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PREFACE

In the past few years, parametric and non-parametric toler-
ance limits have been derived for many of the common density
functions. This thesis is concerned with various aspects of toler-
ance limits associated with the exponential distribution. A problem
associated with specification limits for the exponential distribution
is also considerd.

The author is deeply indebted to Dr. David L. Weeks for
suggesting the problem and for his guidance in the preparation
of this thesis. An expression of gratitude is extended to Professor
Carl E. Marshall for serving on the author's advisory committee,

and to Miss Jane Duncan for typing this paper.
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CHAPTER I

INTRODUCTION

A problem often encountered in industrial applications of
statistics is that of determining if the output of some method of
production is meeting certain specified standards. One situation
is when these standards are fixed limits which must be met,
and a sample of the output is taken to determine whether a pre-
scribed proportion of the product is meeting these fixed standards.
Fixed limits such as these are known as specification limits.

Another approach is to take a sample of the product and
determine variable limits as functions of the sample observations
which estimate standards that, according to some criterion,
contain a certain proportion of the product. One common criterion
is to choose functions such that the expected proportion of the
population between the variable limits is greater than or equal to
a prescribed amount. Another criterion is to choose limits which
contain a certain proportion of the population with a specified
probability. The criterion used determines what functions of the
sample observations must be used as the limits. All variable
limits such as these are known as tolerance limits.

This thesis develops the two types of tolerance limits mentioned

above where the parent population is assumed to follow an exponential



distribution given by

.é_e_x/e, 0 < x < ©
f(x, 8) = -
0 , Otherwise

If the unknown parameter 6 were known, exact limits as a function
of 6 could be determined which would contain 1008 per cent, say,
of the population. Since 6 is not known, it must be estimated and
functions of the estimator used as tolerance limits.

There are several different useful estimators of 6 commonly
associated with the exponential distribution, and tolerance limits can
be developed as functions of each of these estimators. For this reason,
a summary of those methods of estimation commonly used and the
distributional properties of the res.pective estimators are given
first. . Tolerance limits are then developed based on each of these
estimators. The final chapter gives a solution for the problem

associated with specification limits for the exponential distribution.



CHAPTER II
ESTIMATION PROCEDURES

Most problems associated with the exponential distribution
are concerned with determining the length of life of some product.
For example, a light bulb manufacturer may wish to estimate the
mean life of his light bulbs. If the life of light bulbs is assumed
to follow an expo:ﬁential distribution, then it will be necessary
to estimate the mean, 6, of the exponential distribution. A
random sample of light bulbs would be chosen and placed on test,
and the life of these light bulbs would be used to estimate 6. A
special property of life testing problems of this type is that the
sample observations will be ordered according to size as they
become available. Chiefly due to this property, there are several
different methods of estimating 6, each of which has certain advan-
tages over the others. The most desirable method depends on the
particular problem in question.

If a random sample of n items is chosen and placed on life

test, and if the test is continued until all items have failed, then

n
X = = x, is the maximum likelihood estimate of 6, where X,

1

is the life of the i-th item on test. It is the "best!" estimator of

I

i

® based on these n observations in the sense that it is an unbiased,

minimum variance,efficient estimator of the unknown parameter 6(1).

3



The distribution of x can be derived by use of moment generating

functions.
- Let
.0 tx 1 -x/8
Mx(t) J e Ee dx
o)
1
:% 12 e (g " Vay
o)
1 o 1 -x(-—]l - t)
=aey [ (goveTe Vdx
o)
_ 1
B (1 - 8t)
Mg () = Mg, (¢/2)
t -1

il
—_
—
t
|
~—

This is the moment generating function of a gamma density function

with parameters :% and a =n -1, thus the density of X is

-nx

_ 1 . _n-1 5 _
h(x; 0) :W (—e-) b e ;, O < x < 0,
and 2nx is distributed as a chi-square variable with 2n degrees

)

of freedom. (2).’ Also, E(x) = B(d + 1) = 6, and Var(x) = BZ(.a + 1) =eTZ .
Although x has optimum properties for the case mentianed above,

. it seems reasonable that some advantages may be gained by changing

the sampling design, since % does not utilize the information given

by the property that the i-th sample observation is the i-th order

statistic. One method of utilizing this information is by using censored



sampling. An example of a sample censored on the right is a life
test experiment begun on n items and terminated after the r-th
failure, where r < n. A sample méy be similarly censored
either on the left or doubly censored.
It has been shown for a sample censored on the right that
- 1 r
eran? [.Z} X. +(n--r)xr n]
i=1

is the maximum likelihood, unbiased, minimum variance, and
efficient estimator of 6, where r failures of n items placed
on test are observed, and where Xi,n denotes the time of the
i-th failure for the n items on test. (3). The density function

of y = Gr n is given by

3

fr(Y)=(r—_1')—!' (-g) y e , y >0

This is exactly the distribution of x for a sample of size r,
where all r failures are observed. Thus, using 6r,n from
a censored sampling procedure yields exactly the same precision
and optimum pr'operties for estimating 6 as ‘u.sing x from a
non-censored sample where.only r items are placed on test.
The disadvantage of using a censored sample is that n-r
more iteths have been placed on test for a time X n? than if
only r items are selected originally. The importance of this

loss depends on the particular problem in question. The advan-

tage of censored sampling is that much time may be saved, since



the expected time for r out of n randomly selected items to
fail is less than the expected time for r out of r randomly
selected items to fail. The expected time of the r-th failure

from a sample of n items is E(xr n)' Thus, a measure of

E(x )
the time saved by censored sampling is a = .3
TROEx, )

The distribution of Xr 0’ the r-th order statistic, is given by
3

r-1 n-r

“f(x; 6) [1- FX(X)] ,

where FX(x) =1 - e-X/e denotes the cumulative distribution

function of the exponential density f(x; 0). (2). So,

! - - - -
fr n(x): n! %[l_ex/e]r l[e x/e]n r+l'
’ (r-1)! (n=-r)!
Integration by parts yields
r
E(x Yy=06 Z a.=06d = and
r,n i=] &
r
Var(x ) = 92 z a.i2 ,
s 1 i=1
_ r
where a, = (n -1+ 1) andd= X a..
i=1 *
Thus
z -1
Z{n-1+1)
“r,n T . -1
’ Z(r-1+4+1)



is the ratio of the expected time for r out of n items to fail
compared to the expected time for r out of r items to fail,
and it is always less than 1 if r < n. Tables of values of

B i for small values of r and n have been computed. (4).

Sampling with replacement has also been considered for the

exponential distribution. (4). That is, n randomly selected
items are placed on life test and each time an item fails, it is
immediately replaced by a new item selected at random. In

this case the maximum likelihood estimator of 6 is given by

= n 3 - i .
! = = x! , where the test is continued until r units have
Tyn Y TN

-~

failed and x;_ is the time of the r-th failure. 8;_ y has exactly
3 S

the same distribution and optimum properties as Gr 7 A measure
£l

of the proportion of the expected time saved by censored sampling

compared to sampling without censoring when sampling with

replacement is being used is

- E(x! )

G R eI S S

T gt ) B
¥y T

Clearly, the expected time for r failures will decrease when
sampling with replacement compared to withoWt replacement,
since some of the replacement items can fail before r of the
original n items have failed. Thus, sampling with replace~
ment may be desirable in some cases.

The best estimator of 6 based on the first r observations

from a sample of size n, without replacement, was given before

by



Since the last observation, X0’ is weighted by a factor of
n-r+ 1, it can be used alone to estimate 6 and the first
r~1 observations disregarded, if r is sufficiently less than
n. Epstein (5) indicates that in general for r < 2/3n, the
efficiency of using Xn compared to 6r,n is greater than or
equal to .90. For example, for r =% with n even, the effici~
ency is greater than or equal to 2(log 2)2 = .9608. vE‘)pstein has
computed tables of efficiencies and unbiasing constants for
n = 1(1) 20 (5) 30 (10) 100 and r =1 (1) n.

One can also consider which single ordered observation of
the n sample observations would yield the most efficient esti-

mator of @ compared to %, for a given n. Harter (6) gives

the best single order statistic x to use to estimate 6 for

k, n

n =1 (1) 100. He also gives the unbiasing constant for the appro-

priate x and the relative efficiency of that estimator compared

k, n

to x. The relative efficiency is given by

where a; = (n - i+ 1) . Hence, the proper X, , was selected
?
to minimize Vi by Harter. He also gives the best combination

of pairs of order statistics to use to estimate 6 for different values



of n.

Thus, an experimenter can consider the different methods of
sampling and estimation discussed above and determine the proce-
dure most appropriate for his particular problem. These statistics
and their propertﬂes can then be used to set tolerance limits and

solve specification limit problems as shown in the following chapters.



CHAPTER III
v TOLERANCE LIMITS

Problems associated with the exponential distribution will in
general require one-sided tolerance limits. Hence, if L(xl, R xn)

denotes a tolerance limit, let the interval (L, %), denoted by RL’

be the tolerance region associated with the limit 1. Let
0 -
P =/ Lo =%/04,

denote the content of the tolerance region RL' That is PL is the
proportion of the population in the interval (L, %). RL is a y toler-
ance region for a proportipn g if Pr[PL > B] =y In general,
Pr[PL > B] could depen’%d on the unknown parameters of the parent
distribution, but for the e;cponential distribution this probability is

independent of 6 for the particular tolerance regions to be considered.
Limits Based on x

In order to construct a v tolerance region, it is necessary to
find a function L(x, ..., x_) such that Pr[PL > B] =y for speci-

fied B, y, and n. Consider a function of X in the form L, = -xk log B.

It is necessary to find k as a function of 8, y, and n,such that
00 -

P = ’ 1 e X/edx

1 -kx log B

@

10



PL1 =1 - FX(—kx log B)
xk log B
P = e ©
L
K=
3
P =B
Ly
kx
Pr[P, > p] =Pr[p° > p]
Ll —
— 0
= Pr[x < E]
= F§ (%) , where the cumulative distri-

bution of a variable z will be denoted by Fz(z).

Since x has a gamma density with parameters a =n - 1 and

_ 6
B ==

v -nXxX
Ag\i 0
n—l<—e—) e
F—('}Z) =1-2Z ’
% i=0 il
. . n-1 (E)l e—n/k
and P—(-)=1-Z
x'k . .
i=0 il
Thus, to obtain k, solve
6 n-1 (%)le"n/k
Po(x)=1-2 —— =vyfor k.
x'k . .
i=0 il

-

A cumulative chi-square table can be used to determine k.

In Pearson and Hartley's notation (7),

11



1 -lx?" i
, 22T ey
Q(X :V) = . . ;
=0 I
0 2
so. F—(p) =1 -Q(_Ell, 2n)
. 40
For example, if n = 20, y = .95, then Q = (—k’ 40) = .05 and
2 40

X = = 55.758, which gives k = .717. Hence for n = 20,

L, = -.717 x log B yields

Pr[PL1_>_ B] =.95

If k is specified beforehand, Pr[PLl > B] can be evaluated
for a given n by using"the chi-square table to find Q(xz, v) for
fixed xZ and v. If both k and y are specified, one can solve for
the sample size required to satisfy Pr‘[PL >B] =y, if such a
sample size exists.

For a given limit L; = -xk log B which satisfies Pr[PL'1 >B] =y

an experimenter may wish to know the probability that PL is also less

. | 1 _
than or equal to B + e, where 0 < ¢ < 1 - 8. This probability is
given by
kx
Pr[p < P, < B+e]=Pr[p < BY < pte]

L

1]
T
=

1
i
it

12
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o - log (B +¢)

where
log B
Thus,
Pr(p < P < B-!-a):Q[zcn Zn]—Q[E 2n]
— o L, — k ? k’

1
To illustrate, if n =720, B =.95, € =.02, and k =.717 as above,

then.c = .%685 and

Pa[p < P, < B+ ¢]

Pr[.95 < P, < .97]

Ly 1

Q(31.72, 40) - Q(55.76, 40)

.822 - .05 =.772.

An experimenter may wish to have a tolerance limit L,2 in a
form which will allow him to fix the probability vy beforehand and
then be assured of being able to solve for the sample size n which

will satisfy the equation Pr[p < P < B + €] =y, for arbitrarily

L
2
fixed B and €. For this purpose, consider the limit L2 = -x log (B +%s).

Since

00 -
I -é,e */Oa =8 +e

-0 log (B + ¢)

for arbitrary e, it follows that

Pr(f < P < B+ €] =Pr[-6log (B +¢)< -xlog(p +%s)_<__-610g{3]

L,

:Pr[elog(ﬁ-l-ls)<—}-{—<elogﬁ ]
log (B +5¢) ~ log (B +%s)



Let =.1_0g_(_ﬁ_i._1_€) and CZ_M——T—
log (B +7s) | log (B +7s)
Then
Pr[p < P, < B+4+¢e] =Pr[c,d < x < ¢c,0
A P 18 < x < c,8]
—F—(cze) -F—(cle)

= Q(2¢y n, 2n) - Q(2c, n, 2n)

Since E(X) = 0 and the distribution of x approaches a normal den-

sity as n increases, Pr[cle < x < éze] =y has a splution for n

for any v, since ¢y < 1 and c, > 1. More generally, a limit of the

form L, = -kx log (B +%e) can be used, and a sample size n will
exist which yields a specified probability v, if ¢, < k < Coe This
follows since

€10 ¢,

Pr[ﬁ_<_PL <§3+s]=Pr[—E—<§< k] s
37 - -

which increases as n increases when ¢, < k < Cye Since the dis-
tribution of X becomes symmetric as n increases, one would

expect a limit with k approximately midway between < and c, to
Cle Cze

produce an equation, Pr| < x < ] = vy, which would be

k k

 satisfied by a minimum sample size n. For a fixed n, the k which

maximizes Pr[p < P < B + €] is the k which renders

L3
. jchZ ) ¢+ Znc : :
1 - Q(~——, 2n) = Q(——=, 2n). This k is a function of n; therefore,
k k '

&

in order to find the limit L3 such that the minimum sample size n
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will satisfy

it is necessary to find k and n simultaneously by an iterative pro-
cedure. For example, set k = 1 and find n such that the content of
the region associated with that limit is between P and B + ¢ with .
probability y. Then, find the k which maximizes the probability
for that n. Now find the necessary n for this new k. Continue in
this fashion until n does not change and this n is the minimum
sample size.

As an example, let = .95, ¢ =.02, k=1, and y = . 80, then

c, =108 97 =.746, c - log .92 = 1,256, and L, = -x log . 96.

log .96 2 log .96 3
chn Zczn
Pr[.95 < PL3 < .97] = Q — 2;1)-Q( e 2n)
= Q[.746(2n), 2n] - Q[1.256(2n), 2n]
For
2n = 40, Q(29.84, 40) - Q(50,24, 40) = .88 - .12 = .76
2n = 46, Q(34.32, 46) - Q(57.78, 46) = .89 - .11 = .78
2n = 50, Q(37.30, 50) - Q(62.70, 50) = .908 - .101 = .80

Hence, n = 25 is the required sample size to yield Pr[. 95 i <.97] =.8

PL3 <
for the tolerance limit L3 = -x log .96. Since Q(62.70, 50) = . 101 and

1 - Q(37.30, 50) =.092 are almost equal, k = 1 seems to be sufficiently

close to the k wvalue which gives the minimum sample size n.



Since 6_ and e; , are distributed exactly the same as X with
3 H
n replaced by r, vytolerance regions based on 6 or 6f can
r,n r,n

be obtained by simply substituting them for x and replacing n by
r in all the formulae. Thus, vy tolerance regions based on single

order statistics remain to be developed.
Limits Based on Single Order Statistics

Let L4 ==X, . k log B. THen a k is desired which satisfies

3

Pr [PL > B] = y for specified B, y, and n.

3
P, =" %eﬁ"/e dx
4 X, . k log B
k log B X4 er n
=e 6 =B 0
kx
. r,n
Pr[PL >3] =Pr[f” © > B8]
4
_ 0
= Pr[xr,n < E]
- 0
=F_
r,n
Now,
! - ) - - ) -
F_ (x) = % n l[l - e X/G]r l[e X/G]n r+1dx ‘
r,n ° (r-1) ! (n-r)!

16
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and
-1/k
¢] l-e n! r-1 n-
F.oo(g) =7 ; y (l=-y) “dy
r,n ° (r-1)!(n-r)!
! - -
gly) = = Yr l(l--y)rL T is a Beta density with parameters
(r-1)! (n-r)!
r-1 and n-r, so following the usual notation,
F ) =1, 1 (r,n-r+l)
x k l-e-—"'""? ’
r,n k
where
I(a,b) = Da+b) — px 2=l bty
I'(a) ©(b) ©°

e) = y can be solved for k by use

Thus, the equation Fx (1—<=

r,n

of Incomplete Beta tables to obtain the desired k. (8).
For example, if an experimenter wishes to find a tolerance

limit L, = -x k log B, where x is the median of a sample of
4 r,n r,n

size n =19, say, such that Pr[PL > B]=.90, k is the solution
e

of Il-eﬁ_lf( (10, 10) =.90. So, I _1(10,10) = .10 and the table gives
e k

1/k _ 35793, which gives k= .974and L, = -.974x_ log B.

Now consider

il

Pr(p < PL < B +e] Pr[-6 log (B + ¢) _<__—er nlog B < -6 log B]
4.

)
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= IC (r, n-r+l) - IC (r, n-r+l) ,
1 2
6 log (B +¢)

andc'zl-e klog B

If, for example, f =.95, ¢ =.02, n =19, and k =.974, as in

the above example, then

1 _ . 5685
cl=l—e '974=.642, czzl—e 974 = . 443 ,
and .
Pr[.95 < PL < .97] :1.642(10’ 10) -1‘443(10, 10)

=.90 - .30

= . 60

In order to obtain a limit L based on . with the property that

I

Prip < PL < B +e] increases as n increases for arbitrarily

specified e, B, and y, as was done for %, consider the limit

1
-er, qlog (B + =€)

r
L5 = » Whered= Z ﬁ:lﬁ?l_ as given in Chapter I.
d i=1 ‘
Then,
—er nlog (B +%s)
Pr{p < P, < B+e] =Pr[-6log (B +e) < — < -olog B]
5

6 dlo + 6dlo
k log (B -I-—Z-e) ’ klog(ﬁ+—2-e)
Sdcl edcz‘

= Pr[-T—- < x <
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where C]. :l'_cl_g.._(ﬁ_-_l;f_) , and CZ :.]'ig_ﬁ___l_ .
log (B ‘."78) log (B +—2-e)

As n increases and r/n approaches some constant, the distri-

bution of X0 approaches a symmetric distribution about E(x_ ) = 6d.

T, n
Hence, for ¢y < k < Cy9 there will exist an n for arbitrary e, B,
and y, such that Pr[f < P, < B+ e] =y
= 5 — .
6dc 6dc 6dc 6dc
1 2 4 _ 2 1
Pri k iXr,n—<- k ]_Fx ( k )ﬁFx ( k )
r,n r,n

=1 (ry n-r+l) - IX (ryn-r+l) ,

wherex,=1-e kK , andx, =1-¢ k

1

Setting IX (r, n-r+l) - IX (r, n-r+l) = y, it is desired to determine
2 1
n and hence also r, where r is some prescribed function of n.

An iterative procedure is required to solve for n. In general,

L)

T, Xy and X, must be recomputed for each n value chosen. These

computations may be simplified for special cases. For instance, if

the median for odd sample size is used, then r = izl and d is approxi-

mately log 2. 1lim d =1log 2 so a solution for n exists for the limit

n—=00
1
~kx_ log B + 5¢)
L5 = —— 220 2 ,» where d is replaced by log 2 and r = E‘;—L .
log 2
Prlp < Py < Bte]=L (n1)-L (r7)
czlog 2 cllog 2
Tk Tk

where x, =1 - e ,.andx1:1=e

> are independent
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of n. For B =.95 ¢ =.02, k=1, and y=.80, thenc, =.7462,

C2 = 1. 2565, Xl = . 5893, XZ =, 405, and the r is desired which
satisfies I. 5873(r’ r) - 1' 405(1., r) = .80
For r = 24,

1’5893(24: 24) = 1'4_05(24%} 24) =,891 - .,092 =, 80.

Thus, r = 24 and n = 2r - 1 = 47 compare to a sample size of n = 25
for a similar probability statement when x is used.

It should be noted that if e = 1 - §, then

Pr[p < P, < B+e]l=Pdp < P < 1] =Pr[P > B].

Hence, Pr[PL > B] can be considered as a special case of

Pr[8 < Py <pte].



CHAPTER IV
B -EXPECTATION TOLERANCE REGIONS

This chapter will be concerned with B -expectation tolerance
regions for the exponential distribution. A tolerance regio'n.RL
will be called a biased B -expectation tolerance region if E(PL) B
for finite n and arbitrary B, but 1im°°E(PL) = B. If E(PL) =8

n—

for all n, then RL will be an unhiased B -expectation tolerance

region or simply a B ~expectation tolerance region.

B -Expectation Limits Based on x

Since
o0 1 -x/0
I—elogB 8 ° dx = B,
it is reasonable to consider limits of the form L = —6 log B, where

6 is an unbiased estimate of 8. Suppose L1 ==X log B, then

x log B _
TR T L L
1 -x log B
xlog B xlog B 1 nx
G %0 ) 1 n_"07" g
E(PL) = E(e Y=/ e =) x e dx
1 o (n-1)!
nx , x
1 == txlogB
:IS)O 1 (%)nﬂl—n 1 5] ¢} dx
o (n-1) !

21
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n —
Y 1 < -l e-x/ydx
&= 7o n
n (n-1)!y
where vy = % . Since the integral of the density of x over
n - log P

its entire range is one, then

n
E(P, ) =Ye = (——)" @ = (—2—)"
L (g—)rl n - log B 0 n - log B

tolerance region.

An unbiased B ~expectation tolerance region can be obtained by

-1/n

-n(f -1)x

using L2 = n(B -1/n - )x, which gives PL = e 3 and
2
l/n _1_1__)2_
E(P, )= n(p - 1) 1 (%)n—n—l R
2 o] 5] (n - 1)|
) (5_1/n)—
_poo 1 %)n ) —n-1 =
o (n - 1)
(e82/7p
= n o2 1 ;n"'l e“’;/é d—
& o (n-1)16
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Hence,

0B l/n)n (g)-n _

LZ):( n n =B

E(P

S

Similarly, L = r([3~l/r— 1) 6 and L = r([3—]'/r - 1) or =

r,n r,n

n(p 7T 1)

o provide B -expectation tolerance regions based
H

— -~ e}
on 6 and 6! , since 6
r,n r,n r

and ot have the same distribution
J ’ P r,n

3

as x with n replaced by r.

B ~Expectation Regions Based on Single Order Statistics

For a single order statistic x , let L, = -ax log B, where
r,n 3 r,n
o1 -1
a = ifl n~i+l) . E(axr,n) = 0, so E(L3) = -0 log B and this
means E(PL ) = B in the limit. For finite n,
3
1 -x/6
P, =5 logps®
Lj ‘
~ax
)
axr,nlog B
=e 6
cx
_ r,n
e 9 s where ¢ = -a log B
CcxX X X
_Tr,n _r,n _r,n
! -1, 7T n-rt+
E(PL)=fOoe ) n! . %[lae 6 ]r l[e 9 ]n rlld .
3 o) (r-1) ' (n-r)!
X X
_r,n r,n
. . _ 0 _ 1 S
To evaluate this expectation, lety = e , dy = - i
Ao n! n-r r-l n{n-r+c)
E(P, )=y yo o (L-y) Tdy =

(r-1) T (n-r)!
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E(P, ) ,f': B, in general, therefore, L,= "ax, . log B = X,

L3
determines a biased P -expectation tolerance.region. It is evident

that a limit of the form L4 = er n will determine an unbiased

3
B -~expectation tolerance region for a given X4 if, and only if,

n!(n-r+k)!

k satisfies the relation ‘ =B . This equation may be
(n-r)l{ntk)!
written as Inle | B, where [n]. =n(n-1) ... (n-r+l). Then
[n+k]f

[n}r = [1;1+k]fﬁ is a polynomial of degree r in k. It has a unique
real positive solution for k since all the coefficients are positive
except the constant term which is equal to (B =l)[n];;. This solu-
tion can be found readily by an iterative procedure for small n.
For large n, k is approximately equal to ¢ = -a log # as indicated
above.

For example, ifn =5, r = 3, and B = .95, then

(- 1 F(24-k) ! o 4o « 4o
n!(n-r+k)! _ 5! (2+k)! _3-4-5 . Solving 3¢ 4e5 - .95

(n-r) ! (ntk) ! 21 (5+k)!  (34k)(4+k)(5+k) (3+k) (4+k) (5+k)

yields k = .0661. Hence, for L4_ = .0661 x (PL ) =.95. The

E
3,5’ 4
approximate solution based on L, for this example is given b
PP 3 P g Yy

c =-alog B = -(l.2766)(-.051291) = .0655.
Precision of the Tolerance Regions

The precision of a § -expectation tolerance region will be measured
in terms of the variance of its conitent. The variances of the content
for the tolerance regions based on L, and L4 are derived below. Since
these variances are difficult to compare except numerically, the vari-

ances of the associated limits are also considered, since they can be used
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for comparing the precision of different methods.
Consider first the unbiased B ~expectation tolerance region based

on x determined by L2 = n((?)“l/n - 1)x

a@/m 1w
¥]
P; =e , E(P, ) =8
L2 LZ
_ Zn(B-l/n— 1)
D 2 _. 0
(P; )7 =e. )
L, ©
- Zn(f’nl/n' 1) _nx
E(PLZ)Z = j‘:'°e 0 (n_l . (%)n o 9 Fn-l o
o~ 1 n.n —Igi[l'l‘.Z(Bnl/n_ l)] nel
=l @moor @ e dx
- L
X oo B
(2871 1) g (n_l'l)T @ (2p7/m gl O e )d§
0 - N
(Zﬁ-l/n- l)-n
So,
2 2
Var(P, ) =E(P, )" -(EP, )
L2 L2 LZ
- (2p7V/ro L g2
Now consider L, = kx_ _, where k satisfies nln-r+k)! B .
4 r,n )
’ (n-r)! (nt+k) !

. - er,n
E(P; ) =E(e 7 ) _n!(n-rtk)!

4 (n-r) ! (n+k) !



Since k is a constant it follows that

2kx
_ r,n
2 _ ) _nl(n-r+2Kk)!
E(Pp ) =Bl ) = e TEER T
So,
_nl(n-r+2k)! .2
Ver(Pp ) = mrTmznt © P

Similarly, the mean square errors for biased B -expectation tolerance
limits can be determined.

Thus, for a given problem the variance of the content of the
tolerance region to be used can be computed by the above formulae to
give a measure of the precision which will be obtained. Comparisons
of the variances of the contents of the regions based on each of the
estimators can also be made numerically for a given problem to
help detarmine the most desirable method for that situation.

The variances: of the limits themselves can also be comparéd

to indicate the relative efficiency of the different methods. For

2
L, = ne Y215, Var(L,) = n2e VP % var%. varz- L
SO Var(LZ) = n(ﬁ-l/n- 1)292. For L, = er o’ Var(L4) = kZVar x
' r
Var x = 62 z (-%—-)2, SO0 Var(L4) = kzez z 1 )2' .
? i=l n-i+l i=l n-i+l

Much simplermexp're\a_s sions can be obtained for comparisons for
large safnple sizes by using the concept of asymptotic variance. The
asymptotic variance of an estimator is the variance of that estimator
for the large sample or asymptotic distribution of that estimator.

If % approaches a constant as n-—-oo, the limiting distribution

26
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of x is normal with asymptotic mean m(xr 1;1) defined by
9 - E
m(Xr‘ n) r . .
fo 7T f(x) dx = T and asymptotic variance, AV(Xr,n) =
r(n—r+é) ! > - (9). Thus, for the exponential distribution,
n(n+1) fz[r‘n(xr,n)]
m(x )
m(x ) - r,n
r,n’ 1 -x/8 - —_— 1
J‘O 5 © dx =1 - e 6 e i
N n-r+l.
and m(ern) = -0 log ( =71 __)
AV(x. ) :_r(_n;‘_}Lé) f [m(x_ )]
- T n(ntl) T
2
_ 0 r(n-r+l) n~r+l) -2
n(ntl)s ol
_'rez
- nn-r+l)
Now, L4 = er 0 approaches -6 log B as n increases, and
2
n-r+l n-r+l,.-1
X n approaches -6 log (—n-ﬁ—)’ so k must approach log ﬁ[log(—rﬁT—)]
asymptotically as n increases, Thus,
_ 2 o n-r+l, -2
AV(L,) = (log §)"[log (1] AV(xr,n)
2 n-r+l, ;-2 r'ez‘
= (log B) " [log ( | ) ] n(n-r+1)

Now, consider LZ = n(ﬁ-l/n— 1) x. lim n( ﬁ'ul/n- 1) = - log B,

n—»0o
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sO

AV(L,) = (log B)% AV(X)

2

2
= (log )% &

n

AV(LZ)
Thus, the ratio = =
AV(L4)

n-rtl lo (n-_r-l-_l_)Z is a measure of the
r n+l

relative efficiency of the limit L4 compared to LZ'

~

For the limit LL = r(pnl/r- 1) 6. based on the first r obser-

. 2 =92 ’ n
vations, AV(L) = (log B) - - AV(L) = = AV(LZ), SO0

AV(L) _n(r-rtl) [ log (n-r+l) ]2
AV(L,) r 2 n+l
If §—>p, say, as n—;->m %
AV(L,) ;.
lim 2 - 1P [1og (1-p)]°
n—D AV(L,) b
and
AV(L)
. l-p 2
Ilim = [log (1-p)]
n_«_&AV(L‘}) o2

For example, to compare limits based on the median with limits

based on X and 6_ _, let p = — -1 | Then
r,n n 2
. AV(L.)
F— =(log 3)° = .48
AV(L,)
im AV(L) _ 2(.48) =.96
TR AV(LY)



Thus, the above considerations can be used to measure the
precision of tolerance regions and to compare the relative effici-

ency of different methods for a particular problem.
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CHAPTER V
SPECIFICATION LIMITS

Many times a manufacturer will be more concerned with
whether his product is meeting certain fixed standards or
specifications with a certain level of confidence, than with set-
ting variable limits which may not be close to the required
standards determined by other reasons.

Let b > 0 denote a one-sided specification limit for the
exponential distribution. Pb = f](: %e"x/edx is the proportion
of the population in the interval (b,n). Suppose it is desired that
100 B per cent or more of the manufactured products have a life
greater than or equal to b, i.e., that f0° %e_x/e dx > B. It
cannot be determined whether a processbis meeting this condition
without complete testing. Samples of the product can be drawn,
however, to determine if the process is satisfying this requirement
with at least a certain confidence y. If on the basis of a sample,
there is less than vy confidence that Pb > B, then the manufactur-
ing process must be altered since the products are not meeting
specifications at the desired confidence level.

Large, sample means are associated with high confidence thvat
Pb > B. Thus, if the calculated sample mean 3_20 is so small
that the probability of getting an 320 that small or smaller is less

than y for every value of 6 for which P, > B, then the production

b
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will not be meeting specifications with the desired confidence v.

Now,

1 -x/6

e /e,

dx = e

' nX \i =~ —2
_ _ _ n~-1 ( ef) e _9
Pr[)é < xo] =Fo(x))=1- 2 L

F—}E (?c) increases as X increases, so it must decrease as 6 in-

. T . N . x
creases since F;(x) can be written as a function of the ratio =

)
The minimum 6 which renders P, >  1is 6 = -b , soif
b Z fog B
- = _ b S < 31 wi
Pr[x < xo] < y for 8 = Tog B then Pr[x < xo] will be
less than y for all 6 for which Py 2 B.
Let us evaluate = Pr[x < x.] when 8 = b
- - -b
Yozpr[X < XoJe “log B ]
. nx_lo
nx log B\ o 08P
n- -E%T)———- e b
=1-Z x
i=1 il
-2n§O log B
= .1 o Q (-—-—b-—-—'—- 5 Zn)
. 2’ , -2n§o log B
=1~-Q(x, v), where x, = —

and v = 2n. If Y, <Y, then Pr[x < Eo] is less than y for all
'@ for which Pb > B and the manufacturing process is not meet-
ing the requirement that 1008 per cent of the products have life

length greater than or equal to b with confidence .
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CHAPTER VI

SUMMARY

There are four commonly used estimators of 6 in the exponential

n
distribution. The estimators are x = Z X,
r i=1
- 1 : . = n
= - . - - k] = 1
_— [12—1 (x;) - (n-r) Xr,n] for censored sampling, er,n T XL
. - . -1.-1
for censored sampling with replacement, and[ Z (n-r+l) ] X, .
i=1 ’

for non-parametric estimation. Tolerance limits are derived based
on each of these estimators.

A vy tolerance region for a proportion P based on x is given

én

by L, = ~kx log B where k satisfies 1 - Q(k

1 » 2n) = y. Since

and 6; is the same as the distribution of
3

the distribution of "er
¥

X with n replaced by r, all results for X an be applied to 6. 4
?

and 6! . The vy tolerance region based on x is given by
r,n r,n

L, = -kx
‘ T

> nlog B where k satisfies Il«-e”l/k (r, n-r+l) = y. In

?
each case Pr[B < P, < B e ] can also be determined. Limits

-1, -1

: T
of the form Ly = -% log (B + %—e) and L, = -[ Z (n-it1)
i=1

can be used to solve for the sample size n which will satisfy

]

1
X n log (B+>¢)

L

Pr[p < pP; < B+e]=v and Pr[p < P, < B +e] =1y for
hl 3 = < L =

arbitrarily fixed B, e, and vy.

B -expectation tolerance regions based on x and x, , are given
¥

32
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B -1/n — = s
by L5 = n(B - 1) x and L6 = er,n' where k satisfies
[n]_
———— = fB. Variances of the contents associated with these regions
[ntk]
r

and also the variances of the limits themselves are derived. A

problem concerned with given specification limits is also considered.
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