthol (Rouse, 1994). H e attributed this to the 

influence o f the more hydrophobic components o f the surfactant solution dominating 

micelle formation at lower surfactant concentrations (which would be expected to have 

greater solubilization potentials and thus higher Km’s ) ,  but in the current study the 

surfactant concentrations are held constant so further examination o f this sharp increase in 

Kadm was warranted.
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It was obvious that the value o f Kadm was strongly affected by small changes in the 

value o f either Xadm or Xa. At low values o f Xadm and Xa, the value o f Kadm is very 

sensitive to inaccuracies in the determination of X, or Xadm- It was noted that the choice

o f  calibration curves for naphthol had a great affect at the lowest values o f  and thus 

Xa- To elaborate, from the HPLC data two calibration curves for naphthol could be and 

were constructed. One from chromatograms from standard solutions containing only 

naphthol and a second from the adsolubilization feed solutions. Theoretically, the two 

curves should overlap, but this was not always the case, particularly for the higher 

surfactant concentrations. In these systems the surfactant peak tended to have a trailing 

end which overlapped the beginning o f the naphthol peak, and there was not the clean 

separation between the 2-naphthol and the surfactant except at the lower surfactant 

concentrations. Attempts were made to enhance the chromatographic separation o f the 

two peaks by adjusting the ratio of the water and methanol composing the mobile phase, 

but lower methanol concentrations tended to only increase the broadening o f  the 

surfactant peak while higher methanol concentrations did not separate the two 

components.

When it was realized that this interaction could not be avoided, analysis o f  the

HPLC data involved assuring consistency in the calculations. The calibration curve

generated from the naphthol standard solutions was used to calculate the naphthol

concentrations in the feed solutions whose concentrations were known. I f  the values

calculated were within ±10% o f the actual values then the calibration curve with the best

linear fit was chosen to calculate the unknown naphthol concentrations. For many o f the

analyses the calculated values for the initial naphthol concentrations were greater than
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±10%, and in these cases the calibration curve generated from the feed solutions was used 

to calculate the naphthol concentrations. Examination o f  the chromatograms indicated 

that the interaction o f the naphthol and surfactant peaks for the initial solution and the 

adsolubilized solution for a given sample tended to be very similar in nature. This 

provided a more consistent base for the remaining calculations in the analysis o f  the data.

All o f the HPLC data was reanalyzed in order to assure that consistency in analysis 

had been maintained throughout. This reanalysis o f  the CIO DADS was not possible since 

naphthol standards had not been used.

With the limitations of the data analysis in mind, it is realized that the actual values 

o f Kadm at the lowest Xadm values may not be as high as shown for some o f the samples, 

but that the trend o f higher values o f Kadm at the lower Xadm values is a real phenomena. 

This discussion is also applicable to the analysis o f  the SED data. The higher values o f Km 

at lower X„ values were also seen in the solubilization o f  2-naphthol.

Adsolubilization was conducted for each surfactant at a minimum of two 

concentrations; both of which were located in the type II region o f  adsorption. For the 

CIO DADS, the average initial surfactant concentrations were 1.92x10"* and l.OlxlO'^’M, 

and the naphthol concentrations ranged from 2.77x10"* to 3.75x10'^ M. Plots o f Xadm 

versus Kadm are shown in Figure 4-3. The Kadm values for the 1.92x10"* M system are 

greater than those of the 1.01x10'^ M  feed over the same range o f initial naphthol 

concentrations suggesting that the there are more available sites for naphthol 

adsolubilization in systems containing less surfactant. This is consistent with the findings 

of Yeskie (1988) for sodium dodecyl sulfate/alcohol systems.
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Comparison o f  the partition coefiBcients for the CIO MADS and C12 MADS 

surfactants based on the initial surfactant concentrations is not as straightforward. For 

each surfactant, the results o f  the lower surfactant feed concentration systems were as 

expected, but the results o f systems with higher initial surfactant concentrations were not. 

The CIO MADS, 4.35X10"* M initial surfactant, behaved as expected with a smooth 

decrease in Kadm with increasing Xadm, but for the systems with 7.4x10"* M  initial 

surfactant Kadm tended to decrease but not as smoothly as in the 4.35x10"* M system. In 

an attempt to confirm or refute this behavior a second experiment was conducted at the 

higher initial surfactant concentration. This time the average initial surfactant 

concentration was 7.26x10"* M. The final results were even more complex. There was no 

smooth decrease in Kadm with increasing Xadm as seen in Figure 4-4.

Initially, it was felt that there was probably a significant amount o f  deviation in the 

final pH values between the solutions o f 7.26x10"* M CIO MADS that was responsible for 

the complex behavior o f the naphthol, but this was not the case. The final pH values o f 

the samples comprising this run do not deviate fi"om each other any more than in the other 

systems. The final pH values are provided in Appendix 4 A. Re-examination o f  the HPLC 

analysis did not indicate any problems with the HPLC analysis other that already 

discussed, and no definitive explanation o f this complex behavior is readily apparent.

Comparing the results fi-om the CIO MADS systems containing 4.35x10"* and 

7.4x10"* M  initial surfactant, it can be said that from Figure 4-4 that for a given X,, the 

values o f  Xadm are very similar until X, > 2x10^; at which point the mole fraction of 

naphthol in the admicelles formed in the 4.35x10"* M  surfactant continues to increase, but 

in the 7.4x10"* M  begins to decrease. But in relation to the partition coefficient, the values
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o f  Kadm for both surfactant concentrations are similar above Xadm = 0.1. Below this, 

greater partitioning is seen in those solutions containing the higher concentration of 

surfactant.

For the C12 MADS systems containing 3.94x10^ and 5.99x10“* M initial 

surfactant concentrations, the partitioning coefficients for the 3.94x10“* M systems tended 

to be greater than those o f the 5.99x10“* M  systems.

C12 MADS systems prepared with 6.8x10“* M initial surfactant concentration 

reflected a non-smooth change in Kadm with Xadm- Again there was no significant 

difference in the pH values between the different samples. In order to confirm this 

behavior, the HPLC analysis was performed twice with very similar results. The most 

significant difference between this situation and the behavior seen in the CIO MADS is 

that the partition coefficients for the 3.94x10“* M C12 MADS systems are consistently 

greater than those o f the 5.99x10“* and 6.80x10“* M  systems. The lower partition 

coefficients for the 6.80x10“* M surfactant system relative to the 5.99x10“* M systems 

could not be readily explained until the SED data was analyzed. As shown in Figure 4-5, 

there is an overlap o f the Kadm values o f the 6.80x10“* M  adsolubilization system and the 

Km for the 2.53x10'^ M SED system. This strongly suggests the presence o f micelles in 

the adsolubilization solutions made with 6.80x10“* M C12 MADS, although the presence 

o f  micelles does not readily explain the complex behavior seen.

Comparison o f  the two C16 MADS systems, average initial surfactant 

concentrations of 8.60x10“* and 1.43x10'^ M, indicates very little difference between the 

partitioning coefficients for the two systems for all values o f  Xadm- See Figure 4-6. This 

suggests that the C16 MADS forms similar surface aggregates at both concentrations.
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This behavior does not fit the behavior demonstrated by the C12 MADS surfactant in this 

study, in the alcohol/SDS study reported by Yeskie (1988) o r that of naphthol 

adsolubilized by SDS (Nayyar et al., 1994). In these studies the surfactants were 

comprised o f  shorter alkyl chains. The similar adsolubilization behavior demonstrated by 

the two concentrations ofC16 MADS is discussed in further detail in Section 4.4.5

4.5.4 Solubilization

Solubilization studies were conducted with the CIO DADS, C l2 MADS, and C16 

MADS surfactants using the procedure described in Section 4.3.2. Since the SED cells 

can be considered closed systems, it was possible to perform mass balances on the 

surfactants and naphthol in order to check the accuracy o f the HPLC analysis. The mass 

balances on the surfactants were within ±10% for the C12 MADS and C16 MADS, while 

the error associated with the CIO DADS was slightly larger at ±16%. The balances on 

naphthol were generally within ±10% for the C12 MADS and C16 MADS with only a few 

samples outside o f this range. For the CIO DADS the naphthol mass balances were within 

±20%. It is felt that the larger errors and problems with the HPLC analysis in general with 

the CIO DADS prevent any definitive conclusion on its solubilization abilities and will not 

be discussed.

As with the adsolubilization, there are several values that are typically calculated in 

order to evaluate a surfactant’s ability to solubilize a particular solubilizate. The equations 

used for solubilization are shown on the next page. The data for and the results fi-om 

these calculations are in Appendix 4A, Tables 4A-5, 4A-6, and 4A-7.

For semi-equilibrium dialysis the following equations were applied:
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=  (4-4)

 ̂̂ ^ s o l sol \  
perm Jy  y^rec ^perm j /

m (4-5)/  perm ref perm  J

K .  = (4-6)

Where the definitions o f  Xa, X^, and Km are the same as in the previous section except Xm 

is the mole fi-action o f  solubilizate in the micelle, the solubilization potential. Km, is the

ratio o f  the mole fraction o f  solubilizate in the micellar pseudophase to the mole fraction in

the aqueous pseudophase. The subscripts ret and perm refer to retentate and permeate, 

respectively.

Comparing the solubilization parameters o f the C l 2 and C16 MADS shown in 

Figure 4-7B, it can be seen that for all Xm, the values o f  Km overlap. This indicates that 

for the same initial surfactant concentration, the C12 and C l6 MADS surfactant micelles 

have nearly identical capabilities o f solubilizing naphthol.

4.5.4.1 Comparison of Adsolubilization and Solubilization Parameters of 
All^ldiphenyl Oxide Disulfonate Surfactants to Other Surfactants

Several studies have been conducted using 2-napthol as the solubilizate using both 

cationic and anionic surfactants on porous and nonporous silica and alumina. The 

maximum adsolubilization o f  naphthol at an equilibrium cetylpyridinium chloride 

concentration o f 2.0x10"^ M  on porous silica was approximately 2.5x10*^ mole/L of 

solution at a pH o f 3.6 and a NaCl concentration o f 0.01 M  (Monticone and Treiner,

1995) compared to a maximum adsolubilization in the C16 MADS system, pH = 3.36 and
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a NaCl concentration o f 0.15 M just over 5.00x10"* M. The equilibrium C16 MADS 

concentration was approximately 1.3x10"* M.

Using the data provided by Esumi et al. (1995) for the adsolubilization o f naphthol 

by SDS on nonporous alumina the value o f Kadm was estimated to be 13000 for an initial 

naphthol concentration o f 0.4 mmol/dm'’ and an equilibrium SDS concentration o f 5 

mmol/dm'’ at an initial pH o f 3.5. This value is about one-fourth o f  the Kadm calculated for 

similar systems in the current C12 MADS adsolubilization study. A more realistic 

comparison would be to compare their results and the current results based on the initial 

surfactant concentrations, since several initial surfactant concentrations can produce the 

same amount o f adsorption. Unfortunately, the initial surfactant concentrations were not 

provided.

Nayyar et al. (1994) reported a maximum Xadm o f approximately 0.224 for a X, of 

9.7x10'^ in a titration study involving SDS and 2-naphthol. Alumina with a surface area o f 

155mVg was used for this study. The initial SDS concentration was not reported. For the 

C12 MADS surfactant used in the current study a similar value o f  Xadm (0.244) was seen 

at a Xa o f 2.23x10"^. Also, the values o f X, did not exceed 3.5x10'^.

Rouse et al. (1995) reported on the solubilization o f 1-naphthol by the surfactants 

sodium dodecyl benzenesulfonate (SDBS) and DPDS. DPDS is a commercially available 

mixture o f C16 MADS and C16 DADS. They reported a maximum Xm of 0.31 at an 

equilibrium retentate concentration o f 2.24x10'^ M  DPDS and a  maximum Xm o f slightly 

greater than 0.20 at an equilibrium SDBS retentate concentration o f  1.96x10'^ M. 

Assuming the behavior o f  1-and 2- naphthol would be similar, the values o f Xm reported 

by Rouse et al. compare to a Xm o f 0.29 for an equilibrium C16 MADS retentate
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concentration o f 2.6x10" M and a Xm of 0.29 for an equilibrium C12 MADS retentate 

concentration o f 2.2x10" M.

These comparisons suggest that the alkyldiphenyl oxide disuifonate surfactants 

used in the current study have greater solubilization potential for naphthol that SDS, 

SDBS, or cetylpyridinium chloride. From the solubilization studies involving the C16 

alkyldiphenyl oxide disulfonate surfactants similar results were obtained for the 

commercially available mixture and the C16 MADS used in this study. This is not 

unexpected since the C16 used in this study is also a mixture. The component 

distributions are provided in Table 1-3 of Chapter 1.

4.5.4 2 Comparison of Adsolubilization and Solubilization Parameters of 
Alkyldiphenyl Oxide Disulfonate Surfactants

Comparisons between the alkyldiphenyl oxide disulfonate surfactants used in this 

study began by comparing the partition coefiBcients o f all o f the surfactants based on 

solutions containing initial naphthol concentrations within ±0.15 M o f each other. It was 

found that no one surfactant tends to dominate with higher partition coefficients in the 

adsolubilization of 2-naphthol. This comparison is based on data summarized in Appendix 

4B and Figure 4-8.

In comparing the values of Xm for the different surfactants, it can be seen that for 

the C12 MADS, the maximum value o f Xm for solubilization is 0.29 which is slightly less 

than half o f the maximum Xadm seen for the C12 MADS adsolubilization samples (Xadm = 

0.73).

The maximum value o f Xm for the CI6 MADS solubilization was 0.44, although 

this particular data point appears out of place and the actual maximum Xm would be
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expected to be closer to 0.30. The data in question is enclosed with a box in Figure 4-7a. 

The maximum value o f Xadm for adsolubilization is 0.42. But it should be pointed out that 

for these two samples, the initial concentration o f naphthol in the solubilization was almost 

twice the concentration used in the adsolubilization sample, 6.3x10" versus 3.3x10" M.

As seen in Figure 4-6a, the values o f Xm for the micelles are only slightly lower than those 

of the admicelles. However from Figure 4-6b, the Km’s for solubilization for values o f Xm 

<0.17 are lower than the Kadm values for adsolubilization for the same range o f Xadm 

values. Indicating that for Xadm < 0.17 the admicelles are more capable of solubilizing 

naphthol, but beyond this the micelles and admicelles o f C16 MADS have very similar 

capabilities.

Although there was some difference between the values o f Kadm and Km for the 

adsolubilization and solubilization o f naphthol by C l 6 MADS, there was not the large 

difference as was seen for the C l2 MADS. It was felt that either micelles were present in 

the C16 MADS adsolubilization samples or the C16 MADS behaved differently than the 

C12 MADS. Pinacyanol chloride (PCC) was used to determine whether or not micelles 

were present in the adsolubilization samples. PCC is known to exhibit different colors in 

aqueous and organic solutions and has been used to determine whether or not micelles are 

present. In the presence o f water PCC is purple and in organic compounds, royal blue.

The royal blue color appeared in solutions containing 1.4x10" M  surfactant, but lower 

concentrations varied from bluish green to brown. Standard surfactant solutions o f  0.25 

to 5*CMC were prepared, and PCC was added to each. Table 4-5 contains the color 

variations produced by the PCC in various concentrations o f  these surfactant solutions.
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Table 4-5 Colors of PCC in C16 MADS Solutions
Sample 1.82x10^ M 0.25*CMC 0.50*CMC 1*CMC 3*CMC 5*CMC
Color Purple Purplish-

brown
Brown Bluish-

green
Greenish 
blue to blue

Royal
blue

PCC was added to samples containing only surfactant, feed solutions, and 

adsolubilized solutions from each o f  the C16 MADS adsolubilization runs. The feed 

solution containing 7.39x10“* M  surfactant was greenish-blue to blue while its 

adsolubilized counterpart was brown. The feed solution containing 1.41x10 " M 

surfactant was royal blue while its adsolubilized counterpart was brown. Since the brown 

coloration was present only in solutions below the CMC, it can be concluded that the C16 

MADS adsolubilization solutions equilibrated below the CMC, and that the behavior o f 

the C16 MADS is different than that o f  the C12 MADS. Figure 4-9 offers some further 

insight. As seen, the partition coefficients are far greater for the adsolubilization o f  

naphthol at both initial surfactant concentrations than for the solubilization in C12 MADS. 

The partition coefficient for the C12 MADS adsolubiUzation is also greater than those o f 

the adsolubilizations and solubilization for the C16 MADS. Error analysis for the C12 

MADS adsolubilization and solubilization results indicate that the trends discussed for the 

partition coefficients ( K a d m  and K m )  are valid. The values for X , ^ ( K a d m )  and X?(Km)It is 

proposed that the longer chain lengths o f the C16 MADS allows the formation o f  

admicelles which are more micelle-like, i.e. with no edge-effects and that the presence of 

these “edges” allow for the greater adsolubilization by the C12 MADS. It is proposed the 

differences in the structures and compositions of the C12 MADS and C16 MADS are the 

sources o f these differences. The exact nature of the structural differences is considered 

proprietary information and cannot be discussed in this writing (Quencer, 2001).
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4.5.5 Two-Site Adsolubilization Model

In an attempt to verify the existence o f the edge-aflfect for the C 12 MADS the 

two-site adsolubilization model reported by Lee et al. (1990) was applied. This model 

was used to calculate the average aggregation number o f  the surfactant, and the 

reasonableness o f the results was offered as proof o f the existence o f edges for the 2- 

naphthol solubilization. The equation used is shown below and the reader is referred to 

the reference for the derivation.

A a

~A,b (4-7)
T s  ^ ~ C aK aj,J

Where the variables were defined as follows in Table 4-6. If the values are constant for all 

calculations, they are also indicated.
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Table 4-6 Definitions and Numerical Values of Variables Used in Two-site 
Adsolubilization Model
Variable Definition Value Source of value

N av Average aggregation number

1 Length of a surfactant hydrocarbon 
chain

L6 nm Theoretical length of 
fully extended 

hydrocarbon tail of 
surfactant

As Area per headgroup for surfactants in 
the admicelle

0.278 nm^ From the adsorption 
density o f C l 2 MADS 

monolayer at the 
air/water interface

A a Area per headgroup for alcohol 
molecules adsorbed at the 

hydrocarbon band around the 
perimeter o f the admicelles

0.20 nm^ Adsorption density of 
an alcohol monolayer at 

an oil/water interface

F a Gibbs adsorption o f alcohol varies Measured 
experimentally at each 
alcohol and surfactant 

concentration

Ts Gibbs adsorption o f  surfactant varies Measured 
experimentally at each 
alcohol and surfactant 

concentration

C a Equilibrium concentration o f alcohol 
in solution

varies Measured 
experimentally at each 
alcohol and surfactant 

concentration

KA,b Partition of alcohol into the palisade 
layer of the admicelle

271 Estimated from the 
experimental partition 
coefiBcient measured 

nearest bilayer 
coverage: KA,b =

(X a,c/ g  A)bilayer

O f the three adsolubilization studies, only the C12 MADS surfactant could be used 

to test the applicability of the two-site model due to the fact that this is the only surfactant
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for which KA,b could be estimated. The relationships between the aggregation numbers 

calculated from Equation 4-7 and the surfactant adsorption density are shown in Figure 4- 

10. There is a decrease in the aggregation number with increasing initial naphthol 

concentration and at the highest naphthol concentrations a decrease in the surfactant 

adsorption density. The aggregation numbers are reasonable and combined with the fact 

that the solutions containing the lower concentration o f  surfactant had the greater 

adsolubilization; in agreement with the findings o f Yeskie (1988), suggest the possibility o f 

edge adsorption. Confirmation of the existence o f edge-site adsorption would require a 

more in-depth study; particularly, adsolubilization studies conducted in which the naphthol 

concentrations were held constant and the surfactant concentrations were varied.

4.6 Conclusions

While the possibility o f naphthol/alumina interaction is suggested in the current 

study, it could not be proven conclusively. In any future research involving naphthol and 

alumina or any other porous surface a systematic investigation into this interaction would 

be warranted.

The presence o f the naphthol did not affect the degree o f adsorption of the 

surfactants. The differences seen for the C16 MADS was attributed to the differences in 

the pH values used in the adsorption and adsolubilization studies.

Two methods for comparing the adsolubilization o f  naphthol were used. Based on 

the changes o f Kadm with Xadm the C12 MADS demonstrated greater solubilizing 

capabilities relative to the CIO MADS, C16 MADS, and the higher concentration of CIO 

DADS, but about the same capability as the lower CIO DADS concentration.
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Comparisons based on the changes o f  Kadm with increasing initial naphthol 

concentrations indicate that the alkyldiphenyl oxide disulfonate surfactants have about 

equal capabilities for the adsolubilization o f 2-naphthol. Each o f the methods used in the 

comparison offers insight into the behavior o f  these surfactants in the presence o f 

naphthol.

For the C12 MADS the greater values of Kadm than o f Km for all Xm indicate the 

possibility o f naphthol adsorption at the perimeter o f the C l 2 MADS admicelles. Further 

evidence was offered by the aggregation number calculated from the Lee and Yeskie two- 

site adsolubilization model.

The C16 MADS did not exhibit the same type o f behavior with the values o f  Kadm 

and Km overlapping for all but the lowest values of Xm. This behavior indicates the 

structures o f the admicelles are very similar to the structure o f  the micelles.

The alkyldiphenyl oxide disulfonate surfactants tended to have greater 

adsolubilization and partitioning o f the 2-naphthol compared to the cationic surfactant 

cetylpyridinium chloride and the anionic surfactant SDS.

Comparing the solubilization o f  naphthol by C l 6 MADS with its commercially 

available counterpart, DPDS, the micellar mole fraction o f naphthol in the C l6 MADS 

was approximately the same as that in the DPDS although the retentate surfactant 

concentration of the C16 MADS was an order of magnitude less than the DPDS.

At the same initial concentration the C12 MADS and the C16 MADS micelles 

have nearly identical solubilizing capabilities for 2-naphthol. It would be interesting to 

conduct these solubilization studies using surfactant concentrations at identical factors of
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the CMC where it would be expected that the C l6 MADS would be able to solubilize a 

greater amount o f naphthol.
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Figure 4-1 Semiequilibrium dialysis ceil description and terminology.
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Figure 4-3 Adsolubilization of 2-naphthol by CIO DADS. Values in the legends
indicate the initial surfactant concentrations (xlO'^M).
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Figure 4-5 Adsolubilizatlon and solubilization of 2-naphthoi by C12 MADS. 
Where K,dm values are indicated by and and Km values are represented by 
o. Values in the legends indicate the initial surfactant concentrations (xlO'^M).
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Figure 4-6 Adsolubilization and solubilization of 2-naphthol by C16 MADS. 
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Values in the legends indicate the initial surfactant concentrations (xlO'^M).
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Figure 4-7 Solubilization of 2-naphthol by C12 M ADS and C16 MADS.
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Figure 4-8 Change in Kadm with initial 2-naphthol concentration.
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Figure 4-9 Adsolubilization and solubilization of 2-naphthol by C12 MADS and 
C16 MADS.
Values in the legend are the initial surfactant concentrations (xlO'^M). Km is 
indicated by •  and o , and the remaining symbols represent Kadm values.
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4A Appendix: Data for Adsolubilization and SED
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Data for CIO DADS Adsolubilization

Table 4A- a 1.92x10^ M Average Initial Surfactant Concentration
DADSfgitiai

xlO-‘ M
Napbtholigitui

xlO-iM
pH^final D A DS,

mole/gram
Naphthol,
mole/gram

xlO®

Xg,
xlO^

Xgdm Kgdgi

1.97 0.00 4.23 9.97 0.00
2.06 7.35 3.84 1.15 1.62 8.19 0.1325 16185
1.99 12.50 3.82 1.02 1.78 17.20 0.1336 7770
1.85 19.60 4.19 1.06 3.66 23.70 0.2641 11122

Table 4A-lb 1.01x10'^ M Average Initial Surfactant Concentration
DADSjnitial
xlO"*M

Naphtholjgitiai
xlO^M

PH,figa| D A DS,
mole/gram

ilO^

Napbthol,
mole/gram

xlO®

Xg,
xlO^

Xgdm Kgdm

10.3 0.00 4.79 5.61 0.00
10.0 2.77 2.45 5.13 0.416 4.16 0.0544 13075
10.1 8.88 4.70 4.56 1.03 10.27 0.2729 26565
10.1 12.63 4.45 5.43 1.74 17.40 0.2644 15195
10.1 22.89 4.54 5.63 2.98 29.81 0.4251 14258
10.0 37.46 4.69 5.02 5.15 51.49 0.5083 9872

221



Data for CIO MADS Adsolubilization

Table 4A-2a 4.35xl0~* M Average Initial Surfactant Concentration
MADSinitial Naphtholiniuii pH,|ïnal MADS,

mole/gram
iio-*

Naphthol,
mole/gram

xlO®

X.,
xlQ-^

Kadm

4.15 1.53 5.37 1.51 0.921 2.47 0.0573 23202
4.27 8.74 4.45 1.73 5.10 14.24 0.2277 15992
4.67 14.29 4.63 1.88 9.68 22.85 0.3403 14892
4.58 18.87 4.06 1.89 14.39 29.72 0.4317 14526
4.04 26.64 4.20 1.68 20.45 41.88 0.5487 13102
4.37 0.00 3.00 1.40 0.00
0.00 6.66 5.15 0.00 5.06

Table 4A-2b 7.40x10-4 M Average Initial Surfactant Concentration
MADSiniUal

xlO-*M
Naphtholiaiu.1

xlO-*M
pH^fioal M A D S,

mole/gram
xlQ-*

Naphthol,
mole/gram

xlO®

Xa,
xlO^

Xadm Kadm

7.67 1.11 6.45 2.13 2.91 1.10 0.1200 109165
7.06 1.38 3.54 2.89 3.14 1.51 0.0981 65094
7.74 1.39 4.58 2.98 2.82 1.63 0.0866 52957
7.22 4.16 4.86 2.73 4.03 6.30 0.1285 20404
7.40 6.66 3.91 2.98 7.12 9.85 0.1929 19577
7.36 10.54 4.54 3.01 12.04 15.56 0.2855 18352
7.74 13.46 4.78 3.23 13.67 20.33 0.2972 14616
7.49 13.94 3.65 2.73 10.42 21.89 0.2759 12604
7.21 16.58 3.82 2.70 8.94 27.14 0.2488 9166
8.11 0.00 3.57 3.03 0.00
0.00 6.80 4.65 0.00 5.37

Table 4A-2c 7.26x10-4 Average Initial Surfactant Concentration
MADSmlUal

xlO“'M
Naphtholinitiai

x10~‘M
pH,final MADS,

mole/gram
xlO^

Naphthol,
mole/gram

xlQS

Xa,
xlO^

Xadm Kadm

6.85 0.971 4.64 2.76 3.01 0.837 0.0982 117583
7.07 1.46 5.37 2.41 4.92 1.14 0.1697 149550
7.47 2.77 4.82 2.69 6.12 3.20 0.1851 57857
7.33 4.09 4.43 2.76 11.63 3.85 0.2965 76943
7.36 5.90 5.46 3.28 19.60 5.38 0.3738 69445
7.36 7.01 4.72 2.66 11.31 9.30 0.2981 32060
7.29 8.25 5.05 2.64 18.10 9.42 0.4067 43161
7.21 9.92 4.88 2.71 26.39 10.00 0.4933 49339
7.12 9.99 4.00 2.52 9.93 15.02 0.2829 18834
7.25 11.38 4.62 2.60 5.16 18.99 0.1657 8724
7.44 12.35 5.32 2.45 11.83 18.69 0.3259 17433
7.14 13.80 5.06 2.57 5.97 23.15 0.1883 8133
7.35 16.72 4.70 2.67 7.32 28.00 0.2152 7687
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Data for C12-MADS Adsolubilization

Table 4A-3a 3.94x10~* M Average Initial Surfactant Concentration
MADSiniCal

xlO-'M
Napbthol:.;,h, 

ilO-'M
pHlfioal MADS,

mole/gram
xlO"*

Naphthol,
mole/gram

xlO®

X.,
xlO^

Xadm Xadm

4.00 2.08 2.02 8.96 1.01 0.3079 306187
3.92 6.66 2.01 14.59 7.55 0.4201 55643
4.00 13.32 2.16 45.27 10.64 0.6770 63631
3.82 21.23 1.96 45.39 24.28 0.6981 28753
3.76 27.33 1.99 54.72 32.54 0.7332 22532
4.12 0.00 2.11 0.00
0.00 12.63 0.00 21.28

Table 4A-3b 5.99x10^ Average Initial Surfactant Concentration
MADSiniüal

xlO“‘ M
Naphtholinitiai

xlQ-̂ M
pH,|inal MADS,

mole/gram
xlO-*

Naphthol,
mole/gram

XlO®

Xa,
xlO^

Xadm Xadm

5.27 2.77 3.41 2.86 9.23 2.23 0.2441 109613
6.24 8.32 3.12 3.28 20.48 8.62 0.3843 44603
6.14 13.46 4.02 3.37 41.68 11.67 0.5531 47368
5.96 20.53 3.55 3.33 42.52 24.47 0.5611 22925
5.60 27.19 3.06 3.08 55.22 32.30 0.6422 19880
6.71 0.00 3.48 3.72 0.00
0.00 14.85 3.21 0.00 32.81

MADSinhial
xlO^M

Naphtholinitiai
xlO“‘M

■ , --------
pX,final M A D S ,

mole/gram
xlO"*

Naphthol,
mole/gram

xlO®

X a,
XlO-®

Xm Xm

6.90 1.31 2.85 3.37 0.532 2.21 0.0155 7036
6.90 1.31 3.56 3.45 1.22 2.01 0.0343 17065
6.66 3.53 3.40 3.30 2.11 5.75 0.0600 10441
6.45 4.68 3.30 3.19 1.97 7.87 0.0582 7394
6.65 5.77 3.59 3.37 5.98 8.64 0.1507 17448
6.79 6.44 3.58 3.40 4.24 10.32 0.1108 10739
6.83 9.26 3.57 3.33 11.69 13.21 0.2597 19660
7.00 11.36 3.67 3.49 12.80 16.58 0.2681 16178
6.95 12.47 3.61 3.36 5.55 20.84 0.1416 6794
6.86 13.61 3.65 3.40 6.89 22.47 0.1685 7498
6.84 15.62 3.63 3.38 5.41 26.54 0.1378 5193
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Data for C16 MADS Adsolubilization

Table 4A-4a 8.60x10"* M Average Initial Surfactant Concentration
MADSinhial

xlO^M
Naphtholinitt,!

xlO-*M
pHlfinal MADS,

mole/gram
xlÔ

Naphthol,
mole/gram

xlO®

X.,
xlO^

Xadm

7.70 1.53 3.06 3.52 1.17 0.542 0.0321 59260
8.63 4.30 2.88 3.95 4.20 4.76 0.0961 20212
8.14 8.32 3.21 3.79 7.57 1.14 0.1664 14578
10.17 15.54 3.18 4.89 13.68 2.30 0.2185 9500
7.72 18.17 3.07 3.59 14.46 2.80 0.2873 10266
8.61 24.00 4.04 3.98 21.47 3.67 0.3505 9541
9.25 31.08 3.83 4.51 33.06 4.75 0.4229 8902
9.00 33.30 3.82 4.37 30.28 5.44 0.4095 7522
8.13 0.00 3.79 3.79 0.00
0.00 19.01 3.82 0.00 5.76

Table4A-4b 1.43x10'^ M Average Initial Surfactant Concentration
MADSjajdai

xlO^M
Naphtholiaidai

xlO-'M
pn,fiaal MADS,

mole/gram
xlO"*

Naphthol,
mole/gram

XlO®

Xa,
XlO"®

Xadm Xadm

15.12 1.39 3.43 6.95 2.69 0.595 0.0372 62644
13.91 4.58 3.34 6.52 5.75 3.96 0.0810 20447
14.12 9.02 3.31 6.94 10.96 1.11 0.1364 12268
14.82 14.29 3.43 7.38 24.50 1.75 0.2492 14209
13.65 18.17 3.26 6.61 20.48 2.58 0.2364 9171
14.85 23.03 3.30 7.28 28.26 3.32 0.2796 8416
14.13 27.33 3.26 6.80 29.55 4.15 0.3030 7301
14.29 30.11 3.28 7.13 34.16 4.60 0.3238 7038
14.05 0.00 3.33 6.76 0.00
0.00 26.36 3.66 0.00 13.33
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Data for CIO DADS SED

Table 4A-5 1.34x10'̂  M Average Initial Surfactant Concentration.
Initial Retentate Permeate
MADS,
xlO^M

Naphthol,
xlO^M

MADS,
xlO^M

Naphthol,
xlO"*M

MADS,
XlO-'M

Naphthol,
xlQ-^M

Xa,
xlÔ

Xa. Ka.

1.34 0.00 1.01 0 0.144 0
1.34 6.58 1.04 3.31 0.137 2.48 4.48 0.0845 18880
1.34 11.00 1.07 5.62 0.157 4.15 7.49 0.1361 18165
1.34 21.90 0.977 9.85 0.150 8.24 14.87 0.1630 10957
1.34 32.90 1.02 15.50 0.109 11.40 20.58 0.3109 15112
1.34 43.90 1.08 21.50 0.112 17.50 31.59 0.2928 9268
1.34 54.90 1.08 28.00 0.126 24.50 44.22 0.2673 6045
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Data for C12 MADS SED

Table 4A-6 2.52x10^ M Average Initial Surfactant Concentration.
Initial Retentate Permeate
MADS, 
XlO ̂  M

Naphthol,
XlO-'M

MADS,
xlO^M

Naphthol,
XlO-'M

MADS, 
XlO ̂  M

Naphthol,
XlO-'M

X.,
xlQ-*

x„ Km

2.50 0.0811 1.72 0.0483 0.587 0.0312 0.0564 0.0015 26727
2.42 0.162 1.62 0.0870 0.555 0.0589 0.106 0.0026 24881
2.42 0.162 1.65 0.0969 0.551 0.0470 0.0848 0.0045 53274
2.43 0.811 1.65 0.430 0.546 0.318 0.575 0.0100 17420
2.46 6.17 1.77 3.46 0.523 2.63 4.74 0.0625 13184
2.45 8.60 1.67 4.31 0.534 3.36 6.06 0.0777 12829

2.53 3.54 2.10 2.07 0.585 1.71 3.08 0.0234 7607
2.52 5.55 2.17 3.41 0.575 2.65 4.78 0.0452 9451
2.52 5.55 2.02 2.92 0.572 2.44 4.41 0.0318 7227
2.48 7.84 2.01 4.30 0.603 3.48 6.28 0.0553 8807
2.48 7.84 2.01 4.37 0.538 3.48 6.29 0.0578 9106
2.53 14.36 2.04 8.02 0.532 6.22 11.23 0.1064 9482
2.53 14.36 2.00 7.90 0.537 6.52 11.77 0.0863 7332
2.55 22.34 2.16 13.63 0.531 10.46 18.88 0.1631 8641
2.55 22.34 1.96 12.59 0.531 10.30 18.59 0.1386 7456
2.52 26.08 2.14 16.49 0.573 12.84 23.18 0.1889 8152
2.52 26.08 2.19 16.80 0.562 12.58 22.70 0.2059 9072
2.55 29.97 2.13 17.87 0.560 14.16 25.56 0.1910 7473
2.53 35.31 2.08 20.30 0.502 15.88 28.66 0.2185 7621
2.54 35.52 2.16 21.11 0.526 16.04 28.96 0.2362 8159
2.54 35.52 2.12 20.62 0.524 16.35 29.51 0.2108 7142
2.55 42.52 2.16 25.15 0.484 18.83 33.98 0.2737 8054
2.54 42.38 2.13 24.89 0.492 19.24 34.73 0.2559 7368
2.57 49.60 2.23 31.44 0.493 24.26 43.78 0.2926 6684
2.52 51.26 1.83 24.17 0.446 22.03 39.77 0.1335 3358
3.01 59.52 2.40 30.49 0.483 26.86 48.48 0.1591 3282
3.01 59.52 2.57 34.95 0.495 26.74 48.27 0.2837 5878
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Data for C16 MADS SED

Table 4A-7 2.49X10~  ̂M Average Initial Surfactant Concentration
Initial Retentate Permeate

MADS,
ilO ^M

Naphthol,
XlO-’ M

MADS,
xlO^M

Naphthol,
xlO^M

MADS,
xlO^M

Naphthol,
XlO-’ M

Xa,
xlO^

Xm Km

2.53 0.114 2.61 0.0778 0.0542 0.0350 0.0632 0.0017 26425
2.47 1.18 2.56 0.802 0.0598 0.422 0.761 0.0150 19739
2.52 3.68 2.64 2.11 0.0570 1.28 2.31 0.0312 13556
2.48 4.86 2.59 3.16 0.0639 1.95 3.52 0.0457 12988
2.49 8.19 2.59 4.93 0.0567 2.95 5.32 0.0728 13701
2.45 21.99 2.51 10.53 0.0579 7.50 13.54 0.1101 8131
2.50 34.96 2.58 19.15 0.0623 13.26 23.93 0.1897 7929
2.48 49.53 2.58 30.56 0.0604 20.10 36.27 0.2934 8090
2.50 62.64 2.61 41.11 0.0534 20.66 37.29 0.4443 11914

227



Table 4A-8 Error Analysis for select C12 MADS Results.
M ADSinitial

concentration
xlO-^M

Kadm or Km
l^(Kadm) or 

X^(Km)
Kmax Kmin

4.15 306187 4.1x10’“ 508951 103422
4.27 55643 5.12x10* 78268 33017
4.67 63631 1.57x10* 76193 51070
4.58 28753 2.24x10? 33486 24019
4.04 22532 6.44x10* 25070 19995

5.27 109613 5.21x109 181820 37406
6.24 44603 1.57x10* 57152 32053
6.14 47368 4.58x10? 54133 40602
5.96 22925 1.07x10? 26201 19648
5.60 19880 4.55x10* 22012 17747

25.3 7607 2.11x10* 9059 6156
25.2 9451 2.36x10' 9605 9297
25.2 7227 9.80x10' 7540 6914
24.8 8807 1.22x10^ 9157 8458
24.8 9106 3.13xl0f 9666 8546
25.3 9482 1.17x10* 9824 9140
25.3 7332 3.98x10' 7532 7033
25.5 8641 2.81x10' 8809 8473
25.5 7456 2.21x10' 7605 7307
25.2 8152 1.49x10* 8539 7766
25.2 9072 1.06x10* 9397 8747
25.5 7473 1.68x10* 7883 7062
25.3 7621 4.50x10' 7833 7409
25.4 8159 1.35x10* 8527 7791
25.4 7142 1.57x10* 7531 6753
25.5 8054 2.25x10* 9555 6553
25.4 7368 9.20x10* 10401 4335
25.7 6684 1.40x10* 7866 5501
25.2 3358 1.55x10* 4603 2113
30.1 3282 6.42x10* 4083 2481
30.1 5878 3.59x10* 6477 5279

228



4B Appendix: Comparison of K„ Values Based on Initial
Naphthol Concentrations
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Comparison of Kadm Values Based on Initial Naphthol Concentrations

Table 4B.1 Comparison of Kadm Values Based on Initial Naphthol
Concentrations

Initial
Naphthol,

(M)

Surfactant — Initial 
Concentration 

(xlO^M)

Xa Xadm Î adm

1.38x10^ CIO MADS-0.740 1.51x10^ 0.0981 65094
1.39x10^ CIO MADS-0.740 1.63x10-** 0.866 52957
1.39x10-^ C16MADS-1.43 5.95x10'^ 0.0372 62644

1.53x10-^ CIO MADS-0.435 2.47x10"** 0.0573 23202
1.53x10-^ C16 MADS-0.860 5.42x10'^ 0.0321 59260

2.77x10^ ClODADS-1.01 4.16x10"^ 0.0544 13075
2.77x10"^ C12 MADS-0.680 2.23x10"** 0.2441 109613

4.30x10"^ C l6 MADS-0.860 4.76x10"^ 0.0961 20212
4.58x10-^ C16MADS-1.43 3.96x10"^ 0.0810 20447
4.68x10"^ C12 MADS-0.680 7.87x10"** 0.0582 7394

6.44x10"^ C12 MADS-0.680 1.03x10'^ 0.1108 10739
6.66x10-^ CIO MADS-0.740 9.85x10"** 0.1929 19577
6.66x10-^ C12 MADS-0.394 7.55x10"^ 0.4201 55643

8.25x10"* CIO MADS-0.726 9.42x10"** 0.4067 43161
8.32x10"* C12 MADS-0.599 8.62x10"** 0.3843 44603
8.32x10"* C16 MADS-0.860 1.14x0"^ 0.1664 14578
8.74x10"* CIO MADS-0.435 1.42x10"^ 0.2277 15992
8.88x10"* ClODADS-1.01 1.03x10-5 0.2729 26565
9.02x10"* C16MADS-1.43 l.llxlO '5 0.1364 12268

1.14x10'^ CIO MADS-0.726 1.90x 10"5 0.1657 8724
1.14x10'^ C12 MADS-0.680 1.66x10*5 0.2681 16178

1.23x10"* CIO MADS-0.726 1.87x10-5 0.3259 17433
1.25x10'^ C12MADS-5 2.05x10*5 0.1624 7927
1.25x10'^ C 12 MADS-0.680 2.08x10-5 0.1416 6794
1.26x10'^ ClODADS-1.01 1.74x10*5 0.2644 15195
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Table 4B.1 (cont’d)
Concentrations

Comparison of Kadm Values Based on Initial Naphthol

Naphthol, 
initial (M)

Surfactant — Initial 
Concentration 

(xlO^M)

Xa Xadm Kadm

1.33x10" C12 MADS-0.394 1.06x10-3 0.6770 63631
1.35x10" CIO MADS-0.740 2.03x10-3 0.2972 14616
1.35x10" C12 MADS-0.599 1.17x10-3 0.5531 47368
1.36x10" C12 MADS-0.680 2.25x10-3 0.1685 7498
1.38x10" CIO MADS-0.726 2.31x10-3 0.1883 8133
1.39x10" CIO MADS-0.740 2.19x10-3 0.2759 12604
1.43x10" CIO MADS-0.435 2.29x10-3 0.3403 14892
1.43x10" C16MADS-1.43 1.75x10-3 0.2492 14209

1.55x10-3 C16 MADS-0.860 2.30x10-3 0.2185 9500
1.56x10" C12 MADS-0.680 2.65x10-3 0.1378 5193
1.66x10" CIO MADS-0.740 2.71x10*3 0.2488 9166
1.67x10" CIO MADS-0.726 2.80x10-3 0.2150 7687

1.82x10" C16 MADS-0.860 2.80x10*3 0.2873 10266
1.82x10" C16MADS-1.43 2.58x10*3 0.2364 9171
1.89x10" CIO MADS-0.435 2.97x10*3 0.4317 14526

2.29x10" ClODADS-1.01 2.98x10*3 0.4251 14258
2.30x10" C16MADS-1.43 3.32x10*3 0.2796 8416
2.40x10" C16 MADS-0.860 3.67x10*3 0.3505 9541

2.72x10" C12 MADS-0.599 3.23x10*3 0.6422 19880
2.73x10" C12 MADS-0.394 3.25x10*3 0.7332 22532
2.73x10" C16MADS-1.43 4.15x10*3 0.3030 7301
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