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PREFACE 

This dissertation is the result of the author 1 s interest in the 

development of a logical method of engineering design. Design 

engineers who do not have a comfortable background of experience to 

provide intuitive guidance are sometiw..es apt to approach a design 

problem rather haphazardly, and consequently there is need of a 

more basic understanding of the design process. 

The author became interested in this area while working with 

Professors Charles Fo Cameron and Daniel D .. Lingelbach in the area 

of relay design. The requirements of the problem indicated a. need 

for a logical, systematic method of determining exactly what 

parameters af a relay could be arbitrarily specified with assurance 

that the.relay would be realizable. A "design map" developed by 

c. C. Freeny, who was also concerned with the project, has been 

used very successfully by the previously mentioned group, ana. 

several papers have beeu written on this subject. 

The fundamental viewpoint taken in the thesis is that the set 

inclu,si0n properties of a system of relations provide sufficient 

information te justify their use as the basis for a method of 

specification selectionQ In special cases where set inclusion 

alone is not sufficient, a very simple approach is provided to 

augment this inf'ermation. 
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CHAPTER I 

INTRODUCTION 

Once a design process has been well defined and stated in a 

logical theory, it is usually possible to train people or machines 

to perform this process, therefore allowing the more creative person 

to proceed to less clearly defined areas .. It is the intent of the 

author to select a particular step of the design process and to 

atten:q>t to develop a structure such that the process is reduced to 

a logical step~by-step procedure ultimately to be performed by a 

computer. 

The development of a structure and of a theory of the design 

process has received attention in several different areas. The 

area of "systems" at present is so encon:q>assi;og that at least one 

book has been written in an attempt to establish a definitive theory 

of systems. The book Systems Philosophy, which was published in 
I 

1962, used the terminology of modern mathematics to define a 

system. {1). .. ....... 

In the area of linear graph theory, work has been done on 

parameter selection in an electrical network, and a paper on the 

subject was presented at the Sixth Midwest Synu:,osium on Circuit:· 

Theory in 1963. 

In addition, this subject has been a topic of interest to the 

relay design group at Oklahoma State University for several years, 

and many papers and reports have been written on this subject. 

l 



As a direct result of this work, C. o. -Freeny (2) defined a 

·system .symbolically in order to provide a foundation upon 1-1hic]1 to 

build a design theory. 

Studies of a very similar nature (concerned with computer 

usage) are presently being directed by John G. Paul of North 

American Aviation, Inc. 

As an indication that the problem of logical design is a·· 

widespread one, the following is quoted from a book on guided 

missile design: 

"The radar eystems engineer is often asked 

to solve the following prablem: 'Given a set of 

performance specifications based on the tactical 

problem.requirements, derive a ra.da.r system that 

will meet the specii'ications. '" 

"For a variety of reasons, it is seldom 

possible to solve this problem in a straight­

forward fashion. Probably the most important 

reason is this: The performe.nce specification -

if properly derived - will seldom specify a. task 

which sirqply cannot b~ performed by radar 

techniques; however,. the performance specifi­

cation will usually require the radar to 

perform a group 0f tasks which are not logically 

consistent with a:ay one radar system mechanization." 

"The usual approach is to assume a generic 

type of radar system which eX:l)erience and 

judgment deem reasonable. The assumed system 
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then is measured analytically against the over-all 

system requirements to determine whether it has 

the inherent potential for providing an acceptable 

problem· solution. This p:t.•ocess is repeated unt;iJ. 

the best match is found hstw-een the perforw.ance 

specification and the basic laws of nature 

governing what can be done by a given radar 

system. 11 ( 3). 

The last, sentence of the above quotation tells the story; the 

process is trial and error, which plac:es a premium on past 

experience rathe1" than on formal knmrledge of the subject. Tl:le 

authors of the book from which this passage was taken have 

recognized the problem but have attempted to solve it by simply 

sharing their experience with the reader. 

The particular process to be discussed in this thesis is 

parameter selectien. This is a very basic step of design, and a 

lack of knowledge of the structure involved has resulted in many 

designs which are preducts of art rather than science. A 

knowledge of the general system of relations and parameters, 

such as is presented in tb.is thesis, removes the algebraic 

details, allowing the basic set stn1.cture to be considered. In 

many cases, this simplification allo<;1s the designer to view the 

entire system as one unit rather than as·many subsystems which 

are difficult t0 fit together in one's mind. 

Set theery is used extensively throughout the thesis because 

consideration of the set inclusion properties allows a great deal 
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of simplification. It also removes information which is often 

necessary, but the a.mount of information which can be ·extracted· 

from the set inclusion properties justifies its use. 

The system, as .defined. in this thesis, concerns two basic 

concepts - the parameter and the relation. The parameter is one 

of a· set of "things" for which there has been some accepted 

standard of measure. Length, weight, voltage, resistance,· 

acceleration, and velocity are para.meters for which exact 

measuring standa:rds have been developed. Intelligence, kindness, 

love, and success are ~les 0f parameters for which the 

measurement techniques have net, as yet, been agreed upon. 

Associated with the measurement of the para.meter is a set 

of 11values 11 which may be expressed ae; rea.l numbers, complex· 

numbers, abstract symbols, etc. It is assumed that the para.meter 

will be measured by selecting one of the members of the appropriate 

set and designating it as the measured "value" of the parameter. 

Therefere, it is clear that the para.meter itself is a set of 

possible "values"., and the definition given in the secend chapter 

allows the consideration of the para.meter as a·set of "values" 

without regard to the exact nature or name of the value. 

When mere than one parameter is te be considered, the effect 

of the value ef one pa,ra.meter en the value of another is of' 

considerable importance. If' there is an effect,, tne parameters 

are said to be related. 

To facilitate the study of sets of para.meters, the cross..:prod.uct 

0f the sets is f'ormed. This results in a set of n-tuples, which is 

all possible combinations of the values of the parameters involved 
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and which is referred to as the scalar product set. The effect of 

each parameter on the others determines which of these many possible 

combinations will actually occur in such a way that they can be 

verified by measurement. The rule used to determine which 

combinations occur is called a relationo 

In the previous discussion, only measurement of parameter values 

has been considered.. '110 accorr.q;>lish design, it is necessary to be 

5 

able to obtain a desired value of a particular parameter or_parameters. 

This means that the. a.esigner must know which values of the unspecified 

parameters will result in the desired values of the specif'ied 

parameter. 1fue deductive relation satisfies these requirements since 

values of exactly n - 1 of the parameters allow determination of the 

nth parameter. 

Just as parameters have ~lues dependent on values of other 

parameters within a relation, there may exist other relations 

involving different para.meters which also have an effect. The final 

result is a set· of relations (Pi) involving a set of parameters (Pnh 

To obtain a particul&r value of' a. para.ineter Pk under these conditions, 

the effect of each parmneter of each relation which contains Pk must 

be taken into account.. A convenient way of doing this is to form a 

grouping of elements with one position for each parameter involved. 

Tb.en the set of allot~ed combinations of parameter values is determined 

by the requirement that eve-ry subcembina.tion of values which appears 

in the grouping also appears in the set of allowed values of each 

relation haVing the corresponding set of para.meters. The sets of 

elements obtained in this manner are called natural points, which, 

in common usage, are the solutions to sets of simultaneous equations. 
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Tnis structure of the parameter and the relation is necessary to 

allow a more rigorous justification of the para.meter selection process 

which is intended to provide a logical step-by-step procedure for one 

phase of' design. 

Whenever sets of relatio;n.s are studied, the question of 

inconsistencies and redunda..ncies arises. In the genersµ sense, a 

knowledge of the functional form of the relations must be known in 

order to determine independence or dependence of the set. Hot-rever, 

in all but a few special cases there exists a set structure which 

allows inconsistency ani:l redundancy'.checks us;tng,only the set 

inclusion properties. 'l"he process of decorn;posa.bility, defined in 

the second chapter, provides a method of determining independence 

if the exceptions suggested above are :ruled out. T.!le ability to 

determine decomposability of a. set of relations is very important 

since it is this property upon ;which the remainder ot' the thesis is 

based. 

A system is defined as a set of relations and corresponding 

parameters .. An allawa."Qle speoificatio:a set of a system is a set of 

parameters for which arbitrary values can be selected with assurance 

that values·of the unselected. parameters exist which will result in 

the desired system. It would be very desirable to have an easily 

applied, necessary and su:f'ficient condition for the allowability 

of a set of parameters f:l.S specifications. However, if the . 

information used to determine allow-ability is restricted to the 

set inclusion properties; only a sufficient condition can be 

obtained. A method is presented to b.e used for the determination 

of allowability since, if a certain condition is met, the set of 
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para.meters being tested is known to be an allowable set; and, even 

if this condition is not true, the process allows the designer to 

determine exactly which relations and para.meters might be in conflict. 

A system may be defined by a set of relations and a corresponding 

set of' para.meters. The word "def'ined 11 i:n this context means that the 

system in question ca.n be distinguished from certain other systems. 

The number of relations and parameters necessa:i:'Y is a functi0n of th~ 

degree of uniqueness desired. Obviously, a.s the number of restric­

tions ~relations) is i~creased, the number of systems w;b.:i,.ch will fit 

the requirements is decreased. Once a system has been selected a.nd 

the param.et®rs which must be cop.sidered are ascertained, there exists 

a unique maximal set of relations which is valid for the system under 

consideration. (A valid relation must have at least one solution.) 

Not all of these relations are needed to define the system, since a 

maximal. independent set will uniquely specif'y the complete set of 

natural points; and a~ additional relations a;re sim;ply combinations 

of the base set. 

Selectien of an allowed specification set is based on a single 

necessa...-ry and suf'ficient conditiono This condition is that the set 

in question does not include a complete para.meter set for a:ay valid 

relation of the system. Any parameter set which satisfies this 

condition is an allowed specification set. The most obvious and 

straightforward method of parameter selection would therefore be 

to check the desired set to determine if a complete para.meter set 

of any valid relation is restricted. This method is not practical 

since obtaining the complete set of' valid relations would be a 

prohibitive task in all but the most trivial cases. 



Several methods of checking the relations using only the 
I 

information present in the defining relations a.re included in the 

chapter on applications, 

The design map; developed by Freeny, has been used for several 

yea.rs with good results. The design map is, in essence., a m.atru: 

having columns corresponding to the relations of th~.system.and 

rows corresponding to the para.meters. If a. set of PB.+'.ameters 

satisfies certain conditions on the design map, it is an allowable 

~pecifiaation set. If a set do~s not, then it is necessary to 

determine allowability by an appeal to the functional form of' the 

relations which show a possible conflict on the map .. 

In the search for a better method of parameter selection, use 

has been suggested more than once of a linear graph with edges 

representing parameters a.p.d circuits representing relations. The 

prima.J:'y problem concerning this type of representation was this: 

When the linear graph of a system was dra1vn, there was not a 

one-to-one correspondence 'between the edges of the graph and the· 

· parameters of the system,. This lack of a one-t'o-one col'J;'espondence 

is ne longer a problem since in this thesis it is shown te be a 

function, not of the system itself, but of the particular set of 

relations used to define the system. l3Y proper selection of tb.e 

base set of relations, all systems ·can be represented by a linear 

graph. 

The use of the linear graph as a design tool is limited since 

there is no exact correspondence between trees and allowable 

specification sets., nor between circuits and nonallowable sets. 

8 

The graph does, however, allow the designer to identify by inspection 



those sets of parameters which will not satisfy the design map and, 

in the case of systems which satisfy certain restrictions, allows 

a complete listing of all allowable specification sets. 

A third method of par~ter selection which is ~q.ggested by the 

theorems in Chapter III which state that every decomposable system 

bas at least one allowed specification fiet and that there is no set 

of parameters which will satisfy the suf'ficient condition for 

allowability for a nondecomposable system, is given in Chapter IV. 

The procedure /is to select the specifications, in order of their 

importance, one at a time, chec~ing each time to see that no conf'lict 

exists. This provides a step-by-step procedure for obtaining an 

allowable Sl:)eCification set, and ea.ch conf'l;i.ct of the selection is 

resolved in the order of th~ importance of the parameters. Use of 

this method requires that the designer be able to check decompos­

ability quite rapidly, ~nd an arrangement for doing this is given 

in an exa.mple. 

The final chapter indicates some of tp.e ru-eas of appliea.tion 

of the parameter selection process presented, and several possible 

areas of extension are noted. 
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D2-l: 

CHAPTER II 

A set P ;: { Pi, p2 •..• } is a p~rameter if the 

following three conditions are satisfied. 1 

(1) There exists an ordered set A, such 

that A() P:: O. 

(2) P can be placed in 1 .. 1 cerrespondence 

with A. 

(3) A contains at least two distinct 

elements. 

Set A is cal~ed the indexing set and is necessary to provide an 

ordering of the ele~nts of P. When dealing with ~bstract quantities 

such as voltage fE), current (:i;), and resistance (R), it is desiTed 

tq establish an ordering which will allow these parameters to be 

related by conventio:nal algebraic methods. Placin~ the elements of 

a parameter in a 1-1 correspondence wit~ an indexing set (such as 

real ~umbers, complex numbers, etc.) allows the operation developed 

for the indexing set to be used on the param~ters. This avoids any 

possible confusion of identity which might occur when each parameter 

is thought of as a "nµ.m.ber". 

1see Appendix A for a complete list of symbols. 

10 
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Some contusion might a.rise concerning the ~quality of parameters. 

It is obvioue that (E) and (I) are d:i.etinct parameters since they have 

a different name, but.frequently several distinct para.meters of the 

same type (ne.me) are related (for exa,mple, when summing voltages 

around a loop in an electrical circuit)o Wl::!.en this occurs, it is 

important to remember that e~ch voltage is a distinct par~eter 

regardless pf i:ihe associated "name". Condition (3) ef n2 ... 1 requires 

at lea.fit two elements. This requirement limits the title "para.meter" 

to those sets whiGh allow a "choice"; i.e., this removes, the 

"constants" in an equation from consideration~ Par&meters with 

different subscripts will be considered disjoint throughout th:i.s 

thesis. This does not imply that their indexing sets are difijo:i.nt. 

As will be fihOW!l later, the indexing sets of relate~ parameters will 

usually be the same. 

D2-3: 

Let fn} = (Pi, P2 ••a. Pn) be a set of disjo;i.nt 

parameter~. The set 1(n = {( P11, P2;t • • ; • Pni) : 

P1i E f1, P21 E P2 • • • • Pni E;- Pn} is the 

· product set of the parameters { Pn} • 

When the product set is written with elements 

of A replacing the corres~onding elements of 

P, the resulting set ...,,.-n of scalar n-tuples 

is called the scalar preq.uct set. 
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It should be noted that no ordering of parameters has been 

.defined. However, tne ordering used in the n•tuples wiJ.l .'be reta:lned 
. . I 

as a convenient way to identify the iJ;ldiv:ldual parameters and their 

corresponding scelars. 

D2-4: Two scalar n-tuples of the same product set are 

equal it the sc~lars of the respective p~rameters 

are equal re~ardless of order. 

The scalar proq.uct set is the tot,;tlity of d:i,.stinct n-tuples 

tll.at can be formed usi~ the elements of the indexing sets. It is 

u~ed to define a relation a~ong parameters. 

D¢!-5: If there e~ists e, 11rule 11 whereby the scalar 

product set can be divided into two nonempty 

equivalence claE,u;3es, this 11rule 11 is called a 

relation¢ on the parameters involved in the 

product set. 

In effect, a relation is the rule used to indicate the existence 

of a set. For example, let { X } be a set for which a rela,tion rp 

exists. Then for each X e { X} either ¢(X) is true or p(X) is false. 

The s~bset of { X } for which ¢ is true is the ~et nallaw-ed n by tl:J.e 

11 :rule". It is this set whieh will be called the gra.ph of the 

D2-.6: 

D2.-7: 

A set G(Pn) ~ {x: X e7Tn and p(X) is true} 'is 

the graph of the relatiQn rp on the set {Pn} 

Two relations, ¢1 and ¢2 are equal if their 

graphs are eqll$l• 



13 

The de:f'inition of equal relations allows the same relation to 

apply to more than one set of para.meters. 

Since the 9pera.tions performed on the elements of the para.meters 

a.re exactly those which can be performed on tl;i.e :j.ndexing sets, it i13 

required that the indexing sets for every parameter involved in a 

given relation should be equal. Therefore, the following definition 

is needed to limit the d:j.scussion to relations of this type. 

:02-8: · A relation~ on a set {Pn} is said to be 

algebraic if each Pi e; { P n } is indexed by the 

same set. 

All relations cons:i,c;l.ered in the remainder of th;Ls thesis, unless 

otherwise noted, will be algebraic. 

D2·8 is not as restr:Lctive as it see~ at first glance. In 

some relations one parameter will be allowed values only from a 

particular subset of the indexing set. This situation is ta~en into 

considera.t;i.on by the relation itself. Only tp.01;3e n-1:mples which 

contain the scalar from the proper subset of the indexing set are 

among those "allowed". Therefore, in general, the inde:x;ing sets of 

each parameter tn the relation can be considered equal. 

T~e set of scalars which appears in the graph 

as an element of a parameter is called the 

range of the parameter. 

The most useful property Qf a relation in the area of design is 

that of being deductive. When one knows the 11value 11 of a parameter 

or a set of parameters, the relation is used to determine the 

.. corresponding 11a.llowed value" of another parameter involved in the 
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same relation. Hqwever, a set of parameters might contain an element 

X such that every combination of the sc~lars corresponding to the 

remaini~ parameters appears witb, evecy scalar of x. Then no proper. 

subset of tti.e parameters, not including x, cc;>uld restrict the 11aJ,lowed 

values" of X to a;ny proper subset of the indexipg set. for example, 

consider the relation E = IR. +fa fourth parameter X were added to 

the set, the conditions for an algebraic :rel.ation could still be 

.satisfied. The only restriction placed on the added parameter would 

concern the indexing set. In order to restrict consideration to 

those parl;tllleter sets not hav:j.pg i:irivial elements {such as :X in the 

previous e~nwle), the following structure is necessary. 

D2-1Q: 

D2 ... ll: 

A relt;1.tion r/> on a set { Pn} is a deductive 

~elation if the following co~ditions are 

satisfied. 

(1) For every set of n - 1 eiements of the 

indexi:i:ig set, representing n ·- 1 

parameters, there exists a unique set 

of n-tuples properly contained in G(Pn). 

(2) No proper subset of {Pn} with rp 

satisfies condition (1). 

A deductive relation is a function if for every n - l 

element of the i~dexing set, representing n .. l 

;i;>ara.meters, there exists a single p. .. tuple 

contained in G(Pn). 

Condition (1) of n2 ... 10 allowe a given set of n .. 1 scalars to exist 

in more than one n-tuple. This is necessary to allow for relations 



'which are not "singJ,,~-valued". Fo:r example, the relation y = x2, 

indexed with the real nu~bers, allows two different scalars of X to 

correspond to a single s~alar of y. The requirement that the set 

of n-tuples be prqperly contain~d in the graph eliminates trivial 

parameters from consideration. Condition (2) ·of D2-10 requires 

that exactly n - l. elements are needed to restrict the remaining 

element to a proper subset of its range. 

Tb.e ne;x:t classification is one o-t convenience. 

D8-l3: 

T2-l: 

Tb.e set 7Tn 1 (P n'), formed from the set 

~(P0 ) by deleting those scaiars 

associated with parameters not contained 

in Pn', is called the pr~jection of Pn' 

on rp. I> is the relation invqlvin~ { P0 }, 

1fn' (P n') is a proper projeGtion if 

{Pn'}c{Pn}· 

There are 2n distinct projections of the 

elements of { Pn} on rp. 

Proof: The number of distinct projections 

is just the number of disti:qct 

subsets of { Pn}. 

The deductive relation, as defined in n2~10, is tµe fundamental 

idea upon which thil$ entire thesis is based. It will be assumed 

that all physical systems can be described by deductive relations; 

and to design the system, it is only necessary to determine the 

15 



"specificationsn (the scalars correspond.ing ton - 1 parameteris 

which are allowed any scalar value contained in the respective 

ranges), and then tq consult the graph to determine the n .. tuple or 

n-tuples (the f!Olutions) which are "allowed" by the relation. In 

tne case of a single relation, the p:t'Qcess is extremely sirn;ple. 

However, when several relations exist on parameter sets that are 

not disjoint, the problem of design becomes more corn;plex. 

The structure presently defined considers only a single 

relation. This structure will now be extended to consider many 

relations. 

D2-14: 

D2-14 is somewhat limited in usef4-lness because connectivity 

between relations is not transitive. For e~aPIJ;>le, consider the 

three sets: P1;: (X1 X2 x3), P2 = (x3 X4 X5), and P3 == (X5 X6 X7}. 

~i is connected to P2 and f 2 is connected to P3, but P1 is not 

connected to P3. In the design process, however, sets of parameters 

which correspond in this manner are the rule rather than the 

e~ception. Therefore, the following definition is used to determine 

connectivity when .more than two relations are involved. 

A set of relations { Pi} on the parameter 

sets {Pn1} is a connected set if for every 

proper subset {¢j} , {Pj} n {Pj} ,f o. 

< { Pj } = { ~1 } - { ¢j } ) · 

( {Pj} - { Pi } - { Pj } ). 

16 



Ee.ch relation and its asseciated s~t of p~r~ters have a graph 

:which ;i.ndicate~ "allowed" n-tuples. Since some pa.rameteri;i appear 

in InQre thl;l.n o~e relation, it is possible that a partieular scalar 

allowed.for a par~eter in one ];:!e:).at:i.ol!l :w1i:i. not be allowed in the 

other relation or relations in which the same parameter appears. 

It is the l?roblem of tbe designer to select a subset of each graph 

suqh that any scalar, or set Qi' scalars, which is allowed .(for a 

particular set of-parameters) in one relation :i,.s allowed for each 

reJ.a.tion in :wb~ch th~ parameters appear. The totality of n-tuples 

eonta:i,.ned in these subgraphs can then be divided into equi-v&lence 

classes conta;ining one n-tuple from ea.ell gra:ph~ This idea is 

explained formally in the following defi~ition~. 

Lei; { pi } be a connected set of reiations 

on the parameter sets { Pni} • Let X be a 

sea.J,.ar n-tuple such that evecy JJa;ra,nieter 

belo:qging to ,H { Ppi} :i,s re:presented once. 

Xis.a natural·poj,nt if there exists 

Yi e G(Pni) such that Yi s X for all i. 

The set of natural points sp.e.ll l;>e denoted 

17 

Each Illi;l.tu;r-al point is a;n "allowed state" of the system represent~d 

by tbe relations. 'l'he graph of' each :re;J..ation has an allowed element 

included iP. each natural. point. The question "J;)oes a; ne:~u:r~i point 

ex~st?" is certainly an important one. It would be most useful, :I,n 

design to be able to dete:t;"mine quic:kl,y the question pf existence. 



However, the information required to answer this question in an 11 if 11 

and "only if" manner is contained in the graph, ar+d no simple method 

exists to extract it. 

Relations fo~ which no natural points exist are of little ~se 

in the design process. Su.ch sets of relations shall be considered 

inconsistent. 

n2 ... :i,7; 

D2-18: 

The relations { i61 } are consistent if there 

exists a. natural point~ 

1he relations ¢1 and Pj are naturally c9nnected 

if 7T ni ( P nij ) s;:, ffnj ( P nij ) or l"J"nj ( J' P.ij ) 

~JTn1(Pni:J,:) where { Pnij} ;: { Pni }n { Pnj} 1- o. 

The relations Pi and Pj are norrn.e.lly connected if 

7Tni (P nij) = 7Tnj(Pnij) • 

Definitions D2-17, D2•18, and D2-19 provide three levels of 

+estriction on con~eeted relations. The first leveJ, requires the 

two graphs to contain at least one common element in the respective 

:i;irojections of { Pnij} ~ 1'b.e second level +equires that one 

projection contains the other. 11b.e most restrictive case requires 

that the projections be equal. 

One of the most basic and importaµt concepts involved with 

connecteq. relations is that of deipendence and independence. 

Conditions for these properties are us~ly expressed in ter!Tlfi of 

18 

operations of the particular algebr~ be:i,!,lg used. The same conditions 

ct:1,n be expressed in relation theor;y by the f'ollow:i,pg de:(inition. 



D2-20: 

D2-2l: 

The relatioµs { 'Pi } are dependent if 

there exi1;1ts rJ, e { 'Pi} . such that 

'fTn ( 'Pi ) = Trn ( 'Pi - 'P )-. 

The :re;I.ations { Pi} are independent if 

they are not dependent. 

The definition D2-20 requires that relations which are not 

consistent be independent. This is in agreement with standard 

algebraic definitions. Tha following theorem is an obvious result 

of D2-20. 

. 'm-2; 

'1'2-3: 

Let· { r/,1 } be a set of relations su.yh that 

each·relat:J.on involves a parameter not 

contained in any other para.meter set of 

{ 'Pi} • Then { Pi} is an independent 

set. 

Proof: AsE;;ume { 'Pi } is dependent; tben 

there exists p e { Pi} sl,l.ch that 

~(¢1) = ~n(Pi - p). Let Pl 
be that relation. But ~(r/,1 ) 

inv11>lves a para.meter not present 

in 7TnU)i - r/,1 ). Therefore, 

~(pi) 'l lTn_(rJ,i ... rJ,), 

Given a set of relations· { rJ,1 } • If 

there exists an order PJ_, r/J2, ~·· Pn, 
such t~t the 1th relation involves a 
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parameter not contained ;i.n t:tie p~$1:llf;lter 

sets of the preceding re;I.ations, { .61} is 

an independent set. 

Prqof: { p1} is an in(iependent set s:i,nce 

two relat;Lons are required to 

satisfy D2-20; { 1,1, 1,2 } ;i.s an 

inde~endent set sinqe 1.,2 conta;i.ns 

a para.meter not in p1 an!i, by 

definition D2-10, r/,1 contains a 

1;>ara.:meter not in r/,2• { 1,1, 1,2, 1,3 } 

is an independent set &;1ince r/,3 

contains a para.meter n~t in ~1 or 

~; .61 and 1,2 bpth CQnta;i.n 

parameters not in 1,3 according to 

def:Lnition D2-lO. Tb.i1:1 process :ifi 

continued for all relations, thus, 

com:pleting t~e ~roof. 

M.El.ny sets of rel,ations can be deterrpined to be independent by 

satisfying T2-3. A 1:1traightforwa.rd procedure for obt~in;i.pg the 

order needed to satisfy T2-3 is given by the followip.g decomposition 

process: 

Give~ the set { Pi} , form the set { P:j. } 1 ~ { · 'Pi} - { 'Pil} , 

where efil,ch p e { ~11} involves ~ para.meter not aontained 

in any para.meter set of { 'Pi ... r/, } • If { 'Pi} 1 is n9t 

empty, repeat the process replacing { 'P;t} by { Pi} l.. 
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D2-2e: · A. set { Pi} is dec0nwosabJ.e if tlle above procefiEi 

yields the empty set in a finite number of steps. 

F.e.ch { ~;i,} j is referred to as the j th dec<;>m;posi .. 

tion c~a1:1s and if { Pi} n is the J.ast :nonem;pt:y set, 

the set { Pi} is said to be n-,decomposable. 

An :p.-decom;posable set { Pi} is independent. 

Proof: Order the rela.tions starting with the 

nth decom;posit;l.on cJ.a1:1s. This o:vq.er 

satisfies T2 ... 3. 

~l 

T2-4 gives a quick and simple methpd for verifying independence 

of a set of relations. However, a set of ~elations may be independept 

and not satisfy ~-3; therefore, a necessary and sufficient condition 

for independence would be very desiraQle. ';Chis condition ca:nnot be 

obtained without fu;rther restrictions which will limit the types of 

·rel'i!,tions to which the theorems can be applied., bµt the:y are suffi-

cieptly genere.l to cover a very large group of e:og;tneeri;pg design 

problenis. 

~2-5: Let {pi} be an n-deeompoE;a.ble set. Th.en there 

do not exist disjoint su'psets { pj} and { 9\} 
such that U{ Pnj} = U{ pnk} • 

Proo;f': Let { Pj} and { ~} be disj(;}int eiµbsets 

of { ~\} such that u{ pnj} = u {rnk}. 
Let p1 be a re1$tion belonging to { Pj} • 

If Pi is in the.rth decomposit;i.on clas1;1,, 

{ ~} contains a relation belongi~ to 



D2-23: 

~-6: 

the decompos;ition classes (J,., 2, 3 ••• r - 1). 

If t:tiis relation is in the q th cl,ass, { ¢ j } 

contains a relation in the classes (l, 2, ... 

q • 1). ':rb.is argument may be ~tended until 

one of the original subsets h~s a relation 

contained in the first decomposition class,. 

Then there will exist a parameter in this 

relation not contained in a~y of the parameter 

sets of the other original subset. 

Let { Pi } be a set 

is a restricted set 

of relatio:q.s on { Pn} . Then { ¢1} 
if 7Tn(,p1 ) ~ '7Ta(<J,2 ) or 

?Tzi(¢:1) ::> T7;(¢2 ) for every f/Ubset 

such tnat U { P nl } = LJ { P n2 } • 

{ ¢1 } and { ¢2 } 

Every independent restricted set of relations is 

decomposal:)le. 

Proqf: Let { ¢1 } be a p.ond,econwo~able indepepdent 

restricted set. Apply the decomposition 

process uµtil a set { ¢1 ' } is obtained 

such that no relation belonging to { ¢1' } 

has a parameter that is not contained in 

a parameter set of t4e remaining parameters 

of { 'Pi' } • Sel,ect ¢1 belonging to {Pi' } • 

Then the lJ { Pni r } = LJ { P n,i' - P nl' } and 

{ ¢1 ' } is a dependent set by de:fini tion 

D2-23. 
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T2-7: A restricted set of relations is independ~nt 

if an4 only if it is decomposable. 

Proof: B;y theo:rem*3 Te..-6 and' T2-4. 

23 



CHAPTER III 

A fo:rrn&l definition of a system has, as yet, not been standardized. 

The ~ost general and encompassing definition allows a system to be any 

subset of the universe. This definition, althoi;i.gh not very strict, is 

consistept witA pJ;'esent usage of the word. For tp.e :purpose of this 

thesis, a para.meter system sllall be defineq and referred to as a system. 

D3-2: 

A colleetion of nrp!iJ,ra.meters { Pn1} a.net i relations 

{ Pi } is a :para.meter system Sn;L ;i.f': 

(1) For every P e { Pni} there exis,ts 

¢1 ~ {Pi} such that P e { Pni} • 

(2) Fo:x:- every ¢1 e { ¢1} and f0J? every 

P e { P nl} P e { P ni} • 

( 3) { /,i} is a1gebra:i,c .. 

Two sy$terns Sni and sni' are equal if they have the 

s0irne set of natural points. 

D3-2 allows the same system to be repres~nted by alternate +el,ations. 

Although it is ebvious tlia.t { Pni} must always be the same, many possible 

sets of {Pi} will yield the same set of natural poi~ts. 

D3-1 is not intended ta be ver:y restrictive; it serves on:Ly to 

restrict the discussion to sets of parameters and rel~tions whic4 could 

be used to def'j,ne a subset of the univ~rse. 
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The design engineer's co~cern for systeiqS ~s de+ined above is 

re:Lated to the seleet:LQn of a :particular group of des;J.red character:i,.stic;s 

of the system and, the eventua.l solution of· tl;le rela:~iqns to obtain 

sc&la.r values ot the remaining p,rameters which a.re ct;m1patible with t4e 

ori~inal desires. Tb.e original desired cruµ,acteristics are expressed 

as scalar va.lues of the apJ?rOl,)ria.te para.mete;rs and are refer;red to a.s 

D3'-3: 

. D3-4: 

D3-5: 

A subset { P ni' } of { J; n:i,.} is an allowed 

speeific&tion set if every element of { Pni' } 

can be assigned ~n arbitrar;y sea.la.r (frp~ its 

~ppropriate range) such that some element of 

ffn{pi) contains tl;lis set • 

An a.llc;,wed specification set is com:.glete if it 

Let { Fni' } be a:n allowed specif:i,cation set of 

. { Pni}. 'rb.en { J?n:L - Pni'} is the solution set. 

D3-3 says that 1:ihere exists at ),.east one system having the particular 

c;ha.racteristics stated in ap allowable specif;i.c~ti<:>n set. This does not 

exclude the possibility of the existence of a solution for a nonallaw~ble 

set 1;1ince the partieuJ,.~r scalars might allow this ~o 0cour. Eowever, 

· fro~ a design standpoint only allowable sets are eonsidered. The selec-

tiop of alriowed sets is a problem of the des+~n itself. When 0nly ene 

relation is being considered, it is obvious that any n - l parameters 

form an allowed specificatiop set. However, when nia,ny relations and 

two to tQ,ree times as many parameters form a system, it.is necessary to 



provide some structure so that a specificatiQ;n set may qe cons;idered 

from a standpoi;nt of allowa.oility. The ~e~ign ~P de~lcped by 

Freeny {2) p~ovides a ~thod wb~ch appea~s to be useful in this 

respect. 'Ihis procedure will be formalized,, to~ether with alter:,::ie.te 

pro~edures, which will provide greater insight concerning parameter 

selectiqn. 

The p~evious chapter formali~es the structure of the parameter 

relations which make up a system. The primary result concerns the 

independence and dependence of relations. This import~nt property 

wili be used extensively in t~e ma.terial to follow. 

p3 .. 7: 

p3 ... 8; 

An ~1ement of { Pp.i} wh:i,ch b.a.1;1 been as~igned ~ 
seal~ valµe is a fixed parameter. 

A relatisn ~ is restricted :j.f a:py P ~ { l? nk} 
ia fixed,. 

A relation ~ is fixed if all, l? e { Pn} are 

fixed. 

A relation Pk is fixed if any <:r { Pni ,.. 1} 

para.meters are ;r·el:ltricted. 

Proof: Consider the definition of a relation. 

For convenie;nce, let, the l:iet of fixed ~,-meters related by 
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~i be designated by { ri i} and :its con:rp;J..e~ent l;>y {n i} • The following 

process will be used to provide a ~thod of obtaining an al;J..QWS.ble 

specification set. 



Process P 

Given a system Sn1: 

(l) Fix an arbitrary P1 e { Pni} • 

(2) rorr,n a new syetem w;Ltb { Pni'} · = {Pp,t "' P1} and 

{ ~i I } : { fJi - 'PX} Where { f>x,} i; { f) ; CJ (n) 
; l} . 

( 3) If' a { ~} ~ 0, repeat ( 2 ) us ;tng LJ { 0 } as 

fixed pe.~f;Wleters • If a { r/,~} = o, re;pea t ( l) 

and (2) using the new system. 

( 4) Repea.t {3) until { ~i r} = o. 

27 

Th.is proces~, together with the ne~t theor~m, defines a sufficient 

condition for a specification set to be ,11pwable. 

T3 .. 2: A.1;1et ot para.meters sel,~qted in (1) or Process Pis 

an all.owa.ble speci:f';lcation set if q { r/,.x,} f. o 

implies c:, { f'x } 

Proo! : If { h} 

= :cr U{n·}. ,. t: l. 

,e,' - 1,·any parameter that is fixed 

by the properties of a relation is fixed by 

only one relation an~, ~herefore, has an 

allowable V$.l.u~. lf' q { Px} > l, then 

cr ~;{ { 0 i} = cr {'~} , wh:l,ch ag~ip 

implies that eaqh paramet~r is fixed by 

only one relation and ~s an allowable va.l~e. 

':fb.eorem T3~3 specifies the number Qt arbit~aJ;"y parameter selections 

which &re required to fix a system. 



T3-3: Every complete specification set contains n - i 

element.a. 

P~oof: Proce~s P must ~e comi;>l,ted to fi~ the 

entire SYfitemr This process terminate~ 

with { Pi 1 } = O; therefore exa,ctly i 

relations have been fixed. Each time a 

relation was fixed, the fixed parameters 

Ul;ied in the next step were U { 0 } , not 

arbitrary parameters. This imVlies that 

exactly n - i parameters were selected. 

Note tl;tat, :U' a.t ~ny t:tme ¢iur;Lng t~e application of Process P, 

CJ { 'Px} was mot equal. to CJ u{ n } or zero, sonw para.meter has been 

fixed by two separate relati9ns. Since there is nothing to require 

~8 

that the scalars determined by the two relations are equal, the set of 

selected parameters cannot, in $eneral, sati~fy the syste~. 'l'he 

followin~ theorems show some of tqe pr(')l)ertie~ of set~ which will 

satisfy Theorem ~3-~. 

T}"·4: Let {Pi} be a.n inderiendent set of relations on 

the pararµeters { Pni}. Then tp.ere exists P e { Pni} 

such that {Pi} on { Pz:li ... P} is independent. 

Proof: Consider any e+ement in the last deoo!)'.q)osition 

set which appears in ~ore than one relation. 

Removal of this part;a.m.eter d~s not affect the 

deco~osabil:l.ty of' { Pni}, and th~ref'ore 

{ P ni .. P } is independent~ 



T~ .. 5: Let { 'Pi } be an independent set of rel~tions 9:p 

{ Pni} • Then any subset of {Pi} on the corre.­

sponding p$r~ters is in4ependent. 

Proof: Any subf;let of a, decompofiab+e set is 

dE1composable. 

lt is important to know that there is at lea.st one allowable 

sp~ci!'icati~n set fo;r:- a given system. The fo:Uowing theorems give 

sufficient conditions for the existence of spe~;i.fication sets. 

T3-6: 

T3-7: 

Let { i61 } be an independent set .of rel~tions on 

the }>ar~eters { Pni} • Tb.en, ther~ ex:Lsts a set 

{ Pk} C { P ni} such that { Pk} is an a.llqwa.ble 

specification set. 

Proo!': Perform Proce~1;1 P on the nth decomposition 

class, fixing fi~st the para.meter1;1 whic~ 

appear i:i;.i more tha.n one relat:f;on. The 

oona.1t;1.on CJ { Px} I o, a { Px} ~ cr u{ n} 
cannot occur, and the process ~Y be 

continued until each rela.t:t.o:n in the nth 

decomposition class has been f;i.x.~. Repeat, 

using the n - l dec<;>µrpos:i;tion el.ass and 

each n - m decomposition class in turn until 

the empty set is obtained. 

Let { Pi} be an inde:gendent set of rel.ations on the 

pa,rame-t;ers { P ni } • Then any subset { Pk} of 

29 



{ P ni} 1;1ueh that { rp")..} on. { Pni - l?k} is 

independent is an allawable specificat:i,.on set. 

Proof : If { P;1.} on { P ni ... Pk} if! . ;j..ndependent, 

then t~ere exists a set which satisfieij 

Theorem T3~2. The union of Pk and this 

set is an allow~ble specification set. 

30 

The ne~t theopem does pot iDWlY a necessa.r1 condition for an 

all0Wf4ble sp~cification set; howeveri ;i.t does give a necessary condition 

for a set which will satisfy Theorem ~3-2. 

T3-8: tet { ,J,1 } be a dependent set o:e' :i:ieJ,a.tio~s on the 

pa.ri:uneters { Pni} • Then no set {Pk} exis~s that 

will satisfy '.fb,eorem T~ ... 2. 

P;roof: Let { 'P;i.' } be E!- subset of { ,;,J such t~t 

.every pt1µ:'a.meter involved appe~rs in at 

le~l;lt wo ;relations. { 'P;i. 1} :i,.~ not erµpty 

s:i,.nce { ¢1 } is not decomposable. Perfo;rm 

Process P on { ¢1 } r Tc;, fix every relation 

in { ~i 1} will require that cr { Px, } i O, 

a U { 6 } 't- er { 'Px } since f:i,.xine; n - 1 

of the relati9ns in {¢1' } w;ill fix '-l.J. 

of the pa.:i;-amete:ris involved in { ,f,1 ' } • 

When applying some of the rules g;i.ven for determining specification 

sets, it is deeirable .to rep.uce the number of relations and par~meters 

which must be considered. A method for reduction of a system is given 

~n the following theorem. 



T3-9: Given an independent system Sni, let { '\} be a 

sups et of { Pi} :l.nvol ving the parameters { Pk} • 

Let { Pk' } · be the set of ~arameters which · appears · 

only in.· the relations { Pk} . . F~ther, let there 

exist an ordfring of { 9>k} and {Pk'}: such that 

?1 e {Pi} ,l>~: e { P{: ~} ••••• Pn e { Pl, 

~-- • ~ • • • Pn} • · If' the · par~eters appear only in 

those relatio:qshtps indicated.· and if { Pie•} contains 

no elements of tile desired specification set, the 

pa~meters {Pk' } and the relations { Pk_} may be 

omitted from the system fc;,r the purpose Qf ohecking 

the specification set. 

Proof: RemE:>val of { Pk_} from { Pi } removes oniy 
. . . 

the ~re.meters {P1c'} wl:lil'!;h, since they- a.re 

not members of the spec:!.fieation set, may 

assume a.nivaluewithin their respective 

rapges~ ·Selection of a specificat;l,.on set 

for the system { Pi - Pk} and. { Pni .. Pk' } 

wi~l fix all relations and parameters in 

the sy~tem. Whe:p. { Pk} and {Pk'} are 

considered, f>n is fixed since n - 1 

parameters are fixed. This in tu:i;,n fixes 

Pn _ 1, and the process is continued until 

Pl is fixed. 

The process of: reduction given in Theorem T3-9 is most usefl!.l 

when a specification set has not yet been decided upon, but several 

p~~tei,s are known to be excluded from consideration. 
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. ·... ·.. .. .·. . . ... . . . . ·.: . · ...... · .... · . . -.· 

The·application.6f·the.proced.ur~s-wb.ic~ have·been explained is 

· much easier than the d.efinitionfiJ anq, thee;,rems ind,;Lcate. A convenient 

way te-apl)lY Process:P a~ te dete:mi:rie if Tbeorem T3·2·1s satiefied 

has been developed by :FreeDf. · Calle4 a "deeign map", tp.is procedur_e 

has bee~. us~ fo-r se~:re.J.·yea1:'s by persons· in the relay_design group, · 
.. · . . ' . . : . . . . . I' :. . . 

at atiahoma StateUn:lverstty .. J;nes$ence, .the ct.esign map iis a matrix 

ll$;ing·eoi~ coriespoJl4irig to·the:r~~tiotlSof the system rmd rows 

corresponiling to the ~ters. ·~>en1i6.,1.PPNrS 1il the ijt~ po1ition 

only .. i:e the relation of the jth colUIQP. involves :the pe,rameter of the 

·. ith>rm,. ~is :maii~ix:se:&es,,as ·,a,\C~ to;t~bulat~ the selections as 

sliown in the example of ,F~gure J~l~ .. 

. . . -

.. System.· Bela.t1ons • · 

. . . . 

(2) (X4 ~5 X6) .. '· 

·(3) ·· .. ·_-.(~-. X3 X4 Xi):·_ .. 

X l 

X2 

X 
·3 

X4 

.. X 
5. 

,· : .·· 

x6 

X l 

x~ ~ 

... x3 X3 

X4 X4_ X4 

X5 .·. X5 

. x6 

Figure 3 ... 1. .. Des:l.gn Map · 

. . 

A d;iSC'l,tSSiOn of .tlle use of. this map iEI ·Pr•senteq. iii the following 

c~pter, 
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An alternate method of graphic representation ~fa system is the 

relation graph. The r~latiQn graph Js obtained by selecting a linear 

graph such t:pa.t the:re is a one-to .. o;r,.e correspondence between the .. 

edges of the grapn e.nd the para.meters of the system, a:p.d·such that 

the parameter set:for every relation appears af;i a circuit in the 
. . . 2 

linear graph. 

The idea of the relation grap~ was origin$.li;ysuggested about 

three years .ago l;>y JQhn c. Paul. However, the u1;1efuJ.ness of the graph 

cou:td not be real;!.zed since there seemed to be no way to assure the 

. existence of a relation g;raph for eve:ry system. In particular, the 

problem was the lack o:f.' a linear graph witll the required one-to-one 

corresponde:p.ce between edges andpa.r~ters. This lack of a one-to.-

one correspondence w;Ul be shown to be a function, not of the system 

itself, but of the particular set of relations which are used to 

define the system. ':Che following theorems a.re used as justification 

for using the relation graph as a.design teol. 

n3 .. 9; Given·a· system sn1; let G:R be a linee.r gra:ph such 

that there exists a one-to ... one correcl:lpondence 

between i;he edges qf % and the elements of { Pn;i.}. 
If fo:r · every relation h ~ { Pi } there existe a 

circuit of ·.On such that there ;i.s a one .. to ... one 

: correspondence between the elements. 0f {pk} 

and the edges of the corI!espond:J,ng circuit, GB 

is called a rela.t:l.ongraph of Sni• 

2see Ap;pendix. 



From DJ .. 2 it is known tbat the rel~tion graph is not unique. 

Also, th~ set { ~i} cannot be obtained from~ since a one-to-one 

correspondence does not always exist between the ele111ents of { r61 } 

and the cireu;i.ts of GR. An example of a relati;o~1 graph is shown in 

Figure 3 .. 2. 

System Relations 

(1) (x1 ~ x3 X4 X5) 

(2) (X4 X5 X6) 

(3) (~ X3 X4 X7) 

Relation Graph 

Figure 3~2. Relation Graph 

When a l;l.nea.:r graph ie fouµd. such that every relation of the 

system appears as a circuit, it is generall;y the case that circuits 

~ppear in the linear graph which a:re not ~lid relations for the 

system, The set of'. c:f.rcuite of a·linear graph is, in fact, the set 

gene:ra.ted by a set of fundamental circu:f.ts {the ~ystem relations) 

and the operat;i.on of union m;i.nus intersection. Those circuits of 

this set whic~ are not valid relations of the system will be known 

as implied rel~tions. 

D3-10: Any circuit of a relation graph which :is not a 

valid relation of the c(;)rrespop.di:og system is 

an implied relation. 

It is obvious that an implied rel,a.tionwhich is properly cont~ined 

in, or properly c;:ontains, ;an· element of {Pi} ::ts not a valid relation • 

. Theorem TJ,-],Q provid,es for t:P.e. existence of a rela.ti9n graph for 

every system. 



T3·"10: Let Sni be a system. Then there exists a ;r-elation 

graph of Sni• 

Proof: From linear graph theory, a sufficient 

condition for the existence qf a linear 

graph corresponding to a set of el~ments 

Eis the satisfaction of the following 

postulates. 

(1) Every suoset of E either is or is not 

a circuit. 

(2) No proper sµbset of a circuit is a 

circuit. 

(3) 'rhe union minl,ls intersection of two 

circuits is either a ctrcuit or a 

disjoint µ~ion of circuits. 

Postulates (l) and (3) are satisfied by all 

syste~ if the impl~ed relatigns are consid~ 

ered as relations. Tqis leaves postulate (2) 

to be satisfied before the existence of the 

relation graph is assured. Therefore, it is 

sufficient to show that every system can be 

expre~sed by a set of relations which will 

satisfy postulate (2), 

Let Sni be a system defined by { 'Pt } . Also 

assume that ,61 * p2 = 'P3 (* indicates the 

operation union minus intersection)~ r/,1 , 

'P2 e {.61}, such that i,3 contains, or is 
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conta.ined in, some .~ of { Pi} • Add the 

relations P1 and fJ8, obtaining ,64. ,64 is 

not equal to ~~·since a·valid relation 

cannot contain or be a subset Qf another 

valid relation. Replace Pi or ,f;2 :i,.n { P1} 
by ,64, and the :i,.mplied relation ¢3 will no 

longer exist, Then either there exists a 

relation grapq or there exist P5 and ,64 such 

that ,5 * p4 = P7 is contained in P4· If 

~7 is contained in ,64, it must also be con­

tE1.;i.ned in Pl. ar;td /)2 since ~4 contaills at 

·lea.st one element belonging to both ,61 and 

p~ and a,11 elements of p3• i;rherefore, the 

relation graph exists, 

If mpre than one col+t'lict of the type just 

discussed appears, ea~h may be removed in an 

identical manner. If a fin~te number of 

conflicts e4ist, the system has a relation 

~raph. 

It should be noted tl;lat, although Theorem T3-io provides a method 

for obtain:i,.ng a set 9f relatiqns de.finip.g the systerq. such that a 

relation graph can be obtained, it is necessary to know the algebraic 

fo:rm of the .relations in order to accomplish the generation of another 

valid relation. Exam;p:).es of the process are given in the following 

chapter. 

~e key to the use of the relation graph a~ an aid to design is 

given by Theorem·l'3-ll. 



T3 .. 11: Given a system Sni with relation graph G:R, then no 
' ' 

parameter set of any relation or 1DliJ;>lied,relation 

wi~l satisfy Theorem T3-2. 

Proof: Case l: · Let P'k, e { Pi} • Theorem T3-2 

cannot be ~atisfied. 

Case 2: Let Pk_ be an implied relatio~. 

Then Pk_ can be expressed a~ Pj * Pq 1where 

Pj e {. Pi}. and Pq is an· implied relat:ion. 

Further,'pq can be expressed as rf>t *: P.R. 

· where Pr. e { p1} and PR :ls an implied , 

relation. If Pk is fixed, all parameters 

· of Pj are fixed .except: :those belonging . 

to Pj * Pq• All parameters of .PL are 

· fixed .except:. those belonging. to Pj · ·* ~ -::· 

and PI,* PR· Therefore the remaining system 

will· have Pj and. Pr. such that P j =. P1 and 

riondecomposability exists. 

This theorem says that any set of parameters which appears as a 
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circuit in the relation graph will not satisfy Theorem T3-2. In 

terms of the design map, these are sets which will not "map through;f 

One of the most desirable characteristiqs of the relation graph is 

that of being able to tell at a glance whether or not a particular 

set of parameters will- satisfy Theorem T3-2, 



A listing of all trees of the re;J.:ati.ort graph is readily obtained 

by the Cauchy expansion.3 . This :i,.s a list of a:ll possible maximal 

subset$ of { P;ni} th&1rt C$.Il be formeli without inclup.ine; a relation 

o:r an imp:L:i,ed :relt;1.tion. 

3se!e Appen9,ix. 



a HAJ'TEH :rv 

. EXAMPLES AJ\lD APPLICM.:J.:ONS 

The :following discussion is meant to a:i.d i:n the understa:na.ing 

of the parameter selection process, and no attempt is !11l;1de to justify 

each statement algebraically. 

A system may be defined by a st:;-t of relatiops a,nd a corresponding 

set of parame·ters. The word "defined II in thia context means that the 

system in question can be distinguished from certain other systems, 

The number of relations and parameters necessa,:ryis a function of the 

degree of unique:q.ess desired. Obyiously, ae the number of restrictions 

(relations) is increased, the numter of systems whieh will fit 4he 

requirements is de~reased. Qnce a system has been selected and the 

parameters which must be considered ~re asoerta;tned, there is a u;nig_ue 

maxinJAl set of relations which a.re valid ;fo:r the system under consic1c­

eration® (JI. vQ.lid relation must havt;>; at least one natural point.) 

Not all of these relations a,:re needed to defir1e the system.i since a 

maximal independent set wi:)..1 uniquely specify the complete set of 

ru;i.tural points, and any addi tiorial rel1:1,tions are simply combinations 

of the base set. 

SeleGtion of an allowed specification set is based on a single 

necessary and sufficient condition. This condition is that the set 

in question does not include a complete pa.rameter set for any~ 

relation of the system. Any parameter set which satisfies this 
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condition is an allowed specification set. Th~ most obvic;ius and 

straightforward method of parameter selection woul.d therefore be to 

check the desired set to determine whether a 6o~lete parameter set 

of any valid relation is :restricted. rh.iE! method is not pract:i,.cal 

since obtainin& the complete set of valid relations would be a 

prohibitive tas~ in all but the most trivial cases. 

T.he design map is a technique for checking the relat;i.ons, 

using only the information from the base set. It is not unique. 

Inf,;:J.ct, there a.re as many design maps for a syste~ as there are 

maximal independent sets of relations. Any one of these design maps 

may be used, but the logical choice would be the one corresponding 

to the defin;J.ng set o:t' relations~ sit;1ce any other map would 

p~cessitate deterrrtj.natioh of additional valid relationships. 

~he fol~owing is an ex~mple of the use of the design rriap and 

shows some of its ~imitations. 

Consider a relay defined by the followJng relations: 

(1) T\ = (157.5) 

,(2) 

(8.66 X 10-3) 

~c(Xo + (Y ) Go 
ENS 

+ 
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a )(1 + P + cr )l gr 



wh.¢:re 

(5) N = (.637) 1 S(l - S ... cr )~n 
52 

P = ceil J;>Wer 

'll ,.. stab:U,i ty factor 

P0 = restoring force on the armature 

E :, supply voltage 

N ·=coil turn1;1 

M = effective mass of arIJJB.ture 

JC · :;: effective sp:rir,,.g constant pf' spring sye;tem· 

J, :: eoil length· 

6 = diametel;' of coil wire 

·t ' fi = sea.ti~ time of a.rmattµ"e 

Re 
... coil resistance -

X0 = le~th of armature workil}g air g~p 

S = outside coil width 

.a = air equivalent of the non;force ~roduci~ part of the 

ma~eti~ .circuit when usin~ $ series representation 

V - ratio of the non;force producing a.ir equi~lent of the 

magnet~c circuit to the total air equivalent of the 

m&gnetic circuit 

cr = ratio of total t:q,icknesfi et core e.nd 1:t:U:lide coil 

infiulatio:n to the outside coi+ width 

S = ~atio of core width to outside coil width 

gr: winding space factor for resistance 

In= winding space factor for turns 

41 



The parameters e.,. a, o-,gn, gr and l .. V 2 (1 + KX0 /P0 ) will be 

con_sidered constants in the exa.~le. 

42 

A design map of this system is shown in Figure 4-l. A specification 

: set, R0 ., : ·N, 'f31 . E;Y:· JGQ, 1l , M, has ·been selec'ted for test. The result, 

shown in Figure 4-1, leaves the two parameters -~ and J, undetermined; 

and therefore, an appeal to the relations themsel ve.s is necessary to 

determine whether the set is an allowable specification set.4 To do 
. . 

this, consider a system defined by the relations (4) .. and .(5).· •. Then> it is 

only necessary to determine.whether Re, s, and N form.an allowable 

specification set for the two-relation system. 

Let A : Re 

B - s -
C - N -
Kl = constant 

~ = constant 

- . . K B2 
·then· rel:a.tion(·fi:'· becomes A :· · ·l · · . ,'I, 4 

6 

K B and relation (.5) becomes C : _._2 __ _ 
52 

solving for J, , 

solving for 6 , 6 BC 
T 

4The order of selection is indicated by the: number within the 
squares. The O indicates a selected parameter, the O indicates a 
-parameter fixed by_ a relation and the 6 · indicates parameters which 
are fixed by two or more relations. 
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Therefore, both 1 a.nd o p.ave been determ:i,ned, and the original 

set 0f. parameters is an ~llowable specification set~ This method of 

checkin~ a set of ~arameters which does not map through is accomplished 

quiG~ly, and positive results ~re obtained~ However, note that the 

funct:Lonal form of' the relations involving the para.meters in question 

must be known. 

Now if equations Q+)and ~)are combined, the result is equation (6). 

( 6) 

If relation (5) in the prev;i.Ot;L$ system is replaced by relat;i.on(61 a 

new set of equations is obtained which defines the same system. The 

map for this system is shown in Figure 4-2. The St;lJlle set of parameters 

that was tested on the map of Figure 4-1 is show;n to map through in 

Figure 4-2. Therefore, the ~et is known to be an all<;JW~ble specifi-

cation set. The point of the example is as follows: A given set of 

~arameters may map through on one ma,p and not o~ another apparently 

equivalent map. Although they are both maps of~ set of relati9ns 

defining a given system, they ~o not cont~in the sa~e information. 

For exainple, the f'irst map shows that it might be :possible to solve 

equation(~) and (5) and obtain a relation involving only Re and N. 

Whether or not this can be done cannot be 4etermined from the map 

itself; and, therefore, no set of parameters containing both Re and 

N would map through the design map in JJ'igure 4-l. 

The map in Figure 4-2 does not contain, th:Ls possibility, and the 

set containing R0 and N maps through. 11.'he dif~'erence in information 

contained in the two maps is a result of the particular functional 

form of the relations themselves. 



It is important to remember that the design map contains on],y a 

limited amount of' i:rrl'ormatian about the system; and, ther~fore, 

positive re~ni.lts in all casef:i cann0t be ob~ained wit4otrt; resorting 

to a.dd;l.tiona,l informatiqn. However., it is advantageous to use the 

~-6 

ma;p to determine the particular relations which must be investigated., 

rather than to generate the corru;ilete set of valid relations .. 

It i.13 readily apparE;:nt that the design map w;i,11 reject all sets 

of para.meters which in9lude the coriwlete pararneter set of' any relations 

or aey poss;ible relation. 'l'o expl~in the phrase "any poss:i,.bl.e relatio:011 , 

consider a system defined by the ·r,wo rel.ations (Xi x2 x3 :X1~) and (:x:1 ~ 

X5 X6)• I;f the functior.i.al fo:l'.'m of t;b,e relations is not kn0Wn., it. cannot 

b~ d~termined whioh of the following parameter sets is a valid relation, 

(1) (X3 X4 x5 X6) 

(2) (X2 x3 X4 x5 X6) 

(3) (X1 x3 X4 x5 X6) 

None of th~se relations will mB,,p through o~ the desig~ map 1 

a.lthougl;l. two 0f them may be allowable speeificatton sets. The sets 

of parameters which give positive result~ on the design map may be 

only a small portion of the total number of alJ,.owable specification 

sets. 

'111:le relation graph is sirru;ily a convenient method for obtaining 

the set of relations generated by the operation un;ton minus inter-

section performed cm the para.t)lete:r sets. :Ct can be used in the same 

manner as the design ~P if desired, but requires only a quick visual 

inspection to de~ermine whether or not a set µ-iaps through. The 

f'ollowing theorem concern:.:i this problem~ 



T4-l: No circuit of~ relation grap~ wi11 satisfy 

Theorem T3-2 of Chapter III. 

Proof : Case 1: Let Pk e { Pi} .. Then Pk does 

not sat:i,sfy IJ'heorem T2-1 .. 

Cai:ie 2: Let Plr y{p1}. Pk can be 

e1'pr<;:!ssed a.s ¢j 1~ ~ where Pj e {P1} 
and ¢q e { pi } . JPurther, Pg_ ca.n be 

expressed as { PL ~lt" PR} where Pr, e { JDi} 
a:nd P£{ / { ¢i } • If' Pk is f :i,xed, all 

parameters of Pj are fued ~xGe:i;it · 

those belonging to { ¢j ('\ Pq} .. All 

para.meters ef hare restrictei;l except 

tnose belonging to { ¢j n AJ.} i3-nd 

{ PL() PR} . Therefore, the remaining 

system will have ¢q and ¢L such that 

Pq c PL, and nondecomposability exists. 

Since no set of parameters which ar~ contained in a circuit of 

the relation graph will map through the design map, a very large list 

of possible test sets is removed from considerat:j.on by inspection of 

the relation graph. Since a tree contains no circuits, intuition 

might indlcate that tJ1e set of trees of the relation graph would be 

a. co11I1?lete set of' allowable spec:i:l;'ication sets. However, this is not 

the case. ~J:fhe f'ollotving example shows how a tree can exist which is 

not ar;i. allowable set and also how some circuits may b~ allowable 

sets. 



Consider t~e.system definea by the following relations: 

(1) (X1 ~ x3 X4) 

(2) (X1 Xz X5 X6) 

(3) (X1 ·~ X4 x5 X7) 

The relation graph is shown in Figure 4~3. 

5 

Figure 4-3. Rela~ipn Graph 
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The set (x3 X~. x5 X6) is a circuit of the relation graph. 

l!owever, unless botl'J, relations (1) and (2) can be placed in the form 

f(X1 x2) + f(:remaining v-ariables):: o, this is not a val1-d :rielat:Lo:n. 

If the a.ctua,l solution of' relations (1) and. (2) yielded. a relat:i,on 

involyi:ng (X2 x3 X4 x5 X6), the set (x3 X4 x5 X6) wo~ld be an 

allowable specification set. Therefore some circuits of the relation 

~r~ph a.re allowable sets, The set (x3 :X:4 x5 X6) ~ the set {X1 x2 

X4X5 x7) yield the circq.it of' the rela.t:I.on grt;i.ph (x1 x2 x3 X6 x7). 

The set (x1 x3 X6 ~) is a tree of the graph, but not neeessarily 



an allowable set, since the actual relation generated by (1) apd (2) 

might be EX2 x3 X4 x5 X6)., which,, with (3), might yiel,d th~ set 

(Xi x3 X6 X7), the~eby making the tree ap una.llowable set. It is 

unfortunate that trees of the relat:i,on graph exist "Which are not 

allowable sets since a complete listing of the trees can be obtained 

by the Cauchy exp(:l.ns ion prqcess o 1rh;ts ntethod may still be used to 

obtain sets of allowable specification sets since tn practice very 

few of the trees are not allowable. 

If a pa.rticula.];' set of :paramete:rs is being investigated, a 

definite answer concerning this set is usually desired. Since a 

definite conclusion tn many cases requires that the functional form 

of the equation be known, a general method for allow~bility testing 

cannqt be obtained. Therefore, witl:J. any desigp, metnoo. used., the m<;>st 

effic;ient procedure wol;lld be to use one of the metb,0ds :previously 

discussed to locate the contradiction, it one e¥ists, and then to 

resort to the equatio;ns in order to dete:l'.'lrline ailowability. The 

contradiction can be located by either performing Process Pon the 

design map or by inspection of the relation graph. 

When us:tng the desig;n JJ]ap or·the relation graph to select 

spec;i:Ucations, i.t is desirable to know -t;he order of ;importance o:f 

the parameters. When a co:n:flict is found, one of the paramete:rs 

must be deleted fr~m the specifications in order to assure a 

solut:ion. 

The key to checking specifi¢ation sets lies in the fact that 

every :1-ndependent set of relations will have at least one allowable 

specification set. Also, it is known that there does not exist any 

set of parameters which will map through a dependent set of relations. 



Th~ 0ovi0us result of t~is is that any s~bset of part;µnet~rs which 

when q.eleted frem the system l.ea.ve:;3 tlle :r.ela.t;f.onfi independent is an 

. ~l:Lowable specif:!,.ca.tion set. Therefore, a.:g.y subse.t of the test set 

~Y be checked for allows.bi:I.itywithout the·neces~ity of t:cying ·to 
map it threugh with the rest of the set. By the same re~soning, 

when any set of parameters is dele"Ged., leaving a dependent system, 

it will net ma;p through. If this is the case, there is ne poi;r;i.t in 

t:rying to include it in any test set. 
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The above discussion sug~ests a method for generating an allowed 

spec;i..f'icatio:o. set; that is, select:l,.ng the l?ara.mete:r:s one by one, 

testing each time to determine w~ether an independent system remains. 

If tlJ,e desired vars.meters a.re se;t.ected in.o;rder of t):J.eir imporrb&l,nGe 

in the design, then the best ppssible specif'ica,tion set is qb"f;a.ined. 

A~ example af' this process is give~ in the sa.nwle selection 

p~oblemwAich follows. 

Cons;i.der a r~la.y system defined by the follow:J,p.g relations 

Wllic~ were given in the previous e;xanwl~ concerning the relay; 

( J,.) ( 11 , E, P0 , Re; s, X~, N) 

(2) ( 'Tl , E, M, Re, t13, X0 N) 

C3) (E, P, Re) 

(4) (. 6 
' J, 'Re, s) 

(5) C a ' 
J, , s, N) 

If the set (N, Re, 6 , X0 , s., P0 , 1'\) is selecte~ fer test, the 

. r~sults a.re negative since bath f4 and. f 5 specify W;l.ues for I, as 

shewn in Figure 4:-4• 'l'Jie erigiriaJ, system is independent as sh.awn by 

the deconwosition sets: 



a. (1, 2, 3) (first decomposition aet) 

b~ . (4, 5) (siecorid ctecom;position set) 

The s~temwith the test set removed is 

(1) (:re) 

(2) (E, M, ts) 

( 3) (E, P) 

(4) ( f, ) 

(5) ( f, ) 

which is dependent since the decomposition proc~ss Yields 

1;t. (2, 3) (first decorqposition set) 

b.. (1) (second decom;pos;ition s~t) 

c. ( li-, 5) ( this set :j.s nonm.ecom:posal:ile) 
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The result indica~es that the set will not map through, and thi~ 

fact li,s also exem;plif;l.ed in the results of the rrJ?.pping in Figm:-e 4-4. 

I;f' it is asswned tha;\; the desirability of the parameters as members 

of the·specit;cation sl'=)t is indicated by their order as given a.hove, 

each subset. may be qhecked for a.ll,qwability. This prooess is 

indicated beldW'. 

Step 1: The system with N removed is 

(1) C 11 ' 
E, P0 , Re, S, Xo) 

(2) ( 11 'E, M, Re, ts, Xo) 

(3) (E, P, Re) 
. ! 

(4) ( 0 s) 
' 

1, , R0 , 

(5) ( 6 
' t ' s) 

which lu:!,s the decomposition classes 

a. (1, 2, 3) 

b. ( 4.) 

c. (5) 
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St~p 2: The system with (N, :Re) removed ;is 

(1) ( ,, ' E, P0 ,, s, Xo) 

(2) ( i1, E, ~,.te, Xo) 

(3) (E, P) 

(4) ( 6 R , s) , 

'5) ( 0 , R, ' s) 

w~ich, when an attempt at deeom;position is made, yields 

a. (1, 2, 3) (first decomposition class) 

b. (4, 5) (nondeeomposable) 

The implication of Step 2 is that n0 set containing both N and Re 

will map through. Since N is €Onsidered more desirable than R0 , Re 

will be removed.from the set of epeeifieations. 

Step 3: The fiYStem with (N,, 6 ) removed 

(1) ( i1 'E, P0 , R0 , S, 

·. (2) ( i1 'E, IYJ;, Re, 

(3) (E, P, Re) 

(4) ( .e 'Re, S) 

(5) ( ,e ' s) 

which has decomposition elassei:i 

a. (l, 2, 3) 

b. (4) 

C • (5) 

ts, 

Xo) 

Xo) 

is 

Step 4: 'nl,e system witl:/, (N, 5 , Xo) removed is 

(:t.) ( i1 -, E, P9, R0 , S) 

~2) ( i1 'E, M, Re, ts) 

(3) (;E, P, Re) 



( 4) ( 1, , Re, s) 

(5) ( 1, , s) 

which has decom:p9siti9n classes 

a. (1, ~, 3) 

b. (4) 

c. (5) 

Step 5: The sy13tem with (N, ~ , ;x:o, s) removed ii$ 

(l) ( i\' E, Po, Re) 

(2) ( i\, E, M, Re, i;s) 

(3) (E, P, Re) 

(4) ( l, , Re) 

(5) ( t ) 
wh:\,ch ha.i;; decompositien cl.asses 

a. (1, 2, 3) 

b. (4) 

c. (5) 

(l.) ( 11, E, Rq) 

(2) ( 11, E, M, Re, ts) 

(3) (E, P, Re) 

(4) ,( .R. , !tc) 

(5) ( ,e ) 

which ~s decomposit;ton classes 

a. (2, 3) 

b •. (1) 

c. (4) 

d. (5) 



Step 7: The s;y-st~m with (N, ~ , X0, s, F0,. 11 ) rem~ved is 

(;1.) (E, Re) 

(?) (E, M, Re, ts) 

·(3) ·.· (E;., P, R0 ) 

(4) ( P, ., Ro) 

(5) ( I, ) 

whicll has·decemposition classes 

&'· (2., 3) 

b.· (1) 

c. (4) 

d •. (5) 

· .Step 7. irui~~tes t~t an allowa.b.l~ speci:f'ic•tion set has been 

obtained., retaining as many pa:ra.meters e.s possible of the. orig!inal 

te!i't set, · An add;l tional pa.r11tmeter may be selected to re;vlE,tce R0 • 

Alth,ough it my seem compiex, iri pra,ct~oe, this pr('Cedu;re ;Lis 
. . . . . 

~ccompJ.ished. ven ~a.s;ll:y ~nd quickly and will allQW tlle de~i~ner to 
. . 

p;(.:ppoint co~t~ictions in th$ sp~ci:t';lcat;Lons withQut baving t0 map . ! . . 

'the entire set througp.. 

It. is possil:?le tor a. s:J,J,;\gle pa.r~mete:,:-, when removed flrem the 

1;3ystem, t0 leave a. dependent·system •. It f'ollowe, then, that any set 
' . . . 

cont$.illing thie par~niete:r w:l.11 not map th~eug};L. ··. The ;procedure· in 

the eJQil.lllple allows a, quick CP,~Gk for this poss:i,bility~ 
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In general, this propedure p;rov:f,des tb,e quickest, mpst effic;i.ent 

ptethod ·:f'o;r ob.taining ap. allowable specU:f,c~::1:~ion ee1;. . $:i.:pee ea.ell 

conflict is :i,,iinpointed in its order of iPI.Po:rta.nc~, p.e eon:f'u~io;p. 

oc~u.:rs concernin~ which a.l.t~r:nate set te try. If' this methoq. is to 

be used~ a oonveni~nt way te check decom;pos,bility ifi needed. One 



a.ppree.ch to this problem is to form al:i,near ijraph having one vertex 

fq,r each rela~ion in the system and o:pe edge cqnne<r~;i.p.g twp vertices 

for eac~ pt/1.r~rneter aopim.on t~ the two ce~responding relations. An 

example of th:l.s type of graph is. shown in Figure 4~5-. For co:pve:pienqe, 

this shall be c~lled & decomposition gr~ph. 

System: 
X 

(:X1 X2 X3 X4 X5) 
1 a.. 

b. (;K4 X5 X6) 

c.· (~ :X3. X4 Xy) 
C 

Figtll'e 4 ... 5. Decomposition Graph . 

Since the process used in decompositio:p is selectton of para.meters 

whicJ:i a;ppe~r in only one relation, the dec9mpos~bility of tJ:ie system 

in Fig~re 4-5 is obvious. Note that a deoolljposition graph which l:\,as 

no sineile vertex edge ~lw~ys depicts a dependent system, but tJ:ie 

·conve;rije is not true, ~ exa,Iljple is shown in Figure 4-6. Clearly~ 

if relatiQn A (verte~ A) is removed from the system, the rerna,ining 

~elations a.De nond.ecomposa.ble. Tl;:l.is graph is very useful o~ stmple 

.systems b'ut bec(!,)mes very complex on large systems. 

Figure 4~6. Alternate Decomposition Graph 



A metAod. f~r testing tb,e d.ecoiqpQsabil;Lty af ~·system·quic~ly 

and witb.out the: necessity pf redra:w'ing a. graph·. or a design map is 
' . . . . . 

give11 in tp.e· f~1l~ng .. examp;Le. 

Cons:l.der the si:ne;1e-stage, sixigle~tUX1red ~lU'ie:r shown in 

Fi~re 4 ... 7. 

g p L 

·. ~ip.gle~tux,,e~ .Aw;plifier Equivalent Cir~uit 

F:J.~ure 4-7. Tl,lne(i Am,pli:f'ie:r 

Assmne the amplifier can.be represented by t~e following 

rel,a.tio:p.s : 

(1) 

(2) K .:;. -gm woLQe ( - (K, ~' w0, L, ~) 

(4) Q = wt 
. L 
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(6) ... ). 
w 0 - -fr::!;;:;. 

. 'I/ w 

( '7) 6 - w 1 ... - -
WO 

(8) f'o 
B:: -· 

Qe 

(9) w .. 2 rrf 

(10) Wo - 2 11 :r0 -

w:llere 

E0 = outputvo+tage 

Ei = input signa.1 

gm :; transconductanc~ 

rp = plate resistance 

Rg • grid ~esistor 

RL = load resistor 

(w0 , L, C) 

(w' :r) 

Cpk = p~ate to cathode capacitance 

C = an equivalent capacitance 

Cg= an equivalent capacitance 

:a = 'bandwidth 

f = f':l;'equency 

fo = resonant frequency 

e = phase shift 

k ; am;plification 
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L III i:pdu,c~e 

Q :; Q of the c:l,reuit 

Qe :; equi~lent Q of tl;le ampl:U'iet 

If the pa~ters ~e grouped accorqi:ng to the number of rel~tions 

in wnicl;L they appe$1'_, the table showp in Figure 4-8 is ~btained. 

Since ~he relations tested in the tirst $roup in Figure 4-8 all 

have a unique parameter, they will allappe&r ill the f;lrst decolJlPo,, 

sition class. To form the_s~cond. decolllJ?OSitio:µ class, it :i,s necessary 

to consider only those relations l~sted ip. the sec~ ~nd foll(;}W'i;pg 

groups. 

·. The parameters of the second grOtl-:J? all appear !l.n two relations, 

and three possibilities exist cencerni:pg thef;le two r~lations. First, 

bot~ might be in tlie first dec~ositit1>I1 class. If' this ie the c~se, 

no further consideration is ~ecessary. Second, only one of the 

rel~tions might bea membe;J:' of the first decolllJ?9siti0n cl.ass. This 

occunence obviously qµa.li:f'ies ~e Qthe:r re34ti(l)n :f'Qr tne seco1,1d 

decolllJ?01;3ition al,a1;1s. The only Qther possil>ility is tnat neither 

relation is included in the fi~~t decompQsition class. \:L'llis possi-

l;>:ll:l.ty excludes both relation~ from the second decompes:i,.tion cl&ss 

on the basis of the particular piµ-a.meter. However, one er both 

relations ma.y be included in the sec0J1d deconwoaition class by 

eopsideration qf"a different pa:rameter. 

Tb.a pa.ramete:rs of the third gr~up are ineluded :i,.n three relations. 

·.If.all -t;b.ree rel~tior.i.s ai,-e :i,.n the f~rst deco~o~iti©n class, no further 

. c9lisideration is. necessary. Whe:ll <;>p.J_y two r~lq.tions belong, the third 

is a melilbel" ·of the second dec~mJ!lOEiition ala.as. Mempersb.ip in the 
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E D C B A p Rel•t1ons · 
:x X X Eq, (1) 
X X :E1 . (1) 

X Sm . (2) 

X X . rp (3). 

X Rg (3) . 

X X R L (4) 
X ~pl! (5) 

X C' (5) 
X x· Cg (5) ' 

X X B (8) 

X f (9) 
e (11) . 

K (1)(2) 

Q, (3)(4) 

X ·X C .(5)(6) 
6 (7)(i1). 

X X X w (7)(9) 

:f'o (8)(10) 
L (2)(3)(4)(6) 

X X ~ (2)(3)(8)(ll) 
X .x ·w 

0 C2)(3)(4X6)(7) (10) 



first decomposi tirln class of one or m~re of the relq;~;i.e!ls implies 

the exclu.sio:p. of those remaining :t'r~rn.the sec():nd,·g.e~ompesition cl,f;Jf/3 
. . ! . 

on the ba,sis of tlle·:p,ra.xneter in (},Q.estion~ 

Tb.e p~tter~ is. tb.e same for the remain1~ e~<,µp1;1, Obvio'ijsly 

each time a relation is added to a. particular decompesition class, 

a:,..i other relations involving the parameter ¥hich is being checked 

inu.st be included in & previ0us decoprposition class, 

As an e::l(Rmple, assume the system is to be tested for in¢i.ependence 
. { I 

by th,e ~thod just described. Tb.e :relations listed after the first 

set of ~rs.meters form the first decomposition cgi.ss. In cQnsid~ 

, er+ng ~e second 111eti of p8.l'la.meters ,. ·it is · seen th~t re;l..a:tions ( 6), 

{7) "114 (10) ~re in the seconp. decorrrposition class. Inepectiop of 

~he·ref!l&ining group'1J 0:f pa.re.meters ~d;a no info:nmi.tion eince all 

rel~tiQns have been placed in a deco~Qsition class. 

~e decompQsition classes are 

a. (1, 2; 3~ 4, ,, a, 9, 11)' 

b. ( 6, 7, lO) 

which ·· verify the independenc~ o:f t:tie syste~ r 

Since there are twelve relations and twenty-one pa.r~ters, 

nine .. :garSJllE;lters can be specif;i.ea,. Suppose the set of specifications 

.· (Eo, E1 ·, rp, Cpk, Cg, B, c, w, w0 ) is des:i,.red. Te check t:P.e a.llc,w ... 

:abilitr, column A of Fi~ur, 4-8 ~s used. Fir~t, e~ch pa~1;iineter of 

.the speoifii.,at;i.on set is remaved frQ?n consider,tion t inq.ica.ted by X 

in column A). The syst~m rema:lning; without these parameters is then 

· chee~ed t'Qr ~eo~mp0s'°pili ty. · The :rela.tio:ps l,~sted il). the tirst; group 

(2, 3, 4, 5, 9, ll) compose the first decornposttion clas~. 
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In the second set o:f' parameters, relatiqn (2)- listed a.fterK is 

in tl:l.e first d(;lcqrnposition class, 1mply:l:ag th~t (l) ;ts in tb,e second. 

The same ca:i:i be said of (ll.) and (7) listed after 6. Neither (8) 

ner (10) after f 0 is in the first decornposii;ion set; 1;1.nd, therefore, 

they muert;. be conside:r;·ed for the third, 

From the third group of parameters it ;is seen that relations 

(6) and (8) belong to tl+e second decomposition class, thereby, making 

·relation (10) a member of the t:tiird. Th~ decomp<;>sition a;J.a.l;ises can 

be listed a.s 

a. (2, 3, 4, 5, 9, 11) 

p. (1, 6, 7, 8) 

c. (10) 

and the set (E0, Ej , rp, Cpk, Cg, B, c, w, w0 ) ;is ap. alJ.owable 

f:lpec:!.;f'ica.tien set. N~te tna.t if any rela.ticm is missi;ng from the 

classes A, B, and, c, thil:i implies that a com,plete para.meter eet f1or 

that relatiop. was spec;i..:f'ied a.nq.that the decemposit:J.on is veid, 

As a second e;xample, consider the set (E0 , gm, Rg, R1, C', Cg, 

f, Qe, w) markeq. :i.n column ~ of :figure 4-8. Inspect;ton of the 

s~cond set of parameters shows the relations (2), t4), (7) and (10) 

to be in the second decomposition class. The remaining ~a.rameter 

L imp:J,~~sthat relation (6} isi in the third dec;:ompqsition class. 

The decomposition cJ,.asses a.re 

a. (1, 3, 5, 8, 11) 

Q. (2, 4~ 7, 10) 

C • . ( 6) 

Note that :rel~tion (9) is notincluded. Inspection shows that the 

entire par~meter set of (9) was included in the speeific~tion set 

and that, therefore, it is not ~n allowable set. 



In column C of Figure 4-8, ttie set (E9, Ei , rp, RL, B, c, w, 

Qe, w0 ) is indicated as ate1;,t set. lnspection of. the second group 

Qf para.meters shows the second decomposition class to contain the 

rela.t;J.0ns (J..), (4) a.nd (7). The rela'l?ions (8) and "'(lo), listed 

af'ter f 0 , must b1:: considered !C'or t):le third d~compositicm set. 

Consideration of the rel~tions involving L indicates th&t relation 

(6) belo:ngs to the third decomposition class. Relati~ns (8) and 

(1o)w1i1 not d~colf{Pose, and additional iIP'.'orroa.tion is nec~ssary 

to determine allawability. 



CHAPTER V 

SUMMARY AND CdNCL~SIONS 

The basic problem with which this thesilll is concerned is -t;he 

determinat~on of which parameters of a system can be used as specifi-

·cations without generating incon$18tenciea. When only a few relatieins 

are involved) the designer cal'l easily spot any inconsistencies by, 

inspection. However, when the number o;f relations increase, the 

picture quickly becomes so complex that the determination of the 

extstence of inconsistencies i~ q~ite difficult. The general approach 

u,ed requires the development of a formal structure which would allow 

discussion of parameters, relations and systell'Jl!i in a concise math~ 

ematical manner, rather than in a wordy philosophical manner. 

First, the para.meter is defined as Bi set:of "values 11 • Tt,i.is 

de:fini t:i,.on allows considerai;i1;m of the pa.:ra.meter ~s an eJ..~ment . of 

a set without regard to the exact nature or name of the v~lues. Next, 

sets of rf!ilated parameters are defined as relations. 'I'he relations 

vrovide the 11rµles 11 by which ;Lt is posl:lible to ascertain the value 

of a warticular parameter when the values of the related parame~ers 

are known. Finally, a sy!!ltem is de.fined to complete the structure. 

Throug~out thi!!l dtscussion, ~any properties of the relation and 

system are defined and derived. The proofs of these properties are 

fo;r the men::t p&rt original, although the general structure follcrws 

a pattern similar to the system the~ry developed by Freeny (2). The 
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two structures differ primarily in the definition of the relation 

and although an attempt was made to correlate the two structures 

wherever possible by using similar terms, the reader is cautioned 

against drawing conclusions of correspondence without thorough 

consideration since, although many of the results are the same, the 

method for obtaining them is quite different. 

Next, the selection of an allowed specification is pursued under 

the assumption of a single necessary and sufficient condition. This 

condition is.that the set in question does not include a complete 

parameter set for any valid relatien of the system. Since it is 

obvious that obtaining a complete set of valif.relations for. a complex 

system would be an almost insurmounta~le task, the properties of set 

inclusion are shown to contain sufficient information to determine 

allowability or allow.selecti©n of the lea.st difficuit method ·for 

obtaining the necessary information~ "Process P" is a formalization 

of the method of selection used by Freeny in his "design map;~ This 

process of selection is formalized and justified by theorems which, 

to this author's knowledge, are unique to this the~is. These theorems, 

relating the existence of an allowable specification set to the decom-

posability of the. system, allowed the development of a systematic 
! . 

approach for. the selection of system specifications.· This method 

allows the designer to devel0p a system step by step, resolving all 

inconsistencies as they occur. The primary advantage of this method 

over the previous design map is the savings iri time and effort since 

checking of nonmaximal specification sets is p0ssible with the new 

method. 
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Next, the relati.on graph is defined. The use of a .linear graph 

to represent a system has been diecussed by s~veral authors, but tne 

lack of a one-to-one correspondence between the elements of the 

graph and the parameters of the system prevented a~y useful contri-

butions in this area. An original theorem, proving the existence ot 

a r~lation graph for every system is given. However, the results of 

the investigation are disappointing since an exact correlation between 

the relations of the system and the circuits of the graph cannot be 

obtai~ed in the general case. During the early investigation performed 

for this thesi~, the author studied tqe va.rio~s forrr;is of the relation 
l 

' 
graph which could be obtained from an electrical circuit. These 

1;1tudies indicated that a typica;L pattern of construction might be 

formed which would allow generation of a relatio~ graph with a one-

to-one correspondence between circuits and rel~tions in all cases. 

The author feels that there is sufficient jµst~fic~tion for oontinued 

work in this area. In the special cases in which the re~a~ion graph 

defines a unique aystem, it provides the s:Lmplest anq. easiest method 

ot parameter selection yet developed. Also, a complete listing of 

all a~l0Wable specificati9n sets is readily obtainable.' 

Several examples of the dif!erent methods of parameter selection 

are given in the fourth chapter. These e~amples point out many of 

the less obvious limitations of the various methods and provides the 

reader with a better intu:j.tive "feel" tor the p:r<;>blem of parameter 

selection. For example, the discussion of the design ma.p shows that 

several maps are required. for each system to gain complete information. 

Also, it is shown that the relation graph. lacks the required 

correspondence between circuits and ~elations in many c~ses. 



The apwlication of the material in this thesis requires only 

that a set of defining relations for the system be kn~. The form 

o! the relations, whether linear or nonlinear, is imma.terial. 

The a~thor feels that many design engineers lack a fundamental 

knowledge o! systems of relations and as a result, tend to write 

and solve equations in a haphazard manner without full kncr-wledge 

ot the correct procedure which will allow a solution in a minimum 

number o! steps. Also, ma;ny trivial problems are thought to be 

complex or unsolvable at first investigation since the ex&ct 

information needed for obtaining a solution may be present but 

unknown to the designer. 

Obviously, parameter selection concerns only a very small 

portion of t~e over-all design problem. Seve~al areas worthy of 

continued study are indicated in the following paragrawhs, 

First, it would be desirable to develop the theory using matrices. 

Since matrix theory is almost universally used in present day circuit 

theory, the preblem of parameter selection m:,.ght well be simplified, 

using this medium. As an example ot this application) conside~ T2-3. 

If a rnat:rix were formed, having a row :for each parameter and a colw:nn 

:fer ea.ch relation, a co:nditi011 rela't;ing the rank of the matrix to the 

decomposability of the system migh~ be proven. This would then allow 

a check for decomposability to be performed by a knowledge of the 

rank o! the matrix • 

. Next, to continue the integration ot ~esign theory and circuit 

theory, an investigation of possible applieatio:ns of the relation 

graph and hopefully, a way to circiunvent the present problem could 

be made. This problem has such gre~t possibilit;:l.es it solved that 

it is deserving or future study. 



One further problem which is perhaps the m®st import&nt is the 

extension of parameter selection to the case where the ranges ef 

individual parameters have been restricted. When specif~catiens 

are gtven in this manner (and they frequently are), more than th$ 

usual number of parameters can be specified. F'or example, if the 

cerrect values happened to be selected, ·all of the parameters i:n 

the relation E = !R could be specif'ied, whereas onlr two c&n-be 

specified in the general case. The restriction of the range of the 

parameters, in addition to allowing m~re paramete+s to be selected, 

would allow optimization techniques to be developed. This devel­

opment., although a. ;1.ong pre>blem, appe~rs to be solvable and weuld 

be extremely valuable. 
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APPENDIX A 

SET THEORY 

The fundamentals of set theory concern three undefined c0noepts. 

These ;are : 

(1) element 

(2) set 

(3) .nbelongs tetl 
1. 

In general, sets are indicated by the use of ca,pita.l letters or 

are enclosed in br~ckets.· Lswer case! letters·a:re:commonly used ta 

di:mote elements. However, since there a.re sometimes sets of sets, 

care must be taken te ascertain the inq.icated concept'. 

The ~0!).Cept "belongs ta'' relates sets and elements •. J;t is 

.generally written in the manner a e A, which is read, the element a 

belone;s to the set A. The negation of this statement is 1I'ld.1ca.ted 

by a. slash mark thrsu.gh the belongs t@ notation, a / A. 

The .slash through a symbol is a general n~tation of negation. 

Some fundamental definiti<;>ns follow: 

DA.-1:: A set A is··~~, sub'se.t ®f a. set B it all the elements 
,. : ,)· 

©f A "ate also elements of B. This ts written A S B. 

DA-2: ff ·AS B and BS: A, then set A and set B are said to 

be equal and are written as A= B. 

DA-3: If A S·B ap.d Ai B, A is a proper subset of B ~nd· 

is written AC. B. 
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DA-4: 

DA-5: 

DA-6; 

DA-7: 

The set which consists of no elements is the empty 

set. It is considered to be a sub$et of every set. 

\ 

Given two sets A and B, the set C consisting of the 

elements X such that 

(1) Xe A 

or 

(2) X e B 

is the union of A and B1 and is written C: AU B. 

Given two sets A and B, the set C copsisting of the 

elemepts X such that 

(1) Xe A 

and 

· (2) X e B 

is called th~.intersection of A and Band is writte~ 

. An B. 

The number of distinct elements in~ set is referred 

to as the cardinality ef the set. This, in nota,tic,n 

form, i; written er (A). 
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· Addi ti.onal syrribols ueied in this thesis are defined in t4e following 

list:. 

A::: indexing set 

P = parameter 

'7r:i = p:rioduct set of par13,mete:r 

"7{; = scalar product set 

~ ::: rela.tj_on 



{ ~i} = set of i relations 

{Pn} - set of n parameters involved in -
{Pni} :;: i sets of n parameters involved 

relations ~i 

//n(~i) - natural points of 

relation 

in the 

Sni ~ sygtem of n parameter and i relations 
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A!?PENDIX B 

GHAJ?H 'I'lIBORY 

G:!'."aph theo1--y, as used by the rr~mbers of the elect~ical engineering 

profession, concei'Yl.s the use of a geometric figure to represent a 

physical circmit.. The following def'initiorn;l will provide a: satisfactory 

ba.s is t0 inter-J?ret the ma:terial in the th.es is. 

DB-1: 

DB-3: 

DB-4: 

DB-5: 

DB-6: 

A line segment together with its distinct end 

points is an edg~. Edge and element are 

synonymous. 

A vertex is an end pei:nt at an edge. 

A linear graph is a collection of edges, no 

two of which have a point in c9rnm.on that is 

not a vertex. 

A sur)graph is a subse-t 0f the edges of the 

graph. 

A yertex a:nd an edge are incident with ea.ch 

other if the vertex is an endpoint of the ea.ge. 

1rhe degree of a vertex is the number of edges 

incident et the vertex. 



DB-7: 

DB-8: 

DB .. 9: 

DB .. 10: 

DB-11: 

If the edges of a graph can be ordered such that. 

each vertex in comm.on with the precedi~ edge and. 

the other vertex in common with the sueceeding 

edge (each edge appearing only once), the sequence 

is a.n edge train. 

If t~e degree ©f ea.ch nonte;rmina.l v~rtex ©fan edge 

train ia 2 and each tennina.l vertex is i, the edge 

train is a :path. 

If the terminal vertices of an edge tr~in coincide 

and aJ.l vertices are of degree 2, the edge traip 

is a. circuit. 

A graph i~ connected if there exists a path 

between any tw© vertices ©f the graph. 

A tree ©:fa gra.Jh is a maximal connected sub~raph 

containing all the vertices of the graph. 
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APPENDIX C 

TREE LISTING 

It might sometimes be desirable to obtain a listing of all sets 

of parameters which will give positive results on the design map. 

If the system is represented by a linear graph, the trees of the 

graph, with few exceptions, are those sets of parameters which ma.p 

through the design map. A method for obtaining a listing of the 

trees of a graph was suggested by Paul.(4). This method is explained 

in the following discussion. 

Given a linear graph with V vertices and E edges, form a listing 

of any V - l vertex cut sets. (A vertex cut set corresponding to a 

particular vertex is just a listing of the edges incident to the 

·· vertex.) Obtain the Cauchy product of the cut sets and the result 

is a list of all trees of' the graph. (The Cauchy product is 

explained in the .exam,ple.) 

Consider the system shown in Figure C-1. 

Figure C-1. Linear Graph 



The vertex cut sets a.re (A, E, D), (A, B), (B, c, E)., and 

(c, D). Select V - 1 of these sets (A, B), (B, C, E), (c, D) and 

arrange them in the following manner: 

(A + B)(B + C + E)(C +D). 

Per:f;'orm ordinary mul t::i,plica.t;ion on the line shown, obta.:i;ning 

(AB + M; + AE + BB + BC + BE)(C + D) 

and 

~+~+~+~+~+~+~+~+~ 

+ BBD + BCD + BED. 
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Remove all products which cont~in the same edge twice and all products 

which a~pear twice. The result is 

ABC+ AEC + BEC + ABD + ACD + AED +BCD+ BED• 

Each of the p~oducts in this listing is a tree of the graph and each 

is an allQWable specificatton set. 
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