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PREFACE

This dissertation is the result of the author's interest in the
development of a logical method of engineering design. Design
engineers who do not have a comfortable backgf@und of experience to
provide intuitive guidarce are sometimes spt to approach a design
problem rather haphazardly, and consequently there is need of a
more basic understanding of the design process.

The author became interested in this area while working with
Professors Charles F. Cameron and Daniel D. Lingelbach in the area
of relay design. The requirements of the problem indicated a need
for a logical, systematic method of determining exactly Whéi
parameters of a relay could be arbitrarily specified with assurance
that the relay would be realizable. A "design map" developed by
C. C. Freeny, who was also concerned with the project, has been
used very successfully by the previously mentioned greup, and
several papers have been written on this subject.

The fundamental viewpeint taken in the thesis is that the set
inclusion properties of a system of relations provide sufficient
information to justify their use as the basis for a method of
specification selection. TIn special cases where set inclusion
alone is net sufficient, a very simple approach is provided to

augment this information.
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CHAPTER I
INTRODUCTION

Once g design process has been well defined and stated in a
logical theory, it is usually possible to train people or machines
to perform this process; therefore allowing the more creative pérson :
t0 proceed to less clearly defined areas. It is the intent of the
author to select a particular step of the design process and to
attempt to develop a gtructure such that the process is reduced to
a logical step~by-step proceduré ultimately to be performed by a
computer.

The development of & structure and of a theory of the design
process has received attention in seversl different areas. The
area of "systems" at present is so encompassing that at least one
book has been written in an attempt to establish a definitive theory

of systems. The book Systems Philosophy, which was published in

1962, used the terminology of modern mathematics to define a
system. {1). - : o
: in»the area of linear graph theory, work has been done on
parameter selection in an electrical network, and a paper on the
subject was presented at the Sixth Midwest Symposium on Circuit-
Theory in 1963.

In addition, this subject has been a topic of interest to the
relay design group at Oklahoma State University for several years,

and many papers and reports have been written on this subject.



As a direct result of this work, C. C. Freeny (2) defined a
'system,Symboliéally in order to provide a foundation upon which to
build a design theory.

Studies of a very similar nature (concerned with computer
usage) are presently being directed by John C. Pgul of Noxth
Anmericgn Aviation, Inc.

As an indication that the problem of logical design is a -
widespread one, the folldwing is quoted from a book on guided
missile design:

"The radar systems engineer is often asked

to solve the following problem: 'Given a set of

performance specifications based on the tactical

problem requirements, derive a radar system that

will meet the specifications.!'”

"For a variety of reasons, it is seldom
possible o solve this problem in a straight-
forward fashion. Probably the most important
reason is this: The performance specification -
if properly derived - will seldom speciiy a task
which simply cannot be performed by radar
techniques; however, the performance specifi-
catien will usually reguire the radar to
perform a group of tasks which are not logically
consistent with any one radar system mechanization."

"The usual approach is to assume a generic
type of radar system which experience and

Jjudgment deem reasonzble. The assumed system



then is measured analytically against the over-all

system requiremenfs to determine whether it has

the inherent potential for providing an acceptable

problem solution. This process is repeated until

the best match is found between the perfdrmance

specification and the basic laws of ngbture

governing what can be dobne by a~givém redar

system.” (3).

The last sentence of the above quotation tells the story; the
process is trial and error, which places a premium on past
experience rathef.than on formal knowledge of the subject. Tﬁev
authors of the bédk from which this passage was taken have
recognized the pfoblem but have attempted to solve it by simply
sharing their experience‘with the reader.

The particular process to be discussed in this thesis is
parameter selection. This is a very basic step of design, and a
lack of knowledge of the structure involved has resulted in many
designs which are products of art rather than science. A
knowledge of the general system of relations and parameters,
such as is presented in this thesis, removes the algebraic
details, allowing the basic set structure to be considered. In
many cases, this'simplification allows the designer to view the
entire system.as one unit rafher than as many subsystems which
are difficult to fit together in one's mind.

Set theery is used extensively throughout the thesis because

consideration of the set inclusion preperties gllows a great deal



of simplification. It also removes information which is often
necessary; but the amount of information which can be-extracted'
from the set inclusion properties Justifies its use.

The system, as defined in this thesis, concerns two basic
concepts - the parameter and the relation. _The parametér is one
of a set of "things" for which there has been seme accepted
standard of measure. Length, weighf, voltage, resistance,’
acceleration, and velocity are parameters for which exact
measuring standards have been developed. Intelligence, kindness,
love, and success are examples of parameters for which the
measurenment technigues have not, as yeﬁ, been agreed upon.

Associated with the measurement of the parameter is a set
of "values” which may be expressed as real numbers, complex
numbers , absfract symbols, etc. It is assumed that the parameter
will be measured by sélecting one of the members of the appropriate
set and designating it as the measured "value" of the parameter.
Therefore, it is clear that the parameter itself is a set ef
possible "values"”, and the definition given in the second chaptei
allows the consideration of the parameter as a set of "values"
without regard to the exact nature or name of the value.

When mere than one parameter is to be considered, the effect
of the value of one parameter on the value of another is of
considerablevimportanpe. If there is an effect, the parameters
are said to be related.

To facilitate the study of sets of parameters, the cross-product
of the sets is formeéd. This results in a set of n-tuples, which is

all possible combinations of the values of the parameters involved



and which is referred to as the scalar produgt set. The effect of

each parameter on the others determines which of these many possible

combinations will actually occur in such a way that they caﬁ_be

verified by measurement. The rule used to determine which .

combinations occur is called a relation.

In the previous discussion, only measﬁrement of parameter values
has been cénsidered. To accomplish design, it is nécessary to be
fable‘to obtain a'desired value of a particular parameter or,pérameters.
This means that the designer must know which values ofrthe unspecifiéd
parameters”will result in the desired values of the gpecified
parameter. The deductive relation satisfies these requiremeﬁts éince
values of exactly ﬁ - 1 of the parameters allow determination of the
nth parameter, o
Just as paramgters have valués dependent on values of other
parameters within a relation, there may exist other relatiéné
involving different parameters which also have an effect. The final
result is a set of reiations.(éi) ihvolving a set of parameters (Py).
' To_obtain avparticular valﬁe of & parameter Py under these conditions,
tﬁe effect of each~pa@aﬁet;r of eaéh relation which contains Pk mst
be taken into account. A convenient way>of doing this is to feorm a
grouping of eléments With one positien for each.parameter involved.
Then the set of allowed combinati@ns ef parameter values is determined,
by the requirement that everyisubcoﬁbination of values which appears
in the grouping also appears iﬁ the set of’allowed values of each |
relation having the ébrresponding set of parameters. The sets of
élements obtained in this menner are called nstural points; which,

in commen usage, are the solutions te sets of simultaneous equations.



This structure of the parameter and the relation is'necessary to
allow a more rigorous Jjustification of the parameter séléétion process
which is intepded to provide a logical step-by-step procedure for one
phase of design.

. Whenever sets of relations are studied, the questien of -
inconéistencies and, redundanciés arises. In the geheral sénse, a
knowledge of the functional form of the relations mst be'knewn:in
order to determine independence or dependence of the set., However,
in all but'a few spécial cases there exiéts a set structure which
allows ihéonsisteﬂcy and redundancy checks usimg%only'the set
inclusion pr@perties. The process of decomposability, defiﬁed in
B the sécond_éhapter; provides a mefhod of-determining'iﬁdependence
if the.exceptions suggested above are ruled out. The ability to
determine decomposability of a set of relations is ver& important

since it is this property upon‘which the remainder of the thesis is

. based.

A system is defined as a éet of relations and corresponding
paraﬁeteré._ An'éllowablg specification-set of a system is a set of
vparameters for which afbitrary values can be selected with assurauce
that values - of the unselected parameters exist.which will result in
the desired system. It would be very desirable to have an easily
applied, necessary and sufficient condition for the allowability
of a set of parameters as specificétions.' However, if the
information used to deterﬁine aliowabilityvis restricted to the
set inclﬁsion prépeities; only a sufficient condition can be

obtained. A method is presented to be used for the determination

of allowability since, if a certain condition is met, the set of



parameters being tested is known te be an allowable set; and, even
if this condition is not'true, the.process allows the desigﬁer to
detefmine exactly:which rglaﬁions and parameters might be in coﬁflict.

A system may bé défingd by a set of relations and a cérréspdnding
set of pavameters. The word "Jefined" in this cbntext'means that the
system in question can be distinguished from.cértain‘éther systéms.
The number of relsbions and parameters necessary is a functien eof the.
degree of uniqueness desired. Obfiously, as the numbér of restric-
tions (relations) is increased, the number of systems which will fit
the requirements is deéreased. Once a system has been sélectéd and
the parameters which musﬁ be copsidered are ascertained, there exists
a unique maximal set of relations ﬁhich is valid for the system under
considergtion; (A valid relation must have at least one sélution.)
Not all of these relations are needed to define the system, since a
maximgl independent set will uniquely specify thé'complete set of
natural points, and any additional relations are simply combinations
of the base set.

Selection ef'an allowed specification set is based‘on a single
necessary and suffici@nt condition. This condition is that the set
in question does net include a complete parameter seﬁ fér any valid
relation of the syétem. Any parameter set which satisfies:this
condition is an:éllowed specification set. The most cbvieous énd
straightforward‘method.of parameter selection would therefore be
to check the desired set to determine if a cémplete parametér set
of any ﬁalid relation is restricted. This method is not practical
since obtaining the complete set of valid relations would be a

prohibitive task in 21l but the most trivial cases.



Several methéas oflcheckiﬁé the relations using iny the
information pfesent in the defining relationslare included in the
chapter on applications, |

The design map, developed by Freeny, has been used for several
years with good resuits. The design map ie, in essence, a matrix
having columns corresponding to the relations of the system and
rows corresponding to the parameters. If a set of parameteré
satisfies certain condltlons on the design map, it is an allowable
bspec1flcatton set. If a set does not, then it is necessary to -
determlne allowablllty by an appeal to the functional fovm of the
relatlous whlch show a p0531b1e conflict on the map.

In the search for & better method of parameter selection, use
- has been suggested more than once of a linear graph with edges
representing parameters and c1rcu1ts representing relatlons. The
brimary problem concerﬁing this type ef representation.was this:
When the linear graph of a system was drawn, there was not a
one-to-one'correspondence between the edges of the graph and the
‘ﬁaremeters of the system; This lack of a oneatb-one correspondence
is no longer a problem since in thié thesie it is shown to be a |
function, not of the system itself, but of the particular set of
relatio#s used to define the sjstem. By proper selecfion of the
base set of relations, all systems can be represented by a linear )
graph. | |

The use of the»lineei graph as a design tool is limited since
there is no exact corfespondence befween trees and allowab;e
.specification_sets, nor between circui£s and nonallowable_sets.

The graph does, however, allow the designer to identify by inspection



tﬁose sets of parameters which will not satisfy thé desigﬁ map and, -
in the case of systems which satisfy certain restrictions, allows
a complete listing of all allowable specification sets.

A third method of parameter selection which is suggested by the
theorems in Chapter IIT which state that every decomposable sysfem
~ has at least one allowed specification set and tﬁat'there is no set
of parameters ﬁhich will satisfy the sufficient condition for
- allowability for a nondecompoéable system, is given in Chapter IV.
The procedure /is to select the specifications, in erder of their
importance, one at a time, checking each time to see that no conflict
exists. This provides a step-by-stép procedure for ohtaining an
ailowable sPecificationrset,_and each conflict of the selection is
resolved in the order of the importance of the parameters. Use of
this method requires that fhe designer be able to check decompos-
ability quite rapidly, and an arrangement for doing this is given
in an example. |

The final chapte? indicates séme-of the areas of application
of the parameter selection process presented, and several possib;e

areas of extension are noted.



CHAPTER II
PARAMETER RELATTONS

D2-1: A get P =‘{pl, Po ....}' is a parameter if the
following three conditions are sa’cisfie,d.l
(1) There exists an ordered set A, such
that AN P = 0. |
(2) P can be placed in 1-1 correspondence
. with A.
(3) A contains at least two distinct

elements.

Set A is called the indexing set and is necessary te provide an
ordering of the elements of P. When dealing with abstract quantifies
such as voltage (E), current (I), and resistance (R), it is desifed
to establish aﬁ ordering which will allow these parameters to be
reldted by conventional algebraic methods. Placing the elements of
a parameter in a 1-1 correspondence with an indexing set (such as
- real numbers, complex numbers, etc.) allows the operation developed
for the indexing set to be used Oh the parameters: This avoids any
possible confusion of identity which might occur when each parameter

is thought of as a "number".

lSee Appendix A for a complete list of symbols.

10
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Se@e confﬁsion might arise concerning the equélity of Paraﬁeters;
It is obvious thatv(E) and‘(I) are distinct paramefers since they have
a different name, butifrequently several distinct péraméters of the
same type»(name) are reiated (for example, when summing voltages
around & loop in an electrical circuit). When this eccurs, it is
important to remember that eaéh voltage is a distinct parameter
regardiess of thezassociated "name". Condition (3) ef Dé—l requires
at least two elements. This requirvement limits the title "parameter"
to those sets which allow a "choice"; i.e., this removes the
"constants" in an équation from congideration., Parameters with
different subscripts will be censidered disjoint throughout this
thesis. This does not imply that their indexing sets are disjoint:
As will be showm iater, the indexing sets of related parameters will

usually be the same,

D2-2: Let'%n}'= (P1, Pp «+ce P,) be & set of disjoint
| pli GvPl: p2i <€ P2 LA Pni e Pn} is the

fm@mt%tﬁt&p&mﬁ@s{%}.

D2-3: When the product set is written with elements
of A replacing the corresponding elements of
P, the resulting set‘ﬂrﬁ of scalar n-tuples

vis called the scalar product set.
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It should be noted that no ordering of parameters has been
defined. However, the ordering used in the n-tuples will be retained
as & convenient way to identify the individual parameteés and their

corresponding scalars.

D2-lk: Two scalar n-tuples of the same product set are
equal if the scalars of the respective parameters

are equal regardless of order.

The scalar product set is the totality of distinct n-tuples
that can be formed using the elements of the indexing sets. It is

uged to define a relation among parameters.

D2=5: If there exists g "rule" whereby the scalar
product set can be divided into two nonempty

equivalence classes, this "rule"

i1s called a
relation ¢ on the parameters involved in the

product set.

In effect, a relation is the rule used to indicate the existence
of a set. For example, let {X } be a set for which a relation ¢
exists. Then for each X e {X } either #(X) is true or #(X) is false.
The subset of {X} for which $ is true is the set "allowed™ by the
"rule". It is this set which will be called the graph of the

relation.

D2-6: A set G(Pn) s {X: X ¢Jfn and ¢(X)_is true }'is

the graph of the relation § on the set {Pn} .

D2-7: - Two relations, # and $, are equal if their

graphs are equal.



The definition of equal relations allows the same relatién to
apply to more than one set of parameters.

Siﬁce the operations performed on the elements of the parameters
are exactly those which can be performed on the indexing sets, it is
required that the indexing sets for every parsmeter involved in a
given rélation should be equal. Therefore, the following definition

is needed to limit the discussion to relations of this type.

D2-8:: A relation g on a set {'Pn } is said to be
“algebraic if each Pi€ {]%1} is indexed by the

same set.

All relations cbnsidered'in the remainder of this thesis, unless
otherwise noted, will Be aigebr&ic.

D2-8 is not as restrictive as it seems at first glance. In
some relations one parameter will be allowed values only from &
,parficular subset of the indexing set. 'Thig situation is taken into
consideration by the relation itself. Only those n-tuples which
‘contain the scaiar from the proper subset of the indexing set ére
among those "allowed". Therefore, in general, the indexing sets of -

each parameter in the relation can be considered egqual.

D2-9: - The set of scalars which appears in the graph
as an element of a parameter is called the

‘'range of the parameter.

The most useful preperty of a relation in the area of design is
that of being deductive. When one knows the "value" of a parameter
or a set of parameters, the relation is used to determine the

_corresponding "allowed value" of another parameter involved in the
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same relation. However, a set of parameters might contain an element
X such that every combination of the scalars corresponding to the
remaining parameters appears with every scalar of X. Then no proper
subset of the parameters, not including X, could restriet the "allowed
values" of X to any proper subset of the indexing set. For e#ample,
consider the relation E = IR. If a fourth parameter X were added to

~ the set, the conditions for an algebraic relation could still be
-satisfied. The only restriction placed on the added parameter would
cbncern the inde#ing set. In order to restrict comsideration to
those parameter sets not having trivial elements (such as X in the

previous example), the following structure is necessary.

D2-10: A relation $ on a set {.Pn}' is a deductive
relation if the following‘conditions are
satisfied.

(1) For every set of n ~ 1 elements of the
indexing set, representingn - 1
parameters, there exists a unique set
of n-tuples properly contained in G(P,).

(2) No proper subset of {Pn} with @

satisfies condition (1).

D2-11: A deductive relation is a function if for every n - 1
element of the indexing set, representing n - 1
parameters, there exists a single n-tuple

contained in G(P,).

Condition (1) of D2-10 allows a given set of n - 1 scalars to exist

in more then one n-tuple. This is necessary to allow for relations
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‘which are not "single-velued". For example, the relation y = X2,
indexed with the regl nunbers, allows two different scalars of X to
correspond to a single scalar of y. The requirement that the set
of.n;tuples be properly contained in the graph eliminates trivial
parameters from éonsideration. Condition (2) of D2-10 requires
that exactly n - 1 elements are needed to restrict the remaining
element to a proper subset of its range.

The next classification is one of convenience.

D2-12: The set‘77%'(Pn'), formed from the set
77;(Pn) by deleting those scalars
associated with parameters not centained
in P,', is called the prejection of Pp'

on §. ¢ is the relation involving {Pn} .

D2-13: 7Th'(Pn') is a proper projection if
(e }elna}-
| To-1: There are 2P distinct projections of the

elements of {Pn} on g.

Proof: The number of distinct projections
is just the number of distinect

subsets of {Pn}°

The deductive relation, as defined in D2-10, is the fundamental
idea upon which this entire thesis is based. It will be assumed
that all physical systems can be described by deductive relations;

and to design the system, it is only necessary to determine the
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"specifications" (the scalars corresponding to n - 1 parameters
which are allowed any scalar value contained in the respective
‘ranges), and then to consult the graph to determine the n-tuple or
n-tuples (the solutioﬁs) which are "allowed" by the relation. In
fhe casé‘of a single relation, the process is exiremely simple.
However, when several relations exist on parameter sets that are
not disjoint, the: problem of design becomes more complex.

The structure presently defined considers only a single
relation. This structure will now be extended to consider many

relations.

D2-1k:  Two relations gy and ¢, are comnected if

Pnlr)Pnz;éo..;

D2-14 is somewhat limited in usefylness because connectivity
- between relations is not transitive. For example, consider the
three sets: Py = (X X X3), P, = (X3 X} X5), and P3 = (X5 X4 X73.
Py is connécted to P2 and Po is connected tovP3, but Pl is not
connected to P3, In the design process, however, sets of parameters
which correspond in this manner are the rule rather than the
exception. Therefore, the following definition is used teo determine

connectivity when more than two relations are involved.

Da-l5: A set of relations { éi} on the parameter

sets {Pni} is a connected set if for every
proper subset {éJ} {P }{W {P } # 0.

({3} =1
({5} =

t M
A
'_l

e
1

——
T
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Fach relation and its associated sét of paiameters have a graph
- which indicates "allowed" n-tuples. Since some parameters appear
‘in‘m@re thﬁn one relation, it is pessible that a partieulér scalar
alla#ed'for a parameter in one relétion will not be allowed in the
other relation or‘relations in which the same parameter appears.

It is the problem of the designer to select a subset of each graph‘
such that any scalar, orvset of scalars, which is allowed {for a
particular set of parameters) in one relation is allowed for each
relation in which the'parameters appear.v The totality of n-tuples
contained in these sﬁBgraphs can then be divided into eQuivalence
élasses containing one n~tuple frem each graph. This idea is

explained formally in the folleowing definitiong.

D2-16:  Let {.ﬁi:}‘be a connected set of relations
on the parameter sets {.Pni}'- Let X be a
scalar n-tuple such that‘every parameter
belonging to J{ {.Pni}is represented once.
X is a ngturel point if there exists
¥i ¢ G(Pn3) such that y; ¢ X for all i.

The set of natural points shall be denoted

' _757£(¢i).

Each natural point is an "allowed state” of the system represented
" by the relations. The graph of each relafion'has an allowed element
included in'éach natural point. The question "Does a natursl poinﬁ
iexist?" is certainly an important ohe; It would be most uséful in

design to be able to determine quickly the question of existence.
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| However, the information required to answer this question in an b R
and "only if" manner is contained in the graph, and no simple method
exists to extract it.

Relations for which no natural points exist are of little usge
in the design pracess. BSuch sets of relations shall be considered

inconsistent.

D2-17:  The relations {_éi}' are consistent if there

exists a natural peoint.

D2-18:  The relations $; and g; are naturally connected
i TTnalPnig) < TTpy(Pyss) or JIng(Ppiy)
gﬂgi(Pnij{? where {Pnij} ={Pni}ﬂ{Pnj} £ 0.

-'D2719: The relations éi and ¢J are normally connected if

77£i(Pnij) = 7/n3(Pnij)-

Definitions D2~-17, D2-18, and D2-19 provide three levels of
restriction on connected relagtions. The first level requires the
two graphs to contain gt least one common element in the respective
projections of '{Pnij:}' The second level requires that one
projection contains the other. The mgst restrictive case requires
that the projections be equal.

One of the most basic and important concepts invelved with
connected relations is that of dependence and independence.
| Conditions for these préperties are usually expressed in terms of
operations of the particuiar algebra being used. The same conditions

can be expressed in relgtion theory by the following definition.
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D2-20: The relatiens { ﬁi]—'are dependent if
there exists ¢ ¢ { ﬁi} such that

Talby) = Talss - 9)-

Db2-21: The relations { éi}' are independent if

they are not dependent.

The definition D2-20 reguires that relations which are not
- consistent be independent. This is in agreement with standard
algebraic definitions. The following theorem is an obvious resﬁlt

~of D2-2Q.

- T2-2: th'{.ﬁi}- be a set of relations such that
each relation involves a parameter not
contained in any other parameter set of

{.ﬁi}-. Then {.éi}- is an independenf

set.

Proof: Assume {.¢i} is dependent; then
the:be exiéts gﬁe {;51} such that
T(8s) = TTolbs - #). Let fy
be that relation. But 77;(¢1)
involves a parameter not present
in JTo(#; - #1). Therefore,

TI(8s) # TTaldy - ).

T2-3:  Given a set of relations { yﬂi} . If
there exists an order f1, o, eee By,

such that the i® relation involves a



20

parameter not centainéd in the parameter
sets of the preceding relatiens, {.¢i} is

an independent set.

Proof': { ﬁl}- is an indepéﬁdenf set since
two relations are required to
satisfy D2-20; {;61, ,52} is an
independent set since ﬁg centains
a parameter not in #) and, by
definition D2-10, ¢ contains a
parameter not in gy, { $15 Po, ¢3}
is an independent set since ¢3 '
contains a parameter not in ¢y or
o5 $1 and g, both contain
.parameters not in ¢3.according to
definition D2-10. This process is
continued for all relatiens, thus,

completing the proof.

‘_Mahy‘sets'of rglations can be determined to be independent by
 satisfying T2-3. A.straightforward procedure for obtgining the
- order needed to satisfy T2-3 is given by the following decomposition
process:
Given the set { éi} , form the set { $3 } 1z { %i} "{léil} ’
where each ¢ ¢ { ¢il} invelves a parameter not contained
in any parémeter set of {.éi - 8 }. If { ¢i}-l is not

empty, repeat the process replacing { éi}- by { ¢i}-l.
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D2-22: 'A.set { ﬁi} is decomposgble if the gbove procéss
yields the empty set in a finite number of steps.
Each_{ ﬁi} J ig referred to aS‘the Jth decomposi-
tion c¢lags and if { éi} B is the last nonempty set,

the set { éi} is said to be n-decompesable.
‘fT2—h: An n~decomposable set { ﬁi} is independent.

Proof: Order the relations starting with the
nth decomposition class. This order

. satisfies T2-~3.

T2-4 gives a quick and simple method for verifying independence
of a set of relations., However, a set of relations may be independent
vand not satisfy T2-3; therefore, & necessary and sufficient condition
- . for 'independence would be very desira.ble; This condition cannot be
obtained without further restrictions which will limit the types of
f reiationsv to which the theorems can be applied, but they are suffi-
vc‘iently general to cover a very large group of engineering design

problems.

T2-5 Let {_éi}' be an n-decomposable set. Then there
 do not exist disjoint subsets {gﬁj} and, {ék}
such that U{Pnj} = U{Pnk} .
Proof: Let {'éj} and {_¢k}ﬂ be disjeint subsets
of {3} such that U{Pag} = U{Pmc}-
Let ¢1 be a relation belonging to {;¢j} .
If ¢1 is in the.rth decompésition class,

{.ﬁk} contains a relation belonging to
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the decomposition classes (1, 2, 3 ... r - 1).
If this relation is in the gtB class s { éJ}
contains a relatien in the classes (1, 2, oe.
q - 1). This argument may be extended until
one of the original subsets has a relation
contained in the first decompesition elass.
Then there will exist a parameter in this
relation not contained in any of the parameter

sets of the other original subset.

Let {4;} be a set of relations on {P,}. Then {4}
is a restricted set if //n(#) < 7/ y(dy) or

77:u($1) 2 T7o($,) for every subset {4} ema {4, }
such that J{ Py } = J{Pp}-

Every independent restricted set of relations is

decomposahble.

Proof:

Let {~¢i}' be a nondecomposable independent
restricted set. Apply the decomposition
process until a set -{éi'}- is obtained
such that no relation belonging to {;éi'}

has a parameter that is not contained in

a paraneter set of the remaining parameters

of {yﬁi' } . ©Select gﬂl belonging to {_ySi' } .
Then the IJ{Pni’} = Lj{Pni"' nl'} and,
{ ¢ir} is a dependent set by definitien

D2-23.

22
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‘A restricted set of relations is independent

if and only if it is decomposable.

Proof: By thebrems T2-6 and T2-k.
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| CHAPTER IIT
PARAME‘I’.EIR SYSTEMS

A formal def;inition of a system has, as yet, not been standardized.
The most general and encompassing definition allows a system to be any
| subéet of the universe. This definitien, although not very strict, is
consistent with present ﬁsage of the word. For the purpbse, of this

'bhesvis , 8 paramete:é system sha.ll be defined and referred to as a system.

: D3-1: A collectién of n-parameters {Pni} and 1 :r‘e‘lations
E { ;251} is a parameter system Spj if:
(1) TFor every P ¢ {Pni} there exists
$ e {561} su'c‘h.that P e { Pnl} .
(2) For every ¢, e { éi} and for every
P G{Pnl} P G{Pni}’

(3) { ;51} is algebraic.

D3-2: Two systems 5,3 and Sni' are equal if they have the

same set of matural points.

D3-2 allows the same system to be represented by alternate relatious.
Although it is obvious that { Pni} mist alwvays be the game, many possible
sets of {;61} will yield the same set of natural points.

D3~1 is not intended to be very restrictive; it serves only to
restrict the discus‘sion to sets of parameters and relgtions which could

be used to define a subset of the universe.
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The design engineer's congerri for systems as defined above is
related to the selection of a particuiar group of desired characteristics
of the system and the eveﬁtual solution of the relations to obtain
scalar values of the refnaining parameters which are compatible with the
origina.i deéires. Tlﬁe original desired characteristics are expressed
asg scalar values of the apprépriate parameters and are referred to as

spec ifications.

D3-3: A subset {Pni'} of {Pni} is an allowed
specification set if every element of {Pni'}
can be assigned an arbitrary scalar {from its
appropriate range) such that some element of

.77;1(751) contains this set.

D3-h4: An allowed specification set is complete if it

is maximal.

,‘D3-5: Let Pni'} be an allowed specification set of

'{Pni} . Then {Pni - Pni'} is the solution set.

. D3-3 says that there exists at least one system having the particular
characteristiés stated in an allowable specification set. This does not
exclude %he possibility of the existence of a solution for s nonallowable
set since the particular scelars might allow this 4o occur. However,

- from a designvstandpoint only allowable sets are considered. The selec-
tion of allowed sets is a problem of the design itself. When only one
relation is heing considered, it is obvioué.ﬁhat any n - 1 parametexrs
form an allowed specification set. However, when many relations and

two to three times as many parameters form & system, it is necessary to
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provide‘some structuré gso that a specifiCatien'set may he considered
from a standpoint of allowability. The depign mep developed by
Freeny (2) provides abmethpd whicﬁ appears to be useful in this
respect. This procedure will be formalized, together with alternate
procedures, which will provide greater insight concerning parameter
selection. j

- The previous chapter formalizes the structure of the parameter
relations which make up a system. The primary result concerns the
independence and dependence of relgtions. This important property

will be used extensively in the material to fellow.

D3-6: . An element of {;Pni} which has been assigned a

scalar value is & fixed parameter.

D3~T: A relation ﬁk‘is restricted if any P ¢ {,Pﬁk}
| is fixed.
D3-8: A relation ¢, is fixed if all P € {an}- are
fixed.
13-1: A velation fy is Pixed if any o { Pny - 1}

parameters are restricted.
Proof: Consider the definition of a relatien.

~ For convenience, let the set of fixed parameters related by
¢i'be designated by ‘{ Qi} and its complement by {ﬁl} . The following
process will be used to provide a method of obtaining an allowable

specification set.
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Process P
Given a system Spi:
(1) Fix an arbitrary P) e {Pni} .

(2) Form a new system with {Pni'}' = ‘{Pni. - Pl} and
{’63‘.'} = {séi - fl‘x} where {xzﬂx} = {sﬁ :o (@]
= 1} . '

(3) 1 o { b} #0, repeat (2) using J{ @ }as
fixed parameters. If o {ﬁx} = 0, repeat (1)

and (2) using the new system.

(%) Repeat (3) until {;éi'} = 0.

This prbcess, ; together with the next theorem, defines a sufficient

- condition for a specification set to be allowable.

T3-2: A set of parameters selected in (1) of Process P is

an allowable specification set if o {¢x} 0

implies ¢ {yﬁx} «_cH{ﬁi}.

1 , any parameter that is fixed

H

IN

Proef: If {yﬂx}
by the properties of a relation is fixed by
only one relation and, therefore, has an
allovable value. If o { gy} > 1, then

\-‘/JL {5 i} T o {yﬂx} , which again
implies that each pararheter is fixed by

only one relation and has an allowable value.

Theorem T3-3 specifies the number of arbitrary parameter selections

which are required to fix a System.
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T3-3: Every complete specification set contains n - i

elements.

Proof': Proceés' P must be completed to fix the
entire system. This praocess terminates
with { éi‘} = 0; therefore exactly i
relations have been fixed. Fach i_:i_me a
relgtion was fixed;, the fixed parameters
used in the next step #ere U{ 0 } , hot
arbitrary parameters., This implies that

exactly n - i parameters were selected.

Note that, -if at a_,riy time during the application of Process P,
o {¢x} was not 'equa.l to o U{a} ar zero, som,é pé.rameter has been
fixed by two separate reiatiqns. Since there is nothing to require
that the scalars determined by the twa relatiens are equal, the get of
selec,tédbparamieters cannot, in general, satisfy the system. The
 following theorems show some of the properties of setg which will

gatisfy Theorem T3-2.

T3~k Let {;61} be an independent set of relatiens on
the parameters {Pni} » Then there exists P € {Pni}

such that {yﬁl} on {Pni - P} is independent.

Proof: Consider a,ﬁy element in the last decomposition
set which appears in more than;one relation.,
Removal of this parameter deoes not affect the
decomposability of {Pni } » and therefore

{Pni - P} is independent,
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CT3-5 Let {.ﬁi}' be an independent set of relations on
{Pni} . Then any subset of {;61} on the corre-

- sponding parameters is indépendent.

Proof': Any subset of g decomposable set is

deconmposable.

It is important to knew that there is at least one allowable
specification set for a given system. The following theorems give

- gufficient conditions for the existence of specification sets.

T3~6: Let {yﬁi} be an independent set of relations on
the parasmeters {Pni} . Then there exists & set
{Pc} C {Pny} such that { B} is en sllovavie

- specification set.

Proof: Perform Procegs P on the n®B decomposition
class, fixing first the parameters which
appear in more than one relation. The
condition g{éx} 0, o {éx} # O‘U{ 5}
cannot occur, and the procesg mé,y be
cantinued until each relation in the nth
decomposition .cla,ss has been fixed. Repeat,
using the n - 1 decompesition class and
each n - m decomposition class in turn until

the empty set is obtained.

T3-T: Let {;61} be an independent set of relations on the

parameters {Pni} » Then any subset {Pk} of
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{Paa} such that { g} on { Py - B} is
independent is an allowable specification set.

Proof: If { ’éi} on {Pni - Pk} - is independent,
then there exists a set which satisfies
Theorem T3-2. The union of Py and this

set is an allowable specification set.

The next theorem does not imply a necessary condition for an
allowgble specification set; however, it dees give a necessary condition

for a set which will satisfy Theorem T3-2.

© T3-8: Let { ;éi} be a dependent set of relations on the
-parameters {Pni} . Then no set {Pk} exists that

will satisfy Theorem T3-2.

Proof: Let {”Si'} be a subset of {;él} such that
,“e.véi'y parameter invelved appears in at
Aleast two relations. {yﬁl '} is not empty
since { yﬁi} is net decomposable. Pei‘form
Process P on { 5’51}? To fix every relation
in {ﬂﬁi'} will require that o {yﬁx } 7 0,

‘O u {5} 7 o {yﬁx} since fixing n - 1

of the relations in { pst } will fix all

of the parameters involved in {yﬁi' }

When applying some of the rules given for determining specification
sets, it is desirable to reduce the number of relations and parameters
whic:h must he considered. A me‘thodv for reduction of a system is given

“in the following theorem.
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T3-9: | Given an.ihdebendenm system Sni, 1et {'ﬁk}' be e
subset of { éi} involving the parameters {_Pk} .
'Let~{.Pk!}:‘be the set of parameters Which‘appears.
only in'the relations {#c} - Further, let there
exist an orderiﬁg of { #k}' and,{_Pk’}i such that |
e {h}, 2 e { b k) B e {4
l;ﬁ2e°;°'° ﬁn} 'If the parameters appear only in
= tﬁose relationshlps indicated and 1f {_Pk }-contalns
_“no elements ‘of the desired specification set the
v para.meters {Pk-} and the relations {ék} may be
_’emitted from the system for the purpose of - checking

' the. specificatien sets

Pmﬁ:meﬂaf{@}fmm{g}rmwwomy
. '_the parameters {Pk } which, since they are
:>not members of the speclfication set, may
7assume any value withln their respective
. ranges. 7Se1ection of a specification set
for the .,s&stem {éi - ¢k} and, {Pni -.'Pk'}
will fix all relations and parameters in
mewﬂw.WMn{ﬁ}am{Fk}am
considered,»ﬁn is fixed since n - 1
paramefers-are fixed. This.in.turn fixes
¢n ; l,'end the precess isvcontineed until
# is Tixed.
~Thefprecesé-effreduction given in Theorem T3-9 is most useful
when a specificetion set hasxnot yet been decided upon, but several

parameters are-knewn to be excluded from consideration.
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The spplication of the .procédufés ‘which have been explained is
much easier than‘the definitions and theorems indicate. A convenient
way torapply Process P and to determine if Theorem T3-2 is satisfied
has been developed by Freeny. 'Called3a'"design map", this prQCedure
has been used for several years by persons in the relay de31gn group.
at Oklahoma State University. In essence: the design map is a matrix
having columns corresponding to the relations of ‘the system and rows
corresponding to the parameters. An entry appears in the lJth positien

only if the relation of the Jth

column involves the parameter of the
‘ ith'row. This matrlx serves as a chart to tabulate the ‘selections as

shown in’ the example of Figure 3 -1l.

System Relations : |  Design MEP.
W mn kS xs) Ry @G
(2) - (xux5x6) R T
"_(3) (XXX X)) “ X5 X2 X2
Xy th Xy Xy
X5 X5 X
X X6

Figure 3-1.  Design Map

A discussion of the use of this map is presented in the following

chapter.
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An alternate method of graphic rebresentation of 8 system is the
relation graph; ‘The relatibn graph is obtained by selecting a linear
graph such that there 1s a one-to-one eofrespdndence between the;
edges of the graph and the parameﬁers of the system, and such that
the parameter set:forvevery relation appears as & circuit in the
‘llnear graph. | |

The ides of the relation graph was orlginally suggested about
three years ago by John C. Paul. waever, the‘usefulness of the graph
could not be realized since there seemed to be no way. to assure the
_existence of a relation graph for every. system. In perticular,.the
‘problem was the lack of a8 linear graph with the required one-to-one
vcprrespondence‘between edges_apd'parameters; This lack of & one-to~
one-correepondence-willebe.shoWnfo be & functien,‘not of the eystem
itself,;but‘df;the‘paiticular:eeteof relatibnS‘whieh'are used to‘

B define theesystem. eThe followihg.theoremSuare.usea,es Justification

for using'the relation_greph as a_design teol.‘

- D3-9: _'Given'a system Sni; let Gﬁzbe a iinear graphvsuch
‘that there exists a one-to-one corfeSPOndence'
between'the-edges of GR‘and the elements of {Pni.}-
If for every relation gy ¢! ﬁln} there'exists e
‘circuit of Gg such that there is a one—to«one
:correspondence between the elements of -{Pk }

~and the edges of-the cqrnesponding c1rcuit, GRr-

1is called a relation graph of Sni;

PO} )

25ee AppendiX.'
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.From D3-2 it is known that the relation graph is not unique.
Also, the setj{ ﬁi} ‘cannot be obtained frothR since a one-to-one
cérrespondence does~no£ aIWays.exist‘between'the eléﬁénts of { ¢i}
and -the ciréuitsvof Gr. An ekéﬁple of a relation“graph is shown in

Figure 3—2.

: System Relations ’ o " Relation Graph
W) (4 % % X, %)
(2) (% X5 %)
(3) (% x3%%7)

Figure 3-2.. Relation Graph -

When a‘11n¢ar“gra§h'is found such that every relation of the
éystem appears &s avéircuit,vit is generally the case that circuits
appéar in the linear graphiwﬁich are not'#élid relations for the
',system,;«The.set‘éf ciréuitsvef a'linear:graphvis, 1n‘fact, the set
generatéd by & set éf.fupdémental ciréuits.(the‘system relatioﬁs)
and thé 6peration beuﬁionvminus‘interSeétion. Thpse éircuits of
this set'which:are.nOt valid'relationsfof thé‘syéteﬁvwill be known

as implied relations.

D3-10: ‘_Any cireuit of a relation gfaph which is not.a
‘valid relation of the corresponding system is

~ ‘an implied relation.

It is obvious that an implieqd reiation'which is properly contained
in, or properly c¢ontains, an-element of {;ﬁi} is not a'valid relation.
. Theorem T3-10 provides for the,existence'ef-a.relation graph for

every systen.



T3-10: 'Let'Sni be a system. Then there exists a relation

graph of Spj.

Proof:

From linear graph theory, & sufficient
condition for the existence of a linear
graph corresponding to a set of elements

E is the satisfaction of the following

~ postulates.

(1) Every subset of E either is or is not

a circuit.

(2) No proper subset of a circuit is a

circuit.

(3) The union minus intersection of two

circuits is either a. ¢ircuit or a

disjoint union of circuits.

. Postulates (1) and (3) are satisfied by all

systems if the implied relations are consid~
ered as relations. Thié leaves postulate (2)
to be satisfied before the existence of the
relation graph is assured. Therefore, it is
sufficient to shaw that every system can be
expressed by é.set of relations which will

satisfy ﬁostulate (2).

Let Sy; be a system defined by -{éi.}. Also
assume that gy % fo = g3 (x indicates the

operation union minus intersection), ¢l:

fo e-{ﬁi }, such that g5 contains, or is
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contained in, some g of {_éi} . Add the
relations ¢ and ¢y, obtaining pus Py 1s
not equal to ¢3.since a valid relation
canhct contain or be a subset of another
valid relation. Replace ) or ég in {_¢i}
by #l, and the implied relation g3 will no
longer exist, Then either there exists a
relation graph or there exist ¢; and @), such
that ¢5 % #), = fy is contained in g),. If
$7 is contained in ¢, it must also be con-
tained in §; and #, since ¢h_centains at
least one element belonging to both @ and
¢2 and all elements of $3. Therefore, the

relation graph exists.

If mere than one conflict of the type just
discussed appears, each may be removed in an
identical manner. If é'finite number of
conflicts exist, the system has a relation

graph.

“It shéuld be noted that, although Theorem T3-10 provides a method
for obtainiqg a set ¢f'relations defining the system such that a
relation graph éan‘be'obtained, it is necessary to know the algebraic
fOfm of the relatioﬁs in ofder to accomplish the generation of another

valid relation. Fxamples of the process are given in the following

o chapter.

The key to the use of the relation graph as an aid to design is

‘giVen'by Theorem:T3-11.



T3-11:

Given & system Spy with relation graph Gr, then no
paramefer set of any relation'or implied relation

will satisfy Theorem T3-2.

Proof: Case 1: Let f ¢ { ﬁi} . Theorem T3-2

‘cannot be satisfied.

 Case 2: Let i be an implied relation.

Then ¢, can be expressed as gy » pq 'where
B3 e { ﬁi} and g, is an implied relation.

Further, ¢, can be expressed as fr, * fr

where #r, e { ﬁi} end fp is an implied

relation. If f is fixed, all parameters

-of ﬁj are fixed except: those belonging .

to ¢j * $q. ALl parameters of gy, are

fixed except. those belonging to ¢j“* ﬁq 2

and ¢L ¥ ¢R‘ Therefore the remgining system

will have gy and g; such that P, & Py and

J

nondecomposability exists.

37

This theorem says that any set of parameters which appears as a

circuit in the relation graph will not satisfy Theorem T3-2. In

terms of the design map, these are sets which will not "map through ¥

One of the most desirable characteristics of the relation graph is

that of being able to tell at a glance whether or not a particular

set of parameters will satisfy Theorem T3-2,
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A listing of all trees of the relation graph is readily obtained
by the Cauchy expansion.? This is & list of all pessible maximal
subsets of {;Ppi}‘ that can be formed without including a relation

or-én'implied relation. .

3See Appendix.



CHAPTER IV
- EXAMPLES AND APPTICATTONS

The following discussion is meant to aid in the understanding
of the parameter selection process, and no attempt is made to Justify
each statement algebraically.

A system may be defined by a set of relations and & correspénding
set of parsmeters. The word "defined"” in this context means that the
system in questioh can be-distinguishéd from certain other systens.,
The number of.relétions and parameters necessary is a function of the
degrée ef uniqueness desired. Obviously, as the number of restricticns
(relations) is increased, the number of systems which will fit the
réduirements is degreased. Once a system has besen selected and the
parameters which must be considered are ascertsgined, there is a unique
maximgl set of relations which are valid for the system undei consid~
eration. (4 valid relation must have at least one naturel point. )

Not all of these relstbions are nseded to define the system, since a
maximal independenmt set will uniquely specify the complete set of
natural points, and any additional relations are simply combinations
of the base set.

Selection of an allowed specification set is based on a single
necessary and sufficient condition. This condition is that the set
in queétion does not include a complete parameter set for any valid

relation of the system. Any parameter set which satisfies this

@
O
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condition is an alloﬁed specificétién set.‘ The'mostvobvious and
straightforward method of parameter selection would therefore be to
check the desired set to determine whether a complete parameter set
of any valid relation is restricted. This method is not practical
since obtaining the complete set of valid relations would be a
prohibitive tasgk in.all but the most trivial cases.

| The design map is a technique for checking the relations,
'using only the informetion from the base set. It is not unique.
Iﬁ_fact,'there ére as many design maps for a system as there are
.-maximql independent sets of relations. Any one of these design maps
may - be used; but the logical choiée'would bé the one corresponding
~ to fhe'defining‘setbof relations, since any other map would
peéessifate'aetermination of additional valid relationships.

The fol;dwing is an expmple of the use of the design map and

. shows some of its limitations.
Consider a relay defined by the following relations:

Re(Xo + o) \/2Po
" ENS

(1) n = (157.5)

s? 1,
‘@ )(Re) In 1 - '

(@) 1= (207°) g

41/3

18 MKy, R,
B (L-n) [1- 72 (1+ KXo/Po) |

(8.66 x 1073)

(3) Pz /R,

_ {865 x1070) 21 - P - o)1+ P + o )48
5 |

(k) R

C
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N=(.637) £s(1 -~ R - U)E
(5) " 5 2 - =

coil pewef
stability factor

restoring force on the armature

- supply voltage

coil turns

effective mass of armature

effective spring constant of spring system

coll length |

diameter of coilvwire

seéting time of armature

coil resistance

length of armature working air gap

outside coil width

air equivalent of the nonforce producing part of the
magnetic circuit when using & series representation

ratio of the nonforce producing air equivalent of the
magnetic circuit te the total air equivalent of the
maénetic circuit

ratio of total thickness of core and inside coil
insulation to the outside coil width

ratio of core width to outside coil width

winding space factor for resistance

winding space factor for turns
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The parameters ﬁ,,.d, Oy 8n, &p 8Nnd 1.-92 (1 + KXo/Pg) will be

considered comstants in the example. | '
A .design ma.p 6f ‘this system is shown in Figure 4-1. A specification

' set, Rg,. N, 8; Ej Xo, M, M, has been selected for test. The reéult,
éhcwn in Figurg 4-1, leaves the two pa'.:c"a.meters o gnd 2 undeteﬁined 5
and therefore, an appeal to the relatiohs therﬁéelvgs is necessary to
determine whether the set is an allowable specification set.u To do
this, consider a system defined by the relations (4) &nd «~('5):.} Then it is
. only necessary to detern.line‘ whether “Rc ,l S, and N form an allowable

specification set for the two-relation system.

Let A = Rg
B =8
C =N
K o= constant '
Ky = constant

th itl RS A 'KlBQ
- then relation(y) becomes A = — .
\ 8%

‘ K
and relation (5) becomes C = _2 . B
’ .6
K. 2
solving for 4 , ¢ = 3AC
solving for 6 , & = Ky, %C_

uThe order of selection is indicated by the number within the
squares. The O indicates a selected parameter, the O indicates 8
parameter fixed by a relation and the /A indicates parameters which
are fixed by two or more relations.
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Therefore, both £ and & have been determined, and the original
set 6f‘parameters is an allewable.specification set. This methed of
checking a set of parameters which does not mep through is accemplished
quickly, and positive results are obtained. However, note that the
functional form of the relations involving the parameters in question
must be known.

Now if equations ()and E)are combined, the result is equation (6).

(6) R, = (2,14 % 1076) fgz 8 + B +o)
gy - B~ o)

If relation(5)in the previous system is replaced by relation(6) a
new set of equations is obtained which defines the same system. The
_map-for this system is shown in Figure L-2, The same set of parameters
bthat was tested on the map of Figure k-l is shown to map through in
Figure L-2. Therefore, the set is known to be an allowable specifi-
cation set. The point of the example is as follows: A given set of
parameters may map through on one map énd not on another apparently
equivalent map. Although they are both maps of a set of relations
defining a given systemn, fhey do not contain the same information.

For example, the first map shows that it might be possible to solve
equation(l)and (5) and obtain a relation involving only R, and N.
Whether_or not this can be done cannot be determined from the map
itself; and, therefore, no set of parameters éont&iping both Ré and
N would map through the design map in Figure h4-1.

The map in Figure L4-2 does not ceontain this possibility, and the
set containing R, and N maps through. The difference in information
contained in the two maps is & result of the particular functional

form of the relations themselves.



It is important to remember that the design map contains only a
limited amount of informatiepvabout the system;  and, therefore,
positive results in all cases cannet be obtained without resorting
to additional_information. waever; it is advantageous to use the
ma?(ta determine the particular relations which must be investigated,
rather than to generate the complete get of valid relations.

It is readily apparent that the design map will reject all sets
of parameters which inglude the complete parameter set of any relations
or any possiblé relation. To explain the phrase "any possible relation”,
consider a system defined by the two relations (X3 Xo XB Xu) and (Xl X
X5 Xé). If the functional feorm of the relations is not known, it cannot
be determined which of the following parameter sets is a valid relation.

(1) (%3 %, X5 %)
(2) (% x4 %), X5 Xg)
(3) (% %5 %) X5 Xg)

None of these relations will map through on the design map,
althoughbtwo of them may be allowable specification sets. The sets
of parameters which give positive results on the design map may be

vonly*a small portion of the tetal number of allowable specification
}sets,

The relation graph is simply a convenient method for obtaining
thé.set'df relations genersted by the operation union minus inter-
section performed on the parameter sets. It can be used in the same
manner as ‘the design map if desired, but requires only a quick visual
inspection to determine whether or not & set maps through. The

following theorem concerns this problem.
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Thel: No circuit of a relation graph will satisfy

Theorem T3-2 of Chapter IIIL.

Proof':

Case 1: Let ¢k { ﬁi} Then Pk does

not satisty ﬂheorem T‘nl,

Case 2: Let fi 7/{“¢i}'. fie can be
expressed as B3 * gy where £j m{ﬁi}
and pg € { ﬁi}'- Further, gy can be
expressed as {;’51, * #R} where gy e {Sé_;,}

and gy ¢ {;Ai} o If B dis fixed, all

parameters of $; are fixed exgept

those belonging to {‘éj f\éq}'. ALl
parameters of ¢, are restricted except
those belonging to {'éj‘ﬁ Al} and
{ 51,00 QR} . Therefore, the remaining
system will have gy and 4 such that

Pq € Py, ; and nondecomposability exists.

Since no set of parameters which are contained in a circuit of

the relation graph will mep through the desigh map, a very large list

of possible test sets is removed from consideration by inspection of

the relation graph. Since a tree contains no circuits, intuition

might indicate that the set of trees of the relation graph would be

a complete set of allowable specification setg. However, this is not

the case. The following example shows how a tree can exist which is

not an allowsble set and also how some circuits may be allowable

sets.
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Consider the system defined by the following felaticns:
(1) (% % %3 %)
(2) (% % X5 Xg)
(3) (X1 % X, X5 X)

The relation graph is shown in Figure 4-3.

Figure 4-3. Relation Graph

The set (X3 X), Xg X¢s) is & circuit of the relation graph.
However, unless both relations (1) and (2) can be placed in the form
£(Xy X,) + f(vemaining variables) = 0, this is not a valid reiation.
If the actual solution of relations (1) and {2) yielded a relation
invelying (X, X5 X X5 X¢), the set (X3 Xy, Xs Xg) would be an
allowgble specification set. Therefore some circults of the relation
graph are allowable sets. The set (X3 X Xs Xg) and the set {X3 X,
Xy, Xs X7) yield the circuit of the relation graph (X X X3 Xg XY)‘ '

The set (Xl X3 Xg X7) is a tree of the graph, but not necessarily
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an allowable set, since the actual relatioﬁ generated by (1) and (2)
might be (X5 X3 X) Xg Xg), which, with(3), might yield the set

(Xy X3 Xg Xq), thereby making the tree an unallowsble set. It is
unfortunate that trees of the reiation graph exist Which are not
allowable sets since a complete listing of the trees can be obtained
by the Cauchy expansion process. This method may still be used to
obtain sets of allowable specification sets since in practice very
Tew of the trees are not allowahle.

If a particular set of parameters is being investigated, a
definite ansyer concerning this set is usually desired. Since a
-definite conclusion in many cases requires that the functional fgrm
of the equation be known, a genergl method for allowgbility testing
cannot be obtained. Therefore, with any desigh method used, the most
efficient procedure would be-to use one of the metheds previously
discussed to locate the contradiction, if one exists, and then to
regsort to the equations in order to determine allowability. The
contradiction can be located by either performing Procgss P on the
design map' or by inspection of the relatbion graph.

When using the design map or the relation graph to select
speqifications; it is desirable to know the order of importance of
the parameters. When a conflict is found, one of the parameters
must be deleted from the specificati@ns in order to assure a
solution.

The key to checking specification sets lies in the fact that
every independent set of relations will have at least one allowable
specification set. Alsgo, it is known that there does net exist any

set of parameters which will mgp through a dependent set of relations.
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The obvieus fesult 0£ this is that anyﬂsubset of parsmeters ﬁhich
when deleted from the éystem leaves the relations independent is an
allbwable specificatién set. Therefore, any subset of the test set -
may be éhecked fer'allOWability'withoﬁt ﬁhefnecessity of‘trying?fo
map it through with the rest of the set. By the same remsoning,
when any set of parameters is deleted, leaving a dependent system,
it will not map through. TIf this is the case, there is ne peint in
_trying to inelude it in any test set.

The above discussion suggests a method for generating an alldwed
specification set; that 1s, selecting the parameters one by one,
testing each time to determine whether an independent system remasins.
If the desired parameters are selected in order ofltheir importance
in fhe'design, then the best possible specification set is obtailped.

An example of this process is givenlin the sample selection
problem'which follaws.

,.Consider a relay system defined by the follewing relations
which were given in the previous example‘concerning the relay:
(1) (M, B P, Bos 5, Xgy W) |
() (n, B M, Ry, t5, Xo W)
(3) (B, P, Re)
() (5,2, R, 8)
(5) ( 6 s £ s 5, N)

If the set (N, Ry, 8 , Xg, S, Py, M) is selected for test, the
. results are negative since both f) and f5 specify values for 4 as
shown in Figure 4-l. The original system is independent as shewn by

the decompesition sets:
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a. (1, 2, 3) (first decomposition set)
b. (4, 5) (second decomposition set)

The system with the test set removed is

(1) (®)

() (&, M, t5)
(3) (&, ®)

(3 (2)

(5) (1)

which is dependent since the decomposition process yields
a. (2, 3) (first decomposition set)
be  {1) (second decamposiﬁi@n set)
“eo  (k, 5) (this set is nondecomposable)

The result indiéates that the set will not map through, and thisg
fact is aisb exemplified in the resﬁlts of the mappingvin Figure hly,
If it 1s aésumed that the desirability of the parameters as members
of the specificatioh sét is indicated by their order as given above,
each subset may be c¢hecked for allowability. This processg is

indicated be16w=

Step 1: The system with N removed is
| (1) (1 , B, Py, Re, 8, Xg)
(2) (n 5 B, M, Re, tg, Xo)

(3) (B, P, R,)
() (8 , 2, Ry,

(5) (6 , 2, 8)

which hgs the decomposition classes

S)

a. (1, 2, 3)
be  (4)
c.  (5)
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- Step 2: The system with F(N,‘R:c) removed is
(@), E, Py, S, Xo)
) 2 (., E: M, tgs Xé) ‘
(3) (g, P) |
(W) (%, 2,8)
(5) (&, 4,8)
nhich, when an attempt at decomposition is made, yields
a. (1, 2, 3) (first decomposition class)
be (4, 5) (nondecomposable)
The implica.ti'on of Step 2 is that ne set containing both N and R.
jifill‘ map 'through.vb Since N is ccnsidered more desirable ‘than Rs, Re

i'-‘w:‘l;'L;l. be removed from the set of specifications.

.Stép 3: Thelsys;tem with (N, 5 ) removed is
(1) (M, B Po, Ry, S, Xg)
(2) (1, E, M, R, tg, Xo)
(3) (8 B, R)
(%) (¢ , BRs, 8)
(5) (1 ,8)

~ which has decomposition classes

8. (l: 2, 3)
be (W)
ce (5)

Stép L: The system with (N, § , Xo) removed is
‘ (l) ( n, E Po: Re> S)
gE) (“ 2 E) M: Rc) ts)

(3) (B, P, Re)



‘ ()*) ( L Rc: 'S)‘
(5) (1,8

which has decomposition classes '

a . (1,2, 3)
be (&)
ce (5)

’_ st¢p 5: The system with (N, § , X,, S) removed is
@ (1,E P, R -
(2) (mn, B M, R, tg)
(3) (B, P, Re)
() (2, Re)
(5) ( £)
.~‘fwhicﬁ'ha$ deéomposition classes
| a (1,2, 3)
b. ()
c.  (5)

~Step 6: The system with (N, & , Xy, S, Pg) removed is
(1) ( msE R
(2) ( m, E, M, Ry, tg)

€3) (& P, R;)

(W) (2, Re)
| (5) (¢)
vﬁ;eh bes decompesition classes
| | a. (2, 3)
b (1)
co (W)

d.  (5)
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Step T: Thevsystem"with (N, 6, X, S, PQ,,n ) removed is
(1) (B, R.) |
(2) (EI M, Rc, ts),

'(3) ‘(Ez P, RO)

(&) (2, Re)
(5) ()
which has decomposition classes
a. (2, 3)
b (1)
co (W)
. (5)

Step 7_indicates that an allowable specifiéatibn set has been
Obtainéd, retaining as mgn& parameters as possible of the original
‘ﬁest set,  An additional parameter,may be selected to replace R..

‘Althougﬁ it may seém‘complex,.in practice, this prQQedure is
accomplished very easily énd quickly and will allow the designer to

’pinpoint centrad%ctibﬁs inyﬁﬁe spgcificatioﬁs without having te map
the entire set’tﬁfough. o ‘ '

It is possible for é single parameter, when removed frem the
system, to leavéia dependent’systém.‘ It.foliews, then, that any set
containing £hisvparameter will not map through. The procedure in
' the example allcﬁs & quick check for this possibility.

In general, this precedure‘provideé the quickest, mest efficient
| method»for obtaining an allowable specification set. Since each
cenfliét'is pinpainted in its order of importanée, no confusion
occurs concerning which alternatetset to try. If this method is to

be used, a convenient way to check decomposability is needed. One
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approach to this problem is.ﬁo form a linear graph having one vertex
for eaéh'relation in the system and one edge cqnne@ting two vertices
for each parameter common te the two»cerrespénding relations. An
example of this type of.graph'is shown in Figure -5, Fér convenience,

this shall be called a decomposition graph.

X5%
System: A e

R — B
X ,

a. (¥ X, Xs %), Xs)
be (X, X5 Xg)
C. (Xg X3 Xl;. X"{') |

Figure L4-5. Decomposition Graph .

Since the process used iﬁ decomposiﬁién is selection of parameters
which appear in only one relation, the decomposability of the system
in Figure 4-5 is obvious. Note that a decomposition graph which has
no single vertex edge always depicts a dependent system, but the
‘cohvérée is notltrue, An exaﬁple is shown in Figure 4-6. Clearly,
if relation A (vertex A) is remo&ed from the system, the remaining
relations ave nondecomppsable. This graph is very useful on simple

systems but becomes very complex on large systems.

Pigure L4-6. Alternate Decomposition Graph



57

A method for testing the decomposability of & system quickly
and, withoutvthe necessity gf redraving a graph‘ér a design map is
given in the following example. ‘

Consider the single-stage, single-tuned amplifief shown in

Figure h-T.

pu v

-

g $Fp :I_Tgk_gL 7% gRg ——Ce

.\‘/\/\

Single-tuned Amplifier Equivalent Circuit

Figure 4-T7. Tuned Amplifier

Assume the amplifier can be represented by the following

relations:

(1) K=o (X, Eo, Eg)
E. .
i
(2) k3 -8 Wolle ( (K, &m> o, L, Qe)
(3) Qe = Q 1 (Qe: Qy Wo, L, Tp, Rg)
1+ wola(E + 1)
rp Rg
.
(1) @=I (@, wo, L, Rp)

Ry,

[



- (5) c=op et + 0

(6) w, = ‘;
(7) & = ¥ o1
L
i
(8) B=_-2
(8) '
(9) w2 ntf

(10) wog=2m £,

(11) o

output. voltage

input signal

" transconductance

plate resistance
grid resistor

load resistor
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(¢, Cpis ct, Cg)
(wo, L, C)
(6, w, wy)
(B, o, Qe)

(w, £)

(wor fo)

motan i 2 5G (8,5 , Q)

= plate to cathode capacitance

an equivalent capacitance
an equivalent capaditance
‘bandwidth

frequency

resopant fredquency

phase shift

amplification
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L _=iinductance

O
K€

Q of the circuit

Qe

E1]

equivalent Q of the amplifier

If the paramgteré are grouped accordiﬁg to the number of relations
‘in which they appear, the table shown in Figure 4-8 is cbtained.
| Since the'rélations tested in the first group in Figure 4-8 all
have a unique parameter, they will all appeér in the first decempo- |
: siﬁion clﬁés.- To fofm‘the_segond decomposition class, it is necessary
to cénsider only those relations listed in the second and fellewing
groups.

| Thé parameters‘of the second group all'appear in two relations,

and three possibilities exist cencerning these two relations. TFirst,
both might be in the first decomposition class. If this is the case,
no further congideration is neceésary. Second, only one of the
relations might be & member of ﬁhe first decomposition clgss. This
occurrence obviously qualifies thé other relation for the second
decompogition class; ‘The only other poseibility is that neither
>relatien ié included in the first decomposition elass. This possi-
"bility excludes both relatiens from the second decomposition class
.on the basis:of fhe particular parameter. However, one or beth
relations may be included in the second decomposition class by
consideration of a different parameter.

The parameters of the third greup are included in three relatiens.
CIf all-fﬁree'relations are in the first decompogition class, no further
, cOnsidérafioﬁ is necessary. Whén only two relationé beiong, the third

is a menber of the secend decompogition class. Membership in the
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x[x|x|| [Eo| [](2)
x{ x| ' i@
Tx lem| {[(2)
X X p (3) |
|l |Re 1163)
X Brl (%)
x || Fey {[(5)
X 18t 11(5)
XX || [Cg| |](5)
X X B (8)
X L IE)
8 (11)
K| 1](2)(2)
Q| |1(3)()
x| (x|l fe| |[(5)¢6)
81 (M)
XXX {w i ||(1(9)
fo| |[(8)(20)
L] 1](2)(3)(%)(6)
x| X Se| ||(2)(3)(8)(11)
X| X ] [¥o| |[2)(3X:X6)(T)(10)

Figure.h-B.

Modified Design Map
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first decomposition clase,ofvone or more of the‘relati@ns implies
the exclusion of'those remaining fremjthe seeend decémpesition class
. on the besis of the parameter in question. } |

| The pattern is the same for the remaining groups, Obvioﬁsly ‘
each time a relation is added to a particular decompesition class,

: 1a11 other relations involving the parameter which is being checked
.‘Must be included in & previous decompesition class.

As an example, assume the system 1s to be tested for independence
by the method Jjust descrlbed. The relatlons llsted after the first
- set of parameters form the first decomposition class. In consid-

ering the second set of'parameters,'it is seen that relations (6),
‘(Tj-end (10) are in the second decompesition class. Tnspection of
'-the~remaihing groups of parameters adds no informatioﬁ since all'
‘ relations have been placed in a decomposition class.

- The decomppsition classes are
 a. (1,2,3, 4% 5,8,9, 11)
b. (6, 7, 10) |

whichfverify the independence of theksyStehe,

Since there are twelve relations end twenty-one parameters,
nine parameters can be specified. Suppose the set of specifications
(Eo, By, rp, Cpx, Cg, B, C, W, W) is desired. To check the allaw-
;abiiity, column A of Figure 4-8 is used. First, each parameter of
the specificetien éet is removed from consideration findicated by X
‘in column A). The system remgining without these parameters is then
~checked for-decomposability.- The relations listed in the first group

(2, 3, 4, 5, 9, 11) compose the first decomposition class.
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Iﬁ the second set of pafameters, relation (2) listed after X is
in the first decomposition class, implying that (1) is in the second.
The same can bé said of (11) and (7) listed after & . Neither (8)
ner (10) after fo is in the first'decomposition set; aﬁd, ‘therefore,
they must be conéidered'for the third.,
Trom the third group of parameters it is seen that relations
(6) and (8) belong to the second decomposition e¢lass, thereby, making
‘relation (lO) a member of the third. The decomposition clagses can
be listed as o |
a. (2,3, % 5,9, 11)
b (1, 6 7, 8)
e, (10)
and the set (Eo, By , Tp, Cpk, Cg, B, C, W, W) is an allowable
specification set. Nete that if any relation is missing from the
claéses A, B; and C, this implies that a complete parameter set for
bxithaf felatio# was specified and that the decomposition isAvoid,
.. As 8 second example, consider the set (Eo, gméRg, Ry, C', Cg,
T, Qe, W) marked in column B of Figure 4-8. Inspection of the
second set of parameters shows the relations (2), [4), (7) and (10)
to be in the second deéemposition class. The remaining parameter
L implies,that relation (6) is in the third decompesition class.
Thé-decomposition classes ére
a. (1, 3, 5, 8, 11)
b. (2, %, 7, 10)
- c.. (6)
Note that relation (9) is not included. Tnspection shows that the

entire parameter set of (9) was included in the specification set

and that, therefore, it is net an allowable set.
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In column C of Figure 4-8, thelset (Egy By , Tp, Ry, B; C, W,
Qe, wo) is indicated as a teat set. inspection of4£he second group
of parameters shows the second decomposition class to centain the
‘relations (1), (4) and (7). The relations (8) and~(10), listed
after fy, must be considered for the third decomposition set.
Consideration of the relations inveolving L indicates that relation
~(6) belongs to the third decemposition class. Relations (8) and
(10) will net decompose, and additional information is necessary

to determine allowabllity.



CHAPTER V
SUMMARY AND CONCTUSTONS

The basic problem with which this thesis is c@ncérned is the
‘determination of which parameters of a system can be used as specifi-
'fcations witheut generating inconsistencies. When only a few relati©ns
are invelved, the designer can easily spot any inconsistencies byw
inspection. However, when the number of relations increase, the
‘picture quickly becomes so complex'that the determination of the
exiStence of inconsistencies is quite difficult. The genersdl approach
used requires the development of a fefmal structure which would allow
diécussi@n of parameters, relations and syétems in a cencige math-
ematical menmer, rather than in a wordy philosophical manner, .

' First, the parameter is defined as a set!ef "values". This
definition allows consideration @fvthe parameter as an element of
é set without regard te the exact nature or name of the values. Next,‘
gets of related'parameters are defined as relations. The relatiens"
provide the "rules" by which it is possible f@ ascertain the value
of a particular paraméter{when the values of the related parameters
are knéwn. Finally, a sysﬁem is defined to compietg the structure.
Througheut this discussion, many pfoperties of the relation and
éystem are defined an& derived. The proofs of theée preoperties aré

fbr the most part original, altheough the genéral structure follows

a pattefn similar to the system the@ry developed by Freeny (2). The

6l
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two structures differ primarily in the definition of the relation
and although an attempt was made‘té correlate the two structures
wherever possible by using similar terms, the reader is cautioned
against drawiﬁg conclusions of correspendence witheut thoerough
consideration since, although many of the results are the same, the
method for obtaining them 1s gquite different.

Next, the gelection of an allowed specif;cation is pursued under
the assumption of a single necessary and sufficient condition. This
conditien is that the sét in questien does not include a complete
pa}ameter set for any valid relation of the system. Since it i§
obvieus that pbtainihg a complete set of vali%lrelations for. a complex
- system would be an almost insurmeuntable task, the properties of set
inclusion are shown to contain sufficient infermation te détermine
allowability‘or allew selectien of the least diffiéuit method‘for
obtaining the necessary information. "Procesé P" is a fermalization
of the method of selection used by freeny in his "design map.! This
process of selection is formalized and Justified by theerems which,
tQ this author's knewledge, are unique teo this thesis. These theorems,”.
relating-ﬁhe existence of an allowable specification set to the decom-
posabilit& of the system, allowed the development of a systematic
”afproach for the sélection of system specifications. This method
alléws'the designer to develep a systém step by step, reselving all
inconsistencies as they ecéur. The primary advantagé of this methed
over the previous design map is the savings in time and effort since

checking of nonmaximal specification sets is possible with the new

method.
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Next, the relation graph is defined. The use eflé’linear graph
to represent a sysﬁém has been discussed by several authors, but the
lack of a one-to-oné»correSpondence between the eleﬁents of the |
graph and the parameters of the system prevented any useful contri-
butions in thils area. kAn original theorem, proving the existence of
a relatlien graph Tor every system is given. However, the results of
the investigation are diseppointing since an éxact correlation between
the relations of the system and the circuiis of the graph cannot be
pbtained in the general case. During the early investigation performed
for this thesis, the author studied the variogs forms of the relation
graph which could be obtained from an electriéal ciréuit. These
studies indicated that a typical pattern of constructien might be
formed which would allow generation of a relation graph with a one-
to-one correspondence 5etween circuits and reiationS‘in all cases.

The author feels that there is sufficient justification for centinued
work in thié area. In the special}cases in which the relatien graph
defines a unique system, it provides the simplest and easlest method
of parameter selection‘yet developed. Also, & complete listing of
all allowable specification séts is readily obtainable.’ |

Several examples of the different methods of parameter selection
~are givern in the fourth chapter. These examples point out many eof
the‘less obvious limitations of the various metheds and provides the
reader with a better intuitive "feel" for the problem of parameter
selectiQn. For example, the"diécussion of the design map shows that
several maps are required for each system to gain'complete infbrmation.
Also,fit is shown that the relation graph lacks the required

cdrrespondence between circuits and relations in many cases.
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The épplication of the material in this thesis requires only
bthat a set of defining relatibns>fer the system be knewn. The form
of the»relations, whefher linear or nenlinear, is immaterial.

The author feels that maﬁy design engineers lack a fundamental
knowledge of systems of relations and as & result, temd to write
and solve equations in a haphazard mermer witheut full knewledge
of the correct procedure which will allo% a solution in a minimum
number of steps. Also, many trivial problems are thought to be
complex or unsglvable at first investigation since the exsct
information needed for obtaining a solutiomr may be present but
unknown to the desigher.

Obviously, parameter selection.concerms oenly a very small
portion of the over-all design problem. vSeveral areas worthy of
continued study are indicatedtin the following paragraphs.

First,‘it would be desirable teo develop the theory using matrices.
Since matrix theory is almest universally used in present day circult
ﬁheory,Athe preblem of parameter selection might well be simplified
using this medium. As an example of this application,‘consider T2~3.
If'a‘matrix were formed, baving a row for each parameter and a column
for each relation, a conditien relating the rank of the matrix te the

. decomposability of the system might be proven. This weuld then allow
a check for decomposability te be performed by a kn@wledge of the
rank of the matrix.

Next, to continue the integrétion of design theory and circuit
theory, an investigation of poésible applications of the relation
graph and hopefully, a way te circumvent'the present preoblem could
be ﬁéde. This problem has such great possibilities if solved that

it is deserving of future study.



One further problem which is perhaps the most important is the
extension of parameter selection to the case where the ranges of
individual parameters have been restricted. When specifications
are given in this mamner (and they frequently are), more than the
usual number of parameters can be specified. For example, if the
correct values.happened to be selected, all of the parameters in
the relation E = IR could be specified, whereas only two can be
specified in the general case. The restriction of the range of the
parameters, in addition to allowing meore parameters to be selected,
would allew optimization technigues to be developed. This devel-

- opment, altheugh a long problem, appears to be solvable and would

be extremely valuable.
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APPENDIX A
SET THEORY

The fundamentals of set theory concern three undefined concepts.
These are:
(l) element
(2) set
(3) '"pelongs té"
In general, sets are;indicafed by the usé of 9apital lettefs or
are enclosed in brackets. Lewer case letters are commonly used to
. denote elements. Hewever, since there are sometimes sets of sets,
care must be taken te ascertain the indicated.conceptL
The cencept "bélongS'to" relates sets and elements., It is
generally Wfiﬁten in the mannei a € A, which is read, the element a |
belongs to the set A. The negatien of this statement is indicated
b& a slash mark through the belengs to notation, a g A
The slash through a'symbel is a general notation of negation.

Some fundamental definitions follow:

DA-1: A set A is & subset of a set B if all the elements

of Avare alse elements of B. This {s written A < B.

DA-2: If A=B and B S A, then set A and set B are said to

be e@ual and are written as A = B.

DA-3: If ASBand A ¥ B, A is a proper subset of B and

is written A C B.
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DA-5;

DA-6:

DA-T:

10

The set which consists of no elements is the empty

set. It is considered to be a subset of every set.

Given éwo setglA and B, the set C consisting of the
elements X such that

(1) X e A
or

(2) X eB

is the union of A and Biand is written C =z A{J B.

1

Given twe sets A and B, the éet C consisting of the
eléments X such that

(1) XeA
and

(2) XeB

ig called the intersection of A and B an@ is written

AN E.

The number of distinct elements in a set is referred
to ag the cardinality of the set. This, in neotation

form, is written o (A).

- Additienal symbols used in this thesis are defined in the following

list:

A = indexing set

P = parameter
775 = product set of parameter

"77; = scalar product set

é Z relation
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set of 1 relatiens

sét of n parameters involved in relation ¢
i sets of n parameters involved in the
relations gy

ﬁatural points of @4; en Ppg

system of n parameter and i relatiens



T2

' APPENDIX B
GRAPH THECRY

Graph theory, as used by the members of the electrical engineering
profession, concerns the use of a geometric figure to represent a
physical circuit. UThe following definitions will provide a satisfactory

basis to interpret the material in the thesis.

DB-1: A line segment together with its distinct end

points 1s an edge. IKdge and element are

SYNONYMOUS o
DB-2: A vertex is an end point at an edge.
DB-3: A linear graph is a collection of edges, no

twe of which have a point in common that is

not a vertex.

DB-bhs A subgraph is a subset of the edges of the
graph.
DB=-5: A vertex and'an adge are iﬂcident with each

other if the vertex is an endpoint of the edge.

DB-6: The degree of & vertex is the number of edges

incident at the vertex.



DB-T:

DB-8:

DB~9:

DB-10:

DB-11l:

If the edges of a graph can be ordered such thatv
each vertex in common with the preceding edge and .

the other vertex in cemmon with the succeeding

edge (each edge appearing enly once), the sequence

is an edge train.

If the degree of each nonterminal vertex of an edge
train is 2 and each terminal vertex is 1, the edge

train is a path.

If the terminal vertices of an edge train ceincide
and all vertices are of degree 2, the edge train

is a circuit,

A graph is comnected if there exists a path

between any twe vertices of the graph.

A tree of a graph is a maximal cennected subgraph

containing all the vertices of the graph.

13



Th

APPENDIX C
TREE LISTING

It might sometimes be desirable to obtain a listing of all éets
of parameters which will give positive results én the design map.
If the system is represented by a linear graph, the trees of the
graph, ﬁith few exceptions, are those sets of parameters which map
through the design map. A method for obtaining a listing of tﬁe
trees of a graph was suggested by Paul.(4). This method is explained
‘ in the follcwing discussion.

Given a linear graph with V vertices and E edges, form a listing
of any V - 1 vertex cut sets. (A vertex cut set corresponding to a
particular vertex is just a listing of the edges incident to the
vertex.) Obtain the Cauchy product of the cut sets and the result
is & list of all trees of the graph. (The Cauchy product is
expleined in the example.)

Consider the system shown in Figure C-1l.

A

Figure C-l. Linear Graph



5
The vertex cut sets are (A, E, D), (4, B),.(B, c, E),‘and
(C, D). Select V - 1 of these sets (4, B), (B, C, E), (C, D) and
arrange them.in the follewing manner:
(A +B)(B + ¢ +E)(C+D),
Perform ordinary multiplication en the line shown, obtaining
(AB + AC + AE + BB + BC + BE)(C + D)
and
| ABC + ACC + AFC + BBC % BCC + BEC + ABD + ACD + AED
+ BBED + BCD + BED.
Remove all products which centain the same edge twice and all products
which appear twice. The result is
ABC + AEC + BEC + ABD + ACD + AED + BCD + BED.
‘Bach of the products in this listing is a trée‘@f the graph and each

is an all@wable.specificati@n set.
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