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PREFACE 

.· Ma.gnet~fluidmecha,r.µ.cs. :i,s rapid.~ becoming. a field ef mere 
i . 

. . :Lm.;p~;rtari.ce t~a.n. it has enjoye~. :i,n tb,.e paf)t. 'M:'Uch. efi'0rt ·has· been 

:mad,~ t<:> (!)1:)tain .. sel'1,1t;L9ns. te · ~gnei\;,eftw..qmechanica.J..: b0,mq,~ry· laye:i; 
. ' , .• • , . I . :. . 

Ex.a.ct splu,tion,s, · hCll'W'eV'er, h.ave p:i:-ovE;in d;i:t'f.icult ami onJ.y 
. . ' ·. . ' ' . 

a. limited num.'l!iel' sf v:ery s:un:ple 9ases· can :!De s9J;ved by exact :m.eth0ds. 
. . '' . ' ,· . 

· ;rt ;is the 13urp~se ef tp.ilil stud.;r te :int:ro0:uce an S.I:ll:'rd;x;imate 

tecb.~iqu,e which ;,p.ll ~ll0w~gnetbhydr0dyna,mic•b9up.¢ary la;rer·prpb

l~s tobe s(;)lve.d q1J.ick1y and with ~eaf;?0nable acb¢a.cy. This methE?d 

. is•a::t,s0usectt0 1;10lve several p:roo;J,.~s !or·which ;no 0thE?rknq,,wn 

selutiens eµst at .this :J;i.m.e • 

. l am.partio~riy inG.ebtes. te Drs. M.Is:. Jova.no:vic., D.I:?,. I;iawo:rth 

and J. D, Pa'.rk:e~ .fer· their guie;iance and. ep.couragem:ent; ~l.130 to .D:r. 

Q.Ii. B,~ltan, .Dr. F)'..P, }lot~ and ·the ApJ:>li~d ~tn~tics ~E:3search 

L~iJ::>1?r9,t0rr~ Aero~pace Jiiesearch .ia.b~:rat~riel;1, Wr:Lght-Patte;rson /l;ir 

]ferce :Base, 0niis, 
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= velocity outside the boundary: layer. 

= velocity vect0r. 

= 

= soundary layer thickness. 

~r'(1-f)d~ ,displacement thickness. 

b£'.F(1-f)dyt ,momentum thiclmess. 

= u/U ,di.mensionless velocity.parameter. 

= y/S ,dimensionless distance. 

= undisturbea free stream veloci t;r. 

= viscous shear stress. 

= .fluid.viscesity. 

= J:)ressure~ 

- d.ens.i ty a 

= .fluid electrical conciuctivity. 

= specific heat at constant pressure. 

= specific·heat at constant velu:rne. 

ther:rpal conduc.tivi ty. 
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magnetic permeability. 
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= m, /Uoo. 



electric field strength. 
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CHAPTER I 

THE PROBLEM 

Magrietofluidynamics is discussed in this chapter in general terms 

to ohtain . .famil;i.arity with. some of. the. associateci difficulties-~ 1 

Emphasis' is placed upon thos~ areas which are specially applicahle to 

-boundary·;Layer fluid flow problems. Detaileci analysis is deferred t© 

later chapters. 

Plasma Dyr).amics 

. Plasma dY,1?.BJllics is the stuciy of the dynamics of ionized fluids 

ancl is net new, having long been impertant in the stu,d.yef.astrophy-

sical problems sµch as the motion ef interstellar gases. In recent 

years the engineering frentiers have beenpusheci into the realm of 

};)lasma dynamics and it is no longer the private pr(:)perty of the astro-

physicist.: Fluid flow preblems today ~ften involve ionized gases.as 

the engineer considers the re-entry ef orbiting vehicles as an example. 

Such vehicles may be winged and operate aerodynamically in a range of 

flight speeds l'eading to ionization of the fluid medi'Ulll anEl. for this 

lWh~~ fluids a,re influenced· by electromagnetic fi.elcis, • the 
a!).a.lysis ~f-the results is by means of "electromagneto-fluiEl.in.echanics." 
If the fluid is inc(:)mpressible,-the term"hyciro 11 will be found-in 
_place of the more general term "fluid" and when the fluid is in motion 
. the word ·' "dynamics" is usually found in place of · "mechanics. " By 
these conventions the study of an incompressible fluid in motion 

. through a w,agnetic field would he cal.led "magnetohydrodynamics.'" This 
convention 'will be followed and will be found in agreement with the 
literature. ' 

1 



reason considerable research is now being done in the area of ionized 

gas flows. 

2 

Just as the study of the boundary layer separation in fluid 

mechanics led to the important consideration of boundary layer control, 

so the study of. the boundary layer in the magnetofluidynamical case may 

well lead to possible boundary layer control in these new flight 

regimes. Before application.can be attempted, however, the magnetic 

field effects upon the plasma boundary layer must be first investigated, 

Two important boundary layer phenomena a.re separation and surface 

friction. Knowledge of both separation and surface friction are re

quired if the total drag of the body is to be determined, With such 

an understanding of the fundamental forces at work in the boundary 

layer itself, the possibility of control of these forces can be con

sidered; and with such control it may be possible to lower re-entry 

deceleration forces, reduce heat transfer to the vehicle and prevent 

instabilities during flight. 

The engineer has learned to ply his trade with the three states 

of matter: solids, liquids, and gases. Now, he must include what is 

often termed the fourth state, the ionized gas, Engineers must then 

allow for the influence of electromagnetic fields in flow problems. 

A complete analysis would in fact have to include fluid dynamic, 

electromagnetic and thermal effects; but thermal effects on the fluid 

flow equations are often secondary and will be so considered in this 

dissertation. Further, the analysis will be made from the fluid 

dynamic standpoint; that is, fluid dynamics will be generalized to 

include electromagnetic effects. 

Two methods suggest themselves, microscopic and macroscopic. 



~s1:1eetiGJfi/ijf!l0!:iitive an.d.negative ions., e.iectrons a.hd neutral 

;f:')ta.rticies. These charged.boct.ies.m.li he constantly influenced h>ythe 

elMtrt}fflagnet:ic fields.whereas.inno~l kinetfo theories the 

,articles a.re assumed: to travel .. without ,influence between collisions 

·in essentially straight lines, Collisi0ns between.the charged 

pa:t'ticles and neutral particles lead.to interactions on the gas as a 

· wh0le. Su.di. an artalysis necessarily· requires a J)recise description 

ef the collision.phenomenon, In.the mm-ionized. case one-particle 

d1.stributi0n functions are used.to c;iescribe the behavior leadi:n,gto 

t};Le well-known Boltzmann equation, .But as already stated, the 

particles in a plasma are never.free and.in addition a satisfactory 

'l 

"" 

descriptien 0f the plasina interaction .. and collision. process is not. now 

. knbwn, .Even if the collision process were known the resulting 

generalized Boltzmann equation would have to be solved simultaneously 

With the Ma:Jtwell. equations, . Unf ort~ tely, the coinplexi ty of such . a 

system of equations is such that generally .not even simple .now prob-

lems can be solved, .I:Iowever, they are still. very important since the 

generalized Boltzmann.equation, just as.inthe.non-ionized case, should 

reduce to .the macroscopic equati0ns as a·first approximation yielding 

·. valuable infor:ma:tion on the transpor·t coefficients, In the rnacros.cepic 

p0stulate. these coefficients. are int.reduced. as• .known or experimentally 

determined q,uantities. A .thoro\Jiah analysis of the microscopic approach 

may be found.in Magnetogasd.ynamics and Plas.rna Dynamics, Chapter I,3(5).~ 

Engineers are seldom. interested in the motion of individual 

particles .but rather·inthe macroscopic.quantities such.as pressure, 

2Numbers in p~rentheses indicate References in.the Bibliography. 



density, temperature, mean flow vel0cites, current density, etc. 

,When. considered :rnacroscepically the dynamics. of the plaSJµa are postu

lated. on the conservation laws ef mass, momentum, energy, and.charge. 

F0rmost practical, problems, theref'ore, the Maxwell-Boltzmann distri

butien fun.ction is simply too complex to be useful and for .this reason 

subsequent analysis will be made from the macroscopic or continuum 

.. point of view. The resulting equations must, of course, be consistent 

with, .those derived from.the microscopic considerati0n. 

Altheugha :plasma is in.general a composite of particles of 

diffe.ring. species, in many practical problems. the variatien in 

. comp0si tion is small. Such a plas:rna will be .considered in this 

dissertation. Inthis instance, the plas:rpa becomes very much simpli

fied, resulting in fluid. dynamic relations very similarto·thewell

krl0'wn :Navie~-Stokes eqlia.tions .but with the additional electrol!lagnetic 

force terms appearing as body forces •. 'rbese simplified equations will, 

of course, also llave to be treated simultaneously with.the Maxwell 

eqµations. 

With each simplification, :theoreticaL results will in general 

deviate further from.the r<;:lal case. Existing boundary layer c0ncepts 

withoutmagnetomotive effects are already complex after.a simplifica

tion of th~ l)favier..,Stokes equations. While present b0undary layer 

·theory ma,y yield results.which com!:)are favorably with. experiment in 

the siir].pler cases, clearly·it cannot be expected that such close agree

ment :will '!De found,inthe magnetohydrodynamic case. Because of 

adcUtional varia'bles and equaticms, equivalent orders of difficulty 

will necessitate :rna,nymore simplifying assumptions, especially regard

ing the character 0f the plasma itself. 'rhe result .is that "While .the 



system o:f eq,1.:1.ations describing a given magnetohydrodynamic case may be 

of the same order of complexity,the engineer must nevertheless expect 

.to ireceive results which agree with the real case less closely than in 

equivalent gasdyna.rnic cases; in<leed, where before theory might deviate 

quantitatively only a few percent in a gasdyna.rnic proslem, a quali

·tative agreement may have tG be accepted in a typical magnetohydro-

dyna.mic problem. 

The Boundary Layer 

5 

As a first assuml:)tion, one might consider a .fluid as a . "perfect" 

one; Le. , homogene<Dus and inviscid. Many fluid flow cases may be 

solved .with acceptable accuracy under these assumptions. It is known, 

however, that under some cGnditiens, the .. fluid .will separate from the 

body;. this is not always l:)redictee. by perfect fluid theory. In 

adeiiti<Dn, surface friction is not accounted.for by perfect fluid 

methods. 

The obvious step is to generalize the fluid to include viscosity. 

When this is done the equations which :result,·the so-called Navier-

. Stokes equations, are too complex to be salved in general. Mo:reeve:r, 

theviscosity,0f oriiinary flui<ls is too small to be of significance 

in the main flow field. For these :reasons the complete Na:vier-Stokes 

equations were little used until 1904 when L. Prandtl introduced the 

boundary layer concept to the Mathematical Congress in Heidelberg (11). 

Prandtl showed that the flow about a body could be divided into 

two distinct :regions,.the main fluid flow and.,a relatively thin.layer 

ont:he bound.a:ry of the solid body called the "boundary layer"; In the 

,main flow. the viscous. effects are too small. to appreciably alter the 



perfect fluid results. In the thin boundary layer,.• however, the 

velocity gra.e.ients a.re lc;1.:rge en<;>ugh to :resul~· in the viscous effects 

a.orninating the f~uid flow. With.this concept Prandtl was able to 

]:)redict for the .:('irst time the point 0f flow separation and the surface 

f:rict.ien en a boq.y in.go0d agie~ent with ~eriment and i:n,.a case 
!. ~: . ! . . 

where perfect fliµ.d theory implied no separation 0r surface friction. 

Und'erst~ndin, Prandtl 's boundary· layer cen9ept can; be facilitated 

by considering t~~ simple exam,ple ef a semi-infinite £'.lat.plate at zero 

-.inchfence in :a unif0rm. fi0W field as in Fig. 1. Because of viscosity 

the velocity, u(x,0), will be identically 21er0,for a.11·:pesitive .;x: if 

· there is no slip·a.t,.the wall. However, as y increases witheut bouno. 

the velocity must equal t:J' 00 · eventually;· thus., u .. varies fr0m. zere .at 

.the wall 

Uoo 

X 

Fig. 1~ Flat Plate Boundary Layer. 

asymptotically to U «> at some distance fr.om. the wa,11. .Fer cemvel,'1-

ience .;it is usually stated that when U. (x,y) is 99 percent of. U = the 

!'eg.ge" of the beundary ·1ayer has bee:rf reachee.. · This· velocity distribu

t;ion is ca.lleci the velocity profile and it should be noted. in Fig. 1 



that dU./dY > O f0r all y. It will be shown later that the sl0pe of 

the. velecity prefile is the essent;j.ali parameter when the separation 

point is considered. N0te too that the boundary layer thickness, 

b (x), increases. with x. Xhe surface friction.is obtained by 
·,· 

dU 1· 7:-~Ty - . · Y-o 

According to perfect fluid theory, the flow about a circular 

cy.linder need not s,eparate, altheµgh it· is observed to de so in 

. practice, except for very low Reynolds number. Thus, perfect .. fluid 

theory fails under these conditions. With the viscous boundary layer 

·concept, h0wever, separation is pred:icted. Prandtl' s · boundary layer 

·theory states that separation will occur where the velocity gradient 

is zero at ,the wall. a.nd impl:ies negative velocities near.·the wall at 

7 

stations beyond this. Unfertunately, the velocity,prefiles and, there-

fore, the separation.point depend upon the pressure ciistributien outside 

the beundary layer and the pressure distri'buti<:>n .,in tµrn tj.p0n, the seypa-

ration,point. For this reason the pressure distributien:must be known 

from experimenter guessed with sufficient accuracy. The predicted 

separation must then.establish a flow patternyielding:the originaLly 

assumed pressµre distribution. This procedure is very difficult since 

the Pran<itl boundary layer theeryis invalia beyond the separation 

pein~. 

Experimental studies shew strong~curvature of the streamline 

patterns just downstream 0f a separatien point implying.the existence 

of a pressure gradient normal to the surface. The eriginal bounaary 

·layer e~uatiens, however, m,a.ae use of the assumption of 



3 and are, the ref ore, no longer valid in this area-. , Further, the flow 

in:the separated area is in,general unsteady. 

An aEiditional d.ifficulty also arises. The Pranatl assumption of 

a very thin boundary, layer permitted the use of perfect fluid theory 

to establish the pressure gradient, but downstream of the separation 

p0int b (x), increases at an enormous rate and is certainly no ,longer 

thin and greatly alters .the pressure dist:ribµtion - used to;predict 

the separation in the first place (1~. 

ijethods of Solution 

'Examples of exact solutions to the boundary layer equations show 

that except.for the very simplest of cases the mathematical El.ifficul-

ties are considerable. An exact solution is assumed to be any solution,_ 

approximate·. or otherwise,. to , the original unchanged equations which 

govern the flow field. The most general case of fluid.'. flow, a.bout a 

body ·of ~:rbitrary shape cannot be solved by analytical methods known 

te date. Two methods are open to use. First is to simplify the 

problem to solvable level while still obtaining an exact solution. 

One then. has.confi<ience·in,the results·but the problem may now be too 

trivial to be of value er application. A second. approach is to retain 

asmt:1.ch as possible of the original problem but to simplify the 

solution by certain approx:i)na.tions to the equations themselves. 

Be'.l].nd.a.ry' 'layer s0luti0ns are obtained only with difficulty and 

the trial and. error requirements of matching the potential flow field, 

results in tedious solutions at best since each solution leads to a 

3 . . . . . 
See Appendix A 



resulting potential flow: eµtside th.e bounaary layer which may er may 

not agree with the assumed }:)otential flow field. The preblem :must be 

solved.again and again;until the·solution yields the assumed potential 

flow }:)attern. 

The magnetofluidyna.m:j_c boundary layer·probiem.is an extension of 

the ordinary fluid dynamic situation. Boundary layer solµtions are 

difficult. in,the gasdyna.m:j_c case and are much more difficult in the 

magnetofil:.uidynamic case. Mt~ch reeiearch h,as already been done in. the 

field of :m.agnetofluidynamics; however, so far as is known most of this 

9 

work ·11.as been in connection with :inviscid magnetofluiaynamic flows ('3) 

(8). Only recently have reeiults.appeared on viscous magnetofluidynamic 

,flew: prelUems • 

Maghetoi;iydrodynamic boundary layer equations appear to be rather 

simple in,tllat.fer the cases to-be C(:;)nsidered only-a s;i.ngle' pondero

motive force term appears in the e~uations. However, eiV'en :wi'th -t;;his 

seemingly simple additien.to the bounaary layer equations it is very 

difficult indeed to solve such :rr;a,gnetohydrodynamic problems exactly. 

So far as can be determined to date, exact solutions to the magnetohy

droeynamic soundary layer·problem h,ave-been_ published only for flow 

along flat surfaces with zero pressure gradient,-the exception.being 

Stotes I flow (lg. other efferts are being proposed, such as the 

solu,tions to the incompressible wedge flows (12), bu.t. as. yet.,they are 

'l.lllfinished. 

Mathematical complexity has resulted in even simple geometric 

·shai,,es being. aifficult .to -handle by means of an exact mathematical 

approach. The magnetohydroe.ynamic boundary layer flow for a f;t.at 

p:J_ate has seen selved exactly by V. J. Rossow ( 6) . An examination of · 



his results will quickly discl0se why exact, s0lµti0ns are few indeee. 

and :why;they are proceeding with such difficulty. It alse eecemes 

reae.ily apparent :why s0, few, papers have· been ,pul;Jlished up :t0 new and 

these only f0r plane surfaces. 

It w0uld be valuable te ebtain appr0xima.te metheds .which would 

. leaa to rapid answers, even if this entailed seme sacrifice in 

; l© 

accuracy t0 exact ·metheas. This was .<fone 1:ly von Ka.rm.an and P0hlhausen 

for 0rd.ina.ry boundary layer fl0w by assuming tha.t·it was sufficient,to 

satisfy,the differentia.l.equ.ati0ns on the average 0ver the oeundary 

layer thickness rather than te satisfy. the e~:uations at , every }:leint 

fer every fluid particle. A mean value functi0n is thus 0otained frem 

the m0men:bll1ll;theerem-whichis developeci as an,integral0f the equatiens 
. I 

of m0tion over the oounciary layer thickness (I). 

It is·the pqrpose ef this dissertati0n•t0 intr0duce such an 

a}:)}:)r0xima.ti0n meth0d, based upon the ordinary fluid d.ynamic :ven 

Ka:rma.i;i..;.Pehlhausen. technique, suitably extended to magnetohydredyna.mics. 

With such a,technique ma.gnetohydr0dynamic eounciary :)..ayer sol11ti0ns 

could be obtained more quickly and for mere varied geometrics than the 

flat.plate. 

This approximate method will first. be applied to those cases 

where the exact solution is known in ore.er that the results might,be 

compared. The methed will. then,be extenaed to the weage and circular 

cylinder. No coip.pa.risonis possible in these :)..atter two cases as 

selµti<,ms' fer these a.re n0t known to have oeen publishea at this time. 



. CHAPTER 'II 

VON KARMAN-POHIBAUSEN APPRO:X.:IMA.TION 

·This Qhapter wiJ.l,introduce the von Karn.a.n,-Pohlhausen·approxi

·mation.meth0df0r the solution ef ·two-dimensional boundary.layer 

problems. It is a momentum integral appro~tion an.d when applied 

· in . the normal way .--to the :inagnetohydrodynamic , boundary, ·layer, · the 

method seems.to ,fail; an examination.discloses why and sugge9ts 

an :extension which. could correct. the <.ff:ifficulty. 

The procedure used. will be.very-ml:!,qp.-the same in subsequen,t 

chapters. ·Examples have been seleoted fer which well docrumen.ted 

exact solutions-exist allowing a check on.the accuracy and validity 

of the von Karman-:f\ohlhausen approximation when app:,lied-to a 

magnetohyp;rodynamic case. ·It will ;be seen that the procedures 

an,d fun,damentals a.re very similar to :those applied to :the ordinary 

fluid dynamic case so .:that a detailed explanation will not be 

necessary. 

The Jl!Iethqd. 

Ordinarily the bounda,ry layer. ·equations,. which represent the 

second.law .of motion and conservation of mass, are solved at every 

. point within.:the soundary layer. It was. von ·xarman an.d Pohlhausen 

.who first thought that it might be suffi.cie:p.tly accurate to satisfy 

.-these. 'f:iquations. on .the average over -the boundary: layer. thickness. 

11 



.This 1/ITB,S clone lDy integrating the equation of motion. over the 

· boundary· layer thickness. It is this. integral· equation which :ts 

then satisfied, rather than.the eqµa;tionof :motion.itself. 

The yon Kar.gia.n-Pohlhausenapproximation will. lDe applied to 

three cases ef ;rnagnet0hydr0dyn.a:mic· .bounc:iary1 layer £'.law. All will 

. have the magnetic field. oriented. 1:>erpendicularly to the surface. of 

the .body. These three cases are as follows: 

L Magnetic fiel<il fixed. to the body 

a. .Constant cenductivity 

. b. VarialDle conductivity· 

·· 2. Magnetic• field, fixed to the .flow 

a. .Censtant ceno.ucti vi ty 

. Each case wiJ.1 .be s0lvea. in tu:rh. ima the flat plate results. will 

:be com1:>arecl..to·tb.e exact solution. 

Bocl.y fixed Magnetic Fielo. 

Constant C0no.uctivity 

· Fer this case am! aJ..1 sumsequent cases covered . in this 

d.isseI'tatien, the fellowing assumptions are~de: 

L Steady· two-dimensional lmni:nar .fl0w 

. 2. P = .censtant 

· 3. f' cp, cv and kc. are constant 

4. ~gnetic field. lines are p_erpeno.icular to the surface of 

the body and the free stream.outside the boundary layer 

· 5. JJ,,., magnetic· permeability, is constant thr0ugh0ut the 

flow field 

6. -Jmpesed electric .field, E, is zero 

.The excess charge densityj~, · is zere 

12 



-, 8. Inauced magnetic :fiela, BI, is negligible and as a 

, consequence. -the magnetic. force term is •linearized; 
_.. ..... ..... _..,. .... -+ ..... , 

: i.e., B = B0 +Br'.~ B0 , where I?r ,~ 0-an,d B0 = B y=O 

:is a :constant 

<t. Gon,ductivity, er , ,is small 

The .. ooundaryrlayer. ,et:ruations. whi.ch. ,result from these assumptions 

.are very·similar·to:the.hydrodyna.m.ic.equations, ,namely,i 

~ + ~w = o ax aY 

· and 

Equation. (1). represents the con~erva,tien .ef mass an,d Eq. (2) 1is 
,, 

.the ee:iuation of mo,tion. 'I'he meaning.of each term,i,p, Eq. (2),is 

i!).dicated below: 

U. ;;,u. + V ~ 
dX dy 

(Time ·,rc;l,te of change 
of momept;um) 

. j dE 
-F dX 

(Pressure.gradient) 

~ - C[fe U 

· (Magnetic fielcl 
body forces) 

! (~riqtional .Shear Forces) 

-d . For convenience let rn1 = E' , where 

and. rn = m, /Uao • 

er. == er I = a constant , 
. Y=o 

Vi.th ,these definitionsEqs. (1) 

dll + ~. = O 

and (2) .:become: 

ox ay 
~ V ~ - - J. d"P 

LL c)X + ay - f d '/.. 

!see · Appencli.x A• ancl B. :for derivation. 
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The b0uri.a.ary col').diti0ns are as follows~ 

y = 0 => U.=V=O 

These c0ri.ditions f0llow,from a physical consideration of.the ooun-

a.ary;·layer. itself. The -recq;uirements at y. = o arise from .the 

necessity of the boundary layer equations being asymptotic to,the 

·free stream solutiono Thus, there would no longer be any change 

in u with 'Yo Conditions at the wall, y = 0, are imposed by the 

assum:ptiens.of n0 ,fluj,d slip or crossing ef the boundary at the 

wall. The equation. of motion may now.1::>e integrated as follows: 

r"°c du. ~ J_dE. J d l J"" \ (d.!J)d J LL;;;x + vdy + .odx + -m,u Y = - ?sL.y dY Y 
o ,. p O d 

Apply,the ·first bou..11dary con,diticm to:the equation. of motiorio 

Y=~ =>u=UCx),, 1,y,a=O =?UdLJ.=_.l_dP_m,U 
~y dX f dx 

Also, from the coptinuity equatien: 

V = - SYdu_ dY 
" clX 

Then, 

IBut, 

~lu.~ -ty~YtdY- u~ -m,(u-u.)]dy 

= f ].'.:u d(tt) = i ,,u ~ [ 
,;, -j),'~ I and ~1 - o 

o - :!)Y Y= o -;;y Y= oo -

Also,·integration by parts will provide 

' -J00
~ [JY~dY] dY - s.oc u.~ dy - u soQdu d y 

0 dY O ;;JX o dX o dX 

with these relations the i;nteg:ration becomes 



S."lL(u.(u-u.)) + ( ~ + m,)(u-u..) J dy = :Ii.. 
o ~ 0~ f 

Introducing the displaceIIJ#3:pt thickness defined by 

Sil-= u-• Jfu - u..) dy 
• 

and the momentum,thickness defined by 

e = u-z J7i.(u- u.) d Y 
0 

one 0btains, 

fx (u 2e) + ( ~~ + m,)us* = f . (4) 

Equation. (4)1is unchanged from,the hydrodynamic case except 

f~r:the acidition ofmt, The equation represe:r:i:ts an.integration o.f 
.• ,,'.'\ 

· t'he momentum equation· across. the boundary;'la.yer .thickness and -is 

. in general :form, ,i. e,, n0 simplifica:tion. or assump:tions have been 

·. ma.de as to the configuration of the .two-dimensionaLbody and its 

associated pressure gradient outside the boundary.layer. Although 

,Eq.· (4)has been_cierived .for laminar £low, this. result wilLbe 

ai;,plicable to .. turbulent flow as well since the equation represents 

the averaged .forces over.the boundary. layer thickness. 

In general the coordinate·system.is arranged with y normal 

, to the surface of the body and y ·0 0 on the walL With x measured 

along :the surface, Fig. 2, .the integrated momentum.equation takes 

the-form.of Eq. 

Fi.g, 2. Coordinate System 

This equation is now an.ordinary differential equation since 

a sa tisfact0ry · velooi ty profile can .. be found which will allow, the 
ll-

calculation of e, o, S and r. , 'rhe bouri.dary conditions must 

·inclu,de no slip at.the wall a11d continuity at the edge of the 
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boundary, layer . where · the invis:cid -flow solution :is . valid. Further, 

when adveree forces .are impressed upon :the flow: the possihility e·f 

an,inflexion point in,the velecity profile must be acceunted for .to 

allew,for separation,if these forces persi!3t. Of c0urse to .find 

the se~ration ,peint at all.dt must be possible to calcul_ate the 

pei:rit along,,;the wa1L where 

0 
Y=O -In .this first case a, bod;y-... fix.ed B ·perpe:qdicular to ;the tw0,= 

dimensional:flow.has been assumed. Additi0nally, it was assUlil.Eld 

that .1h an~ <r ~ere ·COXJ.:;,tants, 

With.the use of Eq_uations (1), (3), and {4) the problem may 

be solved in,the usual way by ,the von Karma.n~:Pohlhausen method. 

It is :first assumed that ,the velecity,profile may,·be approximated 

by a polynomial ef order high , enough, ,te mt;let the boundary con-

ai tions a11,d allow, fer the exi13tence -of an ,.inflexion , point. The 

assumption is often 

. where It, has been_ ,fo'Ull'l,d in ,the gasdynamic case that 

. this assumption yields a.cceptable accuracy for· laminar .flew. 

Remaining for determination are. the coefficients a,b:>,c an,d a 

which, ,in .general, are functions of x. These coefficiepts a.re 

determined by applying boundary conditions in:the follew.i.ng way. 

Y{ = I u.. = u 



. which leads. to,the.three. equaticm.s 

l,= a +b+ c:t El 

o = a + 2b +Jc.+. 4d 
... -;-•. ~ 

0 = 2b + 6c ,+'12a 

yt=O :::>- tl..=V:O 

'This c0J:1dition·has -alrea,d.y·se,en used.·to .elimina,te the ·yt°·tem. of 

f (yt) and another eeundaryicon,ditien ,must be obtainea. Using·Eq. 

(2) at the wall, the. necessary. conditio.n <is c>'btained., :namely 

e 
I _de ,, ~ 

0 = - p dX + V d y2. 

Also_, fromEq. (2)-.i~.t 'Y'L= 1 

~ _Ld.E mu 
LJ dX + f dX + 1 = 0 

The .following definiticms are now.:introduced.~ 

A= l~ 
'J dX 

ll 

"'m= t m, 

,is.obtained. 

With.the ab0ve relations a.:n,d d.efiniti.ons ,the,final_beundary 

. cen(":l:i;tioni'beeomes~ 

~,. du - -r ( d X + m1) = Z b 
or, 

.- ( A + /\n, ) - z b . 

':Fhe four-equations 

0 = a + 2b ,+ 3 C + 4d 

· 17 



. 0 = 2b ,+ 6c . + 12d 

-CA + ,\,) = 2s 

may :now be. selved-for a, ,b, c and a in.:terms ef (ll+A~. ·Since 

/\'m and /l contain, &°'OC)\this .qua~tity,. remains. to ;be evaluated. 

and -is obtain ea thre:rugh :the sel'l:ltion ef ·the_ in,tegra ted momen,tum 

.equation. 

Because 

= - -'- .d.E .t (/\+i\J pu dx 'J ' 

" .the flat plate cas:e dP/dx = o.·implies 11+~= o, thus, ,the 

velocity prof1J!3, u/u,,bec0mes not only indepen9-e:r;it of x but also 
·.7- . 

. completely; in,deperi.deri.t of, the_magnetic ,fie].d yielding the erdinary 

,gasdynamic·v:elocity,profileso 

Even. fer a flat, }:)late ene hardly expects .. that the velocity 

.profiles w::i.11 n1:>t be ~ffected in any way .,,by -the magnetic .. field~ 

This.is corroeorated by.the exact flat plate solution which does 

in.deed show. :a aefin;i. te del=)enp.ence upcm, the magnetic field as 

.expeqted. .(6). ·Thus, in, the.flat plate case. this .integral method 

.,fails : te; in,trocluce any magnetic effects into the velocity, profile, 

r~sulting;in-an ordina.ryflu:;l.d dynamic profile which woul!;l, thpr,e-

fore, lead to gross err0rs in_,the surface frictien_coefficient. 

Case II resu.]:.ts shew ,.the same d,ifficulty o Case III, a fl<p,;y-..;.fixed 

magnetic .field, will yield some results in.that.the stabilizing 

. :influence ef the · flow=fixed field is suggisted by ,;the analysis. 

-In ,the conclusiens which follow it will /rile seen why any g,µa:qti= 

tative resul,ts must tie rejected. 

: '.1.8 



·conclusions 

.The present method employecl. is · based upon a s,traight forward 

· integration . of. the ee:aua.tion ,of --meti0n ;in ;the magnet0hydr0Elynamic 

. case an.El an assumpti0n ,for. the .vel0ci ty, prefile in, terms <:>f 

arlDitl:'ary constants .. evaluatecl. oy means of the bounEl.ary con,ditic;ms. 

; . l<t 

This cenven,tiona.l ~traight ferwa_rd ap;F)lica tien; is ·inade<qua, te because 

:i,ts use in :the v0n Kar:rnan-Pohl.hausen appro~tion El.e:i:;,en_ds upon a 

sa:tisf~ctory ,velocity pr0file, obtainecl in ,terms of the shape 

facter /\ (x). Additionally, the shape factor must repres:e:nt 

those forces. which alter .. the shape ef. the .velocity profi],,e and 

which direc,tly ,determine .the surfa.ce friction, a11d sepa!".a:\ion ·,point. 

The. ven, Kar:man-Pehlhausen approx.ima.tion. requires that ._the 

results of _·the soundary. layer. theory. 1.De consisten,t with the 

inviscid .. flow sol-q.tion a.:t the edge e-f the bound~ry:layer an,d that 

the• imriscia selurtion, be -unchanged· by, eve:o,ts. insicl.e the ooundary 

.:layer, pri©r.to-separatien. It is a.lse assumed that the.pressure 

force is.i!fdepen,deri,t of y and that it a.ffects the entire profile 

at a given x 1}1;lth a constant value. In.:the .fluid ciynamic case 
··'··· 

when,;the velocity. profile is ootaineEl by,the von K~rma:q-Pohlhausen 

.. method, the .DO'U.l1dary · conditions used irJ,troEl.uce just such a pressure 

gradien,t. This.pressure ·gradient is the only..,force affegting 

se~ra tion a:n,d it is already a function .. of x only. 

For.the magnetohydrodynamic ,case,·however, there is another 

.force a,f'fecting_t4e·vel0city,-profile.beeides_the pressure 

gr~die.nt, : i.e., . the p0:qderomotive fo,rce. ['his .new, force is a 

:function of y and x a:n,d its effects·are n~t censtant -across_the 

boum:l:a:cy.'. ·layer.• ,, 



Further, as cand,ie seen·from 1Eq, (2) Jthis .ponder0mot:!.ve ferce can 

.. never. 'be. F)roperly -in,troducea ·into ,the von ,Ka,.r.man=Pohlhausen 

· approocime.tion a.s it··is .normally applied b>ecause.it vanishes ~t the 

wall, which ·.is .the only;place where it can .be introauoed into 

I\. (x) and. the, N"eloci ty ·profile, Jt was .for. ,this reason, that: the 

.velocd.ty·profiles so.ol;>ta.ined were.icl.entical,to:the fluid cl.ynamic 

20. 

· profiles S.!1,d prevented a pr0per concl.usi~m, even ;th0ugh,, the momentum 

in.tegral was correct. 

· A '.non,=zere; result is obtained. in, the ;flow:-fu;e<i magnetic 

.fielcl. case 'l:lecause the ponEieremc;,tive forces are not zero at the 

wall and. can, therefore, be introd.uced.into the velocity.prefile 

and /\(x). 'I'he result is no.t meaningfu.l q_uan,t:Ltatively, however, 

since the ponderomotive forces are not properly introduced into 

,the ,velocity. pr0file in ,this manner since it assumes _an invariance 

in y and a value for all· y, equal . to the bolln;dary value at . the wall,· 

·This ;result is.clearly erroneous as the magnetohydredynamic.force 

at Y,= O is not the value at the wall,but zero, Further, re1;,u1ts 

o'lilta.ined in .this manner .. do ;nqt agree with., the exact s.elu.tian (6). 

A ·m9ai.ficatio:n of .the vcm Karman=Pohlhausen methoa is 

necessary. von.Karman aq.d ~ohlhausen assumed that it was 

sufficiently accurate · to · sa. tisfy .1the boundary/ layer. ·equa tic.ms : in 

)Eiulk or ·on. ,the average, : i. e,, 'by satisyfing -;the m0mentum :.iptegra.l 

. equation, This .may.·now:be e:x:tend.ed in .prin:ciple to: the po~aer0mo

tive f0rces.by c0nsidering the average pGI).deromotive force acting 

within.the boundary,layer, Al:)plying the force in.this·ma.nner 

·results in: a mean, value which .:may stilL be a func.tion. of x .. but 

which, ,is net independept 0f y, thus eliminating the difficulties 



previously noted with respect to.the magnetohydrodynamic case. 

Mean pcmderomotive ferc:e terms can .then be obtained bysintegrating 

over · the . boundary· layer from y. = o. to .. y = a . With .this 

modificati0n the cases were solved and compared in detail with 

the exact solution, (6), 

'Ihe agreement was good 0nly if a variable "weight=-fact0r!1 

was used with ,the mean ponderomotive force term. No rational way 

. was found whereby ,,this nweigh;t=fa,c;tor" could be predicted· in 

. advance for a given flow .. proslem, A funrther difficulty was that 

the mean ,force term could be greater than zero.even when.the velo= 

city profile ha.d a zero slope at the wall, This implied separation 

without a pressure gradient even ,though an examination of Eq. (2) 

shows that when .u ,= O .. the ponderomotive forces must 1:De zero, At 

first examination.the solutions seemed to be in ag;reemeri.t with the 

exact solutions (6), however, it was noted that the results of 

Reference (6) are valid only for"'fflX <,2 o For mx>.2 the series 

solution o.f Rossow (6) would have to include many more terms. 

This c.ould only be done with great difficulty and to date only 

second order ter'IDS have been calculated, Another way had to 'be 

found if the von.Karman=~ohlhausen method was to be used and 

·the above difficulties avoided, 
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CHAPTER: III 
'·. . 

THE EXTENDED VONKARMAJ.liT-POHI.J:IAUSEN,METHOD 

Constant p0nductivity 

Fremthe preyi0uschal:)ter·itwasf0undtpat the :main 

difficulty; was :the introd,ucti0n 0f the ~gnetic field e.ffect:. inte 

the velecity profile relations. .The assum],')tien 0f a. p0lyn0mial ef 

higher 0r~erwill alse'be 0f .ne ~vail unless a beundary conditi0n 

which :.includes. the ~gnetic field can .'be ,found. Such a· 'boundary 

cc:mdi tien can 'be found in the fellowing: way. 

Taking· the d/dY of :ij:q. (2) 
.·· ' ' 

. leads· clirectly to 

2 & tu 
u.~~y+v5~ +-~~ +·~~ +m,~ - v~y~ = o 

Prem.the c0ntinility eq11ati0n.itcan b>e seen that 

Using this. rela.ti0n . .the abeve eqµ.a;ti0n reduces to 
I , , 

- ~, -lu.. = 0 
. V ~y'3 

.The f0ll0wing. eqµa.tiG:ms are. n0w availalille: 
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.cl.. (eua.) + 1 du + m) u ~* = :i;._ 
dX 'dX 1 (0 

Previously, a,b,c and d were found from four boundary 

conditions obtained. from 

Yl_ = 1 ~ u = U(x) 

and 

i\.=0$o'u=v=O. 

The second boundary. conditienhad already been used to sh0wthe 

coefficient of Y\_° to be zero. The first boundary condition .. was 

u = U(x) at 'l = 1. Two additional boundary conditions were also 

obtained from u = U(x) at "fl = 1, namely 

0 . 

The fourth condition was obtained from Eq. (3) at 'fl= O; Le., 

,, Ju. _ J_ dP 
V 'JY2. - (0 dX 

Additional boundary conditions could have been obtained from a 
'3 

h o h d o t• f o du. . 1g er · er1 va 1 ve o u; 1. e • , d y s • However, it would not 

contribute to the solution. 1rhis can be seen from Eq. (5) 'Which 

shows. that {U.'13 I _ = 0 'When rn,= 0. It is for this reason 
r:I ~-0 1 / 

.that a fourth order .polynomial is usually .sufficient in the 
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gasdynamic case and insufficient inthemagnetohydrodynamic case where 

The use of Eqo (5) in determining the fifth boundary 

condition now· allows the extended von .. Karman-Pohlhausen method to 

yield pr0perresultso With these relationsthe following·boundary 

conditions are obtained: 

11 = I :::;> u. = LJ0<) 

~='t.Y. =o ;JY ~yz. 

- J_ .d£ = u( .dlld~ + m,) 
f d)( " 

yt=-O ::>- t.1.=V=O 

·;{u.. - .l. .dE 
~ dye. - F dx 

·\)N =m,~ 
~ys -;;;y 

Assuming a fifth order order polynomial for U., 

~ = f(yt) = a..r,_ + br{ +- c 11_ 3 +- d n_'+ + e f/..s, 

one obtains the following set of equations for a, b, c, d and e 

(6) 

from the above boundary conditions. and the definitions of /\ and t1m: 
1 = a+ b + C + d + e 

0 = a+ 2b + Jc + 4d + 5e 

0 = 2b + 6c + 12d + 20e 

-(A+AJ = 2b 

O= a/\'rl - 6c 

These equations may then be solved for a, b, c, d and e yielding: 



a= 

b = 

c.= 

d = 

e = 

60 + 9 4, CI + Al/Im) 
36 + ll·m 

11m[2o+3Aw(I +1111)..,)] 
2.(36 + /\..,,) 

30ll1n(/)/dm)-/20 t 3An(2.-Aw'il + .A/J1m) 
, 2(36+/t.,,) 

72. - I z ~Y"UI I /)r,)-111'1 (6-Am){ I r/1/!)m) 
2.(3(; + Am) 

From the definition of displacement thickness one obtains 

* l t = ~ ( I - f) dyt . 
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(7) 

(9) 

(10) 

(11) 

Using Eq. (6) , the displacement thickness is found as a function 

of a, b, c, d and e. 

r* = I - ~ - ~ - ~ - f - ~ . (12) 

In. a similar way ! may be found. 

z. ?.. e. a 
~=~+~+~+~+~-g-~-~-d 
~ 2 3 cq. 5 6 3 5 7 9 

- ft - @ - g ac - ~ - g ae - ~ - _7e bd - ~ 
II e 5 3 7 3 4 

(13) 

The momentum integral equation is now used. to obtain llrr, = 11m (mx) 

in the following manner: 

Multiply Eq. (4) by 'yt and apply the definitions, 



z = ee. 
'\) 

, 

f, = ~ , e 

f - ,;,e - ...@.. a. 
2- - f u - 8 , 

K ==)'YI I ( ~. + I ) z 

Equation (4) then becomes 

u dz. = F + 4 m, z 
dx 
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and F=-2~-4K-2Kf, • 

(14) 

1-,Iowever, it can be shown from the definitions of JI and /1-m that 

and 

:2 

/\ e2. == rn, z 
m a 

Proceeding with Eq,. (14) and noting that rn==ft one obtains: 

U d(m1z.) - F + 4(rv1 1z) 
!Joo dCmx) -

u d6rl,z) .d&o ::: F ·+ 4 (m,z) , 
u.,.. d !lm d(mx) 

Jd... d IAJ~tJ.Jliki~ = F + 4 llrn(; t . 
Uoo d AY\'I ~ d&nx) 

where rYl :::;:: a known constant for any particular case. The 

following quantities of Eq, (17) may now be evaluated in terms of 

/1 , and /Im as indicated: 

T = Eq, (13) with Eqs, (7) - (11) , 

(15) 

(16) 

(17) 



- 'b* 
~ = Eq. (12) with Eqs. (7) (11), 

2. 

K ·== /\"M ( f} (/\111-m +I) 

, 

and 

r - ~ a. 
Te - S ' 

The solution to Eq. (17) yields /11'11= /1.,,lmX) and, therefore, 
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..kl=~ [ari +hr(-+cyt3 +- dY(1-+ er(] (18) 
Uo0 Uoo · 

for each ~
00 

.· and tm .1 Also, C-i: E ~ 7} which. yields: 

Curves may now be drawn f0r ../RNCf vs mx and u/U.,., vs 

YJIJ.o/~ for values of :mx. For each U/U~ .there will be in general 

a family of such curves for each ~m • .The velocity profile is 

given as u/U00 vs yJuoo!w< rather. than u/Uoo vs 1( since YJU.ol'VX 

was used in reference (6) and is the usual one, although it can 

(19) 

, be clearly seen t.hat from the standpoint of the van Karman-PohThausen 

. meth0d 'fl •. is the more conv:enient. 

For the special case of a plat plate d p = o J.L = I - mX and · '· dx · ' u.., 
. the previous relations take a more simple form. 

c0nditions at "'fl. = 1, ~ ~ =-m 1• Then /\ =-/Im 

From the boundary 

/1 
and llm = - / • 

.Thus, the family of curves in /\/1 .reduces· to the single curve 
l'lo' 

for _!'.1._ = - 1 in this case. The results have been.plotted in 
/\~ 

Figs. 3 and.4 and it can be seen from Fig. 3 and Fig. 4 that agree

ment with reference (6) .is quite good. Further, Rossow (6) points 

out that his solutiem is acceptable only for mx < 0.2; 

·· ;LAppendix C. 
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therefore, the indicated separation condition does not really exist 

for the. flat: plate case, The extended von Karman-Pohlhausen.method, 

however, seems to be entirely in agreement with the expected 

. physical results for much larger values of m.x and indeed. suggests 

that .the flow cannot separate under these conditions because 

a.= 
60 + culwi 
36 + /lm 

_£ Since Arn -== 'v rn, 'Which is always greater than zero, it is clear 

that 1a 1 also is never zero, But 1a 1 must be zero for separation; 

hence, the flow cannot separate, 

The case of a flow-fixed magnetic field may now be solved in 

a similar manner, Since the flow outside the boundary layer is not 

affected by the magnetic field in this case the pressure distri-

bution is now independent of the magnetic field, The result is the 

same momentum integral equation developed for the previous 

body-fixed magnetic field case, The difference lies in the fact 

that u' (x} is now independent of m1 'Which 'lrlras not the case 

previously, For the flat plate the parameter now reduces 

to )w. = 0, 

These results.are plotted in Figs, 3.and 5 and are again seen 

to be in excellent agreement with J\[ACA Report 1358 (6), It should 

be noticed, however, that the results of NACA Reportl358 are 

limited. to Tf/X ~ 0,2, .This difficulty does not present itself 

with the extended von Karman-Pohlhausen approximation 'Which is a 

closed solution and applicable for large values of mx, 
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Variable Conductivity~ Body-fixed Magnetic Field 

The assumption of a variable conductivity is in many cases 

more realistic, Of course the problem is to determine what con-

32 

stitutes a realistic conductivity distributiono Kantrowitz (2:) 

found. that for high Mach numbers of order 15, a-= a; [ u ~ l.(.. J where 

0: = o- j o This assumption will., therefore, be used in this y,:: 0 

analysis. With this assumption the following equations are 

obtained~ 

With the definitions, 

Z= e~ ' K= e-a .dJL , 
\) 'v d>< 

and 

F - 2f.a - 4K - c.J<f, 

r . e 
, iz. = a., "I 

ene may now reduce the momentum integral equation to~ 

U dz 
dX 

Employing the definitions for I\ . and /Im . this equation may be 

further changed to: 
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(20) 

This equation is seen to be equivalent to Eq, (17) with the factor 

4 replaced by 2, 

Boundary conditions lead to the set of equations for a, b, c, 

d, and e: 

1 a+ b + C + d + e 

0 a+ 2b + 3c + 4d + 5e 

0 ·- 2b + 6c + 12d + 20e 

-I\ = 2b 

0 /l a ~ 
Ill 6c 

These may now be solved for a, c, d, and e yielding: 

a.= 6'0 + C/ 1/.,,,(11/;/.,,,,) 
3b + Jl,'Y! 

b = ~ /lni(/1~)_ 
2 

C -

d= 

e -

20/!w +- 31~~' (A///rn) 
2(36 + 11.,,,) 

3€/1-m(!l/i/,,,)- /20- 30 /Jrn - 3/1! ( /1//lm) 
2(36 +A,.,,) 

12- I g;/.r.i(/1/Jl.,,,) + 12./1..,, + !l~(/1/Am) 
2(36 +;1.,.,) 

Equations ) and ) may now be evaluated in terms of 1<f>I 

and Ji With these results Eq, (20) may be solved for !lm vs 

) 

) 

(23) 

(24) 

) 



mx for·various ...LL and 
/\711 

_J,L_ '2 
Uo0 • 
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As in the preyious results, for 

each _JL 
Uoo 

families of curves in ...LL are obtained for /l'IYI vs • mx 
/Im 

and, hence, J~ Cf vs mx and 

c::ase of a flat plate ~ RN Cr 

_.!::!::.. vs Y JUaalvX. For the special u .... 
vs mx becomes a single curve since 

U= Uoo and ~m = 0. Results are shown in Figures 3. and 6 which 

again show excellent agreement with reference (6). 

Conclusions 

The equations thus far (ierived by the extended von Karman-

Pohlhausen.approximation are for flat plate flow, ..d.E.. ~ dx - o, 
for which exact solutions exist. The exact solutions for the flat 

plate cases are obtained from Rossow (6). These results are 

summarized.in Figs. 3-6. 

Primarily, the advantage the extended von Karrnan-Pohlhausen 

method has over the exact solution is its range of convergence. 

The momentum-integral method is a closed solution, and.therefore, 

applicable for.all ranges of mx within the bounds of the original 

assumptions. On the other·hand the exact solution's accuracy is 

dependent upon the maximummx desired; as mx increases, the number 

of terms in the series must increase for a given accuracy. 

Unfortunately the number of additi.o:nal terms required may be 

large for small increases in accuracy. Further, each additional 

term compounds the difficulty to such an extent that even with the 

use of electronic .computers only a few terms of the series :may 

be reasonably found. For this reason Rossow (6) confined himself 

to mx < 0. 2 and. only second - order terms for constant conductivity 

.2see Appendix C, 
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cases and first - 0rder terms for variable conductivity cases. In 

-the cases of body-fixed magnetic fields the results 0f Rossow (6) 

are acceptable for mx <::: 0. 2. For mx > 0. 2 the exact solution 

deviates considerably fromthe expected.result, yielding a 

separation point and back-flow velocity profile which clearly cannot 

occur since the magnetomotive force is zero for zero velocity; thus, 

the retarding force may asymptotically approach zero but never cause 

separation.or back-flow. The extended von Kar:man-Pohlhausen method 

yields the proper.results for all mx., implying no separation for the 

flat plate cases. 

ijo separation occurs for the flow-fixed magnetic field case as 

welL .This is also expected since the magnetic field is fixed to 

the flow and, the.refore, tends to prevent any retardation of the 

flow; thus, the presence of a magnetic fie.ld tends to prevent .the 

formation of a boundary layer. Ultimately, when m,-"° the 

boundary layer will have a velocity distribution of u/U = 1 for 

y > 0 and. there will be a discontinuity at the wall where the 

velocity will abruptly change from Oto U. This. implies an 

infinite velocity gradient at the wall, and, therefore, Cf~ ex>. 

The extencj.ed;;onKar.mar_i.-Pohlhausenmethodyields this known 

physical result. Which is plotted.in Fig. J. The function J RNCf 

is seen to increase as rnxincreases for all mx. 

When the second order terms are included in the exact solution 

of Rossow (6), for the flow-fixed.magnetic field, the function 

J RNCf does not increase for mx > 0.2; indeed, separation is 

· erroneously predicted, It. was pointed out by Rossow (6) that the 

solution may diverge for mx: :> 0.2. Unfortunately, each term of 



the series can only be obtained with great difficulty anci until 

additional terms are available only superficial conclusions re~ 

garding the possible convergence or divergence of the series can 

be draw.no 

One of the principal advantages of the von Karman-Pohlhausen 

method is its ability to solve the boundary layer equations once 

and for all in terms of parameters dependent only upon the shape 

of the two~dimensional bodyo The shape factors, I\ are then 

known functions of xonly, evaluated from the potential flow 

solutiono Similarly, in the m.agnetohydrodynamic case the solution 

may be found once and for all in terms of I\ and the :magnetic 

shape factors, I\ 1YI . True, the solution is also dependent upon 

U/U"" ; however, a family of solutions can be obtained in U/U00 

if desired. For the examples considered in this chapter U/Uoo 1 

and u/u.., = l ~ mx. 

Chapters IV and V will examine the method as applied to the 

wedge and circular cylinderi for which there are no other solutions 

at this time, 
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CHAPTER IV 

WEDGE FLOW WITH BODY-FIXED MAGNETIC 

FIELD.AND VARIABLE CONDUCTIVITY 

Wedge flow of an incompressible, electrically conducting 

·viscous fluid is to be analyzed in this ohaptero The magnetic: 

field., 8, is assumed to be oriented perpendicularly to the 

surface of the wedge and fixed to the boayo Conductivity is 

ass.umed to be of the form 0--= cr; -r;(u-u.) All of the assump

tions made in the foregoing chapters relating to the body-fixed Bj 

variable conductivity cases will also apply, It is further 

assumed that while the flow is to be studied in the neighborhood 

of the stagnation point, xis sufficiently greater than zero to 
1 

ensure that the usual boundary layer assumptions.are still valid. 

Only the variable conductivity iease will be solved since it 

represents the more realistic assumption and adequately serves to 

demonstrate the techniqueo 

Fig, 7 Wedge F'low 

lAppendix A 
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Fo:r- wedge floWSlnea::r.the stagnation point as $hO'!liln inFigo 

7 the velo~ity91itsid,e the boundary layer is well known. from 
. ..· ' ' " ·, ' . ' ' . ,',• . ' .. ' .. . ·, 

potential theory .• ( ... 7)i 

U(X>'i) = ex. X k , ... k= _L 
2-~ 

TJ:i.e equation of motion and. :momentmn integral (;;lquation are 

well e.stap;J.i$ed frollil. pr~vio:u,s ehapter~o Applica:tion pf the 

. extended von Karma,n-:Poh.lha,usen :met:h.o4 has a,1130 been covered in 

detail hr t,l1e foregoing chapters and no further detail will pe 

a,q.ded h (;;Ire o 

. Th;e -w~~e flow problem can. c3,lso ~e sabred by this methodo 

:N'Qt:ing·tha.t 

/\ = k .Jd... ..L 
/\m Uo0 mX 

~ne :triar;y · 1301,re Eq~ o ,(18) ..;, ( ~OJ in the ma,nner outlined in tp,e pre

viou& · ch.apter o Fqr. a typi~al · e~ple . a (JlO O W€!dge w111 · p.e ch.0$,en 

MO, the .flow.t,ondit,iqns at U/Uoo ... ~.· Oo,.Jl o 51 o 7 and ·o 9 Malyzedo .. 

]fora W€!dge a,ngle of 90° it follows t:P,at 

f? - _L. r - e. k = 1 3. . 

Usi:ng tAese re;J.,a;tions ~-m and~qso (18),..; (20) simplify tq thE;l 

foll~wing eq11~tions for uluoo = • 5 . 

(26) 



F+Z~(f) 
2. 

\Phe~~· ~q.µati9~·.·ml3r1 .. n9w be wive.,d •.. It lln.ust• b~·.nqted ~hat 

· for' tk~:15~ ~~~~.~ tp.6;' n~~rieP.>l i,nJ;,1J;ij.ti9n· _'!J!.a1 tl9t b.~ . )?ta,l;"t~ct. 9,t 

1Jl,X.:::; ~,- 11m -- .Q ~~ .. ~~ d,qn~ ;(9;r tll! .fJ4t p;l.ate. Th~ f'µnet:t9µ 

A/,\ri now. a.pp~.~s 1t( tb,e ~q,ua.tions ~inq-e. !l!Am ~ /l//1111 JinX) il3 no 

:l.qtll~1 · a. ~G~f!tatlt .2 ,Tp.~ f;la,} p;t,a;jj~ )r~~uli;~ tjp;qw :~~at· BlX V~r.~UA 

!1"M i~ .1:tn¢~r .t),;r nix 1'lea;r -~~rq. Eq~a,tlqra ,{2~) ~~ t:n~ .be 
• '. .· .,. ' ., ' ' . • . ..... . ; ~ •· '.: ·. ' ' • . • . I .. , 

~lyed. ittra.ti,r~lt for· V~iqu~· V~U~tl qf·,Jlm wit.h_ a ~11 f~eli . . · ... '"·•. ,.: ... ·,. '. ' . . .. ·. ·. . . ' . . .: 

i,:rai.t:i.Al y~lue qf .inx. f- .. 9: • ... ·'l);e .:re~t~ .a,~. in:ttiatJ.y wq~ta,l:>;Le a11d 
' ' ... ' . . . .. . .. . . . ', . .· ' ' •, . . . ... ···.·.,· .·' · .... · .. ··- . ' .. •,. 

:~~~ ::::~:~ ;:~i~=~P==~7M~ 
~eta th~ p~pf!r· ra,l:J:i,e o;f. 11wi ·1~- ~~l~~t~q tp.~· ;r~ew.:l'j;E$ ()f JU 

.. v~ · 11m a,re· .s_ta,bl~ a,n;¢t· linea,~ i'Q:r· mx. nea,r· z~~o •. · It i,~·. tlll:i~ 
• r, •; ... , 

. ralU:~ ()f ~ ~~ Am ~~13, 1~ tb;~ill '\i~~ .. ~a:. tll~ 1n1t1a1 v.af'.ue 1n 

-· th~ ~o~:,v.tf)r :m'(:?g?a;m, .qt· Append~ -0. MQ:r~ -4~,.~t metbpo.~ • ~e 

·~Ja,j_M~;e of 9~µr;e,~ 1-~~]~.imt.:~;f ~, .9QJµ~.P~ e1r~~t~. 

_ a;t. ~:,;;:;, ~.· 1r j~.~:irM:· .. aq~:rer, th~ lin~tno~ p,~e~t_it3 t.h~ ~~~~~~t .. 

attd:4ee~ nQt *~¢~1 r~~~;r·prograimmir:ig. . . .. .. ',, ' . . ··.· " . · .. 

Re:~µ;l'i;ii; ~t~ J)J;.ott~d ;l.il: F:J.g1=1. $ ~d 91 M~ Figµr~· '9 ft3:b.O~· 
' . . ' ' . . . . 

:r.~P~~,en;t,~}i~· v;el9e:tt,y ~o~il~a for "1t . ;::: Q.. 5. A:s;a4tr t:n, 
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retar4~g influ~nce of' th~ rnagnet.i~· !i~lq..·.~·~ '.b>e seetJ, •. In a. 

~~J.w_. ~ ,th~ ~~~~ of ~o0 . ;:::; • 3:, ·~ 7 ~ and, ~ 9 ha.v~ been 

~v~::t;u~ted,. ,and ~·¢ al~o .i!!,cluiied. in· Fig·~ a. 
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~HAPTER V 

ClRCJJ:LAR· ·c:rLINDE:R li'.L~W WlTn ·ooPY-FIX:ED 

· 1AAGNETIO FI!DLJ>, ,Al'ID VARIABLE 

C0:NDUCTIVJ,'.TY 

Th.ts p~ol:>lelfr is an excellent e.:x:ample !or the von K~:n

PohlaUlil.el'l m~h9d. Solut:ions'6!.re qbtained which a:re difficult . ~d 

. tedious by- e~et :methods. Ma/gne-tohyg,rodln:amics compounds 'this 

diffiew:t;,7 ~ that e~et solution1a ha,ve not been found. Thia 

0therwifl~ diffic:µlt :i:na,gnetohyd.:ro~c ease can 'l;>e solved by the 

YQn K,;3.r,illa1:l-Pohlhau.sen·technique b,owever. Tp.e result is a i'&mily 

.... __ C!. Y)¥r-x_-of s<>lutio:n.s in p for ~ Gf · vs :rnr O and u/U!>Q ~... v for 

eacn mro,.. This foll<:>WS .from the .f~ct '!;:,hat unlil(:e tbe orditlary 

ca;se wh¢re one solution exists . a,t each cp the solµ;tion a.t each · 

cp in the ma,gnetollydrodyn~c case depesd..s · upon the magn~tic 

·field • 

. The ineom;pre1;1:aibl-e laminar flow -of an eleetrica.lly conducting 

· viscous fluid in the. presence of a :magnetic field perpendicula:r to 

i.t.s. •surface 'and t,ued to the b~d7 ma,y now be f-ound for a-~ cro-&(u-J). 
Pro<=edures simila;r to those u~ed fqr·the ppec~'1:ing·wedg~ flow case 

· will :be ua:e,L 

From potential flow theory u/U oo ;;;: 2aincf; 

a..s13umed t,b,a,t the boundary 'layer thickness i~ much les:Ei tb.~ the 

eyli~er · radius r 0 ; i p e • . , § < < t; In auch caaea Scb.li~hting (7.) 
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shows that the ordinary two-dimensional equations may be applied 

with x and 1 measured as shown in Figure 10. 

U.--~ .... 

Fig. 10 Circular Cylinder Flow 

I\ For this particular case u00 ~ OJ there.tore, A,; and Eqs~ (18)-(20) 

again can be simplified under these conditions to 

11. ::: 2 d> cos d? 
I\, · mx 

' 

J 

M. = 2. s,n<P [a~+ bY1~+- c1{3 +- df' + eri5' J , 
Uo0 

These equationo may be solved in like manner to the previ,oua 

wedge flow case J the results are plotted in Figs. 11 and 12J 

!Appendix C. 

(29) 

(30) 

(31) · 
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Figure 11 shows the JR;Cf vsmr0 .for values of ~ from:40° tq.:105°0 

The figure also shows.the effect of.the magnetic field upon.·the loca

tion .of the separation point which. is indicated by_ t".r1e intercepts on 

the mr0 pXis. Representative.velocity profiles for ¢).= 80° are .given 

,.in· Figure 12. ·The results again show, the retarding effect of th.e 

magnetic fieldo 

Separation angle vs-mr is plotted in Figure 13, which shows that 
0 . 

the separation angle moves. toward ¢= r asmr 
0 

increaseso 
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CHAPTER VI 

INTERPRETATION OF RESULTS 

Summary and Conclusions 

Ch.apter I dis:cl<:>sed some of the difficulties associated with 

magnetq/f'luidme:ehanics and boundary layer solutions in particular. 

Theerei:,i¢al solutionsar~ very difficult and most of·tt1.e known 

magnetohyd.rady:ha.mic boundary layer flow problems for·which exact 

s.ol.utions are available have been used for comparative purposes 

in this dissertation. Even though the problem is complex, 

theoretical solutions a.re still being sought not only for the 

physi~al insight they pr:i.,rig but also because very little experi-.-- ' ,·: ' . .. ' .. 

mental work has been pnllshed Qn magnetofluidmechanical boundary 

lay~:r work. Clearly, even elementary results are superior to no 

results at all. 

App:i;-oximate techniques have been available for many years to 

provide :rapid calculation of hydrodynamic boundary layer·problems. 

These techniques cannot be applied directly to magnetohydrodynamic 

boundary layers with success. Chapter I shows that some of the 

ass~ptions: which lead to good agreement in the hydrodynamic case 

are in.valid since the retarding body forces are no longer independent 

of y. Because of this fact the ponderomotive forces could not be 

intrqduced into the von Karman-Pohlhausen approximation since they 
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vani$hed at the body surface. When this technique wae applied 

.. d.i:r~~tly tQ, a¢vetal ca~es tll.e results were negative; there was no 

agreement with the exact solutions in 'body-fixed .. magnetic field 

casea and poor .qualitative results in the flow-fixed magnetic 

· field. c::ases. 

In Chapt~u· II an extension of the von Karman-Pohlhausen 

appro:x:itnat,:ton -was presented. Another equation was introduced bf 

differentiation of the equation of motion. This. equation was no 

longer trivial in the :ma.gnetohyd.rodynamic case and a solution to 

the difficulty- of·the vanishing body force. at the edge of the 

boundary layer·was foµnd which also allowed a fifth order polynomial 

assuni.ptien .t'<1r u/U ,:,, 

Oompa.ring the results of this. new method with the exact 

. solution for. a flat plate with dP/dx = ¢>, Chapter III, showed that 

th, new method was in close agreement with the exact solution in 

the range of mx in which the exact solution was reliable. For 

larger values of' mx the exact solution implied erroneous results 

and1 the,:re.f'ore.,.. could not be used. On. the other hand the extended 

v<m. Ka.rman-Pohlhausen solution did. indicate the correct physical 

results for all JIDC,, The facility of' th;e method is well deni.onstrated 

by its ability to solve the wedge and circular cylinder problems. 

Implicati.c:ms 

Two primary advantages aan be attributed to this new technique. 

:First., it is possible to obtain s.oJ-1.i.tione to inagnetohydrodynamic 

~oundary layer problems more easily than by the exact method of 

:fu;s.SQw (6). .The- pri.ncipa(l dit'.t'icultiefJ are encountered but once 
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in the solution of problems by this.technique since a large part 

0.f tbe a11alysis can be done in general terms, Even difficult examples 

•inv0lve enly. a few new algebraic relations which may be handled in a 

straight-ferward way. In contrast, an exact solution to the 

magnet0hydrodyna.mic boundary layer flow over even the flat plate 

results aE?ystemoflinear ordinary differential equations with, 

varia'ble ceefficients which must be solved.to evaluate the series 

ceefficients of the Blasius solutions. Sincethese coefficients are 

'not known in closed form, the equations must be integrated numerically, 

Only the first ene er two ter.rns of the series are found because the 

work involved is sizable (6). More complex magnetogasdynarnic 

J::lreblems such as the wedge and circular cylinder are even more 

.c!J.ifficult to solve lily this exact method and attempts to obtain such 

solutions have not been. successful at this time • 

. The. second advantage which has resulted from this new method 

. is that for the first time magnetohydrodyna.mic boundary layer flew 

Je>roblems for .more complex shapes than a flat plate maybe solved, 

This dissertation has included the flat plate, wedge and circular 

· ~yl:ifid@r. rt is the nature er .tlft11ll teahrti~u.e t'.tlat any two""' 

dimensional shape, for which the potential flow solution outside 

the 'boundacylayer is known, may be Sblved, within the l::i:rt]j,ts o:f 

the basic assumptions. Disadvantages to the method are those 

normally associat~d. withthevoh :K:arman--Pahlhausen method itself, 

arni these are usually confined to the accuracy of the results, 

expeoially near .the separation pdiht, However, e:venthe boundary 

· layer e(uat:Ions themselves are in error near the separation point. 



Suggestions 

There are several areas of investigation which.suggest them

selves for.additional study. They are enumerated below. 

1. other geometrics. 

It would be interesting to determine the exact 

limitations of the extendedvon Karman-:Pohlhausenmethod 

:in this.respect. Configurations leading to flow 

separati0n should be considered in particular. 

· 2. .Other variations of er-

Only the two cases of a-' = constant and Q"":::: O:(Uuu..) 

.. have been considered in this dissertation. Other 

variations in 0- are possible and because of the nature 

of the extended von Karman-Pohlhausen technique complex 

functions of er · = er ( U) should still be solvable. 

3. Variable magnetic fields. 

The magnetic field has been assumed to be constant 

in this dissertat;i.on. Studies of magnetic fields which 

are functions of x and y would. be important. This change 

would complicate the equations; however, as a first step 

one could assume a field variable in y but fixed in x . 

. Thus, the momentum integral would be changed but the 

method of solution would remain the same since the magnetic 

field assumption of invariancei:n:xwould still be valid. 

4. Improvements in the von Karman-Pohlhause& approximation. 

Several methods have been proposed which improve 

the accuracy of the von Karman-Pohlhausen method in the 

gasdynarnic case ( l.). The: ·most effective of these 
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, imprevements . involves the simultaneous solution of both the 

m0mentum:integral equation and. the energy integral ecquatien. 

While this extension has provided definite improvements in 

accuracy, it necessarily complicates the solution. This 

extension should. also be investigated for the magneto

hydr0dyna.mic case. 
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APPENDIX A 

THE TWO-DIMENSIONAL INCOMPRESSIBLE BOUNPARY 

LAYER EQUATIONS FOR STEADY FLOW 

. The incompressible, two-dimensional, steady flow equations 

of motion and continuity follow directly from the well known 

Navier-Strokes equations: 

:The boundary layer conceptr·assumes that there is a very thin 

layer· .in the immediate neighborhood of. the body in which· the 

velocity gradient normal to the wall, t~ , assumes very large 

values. In this region ?;=J) ~ may be significant even though )A, 

is very. small since t~ is itself very large. 

In the rest of the flow field outside this boundary, layer 

(A-1) 

(A-2) 

(A-3) 

such velocity gradients do not appear and '( has negligible values. 

In .this region the flow is frictionless and.potential. 

Fram these.assumptions.and known solutions to the Navie:t:'

Strokes equations it is well established, (7.), that the boundary 
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layer thickness 

where 

, the length of the body. 

Also, in the boundary layer itself: 

1. u is of the order of U, the flow velocity. 

2. vis of the order of b since v = 0 at the :wall. 

3. xis of the order L. 

4. y is of the order b 

5. U, L of order 1. 

Define the dimensionless functions u~~, vl~, Jd~, y{~, P~f, RN as follows: 

u~*" = u/U, 

vii- = v/U , 

Jd~ = x/1 , 

T'*" = y/1 ' 

~*" = P/PU2. 

R = UL/'v 
N 

2 
, of order 1/ 8 :::;> large RN' 

Equations (A-1)-(A-3) may now be written in dimensionless form by 

multiplying through by L/U2. , a constant, and using the relations 

above, Beneath each term appears its respective order of magnitude. 

It will be assumed for the time being that X and Y are significant 

but unknown. These relations will become the ponderomotive body 

forces in the derivation of the magnetohydrodynamic boundary layer 

equations in Appendix B. Proceeding as indicated above: 
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Then 
·r~ ~ 

= LPU J - ';;;X* + 

Since · ~ << L and L is 0f order one, these equations may be 

reduced·by neglecting the terms which contain S or multiples 

thereo.£ ::· 

- L ·O e 

If Y = o,. as will be shown to be the case under the magnetohydro

dyna.mic assumptions of Aibpendix B, t~ = 0 from the above equation 

_andtbe so-called.boU9:dary layer equations for-two-dimensional 

incompressible steady flow result: 
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APPENDIX B 

MAGNETOHYDROD~AMIC, · STEADY STATE, TWO..-DIMENSIONAL .. AND 

INCOMPRESSIBLE BOUNDARY LAYER EQUATIONS 

;J:r0r ma.ny aer0 pr0blems the :inagne.tic Reynolds number Rcr is 

. small. Under this c0ndition the induced :rp.agnetic field due to 

flew :rµa.y · se neglected. with. respect to :the apl:)lied. field. H0 • 

G)nly two-dimensional. flow will .be considered and only the x 

amt y. velocity c0mpenents wi],.l then. appear. Similarly, for· the 

:magnetic field Hz will be zero. l;Iowever, the electrical current 

. i and field E have z - components. only. For the case. 0f small 0-: 1 

. . ~ . 
. where the subscript o .refers to .the externally applied. fields. It 

. is assumect that H0 has only t.he y-co:mp0nent Hy0 • In the boundary 

·· layer .the· x-wise. velocity comp0nent is· much larger than. the. y-wise 

ve.locity .compcment. So .that: 

and. iinplies 

:that 

1Reference (:S), pp. 65 ... 67. 
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-In this. problem :there is enly the z-com!:)onent of i, . (neutral charge 

density), implying 

. The circuit of the electric current must be closed. It may be 

assumed that the current.is taken up by suitable electr0des, 

connected externally by a circuit of resistance Re. If he is the 

aistance between electrodes (the c,iepth of the fieldinthe z-

C:iirection), and,Ae :their e~uivalent area, the external current is 

·· Ie = Aeiz, :::;> the beundary condition 

or 

Let 

·Then 

tzo+ crE'z, + ·" = - Re~ee(J [( E'zo +ffmUHyo) + 0-([z,1;/Arn UH,.,)+ .. ,J. 

~e =- RaAe (]"" 
he 

, assumed small. 

'Ezn = - ~e E'z.n - (3e)ATYI U. l-lyn , 

· Using these relations the Ez I s may be found: 

Ezo = l .. +~e /i,,. U Hyo , 

~ z, -= ..:A_ ),f-m ll Hv, , 
I +- ~e. 



giving 

The ponderomotive force in the equations of motion is the~ 

- -L x B -- Fe ' 
t t ~ 

L X 8 =A,i O o liz. = -(~z})r,iHy)t +(izAl-l,i)J., 

H)( I-Iv o 

- 1 ( a a e. 2 H ,, ) Fex = I +fJe ~ I). H;o + 2 (j" }'m U. Yo ny1 + • .. , 

For small /8e , o-" aanid (firrst approximation: 

fe.y-= 0 . 

For incompressible flow, p - constant, the fundamental equations 

of magnetohydrodynamics become 

'v • f - 0 , 

which.reduces for·this special caseto 



APPENnrx··c 

· COMPU~ PR0GRAMS AND· THE 

SAMPLE RESULTS . 

·The following.nomenclature has been useq.: 1 

T(5) 

T(4) 

T{3) 

T(2) 

INT2 

y 

F,FJ 

,p 

Pl 

P2 

.Al 

A,;B,C, ••• 

A2;B2,C2, •.• 

A9,B9;G9, ••• 

Q 

A3 

A4 

·~.: .. . . 

= d/\,.,. , d._ [sm(2~} EXP(-:Z(f)) a2U ... J 
dCmx) d<P ~ ro 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

/\m , [S,n(Zq)) EXP(-Z<P) ~2~~ j 
~ mx, Liq> 

mx, <P 

· Qomputer. Library.· Integr:ation Subroutine 

1-
~ 

F;F/(2P/T(4)) 

a;b,c, ••• 

i,..)(a.) b,c,·. ·) 

~)(a, b1 c, · · ·) ,~ ( a, b. c ... ·) 

36 + Am , 2 c.os4'> 

· ~All .programs are written in:·IBM ,FORTRAN IL 

.2The INT subroutine is of itself several times. longer than the 
,remainder of ·the entire program. · For ·brevity, therefore,, it is not 
included .in detail. 
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A5 = YJttol~X , YJU...hY'o 
A6 · = v'RNCr 
A7 = u/Ucio 

B3 = rnr. 

B4 = cf> fl 

----------~ 



1 

11 

8 

2 
3 

10 
9 
6 

FLAT PLA'I'E,MJID 1BL,BOD:f-FIXED.B;SIGMA 00NST. 

DIMENSION/I' (15) 
COMMON·T,A,B,C;D,E,A4 
T(2)=0. .. 
T(J)=.Q01 
T(4)=0. 
CALL INT: (T,1,2:,L ,L ;l. ,L ,L ,1.,) 

. DO. 6 ·-J=l,,990 
CALL.INTM. 
IF {T(4)) 8, 8 ;11 
A3=SQRTF(T(2)/T(4)) 
A6=2 -~ *A*AJ+-l}AJ , 
ZJ=J 
ZJ='ZJ/100. 
JJ='ZJ 
I_F (J-JJ-l(-100)6,2,6 
WRITE· OUTPUT TAPE 3 ;3 ,T(2) ;A6 
FORMAT(4HMX: =F5.2,8X,19HFRICTION FUNCTION =E12.5,/13X, 

13HETA,15X,6HU/UINF) 
Y=.l 
DO 9 IB=l:,10 
A5=Y/A3, 
A7=A4*Y-l}(A+Y*(B+Y-l~( C+Y-l(-(D+Y-lfE)))) 
WRITE OUTPUT TAPE 3;10,A5~A7 
FORMAT (8X,El2.5,8~,El2.5J 
Y=Y+.l 
CONTINUE 
CALL EXIT 
END_ (1, 0,0,0;0;0;1;0;0;1, 0;0;0,030) 
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SUBROUTINE DAUX 
DIMENSION T(15) 
COMMON T,A,B,C~D,E,A4 
Al=l. 
A4=1.-T(2) 
Q==36.+T(4) 
A=(60.+9.*T(4)*(1.+Al) )/Q 
B=-(T(4)-ii-(1.+Al) )/2. 
C=(-20. -l~(4)-l!-A1+(20.+3. -l~(4) )-l!-(Al+l. )-l*T(4) )/(2. -l*Q) 
D=(30. -l!-(T(4)-l!-Al-4. )+3. -l~(4)-l!-(2. -T(4))!-(1.+Al) )/(2. -l*Q) 
E=(l2. -l!-(6. -T(4)*Al)-(6. -T(4) )-l!-(1.+Al)-l!-T(4) )/(2. -l*Q) 
A2=(9. ~!-(1.+Al)-A)/Q . . . 
B2=(-1.-Al)/2. 
C2=(10. -0+3 .-l!-1(4)-l!-(Al+l.) )/Q 
D2={18.-l!-Al+3 .-D-3 .-l~(4}-l!-(1.+Al) )/Q 
E2=(-9.*Al-3 .-E+T(4)-l!-(l.+Al) )/Q 
F'=A/2.+B/3;:t-C/4.+D/5 .+E/6. -A-l!-A/3 .-B-l!-B/5. -C-l!-C/7. -D-l!-D/9. -El!-E/11. 

l-D*E/5. -A-l!-B/2. -2. :i!-A-J!-C/5 .-A-l!-D/3. -2}!-A-l!-E/7. -B-l!-C/3. -2. -l!-Hl!-D/7. ':"'B*E/4. 
2-C*D/4. -2. -l!-C-l!-E/9. 
Pl =A2/2, +B2/3. +C2/4. +D2/ 5. +E2/ 6. '-"kl!-( 2. -l!-A2/3. +B2/2. +2. -l!-C2/ 5 •. +D2/3. 

1 +2.*E2/7. )-B-ll-(2. :;i,B2/5 .+A2/2.+C2/3 .+2. i!-D2/7 .+E2/4. )-C-l!-(2. -l',C2/7. 
, 2+2.-ll-A2/5.+B2/3.+D2/4.+2.-l!-E2/9. )-D-l!-(2.-ll-D2/9.+A2/3 .+2.*B2/7 .+C2/4, 

3+E2/5.)-El!-(2.*E2/ll.+2.-ll-A2/7,+B2/4.+2.*C2/9.+D2/5.) 
F=2. -l!-Pil-A-4. -l~ (4)-l!-p-l!-P*(l. +Al)-2. -l!-T(4)-l!-Pi!-(1.+Al)-l!-(1. -A/2. -B/3. 

l-C/4.-D/5.-E/6.) . 
T(5)=(F+4. 1~(4)11-p:;1-p)/( (Pi!-P+2. -l~(4)11-p:;1-p1)11-(A4+Al-l!-T(2))) 
REI'URN . 
END(l, 0, 0, 0, O, 0 ,1, 0 ,O:;.l, 0, 0, 0, 0, 0) 
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MX."" 0.10 FRICTION FUNCTION = 0.45948E-OO 
ETA U/uINF 

o.59454E 00 o.13715E-OO 
o .11891E on.::. . o .27591E-oo 
0.17836E 01 0,41382E-OO 
0.23782E 01 0,54532E 00 
0.29?27E 01 0.66342E 00 
0~35672E 01 o.76116E·oo 
0.41618E 01 0.83326E 00 
0.47563E 01 0.87759E 00 
0,53508E 01 0.89684E 00 
0.59454E 01 0.90000E 00 

MX = 0.20 FRICTION FUNCTION= 0428683E-OO 
ETA U/U)INF/ 

0.72126E 00 0.10488E-OO 
o.14425E 01 o.21581E..;OO 
0.21638E .01 0.33270E..;00 
0.28850E 01 0.45057E~OO 
0 .J6063E 01 . 0. 56162E 00 
0.43276E 01 .0,65727:E 00 
o.50488E 01 o.73014E oo 
0,57701E .. Ol . 0,77617E 00 
0.64913E 01 0.79669E 00 
0.72126E 01 0.80000E 00 

MX = 0;30 FRICTION-•FUNCTION,= 0.13056E...,OO 
ETA . U /U!NF~ 

0.98668E 00 0.67034E-Ol 
.0.19734E 01 0.14608E-OO 
0~29600E 01 0.24009E-OO 
o.39467E,Ol o.;34464E-OO 
o.49334E ,01 ·. o.45064E-oo 
0.59201E01 0,54705EOO 
0.69068E 01 .0.62358E 00 
0,78934E 01 0,67347E 00 
0.88801E 01 0.69615E 00 
0.98668E 01 0.70000E 00 

MX = 0,40 FRICTION FUNCTION= 0.20885E-Ol 
. ETA U/(JINF 

o.19042E 01 o.23981E-01 
0~38085E· 01 0.67331E-Ol 
0.57127E.01 0,13672E..;OO 
0.76170E 01 0.22826E..;00 
0,95212E .01 0.33107E-OO 
o.11425E 02 o.43092E-OO 
o.13330E 02 o.51380E oo 
0,15234E 02 0.56958E 00 
0.17138E 02 0,59553E 00 
0,19042E 02 0.60000E 00 



FLAT PLATE,MHD BL,FLOW-FIXED B,SIGMA CONST. 

DIMENSIONT(15) 
. COMMON T,A,B,C,D,E,A.4 

T(2)==0. 
T(3)=.001 
T(4)==0. 
CALL INT (T,1,2,1.,1.,1.,1.,1.,1.,) 
DO 6 · J=l,3000 

1 CALL INTM 
IF (T(4))8,8,11 

11 A3=SQRTF(T(2)/T(4)) 
A6=Q. *M}A.4-l}A3 

8 ZJ=J 
ZJ=ZJ/100. 
JJ=ZJ 
IF (J-JJ-l~l00)6,2,6 

2 WRITE OUTPUT TAPE 3,3,T(2),A6 
3 FORMAT (4HMX = F5,2,8X,19HFRICTION:FUNCTION =El2.5,/13X, 

13HETA,15X,6HU/uINF) 
Y=.l 
DO 9 lB=l,10 
A5=Y/A3 
A ?=A.4-l}Y-l}( A+Y-l}( B+Y-l}( C+Y-l~( D+Yol}E)) ) ) 
WRITE OUTPUT TAPE.3,10,A5,A7 

10 FORMAT (8X,E12,5,8X,E12.5) 
9 Y=Y+.1 
6 CONTINUE 

CALL EXIT 
END(l,O,O,O,O,O,l,0,0,1,0,0,0,0,0) 
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SUBROUTINE DAUX 
DIMENSION T(15) 
COMMON T,A,B,C,D,E,A4 
Al=O. 
A4=l. 
Q=36 .+T(4) 
A=( 60. -1-9. -ll-T(4)-i1-(1. +Al)) /Q 
B=-(T(4)-i1-( 1. +Al)) /2. 
C=(-20. -l1-T(4)-l1-Al +(20.+3, -l~(4) )-i1-(Al +l. )-i~(4) )/(2. -ll-Q) 
D=(30, -l1-(T(4)-l1-Al-4. )+3. -l~(4)-l1-(2. -T(4) )-ll-(1.+Al) )/(2. -ll-Q) 
E=(l2 ,-ll-( 6. -T(4)-l1-Al)-( 6. -T(4)-i1-(1. +Al)-l~( 4)) /(2. -ll-Q) 
A2=(9. -ll-(1.+Al)-A)/Q 
B2=(-l.-Al)/2. 
C2=( 10. -C+3. -l}T( 4)-i1-( Al +l.)) /Q 
D2=(18. -l}Al +3. -D-3. -l~(4)-i~(l.+Al) )/Q 
E2=(-9. -l}Al-3. -E+T(4)-i~(l.+A1) )/Q 
P=A/2 .+B/3 .+c/4,+D/5 .+E/6 .-A-l}A/3. -B-l}B/5. -C-l}C/7, -D-l}D/9. -E-l}E/11. 

l-D-l}E/5. -A-l}B/2. -2. -l}A-l~C/5. -A-l}D/3. -2. -l(-A-l}E/7. -B-l~C/3. -2. -l(-B-l(-D/7, -B-l~E/4, 
2-C-l(-D/4, -2. -l}C-l~E/9. . 

Pl=A2/2.+B2/3 .+c2/4.+D2/5 .+E2/6 .-A-l(-(2, -l}A2/3 .+B2/2.+2. -l~C2/5 .+D2/3. 
1 +2. -l~E2/7. )-B-l~(2. -l~B2/5 .+A2/2.+c2/3 .+2. -l~D2/7 .+E2/4, )-C-l}(2. -l~C2/7. 
2+2. -l~ A2/5. +B2/3. +D2/4. +2. -l}E2/9. )-D-l(-( 2. -l(-D2/9. +A2/3. +2, -l}B2/7. +c2/4. 
J+E2/5. )-E-l}( 2. -l~E2/ll. +2. -l~A2/7. +B2/4. +2. -l}C2/9. +D2/5. ) 

F=2. %Pl~A-4. -l~(4)-l~Pl~Pl~(l.+Al)-2. -l(-T(4)-l(-~~(1.+Al)-l}(l.-A/2. -B/3. 
l-C/4.-D/5.-E/6.) . 

T( 5 )=;(F+4, -l~(4)-l(-Pl~P) /( ( Pl~P+2. -l~(4)-l}Pl}Pl)-l~( A4+Al-lfT(2))) 
RETURN . 
END(l,O,O,O,O,O,l,O,O,l,O,O,O,O,O) 
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MX = 0.10 FRICTION FUNCTION= 0.85561E 00 
ETA U/UINF 

0.50153E 00 0.20273E-OO 
0.10031E 01 0.38370E-OO 
0.15046E 01 0,54374E 00 
0.20061E 01 0.68181E 00 
0.25077E 01 0,79595E 00 
0,30092E 01 0.88428E 00 
0,35107E 01 0,94599E 00 
0.40123E 01 0.98233E 00 
0,45138E 01 0,99757E 00 
0.50153E 01 l.OOOOOE 00 

MX = 0.20 FRICTION FUNCTION= 0.10336E 01 
ETA U/UINF 

0.48874E-OO 0.23052E-OO 
0.97749E 00 0.42283E-OO 
0.14662E 01 0,58317E 00 
0,19550E 01 0.71500E 00 
0,24437E 01 0,82001E 00 
0.29325E 01 0,89910E 00 
0,34212E 01 0,95331E 00 
0.39100E 01 0,98481E 00 
0,43987E 01 0,99792E 00 
0.48874E 01 l.OOOOOE 00 

MX = 0.30 FRICTION FUNCTION= 0.11895E 01 
ETA U/UINF 

0,47620E-OO 0.25217E-OO 
0.95240E 00 0,45229E-OO 
0.14286E 01 0.61180E 00 
0,19048E 01 0,73823E 00 
0.23810E 01 · 0.83624E 00 
0.28572E 01 0.90871E 00 
0.33334E 01 0,95786E 00 
0.38096E 01 0.98629E 00 
0,42858E 01 0,99812E 00 
0,47620E 01 l.OOOOOE 00 

MX = 0.40 FRICTION FUNCTION= 0.13295E 01 
ETA U/UINF 

0.46274E-OO 0.26886E-OO 
0,92547E 00 0,47420E-OO 
0.13882E 01 0.63228E 00 
0.18509E 01 0.75414E 00 
0.23137E 01 0,84681E 00 
0.2?764E 01 0.91463E 00 
o.32392E 01 o.96049E oo 
0,37019E 01 0.98709E 00 
0.41646E 01 0.99821E 00 
0.46274E 01 l.OOOOOE 00 



FLAT PLATE,MlID BL,BODY-FIXED B, SIGMA VAR. 

DIMENSION T (15) 
COMMON T,A,B,C,D,E,A4 
T(2)=0. 
T(J)=oOOl 
T(4)=0. 
CALL INT (T ,1,2,L ,L ,L ,L ,1. ,L) 
DO 6 J=l,3000 

1 CALL INTM 
IF (T (4)) 8,8,11 

11 AJ=SQRTF (T(2)/T(4)) 
A6=2 . ~*Al(-A4licAJ 

8 ZJ=J 
ZJ=ZJ/100. 
JJ=ZJ 
IF (J=JJ~~lOO )6 ,2 ,6 

2 WRITE OUTPUT TAPE 3,3,T(2),A6 
3 FORMAT (4HMX =F5;2,8X,19HFRICTION FUNCTION= El2.5,/13X, 

13HETA, 15X, 6HU /UINF) 
Y=ol 

.DO 9 lB=l,10 
A5=Y/A3 
A 7=AM~yl:·(A+YoJ~(B+Y~i-( C+Yl(-(D+Y~(-E)))) 
WRITE OUTPUT TAPE 3,10,A5,A7 

10 FORMAT (8X,El2.5,8X,El2.5) 
9 Y=Y+.l 
6 CONTINUE 

CALL EXIT 
END (1,o,o,o,o,o,1,o,o,1,o,o,o,o,o) 
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SUBROUTINE DAUX 
DIMENSION T(15) 
COMMON T,A,B,C,D,E,A.4 
Al=O~ 
A.4=1. 
Q=J6.+T(4) 
A=( 60. +9. -l~Al-l!-T( 4)) /Q 
B=-(Al-l!-T(4) )/2. 
C=r( 4)-1}(3. -l~Al-l~( 4)+20.) /( 2. -l}Q) 
D=(36. -l!-Al-l~T(4)-120. -T(4)-i~(3. -l~Al -l~T(4)+30.)) /(2. -l~Q) 
E=( 72. -18. -l~Al-l~(4)+T(4)-1}(12. +Al-l~T(4))) /(2. -l~Q) 
A2=( 9 ,-l!-Al-A) /Q 
B2=Al/2. 
C2=(3. -l~A1-l~(4)+lO. -C)/Q 
D2=(18. -l~Al-3. -l}Al-l}T(4)-15. -D) /Q 
E2=(-9. -l~Al +6. +Al-l~( 4)-E) /Q 
P=A/2.+B/3 .+c/4,+D/5 .+E/6. -A-l!-A/3. -B-l}B/5. -C-l~C/7. -D-l!-D/9. -E-l~E/11. 

l-D-l~E/5. -A-l!-B/2. -2. -l~A-l!-C /5. --A-l~D/3. -2. -l!-A-l!-E/7. -B-l!-C /3. -2. -l}B-l!-D/7. -B-l!-E/4. 
2-C-l~D/4. -2. -l!-C-l}E/9. 

Pl=A2/2.+B2/3 .+c2/4.+D2/5 .+E2/6. -A-1~(2. -l~A2/3 .+B2/2 .+2. -l!-C2/5 :+D2/3. 
1 +2. -l!-E2/7; )-B-l~( 2. -l~B2/5. +A2/2. +c2/3. +2. -l~D2/7. +E2/4. )-C-l!-( 2. -l!-C2/7. 
2+2. -l!-A2/5 .+B2/3 .+D2/4.+2. %E2/9. )-D-l~(2. -l!-D2/9 .+A2/3 ,-+Q. -l!-B2/7 .+c2/4, 
3+E2/5. )-E-1!-( 2. -l~E2/ll. +2. -l!-A2/7. +B2/4. +2. -l!-C2/9. +D2/5.) 

F=2. -l!-~~A-4. -1~(4)-ii-~~~!-Al-2. -l~(4)-l~~!-Al-l}(l.-A/2. -B/3. 
l-C/4, -D/5. -E/6.) 

T( 5)=(F+2. -l!-T( 4)-i}~}P) /( ( A4+Al-l~(2),)-ii-(~~P+2. -l!-T( 4)-ii-~~Pl)) 
RETURN -

-- END( 1,0 ,0 ,O ,O ,O ,1,0 ,O ,1,0 ,O ,O ,O ,0) 
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MX = 0.10 · FRICTION FUNCTION = 0.58338E 00 
ETA U/UINF 

0.5J002E 00 0.15508E-OO 
0.10600E 01 0.31122E-OO 
.o.15901E 01 o.46534E.;..oo 
. 0.21201E 01 0.61131E 00 
. 0.26501E 01 0.74157E 00 
0.31801E 01 0.84879E 00 
O.J7102E 01 0.92750E 00 

· 0. 42402E 01 0. 97 572E 00 
.0.47702E•Ol 0.99659E 00 
0.53002E 01 . l.OOOOOE 00 

MX = 0.20 FRICTION FUNCTION= 0.52428E 00 
ETA U/UINF 

0.54557E 00 0.14410E-OO 
0.10911E 01 0.29224E-OO 

. 0.16367E 01 . 0.44269E-OO 

. 0. 21823E 01 . 0. 58929E 00 
0.27279E 01 0.72346E 00 
0.32734E 01 0.83633E 00 
0.38190E 01 0.92071E 00 
0.43646E 01 0.97320E 00 

. 0. 4 9101E 01 0. 99620E 00 
0.54557E 01 O.lOOOOE 01 

MX.= 0.30 FRICTION FUNCTION= 0.46652E-OO 
· ETA U/UINF . 

0.56456E 00 0.13336E-OO 
0.11291E 01 0.27368E-OO 
0.16937E 01 0.42054E-OO 
0.22583E 01 0.56775E 00 
0.28228E01 0.70576E 00 
0.33874E 01 0.82415E 00 
0.39519E 01 0.91408E 00 
0.45165E 01 0.97074E.OO 
0.50811E 01 0.99583E 00 
0.56456E 01 O.lOOOOE 01 

MX .. = 0.40 FRICTION FUNCTION = 0.41042E-OO 
ETA U/UINF 

0.58720E 00 . 0.12276E-OO 
6.11744E 01 0.25535E-OO 
0.17616E 01 0.39867E.;..c)0 
0.23488E 01 0.54649E 00 

. 0.29360E 01 0.68828E 00 
0.35232E 01 0.81212E 00 
0.41104E 01 0.90752E 00 
0.46976E 01 0.968JOE 00 
Ou52848E 01 . 0.99545E 00 

.0.58720E 01 O.lOOOOE 01 

" - ---- - -- --- -- -----



90 WEDGE,MHD,BL,X=0,50,BODY..;,FIXED,B,SIGMA VAR. 

DIMENSION,T(l5) 
COMMON ;T ,A,B ,C ,D ,E,A4 
T(2)=.G01 

, T(3 )=.G©G.)2 
T(4)=.G24853 
Z4=1. 
CALL INT (T,1,2,,1. ,1. "l. ,1. ;l. ,1.) 
DO 6 J=l, 5000 

,1 CALL INTM 
IF(T(2 )-Z4-l(- .1)6 ,2 ,2 

2 A3=SQRTF(T(2)/T(4)) 
A6=2 3!-fi.-l*'A4*A3 
WRITE'OUTPUT TA,PE 3 ,3, T(2) ,A6 

3 FORMAT (4ILMX=F5.2,8X;l9HFRIGTION FUNCTION=El2.5,/13X, 
l3HETA;15X,6HU/UINF) 

, Y=.l 
DO 9 ,lB==l,10 
A5=Y/A3 
A?=A4-1i-y-ii-(A+Y-l!-(B+X-l!-(D+Y-l!-E)))) 
WRITE OUTPUT TAPE 3;10,A5,A7 

. 10 FORMAT (8X,El2,5,8X,El2.5) 
9 Y=Y+~l 

z4~z4+1. 
·6. C0NTINUE 

GALL E;X:IT 
EI'JD 
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SUBROUTINE.DAU:X: 
DIMENSI0N ,T(l5) 
CO~ON.T,A,B,C,D,E,A4 

.A4=,5 
Al=(l./(T(2)*3.) )-~!-A4 · 
Q~36 .+T(4) 

· A=(6©+9;*Al~fT(4,J))/Q 
I3=-Al-lfT(4) )/2. 
G=T(4)*(3. *Al-l!-T(4)+20 .)/(2. -l!-Q) 
D=(36. -lfAl-l!-T(:4) .. ;;J.20 .-T(4)if(3. 4!-Al*T(4)+30.) )/2. *Q) 
F.=(72 ,...;18 ~-l!-Al-l*T(4)+T(4)*(12 .+Al-l!-T(4)) )/(2. -l~Q) 
A2=,(9.-*J\l .... A)/Q . 
B2=-Al/2. . 
Q2=(3. -lfAl-ley (4)+ 10. -C) /Q 
D2=(18.-lfAl...;3 .*Al*T(4)-15 .-D)/Q 
E2=(-9 ,-lfA1+6 .+Al*T(4)...;E)/Q 

. A9=(9 ,-l!-T(4)*(-Al/T(2)) )/Q 
B9=(T(4)iAl/T(2))/2. 
·C9=(-1. 5*T(4)*T(4)-l!-Al/T(2) )/Q 
D9=(-18. -iey(4)-ii-Ai/T(2)+1. 5-lfT(4)-iey(4)-lfAl/T(2) )/Q 

· E9=( 9. -iey(4)-i!-Al/T(Z)- ~ 5-l!-T(4)-l!-T(4)*Al/T(2)) /Q 
P=A/2 ,,+B/3 .+c/4.+D/5 .+E/6,-A-lfA/3 .-B-l~B/5 .-C-lfC/7 ,...;D-l!-D/9 ,...;EJfE/11. 

l-D-l!-E/5 .-A-lfB/2 .-2 ~*A*C/5 .--A-l~D/3 .-2 .-l~A*E/7 .-B-l!-C/3 .-2 ~~fWfD/7 .-B-l~E/4. 
· 2-C-lfD/4,-2. -lfC*E/9. 

1;'1=A2/2 .+B2/3 .+c2/4.+D2/5 .+E2/6 .-A-l~(2. -lfA2/3 .+B?/2 .+2. *C2/5 .+D2/3. 
· J,.+2 ,-lfE2/7. )-B*(2 ,-lfB2/5 .+A2/2 .+q2/3 .+2 .*D2/7 .+E2/4. )-C*(2.-l!-C2/7. 
2+2 .*A2/5 .+B2/3 .+D2/4,+2.-lfE2/9·. ).;:,D*(2 .-l~D2/9 .+A2/3 .+2 ,-lfB2/7 .+c2/4, 
3+E2/5. )-E-l~(2. *E2/ll.+2. *A2/7 .+B2/4.+2. -lfG2/9 .+D2/5.) 

P.2=A9/Z .=B9 /3 .+c9/ 4: +D9 /5. +E9/6, -A*(2. -l!-A 9 /3 .+B9 /2 .+2. *C9 /5. +D9 /3. 
·1+2 .*E9/7. )-B*(2 ,-l!-B9/5 .+A9/2 .+Q9/3 .+2 ,-lFB9/7 .+E9/4. )-C*(2 .*C9/7. 
· 2+2 .-l~A9/5 .+BCJ/3 .+D9/4.+2 ,-lfE9/9. )-D-l!-(2 .-JfB9/9 .+A9/3 .+2 .*B9/7 .+c9/4. 
,J+E9/5 ~ )-E-lf{2 ,-l!-E9/ll.+2 .-lfA9/7 .+B9/4.+2 .*C9/9 .+D9/5.) 
, F=2. -ll-P*A..;4, -l!-T(4)*F-l(,P*Al..;2. -l!-T(4)-l(,P-lfAl*(l. A/2 .-B/3. 

·l-C/4.-D/5,-E/6.) -
T(5)=(F+2 ,-l!-T(4)*P-lfP.)/A4-2. -l~P*P2-ll-T(4) )/(P-l~P2-ll-T(4) )/(P*P+2 .*P*Pl-l!-T(4)) 

1RETURN · . 
END 
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MX=0.10 FRICTION FUNCTION= 0,51209E 00 
ETA . U/UINF . 

0,48463E-00 . 0.11474E-OO 
0,96927E GO 0.21222E..;QQ 
0,14539E 01 0.29393E-00 
0;19385E 01 O.J6076E-OO 
0,24232:EOl 0.41331E-OO 
0.29078E 01 0.45215E-OO 
O.J3924E 01 0,47822E-OO 
O.J8771E 01 0,4't303E,.;00 
0 • 43 617E · 01 0 • 4 9906E;;.OO 
0. 48463E 01 0. 50000E-OO 

MX=0.20 FRICTION FUNGTION = 0.48332E 00 
ETA U/uINF 

. · 0.48308E-OO 0.10783E-00 
0.96616E·OO 0.20031E-00 
0;14492E 01 0.27976E-OO 
0 ,19323E 01 0 ;J4702E,;.OO 
0,24154E 01 0.40202E-OO 
0.28985E 01 0,44440E-OO 
0,33816E 01 0;47399E-OO 
0.38.646E 01 0.49146E-'OO 
0,43477E 01 0.49882E..;QQ 
o.48308E 01 o.50000E-:-OO. 

MX=0.30 . FRICTION FUNCTION = 0.45488E 00 
ETA . U/UINF 

0.48709E-00 0;10206E..;QQ 
0,97419E 00 0.19022E-OO 
O;l4613E 01 0.26762E-OO 
0 ~19484K '01 0 .335J.4.E.OO 
0 • 243 5 511tDl O O 3 9221E-OO 
0,29226E'Ol 0.43762E..;QQ 
0 .34097E 01 0. 47029E-OO 
0,38967E 01 0,49009E-00 
0 . 43 83 8E .Gl . 0 . 4 986lE-OO 
0.48709E·©J ·o.50000E. 00 

MX=0.40 .FRICTIONFUNCTIGN'= 0.42663E-OO 
ETA U/uINF · 

o.49483E-OO o.96878E-Ol 
. o. 98966E oo o .1s101E~oo 

0~14845E 01 0.25642E-OO 
0~19793E 01 0,32410E..;OO 
0.24742E 01 0.38305]:-00 
0 ,29690E..Ol O -43127E-00 
0~34638E 01 0~46681E-OO 
0d39586E.Ol 0.48879E-OO 
0,44535E01 .0.49841.E-OO 
0,49483E 01 0.50000E-"OO 



CIRCULAR en MHD BL,BODY-FIXED B,SIGMA VARIABLE 

DIMENSION T(15) 
COMMON T,A,B,C,D,E,F,G,H,P,A4,B3,Q3 
B3=1. 

T(2)=.005 
T(3)=.0005 
T(4)=.0526 
Z4=1. 
CALL INT (T,l,0,1.E-8,100.,l.,.Ol,5,8E-5,,5) 
DO 6 J=l,32000 

1 CALL INIM 
B4=T(2)/.017453293 
IF(B4-44,)12,16,16 

16 IF(B4-45,5)17,18,18 
17 T(2)=T(2)+.034906586 

T(4)=T(4)+T(5)-lc ,034906586 
18 IF(B4-89,2)12,14,14 
14 IF(B4-90,1)15,13,13 
15 T(2)=T(2)+.017453293 

T(4)=T(4)+T(5)-ic ,017 453293 
13 IF(B4-lll. )12,12,8 
12 IF(A)2,2,19 
19 IF(B4-z4-ic5,)6,2,2 
2 QlO=T(4)-lcEXPF(2. -lcT(2) )/SINF(2, -lcT(2)) 

A3=SQRTF(Q10) 
A6=2. -lcA-l<A4/ A3 
WRITE OUTPUT TAPE 3,3,B4,A6 

3 FORMAT (8H THETA =F6.l,8X,18HFRICTIIN FUNCTION=El2,5, 
l/13X,5HETA R,15X,6HU/UINF) 
Y=,l 
DO 9 IB=l,10 
A5=Y-l<A3 
A7=A4-lcY-lc(A+Yl~(B+Y-lc(C+Y-lc(D+Y-lc(E+Y-lc(F+Y-l~(G+Y-l<H))))))) 
WRITE OUTPUT TAPE 3,10,A5,A7 

10 FORMAT (8X,El2,5,8X,El2,5) 
9 Y=Y+~l . 

Z4=Z4+1. 
IF(A)8,8,6 

6 CONTINUE 

CALL EXIT 
END 
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SUBROUTINE DAUX 
DIMENSION·T(l5) 
COMMON T,A;B,C,D,E,F,G;H,P,A4,B3,Q3 
Q4=T(2) 
Q5=T(4) 
A4=2.*SINF(Q4) 
Q=2.*COSF(Q4) 
Q7=EXPF(2.*Q4) 
QS=C0SF(2. -ll-Q4) 
Q9=SINF(2.*Q4) 
Ql =BJ-ll-Q5*Q7 /Q9 
Q2=2. -l!{J,5-ll-Q7/ A4 
W=.98 
A=(336. -ll-w+lS. -ll-Q2)/(126 .+Ql) 
B=-Q2*.5 
C=( 56 .*61-11-W+J. -ll-Ql*Q2) / ( 126. +Ql) 
D=-8. 7 5*A-7 • 5-11-B.;. 3 • 7 5*C 
E=21. ii-A+ 16;, *B+6. *C 
F=-2l.*A~l5.*B-5.*C 
G=10.~t-A+48.*B/7 .+15.*C/7. 
H=-15~*A/8.-5,*B/4,-J.*C/8. 
A2=-A/(126.+Ql) 
C2=(56.*W+J.*Q2-C)/(126.+Ql) 
D2=-8. 7 5*Al-3 ;, 7 5-11-c2 
E2=2l .*A2+6. -ll-C2 
F2=-21.*A2-5.*C2 
G2=10.*A2+15.*C2/7. 
H2=-15 .~1-A2/s.~3 .-r~2/s. 
A9=18./(126.+Ql) 
B9=-.5 

J C9=3;*Ql/(126.+Ql) 
D9=-8.75*A9~7.5*B2-3,75*C9 
E9=21.-l!-A9fl6 ;-lt-B9+6 .-ll-09 
F9=-21. *A 9-15. *B9-5. *CO 
G9=10.*A9+48,*B9/7.+15.*C9/7. 
H9=-15 .*A9/8.-5.,*B9/4.-3 .*C9/8. 
P=:=2 .*A*{ .25-A/6~-B/4~~/5.-D/6.-E/7 .-F/8.-G/9.-H/10. )+2 .*B-11-(1./6. 

l-B/10.-C/6 .-D/7 .-E/8 • .;.F/9.-G/10.-H/ll. )+2.-l!-C*( .125-C/14.-D/8 .-E/9. 
2-F/10.-G/11.-H/12. )+2.*D*(.l-D/18.-E/10.-F/11.-G/12 .-H/13. )+2.*E-ll-
3(1./12.-E/22~-F/12.-G/13 .-H/14. )+2 ~*F*(l./14,.;.F/26.-G/14.-H/15.) 
4+2 •. *G*(L/16.-G/JO.-H/16. )+2;-ll-H*(l./18.-H/34.) . . 
PI=2.*. A2*( .25-A/3,-B/4.~/5.-D/6.-E/7 ...• -F/8.-G/. 9.-H/10.) .. +2.-1i-c2-11-( ~12 

15-A/. 5,-B/6.-C/7 .-D./8.-E/9.-F/.10,-G/ll.-H/12. )+2.~D2*. ( .l-A/6 .-B/7. 
2-C/8.-D/9.-E/10.-F/ll.-G/12.-H/13. )+2.*E2*(1./12.-A/7 .-B/8.-C/9 .-
3D/IO • ..;E/ll.-F/12.-G/13 ,•H/J.4. )+2.*Fg*(l./14:-A/8 • .;.B/9.-C/10.-D/1L 
4-E/12.-F/1J.-G/J.4.-H/15.)+2.*G2*(1./16.-A/9.-B/10.-C/ll.-D/12.-E/· 
513,"-F/14.-G/15.-H/16.)+2.*H2*{1./18.-A/10.-B/ll.-C/12.-D/13.-E/14. 
6-F/15.-G/16.-H .17 ~) . · 
P2=2;*A9*{ .25-A/'J.-B/4,-0/5,..;D/6.-E/7 .-F/8.-G/9.-H/10. )+2.*C9*(:.12 

1. 5-A/. 5 .-B/6 ...• -C/7 .-D/8 .-E/9 ,.;.F/10 .-G/11.-H/12. )+2. *D9*(;, l-A/6 .-B/7. 
2-C/8.-D/9.~E/10.-F/ll.~/12.-H/lJ.)+2.*E9*{1./12.-A/7.-B/8.-C/9.-
3D/10 .-E/11.-F/12 .-G/13 .-H/14, )+2. *F9*(1./14.-A/8 .-B/9 .-C/10 .-D/11. 
4-E/12.-F/13,-G/l4.-H/l5.)+2.*G9*(1./16.-A/9.-B/10.-C/11.-D/12.-E/ 
513.-F /14 •.. -G/15 .-H/16. )+2. *H9*(1./l8 .-A/10 .-B/11.-C/12 .-D/13 .-E/14. 
6-. F/15 .-G/.16.-H/17. )+2.*B9*(1./6.-A/4.-B/5 .-C/6 .-D/7 .-E/8.-
7F /9 .-G/10 .-H/11. ,) 
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QJ=l.-A/2.-B/J.-C/4.-D/5.-E/6.-F/7.-G/8.-H/9. 
FJ=A/Q5-2. -ll-Q7-l1-(2. -l1-P+QJ) / A4 
Q6=( (. 5-ii-p3-ii-Q/Q7+p-ii-B3/ A4) /Q7+P-l*-(Q8/Q9-l.) /Q7-Pl-l*-2. -l*-BJ-ll-Q5/Q9+ 

12 .-l*-Pl-l1-8J1l-Q5-l1-Q8/ ( Q9-ll-Q9 )-4. -l1-P2-l*-Q5/ A4+2. -l1-P2-l1-Q5-ll-Q/ (AM1-A4)) / 
2 ( • 511-p / ( Q5-ll-Q7 )+Pl-l(.BJ /Q9+p2-ii-2 . / A4) 

T(5)=Q6 
RETURN 
END 

THETA= 5.0 
ETA R 

0.25076E-OO 
0.50152E 00 
0.75228E 00 
O.lOOJOE 01 
0~125J8E·Ol 

-0 .15046E .01 
0~17553E 01 
0.20061E 01 
0.22568E 01 
0.25076E 01 

THETA =- 10 .O 
ETA R 

0.25170E .... OO 
o.50341EOO 
o.75511E oo 
0.10068E 01 
0.12585E .01 
0.15102E 01 
0.17619E 01 
0.201J6E 01 
0.2265JE 01 
0.25170E 01 

THETA= 15.0 
ETA R 

0.25330E-OO 
0.50659E 00 
0,75989E 00 
0.10132E 01 
0.12665E 01 
0.15198E 01 
O •. l 7731E. 01 
0.20264E.Ol 
0.22797E 01 
0.253JOE 01 

FRICTION:FINCTION=0.58377E 00 
U/UINF 

0.62941E-Ol 
0.10769E-00 
0.1J742E-OO 
0.15537E...;OO 
0.16492E-OO 
0;16918~-00 
O.l7066E-OO 
0.17100E-OO 
0;17104E-OO 
0.17104E-OO 

FRICTION FUNCTION= 0.11556E 01 
U/UINF 

o. 12511E .... oo 
0.21417E-OO 
0.27340E...;OO 
O.J0922E-OO 
O.J2829E-00 
O.JJ681E-OO 
O.JJ977E-OO 
0.34045E .... OO 
O.J4052E-OO 
0.34053E...;OO 

FRICTION FUNCTION= 0.17062E 01 
U/UINF 

0.18602E-OO 
0 .J 1868E,.;.OO 
0.40711E-OO 
0.46070E-OO 
0.48928E-OO 
0.50207E 00 
0.50652E 00 
0.50755E 00 
0.50766E 00 
0.50766E 00 
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