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the control for the ith state equatiorl~ a control 
function. 

Number of process states used in least-squares 
procedure. 

Number of control parameters affecting the ith state 
equation. 

Number of state equations which describe the process. 

Independent variable, time. 

Function of the state of the process and time which is 
for control affecting the ith state equation, a control 
parameter. 

The ith of a set of dependent variables which describe 
the state or the system, a state variable or phase 
coordinate. 
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INTRODUCTION 

Control of physical processes which arise in engineering 

problems occupies an important role in present day technology. To 

control a process is to cause, in one way or another, the process to 

operate at its best according to some criteria. To this end, two more 

or less distinct questions are to be answered. One, what is this best, 

or "optimum," performance? Two, what realizable changes or addi

tions to the process, i.e., what controls, are necessary to obtain 

this optimum mode of operation, which might be any mode since any 

operation is optimum to some criteria? The latter question in relation 

to dynamic processes of an engineering nature is the subject of this 

thesis. 

Accounts of the historical background of control theory and 

practice can be found in most texts on the subject, the most complete 

probably being relate ct. by Newton, Gould and Kaiser.[ 7] ~ 1 Major 

topics concerning the present theory of controlled processes are 

treated in the books by Truxal [9] , Gibson [4] , Bellman [1] and 

Pontryagin, et. al. [a] , only to name a few. 

The scope of this thesis, but not necessarily the underlying 

concept, is confined to the continuous control of dynamic processes 

which are described by a system of ordinary differential equations; 

equations of the form 

1Numbers in brackets refer to references in Bibliography. 
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(1) 
i : 1, 2, I n 

where x 1, x 2, , , , , xn are the state variables, i.e., the variables 

which describe the state of the process at each value of the indepen-

dent variable t, time, The relations f. define the uncontrolled pro-
1 

cess, Control is brought to bear on the process through the relations 

2 

g. made up of the control parameters u . 1, u. 2, , , , , u. where m. 
1 1 1 1m. 1 

1 

denotes the number of control parameters which affect the ith state 

equation. Determination of suitablij, as f~_cti_Qn!_of the ..9..9ntro!., 

param~ e.r~ u-ij where 

u . . = u .. (x 1, x 2 , , • • , xn) , 
lJ lJ 

or alternatively, 

,i~9_.mqJQlllx. cp.lled "s~ th~ 11 When more convenient, higher 

order equations will be used in lieu of the state model (1 ). 

(2) 

(3) 

This thesis explores an idea which proposes to determine, by 

numerical methods, the relations g. that control the system described 
1 

by Equations (1) in such a manner as to give some desired x 1, 

.. ' X • n 
Taking, without loss of generality, the g. to be of the 

1 

form 

g. = a . lu ' l + a.2u·2 +. 
1 1 1 1 1 

+ a . u . 1m. 1m . 
1 1 

where the u .. are as in (2) or (3), synthesis i§_J1.~co:mpli 1?l1ed by 
lJ 

(4) 
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J£l~£.JiB~;~~h!:.:S5?}2-,~i~l]JfL?-ij· Sl}Cll.Jl\~.1 ~qµ,gtiQPe.tl). ,a+:.E;\.S.att~J.i~d.fE: .. e"~". 
~e~i:;!~.~q';ct,:r'E:,s .. f:l_~ri.~.~-.._.<t~'.".tr a su},!9:1:lJ~.X:e-ng.~_Q;Ltimi~. In spirit, this 

constitutes the entire concept. 

Examination of the method indicates no restriction, or even 

distinction, on the model (1) in the sense of its classification, to wit, 

characterized !JY,.time ... v:.ar.y:Jngpar-amet~x;:;i.. Indeed, elements of ( 1) 
~·--+~-·_-,. _____ -.--.,_ .... - .--- -~ -----' ., -· -

need only be )SR~W!l ... gf'.§.J)his:;3.llv.;Xather than as functional expressions. 

There are, of course, limitations. It appears there are no general 

ones, but rather the feasibility of each undertaking must be determined 

separately.1 Choosing an allo':Yable~of contr~~~~s ui.j.,. 

~~-~~:,::_<?!i:Pc:i.J?le '"~f$i'1ing th€: 9esi~e.ct_mode~o(_<;>pE)_~.§.JJon W?U1dbe _ 

th~ ... R~I:.sU:U.._QJJnt-p:r.oJil.~.m .. in.'"man¥, .. .ins.tanc.e.s_ 

The work in this thesis might well be termed experimental in 

a mathematical sense as is indicated by a review of its contents, but 

the end results are intended to demonstrate the feasibility of an 

analytical method for parameter synthesis. Chapter I is devoted to 

formulation of the general problem and outlining the proposed method 

of solution. In Chapter II, a discussion of the synthesis method in 

relation to performance criteria is presented. Also, the mechanics 

of implementing the method are related as well as discussions of 

important considerations in its use. An illustrative problem is 

studied in Chapter III with the final objective of showing the method 

tractable and the intermediate objective of pointing out some consider-

ations involved in its implementation. A second example problem is 

then attacked with the preceding objectives again in mind plus the idea 

of demonstrating the versatility of the method. 
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Results of the mathematical experimentation reported in this 

thesis encourage the conclusion that synthesis of a controlled pro-

cess could, in many instances, be accomplished using the proposed 

method. The applicability of the method depends, to a great extent, 

on the availability of control parameters capable of giving the desired 

mode of operation. 

The lack of certainty in applying the proposed synthesis 

method indicates its deficiency in conciseness, but this is more than 

made up for by its simplicity and generality. Although the mathe-

matical concepts of the method are almost as old as numerical anal

ysis itself, 2 this approach to the problem of synthesis is quite differ-

ent as evidenced by the complete lack of published literature along 

these lines. The basic concept of the method was originally employed 

by Bernhart [2] to the problem of system identification with very good 

results. 

The problem of synthesizing controlled processes is, in many 

respects, .unsolved. Linear systems can be approached with some 

degree of confidence by transforming the describing equations to the 

complex domain and using one of several semi-graphical synthesis 

techniques. notably root locus plots [e] and Nyquist diagrams [4] . 

An analytical approach to synthesis based on minimizing error inte

grals also exists [7] • but it too invariably ends up in the complex 

domain .and is thus limited to. linear plants and control. If the process 

demonstrates nonlinear characteristics. the synthesis problem is 

2The books by Lane zos [6 l and Hamming [5] on numerical 
methods are used as references ffir this thesis. 
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magnified many times over. No general approach exists, and the most 

common, the describing fllnction technique [4] , is an approximation 

to amplitude and frequency characteristics of the controlled process. 

Without reservation, it can be said that the proposed synthesis method~ 

if successfully applied, is far superior in both generality and sim-

plicity to any existing method of synthesis in use today. 



CHAPTER I 

THE SYNTHESIS PROCEDURE 

1. The Problem. 

The control of a dynamic process to perform in a desired 

manner is the object of this thesis. Specifically, this entails control-

ling a fixed plant described by 
,;, 

dx. 
1 err- = fi (x 1, x 2, . . . , xn, t), i = 1, 2, . . . , n (5) 

with sets of allowable control parameters u .. (x 1, x 2, ... , x, t), 
lJ n 

j = 1, 2, ... , m 1.• The dependent variables x. (t) describe the state 
. 1 

of the process at any instant of time t, the independent variable. No 

restrictions are imposed on the f. and u .. other than prior knowledge 
1 lJ - . -

,of ~-IlUm£,:_~~a~~~l~es~~UL_C:E::~t?,!_l]. __ p§:_~t_s_.of_pl:J.-a.s-e-..s-pa:-ce-6r, alterna-

tively, over a period of time. 

Control is effected such that the controlled plant is described by 

(6) 

The synthesis method discussed in the following pages proposes to 

determine the coefficients a .. which cause the state variables x. to 
~ 1 

behave in a specified way. 

6 
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2. Formulation of the Method. 

If the process model (6) is rearranged as 

(7) 

the right side is the fixed part of the model while the left side is 

changeable so far as the a .. can be varied. At a given instant of time 
lJ 

tk' the process is at a particular point in phase space 

(xlk' x 2k' ... , xnk). Assuming the velocities of the phase coordi

nates at tk known, the relationships appearing in Equation (7) which 

depend on the state of the system and time are numerically determined. 

The process can then be characterized, at t = tk' by linear algebraic 

equations. The synthesis procedure is based on considering m such 

states, m > > sup(mi ), which are derived from specifications and 

solving the resulting set of overdetermined equations for the a .. by 
lJ 

what is most commonly called a least-squares approach [5, 6] . 

The underlying concept is to choose the aij so that the sum of 

the squares of the differences in the fixed and variable parts of 

Equation (7), the residues, at each of the m states is a minimum with 

respect to the a .. , i.e., to minimize 1 
lJ 

(8) 

1The notation lu] , introduced by Gauss [6] • indicates the sum 
of the m values of u tiiken at the m states. ·· 



with respect to the a... This is accomplished by taking the partial 
lJ 

derivative of Equation (8) with respect to a .. , j = 1, 2, ••• , m 1., lJ 

. and setting the result equal to zero. For each i this gives m . 
1 

equations to be solved for the minimizing a... Formally, 
. lJ 

8 

-a a 1(residue)2 J = 2 [u .. (a.1u· 1 + ... + a. u. + f. - ddxti >] = 0 a. . ~ lJ 1 1 1m . 1m . 1 
lJ 1 1 

which results in the m. equations 
1 

a. 1 I u .. u. 1 J + a. 2 I u .. u. 2 J + . . . + a. I u .. u. J = I u1. J. ( dxdt i - fl. ) J ' 1 ~ lJ 1 1 ~ lJ 1 1mi ~ lJ 1111,i ~ 

j = 1, 2, ... , 

to be solved for the a .. , j = 1, 2, .•• , m .. 
lJ 1 

In essence, that constitutes the synthesis procedure. 

m. 
1 

The 

(9) 

remainder of the chapter calls attention to three important considera-

tions in implementing the method. Namely, the specified state 

variables, the allowable control parameters and the performance of 

the synthesized system. Additional comments of a more direct nature 

which are based on both fact and experiment are reserved for 

Chapter II. 

3. Specifications. 

In the approach to synthesis presented above, the states of the 

process at times tk' k = 1, 2, ... , m, were assumed specified and 

given by the phase coordinates (xlk' x 2k, ... , xnk). Further, the 

velocities of the coordinates at t = tk were assumed known. Prior 

knowledge of all these from specifications is, of course, not usually 
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the case. 

Generally speaking, the procedure demands the time-domain 

specification of at least one state variable. Obviously, if more are 

specified, the specifications must be compatible. The remaining 

state variables and their velocities are "specified" either through any 

of the Equations (6) or by operations on the specified x., particularly 
1 

differentiation or integration. 

It is clear then that the time history of at least one state 

variable must be known, but not necessarily as a functional relation-

ship of time. Further. specifications which call for the process to be 

at a few desired points at given instants .are acceptable, because 
l 

intelligent interp_Ql~t.irm between those states can supply the m states 

needed. 

If the f. and u .. of Equation (6) do not depend explicitly on time, 
1 lJ 

specifying a phase space trajectory would be suitable in most cases. 

Otherwise, the coordinates must be converted to the time-domain. 

It is apparent some caution must be exercised in decidin'g on a 

desired system performance, since the specified response must at 

least be closely realizable by the fixed plant plus control. This con-

sideration depends, to a great extent, on the allowable control 

parameters. 

4. Control Parameters. 

In this thesis, it is postulated that a person implementing the 

synthesis procedure is restricted to some allowable set of control 

parameters either by his own choice or by physical considerations. 



The primary problem, as related above, is the sufficiency of the 

control parameters to give the desired performance. 

10 

Secondary to this, the task of selecting the proper parameters 

out of an allowable set, or rather omitting the proper ones, must be 

faced in many instances. That is to say, it is possible to include one 

or more control parameters whose very presence forbids realization 

of the desired control. To successfully meet this problem, an under

standing of the analysis and behavior of differential equations is a 

prerequisite. 

5. Performance of the Synthesized System. 

After the synthesis of control is complete, it is, of course, 

necessary to determine the response of the synthesized system in 

.relation to the desired performance. As the method might be, and 

rightly so, likened to the fitting of a surface through a group of points, 

it is natural to expect the residuals as defined by Equation (8) to be an 

indication of any differences in the synthesized and specified 

responses. 

This is not the case. It appears that the only such measure 

is obtained by solving for the actual response of the synthesized 

system and comparing with the desired response. This is not a 

difficult matter to do numerically and would most likely be done even 

if there did exist a performance criterion such as residuals in .surface 

fitting. 



CHAPTER II 

DISCUSSION OF THE METHOD 

1. Performance Criteria. 

The presentation of the synthesis procedure in. Chapter I made 

no attempt to show or support by evidence any justification for the 

method. This chapter, and particularly this section, is devoted to 

discussion of this aspect. But it is in the third and final chapter, the 

chapter where results of actual use of the synthesis method are 

related, that justification becomes apparent. Many remarks in this 

chapter are derived from experiences of the author during compilation 

of these results. 

It was mentioned earlier that the synthesis method can be 

likened to the problem of fitting a surface through a set of data points. 

If the sum indicated in Equation (8) were replaced by a time integral, 

the method .could be noted as a minimization of an integral-error

/' 
squared. But this is, in the sense of a~. what a least- f/ 
squares surface fitting procedure accomplishes. yJ 

As far as the mechanics are concerned, the relation to least-

squares surface fitting holds, but interpretation of the results is not 

so simple nor concise. The difference has its origin from finding 

coefficients of a differential equation by solving for those coefficients 

from algebraic equations. That is .. to say, the coefficients do not 

11 



necessarily perform the same function in .a differential equation as 

they do in its algebraic counterparts. 

For instance, it is possible to perform the procedure, obtain 

12 

a very good fit (small residues), and the resulting differential equation 

be unstable! Or possibly a stable singular point is introduced not at 

all where wanted, but such that the system response falls under its 

influence. Also, the resulting differential equation solution could be 

stable and approach the desired final value, but the response of the 

uncontrolled system would be more satisfactory than the controlled 

response. 

These possibilities are not meant to discredit the proposed 

method of synthesis, but rather to emphasize the unimportance of the 

role residues assume in the course of the procedure. The method is 

not formulated on the basis of any particular performance criteria 

other than the commission to cause the process to behave in a specified 

way. And the best criteria for the goodness of its performance is to 

obtain the response by solving the describing equations and compare 

it with the specifications. The possible difficulties related above are 

not necessary evils and can be held to a minimum or even eliminated 

by careful study of the effect of the control parameters on the system 

and the compatibility of the specifications an.d control. 

2. Control Parameters. 

Using the proposed synthesis procedure, the determination of 

a process control starts with the selection of an .allowable set of 

control parameters. These could be dictated by the physical 



situation, or they could be most anything the designer can invent. The 

sensitive area in this phase is the question of compatibility of control 

and specifications. That is, will one or more of the control para

meters in the allowable set be capable of performing the desired 

control, once provided with the proper coefficients? 

If the specifications are not particularly strict nor the control 

parameters particularly limited, this consideration is of little conse-

quence. To a great extent, the detection and solution of the dilemma, 

if it occurs, is a matter of judgment. Thus, the need for a general 

understanding of the behavior of differential equations. 

One particularly perplexing problem occurs when the final 

value of the controlled system is not the same as the specifications and 

thus usually not the same as even the uncontrolled response. This is 

attributable to the incompatibility of the specifications and control 

function and can sometimes be detected by a singular J?.Oint ana!Y,sis of ~- ---- ~ 

13 

the controlled system. In this respect, it is obvious that the controlled 

process equations must have a singular point at the desired final value 

of the system. Generally, this consideration poses few problems. The 

possibility of the control function introducing other singular points, 

stable or otherwise, under whose influence the controlled response falls 

is often just that, a possibility, because the location of a singular point 

so introduced usually depends on the thus far undetermined coefficients. 

Once recognized, the problem can be attacked by reevaluating and chang-

ing the control function. 

In a situation where the designer must use a complete set of 

specified control parameters, the method proceeds without much 

further concern over the type of control. But if the final set of control 
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parameters is not fixed, additional problems arise. Generally speak

ing, it is obvious that the desired control is the one using the least 

control parameters while giving a desirable response. For the arbi

trary control problem then, it is necessary to eliminate any control 

parameters which contribute little or nothing to the control's perfor

mance. Many of these often can be eliminated by a study of the 

describing equations and specifications, ,but possibly not all of them. 

It would indeed be nice if the synthesis procedure would yield 

zero or very nearly zero coefficients for those control parameters 

which are not necessary. But this is not the case, for the procedure 

will generally assign non-zero coefficients to all the parameters, a 

failing which can be traced to the previously discussed differences 

incurred using algebraic and differential equations in the same context. 

The heartening aspect of the situationis the fact that addition of such 

a parameter to a set of control parameters which exercise fairly good 

control on the system will not improve on that response. Since com

putation time to execute the synthesis procedure for all but very 

complex systems is just a matter of minutes, a process of elimination 

based on successive addition of control parameters to the control 

function is feasible and should indicate proper combinations of para

meters. 

3. Specifications. 

The need for compatibility between specifications and the 

allowable control function has been emphasized in the previous section. 

This section is intended to indicate the mechanics of determining the 
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specified state variables and their velocities from incomplete 

specifications as outlined in Chapter I. Although difficult, the discus-

sion will be kept as general as possible. Several considerations of a 

more specific nature appear in the following chapter. 

It is assumed one state variable is completely specified in the 

time domain (either given as such or determined by interpolation 

between certain specified points). Some of the phase coordinates (and 

their velocities) will be either first or higher order time derivatives 

or single or multiple time integrals of the specified variable. These 

variables are determined by differentiating or integrating the specified 

variable the required number of times. Several numerical routines 

are available for such undertakings [6] . Integration techniques are 

looked upon as quite successful while differentiation is approached 

with misgivings and caution [6] . For the purpose at hand no such 

adverse feelings are necessary, for if the derivatives are anywhere 

near being compatible with the· specified variable, the errors are 

"averaged out" in the least-squares procedure. Here by errors is··· 

meant errors in compatibility, because the derivatives are not 

specified, thus no true errors. 

The method used to obtain derivatives for the work in this 

thesis was purposely crude so as to illustrate the point. The time 

history of the specified variable was graphically represented on a 

sufficient scale. Realizing the derivatives vary continuously, the slope 

of the specified variable at several selected instants was estimated 

using a manual angle measuring device, the values were plotted 

against time, and finally a smooth curve was drawn through the 

plotted points. The data points needed for the least-squares procedure 



were then read from the resulting graph. Second derivatives of the 

specified variable were obtained by the same operation on the first 

derivative. Of course this type of differentiation would give increas

ingly erroneous results as the or_der of differentiation was increased, 

but using one of the more sophisticated numerical techniques should 

allow acceptable differentiation several times over and generally 

would be more efficient than a graphical method since it could be 

executed by a computer. By the same tokens expressed above, inte-

gration techniques could be similarly loose. 

Other state variables could possibly be given in terms of the 

specified variable and others derivable from it as above by some of 

16 

the state equations (5). An example of this appears in the next chapter. 

If more than one variable is specified, the foregoing remarks hold 

true, but the overall problem is obviously simplified. Of course, all 

specifications must be compatible. Generally speaking, the case of a 

specified phase trajectory requires, in addition to the trajectory, the 

velocities of the phase coordinates and the time associated with the 

state points used in the least-squares procedure. If the relations f. 
~·-·-~~ 1 

and u .. in E9..!1aJionij6) do not contain tipie_ex.plicitly,,_;tjie latter ~-l-J--- . -----------------.-.. -·----- . ··-· 

information is .. .not needed .. Other than what has been stated above, the -............. -----~-.-..----...-- --·----~-~ 

utility and discussion of state space specifications depend on the parti-

cular problem. 

The popular design term "constraints" has not been directly 

mentioned thus far, but a word might be in order to clarify the situation 

of the synthesis procedure in relation to contraints imposed on a con-

trolled process by specifications. Constraints on the response of the 

system are included in specifying the state variables. Indeed, the 
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specifications which will generally give the state variables are con-

straints (overshoot, maximum velocity, etc.). Often constraints in a 

design arise from changes in the operation of system components at 

certain states of the system (saturation, etc.). Although these con-

straints could be worked into the specified variables, the synthesis 

method easily allows for these changes and possibly makes the con-

straints unnecessary. There seems to be no general type of constraint 

that could not be incorporated in the method, but this consideration and 

all the others previously discussed lead to the same conclusion -- the 

applicability of the proposed synthesis method to a problem depends 

only on that particular problem, not on whether it belongs or does not 

belong to a certain group. 

4. Computing Aspects. 

The computations and programming involved in executing the 

synthesis procedure are not complicated and generally of the common-

knowledge type, but it might be well to point out a few items connected 

with the computational aspects of the procedure. Since the object of 

the work reported in this thesis was to show the proposed synthesis 

method tractable and not to see how fast it would give an answer, no 

computing times will be quoted, but they are very nominal. Fourth 

order Runge-Kutta formulas [5] were used to solve differential 

equations during the course of the research. 

Computational difficulties associated with solving for least

square coefficients [ 5] sometimes occur when the number of Equations 

(9) becomes larger than six or seven although this depends on the control ----- . 
parameters to a great extent. Other than the usual remedies for such 



difficulties, ttm_~}J_!?._g _ _th__e~va£i?.-Pl~1Lcould pas sibly help. The 

coefficient matrix of Equations (9) is noted to be symmetric which 

decreases execution time. To improve results, the possibility of 

weighting data at certain points is always present [5] . 

For a process incorporating a graphical relation in its state 

model, it might be worthwhile to approximate that relation by a closed 
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form expression, possibly a polynomial. Otherwise, actual data points 

must be provided for the computer. The so-called Forsythe polyno

mials [3] deserve attention in any data fitting problem of this type. 

5. Sensitivity. 

There are two distinct questions to be answered that come under 

the general heading of sensitivity. First, what can be said, in relation 

to the synthesfs method, about the sensitivity of the controlled system 

response to disturbances from its desired state space trajectory? 

Second, what effect does the number of state points used in the least-

squares procedure have on the ultimate control function? The answer 

to the first question is, "Nothing." The synthesis method is only con-

cerned with providing proper coefficients for a set of differential 

equations, while the sensitivity of the process response is governed ---·-·~ -· 
mainly by the form of the differential equations regardless of their 

~-=_,__ ______ ,,_~,~~--~~--·-_,_-,..,.....,, ...... ,u.·.~ ....... -.-~-----~~---,··~.::;.,«""-"""'-"--''"•'>"A:..,.·_~..,:. .. _,,_~., .. -.--.,,~ . .,~--;,-,c.,.•.J>··· --·--...e-='~ .. ~~' 
coefficients. 

-~·--__..,,,_......-... A.'l"" 

The second question can also be answered rather easily by 

relying on a good understanding of what has gone before under the 

topic of specifications .. Th~ answer is that, in the general case, the 

number of state points used in the synthesis procedure does have a 

marked effect on the ensuing coefficients. This is due to the nature of 



the specificat:l.ons and is best explained by the following hypothetical 

case. Suppose a control is synthesized using a certain number of 

specified state points, and the controlled response is identical with 

19 

that specified. If more state points were taken from this response and 

added to those already used, it is quite obvious that the synthesis 

·procedure would result in the same control. But if the additional 

points are not a part of the original controlled response, synthesis is 

being effected for a totally different problem , i.e., one with different 

specifications, and thus a different control function. Then this ques-

tion can also be considered as ·one of compatibility but in a somewhat 

different light than before, and the degree of compatibility of one set 

of data points to another is a definite mea~ure of the sameness of their 

respective control functions. 

As a result of the above answer, it might seem that the 

synthesis method loses still more of any rigor it might possess. This 

is not completely true, for although the coefficients are very sensitive 

to the specifications, the controlled response is not. For instance, ---------- ----- -- .._, . ..,_.,. ....... ,,,_~- ~ 

control was synthesized for a particular problem using two completely 

different sets of data points but from the same general specifications. 

The resulting coefficients for one case differed from their counterparts 

in the other case by as much as twice one or the other, but the asso-

ciated system responses were of the same degree of goodness. The 

number of state points needed in a particular problem is surely not 

fixed, but it is clear that too few can be used. Also too many data 

points could give poor results, because if incompatibilities are present 

in the specifications, t'e;,h::....:e=-==o.cc..r ~e....:a::.:..d.::.d:.:..·· e.:...::d1...., _t:..:.h:;.;e'-"""""Q:t:J · ff e ct they ha v~ e 

thesis. 



CHAPTER III 

ILLUSTRATIONS OF THE METHOD 

1. Control of a Linear Oscillator. 

As an example problem to thoroughly study the synthesis 

method, it was proposed to control the response x of the fixed plant 

(a linear oscillator) 

2 
d x + 2D dx K2 

2 dt + X ' 
dt 

dx 
x(O) = 1. 0 , dt (0) = O. 0 

with control parameters consisting of combinations of x and : . In 

the state variable description (x = x 1), 

2 Two cases were considered: overdamped, D = 5, K = 9; and 

2 
underdamped, D = 1, K = 17. No linear terms were included in the 

allowable set of control functions, because including them would reduce 

the problem to one with no fixed plant. The uncontrolled responses of 

the two systems are shown in Figure 1. In.the same figure, the 

response used as the specified x 1 is shown. The specified response 
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was chosen for no particular reason other than it seemed compatible 

and also provided a stiff test for the method. It originated as nothing 

more than a rough sketch. It is noted that the allowed control gives 

a singular point at x 1 = 0, x 2 = 0, or (0, 0), as required by the 
· dx 

specification. The remaining state variables x 2 and dt 2 were 

specified from x 1 using the graphical differentiation procedure out

lined in the preceding chapter. 

Forty-one data points between t = O. 0 and t = 1. 0 were used. 

The specified response was truncated at t = 1. 0 for several reasons. 

Computationally, the values of the specified variables past t = 1. 0 are 

small and do not significantly contribute to the least-squares sums. 

Mathematically, if the response is stable and follows the specified 

response up to t = 1. 0, it will continue to approach the desired final 

value (0, 0). And finally, since the linear terms are not changed, the 

overdamped case will have a nodal singular point at (0, 0), and the 

underdamped case will have a focal singular point at (0, 0). Thus, a 

complete set of specifications for one would not be strictly suitable for 

the other. 

This problem illustrates choosing a suitable set of control 

parameters from a large number of allowable parameters. The 

procedure used in this instance was to consider all combinations of 

x1 and x 2 of second degree and above and up to and including those of 

fifth degree (eighteen in all). The least-squares procedure was 

repeated eighteen times for each case with a new parameter added to 

the control function each time. Responses for each case were found 

and studied. Using these results and some analysis, many parameters 

could be discarded. Further trial and error led finally to some 
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desirable results. 1 Of course many of the trials gave favorable 

results, even in the first elimination. In view of the desire for the 

simplest control possible, several good and/ or interesting results 

are shown in Figures 2 through 5. 

Other than the specified response being quite demanding, the 

only major problem occurred in synthesizing the underdamped case. 

Many control functions would introduce an unstable singular point near 

the origin in addition to the stable one at (0, 0). Quite often the con-

trolled response would be very good until it started approaching the 

desired final value, then it would become unstable. It is noticed the 

controlled systems of Figure 5 do not possess singular points except 

at (0, 0). If the results shown are not considered satisfactory, the 

controlled linear oscillator described by 

::: X 
2 

dx2 

at 
::: 

3 4 
O. 46 x 2 + 141. 02 x 1 

responds almost exactly as specified although the control function is 

quite complicated. 

1 Although no computing times were to be mentioned a note that 
the actual computing time needed for the work outlined is less than 
three hours seems to be in order. 
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2, Control of a Multivariable, Nonlinear,. Time 

Varying Parameter Feedback Process. 

The example problem of this section is presented to give an 

idea of the type of process the synthesis method can handle. As 

evidenced by the title, it was designed to include several difficulties, 

all of which would not be admissible in any other method. Figure 6 

shows the process in block diagram form. In state variables, 

dxl 

dt =x 3 

dx2 

dt =x 4 

. 
dx3 

= dt 

2 
~~--..._ 

-0. 1 x! (sign x 4) - 0, 2 x~ + O. 1 x 3 - a 31u 31 (x 3 l x 4) -
~ .g(t:) 

/ .. ····•..• ~-
a32u32 (xl - x2) - a33 (xl - h) 

: 4 = -0.1 x! (signx4) - 0.2 x~ + 0.1 x 3 . 

28 

The coefficients a 3j were found using the proposed synthesis method 

such that the state variable x 1 would behave as shown in Figure 7 when 

the system input h(t) is as shown in the same figure. 

The plant studied bears no intentional resemblance to any 

actual process and was derived solely from the author's imagination. 

An attempt, and a seemingly successful one at that, was made to 

include most every general classification of process describing 

equations. The specification of x 1 was thought to be quite compatible 
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with the control parameters and input in the sense discussed in 

Section 2 of Chapter II. This was intended since the primary obstacles 

were designed to be the system describing. equations. Unexpectedly, 

the state variable x 2 approaches a final value other than zero which, 

if anything, makes the problem harder. 

This problem illustrates the case where state variables must 

be specified through the state equations'. After determining x 3 and 
dx ' 
dt 3 from x 1, the last of the above describing equations was solved, 

dx 
giving x 2, x 4 and dt 4 Thus; the specifications were completed . 

One hundred and twenty-one state points between t = 0. 0 and t = 3. 0 

were used. The remainder of the procedure is straightforward .. The 

resulting control is 

8. 9 2 u 3 2 (x 1 - x 2 ) - 2 4. 7 2 (x1 - h) • 

The response x 1 of the controlled system is ·shown in Figure 8 along 

with the specified x 1 (x2 is also shown). 

In arriving at the specified x 1, the type of singularity at (1. 0) 

could have been chosen as either a focus or a node. It is noted that 

both would have about the same effect on the least-squares procedure 

with the focal type having the greatest effect compared to a straight 

line specification (unlike the first example, the state points as the 

process approaches its final value must be included in the specifica-

tion, because the values of x 1 are not zero). For this reason, the 

specified x 1 was chosen .as shown with no guarantee that the synthesized 

control would provide this type of response. In fact, the controlled 
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response approaches a stable focal point at {. 983, 0) rather than at 

(1, 0) as specified. The performance of the synthesized control 

might or might not be satisfactory for any particular problem, but 

it seems safe to state that this is a very successful attempt to 

synthesize a control for a process sufficiently complicated to preclude 

the use of any existing synthesis technique. 



SUMMARY AND CONCLUSIONS 

It was the purpose of this thesis to show that the synthesis 

method set forth in Chapter I is useful for synthesizing control of 

dynamic processes such as can be described by Equations (5) and 

controlled as per Equations (6). Due to the nature of the method, 

this objective could only be accomplished by studying the results of 

the procedure when applied to specific problems. Limitations and 

considerations in implementing the method which became apparent 

during the course of this mathematical experimentation were discussed 

in Chapter II. 

Results of two such attempts at synthesis of control were 

presented in Chapter III. . These results were considered very good in 

light of the problems studied, because analytic synthesis of control 

for either system could not be accomplished by any other synthesis 

method now in existence. It appears that the proposed synthesis 

method is feasible and could become a useful tool in the synthesis of 

controlled processes. 

A few words about visualized extensions of the work reported 

here follow. To start, the synthesis of processes described 

~tatistically [4] seems feasible. The concept of the method surely 

deserves study in relation to problems in adaptive control [ 1] . The 

method's standing relative to the synthesis of optimum switched 

processes [ 8] should be clarified. Finally, more investigation of the 

34 



synthesis procedure itself would be justified in order to further 

establish pertinent considerations. 
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