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PREFACE 

In the past few years, parametric and non-parametric toler-

ance limits have been derived for many of the common density 

functions. This thesis is concerned V-1ith various aspects of toler-

ance limits associated with the exponential distribution. A problem 

associated with specification limits for the exponential distribution 

is also considerd. 

The author is deeply indebted to Dr~ David L .. Weeks for 

suggesting the problem and for his guidance in the preparation 

of this thesis. An expression of gratitude is extended to Prbfessor 
.-

Carl E. Marshall for serving on the author's advisory committee, 

and to Miss Jane Duncan for typing this paper. 
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CHAPTER I 

INTRODUCTION 

A problem often encountered in industrial applications of 

statistics is that of determining if the output of some method of 

production is meeting certain specified atandards. One situation 

is when these standards are fixed limits which must be met, 

and a sample of the output is taken to determine whether a pre­

scribed proportion of the product is meeting these fixed standards. 

Fixed limits such as these are known as specification limits. 

Another approach is to take a sample of the product and 

determine variable limits as functions of the sample observations 

which estimate standards that, according to some criterion, 

contain a certain proportion of the product. One common criterion 

is to choose functions such that the expected proportion of the 

population between the variable limits is greater than or equal to 

a prescribed amount. Another criterion is to choose limits which 

contain a certain proportion of the population with a specified 

probability. The criterion used determines what functions of the 

sample observations must be used as the limits. All variable 

limits such as these are known as tolerance limits. 

This thesis develops the two types of tolerance limits mentioned 

above where the parent population is assumed to follow an exponential 
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distribution given by 

~ e -x/9 1 

f (x, 9) = 9 

0 ' 

0 < X < 00 

otherwise 

If the unknown parameter 9 were known, exact limits as a function 

of 9 could be determined which would contain 100(3 per cent, say, 

of the population. Since 9 is not known, it must be estimated and 

functions of the estimator used as tole ranee limits. 

There are several different useful estimators of 9 commonly 

associated with the exponential distribution, and tolerance limits can 

be developed as functions of each of these estimators. For this reason, 

a summary of those methods of estimation commonly used and the 

distributional properties of the respective estimators are given 

first. , Tolerance limits are then developed based on each of these 

estimators. The final chapter gives a solution for the problem 

associated with specification limits for the exponential distribution. 



CHAPTER II 

ESTIMATION PROCEDURES 

Most problems associated with the exponential distribution 

are concerned with determining the length of life of some product. 

For example, a light bulb manufacturer may wish to estimate the 

mean life of his light bulbs. If the life of light bulbs is assumed 

to follow an expo'nential distribution, then it will be necessary 

to estimate the mean, e, of the exponential distri bution. A 

random sample of light bulbs would be chosen and placed on test, 

and the life of these light bulbs would be used to estimate e. A 

special property of life testing problems of this type is that the 

sample observations will be ordered according to size as they 

become available. Chiefly due to this property, there are several 

different m ethods of estimating e, each of which has certain advan-

tages over th e others. The most desirable m ethod depends on the 

particular problem in question . 

If a random sample of n items is chosen and placed on life 

test, and if the test is continued until all items have failed, then 

1 n 
X = - ~ X. 

n i=l 1 
is the maximum likelihood estimate of e, where x. 

1 

is the life of the i-th item on test. It is the "best" estimator of 

e based on these n observations in the sense that it is an unbiased, 

minimum variance,effi.cient estimator of the unknown parameter e.(l). 

3 



The distribution of x can be derived by use of moment generating 

functions. 

· Let 

1 =---.... 
< 1 - et) 

1 
= ..,...,< 1,-..--e t..,.._) 

Mx {t) = M~. {t/n) 
1 

t -n 
= {l --9) 

n 

This is the moment generating function of a gamma density function 

with parameters 13 = ~ and a = n - 1, 
n 

thus the density of ·i' is 

-nx 
1 

h{x; 9) - {n _ l) ! 

2nx 

e a O<x<oo 

2n degrees 

4 

and - 9- is distributed as a chi-square variable with 

of freedom. (2). Also, E{x) = 13 {a + 1) = 9, and Var{x) 2 e2 
= 13 (.a + 1) = - • n 

Although x has optimum properties for the case mentioned above, 

it seems reasonable that some advantages may be gained by changing 

the sampling design, since x does not utilize the informc!,tion given 

by the property that the i-th sample observation is the i-_th order 

statistic. One method of utilizing this information is by using .censored 
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sampling .. An example of a sample censored on the right is a life 

test experiment begun on n items and terminated after the r-th 

failure, where r < n. A sample may be similarly censored 

either on the left or doubly censoreq.. 

It has been shown for a sample censored on the right that 

r 

a r,n 
1 - - [ ~ 
r i=l 

x. + (n - r) x ] 
1, n r, n 

is the maximum likelihood, unbiased, minimum variance, and 

efficient estimator of a, where r failures of n items placed 

on test are observed, and where x. denotes the time of the 
1, n 

i-th failure for the n items on test. (3). The density function 

of y = a is given by 
r,n 

f (y) 
r 

1 
= ..,..( r-_ ......... 1.-) ..... y > 0 

This is :exactly the.distribution of x for a sample of size r, 

where all r failures are observed. Thus, using a from r,n 

a censored sampling procedure yields exactly the same precision 

and optimum properties for estimating a as using x from a 

non-censored sample where. only r items are placed on test. 

The disadvantage of using a censored sample is that n-r 

more ite~s have been placed on test for a time x , than if 
. r,n 

only r items are selected originally. The importance of this 

loss depends on the particular problem in question. The advan-

tage of censored sampling is that much time may be saved, since 



the expected time for r out of n randomly selected items to 

fail is less than the expected time for r out of r randomly 

selected items to fail. The expected time of the r-th failure 

from a sample of n items is E(x ). Thus, a measure of 
r, n 

E(x ) 
the time saved by c.~nsored sampling is a = r' n 

r,n 
E(x ) r, r 

The distribution of x , the r-th order statistic, is given by 
r,n 

nl 
f (x) =-----r,n 

[ r-l [ n-r F (x)] f(x; 8) :1 - F (x) J 
X · X (r-1) I (n-r) l 

where F (x) = 1 - e -x/9 denotes the cumulative distribution 
X 

function of the exponential density f(x; 8). ( 2). So, 

f (x) = 
r,n 

n ! ! [ l _ e -x/8 ] r -1 [ e -x/8 ] n - r + 1 . 
(r-1) I (n-r) ! 

Integration by parts yields 

where a. 
1 

Thus 

r 

E(x ) = r,n 
8 i:: a. = 8d 

1 
i=l 

r 
Var(x ) = 0 2 i:: 

r,n 
a~ 

1 

-1 
= (n - i + 1) and d = 

r 
i:: 

i=l 
a .• 

1 

i=l 

a 

r 
_ i:: (n - i + 1) -l 

r,n !;(r - i + 1)-l 

and 

6 



is the ratio of the expected time for r out of n items to fail 

compared to the expected time for r out of r items to fail, 

and it is always less than 1 if r < n. Tables of values of 

a for small values of r and n have been computed. (4). 
r,n 

Sampling with replacement has also been considered for the 

exponential distribution. (4). That is, n randomly selected 

items are placed on life test and each time an item fails, it is 

immediately replaced by a new item selected at random. In 

this case the maximum likelihood estimator of 8 is given by 

8 1 =!::x• where the test is continued until r units have 
r,n r r,n 

failed and x 1 is the time of the r-th failure. 8 1 has exactly 
r,n r,n 

the same distribution and optimum properties as 8 . A measure 
r, n 

of the proportion of the expected time saved by censored sami;ling 

compared to sampling without censoring when sampling with 

replacement is being used is 

-a' r,n = 
E(x 1 ) 

r, n r 

E(x 1 ) 
r, r 

n 

Clearly, the expected time for r failures will dee reas e when 

sampling with replacement compared to witho~ replacement, 

since some of the replacement items can fail before r of the 

original n items have failed. Thus, sampling with replace -

ment may be desirable in some cases. 

The best estimator of 8 based on the first r observations 

from a sample of size n, without replacement, was given before 

by 

7 



.... 
e• r,n 

1 r 
= - [ ~ x. + (n - r) x ] r . 1, n r, n 

1. 

Since the last observation, x , is weighted by a factor of 
r,n 

n - r + 1, it can be used alone to estimate e and the first 

r:..I observations di.sregarded, if r is sufficiently less than 

n. Epstein (5) indicates that in general for r < 2/3n, the 

efficiency of using x compared to 9 is greater than or r,n r,n 
n 

equal to . 90. For example, for r = 2 with n even, the effici-

ency is greater than or equal to 2(log 2) 2 = • 9608. ·Epstein has 

computed tables of efficiencies and unbiasing constants for 

n = 1(1) 20 (5) 30 (10) 100 and r = 1 (l) n. 

One can also consider wh:i.:Ch single ordered observation of 

the n sample observations would yield the most efficient esti-

mator of e compared to x, for a given n. Harter (6) gives 

the best single order statistic xk to use to estimate 9 for ,n 

n = 1 (1) 100. He also gives the unbiasing constant for the appro-

priate xk and the relative efficiency of that estimator compared ,n 

to x. The relative' efficiency is given by 

h ( . . 1)-1 w ere a. = n - 1 + . 
1 

Hence, the proper xk was selected ,n 

to minimize V k by Harter. He also gives the best combination 

of pairs of order statistics to use to estimate 9 for different values 



of n. 

Thus, an experimenter can consider the different methods of 

sampling and estimation discussed above and determine the proce­

dure most appropriate for his particular problem. These statistics 

and their propert~es can then be used to set tolerance limits and 

solve specification limit problems as shown in the following chapters. 

9 



CHAPTER III 

y. TOLERANCE LIMITS 

Problems associated with the exponential distribution will in 

general require one-sided tolerance limits. Hence, if L(x1, ... xn) 

denotes a tolerance limit, let the interval (L, oo), denoted by RL, 

be ,the tolerance region associated with the limit L. Let 

P _ Joo 1 -x/ed - - e X 
L L 8 

denote the content of the tolerance region R L. That is PL is the 

proportion of the population in the interval (L, oo), RL i'S a y toler­

ance region for a proport~on f3 if Pr[PL _:: f3] = y. In general, 

Pr[PL > f3] could depen1d on the unknown parameters of the parent 
'· 

distribution, but for the exponential distribution this probability is 

independent of 8 for the particular tolerance regions to be considered. 

Limits Based on x 

In order to construct a y tolerance region, it is necessary to 

find a function L(x1, ... , xn) such that Pr [ PL ~ f3] = y for speci­

fied f3, y, and n. Consider a function of x in the form L 1 = -xk log f3. 

It is necessary to find k as a function of (3, y, and n,such that 

Pr[PL > f3] = y. 
1 

=Joo 1 e-x/edx 
-kx log f3 e 

10 



PL = 1 - F (-kx log 13) 
1 

X 

xk log 13 

PL 
e = e 

1 

kx 

PL = 13 
8 

1 

kx 

Pr[PL > 
1-

13 ] = Pr[ 13 8 > 13 ] 

= Pr[x < : ] 

e 
= Fx (k) where the cumulative distri-

bution of a variable z will be denoted by F (z). 
z 

Since x has a gamma density with parameters a = n - 1 and 

e 
13 = ri' 

F-(x) 
X 

and 

Thus, to obtain k, solve 

e F-(-) xk 

-nx 

n-1 - e (n')[)i e 
= 1 ~ ~ ____ e ____ _ 

i=O i ! 

1 (n)i -n/k n- - e 
= 1 - l: _k ___ _ = '( for k. 

i=O i J 

A cumulative chi-square table can be used to determine k. 

In Pearson and Hartley's notation (7), 

11 



2 
Q(x , v) = 

so 

40 
For example, if n = 20, 'I = . 95, then Q = (k, 40) = . 05 and 

x2 = 4~ = 55. 758, which gives k = • 717. Hence for n = 20, 

L 1 = -. 717 x log f3 yields 

Pr [PL > f3 ] = • 9 5 
1 

If k is specified beforehand, Pr[PL > f3] can be evaluated 
1 

for a given n by using the chi-square table to find Q(x 2, v) for 

fixed X 2 and v. If both k and 'I are specified, one can solve for 

the sample size required to satisfy Pr[PL ~ f3:] = 'I• if such a 

sample size exists. 

For a given limit L 1 = -x k log . ~ which satisfies Pr [PL· > j3 J = '/, 
1 .,.. 

an experimenter may wish to know the probability that PL 1 is also less 

than or equal to f3 + E, where O < e < 1 - f3. This probability is 

given by 

kx 
Pr [ f3 < PL < f3 + e:] = Pr [ f3 .::_ f3 ~ < f3 t e] 

1 

=Pr[elog(~+e) < X < ~] 
k log f3 

e ce ' 
= F-(~) - F- {-) 

X k X k 

12 



where 

Thus, 

c=log(j3+e:) 

log j3 

[ 2cn [ 2n 
Pr [ 13 ..S. t L 1 < 13 + e: ) = Q ~ , 2n] - Q k , 2n] 

To illustrate, if n = 20, ·13 = . 95, e: = . 02, and k = . 717 as above, 

then c = . 5685 and 

Pi,[l3 < PL < 13 + e:] = Pr[.95 < PL < .97] 
l 1 

= Q(31. 72, 40) - Q(55. 76, 40) 

= . 822 - • 05 = . 772. 

An experimenter may wish to have a tolerance limit L 2 in a 

form which will allow him to fix the probability 'I beforehand and 

then be as sured of being able to solve for the sample size n which 

13 

will satisfy the equation Pr[ 13 ..'.::. PL ..'.::. 13 + e:] = y, for arbitrarily 
2 

fixed 13 and e:. For this purpose, consider the limit L 2 = -x log (13 + ie:). 

Since 

00 1 -x/e 
I e'.e. dx=13+e: 

~e log (13 + e:) 

for arbitrary e:, it follows that 

Pr[l3 < PL < 13 + e:] =Pr[-8log(l3 +e:)..:::.-xlog(l3+~e:)..:s_-elogl3] 
2 

_ Pr [ 8 log ( l3 + e:) < 
- 1 

log (13 + 2 e:) 

X < 8 log l3 ] 
log (13 + 2e:) 



Let _ log ( ~ + £) 
cl - I 

log(~ + 2 t) 
and 

Then 

Pr[~ X < 

= Q(2c 1 n, 2n) - Q(2c 2 n, 2n) 

Since E(x) = a and the distribution of x approaches a normal den-

sity as n increases, Pr[c 1e _:::. x < c 2e] = y has a solution for n 

for any 'Yi since c 1 < 1 and c 2 > 1. More generally, a limit of the 

- l 
-kx log(~ +2 t) can be used, and a sample size n will 

exist which yields a specified probability y, if c 1 < k < c 2• This 

follows since 

Pr[~ ,· 

which increases as n increases when c 1 < k < c 2 . Since the dis­

tribution of x becomes symmetric as n increases, one would 

expect a limit with k approximately midway between c 1 and c 2 to 

C10 _ Cz0 · 
produce an equation, Pr I- < x < __ ] = '\/, which would be 

k - - k 

satisfied by a minimum sample size n. For a fixed n, the k which 

maxtmize;s Pr[-13 _:::. PL < . ~· + t] is the k which renders 
. . ,3 

· 2nc 2 , : 2nc 1 
l - Q(--.. -, 2n) = Q(--, 2n). This k is a function of n; therefore, 

k k 

~· in order to find the limit L 3 such that the minimum sample size n 

14 



will satisfy 

Pr [ 13 < p L < 13 + e] = y 
3 

it is necessary to find k and n simultaneously by an iterative pro-

cedure. For example, set k = 1 and find n such that the content of 

the r~gion associated with that limit is between 13 and 13 + e: with 

probability y. Then, find the k which maximizes the probability 

for that n. Now find the necessary ri for this new k. Continue in 

this fashion until n does not change and this n is the minimum 

sample size. 

As an example, let 13 = • 95, e = . 02, k = 1, and y = . 80, then 

= log . 97 6 c 1 =.74, log . 95 -
c2 = = 1. 256, and L3 = -x log . 96. 

For 

log • 96 log . 96 

Pr[. 95 < PL < 
3 

2c 1n 2c 2n 
. 97] = Q( ~, 2n) - Q(-k-, 2n) 

= Q[. 746(2n), 2n] - Q[L 256(2n), 2n] 

2n = 40, Q(29. 84, 40) - Q(50. 24, 40) =. 88 - .12 =. 76 

2n = 46, Q(34. 32, 46) - Q(57. 78, 46) = • 89 - . 11 =. 78 

2n = 50, Q(37. 30, 50) - Q(62. 70, 50) = . 908 - • 101 - . 80 . 

15 

Hence, n = 25 is the required sample size to yield Pr[. 95 < PL < . 97] = . 8 
3-

for the tolerance limit L 3 = -x log . 96. Since Q(62. 70, 50) = . 101 and 

1 - Q(37. 30, 50) =. 092 are almost equal, k = 1 seems to be sufficiently 

close to the k value which gives the minimum sample size n. 



... .., 
Since e 

r,n 
and e• 

r,n 
are distributed exactly the same as x with 

A ... 

n replaced by r, y tolerance regions based on e or er can r,n r,n 

·· be obtained by simply substituting them for x and replacing n by 

r in all the formulae. Thus,. y tolerance regions based on single 

order statistics remain to be developed. 

Limits Based on Single Order Statistics 

Let L 4 = -x k log 13. Tlien a k is desired which satisfies r,n 

Pr [ PL· > 13 ] = y for specified 13, y, and n. 
3 -

Now, 

PL = Joo .!. e13x/e dx 
4 -x k log 13 e 

r,n 

k log 13 

= e e 

kx 

X r,n 

r, n 

kx 
r,n 

= 13 e 

Pr[P > 13 ] L- = Pr [ 13 0 > 13] 
4 

= Pr[x < ~] 
r,n - k 

= F (e) 
X k r, n 

F x (x) = Jx. n l ! [l _ e -x/e] r-1[ e -x/e ]n-rtldx • 
r, n ° (r-1) ! (n-r) ! 

-x/e l -x/e Let y = l - e , dy = e e dx, then 

-x/e 
F (x) =J.l ... e 

X 0 r, n 

16 



and 

8 1-e -l/k 
F X (k'} = I 

r,n o 

g(y) = nl r-1(1 )n-r . B d . . h y -y 1s a eta ens1ty wit parameters 
(r-1) I (n-r) I 

r-1 and n-r, so following the usual notation, 

where 

I (a, b) 
X 

= r(a+b) 

r(a) r(b) 

Thus, the equation F x (:) = y can be solved for k by use 
r,n 

of Incomplete Beta tables to obtain the desired k. (8). 

For example, if an experimenter wishes to find a tolerance 

limit L 4 = -x k log j3, where x is the m.edian of a sample of · r,n r,n 

size n = 19, say, such that Pr[PL . > 13] = . 90, k is the solution 
1 4 . 

of r1 _e-k. (10, 10) = • 90. So, I _ _!.(10, 10) = . 10 and- the table gives 
e k , 

-1/k e = . 35793, which gives k = . 974 and L 4 = -. 974 x log 13. r,n 

Now consider 

17 

Pr[j3 < PL4 < j3 + t] = Pr[-8 log (j3 + t) ~ -kxr,nlog j3 < -8 log 13] 

=Pr[8log(j3+'.t)<x < ek] 
k log j3 · - r, n -

=F 8 -F (8log(j3+t)) 
X (k) X k log j3 
r,n r,n 



= I ( r 1 n - rt 1) - I ( r, 
C 1 C2 

n-r+ 1) , 

where c 1 

8log(l3te) 
-1/k - k log ~ = l - e and c = l - e 1-' 

2 

If, for example, 13 = ,95, E = .02, n = 19, and k = .974, as in 

the above example, then 

and 

l 
- • 974 

Cl = 1 - e = • 642, 

. 5685 
.974 = -. 443 

Pr[. 95 < PL < . 97] = I. 642(10, 10} - I. 443(10, 10} 
4 

= • 90 - . 30 

= . 60 

In order to obtain a limit L based on x with the property that r, n 

Pr[ 13 ~ PL < 13 + E] increases as n increases for arbitrarily 

specified E, 13, and y, as was done for x, consider the limit 
1 

-kx log (13 + --TE) 
L _ r, n ... 

5 -
d 

Then, 

) 

r 1 
where d = E n-i+I 

i=l 
as given in Chapter L 

1 

18 

-kx log (13 + 2 e} 
Pr[l3 < PL < 13 tE] = Pr[-8 log (13 +e) < r,n d < -Slog 13] 

5 

_ p [ 8 d log ( l3 t E} 
- r 1 

k log (l3 f Z E) 

8 d Cl 
= Pr [ k < X r, n 

< X < . 8 d log l3 J 
r,n-klog(l3+ ;e) 

8 d c 2 
< k ] 
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where _log(f3+e) 
C 1 - 1 

log {f3 + 2 e) 
and = log f3 

CZ l 
log (f3 + 2 e) 

As n increases and r/n approaches some constant, the distri-

bution of x approaches a symmetric distribution about E (x ) = ed. 
r, n r, n 

Hence, for c 1 < k < c 2, there will exist an n for arbitrary e, f3, 

and 'I• such that Pr [ f3 

e d cl 
Pr[ k < X 

r,n < 

< f3tE]='1. 

= I (r, 
X2 

n-r+l) - I (r, n-rtl) 
xl 

_ C 2d _ Cl d 

where x 2 = l - eT , and x 1 = l - ~ --i:z-

Setting I (r, n-rtl) - I (r, n-r+l) = 'I• it is desired to determine 
Xz Xl 

n and hence also r, where r is some prescribed function of n. 

An iterative procedure is required to solve for n. In general, 

r, xl' and x 2 must be recomputed for each n value chosen. These 

computations may be simplified for special cases. For instance, if 

the median for odd sample size is used, then r = n;l and d is approxi­

mately log 2. lim d = log 2 so a solution for n exists for the limit 
n-oo 

1 
-kx log (13 + -2 e) 

r,n 

log 2 

where x 2 = 1 - e 

n+l 
where d is replaced by log 2 and r = --z-: . 

f3 + e: ] = I (r, r) - I (r, r) 
Xz Xl 

= 1 - e are independent 



of n. For f3 = . 95, E = • 02, k = 1, and'{= . 80, then c 1 = . 7462, 

c 2 = L 2565, x 1 = . 589 3, x 2 = . 405, and the r is desired which 

satisfies r. 5873(r, r) - r. 405(r, r) = . 80 

For r = 24, 

r. 5893(24, 24) - 1_ 405(24, 24) = .891 - .092; .80. 

Thus, r = 24 and n = 2r - 1 = 47 compare to a sample size of n = 25 

for a similar probability statement when x is used. 

It should be noted that if E = 1 .., f3, then 

Hence, Pr[PL > f3] can be considered as a special case of 

20 



CHAPTER IV 

13-EXPECTATION TOLERANCE REGIONS 

-
This chapter will be concerned with 13 -expectation tolerance 

regions for the exponential distribution. A tolerance regicin RL 

will be called a biased 13-expectation tolerance region if E(PL) J j3 

for finite n and arbitrary 13, but lim E{PL) = 13. If E(PL) = 13 
n-oo 

for all n,. then RL will be an un~.iased 13 -expectation tolerance 

region or simply a 13-expectation tolerance region. 

13 -Expectation Limits Based on x 

Since 

00 l -x/e 
r 1 A. ee dx=j3,-J-e og I" 

it is reasonable to consider limits of the form L = -e log 13, where 
.,. 
e is an unbiased estimate of e. Suppose L 1 = :-x log j3, then 

x log 13 
00 l -x/e 8 =J_ ee dx=e = 13 i./e 

-x log 13 

xlog +3 

E(PL ) = E(e e 
1 

=f~ l 

0 (n-1) 

00 
)=J e 

0 

xlog 13 
e 

n-l nx 
1 n n_ -a -

--- (9) X e dx 
(n-1) I 

nx t Xe log 13 
(n)n - n-1 -a dx S ,. X e 

21 
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n 1 
= ::L_ f (A) ---­

(~) n 0 
n 

- n-1 .. "x./y 
x e dx 

n 
(n - 1) ! y 

8 
where y = ---- . Since the integral of the density of x 

n - log f3 
its entire range is one, then 

over 

· n n 
E(PL ) -1 f3, but lim ( 1 f3) = f3, so RL is a biased f3-expectation 

1 f n-.:,o n - og 1 
tolerance region. 

An unbiased f3-expectation tolerance region can be obtained by 
-1/n 

using L 2 = n(f3 -l/n - l)x, which gives PL 
2 

= e. 
-n(f3 -l)x 

8 and 

.nx 
-1/n -

=J'°°-n(f3 -. - l)x E(PL ) 1 ( ~) nx:n -1 e - 8 dx 

(n - 1) ! 8 

where 6 

2 0 8 

= iOo __ 1_ 

o (n - 1) ! 

= 813 1/n 
n 

-n-1 -
X dx 

-n-1 -x/6 -x e dx , 
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Hence 1 

Similarly, L = r(j3 -l/r - 1) 8 and L = r(j3 -l/r - 1) 91 = 
r,n r,n. 

n(j3 -l/r - 1) x 1 provide 13 -expectation tolerance regions based 
r,n 

A A 

On e and 8 1 I Since r,n r,n e and 91 have the same distribution r,n r,n 

as x with n replaced by r. 

13 -Expectation Regions Based on Siµgle Order Statistics 

For a single order statistic x , let L 3 = -ax log 13, where 
r,n r,n 

r 1 -1 
a=( :E ) 

i=l n-i+l 
E(ax ) = 8, so E(L3) = -e log 13 and this r,n 

means E(P L ) = 13 in the limit. For finite n, 
3 

ex 
r., n 

E(PL ) = f'° e 
3 0 

e 

p = Joo 
L3 -ax 

r,n 

1 -x/ed 
log 13 9 e X 

ax log 13 r,n 
= e e 

= e 

n! 

C.JC 
r,.n 

e 

(r-1) ! (n-r) I 

where c = -a log 13 

X X 
r,n r,n 

--e-- 1 -~e-
To evaluate this expectation, let y = e , dy = - 8 e 

n-r r-1 
y (1 - y) dy = n l(n-r+c) 

(n-r) ! (n+c) I 
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E(PL ) F 13, in general, the ref ore, L 3 = -ax log 13 = ex 
3 r,n _ r,n 

determines a biased 13 -expectation tolerance..region. It is evident 

that a limit of the form L 4 = k.x will determine an unbiased 
r, n_ 

13 -expectation tolerance region for a given x if, and only if, r,n 

k satisfies the relation n ! (n-r+k) 1 = 13 This equation may be 
(n-r)!(ri+k)! 

[n]F - A written as - - t-'I where [n]i. = n(.n-1) ... (n-r+l). Then 
. [n+k]r 

[n). = [n+k] :l3 is a polynomial of degree r ink. It has a unique 
r -r 

real positive solution for k since all the coefficients are positive 

except the constant term which is equal to ( 13 -1)[ n] r. This s olu-

tion can be found readily by an iterative procedure for small n. 

For large n, k is approximately equal to c = -a log 13 as indicated 

above. 

For example, if n = 5, r = 3, and 13 = . 95, then 

n ! (n-r+k) ! 

(n-r) ! (n+k) ! 

_5!(2+k)! 

2 ! (5+k) I 
= Solving = • 95 
· ( 3+k)( 4+k)(5+k) (3+k)(4+k)(5+k) 

· yields k = . 0661. Hence, for L 4 = . 0661 x 3 5, E(PL ) = . 95. The 
. , 4 

approximate solution based on L 3 for this example is given by 

c = -a log 13 = -(1. 2766)(-. 051291) = . 0655. 

Precision of ~he Tolerance :Regions 

The precision of a 13 -expectat~on tolerance region will be measured 

i 
in terms of the variance of its content. The variances of the content 

for the tolerance regions based on L 2 and L 4 are derived below. Since 

t'hese variances are difficult to compare except numerically, the vari-

ances of the associated limits are also considered, since they can be used 



for comparing the precision of different methods. 

Consider first the unbiased ~ -expectation tolerance region based 

_ -1/n 
on x determined by L2 = n(~ - l)x 

= e 

_n(~ -l/n_ l)x 

8 

2n(~ -l/n_ 1) x 

8 

2n ( ~ - l / n - 1) x 
8 

E(PL ) = ~ 
2 

1 
(n-1) ! 

nx 
-e -n-1 -

e x dx 

00 . l 
= Ia (n-1) l 

_nx [ l + 2(~ -1/n_ 1) J 
(n)n 8 -n-1 d-e e X X 
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1 ---~(2~ n) 
= (2~ -1/n_ 1)-n fro 1 -, (nr (2~ -1/n_ l)n x:n-1 e 8 dx 

So, 

O (n-1) .. 8 

= ( 2 ~ -1/n _ l) -n 

V (p ) E (p ) 2 -(EP ) 2 
ar L = L L2 

2 2 

= ( 2 ~ -1 / n _ 1) -n _ ~ 2 

Now consider L 4 = kx 1 where k satisfies n !(n-r+k) ! = ~ 
r, n (n-r) ! (n+k) ! 

kx _ r, n 

E(PL ) = E(e 8 
4 

= n ! (n-r+k) ! 

(n-r) ! (n+k) ! 
= ~. 



Since k is a constant it follows that 

So, 

2 -
E(PL ) = E(e 

4 

2kx 
r,n 

9 _ n I (n-r+2k) I 
- (n-r) I (n+2k) ! 

_ n I (n-r+2k) ! 
Var(PL 4) - (n-r) I (n+2k) ! -= 

Similarly, the mean square errors for biased j3 -expectation tolerance 

limits can be determined. 

Thus, for a given problem the variance of the content of the 

tolerance region to be used can be computed by the above formulae to 

give a measure of the precision which will be obtained. Comparisons 

of the variances of the contents of the regions based on each of the 

estimators can also be rriade numerically for a given problem to 

help det~rmine the most desirable method for that situation. 

The variances, 0£ the limits themselves can also be compared 

to indicate the relative efficiency of the different methods. For 

-1/n - 2 -1/n 2 - - 9 2 
L2 = n(j3 - 1) x, Var(L2) = n (13 - 1) var X. Var X = n, 

-1/n 2 2 
SD Var(L2) = n(j3 - 1) 9 . 

2 
For L 4. = kx ,. Var(L4 ) = k Var x r,n r,n 

Var x r,n 

r · r 

= 9 2 E ( .4 ) 2 , so Var(L4) = k 29 2 l; (-1-/ 
i=l n-1+1 i=l n-i+l 

Much simpler expressions can be obtained for comparisons for 
I 

large sample sizes by using the concept of asymptotic variance. The 

asymptotic variance of an estimator is the variance of that estimator 

for the large sample or asymptotic distribution of that estimator. 

If r 
n 

approaches a constant as n-oo, the limiting distril;)ution 
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of x is normal with asymptotic mean m(x ·) defined by 
r,n - r,n 

m(x ) 
J0 r, n f(x) dx = n ~ 1 and asymptotic variance, AV(xr, n) = 

r(n-r+l) 
2 

n(n+l) 

1 ------=-2 . (9). Thus, for the exponential distribution, 
£ [ :i;n(xr, n)] 

and 

m(x ) 1 / 
J r' n e -x e dx = 1 e 

m(x ) 
- r, n 

- e e 
0 

n-r+J 
m ( X ) = -0 10 g ( +1l J r, n n 

AV(x ) - r(n-r+l) £ [ m(x ) ] 
. r,n - n(n+l)2 r,n 

.2 1 =e r(n-ril) (n-r+ ) -2 
n(n+l) ntl 

=----
- h(h-r+l) 

1 =nn , 

Now, L 4 = kx approaches -e log .13 as n increases, and 
r,n 

n-r+l · [ n-r+l -1 
xr,n approaches -e log ( n+l ) , so K must approach log 13 log( ntl )] 

asymptotically as n increases. Th.us.,, 

2[ . n-:rtl -2 
AV(L 4)=(logl3) log( +1)] AV(x ) n r, n 

-1/n - -1/n Now, consider L 2 = n(l3 - 1) x. lim n( 13· - 1) = - log 13, 
n-0o 



80 

2 -) AV{L 2) = (log f3) AV(x 

2 e2 
=(logf3) -. n 

. AV(L2) n-rtl [ n-r+lil2 
Thus;- the ratio · · = r log ( n+l )J is a measure of the 

AV(L~) 

relative efficiency of the limit L 4 compared to L 2 . 

For the limit L = r(f3 -l/r_ 1) 8 based on the first r obser-
r, n 

· 2 ·8 2 n 
vations, AV{L) = (log f3) r . AV(L) := r AV(L 2), so 

AV{L) _ n(r-r+l) [ lo (n-r+l) ] 2 
- 2 g n+l · 

AV(L4 ) r 

r 
If - -+ p, say~ as n-1'.)\') ·~ 

n 

AV{L2) -- 1-p 2 
lim [log (1-p)] 
n-+cOAV{L 4 ) p 

and 
AV(L) _ l-p 2 

lim AV(L ) - - 2 [ log {1-p)] 
n--+<:0 4 p 

For example, to compare limits based on the median with limits 

- r l 
based on x and 8 , let p = -n = -2 . Then r,n 

lim AV{L2) l 2 
-+t\i = (log 2 ) = . 48 

n . AV(L4) 

lim AV(L) 6 -~--- = 2 (. 48) = • 9 
n-0o AV(L4) 
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Thus, the above considerations can be used to measure the 

precision of tolerance regions and to compare the relative effici­

ency of different methods for a particular problem. 
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CHAPTER V 

SPECIFICATION LIMITS 

~any times a manufacturer will be more concerned with 

whether his product is meeting certain fixed standards or 

specifications with a certain le ve 1 of confidence, than with set-

ting variable limits which may not be close to the required 

standards determined by other reasons. 

Let b > 0 denote a one-sided specification limit for the 

exponential distribution. Pb =JOO~ e-x/edx is the proportion 
b 

of the population in the interval (b,c;0. Suppose it is desired that 

100 13 per cent or more of the manufactured products have a life 

0o 1 -x/e greater than or equal to b, i.e .. , that J 8 e dx > 13. rt 
b 

cannot be determined whether a process is meeting this condition 

without complete testing. Samples of the product can be drawn, 

however> to determine if the process is satisfying this requirement 

with at least a certain confidence y. If on the basis of a sample, 

there is less than y confidence that Pb 2: 13, then the manufactur-

ing process must be altered since the products are not meeting 

specifications at the desired confidence level. 

Large, sample means are associated with high confidence that 

Thus, if the calculated sample mean X 
0 

is so small 

that the probability of getting an x that small or smaller is less 
0 

than y for every value of e for which Pb > 13, then the production 
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will not be meeting specifications with the desired confidence y. 

Now, 

P _ J°" 1 -x/ed _ -b/8 
b- ee x-e . 

b 
So 

when 8 > -b/log 13. For a given 8, 

Pr [ x < x ] = F - (x ) 
0 X 0 

n-1 
= l - l: 

i=l , I 
1 . 

F- (x) increases as X increases, so it must decrease as e in­
x 

creases since F x(x) can be written as a function of the ratio ; 

The minimum 8 which renders Pb > 13: . -b 
l S 8 = -- I S O if 

log 13 
Pr[x < x ] 

- 0 

-b 
< y for e = log 13 I then Pr[x < X ] will be 

- 0 

less than y for all 

Let us evaluate 

8 for which Pb > 13. 
r:: - . -b y = Pr L X .< . X; l when e = -~ ' 

0 . - 0 10g p 

y = Pr(x < x j 8 =1-b R ] 
o - o og r' 

. nx log 13 
n-1 (:;:':~og ~·)1 

e O b 
= 1 - ~ -

i=l il 

-2nx log 13 
= l ... Q ( ~ , 2n) 

'2 
= 1 - Q(x , v), 

2 -.2nxo log 13 
where X" = --~b.----

and v = 2n. If y < y, then Pr[x < x ] is less than y for all 
0 0 

E\ for which Pb _.:: 13 and the manufacturing process is not meet­

ing the requirement that 10013 per cent of the products have life 

length greater than or equal to b with confidence y. 
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CHAPTER VI 

SUMMARY 

There are four commonly used estimators of 8 in the exponential 

distribution. 

... 1 r 
8 = - [E 
r,n r i=l 

n 
The estimators are x = l: x i' 

i=l 
' ... 

(x.) - (n-r) x ] for censored sampling, e• = ~ x• 
1 r,n · r,n r r,n 

r -1 -1 
for censored sampling with replacement, and[: :E (n-rtl) ] x 

. . i=l r,n 

for non-parametric estimation. Tolerance limits are derived based 

i • 
on each of these estimators. 

A y tolerance region for a proportion 13 based on x is given 

by L 1 = -kx log ~ where k satisfies 1 - Q(tn , Zn) = y. Since 

... 
the distribution of 8 and e• is the same as the distribution of 

r,n r,n 

X with n replaced by r, all results for X can be applied to er, n 
... 

and e• The y tolerance region based on x is given by 
r,n r.n 

L 2 = -kx log 13 where k satisfies r1_e-l/k (r, n-rtl) = y. In · . r, n 

each case Pr[ 13 < PL < 13 + £ ] can also be determined. Limits 

· 1 · r 11 1 
of the form L3 = -x,log (13 + 2 £) and L4 = .:.t ~ (n-i+l)- ]- X log (13+.;ze) 

i~l r,n 

can be used to solve for the sample size n which will satisfy 

Pr[ l3 < P < 13 + £ ] = y and Pr [ 13 
- L3 

arbitrarily fixed 13, £, and y. 

13 -expectation tolerance regions based on x 

32 

and x 
r,n 

are given 
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_ -1/n - _ 
by L 5 - n( 13 - 1) x and L 6 - kx , 

r,n 
where k satisfies 

[ n] 
r 

= 13 • Variances of the contents associated with these regions 
[n+k] 

r 

and also the variances of the limits themselves are derived. A 

problem concerned with given specification limits is also considered. 
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