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PREFACE

Magnetofluidmechanics.is rapidly becoming a field of mere
_impertance than it has enjoyed in‘%he past. Much effort has been
made to ebtainusolutions to-maghetofluidmechanical‘boundéry layer
‘problems. Exact solutlons, however, have proven d;fflcult and only
a limited number: of very 81mple cases can be solved: by exact meth@ds,

It is the purpese of this study to introduce an approximate
technique which will glIOWﬂmagnetohydrodynamic'bouhdary layer prob-
lems to be selved quickly and with feésonable aééuracy; This method
Jis also used: to solve several problems for'which ho other'knéwn
solutions exlst at thls tlme

T am. partlcularly indebted to Drs. M,K. Jovanov1c, D. R haworth

and J.D, Parker'for-thelr guldancevand encouragement; also t@_Dr,
0.H. Hamilten, Dr. H.P. Hotgz anduthQ-Applied Mathemaficszesearéh
Laboratory, Aercspace Researgh:Labofat@ries, Wright-Patterson Air

Force Base, Ohie.
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coordinate distances.

veleclty within the boundary layer.
velocity outside the boundary layer.
velocity vector.

beundary layer thickness.,
Sikr-f)dn,displacement thickness.,

S&#{Ff)in,momentumpthicknessa

u/U ,dimensionless velocity. parameter.

y/§ ,dimensionless distance.
undisturbed free stream velocity.
viscous shear stress.

fluid. viscesity.

pressure.

density.
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magnetic permeability.
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CHAPTER I
THE PROBLEM

Magnetofluidynamics is discussed in this chapter in general ﬁerms
to obtain familiarity with seme of the associated difficulties;i
Fmphasis is placed upon thosg areas which are specially applicéble to
boundary layer fluid flew preblems. Detailed analysis is deferred to

later chapters.
Plasma Dynamics

Plasma dynamics is the study.of the dynamics of lonized fluids
and is not new, having long been important in the study of.astrophy-
sicai proBlems such as the metion of interstellér gases. In recent
years the engineering frontiers have been pushed inte.the realm éf
plasma dynamics and it is no longer the privaﬁe property of the astrq—
: physicist;i Fluid flew preblems today often invelve ionized gases,as‘
the engineer considers the re-entry of orbiting vehicles as én ekample.
Such vehicies may bé winéed and operate aerodynamically in a range of

flight speeds leading to ionization of the fluid medium and for this

lWhen fluids gre influenced by electromagnetic fields, the
analysis of the results is by means of "electromagneto-fluidmechanics."
If the fluid is incempressible,-the term "hydro" will be found in
place of the more general term "fluid" and when the fluid is in motion
‘the word '"dynamlcs'" is usually found in place of "mechanics." By
these conventions the study of an incompressible fluid in motien
through a magnetic field would be called "magnetohydredynamics.'" This
convention will be followed and will be found in agreement with the
literature. ‘



reason considerable research.is now being done in the area of lonized
gas flows.

Just as the study of the boundary layer separatioen in fluid
mechanics led to the important consideration of boundary layer control,
so the study of the boundary layer in the magnetofluidynamical case may
well lead to possible boundary layer control in these new flight
regimes, Before application can be attempted, however, the magnetic
field effects upon the plasma boundary layer must be first investigated.
Two important boundary layer phenomena are separation and surface
friction. Knowledge of both separation and surface friction are re-
quired if the total drag of the body is to be determined. With such
an understanding of the fundamental forces at work in the boundary
layer itself, the possibility of control of these forces can be con-
sidered; and with such control it may be possible to lower re-entry
deceleration forces, reduce heat transfer to the vehicle and prevent
instabilities during flight.

The engineer has learned to ply his trade with the three states
of matter: solids, liquids, and gases. Now, he must include what is
often termed the fourth state, the ioniged gas. Ingineers must then
allow for the influence of electromagnetic fields in flow problems,

A complete analysis would in fact have to include fluid dynamic,
electromagnetic and thermal effects; but thermal effects on the fluid
flow equations are often secondary and will be so considered in this
dissertation. Further, the analysis will be made from the fluid
dynamic standpoint; that is, fluid dynamics will be generalized to
include electromagnetic effecté. :

Two methods suggest themselves, microscopic and macroscopic.



‘The Ffiwrst, the kinetic theory of plasia; assiffies the gas is a
collettion of positive and negative loms, electrons and neutral
particles, These charged bodies will be constantly dinfluénced by the
electrofagnetic fields whereas in normal kinetic theories the
particles are assumed to travel without influence between collisions
in esséntially straight lines. Collisioﬁs between the charged
particles and neutral particles lead toc interactions on the gas as a
whole: Such an aralysis necessarily. requires a precise description
 of the collision phenomenon. In the non-ieonized. case one-particle
distribution functions are used to describe the behavior leading to
the well-knewn Boltzmann equation. But as already stated, the
particles in a plasma are never free and. in addition a satisfactory
deseription of the plasma interaction and collision. process is not now
~known. Even if the collision. process were known the resulting
geﬁeraliZed Boltzmann eqﬁation would have ﬁo be solved simultaneously
with the Maxwell equations. Unfortunately, the complexity of such a
system of squations is such that generallyuﬁot even simple flow prob-
lems can be solved. However, they are still very important since the
generalized Boltzmann. eguation, just as in.the non-ionized case,.shduld
reduce te the macroscopic equations as a first approximation yielding
- valuable information on the transport coefficients. In. the macroscepic
postulate these coefficients. are introduced as known or experimentally
determined quantities., A thorough analysis of the micrescopic. approach

-may be found in Magnetogasdynamics and Plasma Dynamics, Chapter 103(5).%

Engineers are seldom interested. in. the motion cof individual

particles but rather in the macrescopic guantities. such as pressure,

“Numbers in parenthéses indicate References in the Bibliography.



density, temperature, mean flow velocites, current densit&jwétco
When . considered macroscepically the:dynamics. of thefplasma are postu-
lated on the conservation. laws of mass, mdmentum,.energy, and charge.
For most practical problems, therefere, the Maxwell-Boltzmamn distri-
butien function.is simply too complex to be useful and for this reason
subsequent analysis will be made from the macrescopic er continuum
point of view. The resulting equations must, of course, be censistent
with: theose derived from the microécopic consideration.

Although a plasma is in general a composite of particles. of
differing species, in many practical problems the variation in
. composition is small. Such a plasma Will be considered in . this
dissertatien. In:this instance, the plasma becomes very much simpli-
fied, resulting in fluld dynamic relations very similar to the well-
known Navier-Stokes eqguations but with the additional electromagnetic
force terms appearing as body forces. These simplified equations will,
of course, also have to be treated_simultaneously with the Maxwell
equations,

With each. simplification, theoretical results. will in. general
deviate further from the real case. Existing boundary layer concepts
without magnetomotive effects are already complex after.a simplifica-
tion of the Navier-Stckes equations, While present boundary layer
‘theory may yield: results. which compare faverably with. experiment in
the simpler cases, clearly it cannot be expected that such. close agree-
ment will be found. in. the magnet@hydrodynamic case, Because of
additional variables and equations, equivalent orders of difficulty
will necessitate many more simplifying assumptiens, especially regard-

ing the character of the plasma itself. The result is that while the



system of equations describing a given magnetohydrodynamic case may be
of the same order of comple#ityrthe-engineer-musf-neverthelessvexpect
-to .receive results which agree with the real case less clesely than in
equivalent gasdynamic cases; indeed, where before theory might deviate
quantitatively only a few percent in a gasdynamic problem, a quali-
‘tative agreement may have to be accepted in a typical magnetohygro-

dynamic problem.
The Boundary Layer

As g first assumption, ene might censider a fluid as a '"perfect"
one; i.e., homegeneous and inviscid. Many fluid flow cases may be
solved with acceptable accuracy under these assumptioné. It is known,
however, that under some conditions the fluid will separate from the
body;,this is not always predicted by perfect fluid theory. In
additien, surface frictien is net accounted for by perfect fluid
methods.

The obvieous step is to‘generalize the fluid to include viscosity.
When this is done the equations Which result, the so-called Navier-
Stokes eguatiens, are too complex to be selved in general. Moreover,
 the ﬁiscosity:of ordinary fluids is too small teo be of significance
in the main flow field. For these reasons the complete Navier-Stokes
equations were little used until 1904 when L. Prandtl introduced the
boundary layer concept to the Mathematical Congress in'Heidelberg'(lg,

Prandtl showed that the flow about a‘body could be divided inte
two distinct regiens, the main. fluid flew and a relatively thin.layer
on the boundary of the solid beody called the "boundary layer". In the

-mé&in. flow the viscous effects are too small te appreciably alter the



perfect fluid results. In ‘the thin boundary layer, however, the
velocity gra&ienté are large enongh te result'in the viscous effects
doﬁinating the fluidbflow. With'this concépé Prandtl was able te
predict for the first time thenpoint of flow separaﬁion and the surface
friction on a body in good agretment with experiment and in a case
wheré perfect fluid theory implied no separation er surfane frictioen.
Understanding Prandtl's boundary layer cencept can:be faCilitnted
byvconéidering thé simple example of a semi-infinite flatanlate at zero
;incidencefinia'nniform.flow field as in Fig. 1. Because of viscosityv
the velocity, u(x,o), will be identically zero for all;positive x if
‘ theré is no slip at. the wall., However, as y increases withoun‘Bound

the velécity must‘equal U, eventually; thus, u varies from zero.at

the wall
U Uso Ve
> . _ /’/ /(/’T A
Y T Sex) \f“
~ vy
X

Fig. 1. Flat Plate Boundary Layer.

asymptotically te Uy, at some disténce from.the wall. For conven-
ience it is usually stated that when WU (x,y) is 99 percert of U the
'edge" of the boundary layer has been reached. This-veiocity distribu-

tien is called the velocity profile and it should be noted in- Fig. 1



that oW/ >0 for all y. It will be shown later that the slope of
the velocity prefile is the essential, parameter when the separation
point is considered. Nete too that the boundary layer thickness,

S (x), increases with x. The surface friction is obtained by

According to perfect fluid theory, the flow abeut a circular
eylinder need not separate, altheugh it is observed to do se in
practice, except for very low Reynelds number. Thus, perfectvfluid
theory fails under these conditiens. With the visceous boundary layer
concept, however, separation. is predicted. Prandtl's: boundary layer
‘theory states -that separation will occur where the velecity gradient
is zero . at the wall and implies negative velocities near the wall at
stations beyond this, Unfortunately, the velocity .profiles and, there-
fore, the separation point depend upon the pressure distribution outside
_the boundary layer and the pressure distribution.in turn upen.the sepa-
ration point. For this reason the pressure distributien must be known
fromvexperiment or guessed with sufficient accuracy. The predicted
separation‘must then establish a flow pattern yielding the originally
assumed pressure distributien. This procedure is very difficult since
the Prandtl boundary layer theory is invalid beyond the separation
point, | | l

- Experimental studies show strong .curvature of the streamline
patterns just downstream of a separation point implying the existence
of a pressure gradient normal to the surface. The original beoundary

'layer equations, however, made use of the assumption of

aFy = ©



and are, therefore, no longer valid in this area;% Further, the flow
in the separated area is in general unsteady.

An additional difficulty also arises. The Prandtl assumption of
a very thin boundary layer permitted the use of perfect fluid theory
to establish the pressure gradient, but downstream of the separation
point S(xﬂ:increases at an enormous rate and is certaiﬁly no .longer
thin and éreatly alters the pressure distributien - used tolpredict

the separation in the first place (11).
Methods. of Solution

Examples of exact solutions to the boundary layer equations show
that except for the very simplest of cases the mathematical difficul-
ties are considerable. An exact solution is assumed toe be any solution,
approximate . or otherwlse, to the original unchanged equations which
govern the flow field. The most general case of fluid:flow,about a’
body of arbitrary shape cannot be solved by analytical metheds known
to date. Two methods are open to use. First is to simplify the
problem to solvable level while still obtaining an exact solution.

One then has confidence in.the results but the problem may now be too
trivial to be of value or application. A second approach is te retain
as'mﬁch as possible of the original problem but te simplify the
solution by certain approximations to the equations themselves.

Boundary layer solutiens are obtained only with difficulty and
the trial and error requirements of matching the potential flow field,

results in tedious solutions at best sincé each solution leads to a

3See Appendix A



resulting potential flow eutside the boundary layer which may or may
not agree with the assumed potential flew field. The,preblemimust be
solved again and again until the solutien yields the assumed petential
rflow pattern.

The magnetofluidynamic_boundary'layer'problemuis.an extension of
the ordinary fluid dynamic sipuatien. Boundary layer solutions are
difficult in the gasdynamic case and are much more difficult in the
magnetofiuidynamic case. Much research has already been done in the
-field of magnetdfluidynamics; however, so farias is known most of this
wdrkxhas been in connection with inviseid magnetofluidynamic flows (3)
(8). Only recently have results_appearéd en viscous.magnetofluidynamié
flow. problems.

Maghetohydrodynamic beundary layer equations appear to be rather
simple in.that for :the cases to -be considered only . a single’pondero~
motiée force term appears in the equations. However, événﬁwiih this

o
seemingly simple additien to the beundary léyer equatioﬁs it is very
difficult indeed to solve such magnetohydrodynamic problems exactly.
So far as can be determined to date, exact solutions to the magnetohy-
drodynamic boundary layer problem have been published only for flow
along flat surfaces with zero pressure gradient, the exception. being
Stokes' flow (10, Other efforts are being proposed, such as the
solutions to the incompressible wedge flows (12), but. as yet.they are
unfinished.

Mathematical cemplexity has resulted in even simple geometric
shapes being difficult to handle by means of an exact mathematical
appreach. The magnetohydredynamic boundary layer flow:for'a flat

. plate has been solved exactly by V.J. Rossow (6). An examination of
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his results will quickly disclese why exact: selutions are few indeed
and why they are proceeding with such difficulty. It also becemes
readily apparent why so. few papers have been published up te new and
these only for plane surfaces.

It would be valuable to obtain approximate metheds which would

- lead to .rapid answers, even if this entailed seme sacrifice iﬁ
accuracy to exact metheds. This was done by ven Karman and Pohlhausen
for ordinary beoundary layer flow by assuming that it was sﬁfficient/to
satisfy: the differential equations on the average over the boundary
layér thickness rather than to satisfy the eguations at .every point
fer.every fluid particle. A mean value functien is thus obtained from
the momenpum:theorem-which.is developed as_an;integral‘ofxthe eguations
of motion over the boundar& layer thickness (7).

It is the pqrpoée.of this dissertation:te intreduce such an
approximation method, based upon the ordinary fluid dynamic wen
KarmanAPohlhausenAtechnique, suitably extended to magnetohydredynamics,
With such a .technique magnetohydredynamic boundary layer selutions
could be obtained more quickly and for mere varied geometrics than the
flat plate.

This approximate method will first be applied to those cases
whe?e the exact solution is known in order that the results might be
comﬁared. The method will then be extended to thé wedge and ‘¢ircular
cylinder. No éomparison is possible in these latter two cases as

solutions' for these are not known to have been published at this time.



‘CHAPTER-'I1
“VON KARMAN--POHLHAUSEN  APPROXIMATION

‘This ‘Chapter will introduce the von Karman-Pohlhausen approxi-
‘mation methed: for the solution of two-dimensienal boundary, layer
problems. It is. a momentum integral approximaetion and when applied
“in the normal way to. the magnetohydrodynamic: boundary layer,. the
method seems to :fail; an examination discleses why and suggests
an extension which. could correct the difficulty.

The procedure used will be. very much the same in subsequent
chapters. ‘Examples have been selected‘for which well documented
exact solutions exist allowing a check on the accuracy and validity
of the von Karman-Pohlhausen approximation when applied to a
magnetohydrodynamic case. It will be seen that the procedures
and fundamentals are very similar to .those applied to the ordinary
fluid dynamic case so that a detailed explanation»will-ﬁot be

‘necessary.

The Method

Ordinarily the boundary layer equations, which represent.the
second law of motion and conservation of mass, are solved at every
-point within the boundary-layer. It was von Karman and Pohlhausen
~who first thought that it might be sufficiently accurate to satisfy

~-these gguations on the average over the boundary-layer thickness.

-11



This was done bj'integrating;the eguation of motion. over the
boundary layer thickness. It is this: integral equation whichxfs
then satisfled, rather than.the eguatien. of motion. itself.

The von Karman-Pohlhausen appreximation will be applied to
three cases of‘magnet@hydrodynamiciboundary/layer.flowu All will
- have the magnetic field,oriented,perpendioulariy‘te the surface of

the body. These three cases are as follows: |
1. Magnetic field fixed to the beody
a., Constant conductivity
~b. Varisble conductivity
2. Magnetic field fixed to the flew
a. Constant conductivity
. Bach case will be selved in turn,and‘the flat plate results will
. be compared to the exact selution.
Body fixed Magnetic Field
Constant Conductivity
Fer this case and all‘subseqﬁent-cases covered=in this
dissertation, the fellowing assumptions are made:
1. Steady two-dimensional laminar flow
2., @ = constant
3. M Cps cy. and k, are censtant
40 Magnetic field. lines are perpendicular to the surface of
the body and. the free streamuoutsiée the boundary layer
5, Pns magnetic permegbility, is constant throughout the
flow field
6., TImposed electric field, E, is zero

-7, The excess charge density,fg, is zero

12
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8. Induced magnetic .field, EI, is negligible and as a
.consequencefthe magnetic. force term is:linearized;
i.e., §‘=§;:+--B’IE‘ E:,, where BI 0 and B =3 =0

.1s a constant
9. Conduectivity, ¢ , is small
The. boundary layer eguations Which_;result from these assumptions
-are very similar te.the hydrodynamic eguations, :namely, 1

X Y '_‘(1)

-and

R
Uax TV Sy Cdx T e

Equation (1) represents the conservation of mass and Eq. (2) .is

aYZ ‘ (2)

“the eguation of motien. The meaning of each term.i;i Eq. (2) .is

indicat ed below:

' 2
. ;__ _ 1 dP _ oB
w3+ v e dx 5 U
(Time rate of change (Pressure gradient)  (Magnetic field
of momentum) v . body forces)
2
ol
v . (3)

oY*®
{Frictional Shear Forces)

2

.For convenience let TT),E%&- , where Go= O = a constant,
and M=M, /Us .

With these definitionsEgs. (1) and (2) ‘become:

. —a-;(--i--a— ) ,
w dP ot
u_%?+ 37 = —é,—a—- —mnu-"'\)gyz

- TSee Appendix A and B..for derivation.



>The:boundary conditions are as follows:

y=§ = w=U

Y= 0 = u=Vv=20
These conditions follew, from a physical consideration of the boun-
dary layer. itself. The requirements at y = § arise from the
‘necessity of the boundary layer eguations being asymptotic te .the
-free stream solution. Thus,.there would no :longer be any change
in u with y. Cenditiens at the wall, y = o, are imposed by the
assumptions of no fluid slip or cressing of the boundary at the

wall. The equation.of‘motion,may;nowube-integrated as follows:

| I[u%% + V%—% +—(CL,-§{L;- + Tﬂ,u]d)/ = “é" i%%(%—%)d)’

Apply the first boundary cendition.te.the equation. of motion.

_ oo . S dU - _LdP _p,
Yy=§ = wu=Ux), 2t¢=0 = U 5 5x mU

Y dx
Also, from: the continuity -equation:
4
V = —f%‘; dy
Then,
oo ;& y
STude - %' udy - vgd -m (U-w]dy
oo o0
- auy _ L a4
- P «ﬁ/ud(w) . (o/“‘ayo °
= 24 U -
But, T "/“aYIyﬂ and Bﬁly:w_ a

Also,'integration;byuparts:will provide
o ) ; o,
U [Yau = Ly _ 24 gy |
[y = [uzdr -u g9y
with these relations the.integration: becomes

j:“[u%g—‘( +ud -Udk - ugy -miu-wdy= -5,
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le[%i(u(u—u.)) + (g—)% + mn)(u-u)] dy = lrg— .
Introducing the displacement thickness defined by
s*= U J(U-u) dy
and the momentum thickness defined by
o= ? J:'Tl(u—w) dy

one obtains,
4(ue) + (92 + mus" =T . ()

Fauation (4) is unchanged from the hydrodynamic case except
for .the addition of my;. The eguation represenis-an,integration of
 t£e momentum equation acroess the boundary -layer thickness and -is
in general form, i.e., ne simplification‘or assumptions have been
‘made as to. the configuration of the two-dimensienal body and its
associated pressure gradient outside the boundary layer. Although
Eq. (h)'has been derived .for laminar flow, this result will be
applicable to turbulent flow as well since the equation represents
the averaged forces over . the boundaryflayer'thicknesso

In general the coordinate systeﬁ.is arranged with y normal
.to.the surface of the body and y = O on the wall. With x measured
along ‘the surface, Fig. 2, the integrated momentum.egquation takes
the form.of Eg. (4).
\ X
\)@/ W’”’”’%
Fig. 2. Coordinate System

This-equation is now an .ordinary differential equation since
a satisfactory velocity profile can be found which will allow.the
calculation of 6,8:5' and 7, . The boundary conditions must

inelude no slip at the wall and continuity at the edge of the
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‘boundary layer where the inviseid flow solution is valid. Further,
when adverse forces are impressed upon the flow:the possibility of
an . inflexion point in  the velecity prefile must be accounted fdr,to
allow. for separation.if these forces persist. Of course to find
the separation.peint at all:;it must be possible to calculate the

point aleng ‘the wall where

QU = 0 .
QY Y=o

In this first case a body-fixed ﬁiperpendicular to ;the two-
-dimensional :flow has been assumed. Additiohally, it was assumed
~that'ml
With the use of Fguations (1), (3), and (4) the problem may

and 0 were -constants.

be solved in the usual way by the von Karman-Pohlhausen method.
Tt is first assumed that the velocity.profile may .be approximated
by a polynomial of order high .eneugh.to meet the boundary con-
ditions and allow for the existence of an.inflexion peint. The

assumption is often

_bh = fo =an+bN +cn? +dn?

. where ﬂ=-§' . It has been .found in the gasdynamic case that
this assumptien yields acceptable accuracy for laminar flow.
‘Remaining for determination are the coefficlents a,b,c and d
which, -in .general, are functions of x. These coeffieients are
determined by applying boundary conditiens in the follewing way.

n=1 = u=U

a

=
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which leads.‘to.the three eguations
1l=a+btc+d

e}

a + 2b + 3¢ + 4d
0= 2b + bc.+ 12d
N=0 = u=v=0

‘This coendition-has already been used to.eliminate the 70 term of
f’(Y{)vand anether: boundary. condition must be obtained. Using Eq.

(2) at the wall, the necessary condition.is obtained, namely

__1dp U
O—"‘P dx+\)a>/2 .

Also, from Eq. (2).at M= 1

du . LdP
Vax T T ax + mu

The fellowing definitioens are new.introduced:
2
A= 2 du
N dX

R

_ £
M= £,

With the above relations and definitions the.final boundary

= 0O is obtained.

-condition; becomess
Z

.-%—(g—)u( +m,) =Z2b

or,

._<A+/\m) =Zb d

The four eguations

1l=a+b:+c+d

|

o.=a + 2b + 3¢ + 4d
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0 = 2b .+ b¢c + 12d

-(A+A,)=2b
‘may .now be solved. for a, .b, ¢ and d in terms of (M. ‘Since
A, and / ‘contain;SbOathis,quantity,remains;to,be evaluated
and-is obtained threugh the solution of the :dintegrated momentum
-equation.

Beecause

__ 1 dp ¢
(/\+/\m)- ou g‘f S

‘the flat plate case dP/dx = o-implies A+A= o; thus, the

velecity prof;;e, u/U,;beeomes»not only independent of x but alse
.completely;inéépendent of the magnetic field yielding the erdinary
gasdynamic veloeity profiles.

Even for a flat plate one hardly -expects that the velocity
profiles will neot be affected in any wayyby,the magnetic. field.
This. is corroborated by .the exact flat plate solutien which dees
indeed show.a definite dependence upon the magnetic field as
expected (6). ‘Thus, in the flat plate case this integral method
.fails to:introduce any magnetic effects intd ﬁhe\velo@iéy;profile,
resulting in an ordinary fluid dynamic profile whieh-weulg, thére=r
fore, lead to gross. errors in the surface friction ceefficient.
Case II results show the same difficulty. Case'III,'a flow=fixed
magnetic field, will yleld some results in that.the stabilizing
dnfluence of the flow-fixed field -is suggested by,the“analysis.
‘In the conclusions whi@ﬁ follow it will be seen why any quanti-

tative results must be rejected.



19

Conclusions

The present method employed is based upen a straight forward
-integration..of the egquation of metien .in the magnetohydrodynamic
case and an assumption for the velocity profile in_térms of
arbitrary constants .evaluated by means of the boundary conditiens.
This cenventional straight forward application.is inadegquate because
its use in the: von Karman-Pohilhausen approximation depends upon a
satisfactory velocity profile, obtained:in terms of the shape
factor /\(x)g ‘Additienally, the shape factor must represbnf
those for@és,whi@h alter the shape of the velocity. profile and
which directly determine the surface friction.and sepaf@%ion,pointa

The won Karman-Pohlhausen approximation. . requires that.the
'fesults of the boundary layer theory be consistent with,the
inviscid flew solution at the edge of the boundary -layer and that
the inviscid solutien:be unchanged by -events inside the boundary
.ylayer,‘prior to separation. It is also assumed that the pressure
force is independent of y and that‘it'affects‘the.entire-profile
at a givenrx;@ith a constan£ value. In the fluld dynamic case
when, the veloecity. profile is obtained by the von Xarmen=Pohlhausen
.methed, the boundary conditions used introduce just such a pressure
gradient. This pressure gradient is the only force affecting
separation and it is already a function of x only.

For the magnetohydrodynamic case, however, there is another
force affecting the velocity profile besides the pressure
gradient; i.e., the ponderometive force. This new force is a
~funection of y and x and its effects are not consﬁant/acrossgthe

boundaryflayer;
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Further, as can be seen from'Eg. {(2),this ponderemotive force can
.never be properly dintroduced -into the von Karman-Pohilhausen
approximation as it-is normally applied beecause. it vanishes at the
wall, which is the only place where it can: be. intreduced into

/\.(X) and!the\velocity:pfofileo It was for this reason. that the
velocity profiles so .obtained were identical, to:the fluid dynamic
‘profiles and prevented a proper conclusion, even,théugh;the momentum
‘integral was correct.

"A:nen-zero.result is obtained in, the flow-fixed magnetic
field case becauée-the ponderomotive forces are not zero at the
wall .and -can, therefore, be introduced into the velocity -profile
and A(X)@ The result is not meaningful quantitatively, however,
since tﬂé'ponderomotive forces are not properly introduced into
:the\veiocity,profjle,in,this.manner’since it assumes an invariance
in y and a value for all y,equal to the boundary value at the wall.
-This result is clearly erroneous as the magnetohydrodynamic.force
at y = & is not the value at the wall but zero. Further, results
obtained in this manner de not agree with the exact selution (6).

A medification of the von Karman-=Pohlhausen method is
necessary. von Karman and Pohlhausen assumed that it was
sufficiently accurate\t@-Satisfygthe boundary;lajer‘equatiens,in
bulk or on the average;:i.e., by satisyfing the momentum integral

- equation. This may now.be extended -in principle to.the ponderemo-
tive forces. by. considering the average ponderometive force acting
within the boundary layer. Applying the force in this -manner
.results. in:a mean value which may still be a function eof x but

which is not independent of y, thus eliminating the difficulties
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‘previously noted with respect to .the magnetohydrodynamic case.
Mean ponderomotive force terms can then be obtained by integrating
over the boundary layer from y = o.to.y =§ . With this
modification the cases were solved and compared -in detail with
the exact selution.(6).

The agreement was goed only if a variable "weightafactorﬁ
was used with the:mean ponderometive fOrcevtefm; No .rational way
.was found whereby this 'weight-factor" sould be predicted -in
-advance for a giwven flow problem. A further difficulty. was .that
the mean force term could be greater than zero even when the velo-
city profile had a.zero slope at the wall. -This implied separation
~without a pressure gradient even, though an examination of Eq. (2)
-shows that when u .= 0.the ponderomotive forces must be zero. At
first examination,the sclutions sesemed to-be in agreement with the
exact solutions (6>;~however,'it was noted that the results of
Reference (6) are valid only for'MX<.2. For MX>.2 the series
‘solution of Rossow (6) would have to include meny more terms.
This could only be done with great difficulty and to date only
second order terms have been calculated. Another way had to be
found if the von: Karman=Pohlhausen method was,to:be-uséd and

-the above difficulties avolded.



CHAPTER IIT
THE EXTENDED VON' KARMAN-POHLHAUSEN METHOD
. Constant Conductivity

Frem the previous chapter it ﬁas feund:that the main
difficulty was the introduction.of the magnetic field effect into
the'velecity‘profile‘relationso The assumption ef a pelynomial of
higher order will alse be of ne avall unless a boundary condition
which: includes the magnetic‘field,can be-fqunda Such a-boundary

- conditien can be found in the following way.

Taking: the 3/3Y  of Zq. (2)
D Tudd 4 yay L dP
57[“9)( +v%7 +Mmu+E4E - aya] o

leads directly to

3
U a U -y =
u‘%ﬁ)ﬁ'vl)_"‘ +-§'§/4‘;x +-§%%§ +Tﬂ.a), \)ay’d C

From.the continuity equation it can be seen that

Moo
X Y

!Usingsthis»relation_the above equatien reduces to

SU o, ysud - =
u ygy-‘-v Yg +mg QY v ;Y3 e

The follewing-eguations are now available:

Mo, W
;x+a>' ©

S22

(1)



! R —-Ll dP Su

uge v VS, MU © dx T Ve
2 du * T

%X(eu)+(\gz+m,)us =%

Vw
<

SU =
WS, - VEE + M3y =93

~
w

Previcusly, a,b,c and d were feund from four boundary
conditiens obtained from
N =1zu= U{x)
and
N=0%u=v =0,
The second: boundary conditien had already been used. tc shew the

coeffieient of Tf to be zero. The first boundary conditien was

u = U(x) at M =1. Two additional boundary conditions were also

obtained frem u = U{x) at Yl = 1, namely

=0 ,

M= | n={
The fourth condition was obtained from Eg. (3) at N =0; i.e.,

\)DZLL — e Q’f_
N2a © dx
Additienal boundary conditions could have been cbtained from a
~higher derivative of uj i.e., -%%{-30 Howsver, it would net
contribute to the solution. This can be seen from Eg. (5) which
shows- that %(;3 oo @) when M=0. It is for this reason

-that a fourth order polynomial is usually sufficient in the
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(4)

(5)
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gasdynamic case and insuffieient in the magnetohydrodynamic case where
M # O . The use of Eq. (5) in determining the fifth boundary
condition now allows the extended von Karman-Pohlhausen method to
yield br‘oper results. With these relations-the following boundary

conditiens are obtained:

n=1 == u= UX)

.M:QZ—L—'[:
=5y~ °

du
_JE%)?: U(dx 1)

Assuming a fifth order order polynomial for U ,

Lo = an+ e e rdntre, (6)

one obtains the following set of equations for a, b, ¢, d and e

from the above boundary conditions and the definitions of IA and Am:

1 = a+ b+ ¢+ d+ e

0 = a+ 2b+ 3¢+ 4d+ 5e

0 = 2b + bc + 12d + 20e
~N+A,) = 26

0= al, ~ 60

These equations may then be sclved for.a, b, ¢, d and e yielding:
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L 60+ U (1 M) @
36 +
b = _"A (é*'/] /]m) | (8)
N (20 + 3M( +A//)
¢ 2(36 + M) @)
— 30Nl A/ ) =120 + 3 /a2 A X 14 A )
4 = e ) (10)

92 = 120l AL fw) = Ao (= Aud LA )
°- 2(36+ /) (11)

From the definition of displacement thickness one obtains

* ]
5 ‘J” d
-2 = j(I-f)an .
& o( {
Using Eq. (6) , the displacement thickness is found as a function

of a, b, ¢, 4 and e.

¥_ 4 _b_c_d_¢g 12
=TT F"375 6 (12)
In a similar way 4%— may be found.

2 & .
e _ & . b, € . dyse_d_b_C_d
c = ottty TE T e T3 75

2
& _ab _2g4e-ad_Z2q4e-be2bd_ ke
e TEX-TF AT T T v
dc _ ez de
~de _zce - 1
T "o C = (13)

The momentum integral equation is now used to obtain A, =/, (mx)
in the following manner:

Multiply Eq. (4) by‘-é%— and apply the definitions,
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Z'—‘—'—%f s
_ 5
ig:l——é'" 5

and F=2f,-4K-2Kf, .

Equation (4) then becomes

udZ = F + 4mz . (12)
dx
However, it can be shown from the definitions of A and /]m that
/B | (15)
A,
and
© (16)
Ange =M%
Proceeding with Eg. (14) and noting that'm=%k one obtains
U D = F 4 4(mz)
Uea  dmx) '
u dm dlw = F 4+ 4(mz)
Uee d Am d(m)()
. & \&
Y d [/1 (—g)""}__ﬁ_d n = F+ 4Mn(F) . (17)
Uo dALL™ d(mx)
where M = a known constant for any particular case. The
following quantities of Eq. (17) may now be evaluated in terms of

A

and /\m as indicated:

= =Eq. (13) with Bgs. (7) - (11),



7

S*
& =Eq. (12) with Egs. (7) - (11),

F =2f - 4K=-2Kf {z=—§—a s

2 * o
k=A@ Wtar) o =2 (E)

The solution to Eq. (17) yields N,= AMX) and, therefore,

%: %[an+bﬂz+cn3+ dn®+ (2715] (18)
for each —U(T ~and 7\/—\- ,1 Also, C,= %/52 which yields:
R, C; = ca— [mx/A, . (19)

Curves may now be drawn for ./ Byce vs mx and w/U. vs
Y UAx for values of mx. For each U/U. there will be in general
N

a family of such curves: for each —/—\; . The wvelocity profile is
given as u/U, vs ym rather than /U, Vs 7( since YWJU=AX
was used in reference (6) and is the usual one, although it can
- be clearly seen. .that from the sta;rldpeint of the von Karman-Pohlhgusen
method ‘Q -is the mere cenvenient.

For thé special case of a plat plate, j—f- =0, —5:= [-TMX  and

.the previeus relations take a more simple ferm. From the boundary

conditions at M = 1,%—%:—%0 Then A==/, and 7/‘" ==,
m
Thus, the family of curves in —/—/\L . reduces to the single curve
m
for 7/\_ .= - 1 in this case. The results have been plotted in
m .

Figs. 3 and 4 and it can be seen from Fig. 3 and Fig. 4 that agree-
ment with reference (6) is quite good. Further, Rossow (6) points

out that his solution is acceptable only for mx < 0.2;

7 LAppendix C.
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therefore, the indicated separation condition does net really exist
for-the.flatiplate case. The extended von Karman-Pohlhausen methed,
however, seems to be entirely in agreement with the expected

- physical results for much larger values of mx and indeed suggests

that the flow cannot separate under these condltions because

60 + Im
36+ A,

2
. ) . . oy s
Since A, = ) m, which is always greater than zerc, it is clear

that 'a' alsc is never zero. Bubt ‘a' must be zero for separaticn;
hence, the flow cannoct separate.

The case of a flow-fixed magnetic field may now be solved in
a similar manner. Since the flow outside the boundary layer is not
affected by the magnetic field in thils case the pressure distri-
bution is now independent of the magnetic field. The result . is- the
same momentum integral equation developed for the previcus
body-fixed magnetic field case. The difference lies in the fact

that U’(x) is now independent of m, which was not the case

/

previcusly. For the flat plate the parameter A now reduces
/\ B ™m
to /]m,-Og

These results are plotted in Figs, 3 and 5 and are again seen
to be in excellent agreement with NACA Report 1358 (6). It should
be noticed, however, that the results of NACA Report 1358 are
limited to MX £ 0.2, 'This difficulty does not present itself
with the extended won Karman-Pohlhausen approximation which is a

closed solution and applicable for large values of mx.

30
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Variable Conductivity, Bedy-fixed Magnetic Field

The assumption of a wvariable conductivity is in many cases
more realistic. Of course the problem is to determine what con-
stitutes a realistic conductivity distribution. Kantrowitz (2.)
found that for high Mach numbers of order 15, 0 "= G:[%%jﬂL] where
0, = 0 yeo This assumption will, therefore, be used in this
analysis. With this assumption the following equations are

obtained:

ax oY
Us,fgy v em3(1-2F) = 15 T
Egﬁ + %%} o,

%= ﬁ’;(eua) + S*Ug-% - D (o)

With the definitions,

2 2 »*
_ .8 - & du L £ _, 8
Z=y o K= g 0 feg 0 =2

and

F = Z-Fz'_ 4}(" ZK"F,

one may now reduce the momentum integral equation te:

dz _
de—F+ZMoZ .

Employing the definitions for A\ and /qw,. this equation may be

further changed: to:
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G ] e = F o 22, (D (20)

This equation is seen to be equivalent to Eg. (17) with the factor
4 replaced by 2.

Boundary conditions lead to the set of equaticns for.a, b, c,

d, and e:
1 = a + b + c + d + e
0 = g+ 20+ 3¢+ Ld+ 5e
0 = 2h + b¢ + 124 + 20e
- = 2b
0 = /a-~ be

These may now be solved for a, b, ¢, 4, and e ylelding:

= -0+ Ul M) (21)
36 + /i
/NG V/ N | (22)
Vad
¢ o 20/t 30 (1) (23)
2036+ Am)
d o= 36eldfn)=120-30 /1n - 345 (A /) (24)
2(36 + /)
o = 22218l nd 12 fes + MM/ (25)
' 2(36 + /)
Equations (12) snd (13) may riow be evaluated in terms of —//\—)n

and /| . TWith these results By, (20) may be solved for /n vs
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mx for various -4- and Y- ;2 Ls in the previous results, fer

N Ueo
each -%%— families of curves in i%— are obtained for '4m VS IX
0 m
and, hence, VR, Cp vs mx and -{ﬁ; vs VY. JU.AX. For the special

case of a flat plate \IRN C¢ Vs mx becomes a single curve since
/)

U= U and A = 0. Results are shown in Figures 3 and 6 which
m

again show excellent agreement with reference (6).

Conclusions

The equaticns thus far derived by the extended von Karman-
Pohlhausen approximation are for flat plate flow, f%;— = o,
fer which exact solutions exist. The exact solutions for the flat
plate cases are obtained from Rossoew (6). These results are
summarized in Figs. 3-6.

Primarily, the advantage the extended wvon-Karman-Pchlhausen
.method has over the exact sclution is its range of convergence.
The momentum-integral methed is a clesed solution, and therefore,
applicable for all ranges of mx within the bounds of the original
assumptions. On the other hand the exact sclution's accuracy is
dependent upon the meximum mx desired; as mx increases, the number
of terms in the series must increase for a given accuracy.
Unfortunately the number of additiocnal terms required may be
~ large for small increases in accuracy. Further, each additional
term. compounds the difficulty to such an extent that even with the
use of electronic computers only a few terms of the series may
be reasonably found. For this reason Rossow (6) confined himself

tomx € 0.2 and only second - order terms for constant conductivity

2See Appendix C,
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cases and first - order terms for variable conductivity cases. In
the cases of body-fixed magnetic fields the results of Rossow (6)
~are acceptable formx <& 0.2, Formx > 0.2 the exact selution

deviates considerably from the expected result, yielding a
separation point and back-flow velccity profile which clearly cannot
occur since the magnetocmotive forece is zere for zere velocity; thus,
the retarding force may asymptotically approach zero but never cause
separation or back-flew, The extended von Karman-Pohlhausen method
yields the proper results for all mx, implying no separation for the
flat plate cases.

No separation occcurs for the flow-fixed magnetic field case as
well., This is-alsc expected since the magnetic field is fixed to
the flow and, therefore, tends to prevent any retardation of the
flow; thus, the presence of a magnetic field tends to prevent thev
formatien of a boundary layer. Ultimately, when M~ the
boundary layer will have a velocity distribution of uw/U = 1 for
y > 0 and there will be a diécontinuity at the wall where the
veloelty will abruptly change frem O to U ., This implies an
infinite velocity gradient at the wall, and, therefore, Cp —m'co,
The extended=vén*Karman=Pohlhausen method yields this known
.physical result which is plcotted in Fig. 3. The function J*ﬁﬁcf
is seen to increase as mx increases for all mx,

When the second order terms are included in the exact solution
of Rossow (6) for the flow-fixed magnetic field, the function
Jﬁﬂgcf does not increase for mx > 0.2; indeed, separation is
- erronecusly predicted. It was pointed out by Rossow (6) that the

solution may diverge for mx > 0.2, Unfortunately, each term of



the series can only be obtained with great difficulty and until
additional terms are available oniy superficial conclusions re-
garding the possible convergence orbdivergence of the series can
be drawn.

One of the principal advantages of the von Karman-Pohlhausen
-methed. is its ability to solwve the boundary layer equations cnce
and for all in terms of parameters dependent only upen the shape
of the two-dimensional body. The shape factors, N s are then
knewn functions of x onlyp‘evaluated from the potential flow
solution., Simj_larlyj in the magnetchydrodynamic case the solution
may be found once and for all in terms of A and the magnetic
-shape factors, /q7n . True, the solution is also dependent upcn
U/Us ; however, a family of solubticns can be obtainéd in U/Un
+if desired. Fer the examples considered in this’chapter U/Ue =1
and U/U, = 1 - mx.

Chapters IV and V will exsmine the method as applied to the
wedge and circular cylinder, for which there are no othér solutidns

i at this time,

-
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CHAPTER IV

WEDGE FLOW WITH BODY-FIXED MAGNETIC

FIELD AND VARIABLE. CONDUCTIVITY

Wedge flow of an incompressible, electrically conducting
‘viscous fluid is to be analyzed in this éhaptera The magnetic
»field,g; is assumed to be oriented perpendicularly to the

surface of the wedge and fixed to the body. Conductivity is
assumed to be of the form J = GZ}%(U'**) . All of the assump-
tions made in the foregoing chapters relating to the body-fixed g;
~ variable conductivity cases will also apply. It is further
assumed that while the flow is to be studied in the neighborhood
of the stagnaticn peint, x is sufficiently greater than zero to
ensure that the usual boundary layer assumptions are still valid-1
Only the variable conductivity case will be solved since it
:epresents the more realistic assumption and adequately serves to

demonstrate the technique.

Fig. 7 Wedge Flow

IAppendi:x_-A
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For wedge flows near the stagnation point as shown in Fig.
7 the veloeity @utside the bounda_r’y' laye‘rr is well known ;frém o

potential theory (1),
4 K : I
Ux,8) = X X7, where k= Z-6 -

“The: ;equa,ticn of motion and. x_nomentwn integral Qqua,tion are
well established from previous chapters. Application of the
~extended von Karman-Pohlhausen method has also beén covered in
detail in the foregoing chapters and no furth,e,r'.deta,ii— will be
added here. | | |

The wedge flow problem. can also be .s@lvefdbby‘thiisj method.
Noting that - : |

A VoL
Aen Uso MX

one may solve Egs. (18) -'(20) in the manner outlined in the pre-
vious chapter. For a typical example a 90° wedge will be chosen .
and the flow conditions at U/Us = 0.3, .5, .7 and .9 analyzed.

EOr'vazr wedge angle of 90° it follows that

=z e k=% .

|>

‘Using these relations and Egs. (18) - (20) simplify to the

>

m

following equations for U/Us=.5 .

A - L .
A EMX |

i = —ZL-[G.Y( b+t + dnt 4 8715:,

-39

(26)
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VR, C, = o [mi e

and

CJ‘ CLAm ji.a i
z Jﬁ;[/‘ (Z >] o = +,Z/l"’(5) (28)

These: equa,tmns may 1now be solved It must be noted that
- for these cases the numeriegl 1ntegr&ti@n may not be started at
mx =0, /ly = o0 as was done for the flat plate, The function
/V/\m now appears in the 'e,quatioﬁs gince /?//Imiﬂ//]mf(mx)_is no
longer. a- eonstant 2 The flat plate results show that mx versus
/]‘m ».iss_linear er:mx near }z;_er'g, ,>Equatics;n‘ (28} can thén; be
solved iteratively for various values of /ly with a small fixed
iniftial value of mx # o.. The results are iﬂitia‘ully yn_estable. and
,@scllla,t@ry as the cc»mputer :1.n‘tegr’a,t1c»n scheme: gorrects for the
ergg&e,gug ‘f_’_:n._r;st @hoige;s _f@r Am and appr@a@hes the solutmno
When the pmp,er“v@m ot /lu s ;sele@;ted the results - of mx
Vs '/qm -are stable and‘linear»fqr~Mx near-geraf"lt'isiﬁhig
-value of mx and ﬂm_ which 1g then used as the initial value in
the computer program of 'Append:‘i.x“ 'C Mere dirsct meth@ds are
-avaﬂable of @aurse and the limit of - A"’ could be evalua‘bed |
at mx.= o if -&és:i_rede - Howeyer; the method used is the ,ea;.s_lest §
afid does not I"équ:n.re i"urther programming.

Results are plotted in Figs. 8 and- 9. and: Figure ‘9 shows

representative velocity profiles for "%‘= 0.5. Again the

 2pppendix C.
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retarding influence Qf'the'ma,gnetic' field can be seen. In a

similar way the cases of —8: = .3, .7, and .9 have been

evalugted and are alse ineluded in Fig. 8.
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CHAPTER ¥

CIRCULAR CYLINDER FLOW WITH BODY-FIXED
' MAGNETIC FIELD AND VARTABLE

CONDUCTIVITY

This problem is an excellent example for the von Kaman_%
Pohlausen method. Solutions are obtained which are difficult and
tedious by exact methods. Magnetohydrodynamics compounds this
difficulty so that exact solutions have not been found, This
otherwise difficult magnetohydrodynamic case can be solved by the
von Karman~Pohlhausen technique however. The result is a family
of solutions in ¢ for R, Cg vs mr, and u/Ue. Vs YJ;I;-‘; for -
each mrg. This follows from the fact thdat unlike the ordinary
case where one solution exists at each dJ ‘the solution at each

4) in the magnetohydr;ndynami-c case depends upen the magnetic

field. |

. The incompr,éssible laminar flow of an electrically conducting
viscous fluid in the presence of & magnetic field perpendicula;r' to
its surface"and fixed to the body may now be found for 7~ =OZDL(U—UL> .
,Préc’edures similar to those used for the preceding wedge flow case
Wlll be used.

From potential Flow theory U/Us = 2sin@ (7). -I‘“-t is
assumed that i;he boundary layer thickhess is much less than the

cylinder radius ros3 i.e., S<<F . In such cases Schlichting (7)

hb
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shows that the ordinary two-dimensional equations may be applied

with x and y measured as shown in Figure 10.

Fig. 10 Circular Cylinder Flow

For this particular case U, # Oj therefore, / and Eqs. (18)-(20)
: 7&;

again can be simplified under these conditions to

%fas.ncp[ambn‘+én’+dq*+cn‘] , o (29)
R Cp = 4aSnd fmx/, | | (30)

» |
25in¢ 'SZ;[AM(—?—)Z}%O = F o+ Z/t.('?‘)‘2 - (31)

These equations may be solved in 1ike manner to the previous

wedge flow case j; the results are plotted in Figs. 1l and 12t

IAppendix C.
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Figure 11 shows ‘the ﬂﬁCh,vs.mrodfor values of ¢ from-40° t93105°°
The figure also shows the effect of the magnetic field upon the loca=-
tion of the separation point which is indicated'by'the intercepts on
the mr axis. Representative velocity profiles for ¢-=F8O° are given
:.in‘Figufe-IZn ‘The results again show the .retarding effect of %he
magnetic field.

Separation angle vs mro is plotted in Figure 13, which shows that

I

the separation angle moves toward ¢= o asmr increases.
o]
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CHAPTER VI
INTERPRETATION OF RESULTS
Summary and Conclusions

Chgpter I disclosed some of the difficulties associated with
magnetofluidmechanics and boundary layer solutions in particular.
Theoretical solutlons are very difficult and most of ‘the known
magnetohydrodynamic boundary layer flow problems for which exact
solutions are available have been used for comparative purposes
‘in this dissertation. FEven though the problem 1s complex,

theoretical solutions are still being sought not only for the

physical insight they bring but also because very little experi-

- mental work has been pﬁﬁiiﬁhédron‘magnetofluidmechgnical boundary
layer work. Clearly; é%en elemenﬁary results are superior to no
results at all,

Approximate techniques have been avallable for many years to
provide.rapid.caiCulation of hydrodynamic boundary layer problems.
These techniques.qannot‘be applied directly to magnetchydrodynamic
bourdary layers with success. Chapter I shows that some of the
assumptions which lead to good agfeement-in the hydrodynamic case
‘are invalid since the retarding body forces are no longer independent
of y. Because of this fact the:ponderomotive‘forCes could net be

introduced into the yon Karman-Pohlhausen éppréximation since they
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vanished at the body surface. When this technique was‘applied
direetly to several cases the results were negative; there was no
agreement with the exact solutions in body-fixed magnetic field
cases and poor qualitative results in the flow-fixed magnetic
field cases.

In Chapter II an extension of the von Karman-Pohlhausen
approximation was presented. Another equation was introduced by
differentiation of the equation of motion. This equation was no
longer trivial in the magnetohydrodynamic case and a solution to
the difficulty of the vanishing body force at the edge of the
boundary layer was found which also allowed a fifth order polynomial
assumption for w/Us, .

Comparing the results of this;new'méthod with the exact
solution for.a flat plate with dP/dx = 0, Chapter III, showed that
the new method was in close agreement with the exact solution in
the range of mx in which the exact solution was reliable. For
larger values of mx the exact solution implied erroneous results
and, therefore, could net be used. On the other hand the extended
von Karman-Pohlhausen solution did indieate the correct physical
results for all mx. The facility of the method is well demonstrated.

by its ability to solve the wedge and circular cylinder problems.
Implications

- Two primary advantages can be attributed to this new technique.
First, it is possible to obtaln solutions to magnetohydrodynamic
boundary layer problems more easily than by the exact method of

Rossow (6). The principal difficulties are encountered but once
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in. the solution of problems by this technique since a-large part
‘,bethe analysis- can be dene. in general terms. Even difficult examples
‘invelve enly. a few.neﬁ algebraic:relations which may be handled in a
straight-ferward way. In: contrast, an exact solution te the
magnetohydrodynamic boundary layer flow over even the flat plate
results a system of linear ordinary differential equations With /
variable coefficients which must be solved. to evaluate the éeries
coefficients of the Blasius solutions. Since these coefficients are
‘not‘known in clesed form, the equations must be integrated numerically.
Only the first ene or two terms of the series are found because.thet.v
work invelved is sizable (6). More complex magnetogasdynamic
problems such as the wedge and circular cylinder are even more
difficult to selwve by this exact method and attempts te ebtain such
solutiens have not been. successful at this time,

:The-second_advantage which has resulted from this new method
:is . that for the first time magnetohydrodynamic boundary: layer flow
- problems for more complex shapes than a flat plate may be solved.
This dissertation has included the flat plate, wedge and circular
eylinder. It is the nsture of this technigue that any twe-
dimensienal shape, for which the petential flow solution outside
the boundary layer is known, may be solved, within the limits of
the basic assumptions. Disadvantages to the method are those
vnormallj associated with the von Kartan-Pshlhausen method itself,
and these are usually confined to the accuracy of the results,
expecially nedr the separation point. However, evén thé boundary

;. layer equations themselves are in. error near the separation point.



Suggestions

There are several areas of investigation which suggest them-

selves for additional study. They are enumerated below.

1.

Other geometries.,
It would be interesting to determine the exact

limitations of the extended von Karman-Pohlhausen method

2in this respect. Configurations leading to flow

separation should be considered in particular.
Other variations of d~

Only the two cases of O = constant and UE=O:G%;L)
have been considered in this dissertation. Other
variations in O are possible and because of the nature
of the extended von Karman-Pohlhausen technigque complex
functions of 07 = 0 (W) should still be solvable.
Variable magnetic fields,

The magnetic field has been assumed to be constant
in: this dissertation. Studies of magnetic fields which
are functions of x and y would be important. This change
would complicate the equations; however, as a first step
onevcould assume a field variable in y but fixed in x.

Thus, the momentum integral would be changed but the

method of solution would remain the same since the magnetic

field assumption of invariance in x would still be valid.

Improvements . in the von Karman~Pohlhauseﬁ?approximationa
Several methods have been proposed which improve

the accuracy of the von Karman-Pohlhausen method in the

gasdynamic case (1), The most effective of these

53



. improvements involves the simultaneous solution of both the

momentum-integral equation. and the energy integral equatien.

While this extension: has provided definite improvements in
accuracy, it nécessarily'complicates the solution. This
extension should also be investigated for the magneto-

hydrodynamic case,

L
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APPENDIX A

THE TWO-DIMENSIONAL INCOMPRESSIBLE BOUNDARY

LAYER EQUATIONS FOR STEADY FLOW

- The incompressible, two-dimensional, steady flow equations
of motion and continuity follow directly from the well known

Navier-Strokes equations:

u M _22* - _i_gﬂi Q342+-QZ% A

USC VS T Te T e ox (5 3h) (a-1)
2V P v ¥V -

ugE V3 =%"%Ea = V(5 + %) (4-2)
U + Q_\./— = O (A-3)
X oY

The boundary layer concept:-assumes that there is a very thin
layer in the immediate neighborhood of the body in which the
velocity gradient normal to the wall, J%é , assumes very large
values. In this region'ﬁﬁ/A%% may be significant even though m
is very small since %ﬁ? is itself very large.

In the rest of the flow field outside this boundary layer
such velocity gradients do not appear and 7T has negligible values.
In this region.the flow is frictionless and potential.

From these assumptions and known solutions to the Navier-

Strokes equations it is well established, (7); that the boundary
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layer'thicknessv

S-f“’JXY‘ where

3<<L, the length of the body.

Also, in the boundary layer itself:

1.

W W

u 1s of the order of U, the flow velocity.

v is of the order of § since v.= 0 at the wall.
X is of the order L,

y is of the order §

U, L of order 1.

Define the dimensionless functions u'*, v¥, x¥, y*, P¥, Ry as follows:

A

u+

=

= u/U,
= v,
=x/L ,

¢ =,Y/L )

= p/py?

ULA , of order 1/8 => large Ry.

Equations (A-1)-(A-3) may now be written in dimensionless form by

multiplying through by L/Lf , a constant, and using the relations

above,

It will

Beneath each term appears its respective order of magnitude.

be assumed for the time being that X and Y are significant

but unknown. These relations will become the ponderomotive body

forces in the derivation of the magnetohydrodynamic boundary layer

-equations in Appendix B. Proceeding as indicated above:




8 TRANRIY,
G B2 o B A N 1 B PM” 197
R AF) ~ eUE ) oL L) o)
| U v |
Q(U) + g( = O
o) @)
2u* w T P YRR P 1/ 1
Then U e v e L5 * af‘z]
L s 4 s 4 5
o AR s
Vi QV* - L - ﬁ 4 ;a—vj ma
“*%vf* VS = PU‘] R [See BV"]
Ry -y o2 _S—- 'g‘z
} : $ B ) ] S
w2 =
%}‘*"’ Syr = ©
1 2
I Y

Since  $<< L'and L is of order one, these equations may be

reducedfby neglecting the terms which contain & or multiples

thereof:

M, yad
U5y

I

X P goU
"(T‘}g’;‘i \)aya

_ Y _ _L_é_
0= e 3

If Y. = 0, as will be shown to be the case under the magnetohydro-

oP

dynamic assumptions of Appendix B, Y2 O from the above equation

.and. the so-called bouwddary layer equations for two-dimensional

incompressible steady flow result:
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APPENDIX B

MAGNETOHYDRODYNAMIC, STEADY STATE, TWO-DIMENSIONAL AND

INCOMPRESSIBLE BOUNDARY TAYER EQUATTONS

For many aero problems the magnetic Reynolds number Re 1is
-small, Under this cendition the induced magnetic field. due to
Tlow may be neglected. with respect to the applied field Ho°

Only‘two—dimensionalwflow will be considered and only the x
and y velocity cemponents will then appear. Similarly, for the
magnetic field H, will be zero, However, the eleetrical current

E’ and. field E have z - components only. For the case of small o

"H=H, +H +T*H +. 0

E=E, +0E, +d2E, +*"
‘whére'the subscript 0" refers:to the externally applied:. fields., It
. is assumed that Hy, has only the y-compenent Hyo. In the boundary
,'layerxthe-XFWise»velocity component is much lérgercthan:the y-wise

velocity component. So that:

xp: = (LLHVQ‘VH;@)RQ LLHyoR\ ’

+0{

-—p

Ix H = (WHy =V H )R & WHy K

and. implies

-that

4

C = o(E+ i 8xH) = o (E, M, FxH,) + THE uy Fx H, )+

‘IReference (5), pp. 65-67.
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In this problem there is only the z-component of —i., ‘(neutral charge

density), implying
. - 2f |
by = T (Ezo t4, UHy) + T (E tA, UHy )+

The circuit of the electric. current must be closed. It may be
assumed that the current is taken up by sultable electredes,
comnected externally by a ecircuit of resistance Rg. If hg is the
distance between electrodes (the depth of the field in the z-
direction) and A, their equivalent area, the external current is

Io = Aelz, =5 the boundary condition

heE = = Rele =~ ReAeliz

or
Egot TEz + = = %9‘-[( Ego tAMUHys) + T(Ez t, UHn) + -]
Let @e:—: _&f}gﬂ.— , assumed small.
e
Then

Ezo = ~6e Ezo - BG/MML’LHYO s

Ezi = ~Be Bz = Be ol Hyr o

Ezn = - BeEzn = Befhey U Hyn

Using these relations the E,'s may be found:
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giving

[((38@ /UmLLHYO]“’G_Z[':]"'"' 3

L

5= l+(3 LT UHyo + Tt Uyt + ]

The ponderomotive force in the equations. of motion is then

TxE=F ,
AR

L X B =/um © O .‘;L = —(L:Z/U‘mHy)ﬁ\ +(0‘z/ume>j\)
Hx Hy

Fex = 125, Ut + ET Uy e )
] 2
Fey=ﬁ?3—e(r/djtuon+“'> .

For small e ,o nand:first approximation:

S 2
o=~ Tt , Ry

il

O

For incompressible flow, @ = constant, the fundamental equations

of magnetohydrodynamics become

v.-% =0,

o 2L - (V)T = - V(Pw p £)e p 77,

which reduces for this special case to

ag pIVE. 3P _ 2P _

xTSyT 9 5y =5z O’

TSV 1 dP _ CioHe Su
WS TVSY T T F ax L "L“);y‘ ’



APPENDIX C

COMPUTER PROGRAMS AND THE

SAMPLE RESULTS

-The following nomenclature has been used'l

A3 = @%

AL = U/U,

lAll programs are written in IBM:FORTRAN IT.

, - dhm , d _5_1_12
T 8/Am -
(5) e 3% [5m(2¢) EXP(-2¢) :}
T(4) = A s [Sin(z9) EXP(-20) Sv_%e]
7(3) = AMX, A
T(2) = - mx, ¢
INT? -b_: ‘Computer Iibrary Integration Subroutine
Y = ‘ Y

3
F3F3 = FiF/(2P/T(4))
Pl = 2 (&

a(/\m)( )
"2 - %"‘)(s)’ 'SK
Al = NAm
A,B,Cyuue = a;0,C,...
A2,B2,02,... = _3_ )(a,b,c,---)
49,89;,69,... = z(rnx)(a b,C,* ) ,gz(a.b.c,-o-
Q- = 36+/Ans 2COSP

2The INT subroutine is of iﬁgelf several times longer than the
remainder of the entire program. -For brevity, therefore,:-it is not

included ‘in detail.

6L
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A6 -

A7
- B3
By

NE
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/RxCs

U/l
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w N

FLAT PLATE,MHD ‘BL,BODY~FIXED B,SIGMA CONST.

DIMENSION. T(15)

COMMON T,A,B,C;D;E,AL

T(2)=0.

T(3)=-001

T(4)=0.

CALL INT:(T,1,2,1.,1.;1.,1.,1.,1.,)

D06 J=1,990

CALL INTM

IF (T(4)}8,8,11

A3=SQRTF(T(2)/T(4))
AG=2 FAKANFAS
ZJ=J

2J=7.4 /100,

JI=ZJ
IF (J-JJ%100)6,2,6
WRITE OUTPUT TAPE 3,3,T{(2),A6

FORMAT (LHMX =F5.2,8X,19HFRICTION FUNCTION =E12,5,/13X,
1. 3HETA, 15X, 6HU/UINF)

=1

DO .9 IB=1,10

A5=Y/A3.

AT=ALAE* (AT (B (CHY* (DHTHE) ) ) )
WRITE OUTPUT. TAPE 3,10,A5,A7
FORMAT (8X,E12.5,8X,E12.5)

Y=Y+.1

CONTINUE

CALL EXIT

END (1,0,0,0,0,0;1,0,0,1,0;0,0,0,0)
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SUBROUTINE DAUX

DIMENSION T(15)

COMMON T,A,B,C,D,E,AL

Al=1.

AL=1.-7(2)

Q=36.+T(4)

A=(60.+9.%#T(L)*(1.+41))/Q

B=(T(4)*(1.+A1))/2.

C=(=20.%T (L )¥A1+(20.+3.%T (L) )*(A1+1. )*¥T(4)) /(2.%Q)

D=(30.%(T (4 )*A1~L. }+3.¥T (4 )*(2. -T(4 P(1.+41) ) /(2.%Q)

B=(12.%(6.-T(4)¥A1)-(6.-T(4))*(1.+AL)*T(4))/(2.%Q)

Ao=(9.%(1.+A1)-4)/Q

B2=(-1.-A1)/2.

C2=(10.,-C+3.%T(L)*(A1+1.))/Q

D2=(18.%A1+3.~D-3.%¥T (4 )*(1.+41))/Q

E2=(-9.%A1-3.~E+T(4)%*(1.+41))/Q

P=A/2.+B/3+C/L.+D/5.+E/6 .~A%A /3 . -B*B/5.-C*C/7.-D¥D/9. ~-E*E/11.
1-D¥E/5.-A%B/2. -2 ,%A%C/5,-A%D /3., - 2¥AXE/7 ., -B*C/3,~2.¥B¥D /7. ~B*E/l,.
2-C*¥D/L, ,~2 . %C¥*E/9.

P1=42/2.4B2/3.+C2/L .+D2/5.+E2/6 =A% (2.%42/3.+B2/2 .+2.%C2/5 .4D2/3.
1+2.%E2/7. )-B*(2.%B2/5.+A2/2,+C2/3 . +2.%D2/7 . +E2 /L, . )~C¥*(2.%C2/7.
2+42.%A2/5 ., +B2/3.4D2 /L. +2.%E2/9, )-D¥*(2.%D2/9.+A2/3 . +2.%B2/7 .+C2/L,.
3+E2/5. )-EB¢(2.%E2 /11,42, %42 /7 . +B2 /L, .42.%C2/9.4D2/5. )

F=2, ¥P¥A~ly , ¥T (4 ) ¥P¥P* (1. +AL1) -2, %T (4 )*P(1.+A1)%*(1.~4/2.~B/3.
1-C/L.-D/5.-E/6.)

T(5)=(F+4 . *T (4 )*P*P) / ( (PHP+2.#T (4 ) ¥P¥PL)*(AL+AI*T(2)))

RETURN -

END(J-,O:03030303130305'13030203030)



MX = 0.10
MX = 0.20
MX = 0.30
MX = 0.40

oNoNoNoNONONONGONONS) oNoNoNONONONONORONS) oNoNoRoNoNoRORONONG

oNoNoNoRoRoRORORONG]

FRICTION FUNCTION = 0.45948F-00
ETA U/UINF
.5945LF 00 0.13715E~00
.11891E 0L 10.27591E-00
.17836E 01 0.41382E-00
.23782F 01 0.54532F 00
.29727E 01 0.66342E 00
.35672F 01 0.76116E 00
.41618F 01 0.83326F 00
.47563E 01 0.87759E 00
.53508E 01 0.8968LE 00
.59454F 01 0.90000E 00

FRICTION FUNCTION = 0.28683F~00
ETA U/ULNF:
.72126F 00 0.10488E-00
14425 01 0.21581E-00
.21638E 01 0.33270E-00
.28850F 01 0.4,5057E--00
.36063E 01 0.56162E 00
.43276E 01 0.65727E 00
.50488E 01 0.73014F 00
.57701E 01 0.77617E 00
.64L913E 01 0.79669E 00
72126 01 0.80000E 00
FRICTION. -FUNCTION = 0.13056E~00
ETA U/UINF.
.98668E . 00 0.6703LE-01
.19734E O1 0.14608E-00
.29600F 01 0.24009E-00
394678 O 0.34464E-00
.L9334E 01 - 0.45064E~00
.59201E 01 0.54705E 00
.69068E. 01 0.62358E 00
L78934E O1 0.67347E 00
.88801F 01 0.69615F 00
.98668E 01 -0:70000E- 00
FRICTION FUNCTION = 0.20885E-01
BETA U/UINF
.19042F 01 0.23981E-01
.38085E O1 0.67331E-01
.57127E 01 0.13672E=00
:76170E 01 0.22826E-00
.95212F 01 0.33107E-00
.11425E 02 0.43092E~00
.13330E 02 0.51380EF 00
.15234F 02 0.56958E 00
.17138E 02 0.59553E 00
.19042E 02 0.60000E 00
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w N

FLAT PLATE,MHD BL,FLOW-FIXED B,SIGMA CONST.

DIMENSION T(15)
. COMMON T,A,B,C,D,E, AL

T(2)=0.

T(3)=.001

T(4)=0.

CALL INT (T,1,2,1.,1.,1.,1.,1.,1.,)
DO 6 J=1,3000

CALL INTM

IF (T(4))8,8,11
A3=SQRTF(T(2)/T(4))
A6=R ¥ ARAL*AS

ZJ=J

ZJ=ZJ /100.

JI=ZJ

IF (J-JJ%100)6,2,6

WRITE OUTPUT TAPE 3,3,T(2),46

FORMAT (4HMX = F5.2,8X,19HFRICTION :FUNCTION =E12.5, /13X,

13HETA,15X,6HU/UINF)

Y=.1

DO 9 1B=1,10

A5=Y/A3

AT=ALFT*( AFYH( BH*(CAY*(DHY*E) ) ) )
WRITE OUTPUT TAPE 3,10,45,A7
FORMAT (8X,El12.5,8%,F12.5)

Y=r+.1

CONTINUE

CALL EXIT
END(1,0,0,0,0,0,1,0,0,1,0,0,0,0,0)
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SUBROUTINE DAUX

DIMENSION T(15)

COMMON T,A,B,C,D,E,AL

A1=0,

A=

Q=36 .+T(L)

A=(60.49 . %*T(4)%*(1.+A1))/Q

B=-(T(4)%(1.+41))/2.

C=( =20, *T(4)*A1-H(20.+3 . %T(4) )*(AL+1. )*T(4))/(2.%Q)

D=(30.%(T(4)*AL~4, )43 . ¥T(L)*(2.~T(4))*(1.+41))/(2.%Q)

E=(12.%(6,~T(4)%AL)=(6.-T(L)*(1.+A1)*T(4))/(2.%Q)

A2=(9,%(1.+4A1)-4)/Q

B2=(-1.-A1)/2.

C2=(10.-C+3.%T(4)*(A1+1.))/Q

D2=(18.%A1+3. -D-3.%T(4)*(1.+A1))/Q

E2=(-9,%A1-3, ~E+T(4)*(1.+A1))/Q

P=A/2,+B/3.+C/L.D/5.4E/6 . -A¥A/3, -B¥B/5 ., ~C*C/7.~-D¥D /9, ~-E¥*E/11.
1-D¥E/5, -A%B/2, -2 ,%¥AXC /5, -A¥D/3 ., -2 ,%A¥E/7 , -B*C /3., -2,%B*¥D /7, -B*E /L.
2-C¥D /L. -2 .%C*E/9, .

P1=A2/2.4+B2/3.4+C2/L .+D2/5.4E2/6 . -4%(2,%A2/3 . 4B2 /2 ,4+2.%C2/5.4D2 /3.
142, %E2/7. ) -B%(2.%B2/5.,+A2/2,4C2 /3 .4+2.%D2 /7 . AB2 /L. ) -C*¥(2.%C2 /7 .
2+2.%A2/5 ,4B2/3 .4D2/L . +2 . %¥E2/9. ) -D*(2.%D2 /9 ,+A2 /3,42 ,¥B2 /7. 4C2/L.
34E2/5, ) -E%(2.%B2/11.42.%A2/7.4B2/L, .+2.%C2/9.4D2/5.)

F=2  ¥P¥A— T (L) ¥P¥P*( 1, +A1) -2 ¥T (4 )*P*(1,+A1)*(1.-A/2.~B/3.
1-C/L.-D/5.-E/6.)

T(5)=(F+y. *¥T(4)¥P*P) /((P¥P+2 T (4 ) ¥ P¥PL)* (AL+AI*T(2)) )

RETURN

END(1,0,0,0,0,0,1,0,0,1,0,0,0,0,0)



MX = 0.10
MX =.O.2O
MX = 0.30
MX = 0.40

eNeoNoNoNoNoNoNoNONG] eNoNoNoNeNoNoNoNoNG!

eNoNoNoNoNaNoNoNoNG)

eNoNoNoNoRONO]

0

0
0

FRICTION FUNCTION = 0.85561E 00
ETA U/UINF
.50153E 00 0.20273E-00
.10031E 01 0.38370E-00
.15046E 01 0.54374LE 00
.20061E 01 0.68181E 00
250778 01 0.79595E 00
.30092E 01 0.88428E 00
.35107E 01 0.94599E 00
.40123E 01 0.98233E 00
.45138F 01 0.99757E 00
.50153E 01 1.00000E 00
FRICTION FUNCTION = 0.10336EF O1
ETA U/UINF
. 48874E~00 0.23052E-00
L9TTLIE 00 0.42283E-00
.14662E 01 0.58317E 00
.19550E 01 0.71500E 00
.2LL37E 01 0.82001E 00
.29325E 01 0.89910E 00
.34212F 01 0.95331E 00
.39100E 01 0.98481E 00
.L43987E 01 0.99792E 00
4887LE 01 1.00000E 00
FRICTION FUNCTION = 0.11895FE 01
ETA U/UINF
.47620E-00 0.25217E-00
.95240E 00 0.45229E-00
.14286F 01 0,61180E 00
.19048E 01 0.73823E. 00
.23810E 01 0.83624E 00
.28572E 01 0.90871E 00
.33334E 01 0.95786E. 00
.38096E 01 0.98629E 00
42858F 01 0.99812E 00
47620 01 1.00000E 00
FRICTION FUNCTION = 0.13295E Ol
ETA U/UINF
L6274E-00 0.26886E-00
925478 00 0.47420E-00
.13882E 01 0.63228F 00
.18509E 01 0.754L14E 00
.23137E 01 0.84681E 00
LR2776LE 01 0.91463E 00
.32392E 01 0.96049E 00
.37019E 01 0.98709E 00
L164L6E 01 0.99821E 00
JL627LF 01 1.00000E 00
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w N

FILAT PILATE,MHD BL,BODY--FIXED B, SIGMA VAR.

DIMENSION T (15)

COMMON T,4,B,C,D,E,AL

T(2)=0.

T(3)=.001

T(4)=0.

CALL INT (T,1,2,1.,1.,1.,1.,1.,1.)
DO 6 J=1,3000

CALL INTM

IF (T (4) 8,8,11

A3=SQRTF (T(2}/T(4))

AG=2 FARALFAS

ZJ=J

ZJ=7J /100.

JI=ZJ

IF (J-JJ#100)6,2,6

WRITE OUTPUT TAPE 3,3,T(2),A6

FORMAT (4HMX =F5.2,8X,19HFRICTION FUNCTION= E12.5,/13X,

13HETA ;15X ,6HU/UINF)
=.1

‘DO 9 1B=1,10

A5=Y/A3

AT=A LT AT (BHY*(CH#(DHYHE) ) )
WRITE OUTPUT TAPE 3,10,A5,A7

FORMAT (8X,E12.5,8X,E12.5)

Y=v+.1

CONTINUE

CALL EXIT

o (1,0,0,0,0,0,1,0,0,1,0,0,0,0,0)
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SUBROUTINE DAUX
DIMENSION T(15)
COMMON T,A,B,C,D,E,AL
A1=0,
AL=1,
Q=36.+T(4)
A=(60.+9,*A1*T(4))/Q
B=-(A1*T(4))/2.
C=T(A)*(3.*A1*T(A)+Qo,)/(2;*Q)
D=(36, %A1 T(A)-l2o “T(L4)*(3.%A1 *T(4)4+30. ))/(2 *Q)
=(72. =18, ¥ALFT (L )+T(4)¥ (12, +AL* T(A)))/(z Q)
A2=(9.%A1-A)/Q
B2=A1/2,
C2=(3.%A1%*T(4)+10.-C)/Q
D2=(18.%A1-3,%A1*T(4)-15.-D)/Q
E2=(-9.%A1+6,+A1*T())-E) /Q
P=A/2,4B/3,4+C/L.4D/5 ., +E/6 . -A*A/3 . -B*B/5 . -C*C /7 .-D¥D/9, -E¥E/11,

1-D¥E/5, ~A¥B/2.~2 . %A*C /5, =A¥D /3, =2 ,¥A¥E /7, -B*C /3. =2 ,%B*D/7, -B*¥E/, .

2-C¥D/L,. -2 . ¥CXE/9,

P1=A2/2.4B2/3.402/L.4D2/5 ., 4E2/6 . ~-4%(2,%A2/3 ,4B2 /2 ,42.,%C2/5.4D2 /3.

14+2.%E2/7.)-B*(2,%B2/5.+A2/2.4C2/3 . +2.%D2/7 ,4F2/l,. ) -C*(2.,%C2/7.
242,%A2/5,4B2/3 .4D2/L . +2.%E2/9. ) -D*(2.%D2/9 . +A2 /3 .42 . %B2 /7 .4C2 /L.
3+4E2/5, ) -E*(2,%E2/11.+2.%A2/7 ., +B2/L,.+2.%C2/9.4D2/5.)

F=2 , %P*A=), #T (L) ¥P*P*AL-2 %1 (4 ) *¥P*A1% (1. -A/2.~-B/3.
1-C/L.-D/5.-E/6.)

T(5)=(F+2 . ¥T(4)¥P*P) /((ALHALRT (2) )% (P*P+2 ,¥T(4)%P*PL))

RETURN

“END(1,0,0,0,0,0,1,0,0,1,0,0,0,0,0)
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MX. = 0,10

it
(@]
[cNeoNoNoNoRoRNoNoNoNe RO QOO OO ODOOOOO

R
I
@]
W

]
O
o~
loNoNoNoRoNoNoNoNOoNoN®]

[oNoRoNoNoRoRORONONS

ETA

. 53002E
. 10600E
.15901E
.21201F
.26501E
.31801E
. 37102E
L2L02E
247702E
.53002E

ETA

- 5455TE
.10911E
.16367E
,21823E
.27279E
-32734E
-38190E
L36L6E
-49101E
< 54557E

ETA

. 56L56F
,11291E
.16937E
.22583FE
,28228E
.3387LE
.39519E
.4 5165F
. 50811E
> 56456E

ETA

. 58720E
LLTLLE
.17616F
.23488E
,29360E
-35232E
JLL104LE
-46976E
. 528L8E
. 58720E

- FRICTION FUNCTION = 0,58338E 00

U/UINF
00 - 0.15508E-00
o1 0.31122E-00
01 0.L46534E~00
01 0.61131E. 00
o1 0.74157E 00
01 0.8L879E 00
01 0.92750E 00
ol 0.97572E Q0
01 0.99659E 00
01 ~ 1.00000E 00
FRICTION FUN
U/UINF
00 0.14410E-00
o1 0.2922LF-00
oL - 0.44269EF-00
01 0.58929E 00
01 0.72346E Q0
o1 0.83633E 00
oL 0.92071E 00
o1 0.97320E 00
oL 0.99620E 00
01 0.10000E 01
FRICTION FUNCTION = 0.46652E-00
U/UINF
00 0.13336E-00
01 0.27368E-00
o1 0.42054E-00
o1 0.56775E 00
oxi 0.70576E Q0
o1 0.82L415F 00
01 0.91408F 00
o1 0.9707LE. OO
oL 0.99583E 00
o1 0,10000F 01
FRICTION FUNCTION = 0.41042E-00
U/UINF
00 - 0,12276E-00
o1 0.25535E-00
o} 0.39867E-00
o1 0.54L64L9E 00
01 0.68828E 00
o1 0.81212E 00
01 0.90752E 00
oL 0.96830E 00
0L 0.99545E 00
oL 0.10000E 01

NCTION = 0,52428E 00

s



90 WEDGE ,MHD-BL,X=0.50,B0DY~FIXED B,SIGMA VAR.

DIMENSION .T(15)

COMMON T,A,B,C,D,E,AL /
T(2)=.001

T(3)=.0002

T(4)=.024853

ZA::L ° :

CALL INT (T,1,2,1.,1.,1.;1.51.,1.)
DO 6 J=1,5000

CALL INTM

IF(T(2)-24%.1)6,2,2

A3=SQRTF(T(2)/T(L))
A6=2 FARA)MAS
WRITE OUTPUT TAPE 3,3,T{2),A6

FORMAT. (4H.MX=F5.2,8X,19HFRICTION FUNCTION=E12.5,/13X,

13HETA ,15X , 6HU/UINF)

“Y=.1

DO 9 1B=1,10

A5=Y/A3
AT=ALFYH (AT (BHE* (DHY*E) ) )
WRITE OUTPUT TAPE 3,10,A5,A7
FORMAT (8X,El2.5,8X,El2.5)
Y=Y+.1

ZL=Z)+]1.

CONTINUE

CALL EXIT

END
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SUBROUTINE DAUX
DIMENSION ‘T(15)
‘COMMON -T,A,B,C,D,E,AL

Al=.5

A1=(1./(T(2)%3.) )AL

Q=36 .+T(4)

A=(60+9.}A1XT(L))/Q

B——Al’T(A))/Z

C=T (4)%(3 . ¥AL*T(4)+20.)/(2.%Q)

D=(36 . ¥AI*T(4)~120.=T(4)*(3. *ALXT(4)+30.))/2.%Q)

E=(72.=18 %ALXT (4)+T(4)%(12.+A1%T(4) ) ) /(2.%Q)

A2=(9.#41-A)/Q

B2=-A1/2.

C2=(3.%A1*T(4)+10.-C)/Q

D2=(18 +¥A1~3 JATHT(L)-15.-D)/Q

E2=(-9.%A1+6 .+A1%*T(4)-E)/Q
A9=(9.*T(4)*(-A1/T(2)))/Q

BY=(T(4)*A1/T(2))/2.

C9=(~L.5%T(4)*T(4)*A1/T(2))/Q

D9=(-18.¥T(L J¥AL/T(2)+1. S*¥T(L)*T(4)*A1/T(2))/Q
‘E9=(9.#T (4)¥A1/T(2)~. 5%T(4)*T(4)*A1/T(2))/Q

P=A/2 .4B/3.+C/L.4D/5 .AE/6 . ~-A¥A /3 .-B*B/5 .~C*C /7 .~D* D/9 -EX¥B/11.
1-D¥E/5 . -A3 rB/2 2 FAKC/5 ~AKD/3 .2 FAKEST . —B*C /3 . =2 . ¥B*D/7 .~B*E/L.
- 2=C*D /L, .-2 . ¥C*¥E/9.

l——A2/2 +B2/3 +02/u +D2/5.482/6 . -A%(2.%A2/3 . 4B2/2 .42 .,* 02/5 A4D2/3.
142 ¥E2/7 . )~B*(2.3B2/5 +A2/2 . 4C2/3 A2 D27 AT/, . )-C*(2.%C2 /7 .
242 %A2/5 ,4B2/3 . AD2/L A2 . ¥E2/9. )~D*(2.%D2/9 .+A2/3 .42 . ¥B2 /7 .4+C2 /L.
3425, ) =B (2 HER/1L AR KAR ST ABR/L AR #C2/9.4D2/5.)

P2=A9/2.=B9/3 a+C9/4'.+D9/5 AE9/6 . -A%(2 .-><-A9/3 ABY/2.42 .-><-c9/5 .+D9/3.
142 %E9/7..)-B*(2.%B9/5 . +49/2 . +C9/3 .+2.¥D9/7 AEY/4.. )-C¥(2.%C9/7.
2423 A9/5 +B9/3 .4D9/k .42 .¥E9/9. )-D*(2.%D9/9.+49/3 . +2 *BY/T +C9/ k.
34E9/5. )-B*(2.%89/11 .42 .¥A9/7 . +B9/k .4+2.,%C9/9.+D9/5.)

F=R2 H¥P¥Al . T(A) (PHPHAL-2 ¥T (L )*P¥AL%*(1._A/2.-B/3.
'1-C/k.-D/5.~E/6.)

T(5)=(F4R *T(L)¥P*P) /AL=~2 ¥P¥P2¥T(L) ) /(P¥P2*T(4.) ) /(P¥P42 . #P*PL#T(4) )

RETURN

END



MX=0.

MX=0.

MX=0

10 FRICTION FUNCTION = 0.51209E 00
ETA U/UINF
0.48L463E-00 0,1147LE-00
0.96927E 00 0.21222E~00
0.14539E 01 0.29393E-00
0:19385E 01 10,36076E-00
0.24232E 01 0:41331E-00
0.29078E 01 0.45215E-00
0.33924E 01 0,47822E~00
0.38771E 01 0.49303E~00
0.43617E 01 0.49906E~00
0.48L63E 01 - 0. 50000E-00
20 FRICTION FUNCTION = 0.48332E 00
ETA - U/UINF
- 0.48308E-00 0.10783E-00
0.96616E 00 0.20031E-00
0:14492E 01 0.:27976E-00
0.19323E 01 0,34702E-00
0.2415LE 01 0.40202E-00
0.28985E 01 0. L4LL0E-00
0.33816E 01 0.47399E-00
0.38646E 01 0.49146E-00
0.43477E 01 0:49882E-00
0:48308E 01 0. 50000E~00
30 : FRICTION FUNCTION = 0.45488E 00
ETA ~U/UINF
0..48709E-00 0, 10206E~00
0.97419E 00- 0.19022E-00
0.14613E 01 - 0.26762E-00
0.1948LF 01 0,33514E-00
0.24355801 0:39221E-00
0.29226E 01 0.43762E-00
0.34097E 01 0.47029E-00
0.38967E 01 0.49009E-00
0.43838E 01 10.498618-00
0,48709E 01 0. 50000E. 00
40 FRICTTION FUNCTION = O. 42663E-oo
ETA U/UINF
0.49483E-00 0.96878E-01
0.98966E 00 0.18101E-00
0.14845E 01 0.:25642F-00
0.19793E 01 0.32410E-00
0.24742F 01 0.38305E-00
0.29690E .01 0.43127E-00
0.34638E 01 0, L46681E-00
0439586E 01 0 48879E-00
0.44535E 01 0:498L1E-00
0.49483EF 01 0 +50000E=00

77



16
17

18
14
13

78

CIRCULAR CYL MHD BL,BODY-FIXED B,SIGMA VARIABLE

DIMENSION T(15)
COMMON T,A,B,C,D,E,F,G,H,P,A4,B3,Q3
B3=1.

T(2)=.005

T(3)=.0005

T(4)=.0526

Z4=1.

CALL INT (T,1,0,1.E-8,100.,1.,.01,5.8E-5,.5)
DO 6 J=1,32000

CALL INIM
Biy=T(2)/.017453293
IF(BL4—=44.)12,16,16
IF(B4-45.5)17,18,18
T(2)=T(2)+.034906586
T(4)=T(4)+T(5)*.034906586
IF(BL4-89.2)12,14,14
IF(B4=90.1)15,13,13
T(2)=T(2)+.017453293

- T(4)=T(4)+T(5)%.017453293

IF(B4-111.)12,12,8

IF(4)2,2,19

IF(BL4-ZL%5.)6,2,2

QLO=T( 4 )¥EXPF(2.%T(2))/SINF(2.%¥T(2))
A3=SQRTF(Q10)

A6=2 ¥A*AL/AB

WRITE OUTPUT TAPE 3,3,BL,Ab

FORMAT (8H THETA =F6.1,8X,18HFRICTIIN FUNCTION=E12.5,
1/13X,5HETA R,15X,6HU/UINF)

Y=.1

DO 9 IB=1,10

A5=Y¥*A3

A7=0373% (AT (BT (CHY* (DT (BT (P (GHY*H) ) )
WRITE OUTPUT TAPE 3,10,A5,A7

FORMAT (8X,E12.5,8X,E12.5)

Y=y+.1

ZL=ZL+1.

IF(4)8,8,6

CONTINUE

CALL EXIT

END




SUBROUTINE DAUX

DIMENSION T(15)

COMMON T, A,B,C,D,E,F,G;H,P,AL,B3,Q3

QU=T(2)

Q5=T(4)

AL=2 #SINF(QL)

- Q=2.%COSF(Q4)

Q7=EXPF(2.%Q)

Q8=COSF(2.%Q))

Q9=SINF(2.%QL)

Q1=B3%Q5*Q7/Q9

Q2=2,%Q5%Q7 /AL

W=.98

A=(336.%W+18.%QR)/(126.+Q1)

B=-Q2i,5

C=(56.361%W+3.%Q13%Q2) /(126 .+Q1)

D=-8.75%A~7 .5%B=3.75%C

E=21.#A+16 . %¥B+6 . *C

F=-21,%#A=15.%B=5,%C

G=10,%A+48 . %B/7 .+15.%C /7.

H==15.%A/8 ,~5.%B/L,-3.%C/8.

A2=A/(126.+Q1)

C2=(56 . *W+3.#Q2-C)/(126.+Q1)

D2=-8,75%A1-3.75%C2

E2=21,%A2+6 ,%C2

F2=-2] ,#A2-5,%C2

G2=10.%A2+15.%C2/7.

H2=-15,%A2/8.=3.%C2/8.

49=18./(126.4Q1)

B9=.5 _

-~ 09=3,%Q1/ (126 .+Q1) ,

D9=-8.75%A9~7 . 5%B2-3.75%C9

EG=R1,%#A9+16 ;3#B9+6 . #C9

F9=-21,%A9=15,%B9=5,%CO

G9=10.%#AG+48 ., ¥B9/7 .+15,%C9/7 .

H9=-15.%A9/8.~5..%B9/L .~3 .%C9/8. ‘

P=2 . #A¥( .25=A/6.-B/l4.=C/5.<D/6 .~E/7 .~F/8.-G/9.-H/10. }+2 . %B*(1./6.
1-B/10.~C/6.-D/7 .-E/8.~F/9.=G/10.-H/11 . +2,%C*(,125-C/14.-D/8.~E/9.
2-F/10.-G/11.-H/12, )42, %D%(,1-D/18.~E/10,-F/11.~G/12.-H/13. }+2 . ¥E3*
3(1./12.=E/22.=F/12.=G/13 .=H/1L. )+2 #F*(1. /1L .<F/26 .-G/14.-H/15.)
L2 .#G#(1. /16 .~G/30 .~H/16 . )+2 ;s1#(1. /18 .-H/34.) |

P1=2,%A2%( ,25~A/3 .=B/L.~C/5.~D/6 .~E/7 .-F/8.~G/9.~H/10.)+2 . #C2%(.12
15~A/5.=B/6.=C/7.-D/8.<E/9.=F/10.=G/11.-H/12.)}+2.%D2%(.1-A/6 .-B/7.
2-C/8.-D/9.-E/10.-F/11.-G/12.=H/13. )+2 ., #E2%#(1./12.~A/7 .-B/8.~C/9 .~
3D/10.-E/11.~F/12.-G/13 ,-H/14 . 42 . #F2#(1./1,.~A/8.~B/9.=C/10.=D/11.
4=E/12.=F/13.=G/14.-H/15. H+2.%G2%(1./16.-A/9.~B/10.-C/11.-D/12 .-E/"
513 .=F/14.~G/15.=H/16 . )+2 . #H2#(1./18.~4/10.-B/11.~C/12.-D/13.~E/14.
6-F/15.=G/16.=H.17.) o

P2=2 . #A9*( . 25=A/3.=B/L4.=C/5.<D/6 .~E/7 .~F/8.~G/9.~H/10. }+2.#CP*( 12
15=4/5,~B/6 .=C/7 .~D/8.=E/9.~F/10.=G/11.-H/12. }+2.%D9*(.1-A/6.-B/7.
2-C/8.-D/9.-E/10.-F/11.=C/12.-H/13 . }+2.%E9*(1./12.-A/7 .-B/8.~C/9 .~
3D/10.-E/11.,~F/12 .=G/13 ,~H/L4 . }2 . %F9#(1. /L4 . ~-A/8.~B/9.~C/10.-D/11.
L=E/12.-F/13 .=G/14.-H/15.)+2.%G9*(1,/16.-A/9.-B/10.-C/11.-D/12.~E/
513.=F/1l.~G/15.-H/16. )+2 . #H9*(1./18.-4/10.-B/11.-C/12.-D/13 .-E/14.
6~F/15.=G/16 .=H/17 . )+2.3#B9*(1./6 .=A/L.~B/5.=C/6 .~D/7 .-E/8 .~
7F/9.-G/10,~H/11.)
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Q3=1.-A/2.-B/3.-C/L.-D/5.=E/6 .-F/7 .-G/8.-1/9.

F3=A/Q5-2.%Q7#(2.%P+Q3) /AL

Q6=((.5%F3*Q/Q7+P*B3/AL) /Q7+P*(Q8/Q9-1. ) /Q7-P1¥2 . ¥B3¥Q5 /QQ+
12 . %P1¥B3*Q5%Q8/ (Q9¥Q9 ) =4 . ¥P2¥Q5/AUH2 . ¥P2¥Q5%Q/ (AL*AL) ) /
2(.5%P/(Q5%Q7)+P1*B3/Q9+P2%2. /AL)

- T(5)=06
RETURN
END

THETA =

THETA =

THETA =

eheloNoloNoNoNoNe!

[cNoRojoRoRNoNoNoNON®)

5.0

ETA R
0.25076E=00
.50152E 00
.75228E 00
.10030E 01
J12538E 01
;15046E 01
<17553E 01
.20061E 01
s22568E 01
25076E 01
10.0

ETA R
.25170E=00
:50341E 00
J75511E 00
.10068E 01
.12585E 01
.15102E 01
.17619E 01
.20136E 01
.22653E 01
.25170E 01
15.0

ETA R
.25330E=00
.50659E 00
ST5989E 00
,10132E 01
.12665E 01
.15198E 01
J17731E 01
;20264 01
.R2797E 01
.25330E 01

OOOOOOOOOO

U/UINF
.62941F-01
.10769E-00
.13742E-00
.15537E-00
.164,92E-00
:16918E-00
.17066E=00
.17100E~00
:17104E~00
.17104E~00

leNeoloNoNoNoRoNoNoNe)

U/UINF
0.12511E=00
0.21417E-00
0.27340E~00
0.30922E-00
0.32829E~00
0.33681E~-00
0.33977E-00
0.34045E-00
0.34052E-00
0.34053E-00

0.18602E-00
0.31868E-00
0.40711E-00
0.46070E=00
0.48928E-00
0.50207E 00
0:50652E 00

.0,50755% 00

0,50766E 00
0.50766E 00

FRICTION FINCTION= 0.58377E 0O

FRICTION FUNCTION= 0.11556F O1

FRICTION ‘FUNCTION= 0.17062E 01 -
U/UINF o
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