A DETERUIMATVE ANAXSTS OF THE IUTRODTCTORY COLLEGE MATHEMATICS COURSE/WTH REGARD

TO APPROACH ETHECTLUTHESS

By
JON MILLTON "LACHY
Bachelor of Arts Adams State College Alanosa, Colorado 1955
Master of Education Adans State College Alarose, Colorado 1960
Master of Arts
Louisiana Stete University Baton Rouge, Louisiona 1961

Submitted to the raculty of the Graduato School of the Oklahoma State University
in partial fulfillment of the reguirements
for the degree of DOCTOR OF EDUCATION August, 1964

$$
\begin{gathered}
\text { ORLAHOMA } \\
\text { TATE UNIVERSITY } \\
\text { UBRARY } \\
\text { JAN } 8 \quad 1905
\end{gathered}
$$

A DELRLLNATVE ARNLYSIS OF THE IWRODUCTORY COLLEGE MTHERATICS COUESE UTHE REGARD

TO APPROACH EPRECIVENESS

Thesis Approved:

A pressing problem in matheratics education today concerns itself with curricular research. Hore and more mathematical discoveries are being made annually and the student of mathematics should be instructed in such a way that he can benefit from these discoveries.

This study has been conducted in the hove that the evidences presented will be beneficial to the improvenent of instruction in mathematics, both at the secondary and college level.

The study was experimental in nature. It was conducted at Central State College, Fdmond, Oklahoma, during the fell semester of 1963.

The purpose of the study was to determine which one of three approaches would be most effectivo in teaching the Introductory College Mathematios Course: the conventional approach, the vector approach, or the set theory approach.

Indebtedness is acknowledgel to Dr. W. Wre Marsden, who served as chaiman of agy advisory committee, for encouraging my intorest in the problem and for his guidance throughout the study; to Dr. Richard Rankin and Dr. J. Paschal Muyman for their suggestions and guidance relatiag to the statistical treatmont of the deta; and to Dr. Bichard Jungers and drs. Helen Jones for their assistance in the completion of this study.

The author is erpecially greteful to Mrs. Dorothea Weagher, Chairman of the Department of 相thematics, Central State College, and her
staff without whose cooperation this study would not have been possible.
To those persons who offered encouragement and helpful suggestions, the author is also grateful.

To those nembers of ey fanily who have aided me in atteining this goal, I can only say thank you. To my wife, Sordra do, wo by her unm selfish sacrifices and encouregement contributed beyond words to the completion of this study. I agein humbly express my thenks.

TABLE OF CONTENTS

Chapter Page
I. THE PROBLEM 1
Statement of the Problem 12
Definition of Terms 13
Solutions to the Problem 15
Criteria for Choosing Between Solutions 21
Background for This Study 21
Surumary 24
II. THE EXPERIMENTAL DESIGN 26
The Design 26
Selection of the Testing Instruments 29
The Testing Schedule 31
Assumptions Underlying This Study 32
Hypotheses to Be Tested 33
Limitations of This Study 34
Summary 34
III. PRESENTATION OF THE DATA 36
The Questionnaire 36
The Results of the Testing Program 41
Summary 43
IV. STATISTICAL TREATMENT OF THE DATA 48
Testing the Hypotheses 50
Summary 52
V. INTERPRETATION OF RESIITS 54
Summary 54
Conclusions 56
Implications 58
Recommendations 59
BIBLIOGRAPHY 60
APPENDIX 64

LIST OF TABLES

Table Page
I. Distance Traveled by Students to Central State College 37
II. Size of Student's High School Graduating Class 38
III. High School Preparation of the Students 39
IV. Student's Major Field of Study 39
V. Scores on the Otis Intelligence Test 40
VI. Grades Attained in the Introductory College Mathematics Course 41
VII. Dependent Variable Statistics 42
VIII. Scatter Diagram: STEP Pre-test Score vs. STEP Post-test
Score 44
IX. Scatter Diagram: Trigonometry Pre-test Score vs. Trigonometry Post-test Score 45
X. Scatter Diagram: Algebra Pre-test Score vs. Algebra Post-test Score 46
XI. Analysis of Covariance: Algebraic Manipulation 51
XII. Analysis of Covariance: Trigonometric Achievement 52
XIII. Analysis of Covariance: General Problem Solving 52
XIV. Student Scores on Cooverative Algebra Test 68
XV. Student Scores on Rassmussen Trigonometry Test 69
XVI. Student Scores on STEP Test in Mathematics 70
XVII. Student Scores on ACT Program 71
XVIII. Scatter Diagram: ACT Mathematics Score vs. Algebra Post-test Score 73
XIX. Scatter Diagram: ACT Mathematics Score vs. Trigonometry Post-Test Score . 74
 test score . 75
XXI. Scatter Dighram: Ace Composite Seore vs. Alyebre Posta tast Score 76
XXII. Soetter bugran: Acr Composito Georo vs. ETtP post-best Beore . 77

CHAPTER I

THE PROBLEM

Introduction

Mathematics is a branch of learning in which all of the major theories of two thousand years ago are still valid, yet never before has there been such a flood of fresh ideas. ${ }^{1}$ Mathematics is also one of the fastest growing and most radically changing of all the sciences.

It should be noted that mathematics is man-made. The mathematical concepts, the broad ideas, the logical standards and methods of reasoning which have been steadfastly pursued during these past two thousand years were fashioned by human beings. Through the power of mind, man has surveyed spaces too vast for his imagination to encompass; he has predicted and shown how to control radio waves which none of our senses can perceive; and he has discovered minute particles which cannot be seen even with the most powerful microscope. Using cold symbols and formulae, man has begun to secure a portentous grip on the universe. ${ }^{2}$

As the human race looks to the future, there will be an even greater need for new and more extensive mathematical ideas. Space travel

[^0]will require mathematics to compute trajectories and the time of rendezvous with the particular planet to be visited. The thrust of the space vehicle and its capacities for fuel and supplies will all be arrived at by the use of mathematical formulas.

In the field of computer technology, great strides have been made. Computers have been built which will do 5,000 additions a second for hours or days. At present, computers can solve problems much faster and more accurately than human beings can. These computers can solve problems that a man's life is far too short to permit him to do. ${ }^{3}$

Addition is not the only operation that can be done. These "brains" can also multiply, subtract, divide, and retain information which might be useful in solving future problems. Their applicability is quite extensive. They have been used in solving problems dealing with traffic flow, communications, satellite tracking, and other related problems in such fields as physics, economics, education, and industry.

The Historical Development of Mathematics. Mathematics has been a series of changes, adantations, and alterations. What we now take for granted mathematically would have astounded the mathematicians of the past. This is not because the mathematicians of today are so outstanding, but rather that the bases for present day studies have been laid by such men as Euclid, Gauss, Newton, Leibnitz, Descartes, Hamilton, Cantor, and others.

One of the first concepts to be of great significance was the one-to-one correspondence. ${ }^{4}$ This idea was used by the sheepherders of

3Edmund Callis Berkeley, "Giant Brains", A Treasury of Science, (New York, 1959), p. 216.
${ }^{4}$ Francis J. Mueller, Arithmetic, Its Structure and Concepts (Englewood Cliffs, New Jersey, 1956), p.2.
yore in keeping track of their sheep. For every sheep let out of the pens, a rock was placed on a pile. At night the rock was removed as each sheep returned. If there was a rock left over, a sheep was missing. A simple, yet ingenious way of counting. There were limitations on this method, however. The sheepherder still did not know how many sheep he had, or if one were missing, which one it was.

The Egyptians used mathematics in a practical sense. They were more concerned with the construction of their pyramids and statues than they were in understanding the fine points of the mathematical tools they were utilizing. It is true that the Egyptians did compute the distance of the earth from the sun, but the information was used for surveying purposes only. The Egyptians also recorded the rising and falling of the water level of the Nile River. The data collected enabled them to use the river bottom for agricultural purposes.

The Greeks, on the other hand, used mathematics as an intellectual activity. Geometry allowed the use of logic and the Greeks revelled in the philosophical implications involved.

The greatest of all geometers was Euclid. It is said that, "Euclid is the only man to whom there ever came or ever can come the glory of having successfully incorporated in his own writings all the essential parts of the accumulated [mathematical/ knowledge of his time."5 In his Elements, Euclid compiled most of the work in mathematics which had been done up to his time, approximately 300 B.C.

For nearly two thousand years, Euclid reigned supreme in mathematical circles. During the seventeenth century, Friedrich Gauss, Johann

5D.E. Smith, History of Mathematics (New York, 1956), p. 102.

Bolyai., and Nicolai Lobachevsky simultaneously developed a new geometry which was properly titled, Non-Euclidean Geometry.

Of this discovery Bolyai said: "I have made such wonderful discoveries that I am myself lost in astonishment; Out of nothing I have created a new and another world." 6

Then, in 1854, George Riemann reworded the fifth postulate of Euclid to state: Through a given point outside a given line, no lines can be drawn parallel to the given line. This again revolutionized the mathematical community and gave birth to elliptic geometry. The basic properties of this type of thinking led to space curves and eventually Einstein's theory of relativity.

Calculus has been one of the major accomplishments of man. The invention of the calculus in the seventeenth century initiated a long and exceedingly productive period of research in both pure and applied mathematics, finally growing into the theory of functions of a real and of a complex variable, the study of differential equations, elliptic functions, differential geometry, and other concepts. These subjects proved to be of the greatest interest, not only for the further development of pure mathematics, but also for their applications to the physical world. Newton and Leibnitz are credited with the discovery of calculus.

Between 1871 and 1874, Georg Cantor created a completely new and very special mathematical discipline, the theory of sets. A set is actually nothing more than a collection of elements, but the usefulness is far reaching. The concepts of set theory have been very beneficial in the study of geometry, i.e., a line is a set of points.
${ }^{6}$ Kline, Mathematics in Western Culture (New York, 1953), p. 410.

Space can be thought of as being the set of all points. Two triangles can be shown to be congruent if there is a one-to-one correspondence between the points of the two triangles and the distance between any two corresponding points is the same for both triangles.

Using sets, a person can describe both finite and infinite sets. The relationship between sets can be stated in the binary operations union and intersection. For example, the union of two sets A and B is the set of elements which are in A or B or in both A and B. The intersection of the two sets A and B would be the elements which are common to both.

These operations are associative and commutative, two properties which are highly desirable in any mathematical system.

The study of topology and modern algebra are steeped in set theory. Probability and statistics also make a great deal of it in their formalities. A sample space, for example, in probability is a set of outcomes in which an experiment might result. In tossing two coins, the elements of the sample space would include two heads, a head and a tail, a tail and a head, and two tails. Since there are four elements in the sample space, the probability of any one of them occurring is one-fourth.

A population in an experimental study is an example of a set of elements. The sample which is drawn from this population would be a subset of the population since, by definition of a subset, every element in the sample is an element of the population.

Hamilton is given credit for discovering vectors. As reported: It came like a flash, to relieve an intellectual need that had haunted him for fifteen years.? Hamilton first called them triplets, because forces

7James R. Newman, The World of Mathematics (New York, 1956), p. 162.
act in three dimensions.
Vectors have many applications. They can be used extensively in physics, in geometry and trigonometry, and in related areas. The path of a guided missile, for example, can be described in terms of vectors as can its velocity and acceleration. Vectors can be incorporated into the solution of systems of equations, and they can be used readily in the simplification of mathematical proofs.

One of the most important factors concerning vectors is that they can be defined as an ordered pair, $\left(X_{1}, X_{2}\right)$, which is used in Euclidean two-space, or they can be defined as an ordered n-tuple, ($X_{1}, X_{2}, \ldots X_{n}$). This representation is in Euclidean n-space.

The world of the mathematician is not limited to one world of three dimensions, but rather to a world of many dimensions. Einstein extended our concept of depth by adding a fourth dimension, time.

In solving a system of equations, three equations in three unknowns, each equation is written in linear form, $a X_{1+} b X_{2}+c X_{3}=d$ where a, b, c, and d are constants. The unknowns X_{1}, X_{2}, and X_{3} are actually elements of a vector, $\left(X_{1}, X_{2}, X_{3}\right)$, and vector methods can be used to solve the system of equations.

The solution of this particular system can be illustrated on a Cartesian coordinate system in three dimensions.

Mathematics is currently playing an important role in our everyday living. It is used in industry, business, the social sciences, as well as in the physical sciences.

To keep pace wi.th the demands of industry, technology, and the sciences, mathematicians have had to invent new branches of mathematics and expand the old ones. A superstructure of fresh ideas has been built
which people trained in the classical branches of the subject would hardly recognize as mathematics at all.

For some people mathematics is an art to be pursued for art's sake. Whether or not this mathematics has any use is of little consequence.

The very abstractness of mathematics makes it useful. By applying its concepts to worldly problems, the mathematician can oftentimes brush away the obscuring details and reveal simple patterns.

Using mathematics, astronomers are able to calculate the positions of the planets at any time in the past or future and predict the coming and going of comets.

In industry, statistical methods have been developed for controlling quality in high-speed industrial mass production. Mathematics is used to evaluate precisely telephone, radio, and television circuits.

Mathematics is important to our society. It is important in industry where new technical designs require more sophisticated mathematics in solving related problems. In computer technology, new and improved mathematical interpretations are needed in order to develop faster and more accurate computers. Space travel is based on mathematical formulas.

In business, mathematics and computers are used in doing inventories and ordering goods and supplies which have become depleted in the warehouse.

Housewives use mathematics in their everyday work, the extent depending upon their own personal training.

Mathematics is important to each one of us. Its importance will continue to grow as new methods and ideas are introduced.

According to Nicholas Bourbaki, "For twenty-five centuries mathematicians have been in the habit of correcting their errorswand seeing
their science enriched rather than impoverished thereby. This gives them the right to contemplate the future with serenity." 8

Trends in the Development of Mathematics Education. Mathematics education has also undergone vast changes. From the rigors of the Trivium and Quadrivium of Latin times, to the present, the role of mathematics has increased in importance. Mathematics is no longer an activity for the intellectually inclined alone, but a tool to be used in our daily living, in our work, in our play, and in our endeavors to enrich our own personal lives.

Despite the contributions of mathematics to our culture, "Educated people almost universally reject mathematics as an intellectual interest ...School courses and books have presented 'mathematics' as a series of apparently meaningless technical procedures. Such material is as representative of the subject as an account of the name, position, and function of every human bone in the human skeleton is representative of the living, thinking, and emotional being called man." 9

During the past fifteen years there have been several groups which have attempted to upgrade the level of mathematical knowledge in our elementary and secondary schools. Perhaps the most notable of these is the School Mathematics Study Group.

This group was organized in 1958 with the financial support of the National Science Foundation. The work of the School Mathematics Study Group represents the largest united effort for improvement in the history of mathematics education. The project is national in scope.

[^1]Dr. E. G. Begle, formerly of Yale University and now of Stanford University, is the director of the group.

The main objective of the School Mathematics Study Group program was to structure and write textbooks for grades four through twelve.

In reference to the junior high school program in mathematics, "Careful attention is paid to the appreciation of abstract concepts, the role of definition, development of the precise vocabulary and thought, experimentation, and proof. Materials aro chosen with the intent to capture the fascinating features of mathematics, creation and discovery, rather than utility alone." ${ }^{10}$

With regard to their program in intermediate mathematics, "Careful attention has been taken to give the student some insight into the nature of mathematical thought as well as to prepare him to perform certain manipulations with facility." ${ }^{11}$

The development of the School Mathematics Study Group material is unique in that it represents the combined thinking of many people--psychologists, testmakers, mathematicians from colleges and industry, biologists, and high school teachers.

In their first newsletter, they said:
"The world of today demands more mathematical knowledge on the part of more people than the world of yesterday, and the world of tomorrow will make still greater demands. Our society leans more and more heavily on science and technology. The number of our citizens skilled in mathematics must be greatly increased and understanding of the role of mathematics in our society is now a pre-requisite for intelligent citizenship. Since no one can predict with certainty his future profession, it is important that mathematics be taught

[^2]so that students will be able in later life to learn the new mathematical skills which the future will surely demand of them." ${ }^{12}$

Writing on behalf of the School Mathematics Study Group, Dr. Begle stated; " $[$ It $] ..$. further agrees that the present mathematics curriculum is out of phase with the actual need of our students as well as with the developments within the field of mathematics itself." ${ }^{13}$

Mathematics has changed. The professional mathematician has a deep understanding of the modern innovations in his subject matter area. But the student also needs to be aware of these changes. He needs to know about sets, vectors, and the other concepts he will encounter in later life. The school is the best place for him to learn about these things. According to one mathematician, "Widespread unrest exists among professional mathematicians and educators regarding the present mathematics curriculum. This unrest is primarily due to the changed and changing nature of mathematics and its content, and to criticisms regarding the effectiveness, efficiency, coherence, and applicability of the traditional courses. ${ }^{14}$

There are three other groups which have undertaken projects similar to that accomplished by the School Mathematics Study Group. The University of Illinois, Ball State Teachers College, and the University of Maryland were each financed by the National Science Foundation and wrote mathematics programs for the elementary and secondary school.
$12_{\text {School Mathematics Study Group. Newsletter Number 1. (New Haven, }}$ Connecticut, March, 1959), p. 4.

13E. G. Begle, "The School Mathematics Study Group," The Mathematics Teacher, LI. (1958), p. 4.

14
Merle Milligan, "An Inquiry into the Selection of Subject Matter Content for College Freshman Mathematics," (unpub. Ed.D. dissertation, Oklahoma State University, 1961), p. 3.

Wile each of these pograth has been extensively utilized, they are not nationct in seope.

Thair basie structare is ute simisy to the roposed by the School Whemtics study Goup. At tho rosont time, other orogras such es the Clevelend Plan are behag introduced. This plan includes kindergarten through grado three.

At the wasent thero is sone concorm boot the mathantics curriculum in our colleger an miversties. In a statenont by the Comission on Wathentios: "It is tutile to sxect the secondry schools to move in
 not rake extensure chemeg in he spivit mot contont of their courses. 15

A grour which is vory when torostod in the mothemtios curriculum of our collogos am whataties is the athemtios hssociation of Berich. Thes grope is comprod of both smtour and profossional mathom maticions. Tmope the ausices of the asoocistion menth the rinncial
 to sedy and mase rocomond tions regeding the monerganto curriculum In arthombics. This comatto is titlod, he Conaitteo on the Under.. graduete Progron in wemotion (00M). Sone of its members are don
 Kelly, thiversity of Geliformis, and Henty Yan Pngen. Tniversity of hisconsin.

In a reemt butetin, the comettoe stated:
Wur collegos are being eallod won to $21 l l$ an endless need for protesston m thematicias, for mbentically traned scientists. and for a voriety of whenetionlly stalled rersonnel in hundreds

[^3]
Abstract

of metivities. Cur business schools often demand the very newest techniques developed by the mathematioian. Medical rescarch may soon require mathentical training comareble to thet required by the nuclear physicist. Our engineers must be prepared to meet the needs of the rapidly changing Aderican technology. 116

In reference to the odnctan prograd in our colleges and univor- ```sitzes they said:``` "It is fair to say that manatick uill play a central role in the Anerican culture of tomorrou. We must train our youne men and women to be able to attack and solve problems that did not exist when they [the present teachers] attended school: problens which requice the ability to think matheratically. This racmires an oducational syster thet teaches not only fundonentel mathematieal techniques, but stresses understanding and originality in its mathematice cources. 117

Mathematies education must be geared to the future needs of its students. The material to be used in mathemotics courses, the method to be used in instruction, and the approach to be used in presenting the astorial will be extremely important. Research can be used to determine a more feasible aproach to the study of mathentics.

Shemant of Rem hrogum

In lieu of the ohenges in mathematics and in matheratics education. and the importent role mathmatics plays in our lives, this study has been conducted in mathematics education to determine the following: Which one of three approaches would bo most effective in teaching the Introductory College Hethonatios Course at Central Stato College: the conventional aproach, the vector approach, or the set theory anoroach?

[^4]
DEGNETEO OF TEMS

 definec. Other torws uill be derined ss meded.

The Introductory College inthemtics Course rill be deinncd os that comined course in plane trigonomotry and avenced agebre which stresces

 Cunctions.

Algobr is one of the throemin divisions of pure whametict The

 erithactic. Hovevar, elgebre provice a sybolien hich permiss a stody of the generi poparties of ects ef nutbers ard of opertione.

Tuigonotery is divicton of methothos wheh dote wh the intorreletionshive of the sides ser neles of the urimalo and alosely rotated
 canot be masured diventaty gack as the distonce to proticular star or

 moties.

The Introductory Collage thamties Conrse is a five hout, one semester course st ontrol State Collore and an listed is the Gentril State Gollege Bullotin as mathemtios 165.

The min objective of this course is to streacthon the stucht"s
bockground in algebra and wigenoatry wat to pepare hin for eddtiona worl in motheneties sterting vith calculus.

The subject matter is stwacturod oround algebra and trigonometry mith the emphes boing placed on fanotion thoory, a study of the relationship between wriables. fox axmole, the crea of a sure is egui to the Iength of is bide squared. In tome of a function, one vould mat thet the ares of the sume js function of the longth of one wide. Weing funcu tional notetion, this would be statodt $A=f(s)$, or $f(s)=s^{2}$.

The distance triveled by a person in an cutomotile is depondent upon to wainbles, rate and time Therefore, the distance treveled is a function of both rete and tine. Again using functionel notetions $d=r(x, t)$, where d represents the distruce treveled, represents the rats or speed, and t ropescots the timo olenent.

Function theory is extrenely inportant in highor monotics. In stuaying evjeulus, the atadent uges tunctions when he computes the rapea wader plane exrves, when he olculates the work done in movine a given quatity of lioud a cortain distmee or wen he finds the center of gravity of any perticular geonetric solid.

The subject ratter in the Introductory College Whenatics Course is are advanced in nture thin any agebre the stadent has encomtered in his secondery worls. The same thine cen be ceid about trigononetry.

The conventionel amprogh will be defined as that appronch to the sudy of algebra nod trigononetry which has been utilized in our secondary schools and colleges during tho past tuentymive yenrs. The exphasis is on maipulation and problem solving. Noither yectors nor sets are used In the devalopant of the agebrsic and trigononetrie princinles.

The apronch, in general, places the ouphosis on learaing a partiw
cular minipulation, and then utilizing it in a problematic situation. For exmple, a student learns to factor a quadratic polynomial, then he uses this information in finding the zeros of a quadretic equation or in solving a problem which involvos quadratic aquetions.

The conventional approach can perheps be soid to bo a more utilitarian approach to the study of mathematies.

A vector will be derined as a directed line segment.
The vector aproach rinl to defined as that approach to the atudy of alsobre and trigonometry whereby the mathemeticel ideas cro exprossed in terme of vectors.

A set urill be considered to be a collection of elements (usually numbers), othermise undemined.

The set dheory aproach will be detined as thet approsch to the study of ilgena and trigonometry wherby the mathembicel ideas are expressed in terms on sets.

SOLUTHOS To mH PRORLE

The freshan stadeat in college tho is preparing himself to teach mathematics, or to become an industrial mathomtician, or to becone an ongincer, will noed sdequate metheatical training. He will need to have en understandirg of the trenctical tools he is utilizing if he is to be able to perfora with any degree of comotency. this sene stradent shoula be nate of the uses and Itaitations of methentical concepts, and he should be able to spoly wabertical tools with facility.

Wth regra to this study, thore are thre nossible solutions to the problem. Ghey are the conventional opproch, the vector approed, and the set theory spprach.

The first approsch, the conventionh approach, treats the subject matter in the Tatroductory Gollego Mathemtics Course in much the same way that the student has stadied it in the secondary school. The emphasis is places on tho basic algebraic manpolations with direct apolication made to problea solving. The student works with monomials, binomials, and polyomials and the besie arithmetic operations of addition and mutiplicetion gith variauns. Trigononetry is developed in a similar way. The onphasis is pleced on the trigonometric functions, then later ahtinted to the solution of triangles.

One of the edpocates of the conventional approach to the study of mathomea is Homba ine. A noted mathematician, Rline feels that mathenthas ought to be taght fon the concrete standpoint before trying to toach the absurect. ${ }^{18}$ a scuatont onn mow all about the aigeoraic mogoriot of a manombed fiold, and yot not be able to find the sum of two an two. It is 0.150 posslule thet a person with an excellent knorledge of ficlat meght not won be abite to nave chage in a grocory store.

Drperterses with wo concreve would allow wo student to later gain howneage of the abstract. But kioniedge of the abstract does not guarateo facility in the use of the concrete principles of mevemitics.

The vector sprrach to tho study of the Introductory College wathem maties Gowse nabt bo concidercd by some people to be a novel way of studying algebre and trigononetry. Som the ptondpoint of both applied and pure athondice, however, wetone bave an mpoxtant role to play. They cen be ased to deccribe physical relutionghips such as velocity and acceleration.

18 Mine, "The Aneient vs. the woderns. A Wer Bathe of the Rooss," The Mathematics Teacher. II (1958), p. 241.

Vectoms en be introduced as a puraly mathematicel systen, built on the fundamentals of aldebra. A vector is defined to be a directed Iine segment. Using this defintion, the basic operations of vector addition and rultiplication can be stated. Vectors can be used to dese cribe effeotively n-dimensional specs. Therefore, a vector field is a region of epace such thet with asch point there is assaciated for com plete characterization both a magnitude and a direction, that is, a vector quantity. Common vector fields are the electric, the nagnetic, and the gravitational fields. In meteorology, the velocity of the wind at each point of the atmosphere is an example of a vector field.

Using this approach, the student studied algebre in terms of vector notation. For example, the addition and multiplication of vectors and the geometric intorpretation of these operations were discussed.

The student was taught the imortanee of the algebraic properies of comatativity, ossociativity ond the nature of the distributive law as it is related to vectors.

For example, for vectors a, b, and $c, a \neq b=b+a, a+(b+c)=(a+b)+c$, and using the dot product, $a^{\cdot}(b+c)=a \cdot b+a \cdot c$.

In addition to this, the student was made aware that every vector has an invorse. That is to sey, for every vector a there is a vector b such that $a 4 b=0$. In this case, b is equal to - 3 .

Prigonometry is the study of triangles, and triangles can be constructed using vectors. In relationship to this, any argle can be described as an angle between two vectors. The area of a triengle on also be computed using vector notation.

Vectors cen bo used in thooreticel methemetics to prove thoorems and corollaries. By using vectors, a complex mathenticel concept an often times be greatily simplified. As demonstrated, vectors con be used
to describe physical relationships, i.e., velocity and aceeleration, and in simpler terws. they an be related to a rectangular coordinato system as designed by Descartes.

One of the adrocates for the use of vectors in studying agebre and trigonometry is Arthur H . Coselsn. He says, "The impression is held that the employment of these modern techntures [vectors] presupposes a high degree of sophistiontion on the part of the student, Fhis is not the cose. The [student] can be prepered for the nodern techniques and they should not canse any more difficulty than the older mothods.: 19

Finth regard to the mplicability of the modern methods, namely vectors. he continues, "Often a modern method has a much broader range of applicability than the older methods, although the tro rothods cen be apolied with comprable difficulty to the develoment of a given subject. For example, a vector algebra is used to simplify the develoment of analytic geometry and algobre and to unify the two subjects. The time saved by this simplificetion is sufficient for the development of the vector algenre. Moreover, vectors ere sufficiently sinilar to numbers so that by studying vectors a student can review his ordinary alcebra without being subjected to a course in pure drinl..20

Set theory con also be used in develoging the Introductory College Wathentics Course. A get is nothing more than a collection of elements, but its uses are for reaching.

The set theory agproch is more closely oritonted to the conrontional aproach than is the vector aproach. However, thero is still a great

[^5]deol of difference between the apmoaches.
Algobra is a study of the real number systera, but the way in wioh this study is doweloped is very important.

Uetng the set theory mproach, the student is introduced to sets and their propertiec. Win a short background in logic, the real number systom is developed using an axiomtic procedure. For example, the student might be given the set of natural numbers. From this the student can define the set of postive integers: i.e., $1,2,3, \ldots$ and the set of all integers I, where any integer is the difference between two natural num bers. For example, $3=5-2,-5=8-13$, and so on. While this might appear to be trividel, it doen give tho gtacient sone basis on which to begin his study. The propertios of comatativity and associstivity can be substantated, as well as those properties related to identities, inverses, and the distributive lav.

In contanuing this lino of thought, the rational numbers can be defined as being the set of all numers of the form a/b where a and b are integers and bis not eaul to ero.

Agein the stwient is informed of tho imporince of the somematical properties involved, namoly associetivity, commatativity, identities, inverses, and the distributive len.

In solving equations, the student discusees solution sets. For the gadratic equation $x^{2}-5 x+6=0$, the solution set would include 2 and 3 . since these two values of x sutisfy the equation.

Trigononebry is devaloped using, sets and function notations and this information ralated to the study of comlex nambers.

Sets onfer mathenaties not only in its foundstions and language cut also in its mathemticel structure. For example, the theory of probability is concornod with numerical neasures of subsets of some space. Statistics

 tost of hyoubeses about sobets of the population.

Popogy is bo sudy of sets in mith cemtan musots ore distingaished. Wodera algebre ie deroluyet uroun the thory of sots. The basio waportruc-
 Th the mores of one wemartician:
"...the 2 magege ch ileas of geto ane ginn importwee dao to the technical neture of our civilization with its assa moduction,
 induetry. Set idess cone into play throngh statistics, elasinim
 in many branches of science such as chouistry, themmodynatos, genetias, wod phyiology... In fact, tho modora chane over in the philosophy of science trom a mechonistic detaminism to kind of
 Roreover, the teachers of stotistios tell us thet the precent lack
 Limtation won their becoming chllful in statistics. those ond way othow finlds af aphention reinforce the conclusion, rising from rodem mathantics itself. Sets are bere to stay." 1

It must be stated that there is a certin degroe of overlapine
between the three sparoches. The one aparent reeson is that all
 nonetry. An x^{2} using the comentioncl goronch aill be interyroted in the seme way using the set, thoory aproach. and by the stadent using the vector aurrosch.

In talding abot tragonometry, the hosio identity, $\cos ^{2} t+\sin ^{2} t=1_{s}$ will have the gamo stghticneo for ali thred fromp.

This shallarity is not extion. Whombies is a untpea subject, and the languge of the subject most be conformble. The jmpotant implication is the even if mothemtich ooncents are tought msing various anonebes.
${ }^{21}$.L. Durea Ir., "The reneuvers in set thinkint" The tathemetice Bescher, LL (4ay. 1938). 1. 323.
the basic ideas will still be the seme.

In order to choose which one of three spproches, the conventional approach, the vector approech, or the set theory approech, would be most offective in teaching the Introductory College lathentics Course, the author chose three criteria.

The criteria are: 1) algobraic manipulation; 2) trigonometric achievenent; and 3) general problen solving ability.

The student who comoletes the Introductory College liathenatics Course at Centrel State College should be able to perform adequately the basic mathematical skills, he should have an understanding of algebra and trigonometry and their inter-relationship, and he should be able to solve basic problems which use algebra and trigonometry in thoir solution.

The criteria to be used in this study in choosing the appropriate solution to this problem regarding approech effectiveness; i.e. conven. tiona, vectors, or sets, are as follows.

1) The student shonld be nble to perform the basic algebraic manipulations. This includes the addition, subtraction, nultipliction, and division of algebraic expressions, factoring, logarithmic operation, and the solution of equetions in one uninow.
2) The student showld be proficient in trigonometry. He should know the basic trigonometric functions, their usefulness in proving ideatities, and their role in the solution of trisngles.
3) The student should ba able to solve problems mich involve algebraic and trigonometric principlos. These problems till be similar to ones he would encounter in everyday situations or if he were employed in industry.

PACKGRODD HOR THTS STUDX

There are several studies being contucted at the present time dealing
with the nethematics curriculum at the college froshman level. Ono of these is at the Dniversity of Kansas. It is the intent of the Department of Mathematics at the Univorsity of Kansas to design a two semester sequence of freshan courses in mathematies to be token by the typicel stadent in the college of liberal arts and sciences. It is to be designed to provide mathomatical training for those stulents with special interests in the social. biological, and magement sciences, and for those who world like to take a terminal course in mathemtics as a part of a liberal education.

The gols of this program onn be stated as follows:

1) To provide mathemticel training for those stuctents in fields other than mathematics. This training will allow these students to utilize the mathematical tools in their work.
2) To provide matheratical edueation which all be on integrol part of their liberal educetion.
3) To provide the type of mematical traning which will enable the stodont to curther oducate himsolf in rromration for the type of mathomtics he will need in his work, i.e., stetis'ics, computers, and so on.

During the first semester, the student will study the following topics: a) solutions of systems of linear equations; b) matrices; c) sets, reletions, and functions; a) counting problems; e) probbility thoory for finite sample spaces; and f) flow charts. the plan for the second samenter includes an introduction to dicferontial and integral calculus, with apolications to the study of continuous probability distributions.

While no grantitative deta is availeble as 60 the suceess of this program, indications are that it is being readily received by the students and the mathematios starf nembers at the Tniversity of Kansas.

An experimental study was conducted at Oberlin College during the 1957-58 school year. 22 Its purpose was to gain innoxledge mich would allow
${ }^{22}$ John D. Buum, "Mathematics, Self-Taught," The American Mathematicsi Monthly, 65 (Moverber, 1958), pe. 701-705.
tho college to paterge its student bogy, utiliag itw mysion fachitios. and yet not inereose the sias of its faculty proportionclly to the sizes of increase in the student populace.

In thio stady, gtomonts in the ozpontontal grow gont twouthirds of their nomal cless time in the classoom the other onewthird in outside study. The outside study consisted of independent, study on the part of the student. The ontrol groun spent the norent tine in tho classrom.

Two hypotheses wers bested in this study:
a) That students who study freshman mometics by the ucual alassroom method will not learn significontly more than charents who study on their on for aproxtmetely onewthind of the school yest.
b) Thet students who study froshma mathemetios by the usur 1 classwom wethod will not gein gigaricently over students who study indepently for corrimately onewthird of the your in their bility to attack new mothemetiol concepte.

Based on the twtest of significence, no significant differences wero attained and the gorelusiens rosched stated thet the studente wo bed done the indevendont study wore probobly cheod of the control eroup. This eduatrge wos attrintod to the etwhent exporioneos in digeing out the materig on thair om initintive.

There might be destions rasod concoming the trowthirds to onew thin ratio used in this errexmental otury. wo justiricetion can be given for this ohoice, but further pesarch in this tyoc of thinking might be bencticicl, owecisily sinos our edleges one umiversities are being faced mith s stucent "populetion explosion."

A nen program is currently underwy at Tulcne university. Its intent is to develop a 'pure' progran rop ahle students involving acceleration, but, more besionky, lying a foundation for advaned work-menetration in depth." The eventual gol of the progron is to ugerabe sil freshmen mothematics at Puane Jniversity.

There are three facbue involved in this program which make this study
minue. They are:

1) Sman classes (iot more than 25 stadents)
2) Researeh mathematiciens as teachers
3) High upward mobility of students and the development of a spirit of inouiry.

There are no results available at this time regerding this study. ${ }^{23}$

SUATARX

Hathemtios and menemtics educetion have undergone and are expected to continue to undergo vast changes. In keering nace with these changes, It should be cuite evident that "we need freauent, regetitive prodding to keep on the best path. We tend to claim the mathemtios stimulates alear thinking, then teach it as meaningless memorization and routine having little to do with thought. Being a drillmstor, stressing routines, etc. makes the teacher's life easier but herder to justify. " ${ }^{24}$

One of the lemding mathemticians in the School Mathenatics Study Group has this to say regarding methenatios and educstion:
"The world of today denends more methentical knowledge on the part of more people than the world of yesterday, and the morld of tomorrow will derand even more. It is therefore important thot inthematios be taught in a vibrant and imaginative way which will meke soudents aware that it is a living, growing subject wich plays an important pare in the contemporary world. ${ }^{2}$,

Mathematics education which makes the student aware thet mathematics is a living, growing subject and an important part of our conteruporay

[^6]world con be acomplished. If tho languge of the subject, the vehicle of commuication were improved, the task of teaching mathentics conld be greatly implemented.

With an eye to the futuro, this study has boo conducted to determine the following: which one of three arproches; the conventionel. the veetor, or the set theory aporoch, wuld be nost effective in tosehing the Introw duetory Colleee Whthematios Course at Central stete College?

CHAPTER II

THE DWPCLIMTML DESTGN

This study was an experimental study, the chief purpose being to analyae and determine which one of three appoaches would be most effective in teaching the Introductory College Hathematics Course at Central State College. In doing this, experinentation was defined as: "The trial of a plenned procedure accompanied by control of conditions and/or controlled variation of conditions together with the observation of results for the purpose of discovering relationships and evaluating the reason. ableness of 3. given hypothesis. ${ }^{26}$

In this experiment, the Introductory College Whthematics Course wes tanght by three different approaches: 1) the conventional approach; 2) the vector approach; and 3) the set theory approach. In each case, the mathentical concepts were basically the wane. The important implication here is that perhens the two grows studying the material from the vector agrooch and the set theory aproech would be more oroductive than the group using the convention aproach. That is to say, they would be able to perform mometionlly the basic skills, yet they uonld have a movledge of vectors or sets.

The Experimental Design. During the fall semester of 1963, there were approxinately 180 students enrolled in the Introductory College Whematios Course at Central itote College. Those students were freshmen

[^7]who indicated an interest in pursuing a mar in mothematios, physics, chemistry, or in a professional field such as engineering, law, medicine, and so forth.

By standards previously sot, these students were advised to enroll in this course on the basis of scores made on the mathematics section of the test administered by the American College Testing Progran prior to their enrollment in college. If a student ranked botween the fiftieth and eighty-fifth percentile, he would take the Introductory College Mathematics Course. If his score was above the eighty-ifith percentile, he was advised to take the first course in the calculus. A renking below the fiftieth percentile indicated a need for remodial work, and the student was advised to teke a mathemtics course which would prepare him for the adrenced sequence of mathentics courses. These sdvenced courses would Include the Introductory College Mathematics Course, calculus, and so on.

The popalation for this study was defined as the set of mathematies mjors and premrofessional students enrolled in the Introductory Colloge Hathematics Course at Central State College during the fall senester of 1963.

The sample for this experiment consisted of three matuolly exclusive subsets of the poruletion just defined. Fach of these sunsets consisted of 24 students a total of 72 students being involved in the study.
the students who took part in this study were chosen on the following basis:

1) A graduate of a high school in the United Stetes during the spring of 1963.
2) The Introductory College Mathemtics Course was the student's initial course in college mathemtics.
3) The student wes regularly enrolled at Central State College as a fullutixe student.
 F and took all of the tonts admintered during the tine of the esperment.

The dastribution of the samle arong the grouse wes detormined by a randon seloction. The population mot prior to onrollmont fow the $f 11$ semester and dretr Iots thioh spectiod the course section in mich they would be moolted. The procedure usol tive oxda numbered $1,2,3,4$, and
 Was roooded thedistely after the tranne cud be name assigned to a
 that thera mere no devistions feom the elass essignment.

A deempotion of the inguiduch grops his at rolloms:
Grous A - This group wan the control groxp. They sbuded the subject matter from the conventional aprosch. The toxthook unod by this prout wos college habom and Trimonomotry by Fischer and Ziebuhr. This book is being usel by several of the Stste colleges of Oklehom ond has boen in circulation about four years.

Group $8=$ This groun was one of two experimental groups. They studied the suinget moter from the vector apronen. The textbook used was Conatry, Aleghe, ard TrigonomEty by tetcor Methods, axitwon by Axthur H. Copeland. This boot as mblishod late in the soping of 1963.

Group 6 - This grow was the acond experimental proup. They studied tho subject meter from the sot theory approach. A new edition of a textbook by Allendoerfer and onkley was used. It is titled, frincieles of whometios. This book is currently being used at the University of hississigri, the University of Glifornc, and tha the University of Kansas.

The sabject matter whe basienlly the some in each of these grows. The primary difference ws in the aryronch used in instruction. For exmple, whilo the comvontional enprosch utilised stendart procedures in
 The grous using the set theory somroch was doing basicelly the same thing utilizang sets and an ariomatio opproach.

The curation of this exprinent wos ons anocter. It bege in sepm tomber, 1963, and wee termincted in Jrumy. 1964.

The ourco wer fivided into theo mator arass. The fixet of those
 debracemajomations, Retoriag, copachto, fracticmat expessione. logrithms, agd so forth, The secon sue concomod itcole whe the stady

 erd some womatut.
 gret dea asien to corvint the activtios of the thre aroma mat thereby texch abot the sum moterial wh the sam tino.
 the thied and tonth wooks, and again at the ond of the cuparinont. This was done in order to mesure the growth of the students in the experiment with regrd to mothortion stills.

Selection of the Pesting Instraments. One of the major probleas in

 used. They wro es follows:

1) The anericen collogo ?est is a test which is now bojag aduinistered throughout the United States. In oklenowa it is beine recutrod for entrance into the st temsupported institutions of higher lemming, This is test sequence which covors Rour roons: Enclish, socin Stadies, daturl Gciones, and hthomedise Thore is also comosite score besed on the overall tost regults. The mothemacs coure is being used by most on the colleges and universities in orlana, inchathe Contrat State oullage ond ondehom stato Univensity, for pleonent purposes.
2) The Cooperative Alebre rest is a test which menswes doility to do besio elgommo nuipulation. This test is used by ollahom state Univergity in its freshman orientation progrea. The
 ercor of 0 . 0 . In this study the tost was brsed to neagure the stuget's sbiltty to do bswic algobrais monoulations. This test gyosrs to be melludesigned to perdora this task.

 pleciag the ombsisis on the theory underlying twigonometry, wather
 test was used to meesure trigonometric achievement. The test
 matohing section, 111 of thich make it highly comethensive in
 student might be encouraged to guess th the snswer. The assumpe
 grouns and might not, therefore, be unfovorable to any one of the thres grouss.
 test of general ability in problem solving atilizing both algew
 the [wathemticol concents in tested by woblens which reguire understandin and atioetian in he cortrat of chturions of practiont significnee to the stobent 127 A second aritie gaid.

 of problem bret a ctudent might cheonator in a working situation. One of the eriticisms of this tent is that it is highly verbel
 meties section, it did not seom to be so.
3) The Otis Selfudriacterine Tntelymence Tost in dovice for mecmuring intelifgence. The result of thie test were used for descriptive purae an anty.

The purposes of the tosting proprog were to meesure gronth on the part of tho student mith werd to mothometon cohtorment the student wes administered a premtest ond postutest in ench of thege areas:
 solving abtlity Ghe emporetro Algote Test, the pasthuscen trigonometry

27oser k. Suros, The Firth Mentel 3e surements Yesrbook, (Highland Park, Weq Jereey, 1959), 5. 570.
${ }^{23} \mathrm{Ibid}$. $.57 \%$
for this purpose. The results of the ACT Program in Mothematics were considexed to be a premtest of the students ability in mathematics.

The Testing Schedule. By the nature of the conrse content and the criteria on which this study is based, the following testing schedule was naintained.

The seruential Test of Educational Progress in Mathemetics (Form 1A) was administered during the first two days of the semester. The test recuired seventy minutes, therefore tio class periods were needed for the proper administration of the examination.

On the third day, the students in the three groups were given the Cooperative Agebra Test, Form Z.

During the third week of instruction, the Rassmussen frigonometry Test was administered to the three groups. Form A was used in this instance. The three grouss had not yet entered into the study of trigom nometry in their respective sections and the time lanse geve them a break in the testing seguence.

The Otis Selfadministering Intelligence Test was given to the stum dents during the tenth week of the semester. Since this test was to be used for descriptive purposes only, the time of administration was of littlo consecuence.

The final testing sequence, the postotests, were taken eare of during the final week of the semester. Buring the last two reguler class perions, the Cooperative Algobra Test (Form Y) and the Rassmassen Trigom nometry Test (Form B) were administered. During the twomour final exm period provided for each class, the Semuential wast of Dducational Prom gress in thathemtios (Form 1B) were administered in a straight seventy minute seguence. The choice of final testing was a matter of convenience.

The statistical Preatment of the Data. In this experiment, the
trentment of the data wes accomplished by the use of the snelysis of variance and the analysis of covariance. These procedures segregate from comparable groups of data the arithnetic means of the products of the paired devintions of two or nore variables, measured from the respective means of the rariables. The independent varisble wes the approach; i.e., the conventions approech, the vector approach, or the set theory agroech. The dependent variable was the scores obtained on the various tests which were administered to the students particinating in the study.

ASSUMETLONS WNDELYTUG THIS STWDY

In oxder to maintain a logical foundation for this study, the investigator made the following assumptions. From these assumptions, postulates trere derived, postuletes which lead directly into the hypotheses to be tested in this experiment.

Assumption I - Students who complete the Introductory College Mathematics Course should be well grounded in their ability to do basic algebraic manipulations.

Postulate 1 Studeats tho complete this course using the conventional approch will be edequately prem pared to handle basic algebraic manipulations.

Postulate 2 - Students who complete this course using the vector approach will be adequately prewared to handle the basic alebraic manipulations.

Postulate 3 - Students who complete this course using the set theory aproach will be adequately prepared to hemile the besic algebraic manipulations.

Assumption II - Students who completo the Introductory College Wethemstics Course should be rell grounded in their ability to deal with trigonometric problems.

Postulate - Sturents who complete this course using the conventional approach will be adecguately prepared to handle problems in trigonometry.

Postulate $2-S t u d e n t s$ who complete this course using vector methods will be adeautely prepared to handle probleras in trigonometry.

On the basis of the assumptions just stated, the following hypotheses were tested in this study:

Hypothesis H_{1} - There will be no significant differonce in the mean scores of the throe groups at tho end of the experiment with regard to ability in algebroic manipulation at the 5 per cent levol of aignifi. cence.

Hypothesis H_{2} - There rill be no signifiont difference in the meen scores of the three groups at the end of the exporiment with regard to achievernent in trigow nometry at the 5 per cent level of significance.

Hypothesis H_{3} - There will be no significant difference in the meen scores of the three grouns at the and of the experinent with regard to ability in problem solving at the 5 per cent level of significence.

In any experimental study of this type, there are certain limitations which sem to be prevalent. Some of these include size of the sample. duration of the experinent, outside interesta of the student and so on.

One limitation which conld be an important factor was the instructor for each group. It was necessery, in this study, to use three different instructors. However, to use one instructor for all three sections might also be folly. To substantiate the validity of using three instructors, the following criteria wore adhored to:

1) Each instructor indiceted an interest in taking part in the study.
2) Exch instructor indicated an interest and preference for teaching the particular approach to be used in his section of the couxts.
3) Exeh instructor held ameter's degree in the fiold of mathematies and had a least 45 semester hours of greduate rork in mathemtics.

SUMARY

This was an experimental study in methemetics eduction. The sample for this experiment was a set of freshman stadents from Central State College. They tere randomly assigned to each of three groups.

During the fall senester of 1963. the students were instrueted in algebra and trigonometry with applicetions. At the beginning of the course, they were tested to measure ability in algebre, trigonometry, and genexal problem solving ability. tt the and of the experiment, they were again tosted along thest same lines.

The anolysis of varince and the cnelysis of covariance were utilized to determine whether or not there were any significant differences between the three groups with regard to mean scores at the five per cent
level of stumpacmee.
Three ingotheses were tosted. The firct hypothasis related itaelf to algebreic achievenent, the secom to trisononetric aghiewnent. and the third to general probled solving obility.

Introduction

In order to ging more complete description of the sample, e B guestiomaire (Appondix A) and a testing program were utilized in this study.

The questionnaire was dosigned to provide information regarding the background of the student: i.e., the locetion of his hometom, the size of his high school graduting elass, his prearetion in mathematies, his professionsl ambitions and intentions.

The primary purpose of the testing program was to messure the chenges which occured in mathemticel achievement with regard to the different approches. Inforntion was also gathered which could be used to comare the members of the sample as well as to describe them.

The Questionnaire. Daring the first week of the experimental study, a questionnare was distributed amone the students in the three experimental groups. The information gathered from this questionnaire was used in part to determine thether or not the students had met the reguirements for participation in the study as stated in Chopter II.

There tere several factors which were considered to be of importance by the investigator mith regard to the description of the sample.

For example, the studont's hometom might be a key factor. If all of the students in one group came from a large oity, and the students in
a second group cone from of mataren, a bes might be introduced. This could be due to a difference in the educationel pattern of the schools. the quelity of the instructionel stefe or the learning focilities which were svalleble.

Centrol State College is the fastesturgroning of the six state colleges In Oklahoma Belne looted just ton miles north of Oklahome Gity a metropolitan area, would make it seem thet most of the students would come fron the Oklohoma Gity area. This is true. But there are meny stum dents who come from other parts of the state as well.

Table I is a representation of the distance thet the stadents travel to become students at Centrel State College. To facilitate this operation, the distance 0.25 miles mill include the greater Oklahome City orea.

MRLE I
DISTRTBUTION TABE : DSSRANCE OE MOME TOWE HKOM GSC

Distance	Conventional	Vectors	Sets
$0=25$ miles	11	12	13
$26-100$ miles	7	9	5
$101=$	6	3	6

The sige of the school system thich a student attended might be a factor which is important in a study of this type. As seen in Table I. nany of the students did come from the grenter oklohom Gity aroa. Hown ever, there sppears to be a large number of high schools in this area which axe not very large by ordinary stendands. Table II offers inform
mation regerding the sige of the etudert's high school gredunting class.

TABLE II

Size	Conventiont	Vectors	Sets
$0-100$	6	14	10
$101-250$	10	6	7

A very maxked sjinilarity mes also noted in the mathematical backgrounds of the students in the thres groups.

It is usually recomended that a student heve at least two years of high school preparation in algebre and a year of plane geometry before enrolling in the Introductory College inthemstics Course. Approximately ninety per cent of the students in the sample met thjs requirement. Sev. eral studente had a much stronger beckground in mathemotios then was required. Trigonometry was taken by fourteen of the students in each group. Hetrix algebra, a relatively nen course in the secondary curricu. Ium, was taken by only a few students. Mathematicel analysis, a course which is considered to be preparatory for calculus. was teken by only three students.

Tabie III shows the high school preparation in mathemetics of the stadents in the somple.

TA DLi III

Course	Conventionel	Vectors	Sets
Algebre I	24	24	24
Plane Geomotry	24	24	24
Algetre II	22	21	21
Trigonometry	14	14	14
Solid Gennetry	7	10	8
Matrix Algebra	1	2	2
Mathemtieal Analysis	2	0	1

Many of the students who attend Central State College do so knowing that they will finish their degree program somewhere else.

This is especially true with those students who wish to become engineers, doctors, lawyers, and so on. Table IV is a representation of this distribution as it affects the three experimental groups.

TABLE IV
DISERTBUTION TABLE: THE SWOENTS MOJOR TLELD O STUDY

Major	Conventional	Vectors	Sets
Mathatias	11	11	10
mgineering	10	11	9
Prempofessions1	3	2	5

During the tenth woek of the somester, the Otis Self-Administering Intelligence Test was administered to the students in the three experimental groups. The information gathered from this test is offered here in a descriptive role. Table shows the distribution of the IQ scores as they are related to the three groups.

TABLE V

Scores	Conventional	Vectors	Sets
$128-132$	1	0	1
$123-127$	4	1	2
$118-122$	1	3	5
$113-117$	7	10	7
$108-112$	6	5	7
$103-107$	5	3	2
$98-102$	0	2	0

Gredes are a factor which can be used to show achieverant in methe. moties.

The grades given in this course were evaluations of the teacher indegendent of the testing progrem conducted with regerd to this study. They are offered here for descriptive purposes and uill not be used in the statistical analysis of the data. The distribution of grades according to groups is given in Table VI.

It should be noted here that students who did not successfully
complete the course vere excluded from the study. Only menningful grades such as A, B, C, D, or were acceptable.

TABIE TI
DISTRIBUTHON TABLE: GRADES ATMATND IM MTHEGATTCS 165

Grade	F	D	C	B	A
Group	3	4	9	5	3
Conventiona	4	3	8	5	4
Vectors	3	2	10	4	5
Sets					

The Besults of the Testing Program. During the course of this experimental study, several mathematies tests were administered to the members of the sampling body.

These tests included algebraic manipulation, trigonometric achicvement, and general problem solving ability in mathemetics.

In addition to these tests, the Otis Gelfadministering Intelligence Test was also given.

Prior to their enrollment et Contral State College, each momber of the sample was administered the Amorican College Testing Program. This program yiolds five test scores. They are: 1) Mothomaties; 2) English; 3) Social Studies; 4) Natural Science; and 5) a Conposite score.

A complete listing of the raw scores made on ench of the tests is given in Appendix B. For the sake of brevity, Table VII is given on the next page to shou the mean scores achieved on each test by the three groups as well as the moen score for all three groups. This data is in reference

TABLE VII

TEST SCORES: DEPGOENP VARTABLE STARTSTTCS

Test	mans						$\begin{aligned} & \text { Totals } \\ & \text { M } / \text { ile } \end{aligned}$		${ }^{\text {c }} \mathrm{CV}$	${ }^{4} \mathrm{cs}$	$t_{\text {vs }}$
	$\begin{gathered} \text { Conventiongl } \\ \text { M ile } \\ \hline \end{gathered}$		$\begin{aligned} & \text { Vectors } \\ & M \quad \text { olile } \end{aligned}$		$M^{\text {Sets }} / i l e$						
Cooperative Algebre											
Pre-test	32.8	90	31.8	89	30.9	89	31.8	89	.26	.78	. 41
Post-test	34.3	98	32.5	97	33.5	97	33.4	98			
Rassmusson Trigonometry											
Prentest ${ }^{\text {a }}$	53.2	10	55.3	12	55.8	12	54.8	11	0.62	-. 84	.. 18
Post-test,	58.9	20	62.3	28	57.7	18	59.6	23			
Post-test ${ }^{\text {a }}$	67.6	40	68.3	40	61.0	28	65.6	35			
STEP Mathematies											
Pre-test	23.9	69	24.0	69	24.4	69	24.1	69	. .07	-. 32	. .27
Post-test	26.7	78	28.3	81	27.6	80	27.5	80			
ACR Mathematics	21.6	72	21.0	72	21.0	72	21.2	72	.24	. 38	0.00
English	18.0	55	17.2	54	19.1	56	18.1	55	. 60	. .94	-1.43
Socisl Studies	18.7	55	17.4	54	18.1	55	18.1	55	. 81	. 44	-. 52
Natural Sciences	20.9	72	21.1	72	21.4	72	21.1	72	-. 13	-. 35	-. 18
Composite	19.7	69	19.7	69	19.9	69	19.8	69	0.00	-.. 21	-. 22
Otis Intelligence	114.3		112.8		115.3		114.1		.74	. . 45	-1.39
$\mathrm{n}=$	24		24		24		72				

a) Only those students with a background in trigonometry were included.
to the premtost and post-test sequence. In addition percentile scoses are included for each of the tests.

It should be noted that only fortyatwo scoros wera recorded for the premest in trigonometry. This was done because only these forty-two students hed had previous work in trigonometry. For the rest of the sampling body, valid testing results on this particular test were not possible.

The tatest whis used to compere the mean scores of the three groups. The results of this test of significance are also listod in Table VII. A twolue of 7.68 was needed at the five per cent level of significmee. This did not occur in ary aso.

In adation to the means and the totost, the reliability correletion coefticionts vere amputed for the varacus tecto. In fablo MITI. Table IX, and Table X, scatter diagrams are used to show the correlation between the premest and postmest scores on the Cooperative Algebra Test, the Rassmussen Trigonometry Test, and the Sequential Pest of Tuvationel Progress in Watheratios. The highest correlation was recorded on the Cooperative Algebra Test. It was .75. The STEP test hed a correlation coerficiont of .63 . and the Rassmussen Trigonometry Test had a correlation of .58 .

Other correlation coefficients were compted and seater diagrams for these tests are included in Appendix C.

SUMARY

On the basis of tho information gathered using a questiomaire and an extensive testing program, the groups were fairly well matched.

The bsckgrounds of the students in each of the three groups apporred to be similar. The distance traveled by the students to get to the Cenm tral State College cempus, the size of the student's high school graduating class, and the preparation of the students in methematies, were

TABLE VIII
SCATTER DLAGRAK: STEP PRETEST SCORES VS. STEP POST-TEST SCORES

$\begin{aligned} & \text { Postatest } \\ & \text { Prentest } \end{aligned}$	15-18	$19-22$	23-26	27-30	31-34	35-38	39-42	43-46
35-39					1		1	1
32.35				1	1	1		
28-31		1	1	$1 / 11$	III	1/1]	1	
24.27	1	//	$11 / 1 /$	1/111/1	III	1		
20.23	1	III	1/111	(1/1/		1		
16-19	111	/1/	IIIII	1	1			
12-15		$1 /$	1	1				

$$
\begin{aligned}
& n=72 \\
& x=.63
\end{aligned}
$$

TABLS IX
SCATEER DLAGRAM: TRIGONOMETRY PRETEST SCORS VS. TRIGONOMTTYY POST-TEST SCORES

Post-test Pre-test	$45-49$	50.54	55-59	60.64	65.69	70.74	75-79	80.84
71.75							1	
$66-70$							1	1
61-65			1		$1 /$	$1 / 1$	1	/
56.60	1	1		1	$1 / 1 / 1$	1		
51-55	1	/1	/1/	1				1
46-50		1	$1 /$	/1/1	1			
41.45			111	1	1			
36.40		1						
$n=42$								
$\mathbf{r}=.59$								

TABLS X
SCATTER DLAGRAT: ALARBRA PRE-TEST SCORES VS. ALGEBRA POST-TEST SCORES

Pre-test $15-19$	20-24	$25-29$	30-34	35-39	40.44	45.49	50-54	55-59
50.54							1	1
45-49			//		1	/1	1	
40.44			/	$1 /$	$1 /$	/1/		
35-39		1	/1/	11	/11/	1		
30-34 /	/1/		/1/	1/1/1/1	1			
25-29	$1 /$	$1 /$	/1/1/1/1		1			
20.24 //	$1 /$	/1/	//	1				
14.19	/1/	$1 / 1 /$						
$m=72$								
$x=.75$								

all noted to be auite similer.

One factor which might have been a significant one, is the choice of major field of stwdy. Honever according to information gethered in the questionnare, approximetely the same number of students in each group indicated an intorest in pursuing a mathemtios mejor prewengineering, or a rofessional field of study.

Grades, which might be an indicator of student interest and potential, were also evenly distributed between the three groups. Only students with meaningful grades of A, B, C, D or \vec{F} were included in the study.

On the basis of the totest, no significant differences rere noted between the three groups with regard to the pre-test sequence at the five per cent lovel of significance.

The correlation coerficients indicste s fairly high correletion between the prewtests and postrotests in algebre, trigonometry, and genw exal problem solving ability as measured by the Cooperativo Algebra Test. the Rassmussen Trigonometry Test, and the Sequential Test of Educational Progress in Mathemetios.

CHAPTER IV

GTATISTICAL TREATMENT OF THE DATA

This study was conducted to answer the following question: Which one of three approaches would be most effective in teaching the Introductory College Mathemetics Course at Central State College; 1) the conventional approach, 2) the vector approach, or 3) the set theory approach?

Wach of those approaches was defined and discussed in Chapter I. The criteria which were used in making the decision relative to the approzch used were algebraic manipulation, trigonometric achievement, and generel problem solving ability.

The Cooperative Algebra Test (Form Y) was used to measure the student's performance with regard to algebraic menipulation. The Rassmussen Trigonometry Test (Form B) was used to measure achievement in trigonometry. The Sequential Test of Educational Progress in Mathematics (form 1B) was used to determine the student's cepabilities with regard to general problem solving.

A prewtest sequence had been completed by the first week of the experiment. The students were administered the Cooperative Algebra Test (Form 2), the Rassmussen Trigonometry pest (Form A), and the STEP Test in Mathemetics (Form 1A). During their senior year of high school. the students had been given the ACT Program which consisted of subutests in mathematics, English, socisl studies, and natural science. A coma posite scores is also computed on the besis of the raw scores made on the ACT Program.

In addition to these tests, the Otis Self-Administering Intelligence Test was also given. The results of this test were used only for descripa tive purposes.

Using the rad scores attained by the students on the various tests. the following hypotheses were tested:
H_{1} * There will be no significant difference in the mean scores of the three groups at the end of the experiment with ree gard to algebraic manipulation at the five per cent level of significance.
H_{2} There will be no significant difference in the mean seores of the three groups at the end of the oxperiment with regard to achievement in trigonometry at the five per cont level of significence.
H_{3} - There will be no significent difference in the mean scores of the three groups at the end of the experiment with rem gerd to ability in generol problem solving at the five per cent level of significance.

In order to determine which tyre of anslysis would be most benefim cial in this situation, totests were run on oach of the tests in the pre. test sequence. No significant differences were found between the mean scores of the set theory group, at the five per cent level of significance.

On the basis of this evidenee. it wes possible to essume thot the sample is, in fact, a randonly drawn sample from a given population, nemely the set of all freshman students enrolled in the Introductory College lathematics Course at Central State College during the fall semesw ter of 1963.

Although there wore no significent differences in the achievement of the three groups as measured ty the American College Testing Program, and the premest sequence in algebra trigonometry, and general problem solving: the enelysis of covariance appeared to be the most appropriate way of amalyzing the data obtained from the testing program.

In using the analysis of covariance, the difference between premtest
and postatest scores regerding the particular trait, elgebra, trigononetry, or problem solving ability, wes noted. This difference was then incorporated into the analysis.

The way in which this'wes done was to combine both test scores in a Innear opexation. If I_{2} were the post-test score and Y_{1} the preatest score, then the adjusted soore was oquel to $Y=\left(X_{2}-Y_{1}\right) \neq k$, where k is a positive constant.

Tre adjusted Y score then beceme the post-test result and the ACT soore in mathematies was used as the preatest score.

The value of k for all three traits, algebraic menipulation, trigok nometric achievement, and general moblen solving ability, was thirty.

Testing Hypothesis H1. The hypothesis. Hy, stated that there would be no significant differences between the mean seores of the three groups with respect to the scores attained on a test of algebraic manirulation.

Using a random tade of numbers, one of the scores from onch group was discarded. This was done to stribilize the andysis.

The computation for the inalysis of covariance was conducted. Table XI shows this analysis.

The Futast yielded: $F=\frac{3.6}{29.8}=.121<3.14=\mathrm{F}_{2} .65 .05$
An F-value of 121 is not sufficient evidence to reject the hypotheo sis that there are no significent differences between the mean scores of the throe groups with regard to algebraic manipulation.

Testing Hyoothesis He. The hypothesis, H_{2}, stated thet there would be no significent differences between the mean scores of the three groups with respect to the scoros attained on a tost in trigonometry.

In this particular anslysis. only fourteen scores were used from each group since this is the number of students tho hed hed previous
training in trigonometry. For the rest of the sample, the preatest in trigonometry was not a valid measuring device becense these stadents had not had any experience with trigonometry.

TABLE XI

Source	df	Sur of Squares	Hean Squares	SD
Anong Heans	2	7.2	3.6	
Within Groups	65	1935.1	29.8	5.5

Agsin a scone wes randomly omitted from each of the three groups in order to obtin shigher degree of atability in the statistical treatment of the deta?

The comutation for the analysis of covariance was conducted. The information gathered from snalysis is shown in Table XII.

The Fotest yielded: $F=\frac{133.4}{67.7}=1.98<3.25=F_{2,35, .05}$
An Pwalue of 1.98 is not sufficient evidence to reject the hypothe sis that there are no significont differences between the mean scores of the three grouns with respect to trigonometric schievement.

Testing Hyoothesis H_{3}. The hypothesis, H_{3}, stated that there would not be a signifiont, difference between the mean scores of the three groups with respect to the scores attained on a test of general problem solving sbility.

A single score was omitted from each group in order to lend stability to the analysis.

Table XIII shows the dota as related to the analysis of covariance.

TABLE XII
ANALYSIS OR COVARIANCE: TRTGONOHETG ACHTEUBLENT

Source	df	Sum of Squares	Mean Squares	SD
Among Means	2	266.9	133.4	
Within Groups	35	2.369 .5	67.7	8.2

TABLE XIII
ANALXSIS OF COVARIANCE: PROBLEM SOLNTNG ABILITY

Source	df	Sum of Squares	Mean Squares	SD
Among Means	2	22.1	11.9	
Within Groups	65	1.427 .0	22.0	4.7

The Futest yielded: $F=\frac{11.1}{22.0}=.505<3.14=F_{2,65, .05}$
An F-value of . 505 is not sufficient evidence to reject the hypothesis that there are no significant differences between the mean scores of the three groups with regard to achievonent in general problom solving ability.

SUMMARY

The purpose of this study was to investigate which of three different approaches to the study of the Introductory College Mathematics Course would be most effective. The three appraches were: 1) the conventional
approach; 2) the vector approach; or 3) the set theory approach.
The criteria used in making this decision were: 1) algebraic manipo ulation; 2) trigonometric achievement; and 3) general problem solving ability.

Tests were given prior to the experiment in order to measure these traits. The tutest was used to determine whether or not there vere any signifiennt differences between the three groups in any respect. No differences urere found.

On the basis of this information, the anelysis of covariance was used to test three hyootheses. These hypotheses stated that there would be no significant differences between the meen scores of the three groups with respect to algebraic manipulation, trigonometric achievement, and general problem solving ability.

In the analysis of covariance, the Futest failed to indicate a significant difference between the mean scores of the three groups at the five per cent level of significance. The hypotheses of no significent differences between the mean scores of the three groups with regard to scores attained were not rejected.

CHAPTER V

TNTERTRTTATION OF RESULTS

This study wis conducted to answer the following question: which one of three approaches would be most effective in teaching the Introm ductory College Mathematies Course at Central State College: 1) the conventional approach, 2) the vector approach, or 3) the set theory approsch?

The Introductory College Mathematics Course wes defined as that fisemour course in college mathenatics which includes the study of the basic elements of algebra and trigonometry.

The conventional aproach to the study of mathematics wes defined as that approach which has been used during the part twenty-ive years in many of our secondary schools, colleges and universities.

The subjoct mattor which is taught in the Introductory College Mathematios Course could also be developed using vectors or set theory. The approsch which is used could be an important factor in the design of the methemtics curriculum.

Summary

This study was an experimental study. The sample was chosen from a group of freshman students who met the following stonderds.

1) They were freshmen who were enrolled in their first college mathematics course.
2) They were graduates of a high school in the United statos during the spring of 1963.
3) These students had chosen mothemetics, pre-engineoring, or preaprofessional work as their major field of study.
4) They had taken the Amerioan College Testing Program prior to their enrolment at Central state College.

The population was defined to be the set of all freshmen students at Central State College who were enrolled in the Introductory College Mathematies Course during the fall semester of 1963.

The sample consisted of 72 students. This scmple wes divided into three subagroups of 24 students each. One of the groups studied the course materinl using the conventional aproach. The socond group used the vector approach and the third group studied the material utilizing the theory of sets.

The duration of the experiment was one semester.
The students were tested before and after the period of instruction in order to note any chenges which could be attributed to the particular approach used.

The prentest sequence included the Americen Testing Program, the Cooperative Algebra Test (Form Z), the Rassmassen Trigonometry Test (Form A), and the Seguentiol Test of Educational Progress in Mathematics (Form 1A).

The ACT Program was administered to the students during their senior year in high school. The results of this testing program are used for placement purposes in the colleges and universities of Oklahoma.

The postmtest sequence consisted of the Cooperative Algobra Test (Form Y), the Rassmussen Trigonometry Test (Form B), and the Sequential Test of Educetional Progress in Mathematies (Form 1B).

The criteris thich were used in making tho choice regardirg the most effective aproach are es follows: 1) algebraic manipulation; 2) trigonometric achievement; and 3) general problem solving ability.

The Cooperative Algebra Pest measured the student's ability to handle basic algebraic manipulations. The Rassmussen Trigonometry Test was used to measure the student's achievenent in triponometry. The Sequential Test of Edueationil Progress in Mathemtics ows used to measure the student's ability in general problen solving.

The instructors for the three groups were chosen on the basis of interest in the study, baekground with rogard to methemetical preparem tion and teeching experience, and a declared interest in teeching the course using one of the three aproaches.

In treating the data statisticolly, the tatest was utilized to dstemine whether or not there was a significent difference between the three groups with respect to the scores achieved on the pre-test sequence. No signifient differences were found at the five per cent level of significnnce.

On the basis of evidence obtained, it was assumed that the sample was actually a randon somple from the defined population and thet any deviations would in fact be due only to chance ractors.

Operating on this assumption, the dote was treetod using the anel. ysis of covariance.

Conclusions

Three hypotheses were tested in this experimental study. They were:
H_{1} - There will be no significant difference in the mean scores of the three groups at the end of the experiment with regard to aldebraic menipulations at the five per cent level of sigrificance.
H_{2} - There will be no significant difference in the mean scores of the three grougs at the end of the exporiment with regard to achievement in trigononetry at the tive per cent level of signisicance.
H_{3} - There will be no significant difference in the mean scores of the three groups at the end of the experiment with regard to ability in general problem solving at the five per cent level of significance.

In each case, a value of $F=3.14$ was needed in order to reject the hypotheses of no significent difference between the mean scores of the three groups at the ive per cent level of significance.

With regard to algebraic manipulation, the Futest indicated an F value of .121.

The hypothesis of no significant differences between the three groups with regard to alebraic manipulation was not rejected.

With regard to achievement in trigonometry the F-test yielded an Pvalue of 1.98 .

The bypothesis of no sirmificant differences between the three groups with regard to trigonometric achievement was not rejected.

With regerd to general problen solving sbility, the F-test yielded an F value of .505.

The hypothesis of no significant differences between the three groups with regard to general problen solving ability was not rejected.

One of the limitations on this study was the neture of the testing instruments. Wach test favored the conventional group. It was not possible to use a test which could measure the student's ability to manpulate vectors, or sets, as this test would be meaningless for the students using the conventional approach.

Keoping this in raind, and realizing that there were no significant differences between the three groups with regard to algebraic manipuletion, trigonometric achievement, and general problem solving ability, the following conclusions were reached:

1) It appears that the students who study the Introductory College Mathenatics Course at Central State Colloge using the vector
approach or the set theory appronch will hevo geined more subjectumtter wise, thrn those students who are instructed using the convontional approech.
2) It appess that the students studying algebra and trigononetry using vectors or sets score comparably with the group using the conventional approach with regard to basic algebraic manipulation.
3) It appears that the study of algebre and trigonometry using vectors or sets does not limit the student in achieving in trigonometry.
4) With respoct to general problen solving ability, no significant differences were noted. It appears that the approach to be used in this case would be arbitrary.
5) The fact that there were no significant dirferences between the two groups using the vector and set theory approach could lead to some question as to which one is more effective. At this time, it appears that the choice again is an arbitrary one. The choice would depend to a certain extent upon the curricular design into which the approch would be incorporated.

Implications

While the sample for this particular experiment was a small one, and the population was chosen from a single institution of higher learning, sone benefits can undoubtedly be derived from it.

A greet deal of research is necded in order to find better ways and means to teach mathemstics st the secondary school level and in our colleges and universities.

This study could serve as a pilot study for further studies which could culminate in an ultimate solution to this and similer problems.

More and more advanced mathemetical ideas are being introduced into the secondary schools and into the first two years of the college progra. How much mathemtics can be taught, and to whom, will be questions which will need to be answored.

Research studies such as this one could be beneficial in this

```
respect.
```

Several aspects of this study suggest areas for further pesearch. Some or these are:

1) There is a definite need in the field of mathematies for stand. ardized tests to measure the various aspects of student achievement in mathematics. These tests noed to be structured so as not to be biased toward any one approach in the study of mathematics.
2) There is a definite need for this experiment to be replicated in a number of colieges and universities with a larger sample. A nore rigorous testing program should be adhered to in order to evaluate finer differences in student growth.
3) A study of this type should be followed by a study anslyzing the student's achievenent in a subseguent course. Hny of these students will teke a course in colculus. How they achieve in this course after heving experienced the vector or set theory approach could be signifieent.
4) More inter-departmental cooperation is definitely needed in order to design courses such os this one, using conventional menn, vectors and/or sets, which can be used by scientists, social scientists, psycholocists, business students, as well as by a mathemetics major.
5) A closer look at the mathemtics curriculum is needed. It is possible that the entire four yer program should be rewritton to overcome duplication, elininate unnecessery areas of instruction, and improve instructional techniques.

BTBLIOGREMYY

Allendoerfer, Carl B., and Cletus O. Okley. Principles of Mathematios. New York: MeGraw-Hill, 1963.

American College Testing Program. Using the ACI Scores on Your Campus. Chicago: Science Research Associater. 1960.

Baker, I.C. "Wot What Can be Taught, but wht Should be Taught." The American Mathematical Monthly, LXIX (May, 1962). 426.28.

Begle, E. G. "The School Mathemities Study Group." Methentics Teacher, LI (December, 1958), 616.18.

- "A Study of Momemical Abilities." American Mathematieal Monthly, LXIX (December, 1962). 1000-02.

Bernstein, Allen L. "Recent Research in Mathematios Teaching." Michigan Education Journal, XL (Novenber, 1962), 262-73.

Birnbaum, Z. W. Introduction to Probability and Mathemetica Statistics. Net York: Harper and Brothers, 1962.

Buck, R. C. "The CUPM Catalog Survey." The American Mathemtical Monthly, IXIX (April, 1962), 304-06.

Butler, Charles H. and Lynorod F. Wren. The Teaching of Secondary Whthemptics. New York: McGraw-Hill, 1960 .

Copelend, Arthur H., Sr. Geometry. Algebre, and Trigonometry by Vector Methods. New York: MeMillan, 1962.

Christilles. W. E. "The Need for an Emphasis Upon Creative Development in the Teaching of Mathemetics. "The American Mathemetical Monthly, LXIX (April. 1962), 308-09.

College Entrance Exanination Bosrd. A Doscription of the College Board Achievement Tests. Princeton: College Entrance Examination Board. 1962.

Cook. Desmond L. The Relation of Possible Hawthorne Fiffect Components to Stages of Experimental Investigetion. Columbus: Ohio State University: 1962.

Cunninghame-Greene, Raymond. "Industrial Mothematics." The Mthemetical Gozette, XLVI (May, 1962), 106. 10.

Dixon, Wilfrid J., and Frank J. Massey. Jr. Introduction to Statise tical Analysis. New York: MoGrownili. 1957.

Drew, J. Milliam. "The Mathemstics Curriculum in the Small College." The American Mathemetical Honthly, LXIX (August-September, 1962), 664.

Eves, Hownd. An Introduction 60 the History of Hometics. Hen York: Rinehart and Comeng? Ince: 1960 .

Fallon, Calos. "the Teating of Mathomtios for Mmagoment Cxoers."

 nometry. Tinglovood Cliffs. H.J.: prentice-Hall. Inc. 1960.
 Pestricomen 11. Inc. 1960.
 Jonemns, Green and Company. 1950.

Grossmarc, George. "Advaned Placement Whthemtios - For Whomp" Whembics Teacher, LV (hovomber, 1952). 560.66.

Hoel. Paul G. Introduction to Metherticl 3 totistics. Mos York: Miley, 1957.

Huntsberger, Devid V. Elements of Statisticel Inference. Boston: A11m and Becon, Ince. 1961 .

My. Kenneth 0. "Small Versus Large Clesses." The Aneriean Monemticel Monthly. EXXX (0y, 1962), 433.34.

Milligan, Merle. Mn Inquiry into the selection of Subject Jettor Content for College froshma Matheraticss (Unpub. Bd.D. dissertam tion, Oflahoms state Thiversity, 1961).

Murray, F. J. "Ducetion for Amliod Whematice," The Americen

Necley, J. H. "hat to do About a Nees Rind of Freshma." Mmerien Methervitics Monthly, LXYI (September, 1959), 584.36.

- "A Generation of High School Cnloulus." Americen Hetheme tic 1 Monthly, HXVII (Decomber, 1961), 1004-05.
"Recommendetions on tho Undergeduoto Pogrom for Engineors and Physictsts." The Agericon thenertion Whthly, IXIX (Ny, 1962), 33947.

Romers, Herman Heary, W.L. Gage, and J. F. Rumel. A pectiog Introw duction to Mensuroment and Mrinetion. Ner York: Hermer and Brotherss 1960.

Researoh Desita and Amivsis. Second Amun Phi Delta Kopo Symooium on Bducetioni Reserch. Bloomington, Indiens: Phi Dalte Ropa. Ine. 1961.

Rosenbloom, Paul C. "Implications for the Colleges of the Nes Schocl Programs." The American Mathematicel Monthly, LXIX (April, 1962). 255-59.

- "Iarge Scale Experimentation with Methematics Curriculum." Research Desien and Anslysis. Eds. R. O. Collier and S. M. Elam. Second Annual Phi Delta Koppe Symoosium on Educational Research. ch. I B, 196\%. pp. 5-10.

Senford, Nevitt. The Anerican College. New York: John Wiley und Sons, Inc., 1962.
. "The Succossful College." Heh Journa, (Moverber. 1962), 21.
Smith, Robert R. "A Desk, Some Chairs, and a Bleckboerd." The American Mothertice Monthy, LXIX (Augusto.Sentember, 1952). 658.63.

Snedecor, George W. Statisticel Methods. Ames: Iow State College Press, 1959.

Steel, Robert G. D., and Inmes H. Torrie. Princioles and Procedures of Statistics. Wov York: MeGrow-Hill. 1960.

Sleller, R. R. BShould There Be A Choice of Guetions in an Examination paper? The Mathemstical Gazette, XLVI (February, 1962), 13-14.

Trenty-Sixth Yearbook. Evaluation in Mathematics. Washington: National Council of Teachers of Wathematics. 1961.

Ulmer, Gilbert, and Donald Eillotsom. "The Tesching of Riathenstios at the College and University Level." Revios of Elueational Research, XXXI (June, 1961). 314.22.

Ver Dalen, Deobold B. Understanding Rducetional Research fey York: MoCratminill 1962.

Von Bngen, Henry. "Plans For Reorganiantion of Collage Preparatory Hathemtics." School Science and Methemtics. LVIII (April. 1958). 279.

Watson. Goodrin. "Whot Do We Know About Lenrning?" WeA Journel, LII (Nsech, 1963), 20..22.

APPGIDIX

APPENDIX

Appendix A
A Questionnaire

MATEMATCS OUESTIONATRE

High School where Graduated \qquad Ir. of Graduation \qquad

Home Town
 Size of High School Gradueting Class

List the mathematics courses you took in high school:

List the mathematios courses offerea by your high school but not taken by you:

1. \qquad
2. \qquad
What is your elass stending at Central stato College'
(i.e., First semester freshman, second semester freshmm, etc.)

At the precont tine, whet is your intended major(s)?
(i.e., Methometios, Physics, Premengineering, ete.)
1.
2.

Intended Minor(s)?
1.
2. \qquad
List any mathemtics courses you have taken at Central state College prior to this course:

1. \qquad
2. \qquad

APregide

Appendix B
Reva Scores

TA BLE KIT

Student 10.	Conventional		Vectors		Sets	
	Premtest	Postmtest	Pre-test	Post-test	Prestest	Postmtest
1	51	58	46	45	33	17
2	46	32	31	37	24	38
3	43	47	38	31	26	34
4	36	27	41	45	48	43
5	42	42	22	18	26	32
6	47	53	39	12	24	31
7	33	34	28	32	37	34
8	26	26	15	25	34	35
9	45	42	17	21	38	40
10	38	46	34	37	36	37
11	23	20	35	44	52	50
12	24	31	37	22	22	19
13	28	32	33	24	26	40
14	28	34	36	32	28	26
15	25	24	35	39	32	24
16	40	40	15	23	29	34
17	22	26	36	41	32	35
18	36	33	42	33	17	27
19	29	31	24	25	31	38
20	16	23	14	20	142	37
21	34	39	42	48	32	40
22	33	30	46	34	22	20
23	15	27	22	27	30	35
24	26	22	40	36	27	32
W=	24	24	24	24	24	24

TABLE XV
RAW SCORES: SGUENT SCORES ON RASSMUSGEA TRIGONOMETRY TEST

Student Wo.	Conventional		Vectors		Sets	
	Premtest	Post-test	Pre-test	Post-test	Premtest	Post-test
1	63	83	54	82	56	70
2	--	40	61	72	\cdots	60
3	61	71	--	63	54	58
4	45	58	65	79	--	57
5	-	39	\cdots	54	62	58
6	74	79	64	69	--	62
7		65	--	62	59	68
8	-*	48	-	51	\cdots	48
9	52	55	51	57	49	52
10	56	67	53	61	55	54
11	--	57	69	75	68	82
12	--	48	42	65	54	50
13	--	59	-	45	-	46
14	\cdots	63	59	68	45	57
15	57	53	--	63	48	57
16	54	46	\cdots	50	-	59
17	50	63	46	60	-	49
18	--	49	57	69	-	59
19	39	54	46	61	65	72
20	56	68	--	50	59	63
21	49	55	-	57	58	46
22	43	59	45	64	--	49
23	46	64	$-$	53	49	67
24	-	71	62	65	--	41
$N=$	14	24	14	24	14	24

TABLE XVI

Student Wo.	Conventional		Vectors		Sets	
	Pre-test	Post-test	Pre-test	Post-test	Pre-test	Post-test
1	33	45	31	27	30	34
2	29	36	32	29	28	32
3	32	31	17	27	19	21
4	19	17	30	38	29	37
5	26	30	17	25	26	31
6	30	33	30	29	24	25
?	23	21	25	35	24	22
8	26	17	19	23	26	33
9	23	35	21	29	25	28
10	38	41	28	26	22	26
11	18	25	33	36	28	39
12	27	24	20	30	25	34
13	21	19	19	18	25	26
14	19	24	23	25	26	27
15	15	20	25	27	21	25
16	29	31	14	28	19	25
17	20	17	22	28	23	28
18	20	25	36	34	17	21
19	21	22	16	17	24	27
20	12	23	16	22	28	22
21	30	29	29	36	24	27
22	23	27	30	30	24	24
23	13	19	26	26	24	28
24	22	24	18	33	25	20
	24	24	24	24	24	24

TABLE XVII
RADT SCORES: SWDEUT SCORES ON ACT PROGRAR

Student Mo.	dathemtios			Enclish			Social Studies			Natural Science			Composite		
	Conv. Veetors Sets			Conv. Vectors Sets											
1	25	24	23	22	23	18	28	16	22	31	21	20	29	21	21
2	26	19	13	18	16	20	15	15	22	23	17	28	21	17	21
3	19	25	20	9	23	16	14	20	11	19	26	17	15	24	15
4	17	21	24	16	15	23	25	15	16	20	18	21	20	17	21
5	24	18	14	24	14	18	21	11	16	28	13	23	24	14	18
6	22	28	19	26	18	19	15	15	18	20	20	16	21	21	18
7	23	23	14	17	19	18	15	28	16	17	22	23	18	23	18
8	28	17	23	27	9	18	29	15	20	25	18	18	27	15	20
9	18	18	14	14	20	18	11	15	16	13	22	23	14	19	18
10	24	23	23	24	25	22	25	28	21	23	29	26	22	26	23
11	14	20	28	11	20	17	17	22	16	18	27	24	15	22	22
12	19	24	20	9	20	16	14	15	11	19	23	17	15	21	16
13	20	16	22	18	13	23	15	4	22	18	7	23	18	12	23
14	22	17	23	17	17	25	17	20	22	21	24	20	19	20	23
15	23	20	26	17	9	18	15	11	16	17	12	17	18	13	19
16	21	16	27	18	21	23	29	20	21	30	20	26	25	19	24
17	20	25	18	14	22	20	10	22	15	24	28	18	17	24	18
18	24	25	21	21	19	15	15	25	15	13	28	18	18	24	17
19	19	22	23	17	$?$	20	14	11	20	19	15	25	17	14	22
20	17	16	18	16	16	20	25	17	15	20	15	20	20	16	18
21	26	18	24	22	16	24	20	15	24	28	22	25	24	18	24
22	22	28	24	19	18	10	20	20	17	19	30	25	20	24	19
23	14	21	21.	18	18	20	16	19	24	1.5	21	18	16	20	21
24	23	22	21	17	18	18	23	20	18	21	28	20	21	20	19
$\mathrm{W}=$	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24

APPETTIX

Appendix C
Seatom Bragens

TABLE XVIII

SCATTER DIAGRAM: ACT MAMEUATICS SCORES VS. ALGBBRA POST-TEST SCORES

Scores	16-20	21-25	26.30	31-35	36.40	41-45	46-50	51-55	56.60
28-30			/	1		1	1		
25-27		1		/1/1	1	1			1
22.24	1	/1/1	11	1/1/1	/111/1	//	//	1	
19-21	1		$1 / 1$	1/1/1/1	$1 / 1$	/1	1		
16.18	$1 /$	/1/1	$1 /$	$1 /$	1	1	1		
13-15	1		1	11	11				
$N=72$									
$r=.33$									

TABLE XIX

Scores	35-39	40.44	45-49	50-54	55-59	60.64	65-69	70.74	75-79	80-84
28-30			1			1	1			1
25-27		1			11	//	11			1
22.24	1		(1/]	//	$1 / 1$	1/1/1	I/II	$1 / 1$	1	1
19-21		1	111	$1 /$	IIII	$1 /$	1	$1 /$	$1 /$	
16.18			$1 /$	/III]	1111	1	1			
13.15				1	$1 /$	11	1			
$\mathrm{N}=72$										
$x=.27$										

TABLE XX
SCATTER DIAGKAN: ACT MMTEUATTCS SCORES W. STEP POST-TEST SCORES

Scores	15-18	19.22	23-26	27-30	31.34	35-38	39-42	43.46
20.30	1			1			1	
25-27			//	111	1	/		1
22.24	1	$1 /$	111/111	1/11/111	III	111	1	
19.21	1	/1/1/	$1 / 1$	111	/II	$1 / 1$		
16.18	$1 /$	$1 /$	$1 / 1 /$	111		//		
13-15		//	1	1	//			

MABLE XXI
SCATER DTAGRAR: ACT COMPOSTTE SCORES VG. ALGEBRA POST-TEST SCORES

Scores	15-19	20-24	25-29	30-34	35-39	40.44	45-49	50-54	55-59	
29-32									1	
25-28			1		1	1				
21.24	1	11	//	/1/11/	/1/1/	/1/1/1	111	//		
17-20		/1/1/	/1/1/	1/1/1\|	1/1/	/1/1/	1	//		
14-16	$1 /$	$1 /$	/1/	$1 /$		1	1			
10-13					1					

$N=72$
$r=.38$

TABLS XXII
SCATER DLAGRAM: ACY COMPOSTTE SCORES VS. STEP POSR-TEST SCORES

Scores	15018	19.22	23-26	27-30	31. 34	35-38	$39-42$	43.46
29-32								1
25-28	1		/1		1			
21.24	1		1/1]	/1/1/1/1/1/1	//1	/1/1/	//	
17-20	/1	1/1/11/1	1/1/1/1	/1/1/	/1/	$1 /$	"	
13-16	1	$1 /$	/1/1	1	/1/	/		
9-12				1				
$3 \mathrm{H}=72$								

MT

Jon 1illon Plechy
Cundidnte for the Degree of
Doctor af mducetion

Msor Eield: Higher Educationudainistrotion
Biogrephiont:
Persont Deta: Born in Branaulla, Colombia, South America, Janury 22, 2933, the son of Tred J. and targeret R. Plochy.

Education: Attended gerde school in Tyndell end Huron, Soath Dekote; gredueted fron Greeley High School, Greeley, Coloredo. in 1951: attended Black Hills Teachers College, Speerfish. South hakota one yoar: received the Bachelor of Arts degroe frou dons steto College, Alamose, Colorado, with majors in Methentics and Eduction, in August, 1955; received the Waster of Rduction degree from Adans State College in Angust, 1960: received the Hoster of Arts desree from Louision state University, Baton Rouge, Louisinn, bith a mejor in Mothemetice, in August, 1961: complated the roguirementa for the Doctor of Educetion degree in Higher Bucationadministretion st oklem home stete thavergity, Stillyator, Oklehome August, 2964.

Proposston 1 Bxperience: Taught, during the 1955 56 school yerc ot Bont County High School, Las Animes. Colorado; entored the Thited states Aryy in 1956; served thee years es a Germen Langage trensletor with the Amy Security sgency, Fenkiuxt, Germany; taught in the Jefferson County school systera, Benver, Coloredo. during the 1959 - 00 school yeer: studiod at Louisiens gtote daiversity during the 1960.61 academic joax on a Metional Soience Foundation grant; groduate assistont in gothometios at Oklahom state iniversity during 1961-62; Instructor of ththem matics et Contral, State College. Edmond, Oklehom, since 1962.

Profossionl Orgenigntions: Pi Wh Epsilon, Phi Delta Rappe, Oklahom Educetion Associntion, Oklohoms Gouncil Tenchers of Mothe emeties.

[^0]: 1George A. W. Boehm, The New World of Mathematics (New York, 1959), p. 17.
 ${ }^{2}$ Morris Kline, Mathematics and the Physical World (New York, 1959), p. 9.

[^1]: $8_{\text {Lucienne Felix, The Modern }}$ Aspect of Mathematics (New York, 1960), p. 33.

 9Kline,-Mathematies-in_lestern_Cultune, p. 9.

[^2]: ${ }^{10}$ School Mathematics Study Group, Newsletter Number 4. (New Haven, Connecticut, March, 1960), p.1.
 ${ }^{11}$ Ibid.

[^3]: Themmssion on Whemtios, Procran for College grocytatory Hathemtics, College Bntrace Branation bord (Wer york, 195B), p. 58.

[^4]: 16 Comittee on the Undergradute Program in Hathematics, Recommendations for the Training of Teachers of Mathemeties, The Mathemetical Association of Americ: (1961). 0.3.

 17 Ibid. . po. 3.4 .

[^5]: 19Arthur H. Copeland, Goometry, Algebre, amd Prisononetry by Vector Methods (Exem York, 1963), p.3.

 20 Ibid.. 0.5.

[^6]: 23A.D. Wallace, "itew Undergraduate Courses in Mathematies", Science Course Improvement projects, Nationl Science Foundation, (1962), p. 54.
 24. Richrodson, Euntamentats of Metherstics (\$ow York, 1941), p.4.

 25n.G. Begle, "The School Mathematics Study Grom," on. cit., p. 616.

[^7]: ${ }^{26}$ Carter V. Good, Dictionary of Pducation (dew York. 1945). p. 95.

