
INFLUENCE OF EXOGENOUS CARBON SOURCES ON 

INDUCIBLE ENZ!ME FORMATION1IN 

PSEUDOMONAS FLUORESCENS 

JERRY JACK KIRKLAND 
'I 

Bachelor of Science 
Northwestern State College 

Alva, Oklahoma 
1958 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1961 

Submitted to the Faculty of the Graduate School of 
the Oklahoma State University 

in partial fulfillment of the requirements 
£or the degree of 

DOCTOR OF PHILOSOPHY 
May, 1964 



INFLUENCE OF EXOGENOUS CARBON SOURCES ON 

INDUCIBLE ENZYME FORMATION _IN 

PSEUDOMONAS FLUORESCENS 

Thesis Approved: 

~ Thesis Adviser 
-~ • /I ~;J Ill? 
{AL,1..,€ (._, ' I I-( t: ,l/1._- ' ' 

D~ooi 1 

569788 

ii 

OKLAHOMA 
ITATE UNIVERSITY 

LIBRARY 

JAN 6 1965 



ACKNOWLEDGMENTS 

The author wishes to express his appreciation to DI'. N. N. 

Durham, under whose direction this study was conducted, .for continual 

guidance, assistance, and encouragement throughout his grad11ate werk~ 

The author wishes to acknowledge Dr. L. L. Gee, Dr. E. C, 

Noller, and Dr •. F. .R. Leaoh £or their assistance and time consumed 

during this study and to the Department o.f Micropiolog.v .for use of 

its .facilities and .financial support during this inves\igatio~. 

Thanks are due to ~ss ~ryDobson and Mrs. Mickey Tims £or technical 

assistance. 

Special gratitude is also extended to my wife, So~, my .family 

and parents .for encouragement throughout this study. 

iii 



Chapter 

I. 

II. 

TABLE OF CONTENTS 

INTRODUCTION . . . . . . . • • • • • • . . . • • . •· . . 
LITERATURE REVIEW . . . . . . . . . . . . . . . 

A . Inducible enzymes •••••••••••• 
Inducible enzyme formation ••••• 
Effect of carbohydrates on inducible 

• • 

enzyme formation • • • • • • • • • • • • 

. . 

B. Protocatechuic acid metabolism. . . . . . . . 

Page 

1 

3 

3 
3 

12 

17 

III. MATERIALS AND METHODS . . . . . .. . . . . . . . . . . . . 20 

Test organism • • • • • • • • • • • • • • • • • • • • 20 
Med.ia • • • • • • • • • • • , • • • • • • 20 
Growth of cells • • • • • • • • • • • • • • • • • 21 
Induction experiments • • • • • • • • • • • • • • • • 21 

Induction as measured by oxygen uptake. • • • .21 
Procedure employing toluene-treated. cells • • • • • 22 

Measurement of enzymatic activity of induced cells 23 
Protocatechuic acid determination • • • • • • • • • • 23 
Glucose determination • • • • • • • • • • • • • • • • 25 
Fructose determination. • • • • • • • •••••• · 25 
Protein determination • • • • • • • • • • • • • • • • 26 
Growth experiments. • • • • • • • • • • • • • • • 27 
Carbon-14 experiments • • • • • • • • • • • • • • • • 27 
Cell fractionation procedure. • • • • • • • • • • • • 27 
Counting procedure. • • • • • • • • • • • • • • • 28 

IV. RESULTS AND DISCUSSION ~ • . . 29 

Inducible enzyme formation by Pseudomonas 
fluorescens • • • • • • • . • • • • • • • • • • • • 29 

Influence of exogenous carbon sources on 
inducible enzyme formation as measured by 
oxygen uptake • • • • • • • • • • • • • • 29 

Growth experi+11ents • • • • • • • .. • • • • • • • • • • 34 
Use of toluene-treated cells to measure enzymatic 

activity . . . . . . . . . .. . . . . . . . , . . 34 
Effect of pH on induction • • • • • • • • • • • • • • 44 
Effect of pH on enzymatic activity. • • • • • • • 44 
Effect of glucose on enzyme induction • • • • • • • • 44 

iv 



Chapter Page 

Effect of ehloramphenicol on induction. • • • • • • • ~7 
Effect or fructose on induction • • • • • • • • • • • 50 
Effect of ribose on induction • • • • • • • • • • • • 54 
Effect of suecinic and P1I'11Vic acid on induction. • • 54 
Effect of adding glucose at different time intervals 

on induction • • • • • • • • • • • • • • • • • • • 54 
Effect of glucose on enzymatic activity • • • • • • • 60 
Correlation of pH and induction • • • • • • • • • • • 62 
Effect of glucose on RNA'synthesis. • • • • • • • 67 
Effect of ribose on incorporation of uracil • • • • • 69 
Incorporation of glucose-u-14c. • • • • • • • • • • • 69 
Incorporation or ribose-1-140 • • • • • • • • • • • • 72 
Incorporation of glueose-1-140 • • • • • • • • '• • • • 74 

V. SUMMARY AND CONCLUSIONS • • • • • • • • • • • • • • • • 77 

A SELECTED BIBLIOGRAPHY ••••• • • . . . • • • • . . . .. . . 80 

V 



Table 

I. 

LIST OF TABLES 

Summary of compounds tested for their ability to 
shorten the lag tim.e ... for inducible enzyme for­
mation in ,!:. fluores een·s as measured by o:x;ygen 
uptake • • • • • • .. • • • • . • • . • • • • • • • 

vi 

Page 

• • • • 35 



LIST OF FIGURES 

Figure 

1 .. 

2. 

4. 

6. 

7. 

a. 
9. 

Regulation of enzyme formation as proposed by Jacob, 
Monod, and Gros • • .. • • • • • .. • · ~ • • .. • • • • • • • 

Summary of procedure for measuring inducible enzyme 
· formation by use of toluene ... treated cells •••• • • • • 

Inducible enzyme b,iosynthesis by!!,. fluorescens as 
measured by oxygen uptake ~ .. • • • ., • • • • • • • • • • 

Induction to benzoio acid in the presence and absence 
of glu'cose in P .. f'luorescans • • • .. • • ., • • • • 

Effe.ct. of ribose and fructose on induction in P. 
fluorescens to anthranilic acid •••••• 7 • • • 

• • • 

. . .. 
Growth of ,!:.. fluores'cens in synthetic medium • • • • • • • 

Effect of glucose on enzyme inductipn to protocateehuio 
· acid in P. fluorescens as measured by oxygen uptake. • • 

Standard curve for protooateehuic acid determinat~on 

Effect of substrate concentration on rate of enzyme 
induction to protocateehuic acid inf. fluoresoens 

• • • 

• • • 

10. ~zyme ind~ction to protocateohuio acid inf. f'luoresoens 

Page 

9 

24 

)0 

)2 

38 

39 

40 

as measured. by toluene-treated eells • • • • • • • • • • 41 

11. Comparison of the disappearance of protooatechuic acid 
in the presence of induced. f.. fluoresoens treated. 
and non-treated with toluene ••••••••••• ~ 

12. Effect of pH on enzyme induction to protocatechuic acid 

13. 

14., 

in f.. :f'luores oens • .• • • • • • • • • • • • • • • • • 

Effect of pH on enzymatic activity off. fluorescens 
previously induo.ed to protocateohuic a,oid • • • • • • 

Correlation of enZYlJle induction and protoaate.ohui~ acid 
disappearance £rom medium by f~ fluorescens in 
presence and absence of glucose •••••••••• 

vii 

. .. 43 

• • 45 

• • 46 

• • 48 



Figure Page 

15. Ef'f ect or two concentrations of' glucose o.n enzyme induc-
tion to protocateehuie aoid in P. fluorescens • . • ~ • • 49 

16. Effect of chloramphenicol on enzyme synthesis in the 
presence and absence of glucose • • • • • • • • • • . . 51 

17. Effect of fructose on enzyme induct;ion to protocateehuic 
acid in ,E. fluorescens as measured by oxygen uptake. • .52 

18. Effect of' .f'ru.cto,se on enzyme induction in P. nuorescens 
· as measured using toluene-treated cells 7. . . . . . . 53 

19. Effect of ribose on enzyme induction in _E. fluoresoens 
as measured by toluene-treated cells • • • • • • • • • 5.5 

! 

20. Effect of succinate and pyruvate on enz~e induction in 
· P. fluorescens as measured llSing toluene-treated 

Cells . . . . . . . . . . . . . . . . . . . . . . .. . 56 

21. Effect of time.of.addition of glucose on enzyme induction 
in P. flu.ore$ oens • • • • • • .• • • .• • • • • • • • • ~ 58 ·,~ ' 

22. Effect of time of addition of ribose on enzyme induction 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

in E,. .fluores eens • • • • • • • . • • • .• • ~ • • • • • • 59 

.Effect of glucose on disappearance of protocateehuio 
acid in the presence of indu~ed f. f'lu:oresoens • • 

' 

Effect of' adding glucose pr.ior to and eim:u,ltaneously 
with protooatechuic acid on enzymatic activity of 
induced cells . • • • • • • • • . • • • • • • • • • • • 

' 

• • 

. . 
Correlation of' the effect or glucose and pH change on 

induction in f. nu.oresoens • • • • • • • • • • • . • • • 

Effect of glucose on enzyme induction in P. :fluoresoens 
conducted in a high bu.£:fer concentration •••••.•• 

. 14 
Ef'feot of glucose o~ incorporation of uraoil-2- C into 

the hot trichloroacetic acid :fraction or P. 
f'luoresoe:ns • • • • • • • • • • .·• • • · • -. • • • • • • 

14 Ef'feot of ribose on incorporation of uraoil-2- C into 
the hot trichloroacetic acid :fraction of P. 
fluorescens • • • • • • • • • • • • • • -. • • • • • • 

Incorporation of' glucose-u-14c into hot trichloroacetic 
acid fraction of' f.~ t'lu.orescens •••••••••••• 

viii 

61 

66 

,68 

70 

71 



Figure Page 

30. Influence of ribose on incorporation of glucose into the 
hot trichloroacetic acid fraction during induction. • • 73 

31. Incorporation of ribose-l-14c into the hot trichloroacetic 
acid fraction off. fluorescens. • • • • • • • • • • 75 

32. Incorporation of glucose-u-14c and glucose-l-14c into 
the hot trichloroacetic acid fraction off. fluorescens. 76 

ix 



CHAPTER I 

INTRODUCTION 

Catabolic repression has created much interest since Gale (22) 

first observed that glucose inhibited induction of certain enzymes. 

Monod ( 52) demonstrated that E~~heriehia coli failed to form ft-galac­

tosidase in the presence of glucose until the glu.cose was .. utilized. 

MacQuillan and Halvorson (44) reported that .8-glucosidase syn.thesis 

by yeast was repressed by high concentrations of glucose and prior 

induction of the cells did not relieve this repression. ,8-Galactosi­

dase induction in!• coli, with only endogenous sources of nitrogen 

and energy available, was blocked by glu.cese, ribo.se, xylose, er glyc­

erol (64). It tra.s suggested that this -repression was due to the syn-

thesis of a common metabolite produced from these compounds or by 

interference with the energy-transfer system • 

. Freund.lich and .Lichstein {21) demonstrated that glucose inhib­

ited the formation of tryptophanase but stimulated the production of 

tryptophan synthetase in·!• .!!ll,. The glucose inhibition of trypto­

phanase could be reduced by high concentrations of L-tryptophan. 

Recently, Dobrogosz and DeMoss (l;) found that an inducible L-arabi-

nose isomerase of Pediococeus pentosaceu.s was repressed in eells 

grown on glucose, fructose, or mannose, but growtb on ribose or x;r-

lose stimulated the capacity for is0merase formation. Similar results 

were noted f'or the syn.thesis of' ,B-galaetosidase by this organism. 
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Durham (15) and Durham and McPherson (17) studied inducible en­

zyme formation by Pse1',domonas fluorescens and found that low levels of 

glucose would shorten the lag period required for induction to several 

different aromatic substrates. Oluconate also enhanced enzyme forma­

tion but succinate or pyruvate had little effect. However; it was 

observed that the lag time for induotien was related to the glucose 

concentration in the medium. The cells did not produce the enzyme 

until after glucose was utilized; therefore, increasing the glucose 

concentration prolonged induction. 

The purpose of this study was to elucidate the influence of ex­

ogenous carbon sources on the induced biosynthesis of protocatechuic 

acid oxidase in Pseudomonas fluorescens. A method using toluene­

treated cells was perfected to permit qaantitation of enzymatic ac­

tivity. Optimwn conditions for enzyme induction were determined. The 

incorporation of labeled ribose and glucose into the different ceU 

.fractions was measured and the influence of these sugars on uracil 

incorporation was evaluated. 



CHAPTER II 

LITERATURE REVIEW 

Part A. Inducible enzymes 

Inducible enzyme formation. 

In 1882, Wortman (cited in Pollock (77), p. 620) observed that 

cultures of "Bacterium termio" did not produce starch-destroying en­

zymes unless starch was included in the growth medium. Wortman inter­

preted this obs.ervation in terms of a hunger stimulus of the cell to 

produce the enzyme it needed for growth and survival. He .visualized 

a self-compensatory control of the cell's chemical activities based 

on a balance between enzyme formation and enzyme action which satis-

fied the needs of the cell and therefore led to diminished. enzyme 

formation. 

The first clear and .deliberate discussion of enzymatic induction 

is found in the chapter on: "Les causes qui influent sur la secre­

tion des diastases" in Duolaux•s Traite 9:.! Microbiologie which ap­

peared in 1899. Duclau.x (cited in Monod (.52), p. ~27) noted that 

production of certain proteases and saccharase by aspergilli took place 
I 

oniy when milk or saocharose was present in the growth medium. In 

1901, Went (cited in Monod (22), p. 227) noted that Monilia 

(Nem"ospora) sitophila produced. proteases only in the prei:Jence of 

casein or peptone but synthesized amylase regardless of the composi-

tion of the growth medium. 
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Dienert (12) showed,that Saccharomtees oerevisiae fermented 

galactose only after a period of several hours in the presence of the 

substrate, but would ferment glucose without a lag period. 

Karstrom (cited in Pollock (77) p. 623) in 19'.30 studied the 

relation between the fermentative properties of Betaoooeu.s arabinosa­

~ and the nature of the sugar present during growth of the organ­

ism. He found that glucose and sucrose were fermented regardless 

of the presence or absence of the sugar during growth. However, the 

ability to ferment galaetose, arabinose, and lactose was acquired. 

only .if the sp.a.o.ifi.c .sugar was pres . .ent during gr.om:.h. Fr_om thes_e 

findings, Karstrom (cited in Iudkin (101) on p. 93) divided bac-

terial enzymes into two groups: adaptive enzymes, which are produced 

only when required or whose formation is dependent upon adaptation of 

the organism to a specific substrate, and constitutive enzymes, which 

are formed by the cell independently of the eomposi tion o:f the medium 

in which it is grown. 

In 1953, Cohn et a.l. (10) suggested the term "enzyme induction" 

instead of "enzyme adaptation" to distinguish 11enzyme induction" :from 

other cellular changes due to the environment. They defined enzyme 

ind.u:ction as "a relative increase in the rate of synthesis of a spe­

oifie apo-enzyme resulting :from exposure to a chemical substance." 

Therefore, any substance which will induce enzyme synthesis is an en-

zyme inducer (10). 

The definition of enzyme induction states that the increased 

enzyme formation must be a physiological change (phenotypio expres­

sio~) occurring in all cells rather than a genetic change found.in 
. . 

only part of the bacterial population (66). Stephenson and Stickland 
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(88) .:found that :no cell division occurred when .:formate was added to 

!• coli, but the enzyme hydrogenlyase was produced. They concluded 

this was not a genetic selection of part of the population. Since 

this report many workers have noted that inducible enzyme formation 

is a phenotypic change in all of the bacterial population. Klein and 

Doudoroff (J6) isolated a mutant off. putrefaciens that rapidly oxi­

dized glucose whereas the wild strain did not. The phenotypic dif­

ference of the mutant resided in its capacity to produce hexokinase 

in the presence of glucose, whereas the wild type could not produce 

hexokinase even after several hours incubation. 

Stephenson and Yudkin (89) found that~. cerevisiae produced 

galaotozymase in aqueous solutions of galactose without detectable 

cell multiplication. Cells induced to galactose lost their galacto­

zymase completely after .:fermenting glucose and regained it when again 

exposed to galactose. Stanier (86) demonstrated that E,. flu.orescens 

produced enzymes to a number of different aromatic compounds in the 

absence of an exogenous nitrogen source. 

Novick and Weiner (63) studied the kinetics of ~-galactosidase 

formation to determine if part of the bacterial population were in­

duced maximally and others were not, or if all the c~lls were par­

tially induced. They found that immediately .:following addition of 

the inducer, which was accumulated by an inducible ~-galactoside per­

mease, the rate of enzyme synthesized per bacterium rose linearly and 

continued for a number of generations. Cells exposed to low concen­

trations of the inducer showed a longer lag than cells exposed to 

high inducer concentrations. Once the enzyme was induced, it could 

be maintained in the presence of low concentrations of the inducer. 
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Thus, induction differs from mutation in that enzyme synthesis is a 

physiological change occurring in all cells whereas a mutation is a 

genetic change in a small part of the population. 

Induction represents the de!!£!£ formation of enzyme rather than 

activation of existing precursors (66). A requirement for amino acids 

and an energy source during the production of p-galactosidase by!• 

coli (56) suggested that part of each enzyme molecule had to be syn­

thesized from simple components. Pardee and Prestidge (69) have 

shown that 7-azatryptophan, a tryptophan analog, was incorporated into 

D-serine deaminase and £-galactosidase. In the absence of an external 

carbon and energy source an increased utilization of the internal free 

amino acids was noted as a consequence of induced enzyme synthesis in 

cells suspended in a nitrogen-free medium (27). 

!• ~ was grown in the presence of 14c-lactate and then induced 

for p-galaetosidase in 14c-free medium. Isolation and purification of 

p-galactosidase revealed that less than one per cent of the carbon was 

derived from cellular components existing prior to addition of the in-

ducer (81). Pollock and Kramer (78) obtained similar results using 

3.5s-labeled Bacillus cereus. 

Enzyme induction represents a model system for studying the 

mechanism of phenotypic expression (54). The role of the inducer is to 

stimulate the cell to express its potential for enzyme synthesis but 

the formation is restricted and clearly under genetic control (26). 

The p-g~lactosidase of!• .£2!!. (6) has been studied extensively and 

the enzyme has been crystallized ( 30). When E. coli is exposed to an - ,---

inducer, enzyme formation commences within a few minutes (71). The 

actual rate of enzyme formation increases with increasing inducer 



concentration (28) and if the inducer is removed, enzyme formation 

ceases immediately (6). However, the enzyme that has been produced 
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is stable and is diluted out among the bacterial progeny du.ring growth 

(29). This is in contrast to penicillinase of~. cereus which is 

induced by penicillin or a few closely related compounds (76). Upon 

addition of penicillin, penieilli:na.se increases after a lag of about 

15 minutes ,(74). However, penicillin becomes fixed to the bacteria 

within one minute, after whiah the exogenous inducer can be removed 

since it is no longer essential for induction and the enzyme con­

tinues to be formed at a constant rate (73). 

The induction for p-galactosidase is specific. A variety of 

~-D-galactosides or thio-P-D-galaotosides, possessing a small agly­

cone group, will serve as inducers but they mu.st have an intact galac­

tosidic group (53) •. Substances whiah have inductive property are not 

necessarily substrates for the enzyme. Therefore, certain ~-galacto­

sides, such as melibiose, are inducers but are not hydrolysed by 

p-galaetosidase. Also, induction is, in general, independent of the 

affinity of the enzyme for the inducer. 

Pardee, Jacob, and Monod (67) have described three chromosomal 

regions which are associated with lactose utilization in!• coli. The 

first region,!, controls the capacity of the organism te synthesize . 

enzyme and its structure. The second region,!, controls the induci­

bility of the organism., the wild type being inducible while the mutant 

produces the enzyme constitutively. The third region, z., controls the 

synthesis o:t ,g-galactoside permease. The study of heterom.erozygotes 

of!• coli indicates that the!. and! mutations belong to different 

eistrons, and the constitutive allele of the i oistron is recessive 
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over the indu,eible allele. 

One early hypothesis proposed that the inducer £unctions by 

introducing a pattern of protein structure, complementary to that of 

the inducer, into the cells (26). This hypothesis can be rejected 

for at least two reasons. First, as shown by Pardee et al. (67), 

uninduced. cells possess the genetic information £or synthesis of a 

specific enzyme and, where examined, there have been no difference 

between constitutively and inducibly synthesized enzymes (8, 37, 

75). Second, the specificity of the induced enzyme does not reflect 

differences in the stereospecificity of the indu.cer molecule (54). 

Cohn and Monod (9) proposed the "Unitary 11 hypothesis that there 

is fandamentally no difference between mechanisms of basal, induced, 

or constitutive enzyme formation. These authors suggested. that per-

haps all enzymes are inducible and that basal and constitutive enzyme 

formation is due to the endogenous production of' smaller quantities 

of' an inducer that function in the same manner as the externally added 

inducer. However, there is very little evidence to support this 

hypothesis (77). 

The inducer acts by stimulating or permitting the cell to express 

its potential £or the formation of a specific enzyme. However, organ-

isms may differ in the types of enzymes produced, the quantities of 
I 

enzymes formed, and the extent to which enzyme formation is influenced. 

by specific environmental factors (77). All of these differences are 

under genetic control (39). 

Monod, Jacob, and Gros (55) proposed a model for enzyme induction 

and assumed that the molecular structure of' proteins is entirely deter­

mined. by structural genes (Figure l). The f'o~mation of tryptophan-
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synthetase in E. coli is dependent on a structural gene whieh has been --· 
identified and located on the chromesome map (99). The structural 

genes aot by assembling ribonucleotides into a specific transcript 

(messenger ribonttcleic aoid) of the deoxyribonuoleotide sequence. 

The first stage, coding o.f RNA, is assumed to be a sequential 

and oriented process which can be initiated only at certain points on 

the DNA strand. The initiation points are called the 'operator,' 0, 

and control the structural genes. The genes whose activity is thus 

coordinated constitute an 'operon' (55). 

In addition to the .structural genes and the operator, there is 

a gene whioh controls the operation Qr function of the operator. This 

is the 'regulator' gene, .GR. The regulator gene acts by forming a 

substance known as the repressor, R, which controls the1operator by 

some mechanism. The repressor is capable of reacting reversibly with 

small mole.oules called the effector, F. 

In certain systems only the intact repressor, R, can as~ociate 

with the operator. Under this condition.protein synthesis would not 

occur since the operon does not allow transcription. However, if an 

inducer (effector) is present the repressor cannot control the opera­

tor and protein synthesis occurs. This system would therefore repre­

sent an induqible system. In other systems, called reprE!SSible, only 

the modified repress or,. R' , is active and the presence of the effector 

(metabolic repressor) inhibits transcription. 

Lindegren (40) modified the model of Monod, Jacob, and Gros (55) 

and proposed a receptor-hypothesis for the induction or gene-controlled 

inducible enzyme formation. The model consists o;f a protein receptor,. 

(the functional equivalent of the operator gene of Monod et al.) and a. 
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DNA structural component. The structural component of DNA, which con­

trols the structure of the enzyme to be synthesized, carries a segment 

of RNA which functions as messenger RNA. When certain indu:eers make 

contact with the receptor, they initiate an excitation which releases 

the messenger RNA from the structural genes. The tertiary structure 

of the protein is determined by the coiling of the receptor already 

at the locus. This allows for mutations either in the structural com­

ponent or in the receptor. 

It is assumed that the receptor is a protein which interacts with 

the inducer because it resembles the enzyme. The system is assumed 

to be activated by combination of the inductor with the surface of 

the receptor leading to release of messenger RNA which in turn leads 

to enzyme formation. 

Lindegren (40) suggests that repression occurs if the repressor 

fits on the receptor and therefore does not allow the effector to pro­

duce the excitation which releases messenger RNA essential for the 

structural genome. 

Enzyme repression has been defined as a relative decrease in the 

rate of synthesis of a particular apoenzyme resulting from the exposure 

of cells to a given substance (93). Many enzymes, including permeases, 

are subject to repression, regardless of the type of catalytic activity 

of the enzyme (94). Frequently the repressors, which a.re specific in 

their action, are "end products" of the pathways in which the repressed 

enzyme occurs (93). 

Derepression presumably represents de !!!Y2, synthesis of enzyme 

protein. Yates and Pardee (100) demonstrated. that aspartate tra.ns­

earbam.ylase activity, formed during derepression. is accompanied by 
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the seleetive synthesis of new protein. Rogers and Novelli (79) con-

eluded that derepression of ornithine transcarbamylase represented the 

synthesis of new protein. Induction of ~-galaetosidase in,!.~ has 

recently been regarded as a release from repression (67). 

Pardee and Prestidge (70) demonstrated that the inducibility of 

p-galactosidase is genetically controlled. Conju.gation of an Hfrz+i+ 

(inducible) and F-z·i- strain of E. coli showed that the inducible --
gene was dominant over the constitutive gene. This experiment was 

performed under conditions that inhibited protein synthesis, suggest­

ing that the repressor was ribonucleic acid. Borek et al. (2) showed 

that methionine starvation in a strain of ,!. coli Xl2 permitted syn­

thesis of RNA bu.t not of DNA or protein. They observed a delay in 

~-galactosidase formation following methionine starvation. Yanagesawa, 

(98) observed a delay in the formation of ~-galaetosidase when a 

methionineless mutant of!•~ was starved in the presence of glyc­

erol. During starvation. RNA accmnulated and it was suggested that 

RNA might be the repressor or a precu.rsor of the repressor. 

Effect 2! carbohydrates .2!l inducible enzyme formation. 

The addition of carbohydrates to the growth medium has different 

effects on various ~zymes. Kendall and Farmer (34, 35) in 1912 investi­

gated the enzymes involved in the breakdown of proteins and amino acids 

by bacteria and observed that addition of carbohydrates to the medium 

resulted in a decrease in ammonia formation. They suggested a protein­

sparing action by glucose. However, Epps and Gale (20) have shown that 

the inhibitory effect of glucose is not restricted to certain enzymes 

and doe.s not result in a permanent change in the enzyme constitution 

of the cell. 
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Monod (52) demonstrated that ~-galactosidase synthesis by!.~ 

was inhibited when glucose was present in the growth medium with lac­

tose~ · Similar results were obtained with other sugars, although 

glucose was the most effective. The organism preferentially utilized 

one carbohydrate. When this compound was depleted from the medium, 

the cells then underwent an adaptation period after which growth 

resumed on the second substrate. This is the well known "diauxi" 

effect (52). 

Neidhardt and Ma.gasanik (62) noted that glucose completely 

suppressed biosynthesis of !l!-inositol dehydrogenase, glycerol de­

hydrogenase, or histidase in Aerobacter aerogenes. The addition of 

amino acids, pu.rines, pyrimidines, or vitamins did not.reverse the 

glucose effect. These workers concluded that the inhibitory effect 

was not due to failure of the inducers to penetrate the cell, to 

the high growth rate of' the cells in a glucose-containing medium, 

or to a deficiency o.f the substances known to be essential for protein 

formation. Cohn and Monod (9) had originally suggested that glucose 

inhibited the entrance of inducer molecules into the cell, but 

Neidhardt and Ma.gasanik (62) suggested. that glucose interfered with 

production of the enzyme rather than with the mechanism of' induction. 

Neidhardt and Ma.gasan.ik (61) found L-histidine would reverse glucose 

inhibition of L-histidase in!. aerogenes if added as the sole nitro­

gen source sin.ce histidase .formation was necessary for growth of' the 

organism. Thus glucose inhibition was an indication of feedback eo:i:i­

trol (91) by which the levels o:t intermediary metabolites regulate 

the synthesis of eatabolic enzymes •. A number of carbon sources 

inhibited inducible enzyme . .formation in!• aerogenes, and there was 



14 

a direct correlation between the growth-supporting propertyof.the 

exogenous compound and its inhibitory action; the faster the growth, 

the greater the inhibition (59). In contrast, the inducible .D-serine 

dea.minase and D-threonine deaminase of!• coli are not subject to in­

hibition by high concentrations of glucose (68). Englesberg, Watson, 

and Hoffee (17) observed that Salmonella tyPhimurium LT2 grown in a 

mineral medium with glucose, glycerol, pyruvate, acetate; or Krebs 

cycle compounds utilized citrate after a period of induction. How-

ever, extracts of cells grown in the presence or absence of citrate 

could oxidize citrate immediately. Therefore, induction to citrate 

involved the synthesis of a citrate transport system (1). A mutant 

of~. ttphimurium LT2 could not utilize carbohydrates, glycerol, or 

pyruvate as the sole carbon source due to a deficiency between 

pyruvate and acetate. Growth of the mutant was completely inhibited 

when glucose and citrate were added simultaneously indicating that 

glucose inhibited formation of enzymes required for citrate utili­

zation. Neidhardt (58) isolated a mutant of!• aerogenes which was 

not glucose sensitive. Glucose insensitivity was due to a decreased 

rate of glucose metabolism though the inducible enzymes were still 

repressed by glycerol and gluconic acid. 

· In accordance with the interpretation 0£ Neidhardt and .Magasanik 

(59), constitutive enzyme synthesis shouldbe less sensitive to glucose 

inhibition than induced enzyme synthesis and the inducer should reverse 

the inhibition (45). ,8-Galaetosidase produoed by inducible cells or 

constitutive mutants was not inhibited by glucose (?).. Howe1ver, in 

yeast the synthesis of constitutive and inducible ~-glucosidase were 

equally sensitive to glucose (46). MaoQuillan et al. (45) found that 



1.5 

low concentrations of glucose stimulated induction of p-glucosidase 

in a yeast hybrid but higher concentrations inhibited the synthesis 

and activity o.f the enzyme, suggesting that glucose was acting at two 

different sites in the cell. 

Palmer and Mallette (64) studied the induced biosynthesis of 

p-galactosidase in!~ coli B during which endogenous materials served 

as a source of nitrogen and energy. The addition of glucose, ribose, 

xylose, or glycerol blocked enzyme formation and prior induction o.f 

the cells failed to overcome the inhibition. The results suggested 

that these particular substrates were metabolized to a common repres­

sor or interfered. with an energy-transfer system. 

Pardee (6.5) observed that glycerol blocked the formation of 

~-galaetosidase in pyrimidineless mutants in a pyrimidine-free medium 

and concluded that glycerol exhausted the intern.al pool of pyrimidines. 

Mandelstam (50) studied ,6'-galaetosidase synthesis by ~. ~ in a 

nitrogen deficient medium and observed. that the turn.over of protein 

was sufficient to account for the enzyme formed. 

]!. megaterium synthesized ~-galactosi~ase and the kinetics of 

induction suggested that the inducer combined with the enzyme-forming 

system rather than with the enzyme (;8). Acetate and glycerol inter­

fered slightly while fructose, high concentrations of amino acids, and 

especially glucose gave a pronounced inhibition. 

Halpern. (25) isolated several mutants of E • .92!!. and studied the 

effect of temperature and carbon seuree on the formation of glutaJt4_e 

decarboxylase. Succinate was a potent ~epressor in a strain which 

could utilize glutamic acid as the sole carbon source, while glucose 

allowed good synthesis in the presence of glutamate. The succinl;lte 
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repression was reduced at low temperatures as was the requirement for 

glutamate. These results suggest that induction and repression affect 

the same site. 

Strains of E. coli, deprived of essential amino acids or pyrimi-- -
dines, produced ,B-galactosidase and any compound that was utilized 

for carbon and energy repressed enzyme formation (51). 2:4 Dinitro-

phenol reversed repression resulting from aerobic but not from an­

aerobic metabolism of compounds.. Thus, the repressor of /j-galacto-

sidase is a substance common to aerobic and anaerobic metabolism .• 

Glucose and other fermentable carbohydrates repress trypto­

phanase but stimulate tryptophan synthetase in!• .2.21! (21). The 

repression of tryptophanase is due to carbohydrate dissimilatio.n, but 

the increased metabolic rate resulting from metabolism of glucose and 

other carbon sources redue.es the intracellular level of tryptophan and 

stimulates :formation of tryptophan synthesis. 

Repression may not be due to glucose itself but to products of 

glucose metabolism ·(60). Studies have been made to determine if a 

common repressor exists for all enzymes or if there is a specific re­

pressor for each. McFall and Mandelstam (47) studied .three inducible 

enzymes of! • .221:!. known to be subject to metabolic repression. Tryp­

tophanase and D-serine deaminase were both repressed by pyruvate, a 

product of their metabolism, and the repression was greater than ob­

served with glucose. Pyruvate had no effect on ~-galactosidase, but 

this enzyme was .repressed by galaetose to the same extent as with 

glucose. Galaetose had no .effect om. tryptophanase or D-serine deami­

nase. Thus, many inducible enzymes are controlled by two specif':,.e 

repressors. Production of' one repressor is controlled by the! 
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gene (;2), which determines the property of inducibility or consti­

tutivity. The other repressor controls enzyme production both in con­

stitutive and inducible strains, and seems to be the immediate end 

product of the reaction or some closely related substance (23, 42, 95). 

Spiegelman, Halvorson, and Ben-Ishi (85) originally proposed 

that glucose repression.could be regarded as a competitive effect at 

the metabolite level, wherein rapid growth on glucose re.sulted in a 

depletion of certain compounds essential .for the induction of the 

glucose-sensitive enzymes. However, inducible L-arabinose isomerase, 

which is repressed by glucose, has been examined inf. pentosaceus 

and the repression was not alleviated by addition of yeast extract 

(lJ). 

Rhizopus nigricans produces isoeitratase and high glucose con­

centrations represses synthesis of this enzyme but enzyme .formation 

proceeds when the glucose concentration is lowered (97). The glucose 

repression can be relieved by the addition of. Zn++ which increases 

growth and glucose utilization. Isocitratase synthesis is not stimu­

lated by Zn++ in the absence of glucose or inducer. Creaser (11) 

noted shortening of the lag period for production of ~-galactosidase 

in Staphlococeus aureus strain Duncan by addition of glucose or 

lactate and further shortening by supplying a mixture of purines and 

pyrimidines, indicating stimulation of enzyme formation. 

Part B. Protocatechuic acid metabolism 

P. fluorescens will degrade many aromatic compounds (14, 16). 

Protocatechuic acid OAdase catalyzes the oxidation of protoca.te~uic. 

acid (;:4-dihydroxybenzoie acid) by cleav:Lng the ring between two 
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hydroxyl groups to form .21!-!!! p-carboxymu.oonic acid (43, 87). The 

enzyme is inducible (14) and has been purified (87). Gro~s. Gafford 

and Tatum (24) used 2t6-14c2-labeled proto~atechuic acid and noted 

that l• fluoreseens metabolized protooatechuic acid to ,S-ketoadipic 

acid which was randomly derived from C-1 and G-6 of the labeled sub­

strate. The tracer study suggested a symmetrical precursor to /3-

ketoadipic acid, which Elsden and Peel (18) reported to be the dilae­

tone of .5!!!-eis mu.conic acid (butanolido-~Y-Y'~'-bu.tanolide). Cain, 

Ribbons, and Evens (5) found this dilactone of cis~cis muconic acid 

gave rise to ~-ketoadipic acid with extracts of another species of 

?§eu.domonas. However, the dilactone underwent spontaneous rearrange­

ment to muconolactone, and Cain (4) suggested that this was the com­

pound that enzymatically gives rise to ,6-ketoadipic acid. Ka.tagiri 

and Hayaishi (:3.'.3) found that a cell-free Pseudomonas extract degraded 

t3-ketoadipie acid to succinyl coenzyme A and acety..l co_enzyme A. 
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The degradation pathway for protocateohuic acid by the genus 

Pseudomonas is summarized as follows: 

COOH 

OOH + 

OH 

Protocateohuio acid 

Mueonolactone 

COOH 
6H co2 
' QH2 
9H2 
COOH 

f3 -ketoadipic acid 

* Hypothetical intermediate. 

COOH 

0000H 
COOH 

f; - earboxymu.cc;mie acid 

i 

Carboxydilactone 

yOOH 
CH2 
¢H2 
OOCoA 

+ 

Acetyl Coenz;yme A 

Suceinyl Coenzyme A 



CHAPTER III 

MATERIALS AND METHODS 

Test.organism. 

The organism used throughout this study was a laboratory str~in 

off. fluorescens. The biochemical and morphological characteristics 

conform to those des.cribed. in the 7th edition of Berge:y' s Manual of 

Determinative Bacteriology. The organism is Gram-negative, motile, 

rod-shaped, and produces a greenish-brown,water soluble pigment when 

grown on nutrient agar. While its opti1111t1m temperature for growth is 

37 C, it grows well at 25 C. It produces acid from glucose but did 

not utilize other sugars tested. In the absence of an exogenous 

energy and nitrogen source this strain off. fluorescens produces 

inducible.enzymes in response to a number of aromatic compounds in­

cluding benzoic acid, anthranilic acid, and protocatechuic acid. 

Stock cultures of the organism were maintained on nutrient agar slants 

stored at 4 C. Periodically the cultures were streaked. on nutrient 

agar plates to ensure purity. 

Media. 

The synthetic medium used in this study consisted of the follow­

ingt NaCl, 0.1 per cent; KH2P04, O.J2 per cent; K2HP04, 0.42 per 

cent; and NH4Cl, 0.1 per cent (16). The desired carbon source was 

added at a concentration of o. 2 per cent and the medium adjusted to 

pH 7.0. Difeo A.gar (2.0 per cent) was added, the medium was steri-

20 
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lized by autoclaving for 15 minutes at 121 C, and cooled to 52 C. One­

tenth ml of a sterile mineral salts solution was added to each 100 ml 

of medium. The mineral salts solution was composed of MgS04•7H20, 5.0 

g; MnS04, 0.1 g; Fec13, 1.0 g; CaC12, 0 • .5 g; and 100 ml of distilled 

water. 

The nutrient agar used in this study was a dehydrated commercial 

preparation obtained from Difeo Laboratories, Incorporated. It was 

fortified with Difeo Agar to a final agar concentration of 2.0 per 

cent and was sterilized in the same manner as the synthetic medium. 

Growth of cells. 

Nutrient agar slants were inoculated from a stock culture and 

incubated approximately 16 hours at 37 C. The cells were suspended 

in sterile o. 01 M potassium phosphate buff er (pH 7. 0). Agar plates 

of the desired medium were inoculated with 0.4-0.6 ml of the cell 

suspension per plate and cells were spread over the agar surface 

with a sterile glass rod. The plates were incubated for 13 to 14 

hours at 37 C, the cells harvested with 0.01 M potassium phosphate 

buffer (pH 7. 0), washed twice by centri:t'ugation, suspended in buffer, 

and placed on a reciprocal shaker for two hours at 37 C. The cells 

were centrifuged and stored in a pellet at 4 C until used. 

Induction experiments. 

Indu~tion !!. measured :!2z oxygen uptake. Respirometric experi­

ments were conducted using Warburg techniques according to the pro­

cedure of Umbreit et al. (92) at 37 C with air as the gas phase. The 

cell suspension was placed in the main chamber, the substrates and 

other test compounds in the side arms, and buff er added to give a 
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final volume of 2.4 ml. Endogenoµs respiration of the cells was 

measured in each experiment by following the oxygen uptake by cells 

in the absence of substrate. 

, Procedure employing toluene treated cells. Unless indicated 

otherwise, cells were suspended in 0.01 M potassium phosphate buffer 

(pH 7.0) to give a final concentration of 1.4 mg protein per ml. The 

suspensions.were placed into 250 ml Erlenmyer flasks on an Eberbaeh 

shaking water bath (Eberbach Corporation) at 'J7 C and equilibrated. 

All substrates an.d other test compounds were dissolved in 0.01 M po­

tassium phosphate buffer (pH 7.0). The test compounds and buffer 

were added to the flask to give a final volume of 50 ml. 

At different time intervals, usually 20 minutes, 5.0 ml samples 

were withdrawn and the cells removed by centrifugation for 8 minutes 

in a Servall Model SP table centrif'llge. The supernatant solution 

wa,s saved for future analysis. The cell pellet was suspended in 4. O 

ml of 0.01 M potassium phosphate buffer (pH 7.0), transfered to a 

py:rex test tube containing o .• 2 ml toluene, and incubated on a recip.. 

rocating shaker at 37 C f'or JO minutes. Then 0.5 ml of 0.04 M proto­

catechuic aeid (20 )lmoles) was added, the. tubes were incubated an 

add~tional 60 minutes and then placed in a boiling water bath for; 

minutes to terminate enzymatic activity. The contents of the tu.be 

were filtered through a type HA "Millipore" filter and the filtrate 

collected for analysis. The protein concentration for each enzyme 

assay was 7.2 mg in a total volume of 4.5 ml. Variations from this 

general procedure are described in Chapter IV. A unit of enzyme 

activity is defined as that amount Qf enzyme required to transform 

1. 0 )lmole of protocateohuie acid per hour. This procedure is sum .. 
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marized in Figure 2. 

Measurement of enz:yma.tie activity 2! induced cells. 

It was useful in some phases of the study to measure activity of 

induced cells. Ind.u ced cells were grown on a synthetic medium con­

taining protocatechuic acid as the carbon source. The cells were 

harvested and treated as indicated under Growth 2! . cells. The 

resu.Jtilg eell pellets were suspended in the desired buff er and placed 

into 250 ml Erlenmyer flasks on a reciprocating shaker in a water 

bath at 37 c. Substrates.and buffer were added to give a final volume 

of 50 ml. At desired time intervals, 5.0 ml samples (containing 7.2 

mg protein) were withdrawn and the cell suspension centrifuged for 

10 minutes. The supernatant solution was assayed for residual pro­

tooatechuic acid. The disappearance of protoeatechuic acid from the 

supernat~nt was used as the criterion for enzymatic activity. 

Protooatechuic ~ determination. 

The quantitation of protocatechuic acid was determined by a 

color test (82) as modified by Hubbard and Durham (31). A 0.2-0.5 ml 

sample was diluted to a .final volume of 4.0 ml with distilled water. 

One ml of a solution containing 0.2 per cent ferrous sulfate plus 

1.0 per cent sodium potassium tartrate was added and the mixture al­

lowed to stand for 10 minutes at room temperature. Five ml of a 20 

per cent aqueous solution of ammonium acetate was added and a parple 

color developed. The absorbaney was read immediately in a Bausch 

and Lomb "Spectronic 20" colorimeter at 560 mu.. 

The quantitatio~ of protocateohuio acid was determined from a 

standard curve run concurrently with eaoh determination. The buffer 



Figu.:i-e 2. 

Summary o:f prooedure :fo.r measuring inducible enzyme :formation 

by the use o:f toluene-treated cells. 



TEST SYSTEM 

(Cells+ Proto*, etc.) 

j Shake at 37° C 

Withdraw 5.0 ml samples 

~ 
Centrifuge (8 min) 

Cells 
f 

Suspend in 4 ml -
0.01 M P04 buffer (pH 7.0) 

+ 0.2 ml toluene 

t 
Shake at 37°c (30 min) 

i 
Add 0.5 ml of 0.04 M Proto 

i 

Supernatant 
t 

Analyze for Proto uptake , 

PROTOCATECHUIC ASSAY 

1.0 ml sample 
+ 3.0 ml H20 

i 
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Shake at 37°c (1 hr) 

t 
Add 1.0 ml (0.2 g Feso4 + 

1.0 g NaK-tartrate in 100 nil H20) 

Boiling H20 (3 min) 

t 
Filter - Millipore Filter 

t 
Analyze filtrate for Proto 

} 
Stand 10 min 

t 
Add 5.0 ml (20% ammonium acetate) 

t 
Read immediately at 560 mM 

*Proto= Protocatechuic acid 
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concentration has a slight effect on the slope of the standard curve; 

therefore, the protocatechuic acid used for the standard curve was 

dissolved in the same buffer as used for a given experiment. No 

other compounds used in the study interfered with the color test. 

Glucose determination. 

Glucose was measured by the glucose oxidase reaction ( 'Uluco .. 

stat" reagents and procedure, Worthington Biochemical Corporation). 

The sample was diluted to a volume of 2. 5 ml with distilled. water. 

The chromogen, .2,-dianisidine, was dissolved in 1.0 ml of methanol and 

a few ml of water added. The "Glu.costat" was diss.olved in water and 

added to the chromogen. Distilled water was added to the mixture to 

give a final volume of 51 ml. The solu.tions to be tested were heated 

to 37 C, 2. 5 ml of the "Glueostat" solution added, and the tubes in­

cubated in a water bath for 10 minutes at 37 C. The reaction was 

stopped and the color developed by addition or 1 drop of 4 N hydro­

chloric acid. The color was .read at 440 mJJ. in the "Speotronio 20." 

A glucose standard curve was determined for each experilllent. .A. 

straight line was obtained over a glucose concentration range of 0.1 

to 0.5 µmoles per 5.0 ml. 

Experiments showed that protocateehuic acid significantly inhib-
. I' . 

ited the color formation using the ncn.u.costat" procedure.. Therefore, 

the uptake of glueose by cells was determined by using a control fiask 

in which no protocatechuic acid was added. 

Fruct;ose determination. 

Fructose was determined by the resor~inol method (83). The sample 

was diluted with distilled water to a volmn.e of 2.0 ml. Two tpl of a. 
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0.1 per cent selu.tion o:f' res.orcinol in 9.5 per cent ethanol and 6.0 ml 

of oo~~~trated hydroch+oric acid containing 0.75 mg ferric chloride 

per 100 ml of acid was added to the sample. The tu.bes were heated for 
I 

8 :m.inu.tes at 80 c. The c.olor was read against ~ reagent blank at 490 

mµ. A standard curve was run with ea.ch determination using o. 05 to 

o • .5 )ll11.C)les per 10 ml of fructose as the standard. other compounds 

present in the test system did not int,erfere with this color determi-

nation. 

Protein determination. 

Protein concentration was determined b7 the method of Lowry et al. 

(41). One-tenth ml of 70 per aent perohlorio acid was added to 2.0 

ml of a cell suspension and heated; to 70 C :f'or JO minutes. The suspen­

sion was centrifuged for 10 minutes at lOtOOO x g and the supernatant 

solution was discarded. The precipitate was dissolved. in 1.0 or O.l 

N sodium hydroxide and 5. 0 ml of a mixture .containing Na.200.3, 

Ct1S04°5H20 and sodium potassium tartrate was ~dded.. This reagent was 

prepared just prior to use by mixing 50 ml or J per cent Na2C0:3 with 

1.0 ml of 0.02.5 per .cent CuS04•5H20 plus 0.5 per cent sodium potassium 

tartrate. The test mixture stood at room,tem.perature for 15 minutes 

and o. 5 ml of Folin Reagent (diluted 1:2 with water) was added. ~rter 

JO minutes the color was measured at 540 mu.. Prote~ concentration 

was determined f;c-om a standard curve using crystallin.e bovine Sierum 
' 

albwnin dissol.ved in O.l N sodium hydroxide. The standard ourve was 

determined. using a concentration of 10 to 200 p.g 0£ albumin preparation 

per ml. 
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Growth experiments. 

Growth experiments were conducted in culture tubes. The synthetic 
. I 

medium minus a carbon source was sterilized by filtration through a 
~ . q . . 

Millipore type .HA filter. Inoau.lu.m cells were grown on nutrient agar , 

slants and, suspended in sterile synthetic basal medium. The cell sus­

pension was diluted to give an absorbancy of 0~2 at 540 mJ.l and O.l ml 

of this suspension was added to each tube. The final .volume was 5.2 

ml. The tubes were in.01::lbated on a reciprocating shaker at '37 c. 

Growth was followed by measuring absorbancy at 540 mµ in a "Spec-

tronic 20" colorimeter. 

Carbon-14 experiments. 

Carbon-14 experiments were conducted as follows: the cell sus-

pension, prepared as described previously, was placed in a 250 ml 

Erlenm;rer flask. The flask was equilibrated to temperature (37 C) on 

a reciprocating shaker water bath. All substrates were added and at 

desiroo, time periods; 5. 0 ml samples were removed and placed into 

heavy wall pyrex test tubes which were immediately submerged in an 

acetone-dry ice bath. Each sample contained 7.2 mg protein. ill 

tubes were stored at -20 C until fractionated. 

Cell fractionation procedure. 

The cells were fractionated by a modification of the procedure 

of Park and Hancock (72). The frozen cell suspensions were thawed 

and centrifuged for 10 minutes at 10,000 x g at 4 c. T~e supernatant 

solution was discarded and the cells suspended in ,5.0 ml.of cold dis .. 

tilled water. The suspension was centrih.ged and the supernatant so-

lution discarded. The cells were suspended in 2.5 ml of 5 per cent 
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cold trichloroacetic acid and allowed to stand in the cold (4 C) for 

JO minutes. The cells were.removed by centrifugation in the cold for 

10 minutes at 10,000 x g. The supernatant solution was poured into 

a liquid scintillation counting vial. The cells were washed with 

2.5 ml of 5 per cent trichloroacetic acid by centrifugation and the 

supernatant wash fluid was added to the first extract. 

The cell pellet was suspended in 2.5 ml of 5 per cent trichloro­

acetic acid and incubated at 90 C for 30 minutes. The precipitate was 

removed by centrifugation and the supernatant solution was poured into 

counting vials. The precipitate was wa:shed by centrifuga.tion :with 

2. 5 ml of 5 per :cent triohloroac.etic acid and the wash added to the 

supernatant solution from the hot trichloroacetic acid fraction. The 

supernatant solutions were dried under vacuum over anhydrous calcium 

chloride until approximately 0.1 ml of liquid remained. 

Counting procedure. 

Radioactivity was determined 1:>y counting i:a a:Packard "Tri-Garb" 

model 314-A liquid scint~llation spectrometer. Ten ml of solvent con­

sisting of 60 per cent sulfur-free toluene, 40 per cent absolute etha-

nol, and 0.5 per cent 2,5-diphenyloxazole plus 0.2 per cent l,4-bis-

21 (5'-phenyloxazolyl-) benzene as the phosphor was added to the count-

ing vials. The system has a co~nting efficiency of approximately 40 

per cent for 14c. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Inducible enzyme formation~ Pseudomonas fluorescens • 

. The strain of ~. fluorescens used in this study is capable of 

synthesizing inducible enzymes for the utilization of a number of 

aromatic substrates (16). Figure 3 presents results showing in­

duction to benzoic acid and anthranilic acid by resting cells that 

had been grown on asparagine. The time course of oxyg~n uptake shows 

a lag period of 125 minutes for benzoic acid and 185 minutes for an­

thranilic acid. Other substrates that show typical enzyme ind~ction 

are :e.-hydroxybenzoic acid and 12,-aminobe~zoie acid. 

Influence .2f exogenous carbon sources .2!l inducible enzyme formation 

!! measured !?z oxygen uptake. 

Durham (15) and Durham and McPherson (17) reported that •low con­

centrat~ons of glucose or gluconic acid (0. 23 }llllOles per ml) short­

ened the lag period .for induction to benzoic acid and other inducing 

substrates by several minutes in this strain of~. fluorescens. Suc­

einic aoid 1 pyruvic acid, lactose, maltose, and arabinose were also 

tested for their ability to shor.ten the lag period of induction (17). 

Succinic acid and pyruvic acid were immediately oxidized by f. fluor­

escens, but had little effect on induction. Lactose, maltose, and 

arabinose were not oxidized and did not influence the lag period. 

29 



Figure 3. 

Inducible enzyme biosynthesis by f. fluorescens as measured 

by oxygen uptake. · 6 , benzoic acid (2. 0 ).lilloles); O , at1.thra­

nilic acid (2. 0 ).lillOles); O 1 endogenous. Cells grown on synthetic 

medium plus asparagine as the carbon source. Concentrations given 

as }lmoles per flask. Volume in Warburg flask was 2.2 ml. 
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A washed suspension of nutrient agar-grown ceUs produced induci­

ble enzymes to benzoic or anthranilic acid as measured by oxygen up­

take. The lag period for induction to benzoie acid was approximately 

140 minutes (Figure 4). When glucose was added simultaneously with 

the inducer, oxygen uptake continued after the glucose control indi­

cated that glucose oxidation ,n.s complete. This continued oxygen 

uptake was attributed to the oxidation of the inducer, benzoic acid 

(17)~ The lag period for induction to benzoic acid in the presence 

of glucose was approximately 60 minutes. 

Durham and McPherson (17) speculated that glucose and gluconic 

acid might be serving as a carbon source readily available to the cells 

for enzyme synthesis. If this was true then other carbon sources 

could possibly serve the same purpose. Therefore, potassium acetate, 

potassium formate, glycerol, fructose, and ribose were tested. 

Acetate, formate, and glycerol were immediately oxidized by 

nutrient agar-grown cells but did not influence induction when added 

simu.ltaneously with the inducer, benzoie acid •. Fructose and ribose 

were not oxidized by this strain of E;. fluorescens, although the fruc­

tose control ,showed an oxygen uptake slightly higher than endogenous. 

How~er, both sugars shorten the lag period for induction to benzoie 

acid. Increasing the fructose and ribose concentration to 10 and 100 

µmoles shortened the lag period for induction but gave no indication 

that the sugars were oxidized. The experiments with fructose and 

ribose were repeated using anthranilic acid as the inducer. Ribose 

and fructose added simu.ltaneously with anthranilio acid enhanced in­

duction indicating the phenomenon was not a unique oharacteri15tic 

associated with the inducer (Figure 5). 



Figure 4. 

Induction to benzoic aeid in the presence and absence of' 

glucose in ,!:. fiuoreseens. t::. , glucose (1. 0 )llllole); o , 

benzoie a,eid (2. O )lm.Oles); O , glucose (1. 0 µoles) plus benzoio 

acid (2~ O J1moles); e, endogenous. Cells grown on nutrient agar. 

Concentrations given as )l.llloles per flask. Volume in Warburg flask 
' ' ' . 

was 2. 2 ml. 
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Figure 5 

Effect of ribose and fructose on induction inf. fluorescens 

to anthranilic acid. A , ribose (1. 0 )lmole); Ill , fructose 

(1. 0 )lmole ); 'v ; anthranilic acid (2. 0 )lmoles); b. , ribose 

(1. 0 )lmole) plus anthranilic acid (2. O )ltn0les); O , fructose 

, (1. O µmole) plus anthranilic acid (2. O )lmoles ); . o, endogenous. 

Cells grown on nutrient agar. Concentrations given as )lmoles 

per flask. Volume in Warburg flask was 2.2 ml. 
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Ribose, fructose, glucose, and glueonic acid shorten t~e lag 

bef'are inducible enzyme formation. Acetate, formate, glycerol, 

pyru.vate, and sueeinate, wh.ich are oxidized by the washed cell sus-

pension, have no effect en inducible enzyme formation as measured by 

oxygen uptake. The effects of carbon sources on inducible enzyme 

synthesis a.re summarized in Table I. 

Growth e!Perimentso 

Experiments were conducted to determine ~f glucose, ribose, or 

fructose could se~ve as a source of carbon and energy for growth of 

E,o fl11oreseens. The addition of 40 )lllloles of glucose plus 40 )lmoles 

of protocatechuic acid gave more rapid growth than either of the 

substrates separately. However, total growth was equivalent to that 

produced from glucose alone. Growth in the systems containing ribose 

or fructose and the inducer was not significantly different from the 

protocatechuic acid control. No growth wa.s evident when ribose or 

fructose served' as the ~arbon source (Figure 6)0 

Use of toluene-treated cells i2_ measure et'lZYlll§!:tie activity. 

Since measuring enzyme synthesis by an indirect method such as 

oxygen uptake has many disadvantages, another procedure involving the 

use of toluene-treated cells was developed for measuring enzymati·e 
·, 

activity. Many workers have used toluenization of cell suspensions 

to measure enzymatic activity and the work with ,B-galaetosidase is 

propably the most notable (80). 

To facilitate the procedure and time involved, an inducer wa:s 

sought that had a relatively short lag period and that could be easily 

quantitated., Protocatechuic acid serves as an inducer for this organ-
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TABLE I 

SUMMARY OF COMPOUNDS TE'3TED FOR THEIR ABILITY TO SHORTEN THE LAG TIME 
FOR INDUCIBLE ENZIME FORMATION IN P. FLUORE:JCENS AS MEASURED 
. . BY OXYGEN UPTAKE 

Compound tested 
.. (1 .• 0 )1mole per 2. 2 . ml) 

glucose 

gluoonate* 
...... ,.... ·' 

fructose 

ribose 

sucoinate 

acetate 

formate 

glycerol 

pyruvate 

lactose* 

maltose* 

arabinose* 

glyceraldehyde* 

Oxidized 
by .cells 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ compound oxidized; shortened lag period. 

Shortened 
lag time** 

' 

+ 

+ 

+ 

+. 

compound not oxidized; did not shorten lag time for induction. 
** none of the compounds reported inhibited enzyme induction. 
* data obtained from reference (17 ),. which were collected 

using the same strain of f. fluorescens used in this. study. 



Figure 6. 

Growth of P. fluorescens in synthetic mediWll. o , protocateehuic 

acid (40 );I.moles); D , protocatechuie acid (40 )lmoles) plus glucose 

(40 )lllloles ); • , glucose (40 )llD.oles); 'v , .ribose or fructose (40 

)l.moles); e; protoeatechuic acid (40 )].moles) plus ribose (40 )lmoles); 

"Y, protocateehu.ie acid (40 µoles) plus fructose (40 )lmoles ). Con­

centrations given per 5.2 ml of synthetic medium. 
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ism with a lag period of approximately 45 minutes. The addition of 

glucose simultaneously with the inducer shortena:l the lag period to 

about 20 minutes (Figure?). 

The general procedure for induction studies using toluene to 

stop enzyme synthesis is given in Chapter III. The color determina­

tions for the protocatechuic acid standard curve gave a straight line 

(Figure 8) between o.o and 4.0 pmoles protocatechuic acid per tube 

(4. O ml). Experiments were conducted to determine the optimum sub­

strate concentration for enzyme formation. Induction was followed in 

the presence of different inducer concentrations. The results in 

Figure 9 indicate that 14. 4 pmoles per ml is the optimum protocate­

chuic acid concentration to give maximum enzyme synthesis. Decreasing 

the concentrations resulted in lower rates of synthesis and a lower 

final enzyme activity. Higher concentrations of inducer resulted 

in a slightly decreased rate of induction indicating a substrate in­

hibition of enzyme synthesis. Therefore, 14.4pmoles per ml of proto­

catechuic acid was used for all induction studies. Results of a 

typical induction curve to protocatechuic acid using toluene-treated 

cells are presented in Figure 10. Nutrient agar-grown cells were sus­

pended in 0.01 M potassiull'l phosphate buffer (pH 7.0) and 14.4pm.oles 

per ml of inducer added to the medium. The cells from the buffer 

control were toluenized and then incubated with protocatechuic acid. 

No enzymatic activity was evident after 60 minutes incubation indica­

ting that toluene prevents protocatechuic acid oxidase formation. 

Results with the induced cells indicated toluene does not inhibit the 

existing enzymatic activity. 



Figure 7. 

Effect of glucose on enzyme induction to protocatechuic 

acid in _E. fluorescens as measured by oxygen uptake. 

(1. 0 nmole); !:i.. , protocatechuic acid (10. 0 p.moles); 

V, glucose 

0, glucose 

(1. 0 )lm.ole) plus protocatechuic acid (10. O )].moles); o, endogenous. 

Cells grown on nutrient agar. Concentrations given as )].moles per 

flask. Volume in Warburg flask was 2.2 ml. 
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Figure 8. 

Standard curve for protooateohuic acid determination. 

The protocatechuio acid standard was dissolved in 0.01 M 

potassium phosphate buffer and adjusted to pH 7.0. 
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Figure 9. 

Effect of substrate concentrations on rate of enzyme induction 

to protocatechuic acid inf. fluorescens. Cells grown on nutrient 

agar. Concentration given as µmoles per ml of induction: medium. 

Total volume of induction medium was 50 ml. 
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Figure 10. 

Enzyme induction to protocatechuic acid inf.. fluorescens 

as measured by toluene treated cells. O, enzymatic activity of 

cells induced in presence of 14. 4 }lmoles protocatechuic acid per 

ml of induction medium; f>, disappearance of protocatechuic 

acid from induction medium; t:i. , buff er control {protocatechuic 

acid replaced with 0.01 M potassium phosphate buffer, pH 7.0). 

Cells grown on nutrient agar. Total volume of induction medium 

was 50 ml. 
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The disappearance 0£ protocatechuio acid from the induction 

medium wa.s correlated. with the rate 0£ formation of the indu.oible 

enzyme. The demonstrable disappearance 0£ protocatechuic acid lags 

behind production of' the enzyme by approximately 15 minutes · (Figure 

10) suggesting that the cells are synthesizing the enzyme from intra­

cellular products and protoeateohuic acid, at least in the early 

stage, contributes very little carbon for enzyme synthesis, This 

observation is to be expected. since protoca.techuio acid oxidase mu.st 

be synthesized before its substrate oan be utilized. • 

. A cemparison was made between the permeability of whole cells 

and toluene-treated ceUs. Duplicate tubes of induced. cells were pre ... 

pared in 0.01 M potassium phosphate bu.££er (pH 7.0). One tube con­

t~ined. 4.0 ml of the cell suspension plus 0.2 ml of toluene and the 

other contained cells plus 0.2 ml of' buffer. The tubes were shaken 

for JO minutes at '37 ,C, at which time various amounts o:t protocate­

chuic acid were added. .The tubes were incubated for 10 minutes and 

the reaction stopped by heating in a boiling water bath for; minutes. 

The disappearance of the protocateehuia acid from the medium by the 

two different systems was evaluated (Figure 11). 

The ma:x:i.mum rate of protooateehuic acid disappearance from the 

medium was observed· in the toluene-treated cells while an initial 

surge followed by a mu.oh slower but linear rate with resp~ot to sub­

strate concentration.at constant time was observed in the non .. toluene­

treated cells. Thus, toluene-treated disrupts the permeability barrier 

of the cell and permits an accurate evaluation of the enzymatic ac­

tivity of the cell. 



Figure 11. 

Comparison of the disappearance of protocatechuic acid in 

the presence of induced ,E. fluorescens treated and non-treated 

with toluene. D, cells treated with O. 2 ml of toluene for 30 

minutes; O , cells treated with O. 2 ml of buff er for 30 min­

utes. Cells grown on synthetic medium plus protoeatechuic acid 

as carbon source. Disappearance of protocatechuic acid meas­

ured for 10 minutes. 
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Effect of £!! .2!! induction. 

The optimum pH for enzyme induction to protocatechuic acid was 

determined. Induction was measured at different pH values using 0.01 

M potassium phosphate buffer for the induction medium. Five ml samples 

were removed from each induction flask and centrifuged. The cells were 

suspended in 0.01 M potassium phosphate buffer (pH 7.0), toluene­

treated, and enzymatic activity determined as given in Chapter .III. 

Since all cells were suspended in 0.01 M potassium phosphate (pH 7.0), 

then the enzymatic activity for all cell samples was determined at 

pH 7.0. The pH of the induction medium was measured at different 

time intervals and did not change during the course of the experiment. 

Results presented in Figure 12 show that a pH of 7.0 was optimum for 

enzyme induction and any deviation from this pH aff acted synthesis 

of the enzyme. 

Effect of £!! .2!! enzymatic activity. 

The optimum pH for enzymatic activity was determined using 

induced cells. The induced cells were suspended in 0.01 M potassium 

phosphate buffer at pH values of 6.0, 6.5, 7.0, or 7.5 and the enzy­

matic activity measured. Protocatechuic acid was adjusted to a cor­

responding pH~ The optimum pH for enzyme activity was 7.0 (Figure lJ) 

which was similar to the optimum pH for induction. 

Eff eet of glucose .2!1 enzyme induction. 

Since oxygen uptake studies indicated glucose stimulated the time 

of enzyme synthesis, similar studies were conducted using toluene 

treated cells to measure enzymatic activity. The addition of glu.cose 

(0.45 )lmoles per ml) shortens the lag period for induction from about 



Figure 12 

Effect of pH on enzyme induction to protocatechuic 

acid inf. fluorescens. Cells were suspended in 0.01 M 

potassium phosphate buffer at the desired pH and the sub­

strate was dissolved in the same buffer and adjusted to ap­

propriate pH. Enzymatic activity of cells induced at dif­

ferent pH values determined at pH ?.O. Protocatechuic acid 

(14. 4 ).lmoles per ml) was added to the induction medium. 

Cells grown on nutrient agar. Total volume of induction 

medium was .50 ml. 
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Figure 13. 

Effect of pH on enzymatic activity of P. fluorescens 

previously induced to protocatechuic acid. Cells suspended 

in 0.01 M potassium phosphate buffer of desired pH. Proto­

catechuic acid dissolved in same buffer, adjusted to appro­

priate p~, and added in a concentration of 14.4 )llrloles per 

ml of incubation medium (50 ml). The cells were grown on 

a synthetic medium plus protocatechuic acid as the carbon 

source. Disappearance of protocatechuic acid was measured 

after 60 minutes of incubation. 
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40 minutes to less than 20 minutes (Figure 14). The maximum enzyme 

level attained by the cells was the same in the presence or absence 

of glucose. Stu.dies indicated the glucose was completely utilized 

in the first 20 minutes. Although glucose stimulated the time of 

induction, the disappearance of protocatechuic acid .from the medium 

was not significantly different from that in.the absence of glucose 

(Figure 14). Thus, the short induction time, evident in the glucose­

containing system, was not reflected in the disappearance of proto­

eateehuie acid from the medium. 

Experiments were conducted in which two different concentrations 

(45.0 and 0.45 )lmoles per ml of induction medium) of glucose were 

tested. Both glucose concentrations shortened the lag period for 

enzyme induction (Figure 15)G However, the final level of enzymatic 

activity in the high glucose level was about 40 per cent that of the 

control. 

There was an initial p.rop in the glucose concentration during the 

first 40 minutes in the system containing 45. 0 }lllloles per ml glucQse .fol­

lowed by a small but steady deo.rease from the medium. Arter three 

hours, glucose was still present in the medium. These results estab­

lish that inducti,en to protocatechuic acid teok place in the presence 

of a high concentration of glu9Qse as evidenced by the observation 

that glucose was still present after the cells were induced. 

Effect 2! chlorampheniool .2! induction. 

D-Chloramphenicol inhibits inducible enzyme biosynthesis (11) 

and its effect on production of protocatechuic acid oxidase was de­

termined. The addition of chloramphenicol 20 minutes after the inducer 

prevented enzyme synthesis. The addition of D-ohloramphenicol 10 



Figure 14. 

Correlation of enzyme induction and protocateohuic acid 

disappearance from medium by f. fluorescens in pr~senoe and 

absence of glucose. O • protocatechuic acid (14. 4 µmoles) 

D , protocatechuic acid (14. 4 )lD'loles) plus glucose ( o. 45 )!moles). 

Open symbols, enzymatic activity; closed symbols. protocatechuic 

acid disappearance from induction medium. Concentrations given 

as )l.Inoles per ml of induction medium. Cells grown on nutrient 

agar. Total volume of induction medium was 50 ml. 



~ 
I-'· 
a 
(l) 

I-'· 
::s 
::s: 
I-'· a 
c+ 
(l) 
0) 

I\) 
0 

-g t-

g- t-

(X) 
0 

I 

I-' 
I\) . 
l...n 

Enzymatic Activity (units per ml) 

0 . 
l...n 

/ .. 
•• 

.~o ...... 

I-' 
\.,A) . 
l...n 

I-' . 
0 

·o 

\ 
0 

I-' 
f=" 
\.n 

Protocatechuic Acid Disappearance (umoles per ml) 

I-' . 
l...n 

0 

D 

\ 
D 

~ 
co 



Figure 15. 

Effect of two concentrations of glucose on enzyme induction 

to protocatechuic acid in P. fluorescens. O, protocatechuic acid 

(14. 4 )lmoles); ~ , protocatechuic acid (14. 4 )lmoles) plus glucose 

( o. 45 )lmoles); D , protocatechuic acid (14. 4 ,u.moles) plus glucose 

(4.5.0 )].moles); •, disappearance of glucose from induction medium 

by cells in presence of 4.5. 0 ,u.moles glucose. Cells grown on 

nutrient agar. Concentrations given as )].moles per ml of induction 

medium. Total volume of induction medium was .50 ml. 
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minutes after addition of glucose and protocatechuic acid showed a 

slight inhibition of enzyme synthesis. However, the addition of D­

chloramphenicol at 20 minutes showed no inhibition (Figure 16). 

These results establish that cells incubated with glucose and proto­

catechuic acid were induced at 20 minutes and showed some induction 

at 10 minutes. Thus, glucose does shorten the time of induction. 

Effect of fructose .2!! induction. 

Fructose was not oxidized by the cells but shortened the lag 

period by several minutes when anthranilic acid was used as the 

inducer. Similar results were obtained when protocatechuic acid 

was used as the inducer (Figure 17). The presence of fructose re­

duced the time for induction to protocatechuic acid from approximately 

45 minutes to 15 minutes. Figure 18 presents data depicting the 

effect of fructose .(0.45 )llD.oles per ml) on induction using toluene­

treated cells to measure enzymatic activity. Fructose shortened the 

lag period £or induction by approximately JO minutes. Similar results 

were obtained when the fructose concentration was increased to 45.0 

)lmoles per ml. The findings resulting from the high fructose con­

centration are somewhat different than those with the high glucose 

concentration since glucose .caused a decrease in the amount of enzyme 

formed. 

The disappearance of fructose from the induction medium was 

measured. Although fructose apparently is not oxidized by the cells, 

results indicated the sugar is utilized during induction since o. 45 

µmoles fructose per ml is removed from the medium in about 100 

minutes (Figure 18). 



Figure 16. 

Effect of ehloramphenicol on enzyme induction in the presence 

and absence of glucose. O, protocatechuic acid; O. protocate­

chuic acid plus glucose; () , protocatechuic acid _plus chlorampheni­

col (added simultaneously): wl , protocatechuic acid plus glucose 

plus chloramphenicol (added simultaneously); '\/, protocatechuic 

acid plus chloramphenicol (added 10 minutes after addition of 
' 

protocatechuic acid); b.. , protocatechuic acid. plus glucose plus 

chlorampheniool (added 10 minutes after addition of protocatechuic 

acid and glucose); •, protocatechuic acid plus chloramphenicol 

(added 20 minutes a!ter addition of protocatechuic acid); •, 

protocatechuic acid plus glucose plus chloramphenicol (added 20 

minutes after protocatechuic acid and glucose). ..Cells grown on 

nutrient agar. Concentrations per ml medium were: protQcatechuic 

acid, 14. 4 )llllOles; glucose, 45. 0 µmoles; chloramphenicol, 160 )lg. 

Total volume of medium was 50 ml. 
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Figure 17. 

Effect of fructose on enzyme induction to protocatechuic 

acid inf. fluorescens as measured by oxygen uptake. ~, 

protocatechuic acid (10 ).lllloles); 'V, fructose (1.0 )llllole); 

D, protocatechuic acid (10 µmoles) plus fructose (l.O µmo~e); 

O, endogenous. Cells grown on nutrient agar. Concentrations 

given as µmoles per flask. Volume in Warburg was 2.2 ml. 
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Figure 18. 

Effect of fructose on enzyme induction in P. fluorescens 

as measured using toluene-treated cells. o, protocatechuic 

acid (14. 4 nmoles ); L. , protocatechuic acid (14. 4 .nmoles) plus 

fructose ( O. 45 ].lmoles); D , protocatechuic, acid (14. 4 nmoles) 

plus fructose (45.0].lmoles); V, fructose (45.0µmoles); A., 

disappearance of fructose from induction medium b~ cells in 

presence of protocatechuic ac:i,d and fructose ( O. 45 µmoles). 

Cells grown on nutrient agar. Concentration given as µmoles 

per ml of induction medium. Total volume of induction medium 

was 50 ml. 
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Effect of ribose on induction. ___ ......_ ..... - - -------
Ribose, similar to glucose and fructose, decreased the lag period 

for enzyme induction as measured by oxygen u.ptake and studies were 

conducted by measuring enzymatic activity in toluene~tre~ted cells. 

The addition of o. 45 }lmoles or 45. 0 poles of ribose per ml simultane­

ously with protooa.techuic acid decreased the lag for enzyme synthesis 

(Figure 19). However, unlike glucose b"at similar to fru.ctose, the 

higher level of ribose did not inhibit the final concentration of 

enzyme produced. 

Eff eot of succinic ~ EY£U·rlc ~ 2a. induction .. 

Pyruvate and su.ccinate had no stimulatory effect on induction 

'When measured by oxygen uptake. These two carbon sources were tested 

using toluene-treated cells. Addition of Oo45 }lmoles ef pyn.vate or 

suocinate per ml of induction medium in combination with protocatechuic 

acid had little effect on inducible enzyme formation. When the pyru.-

vate and su.ccinate concentration was increased to 45. 0 jlimoles per ml. 

there was some decrease in the lag period for enzyme formation 

(Figuxe 20). However, it was not as great as that produced by glu.-

cose. The final concentration of enzyme synthesized in the presence 

of these compounds was lower, especially with pyruvate. 

Effect 2f adding glucose!!!. different~ intervals 2a, induction. 

A high glucose concentration (45. 0 )lllloles per ml) decreased the 

maximum level of enzyme produced although it decl:'1easE:l(i the initiation 

of enzyme synthesis. Experiments were condu..cted in 'Which glucose 

(45. 0 )lllloles per ml) was added to. the cells ;O minutes prior to the 

addition of pr~toeatechuie acid. The enzymatic activity was compared 



Figure 19. 

Effect of ribose on enzyme induction inf. fluorescens 

as measured by toluene treated cells. 0, protocatechuic acid 

(14. 4 J1moles); b. , protocatechuio acid (14. 4 )lmoles) plus 

ribose (O. 45 JJ.moles ); 0, protooatechuic acid (14. 4 µmoles) 

plus ribose (45. 0 µmoles); 'v, ribose (45. 0 µmoles). Cells 

grown on nutrient agar. Concentrations given as umoles per 

ml of induction medium. Total volume of induction medium was 

50 ml. 
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Figure 20. 

Effect of suecinate and pyruvate on enzyme induction 

inf. fluorescens as measured using toluene treated cells. 

O , protocatechuic acid (14. 4 µmoles); 6. , protocatechuic acid 

(14. 4 µmoles) plus succinate (44. 0 µ.moles); D, protocatechuic 

acid (14. 4 .umoles) plus pyruvate (45. 0 µmoles) \J, succinate or 

pyruvate (45.0 )lmoles). Celis grown on nutrient agar. Con­

centrations given as )lmoles per ml of induction medium. Total 

volume of induction medium was 50 ml. 
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with a flask containing glucose and. the inducer added simultaneously. 

When glucose was added simultaneously with the inducer a shorter lag 

period was observed but a lower final enzyme level was evident 

(Figure 21) •. The cells which had metabolized glucose for '.30 minutes 

prior to the addition of protoeateehuic acid showed no indication of 

induction after 80 minutes of incubation. These results suggest that 

the cells metabolized glucose and a. metabolite was produced which 

inhibited inducible enzyme formation. 

These experiments were repeated using ribose in place of glucose. 

As noted in Figure 22.eells incubated for '.30 minutes with ribose 

prior to addition of protocatechuic acid had no significant effect 

on·the lag time for induction to protoeatechuie acid. These data 

augment the oxidation studies and establish that ribose is not metabo­

lized quantitatively to the same end-products as, glucose. 
I 

Experiments were conducted to ascertain the mechanism of the 

glucose inhibition. Nutrient agar-grown cells were permitted to 

metabolize glucose for 30 minutes, the cells removed by.centrifugation, 

and the supernatant solution saved. Fresh nutrient agar-grown cells 

were suspended in the supernatant solution and protooateohuic acid 

was added. Induction of this cell suspension was compared with two 

control systems. In one, cells were suspended in a supernatant solu-

tion obtained f~om cells incubated for '.30 minutes with buffer. In the 

second control, the supernatant solution was from cells suspended for 

'.30 minutes in glucose and protocatechuic acid add~ simultaneously. 

Induction was completely inhibited in the cells suspended in the 
·' ' 

supernatant solution obtained. from previously metabolized. glucose 

while enzymatic activity was evident in both control systems. This 



Figure.21. 

Effect of time of addi~ion of g~ucose on enzyme induc­

tion in ,f. fluorescens. o , protocatechuic acid (14. 4 )lmoles); 

"v , protocatechuic acid (14. 4 )11110les) plus glucose (45. 0 

p.moles); D , protocatechuic acid (14. 4 p.moles) plus glucose 

(45.0 ,umoles) added JO minutes prior to the addition of proto­

catechuic acid. Cells grown on nutrient agar. Concentrations 

given as ,umoles per ml of induction medium. Total volu.me of 

induction mediu.m was 50 ml. 
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Fig:q.re 22. 

Effect of time of addition of ribose on enzyme induction 

in ,E. fluorescens. o, protocateohuic acid (14.4 )1Dl.Oles ); 8., 

protocateohuic acid (14. 4 ):lmoles) plus ribose (45. 0 )l.!D.Oles); 

D , protocateohuic aoid (14. 4 µmoles) plus ribose ( 45. 0 ):lmoles) 

a.dded JO minutes pi-ipr to the addition of protocatechuic acid; . ' . 

\J , ribose ( 45. 0 )].moles). Cells grown on nutrient agar. 

Concentrations given as )].moles per ml of induction :medium. Total . . .· 

volume of induction medium was 50 ml. 
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suggested that the inhibition was probably due to products excreted 

into th~ medium as a result of glucose metabolism (results not shown). 

Effect of glucose 2!!. enzymatic activity. 

Several workers (44, 64) have repor~ed that glucose inhibits the 

enzymatic activity of induced cells. The effect of glucose on enzy­

matic activity was tested using an induced cell suspension off. 

fluorescens. Three different concentrations of glucose were tested: 

0.45, 4.5 and 45. 0 umoles per ml. .As indicated in Figure 2J; the low 

glucose concentration (0.45 um.oles per ml) had no effect on enzymatic 

activity. Concentrations of 4.5 umoles and 45.0 umoles per ml showed 

a slight inhibition of enzymatic activity during the first 20 to JO 

minut.es. However, after this initial time period, disappearance of 

substrate paralleled that of the contro;. The pH of the incubation 

medium was measured at different time periods. The pH was found to 

decrease with time as the cells utili!zed glucose. Therefore, it was 

possible that the inhibition caused by glucose was a pH effect on 

enzyme activity. 

Experiments were also conducted using a supernatant solution from 

an induced cell suspension that had metabolized glucose for JO minutes. 

This was prepared by incubating protocatechuic acid-grown cells with 

45.0 umoles glucose per ml for JO minutes and then removing the cells 

by centr~gation. A new group of induced cells was suspended in this 

supernatant solution and the disappearance of protocatechuio acid from 

th.e medium compared with cells suspended in a supernatant solution 

obtained from cells incubated in buffer for JO minutes. Another con-



Figure 2J. 

Effect of glucose on disappearance of protocatechuic acid 

in the presence of ind~ced f. f1uorescens. 0, protocatechuic 

acid (14. 4 .)lllloles ); 'v, protocatechuic acid (14. 4 )lmoles) 
' 

plus glucose . (O. 4.5 µmoles); D, protocatechuic .acid (14. 4 )l.Dloles) 
. . 

plus glucose (4.5 ]lllloles); 6., protocatechuic acid (14.4 )lmoles) 

plus glucose (45.0 .)llllOles) •. Solid symbols represent pH of medium; 

open symbols represent disappearance of protocatechuic acid. 

Cells grown on synthetic medium plus protocatechuic acid as carbon 

source. Concentrations given as .nmoles per ml of medium. Total 

volume of reaction flask was 50 ml. 
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trol system consisted of cells suspended in the supernatant solution 

obtained from the buffer incubation mixture to which glucose and 

protocatechuic acid were added simultaneously. The results of this 

experiment are presented in Figure 24. The disappearance of proto-

catechuic acid by cells suspended in the buffer supernatant solution 

was linear. The disappearance of protocatechuic acid by cells sus-

pended in buffer supernatant solution when glucose and protocatechuic 

acid were added simultaneously showed a slight decrease in the first 

20 minutes, then paralleled that of the control. The disappearance 

of protocatechuic acid by cells suspended in the glucose supernatant 

solutions was delayed for approximately 60 minutes and then paral­

leled the control system~ 

These results suggest that the product(s) of glucose metabolism 

by protocatechuie acid grown cells delays the disappearance of proto-

catechuic acid fr.om the medium. In additional studies, this experi­

ment was repeated employing O. 45 )l.Dloles glucose in place of the high 

glucose concentration. No effect on enzymatic activity was observed 

suggesting that a relatively large amount of glucose must be metabo-

lized to inhibit enzymatic activity. 

Correlation of Eli and Induction. 

High concentrations of glucose, fructose, and ribose shorten 

the lag period for induction although there is a difference in their 

metabolism by P. fluorescens •. Glucose is rapidly oxidized but fruo-- . 

tose and ribose are not. The high glucose concentration inhibits 

enzyme syp.thesis whereas fructose and ribose do not. 

The pH of the medium was measured during the course of the induc-

tion experiment. The pH of the induction medium remained constant at 



Figure 24. 

Effect of adding glucose prior to and simultaneously with 

protocatechuic acid on enzymatic activity of induced cells. O, 

protoeatechuic acid (14. 4 JlillOles); D, protocatechuic acid 

(14. 4 ].lmoles) plus glucose (45. 0 }lmoles) adq.ed simultaneously; 

'v, protocatechuic acid (14. 4 ].lmoles) plus glucose (45. 0 }lmoles) 

added 30 minutes prior to addition of protooatechuic acid. The 

cells were grown on synthetic medium plus protocatechuic acid as 

the carbon source. Concentrations given as }lIDOles per ml of 

medium. Total volume of incubation medium was 50 ml. 
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pH 7.0 in the protocatechuic acid system. In the presence of 0.45 

Jlmoles per ml glucose, the pH was 6.8 after 80 minutes indubation. 
I 

However, 'When 45.0 }l!Tloles glucose was added the pH of the medium 

64 

dropped rapidly to 5.4 during the first 20 minutes of the experiment 

and to 4.4 after 80 minutes (Figure 25). When ribose replaced glu-

cose, the pH of the induction medium in the low or high ribose con-

centrations did not change during the course of the experiment. 

Since the high glucose concentration caused a decrease in the enzyme 

produced, experiments were conducted to determine if the conversion 

of glucose to acid end-products was sufficient to explain this phe-

nomenon. Induction was studied in the usual manner except that the 

0.01 M potassium phosphate buffer (pH 7.0) used in the induction 

medium was replaced with 0, 2 M phosphate buffer (pH 7. 0). It will 

be noted in Figure 26 that similar results were observed with both 

the low and high glucose concentrations. When either 0.45µmoles or 

45.0 )lmoles of glucose was present with protocatechuic acid, the lag 

time for enzyme formation was decreased and final enzyme concentra-

tion was identical to the inducer control, Measurements indicated 

that the pH did not change in the high buffer system (0,2 M), while 

low buffer concentrations (0.01 M) were not sufficient to maintain 

the proper pH. 

These results establish that glucose is metabolized to acid 

end-products that lower the pH sufficiently to inhibit inducible 

enzyme formation. When the pH is held constant at 7.0, glucose, 

whether present in a low or high concentration, has the same stimu-

latory effect on induction to protocatechuic acid by .f.. fluorescens. 

When 45. 0 )lmoles per ml glucose was added 30 minutes prior to addition 



.Figure 25. 

Correlation or the effect or glucose and pH change on 

enzyme induction in E· fluoresoens. O, ~rotooatechuic acid 

(14~ 4 )lmOles); l::J.. , protooateohuic acid (14. 4 )lllloles) plus 

glucose ( O·. 45 );lmoles); D , protocatechuic acid (14. 4 )lllloles) 

plus glucose (45. O Jl,moles}. Open symbols represent enzymatic 

activity; closed symbols represent pH or induction medium. 

Cells grown on nutrient agar. Concentrations given as JllllOles 

per ml of induction mediu.m. Total volu.me of induction mediu.m 

was 50 ml. 
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Figure 26. 

Effect of glucose on enzyme induction inf. fluorescens 

conducted in a high buffer concentration. O, protocateehuic 

acid (14. 4 }lmoles); v , protocatechuie acid (14. 4 )llllOles) 

plus glucose ( o. 45 }lmoles); O , protocatechuic acid (14. 4 

}lmoles) plus glucose (45.0 µmoles). Cells grown on nutrient 
/ 

agar. Concentrations given as )lmoles per ml of induction 

medium. Induction medium was 0.2 M potassium phosphate 

buffer, pH 7.0 (instead of 0.01 Mas usually employed). Total 

volUlJ1.e of medium was 50 ml. 
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of protocatechuic acid, the pH had dropped to approximately 5.6 at 

the time the inducer was added. This observation could explain why 

the cells did not become induced when treated in this manner. 

Effect of glucose 2!! RNA synthesis. 

The synthesis of ribonucleic acid is necessary for inducible 

enzyme formation (6.6). If glucose is stimulating enzyme formation, 

then one mechanism might be an increasing rate of RNA syntpesis. The 
14 

incorporation of uracil-2- C was measured in the presence and absence 

of glucose. Washed, non-induced cells (1.4 mg protein per ml) were 

suspended in 0.01 M phosphate buffer (pH 7.0) for this study. Re­

sults indicate that little uracil-2-14c was incorporated into the 

cold trichloroacetic acid fraction of the following systems: proto-

catechuic acid, protocatechuic acid plus glucose, or the cell control 

with no exogenous carbon source. 

The presence of protocatechuic acid stimulated the incorporation 

of uracil into the hot trichloroacetic acid fraction. There was a 

short lag period followed by significant incorporation of the labeled 

compound (Figure 27). The presence of glucose and protocatechuic acid 

increased the initial rate of incorporation of labeled uracil when 

compared to incorporation in the absence of glucose. The presence of 

glucose alone caused a small increase in the rate of incorporation, 

but the final concentration of uracil incorporated was lower than when 

protocatechuic acid alone was added or when glucose and protoeatechuic 

acid were added simultaneously. 

The .cold trichloroacetic acid fraction, which contains the free, 

low molecule weight compounds representing the metabolic ''pool" (72), 

contained a small quantity of labeled uracil in comparison to the 



Figure 27. 

Erf'ect of' gluoose on incorporation of uraeil-2-14c into the 

. 14 
hot trichloroaeetio acid fraction of!:• fluorescens. Uracil-2- C 

( O. l }lC per ml) plus o. 5 }lll1oles unlabeled. ura.eil per ml was added 

to all flasks; O , protocatechuic acid (14. 4 )UllOles); "v, glucose 

( o. ;5 }lmoles); 6. , protocateehuic acid (14. 4 }llllOles) plus glucose 

(0.45 )lMOles per ml); 0, uracil control. Cells grown on nutrient 

agar. Concentrations given as )llD.oles per ml. Total volume of in-

corporation medium was 50 ml. 
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hot trichloroacetic acid fraction. The hot trichloroacetic acid 

fraction contains the higher molecular weight components of the cells 

which include RNA and DNA (72). Protooateohuic acid increases the 

incorporation of uracil into this fraction. The presence of glucose 

and protocatechuic acid gave an additional increase in the r.ate of 

incorporation (above that of glucose alone) after a lag period of 

5 minutes. 

Effect of ribose .2!! incorporation of uracil. 

Since ribose also shortens the lag period for induction, the in­

corporation of uracil was studied in the presence and absence of 

ribose. Little radioactivity was found in the cold trichloroacetic 

cell fraction in either the presence or .absence of an added carbon 

source. The addition of protoeatechuic acid and ribose decreased 

the lag time of uracil-2-140 incorporation into the hot triehloro-

ac~tic acid fraction compared with protocatechuic acid or ribose 

alone (Figure 28). This finding suggests that ribose shortens the 

time required for inducible enzyme formation by increasing RNA syn-

thesis in the cell. 

. 14 
Incorporation of gluoose-U- ·C. 

. · 14 Studies were conducted to determine if gluoose-U- C was incor- · 

porated into the hot trichloroacetic acid fraction of the cells. 

Nutrient agar-grown cells were incubated in the presence of 0.1 JlC 

of glucose-U-14c per ml plus 0.45 pmoles per ml of unlabeled glucose 

as carrier. Labeled glucose was incorporated into the hot trichloro­

acetic acid fraction in the absence of the inducer (Figure 29). Ad­

dition of protocatechuic acid showed a slight stimulation in the rate 



Figure 28. 

Erreet or ribose on incorporation or uracil-2-14c into the 

14 hot trichloroacetic acid rraction or f. £1uorescens. Uracil-2- C 

{ O. l µc per ml) plus O. 5 )lD'loles unlabeled. uracil per ml was added 

to all nasks; O , protoea.techuic acid (14. 4 )lDlOles); "v , ribose 

{O. 45 µmoles);· 6. , protocatechuic acid (14. 4 )llllOles) plus ribose 

{0.45 µ.moles); D, uracil control. Cells grown on nutrient agar. 

Concentrations given asp.moles per ml. Total volume of inoorpora-

tion medium. was 50 ml. 
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Figure 29. 

Incorporation of glucose-U-14c into hot trichloroacetic acid 

fraction off. fluorescens. Glucose-U-14c (O.l µc per ml) plus 

0.45 )lllloles unlabeled glucose per ml was added to all 

flasks; O, protocatechuic acid (14.4 )lmoles); 11111, ribose (0.45 

µmoles); D , protocatechuic acid (14. 4 )lmoles) plus rib.ose ( o. 45 

µmoles); •, control. Cells grown on nutrient agar. Concen-

trations given as )lmoles per ml of incorporation medium. Total 

volume of medium was 50 ml. 
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of incorporation and a significant increase in total incorporation. 

Since ribose and glucose had a similar effect on induction, a 

competition effect should be evident if ribose and glucose are serving 

the same purpose during induction. F.quimolar concentrations (0.45 

;µ.moles per ml) of glucose and ribose were added to a washed, resting-

cell suspension and induction was followed. The presence of ribose 

decreased incorporation of glucose-U-14c by approximately 37 per cent 

in the absence of the indu7er. When protocatechuic acid was added 

to the system containing glucose, an increased incorporation was 

observed. In the presence of glucose plus inducer, ribose caused 

approximately· 42 per cent reduction of glucose inoorpbi"a tion by the 

cells (Figure 29). The results suggest that ribose has a sparing ef-

feet on glucose, and establishes that these sugars have a simillar 

function when decreasing the lag time for induction. 

When the glucose concentration was increased to 45.0)lllloles, 

glucose-U-1~c was incorporated at a linear rate in the abs.ence of 

protocateohuic acid (Figure ;O). A significant increase in incor-

poration was observed when protocatechuic acid was added. When an 

equimolar concentration of ribose was added to the high glucose 

concentration plus protocateehuie acid, a very marked decrease in 

the rate and total glucose incorporated was noted (Figure JO). 
14 Thus, protocatechuic acid increases the incorporation of glueose-U- C 

into the hot triehlorbaeetie acid fraction and ribose has a competi-

tive effect on glucose incorporation. 

· 14 
Incorporation ,2! ribose-1- C. 

Experiments were conducted to ascertain if glucose showed a 
. 14 

competitive effect on the incorporation of ribose-1- C into the 



Figure JO. 

Influence of ribose on incorporation of glucose into hot 

14 
trichloroacetic acid fraction during induction. Olucose-U- C 

(O.l )le per ml) plus 45. O }lmoles unlabeled glucose per ml added 

to all flasks. O , protocatechuic acid (14. 4 .)l?Doles); • , 

ribose (45. O }lmoles); O , protocatechuic acid . (14. 4 )1D10les) 

plus ribos.e (4.5. 0 )1Dloles ); •, control. Cells grown on nutrient 

agar. Concentrations given as Jlmoles per ml. Total .vQlUllle of 

incorporation mediU111 was .50 ml. 
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hot trichloroacetic acid fraction. Washed cell suspensions were 

incubated in the presence of o. 075 )lC per ml of ribose-1-140 plus 
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0.45 µmoles per ml of carrier ribose in the presence and absence of 

protocatechuic acid. The addition of protocatechuic acid stimulated 

the rate and total incorporation o:f ribose (Figure 31). 

The add,ition of an equimolar concentration of glucose (0.45 

pmoles per ml) to the system containing ribose and the inducer de­

creased the incorporation of ribose-1-140 into the hot trichloro-

acetic acid approximately 32 per cent. Thus, glucose competes with 

ribose during incoFporation 0£ ribose into f.. fluorescens during 

induction. These results indicate that glucose and ribose have a 

similar function in shortening the lag period for inducible enzyme 

synthesis. 

Incorporation of glucose-1-140. 

One possible explanation for the stimulation of inducible enzyme 

:formation by glucose might be that glucose was being converted to 

ribose which was incorporated into the hot trichloroacetic acid :frac­

tion. A study was made o:f the incorporation of glucose;..u-14c (spe­

cific activity 3.65 me per :mmole) and glucose-l-14c (specific ac­

tivity 3. 55 me per :mmole). Results (Figure 32) indicated that little 

glucose-l-14c was incorporated while a significant <:llllount of glucose­

u-14c was incorporated. The addition of protocatechuic acid did not 

enhance the incorporation of glucose-l;..14c. Thus, the c1 of glucose 

is not incorporated into the hot trichloroacetic acid fraction in the 

presence or absence of the inducer. This finding supports the con-

tention that glucose is converted to ribose during the induction 

phenomenon. 



Figure Jl. 

Incorporation of ribose-1-140 into the hot trichloroacetic 

acid fraction off. fluorescens. Ribose-1-140 (0.075 ~c per ml) 

plus O. 45 µmoles unlabeled ribose per ml added to all flasks. 

O , protocatechuic acid (14. 4 µmoles); "f, glucose ( o. 45 

pmoles); v , protocatechuic acid (14. 4 )llllOles) plus glucose 

( 0. 45 pmoles); • , control. Cells g;rown on nutrient agar. 

Concentrations given as pmoles per ml. Total volume of in-

corporation medium was 50 ml. 
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Figure 32. 

14 14 Incorporation of glucose-V- C and glucose-1- C into the 

hot trichloroacetic acid fraction of!• fluorescens. Glucose 

( o. 45 ,11moles ) wa.s added to all flasks as carrier. O , proto­

catechuic acid (14.4 )l.moles) -plus glucose-U-14c (0.1 )le); D, 

glucose-U-1i(o.1 ;nc); 6., protocatechuic acid (14.4 pmoles) 

plus glucose-l-14c (0.1 )le); 'v, glucose-1-14c (0.1 )1c). 

Specific activity of glucose-u-14c was J.65 mo per mmole and 
14 of glucose-1- C was J.55 me per mmole. Cells grown on nutrient 

agar. Concentration~ given ~s )l.moles:per ml. Total volume of 

incorporation medium was 50 ml. Values corrected for difference 

in specific activity. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The inducible formation of protocatechuic acid oxidase by f. 
fluorescens was investigated using toluene-treated cells. The optimum 

pH for enzyme formation and activity was 7.0. An inducer concentra­

tion of 14.4pmoles per ml of induction medium promoted maximum 

enzyme formation. 

Glucose, ribose, and fructose shortened the lag period for syn­

thesis of protocatechuic acid oxidase and inducible enzymes required 

for utilization of anthranilic and benzoic acid. Manometric studies 

indicated that glucose, but not ribose or fructose, was oxidized by 

washed cell suspensions. In a synthetic salts medium, glucose sup­

ported good growth of the organism, but no growth occurred when 

ribose or fructose was present as the sole source of carbon and ener­

gy. These results suggest that glucose, ribose, and fructose are 

not serving as an energy source for enzyme formation. Acetate, 

glycerol, succinate, and pyruvate were also oxidized but had no 

effect on inducible enzyme formation; therefore, it was not possible 

to correlate shortening of the lag period required for enzyme forma­

tion with oxidation of an exogenous carbon source. 

The observation that glucose, ribose, or fructose shortene~ the 

lag period for induction of protocatechuic acid oxidase is in contrast 

to a number of reports (7, 22, 64). High concentrations of glucose 

77 
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shortened the lag period required for induction within the first 20 

minutes, after which enzyme synthesis ceased. Cessation of enzyme 

production was attributed to a significant drop in pH resulting from 

the end-products of glucose dissimilation. When a pH of 7.0 was 

maintained 1 the total enzyme level produced by the cell was the same 

in the presence or ab.sence of glucose. A high concentration of ribose 

or fructose shortened the lag period of induction and maximum enzyme 

synthesis was evident. These sugars were not oxidized and no change 

in the pH of the induction medium was observed. Tomlinson and 

Campbell (90) observed the accumu.latian of gluconic acid during oxi-

dation of glucose by f. fluorescens, and it is possible that this 

compound is responsible for lowering the pH in this system. 
14 

Uracil-2- C was very slowly incorporated into the hot trichloro-

acetic acid fraction of the pell in the absence of the inducer; but 

when protocatechuic acid was added, uracil was incorporated after a 

lag period of approximately 20 minutes. The addition of glucose or 

ribose simultaneously with the inducer shortened the lag period for 
14 uracil-2- C incorporation to 5 minutes and increased the rate of 

uracil incorporation. These results augment the previous reports that 

RNA synthesis is required for and precedes protein synthesis (96). 
14 14 Glucose-U- C and ribose-1- C were slowly incorporated into the 

hot trichloroacetic acid fraction of the cells in the absence of the 

inducer, but 'When protocatechuic acid was added the incorporation was 

increased. When glucose-U-14c incorporation was measured in the 

presence of ribose and protocatechuic acid, ribose significantly 

decreased the incorporation of glucose. Similarly, when ribose-1-14c 

incorporation was measured in the presence of glucose and the inducer, 



glucose decreased the incorporation o.f ribose. Thu~, glucose and 

ribose are serving in the same way to decrease the lag period for 
' ' 
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induction and resµ.l:t,s indicate they are serving as a speoitio ea.rbori 

s.ource .for RNA. synthesis. . Olu.oose and rihose are not serving as 

1' non-speci£ie'1 ca.rben sources . for protein synthesis in the cell, 

since other readily utilizable carbon ,sou.roes did not shorten the 

lag period req_u.4"ed for enzyme synthesis. Recently, Dobrogosz and 

. DeMoss (1)) noted that synthesis of t-arabinose isomerase . was . stimu ... 

lated when ,f. pentosaoeus was grown on ribose and sug~ested. that 

ribose was serving as a source of ribose-.5-phosphate £or RNA syn­

thesis. Burrous and Wood (:,) reported that !• .flu.oreseens contained 

the enzymes .tor synthesis of ribos.e-5-phosphate .from glucose, fructose, 

er ribose by a non-oxidative pathway (48). The observation that the 
.I 

0-1 of glucose was not incorporated into the hot trichloroacetic acid 

fraction. would support noh a hypothesis. Theref0re, it is suggested 

that gluc~se, ribose, and fn.otese shorten the lag period £or inducible 

enzyme synthesis by serving as a readily available so11ree of ribose-

5-phospha.te for the ribose moiety of RN.A. 
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