VARIATION AND SPECTES RELATIONSHIE IN THE BOTHRIOCHLOA PERTUSA COMPLEX

By
MARY IOUISE HIGGINS II
Bachelor of Science Naw Mexico State University University Park, New Mexico
1946
Master of Scaence
Oklahoma State University Stillwaters Oklahoma
1958

Submitted to the Faculty of the Graduate School of the Oklahona State University
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

May, 1964

VARIATION AND SPECIES RELATIONSHIP IN THE BOTHRIOCHLOA PERTUSA COMPLEX

Thesis Approved:

569600

Each chapter in this thesis is presented, with minor modifications, in the form and style of the biological joumal to which it will be submitted for publication. It is believed that this method of presentam tion will allow for more accurate interpretation of the data.

The wrider wishes to express her deepest gratitude to Dro J. M. J. de Weto, Assoaiate Professor of Botany and Plant Pathology, for his competent guidance and encouragement throughout the study. Indebtedness is also acknowledged to Dr. Walter W. Hansen, Head, Department of Botany and Plant Patholegys Dr. Eddie Basler, Associate Professor of Botany and Plant Pathology Dr. Jomes S. Brooks and Dr. Jack R. Harlan Professors of Agronomys and $\mathbf{D r}^{2}$. L. Herbert Bruneau, Associate Professor, Zoology: for their contributions as members of the advisory committee. Appreciation is expressed to Mro Robert M. Ahring and Mr. William Ro Richardson, Assistant Professors, Agronomy, for their assistance in greenhouse and field studies. Speciel indebtedness is due the late Dr. Robext P. Celarier, Associate Professots, Botwry and Plant Pathology, whose inspirac tion and guidance provided the apetus for this study.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
The Problem 1
Taxonomy of Apomictic Groups 2
II. SEECIES RELATIONSHIPS WITHTN THE BOTHRIOCHLOA PERTUSA COMPLEX 9
Introduction 9
Materials and Methods 9
Results and Diseussion 10
Conclusions 41
III. BIOSYSTEMATICS OF BOTHRIOCHLOA PERTUSA 43
Intsoduction 43
Material and Methods 43
Synonymy 44
Morphology 48
Taxonomy 52
Conclusions 58
IV. BIOSYSTEMATICS OF BOTHRIOCHLOA INSCULPTA AND B. RADICANS 60
Introduction 60
Material and Methods 60
Morphology and Discussion 61
Taxonomy 67
Conelusions 79
V. CYTOLOGY OF THE BOTHRIOCHLOA PERTUSA CONPLEX 80
Introduction 80
Material and Methods 80
Chromosome Number and Behavior 80
Discussion 84
Conclustions 89
VI. SUMMARY 90
BIBLIOGZAPHY 94
Table Page
I. Morphology 11
IX. Attempted Hybrids 38
III. Classifflcation of Andropogon pertusus 45
IV. Cytology of Bothriochloa pertusa Complex 81
V. Morphology of the Bothriochloa pertusa Complex 91
LIST OF PLATES
Plate Page
I. Scatter Diagram Indicating Morphological Affinities 33
II. Distribution of Bothriochioa pertusa 53
III. Extremes of Morphological Variation in Leaf and Inflorescence Characteristics 55
IV. Spikelet Morphology 57
Vo Distribution of Bothriochloa insculpta and Bothriochloa radicans 69
VI. Bothriochloa radicans var. acidula 71
VII. Bothriochloa radieans var. radicans 72
VIII. Bothriochloa insculpta var. insculpta 75
IX. Bothriochloa insculpta ver. panormitana 78
X. Chromosome Configurations 82

CHAPTER I

INTRODUCTION

The taxonomic unit Andropogon pertusus (Linn.) Willd. was recognized by Hackel (1889) to include all plants of subgenus Amphilopis with subdigitately arranged racemes and pitted spikelets. Austrelian material was referred to A. pertusus var. decipiens: Indian representatives to Ao pertusus var. insculptus subvar. bifoveolatus, A. pertusus var. longifoline, and A. pertusus var. wightiis plants from Africa were subdivided among A. pertusus var. capensis, A. pertusus var. insculptus subvar. trifoveolatus, and A. pertusus var. vegetiofs while plants collected in Sicily were included in A. pertusus var. panormitana. The taxonomic problem was further complicated by Stapf (1895) who described A. pertusua from Africa based on a new type not resembling that of Linnezus. Hore recmntly Camus (1919) described A. pertusus vax. barbatus from Southeeast Asia, and Maire (1928) described Ao pertusus war. maroccanum from North Africa.

Members of Andropogon subgexus Amphilophis were later transferred to the genus Bothriochloa 0 . Kuntze, and the warieties of A. pertusus were variously classified by Camus (1931), Herter (1940), Henrad (1940, 194), Pilger (1940), Blake (1944), Maire (1952, 1959), Parodi (1.958), and Bor (1960). The species wsually recognized, Bo decipiens (Hacko) C. E. Hubbo, Eo insculpta (Hochsto) Ao Camus, Bo longifolia (Hack.) Box. Bo Eanormitana (Farlo) Pilger, Bo pertusa (Linno) A. Camus, and

Bo radicans (Iehmo) A. Camus were studied in detaile This included cytological and biosystematic studies of collections referable to each taxononie unit colleced, as far as possible, over the complete distribu tion range of ach spectes.

The Indian representatives of B. pertusa and Bo insculpta extend from West Pakistan through India and sonthern Asia to Indonesia. The Afroican representatives of these two species, as well as B. radicans, are widely distrojbuted throughout the tropical and subtropical regions of this continent. Typical B. panormitana is confined to Sioily. African plants resembling this species extend from Morooco to southern Africa. Bothriochloa decipiens is widespread in Australias where it appears to be endemie, and B. Iongifolia is endemie to India.

Crosses were also sttempted between the various taxonomic units usually recognized. The data obtained were used in an effort to solve two major problems. First to determine the phylogenetic affinities of the members of the Bo pertusa conalex, and second to arrange these taxonomic units into a clessification system which will express their relationships.

Taxoromy of Apomictic Groups

The chromosome number teported for Indian B. pertusa and B. inscuipta is $2 n=40$ (Gelariex, 1956\% Gould, 1956 and Harlan et al 1958, 1961) and for the African representatives of these species, $2 n, 50$ and $2 n=60$ were reported by de Wet and Anderson (1956), Celarier (1956), Gould (2956) y de Wet (1958), and Harlan et al. (1958, 1961). The chromosome number of B. dectpiens is $2 n=40$ and of B. radicans is $2 n$, 40 (Harlan et al, 2961). Cytological, genetical,
and morphological data (Harian et 2l. 1961) indicated that members of the B. pertusa complex form an apomictic complex composed prinarily of segmental alloploids.

Complexes in which apomizis and polyploidy axist present a texonomic problem and have been treated in a number of ways by different systematists. Classically, ach distinguishable apomictic clone could be recognized as ${ }^{\text {" }}$ species ${ }^{60}$. Babcock and Stebbins (1938) indicated that this method may be satisfactory only when applied to groups of obligate apomists which are relatively few in number and are separated by relatively clear differences, as in Nemfoundland representatives of Antennaria. Du Rietz (1930) defended this method on the basis that the various individuals of a clone are genotypically identical, thus making each clone a taxonomic unit of extreme homogeneity, and if the speciesconcept is to be based on the principle of discontinuity, each morphological distinct elone should be a species. This opinion was cxiticized by Mantzing, Tedin, and Turesson (1931), Fernald (1933), Turwill (1938), Babcock and Stebbins (1938), Stobbins (1941, 1950), and Gustafsson (1946, $1947 a_{9}$ b) on the basis that the system is impractical. This would result in laxge numbers of described "speaies", for example, in Hieracium where over 5,000 apomictic clones are known. Some of these clones may be distinet species, bat in other complexes they may be trivial variations which, wader normal sexual reproduction, would quickly be lost in a comon blexd.

After attempting to classify aporictic complexes, especially those containing facultative apomicts, by the criteria of sexual species distinction, some systematists have come to the conclusion that sexual and asexual groups must be distinguished and divided into specien by
different crateria (Turesson, 1926, 1929, 1943: Du Rietz, 1930\% Dobzhansky, 1941; Babcock and Stebbina, 1998\% Stebbins, 1941, 1950\% Camp and Gilly, 1943: Gustafissong $1947 a_{3}$ b). Dobrhansky (1941) and Babcock and Stebbins (1938) point out that the processes. polyploidy, hybridization, and apomixis which form an agamic complex blot out the differences that would be present between sexual species; thus, "the species, in the case of a sexual group, is an actuality as well as a human concept: in an agamic complex it ceases to be an actuality. As a result of this breakdown of the oxiteria of sexual species dietinction when applied to asexual groups, a number of methods using special criteria to treat the agmie complexes systematically have been attempted.

Turesson (1926, 1929) proposed the term agamospecies for an apomico tic population composed of individuals having a common origin. The foxms or biotypes were denoted as foma apomicta if exolusively apomictic in reproduction, forma ampimiate if they are sexual and thus can inter breed to the largest extent with other types, and forma amphiompomicta, if they are facultawive qpomicts. Turesson (1943) indicated an ecological variation occurs within each microspecies of Alchemilla vulgaris Linn. He paralleled it with ecotype formation of the sexual. species, using the terms amphimict, eco"ypes ecospeciess and amphimicto coenspecies for the sexual populations: and apomict, agamotype, agamos species, apomict-coenospecies for the asexual populations.

Du Rietr (1930), dealing with striotly asexual species, divided. apomicts into two types by using the terms simple and compound: as proposed by Cockayne and Allan (1927). The simple asexual species consists of single strictly asexual, biotype. This would probably
include meny of the apomictic species of Hieracium and Taraxacum. The compound species consists of several practically indistinguishables strictly ascxual biotypes as in Anchemilla, and would include many of those species already divided by taxonomists on moxphological chatacters, and should not be realassified because of experimental data.

Agamite complexes were divided in two species groups, the apogameon and agameon by Comp and Gilly (1943). The apogameon is a species containing both apomictic and non apomictic individuals. In its simplest form th would conglst of sexual forms and a single apomictic Clone, ach of probably wide dispersal over the same area. If these were morphologically different and different in distribution, they were differentiated as subspecies. The agameon, a species consisting of only apomictic individuals, could be of two types. It might be a segment of an apomictic complex, or of a group which is phylogenetically no longer active, with the sexual members few or absent.

In the treatment of Crepia, Babcock and Stebbins (1938) worked out a procedure which they considered to be theoretically sound and also practical. The whole of an agamic complex must be studied thoroughly. All the diploid foms must be identified and their morphological characteristics tabulated. These are then divided into species according to their morphological differences. The apomiets, which fall within the range of yariation of the diploids as well as the partial allopolyploid partial aponicts are grouped, according to their degree of variations, into aganospecies. Evch agamospecies contains apomicts which appear to have the same, or similar hybridization origin, and approximately the same degree of variation between them as have the diploid species. This result is a wather polynorphic species with more or less
artificial limits. After dividing the complex into species, the diploid forms are described and then, if needed, the species are further divided into subspecies and varieties on the same basis as are sexual species. The momictic foms are not given taxonomic status comparable to subdivisions of sexuel species but are divided as suggested by Turesson (1926). By this method seven sexual primitive species and two amphio apomictic aganospecies were distinguished in Crepis and the other apomicts were attached as formae apomietae to one of these nine species. Gustarisson (1946, $1947 \mathrm{a}, \mathrm{b})$, who did an extensive study on apomixis, believes that ach apomictic group must be treated differently according to its biological properties. To show this, he analyzed the data from thixtyrofive apomictic and amphi-apomictic complexes and groups of complexes, and divided them into two different series according to their complexity. In the first series, apomicts are included in one distinet complex and further divided into three parts. First, apomiets and amphimicts which are morohologically similar and which are united into a single unity include sugh complexes as Lilium bulbiferam and In Croceum, Rybus idaeus, Ramunculus ficaria, Deschampsia caespitosa, and Poa bulbosa. Second, included in the aporints which form an independent population, releted to one or more sexual populations are Saxifraga foliolosa Stellaria arassipes Hypericum perforatum Ochna Etrulata, and Desehampsia alpina. ghird, apomiets which form a olosed system, wnelated to definite sexual popalations include Polygonum riviparmm, Cardamine bulbifera, Saxifraga cernua, Poa compresse, and Houttymia cordata.

The decond series, made up of apomicts belonging to two or more different complexes which merge into one another, is also divided into
three sections. First, apomictic complexes which are directiy related to diploid populations but which stay distinct in nature, are Parthenium argentetum and \underline{P}. incanum, Calamagrostis epigeios, Conescens, $^{\text {C. }}$ arundinacea and Go neglecta, Sorbus, Crepis, Rubus, Potentilla, and Antennaria. Second, huge complexes which do not allow for a division into distinet microspecies, ard which are not directly related to any diploid sexual populations, include Poa nemoralis-palustris, Poa pratensis-arctica. Third, Alchemilla pentaphyllea, Hieracium, Taraxacum, Amica, and Remunculus auricomus are apomictic complexes which can be split into discrete mierospecies, but sexual relatives do not exist or are present as relicts.

In the taxonomic treatment of complexes in the first series, where the apomiots form part of one well-defined population, individual apomicta mould rank the sam as biotypes of sexual species. The large agamospermona genera, of the second series, would be given a superficial treatment by placing all the apomicts into one taxonomic unity recogniz ing the primary diploids, and arranging the widespread polyploids as Circle microspecies arownd them. Population can be divided and grouped around these circle microspecies. The most important forms are given the rank of terterary microspecies, and local variations are ther attached as rarietise or foms. In complexes which cannot be divided into nicrospecies without residue, because of crossing processes going on, the distinct and widespiead types still should be named. It may be possible to divide into distinct microspecies those agamospermous genere where the original sexual species are extinet or cannot be traced.

Taxonomists who studied semual polyploid complexes have differed in their opinions as to whether of not types which are morphologically
very similar to each other, but differ in chromosme number, should be recognized as separate species. Camp and Gilly (1943), Valentine (1949. 1950) and Baker (1952) suggested special categories by which diploids and polyploids that closely resemble each other in morphological characteristics are kept in the same species. Mason (1950) and Hara (1962) contended that 211 characters should be taken into account and that no one chamacter is sufficient to warrant specific segregation. L8ve ($1943,1951,1954,1960,1962$), LHve and L8ve (1942, 1948, 1954, 1956), as well as L8ve, LSve, and Raymond (1957) maintained that diploids and polyploids should always be placed in separate species and have pointed out that morphological differences can usually be found if a close study is made.

Bell (19k3) wes able to divide the diploids into morphological species in the Sanioula exassicaulis complex brt could not attain the concept of "every polyploid level a distinct species" within the polyploid complex. Heckard (1960) made a similar treatment of the polyploid complex in Phacelia magellanica. This also appears to be true within the Dichanthium-Bothriochloa-Gapillipedium complex.

OHAPTER II

SPECIES RELATIONSHIPS WITHIN THE

 BOTHRIOCHLOA PERTUSA COMPLEXClassically, Hackel (1889) referred $2 l l$ plants belonging to Andropogon subgenus Amphilophis (Granineae) having subdigitately arranged racemes and pitted sessile spikelets to A. pertusus (Linn.) Willd.s and Camus (1931) demonstrated that members of the subgenus Amphilosphis should be transferred to Eothriochloa 0. Kuntze. The varieties of A. pertusus recognized by Hackel (1889) were later vaxiously classified as species by Stapf (1917), Camus (1931), Hertero (1940), Henrard (1940, 194), Finger (1950), Maire (1.952, 1959), Parodi (1958) and Bor (1960).

The oytology and morphology of the species usually recognized, B. decipiens (Hacko) C. E. Hubbo, E. insculpta (Hochst.) A. Camus, Bo Iongfolia (Hack。) Box, B. pancmittana (Parlo) Pilger, B. pertusa (Linn.) A. Camus, and the relator Bo padicans (Lehmo) Ao Camus, as well as the degree of genetie isolation betwen them were studied in detail. The data obtained were correlated in an effort to determine the species validity, and the degree of phylogenetic affinity between the taxonomic units involved.

Material and Methods

Morphological data are based on studies of at least ten specimens
from each collection. Plants studied were grown in a uniform nursery as described by Celarier and Harlan (1956). Chromosome numbers were determined from studies of microspore mother cells stained with acetocarmine. Hybridization attempts were made following emasculation and hand pollination as described by Richardson (1958).

Results and Discussion

The species studied are highly variable morphologically, and no single character could be found that will hold absolutely for separating them. Nearly every character graded from one expression to another. Nevertheless, each taxonomic unit classically recognized is characterized by a distinctive group of character combinations (Table I).

Relative length of the racemes. - - The genus Bothriochloa may be subdivided, on the basis raceme length in relation to the length of the inflorescence axis, into two major species groups. In B. intermedia (R. Br.) A. Camus and its relatives (Harlan et al., 1958) the lower racemes are shorter than the primary axis of the inflorescence. On this basis, B. insculpta var. vegetior (Hack.) C. E. Hubb. could be referred to B. glabra (Roxb.) A. Camus. Members of the Bo pertusa complex are characterized by lower racemes which exceed the primary axis of the inflorescence in length.

Both raceme length and length of the primary axis are variable characters, strongly influenced by environmental factors. These two characters, however, are correlated, and the raceme length/axis length ratio was found to be relatively stable and useful in separating species. Using this ratio, the majority of specimens belonging to Bo pertusa could be separated from the other studied species except Bo decipiens (Plate I).

TABLE I
MORPHOLOGY*

Name and No.	GH	LPA	LIR	PR	SR			$2 x$	Origin
B. decipiens									AUSTRALIA
3727	E	$\frac{2-11}{6}$	$\begin{aligned} & 36-65 \\ & 49 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.7 \end{aligned}$	0	1	0	40	New South males
4598	E	$\begin{aligned} & 5-28 \\ & 13 \end{aligned}$	$\begin{aligned} & 50-70 \\ & 66 \end{aligned}$	$\begin{aligned} & 4.15 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \end{aligned}$	1	0	40	Warwick
4612	E	$\begin{aligned} & 4-15 \\ & 8 \end{aligned}$	$\begin{aligned} & 50-60 \\ & 53 \end{aligned}$	$\begin{aligned} & 307 \\ & 4.6 \end{aligned}$	0	2	0	40	Laxes
5422	E	$\begin{aligned} & 8-20 \\ & 11 \end{aligned}$	$\begin{aligned} & 58-70 \\ & 66 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.2 \end{aligned}$	0	1	0	40	Wagga Wagga
4789	Es	$\frac{11-30}{19}$	$\begin{aligned} & 50-75 \\ & 60 \end{aligned}$	$\begin{aligned} & 4-21 \\ & 9.6 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 3.2 \end{aligned}$	1	0	40	Queensland
6510	Es	$\begin{aligned} & 14-28 \\ & 21 \end{aligned}$	$\begin{aligned} & 50-70 \\ & 68 \end{aligned}$	$\begin{aligned} & 9-19 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 2-5 \\ & 3.5 \end{aligned}$	1	0	40	Queensland
7501	Es	$\begin{aligned} & 14-26 \\ & 18 \end{aligned}$	$\begin{aligned} & 65-76 \\ & 69 \end{aligned}$	$\begin{aligned} & 7-21 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 2-4 \\ & 3.2 \end{aligned}$	1.	0	40	Ingbam
.7548a	E	$\begin{aligned} & 5-22 \\ & 15 \end{aligned}$	$\begin{aligned} & 50=70 \\ & 63 \end{aligned}$	$\begin{aligned} & 6-16 \\ & 10.1 \end{aligned}$	$\begin{aligned} & 0-6 \\ & 3.9 \end{aligned}$	1	0	40	Queensland

TABLE I (Continued)

Name and No.	GH	LPA	LIR	PR	SR	S	P	2 n	Origin
8134	Es	$\begin{aligned} & 10-35 \\ & 18 \end{aligned}$	$\begin{aligned} & 50-80 \\ & 72 \end{aligned}$	$\begin{aligned} & 15-20 \\ & 18.3 \end{aligned}$	$\begin{aligned} & 0-6 \\ & 3.2 \end{aligned}$	1	0	40	Ingbam NEW GUINEA
7545	E\%	$\begin{aligned} & 6-19 \\ & 15 \end{aligned}$	$\begin{aligned} & 35070 \\ & 59 \end{aligned}$	$\begin{aligned} & 6-86 \\ & 13.4 \end{aligned}$	$\begin{aligned} & 0-4 \\ & 2.1 \end{aligned}$	1	0	40	Brown Raver
8143	Es	$\begin{aligned} & 15-25 \\ & 20 \end{aligned}$	$\begin{aligned} & 60-58 \\ & 63 \end{aligned}$	$\begin{aligned} & 6-18 \\ & 14.4 \end{aligned}$	$\begin{aligned} & 0-6 \\ & 1.8 \end{aligned}$	2	0	40	Port Moxsby
81.44	Ef	$\begin{aligned} & 5=-18 \\ & 16 \end{aligned}$	$\begin{aligned} & 60-92 \\ & 67 \end{aligned}$	$\begin{aligned} & 5019 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0-10 \\ & 1.8 \end{aligned}$	1	0	40	Brown River
B. insculpta									AFRICA ETHIOPIA
4517	D	$\begin{aligned} & 24-46 \\ & 36 \end{aligned}$	$\begin{aligned} & 55-70 \\ & 64 \end{aligned}$	$\begin{aligned} & 7-13 \\ & 10.3 \end{aligned}$	$\begin{aligned} & 0-6 \\ & 2.8 \end{aligned}$	1	$1-2$	60	Artash
4407	D	$\begin{aligned} & 20-57 \\ & 33 \end{aligned}$	$\begin{aligned} & 65-91 \\ & 73 \end{aligned}$	$\begin{aligned} & 12-15 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 0-9 \\ & 2.4 \end{aligned}$	1	1	60	Asmara
9408	D	$\begin{aligned} & 32-38 \\ & 34 \end{aligned}$	$\begin{aligned} & 68 \div 71 \\ & 69 \end{aligned}$	$\begin{aligned} & 11.13 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5-8 \\ & 6.7 \end{aligned}$	1	2-3	60	Alemaya
9409	D	$\begin{aligned} & 21-26 \\ & 23 \end{aligned}$	$\begin{aligned} & 53-55 \\ & 54 \end{aligned}$	$\begin{aligned} & 8-9 \\ & 8.7 \end{aligned}$	0	1	$0-2$	60	Alemaya

TABLE I (Continued)

Name and No.	GH	LPA	LLR	PR	SR	Pits		2 n	Origin
									KENYA
3839	D	$\begin{aligned} & 14-21 \\ & 18 \end{aligned}$	$\begin{aligned} & 60-72 \\ & 66 \end{aligned}$	$\begin{aligned} & 607 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	1	1-2	60	Nairobi
3109	D	$\begin{aligned} & 15-30 \\ & 20 \end{aligned}$	$\begin{aligned} & 55-73 \\ & 67 \end{aligned}$	$\begin{aligned} & 8-25 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.5 \end{aligned}$	1	1-2	60	Kftale
54.69	D	$\begin{aligned} & \frac{24}{22}-25 \end{aligned}$	$\begin{aligned} & 55 \cdots 75 \\ & 68 \end{aligned}$	$\begin{aligned} & 6-12 \\ & 8.3 \end{aligned}$	0	1	$1-4$	60	Kitale
7546	D	$\frac{18-35}{30}$	$\begin{aligned} & 60-75 \\ & 70 \end{aligned}$	$\begin{aligned} & 10-15 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 1-2 \\ & 1.2 \end{aligned}$	1	$1-4$	60	Nairobi
2584	D	$\begin{aligned} & 12-21 \\ & 16 \end{aligned}$	$\begin{aligned} & 60-65 \\ & 63 \end{aligned}$	$\begin{aligned} & 4-7 \\ & 5.5 \end{aligned}$	0	1	1-2	60	TANGANYIKA
									CONGO
3667	D	$\begin{aligned} & 28-39 \\ & 35 \end{aligned}$	$\begin{aligned} & 73-82 \\ & 79 \end{aligned}$	$\begin{aligned} & 9-18 \\ & 11.8 \end{aligned}$	$\begin{aligned} & 3-26 \\ & 9.5 \end{aligned}$	1	$1-2$	60	Yangambi
									MOZAMBIQUE
9586	D	$\begin{aligned} & 30-47 \\ & 41 \end{aligned}$	$\begin{aligned} & 81-90 \\ & 84 \end{aligned}$	$\begin{aligned} & 10-13 \\ & 11.7 \end{aligned}$	$\begin{aligned} & 4-11 \\ & 7.0 \end{aligned}$	1	$1-2$	50	Namaacha
9587		$\begin{aligned} & 23-45 \\ & 36 \end{aligned}$	$\begin{aligned} & 69-79 \\ & 73 \end{aligned}$	$\begin{aligned} & 8-11 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 1-8 \\ & 5.9 \end{aligned}$	1	$0-1$	60	Namaacha

TABLE I (Continued)

Name and No.	GH	LPA	LLR	PR	SR	Pits		2 n	Origin
									SWAZILAND
9588	D	$\begin{aligned} & 35-0 / 45 \\ & 41 \end{aligned}$	$\begin{aligned} & 65-76 \\ & 72 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 10.7 \end{aligned}$	$\begin{aligned} & 3-7 \\ & 5.3 \end{aligned}$	1	$0-1$	60	Goba
9589	E	$\begin{aligned} & 60-70 \\ & 65 \end{aligned}$	$\begin{aligned} & 70-85 \\ & 75 \end{aligned}$	$\begin{aligned} & 8-15 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$	1	1-4		Stegi
9590	D	$\begin{aligned} & 30-34 \\ & 32 \end{aligned}$	$\begin{aligned} & 60-75 \\ & 70 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 10.4 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	1	1-2	50	Bremersdorp
									RHODESIA
3736	D	$\begin{aligned} & 24-50 \\ & 38 \end{aligned}$	$\begin{aligned} & 50-70 \\ & 63 \end{aligned}$	$\begin{aligned} & 10-15 \\ & 12.3 \end{aligned}$	$\begin{aligned} & 0-6 \\ & 2.5 \end{aligned}$	1	$1-3$	60	Salisbury
4624	D	$\begin{aligned} & 12-20 \\ & 16 \end{aligned}$	$\frac{42-50}{46}$	$\begin{aligned} & 7-9 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 0-1 \\ & 0.3 \end{aligned}$	1	$2-3$	60	Salisbury
4625	D	$\begin{aligned} & 15.20 \\ & 18 \end{aligned}$	$\begin{aligned} & 40-53 \\ & 47 \end{aligned}$	$\begin{aligned} & 5-11 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2-7 \\ & 4.5 \end{aligned}$	1	$2-3$	60	Sallisbury
4626	D	$\begin{aligned} & 13-21 \\ & 17 \end{aligned}$	$\begin{aligned} & 46-48 \\ & 47 \end{aligned}$	$\begin{aligned} & 7-9 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 1-2 \\ & 1.7 \end{aligned}$	1	2-4	60	Salisbury
4627	D	$\begin{aligned} & 24-49 \\ & 34 \end{aligned}$	$\begin{aligned} & 74=77 \\ & 75 \end{aligned}$	$\begin{aligned} & 8-17 \\ & 11.7 \end{aligned}$	$\begin{aligned} & 0=50 \\ & 17.0 \end{aligned}$	1	1-2	60	Salisbury

TABLE I (Continued)

Name and No.	GH	IPA	LLR	PR	SR	5	P	2 n	Origin
4628	D	$\begin{aligned} & 18-22 \\ & 20 \end{aligned}$	$\begin{aligned} & 59-65 \\ & 62 \end{aligned}$	$\begin{aligned} & 8-10 \\ & 9.3 \end{aligned}$	$\begin{aligned} & 5-6 \\ & 5.3 \end{aligned}$	1	204	60	Salisbury
9437	E	$\begin{aligned} & 22-30 \\ & 27 \end{aligned}$	$\begin{aligned} & 58-62 \\ & 60 \end{aligned}$	$\begin{aligned} & 9-1.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	1	1-2	60	Salisbury
9438	D	$\begin{aligned} & 50-65 \\ & 55 \end{aligned}$	$\begin{aligned} & 70-85 \\ & 75 \end{aligned}$	$\begin{aligned} & 12-15 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 15-20 \\ & 18.2 \end{aligned}$	1	$1-3$		Barket
9439	E	$\begin{aligned} & 40-65 \\ & 45 \end{aligned}$	$\begin{aligned} & 60-85 \\ & 65 \end{aligned}$	$\begin{aligned} & 10.12 \\ & 10.5 \end{aligned}$	0	1	$1-3$		Barket
9442	E	$\begin{aligned} & 40-60 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 55-85 \\ & 65 \end{aligned}$	$\begin{aligned} & 10-14 \\ & 12.5 \end{aligned}$	0	1	1-3		Masabuka
9443	D	$\begin{aligned} & 48-58 \\ & 53 \end{aligned}$	$\begin{aligned} & 84-100 \\ & 90 \end{aligned}$	$\begin{aligned} & 17-21 \\ & 18.7 \end{aligned}$	$\begin{aligned} & 27-47 \\ & 34.7 \end{aligned}$	1	$2-3$		Zimba
9444	E	$\begin{aligned} & 50-65 \\ & 55 \end{aligned}$	$\begin{aligned} & 60-85 \\ & 65 \end{aligned}$	$\frac{14-79}{15.5}$	0	1	1-3		Wankie
9448	D	$\begin{aligned} & 20-25 \\ & 22 \end{aligned}$	$\begin{aligned} & 62-63 \\ & 63 \end{aligned}$	$\begin{aligned} & 9-11 \\ & 9.8 \end{aligned}$	$\begin{aligned} & 1-5 \\ & 2.5 \end{aligned}$	1	1-2	50	Chilimanzi
9449	D	$\begin{aligned} & 24-30 \\ & 27 \end{aligned}$	$\begin{aligned} & 63-68 \\ & 66 \end{aligned}$	$\begin{aligned} & 9-10 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2-3 \\ & 2.5 \end{aligned}$	1	1-2	60	Enkeldoorn

TABLE I (Continued)

Name and No.	GH	IPA	LIR	PR	SR	Pits		2 n	Origin
									SOUTH AFRICA
3681	D	$15-40$	60×90	$4-10$	0	1	1-2	60	Pietermaritzburg
	\cdots		71						
3704	E	$28-57$	68×75	$\begin{aligned} & 19-28 \\ & 22.6 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 11.3 \end{aligned}$	1	102	60	Pietermaxitaburg
4090	D	16-25	$61-75$	$6-9$	0-1	1	1-2	50	Pietermariteburg
		20	68	7.6	0.6				
4091	D	$\begin{aligned} & 38-54 \\ & 48 \end{aligned}$	61-95	10-15	3-10	1	$1-3$	60	Pietermaritzburg
			83	11.8	6.2				
4905	D	$\begin{aligned} & 35-55 \\ & 43 \end{aligned}$	$67-85$	10-15	1-42	1	1-2	50	Pretoria
			76	12.0	12.5				
4906	D	$\begin{aligned} & 30-55 \\ & 42 \end{aligned}$	68×88	10-14	0-25	1	$0-2$	60	Pretoria
			80	12.7	3.9				
4907	D	20-57	$65-91$	12-15	$0-9$	1	1-4	60	Rietondale
		33	73	13.0	2.4				
5152	D	$\begin{aligned} & 14-36 \\ & 26 \end{aligned}$	47-69	7015	$0-12$	1	$1-3$	60	Rietondale
			60	11.7	4.3				
5168	D	$\begin{aligned} & 22-35 \\ & 28 \end{aligned}$	54-70	9-11	0-1	1	$0 \sim 1$	60	Rietondale
			63	10.3	0.3				

TABLE I (Continued)

Name and No.	GH	LPA	LIR	PR	ST			2 n	Origin
5190	D	$\begin{aligned} & 46-51 \\ & 48 \end{aligned}$	$\begin{aligned} & 75-92 \\ & 81 \end{aligned}$	$\begin{aligned} & 19-22 \\ & 21.0 \end{aligned}$	$\begin{aligned} & 4-23 \\ & 16.3 \end{aligned}$	1	1-3	60	Rietondale
5191	D	$\begin{aligned} & 40=55 \\ & 47 \end{aligned}$	$\begin{aligned} & 65-85 \\ & 75 \end{aligned}$	$\begin{aligned} & 15-21 \\ & 19.2 \end{aligned}$	$\begin{aligned} & 3-10 \\ & 8.8 \end{aligned}$	1	1-3	60	Rietondale
5192	D	$\begin{aligned} & \frac{33-37}{34} \end{aligned}$	$\begin{aligned} & 73-82 \\ & 77 \end{aligned}$	$\begin{aligned} & 12-19 \\ & 14.7 \end{aligned}$	$\begin{aligned} & 4-30 \\ & 18.0 \end{aligned}$	1	1-3	60	Rietondale
5194	. D	$\begin{aligned} & 22-33 \\ & 29 \end{aligned}$	$\begin{aligned} & 61-82 \\ & 69 \end{aligned}$	$\begin{aligned} & 9-14 \\ & 11.4 \end{aligned}$	$\begin{aligned} & 0-6 \\ & 3.0 \end{aligned}$	1	1-3	60	Rietondele
6902	D	$\begin{aligned} & 31-49 \\ & 40 \end{aligned}$	$\begin{aligned} & 74+90 \\ & 82 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 10.9 \end{aligned}$	$\begin{aligned} & 0-19 \\ & 10.4 \end{aligned}$	I	1-2	50	Rietondale
7473	D	$\begin{aligned} & 36=52 \\ & 42 \end{aligned}$	$\begin{aligned} & 57-77 \\ & 70 \end{aligned}$	$\begin{aligned} & 9-13 \\ & 10.8 \end{aligned}$	$\begin{aligned} & 2=9 \\ & 5.0 \end{aligned}$	1	1-2	60	Barberton
8587	D	$\begin{aligned} & 26-47 \\ & 34 \end{aligned}$	$\begin{aligned} & 72=87 \\ & 77 \end{aligned}$	$\begin{aligned} & 8-15 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0-7 \\ & 3.3 \end{aligned}$	1	$1-4$	60	Pretoria
8588	D	$\begin{aligned} & 30-46 \\ & 36 \end{aligned}$	$\begin{aligned} & 81-96 \\ & 90 \end{aligned}$	$\begin{aligned} & 8-10 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.8 \end{aligned}$	1	1-3	60	Pretoria
9567	D	$\begin{aligned} & 10-26 \\ & 20 \end{aligned}$	$\begin{aligned} & 64=71 \\ & 68 \end{aligned}$	$\begin{aligned} & 5-11 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.8 \end{aligned}$	1	I-2	60	Onderstepoort
9568	D	$\begin{aligned} & 20-40 \\ & 30 \end{aligned}$	$\begin{aligned} & 45-65 \\ & 50 \end{aligned}$	$\begin{aligned} & 5=8 \\ & 7.5 \end{aligned}$	0	1	$1-3$		Onderstepoort

TABLE I (Continued)

Name and No.	GH	IPA	LLR	PR	SR		\bar{P}	2n	Origin
9569	D	$\begin{aligned} & 19-25 \\ & 22 \end{aligned}$	$\begin{aligned} & 60-73 \\ & 65 \end{aligned}$	$\begin{aligned} & 8-9 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.7 \end{aligned}$	1	$2-3$	60	Preboria
9570	D	$\begin{aligned} & 18-23 \\ & 20 \end{aligned}$	$\begin{aligned} & 68-75 \\ & 71 \end{aligned}$	$\begin{aligned} & 7-8 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 1-2 \\ & 1.3 \end{aligned}$	1	$2-3$	50	Swartspruit
9571	D	$\begin{aligned} & 20-40 \\ & 35 \end{aligned}$	$\begin{aligned} & 60-75 \\ & 65 \end{aligned}$	$\begin{aligned} & 8-10 \\ & 9.5 \end{aligned}$	0	1	$1-3$	60	Swaxtspruit
9572	D	$\begin{aligned} & 35-56 \\ & 48 \end{aligned}$	$\begin{aligned} & 88-90 \\ & 89 \end{aligned}$	$\begin{aligned} & 9-13 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 5-22 \\ & 10.3 \end{aligned}$	1	1-2	50	Brits
9573	D	$\begin{aligned} & 33-38 \\ & 36 \end{aligned}$	$\begin{aligned} & 84-90 \\ & 88 \end{aligned}$	$\begin{aligned} & 10-12 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$	1	$2-3$	60	Brits
9574	D	$\begin{aligned} & 30-40 \\ & 25 \end{aligned}$	$\begin{aligned} & 50-75 \\ & 55 \end{aligned}$	$\begin{aligned} & 4-8 \\ & 6.5 \end{aligned}$	0	1	$1-3$		Machadodorp
9575	D	$\begin{aligned} & 29.30 \\ & 30 \end{aligned}$	$\begin{aligned} & 65-69 \\ & 67 \end{aligned}$	$\begin{aligned} & 8-9 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4-5 \\ & 4.5 \end{aligned}$	1	1	60	Machadodorp
9576a	D	$\begin{aligned} & 25-34 \\ & 30 \end{aligned}$	$\begin{aligned} & 61-66 \\ & 64 \end{aligned}$	$\begin{aligned} & 9-11 \\ & 9.7 \end{aligned}$	$\begin{aligned} & 1-2 \\ & 1.3 \end{aligned}$	1	1-2	60	Machadodorp
9577	D	$\begin{aligned} & 26-37 \\ & 30 \end{aligned}$	$\begin{aligned} & 68-74 \\ & 71 \end{aligned}$	$\begin{aligned} & 10.12 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.7 \end{aligned}$	1	2	60	Iydenburg
9578	D	$\frac{40-60}{45}$	$\begin{aligned} & 70=90 \\ & 85 \end{aligned}$	$\begin{aligned} & 10-15 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 2-4 \\ & 3.0 \end{aligned}$	1.	1-3		Graskop

TABLE I (Continued)

Name and No.	GH	LPA	ILLR	PR	SR	S	P	2 n	Origin
9579	D	$\begin{aligned} & 35-1,40 \\ & 36 \end{aligned}$	$\begin{aligned} & 64-71 \\ & 68 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1-2 \\ & 1.5 \end{aligned}$	1	1-2	50	Graskop
9580	D	$\begin{aligned} & 32-55 \\ & 43 \end{aligned}$	$\begin{aligned} & 69-88 \\ & 78 \end{aligned}$	$\frac{11.1 .4}{12.3}$	$\begin{aligned} & 0-11 \\ & 5.8 \end{aligned}$	1	1	50	Graskop
9581	D	$\begin{aligned} & 45-60 \\ & 50 \end{aligned}$	$\begin{aligned} & 65-85 \\ & 75 \end{aligned}$	$\begin{aligned} & 10-12 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.5 \end{aligned}$	1	1-3		Nelspruit
9582	D	$\begin{aligned} & 30-50 \\ & 35 \end{aligned}$	$\begin{aligned} & 60-85 \\ & 65 \end{aligned}$	$\begin{aligned} & 7=10 \\ & 8.5 \end{aligned}$	0	1	$1-3$		Barberton
9583	D	$\begin{aligned} & 31-39 \\ & 35 \end{aligned}$	$\begin{aligned} & 76-90 \\ & 85 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 3.5 \end{aligned}$	1	1		Baxberton
9584 a	D	$\begin{aligned} & 30-43 \\ & 34 \end{aligned}$	$\begin{aligned} & 64-78 \\ & 72 \end{aligned}$	$\begin{aligned} & 9-11 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 0-16 \\ & 4.0 \end{aligned}$	1	1	60	Komatipoort
9585	D	$\begin{aligned} & 28-45 \\ & 34 \end{aligned}$	$\begin{aligned} & 68-78 \\ & 73 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	1	1	. 50	Komatipoort
9592	D	$\frac{37-57}{45}$	$\begin{aligned} & 66-75 \\ & 72 \end{aligned}$	$\begin{aligned} & 10-18 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 12-14 \\ & 12.3 \end{aligned}$	1	1-2		Groblersdal
9593	D	$\begin{aligned} & 42-45 \\ & 43 \end{aligned}$	$\begin{aligned} & 61-65 \\ & 62 \end{aligned}$	$\begin{aligned} & 10-11 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 1.0 \end{aligned}$	1	1-2	60	Groblersdal
9594	D	$\begin{aligned} & 28-56 \\ & 39 \end{aligned}$	$\begin{aligned} & 73-83 \\ & 78 \end{aligned}$	$\begin{aligned} & 10-13 \\ & 11.8 \end{aligned}$	$\begin{aligned} & 1-16 \\ & 5.5 \end{aligned}$	1	1-2	50	Marble Hall

TABLE I (Continued)

Name and No.	GH	LPA	LLR	PR	SR			2 n	Origin
9595	E	$\begin{aligned} & 40-59 \\ & 50 \end{aligned}$	$\begin{aligned} & 71-101 \\ & 87 \end{aligned}$	$\begin{aligned} & 11-16 \\ & 14.3 \end{aligned}$	$\begin{aligned} & 0-4 \\ & 1.0 \end{aligned}$	1	2-3	60	Marble Hall
9596	D	$\begin{aligned} & 34-44 \\ & 38 \end{aligned}$	$\begin{aligned} & 67-75 \\ & 69 \end{aligned}$	$11-12$	$\begin{gathered} 4-12 \\ 8.0 \end{gathered}$	1	$0-1$	50	Nylstroom
9597	D	$\begin{aligned} & \frac{19-34}{26} \end{aligned}$	$\begin{aligned} & 62-64 \\ & 63 \end{aligned}$	$\begin{aligned} & 7-10 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.7 \end{aligned}$	1	$0-3$	60	Roedtan
9599	D	$\begin{aligned} & 39-42 \\ & 40 \end{aligned}$	$\begin{aligned} & 73-89 \\ & 84 \end{aligned}$	$\begin{aligned} & 14-17 \\ & 15.7 \end{aligned}$	$\begin{aligned} & 2-15 \\ & 7.0 \end{aligned}$	1	$0-1$		Potgieters
9600a	D	$\begin{aligned} & 35-45 \\ & 40 \end{aligned}$	$\begin{aligned} & 79-89 \\ & 84 \end{aligned}$	$\begin{aligned} & 17-19 \\ & 17.7 \end{aligned}$	$\begin{aligned} & 2-27 \\ & 11.3 \end{aligned}$	1	1-2	60	Naboomspruit
9600 b	D	$\begin{aligned} & 26-32 \\ & 30 \end{aligned}$	$\begin{aligned} & 69-84 \\ & 76 \end{aligned}$	$\begin{aligned} & 8-10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 0-7 \\ & 4.3 \end{aligned}$	1.	1-2	60	Naboomspruit
9601	D	$\begin{aligned} & 38-47 \\ & 43 \end{aligned}$	$\begin{aligned} & 73-87 \\ & 82 \end{aligned}$	$\begin{aligned} & 14-19 \\ & 16.3 \end{aligned}$	$\begin{aligned} & 25-32 \\ & 28.7 \end{aligned}$	1	1-2	60	Radium
9602	D	$\frac{21-39}{33}$	$\begin{aligned} & 66-74 \\ & 72 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 1-4 \\ & 2.3 \end{aligned}$	1	O-1	60	New Castle
9603	D	$\begin{aligned} & 42-47 \\ & 45 \end{aligned}$	$\begin{aligned} & 78-80 \\ & 79 \end{aligned}$	$\frac{19-24}{21.5}$	$\begin{aligned} & 4-19 \\ & 11.5 \end{aligned}$	1	1-3	60	Stanger
9604	D	$\frac{40-60}{45}$	$\begin{aligned} & 60-75 \\ & 65 \end{aligned}$	$\begin{aligned} & 8-10 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2-5 \\ & 4.1 \end{aligned}$	1	1-3		Umhlanga

TABLE I (Continued)

Name and No.	GH	LPA	LLR	PR	SR		p	2 n	Origin
9605	D	$\begin{aligned} & 38-50 \\ & 43 \end{aligned}$	$\begin{aligned} & 69-83 \\ & 76 \end{aligned}$	$\begin{aligned} & 12-13 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 0-6 \\ & 3.0 \end{aligned}$	1	0-2	60	Oxibibi
9606	D	$\begin{aligned} & 38-50 \\ & 43 \end{aligned}$	$\begin{aligned} & 60-75 \\ & 65 \end{aligned}$	$\begin{aligned} & 10-15 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 5-10 \\ & 8.5 \end{aligned}$	1	1-3		Izingolwent
9607	D	$\frac{42-48}{4.6}$	$\begin{aligned} & 79-86 \\ & 83 \end{aligned}$	$\begin{aligned} & 6-20 \\ & 18.0 \end{aligned}$	$\begin{aligned} & 3-16 \\ & 9.7 \end{aligned}$	1	1-2	60	Kokstad
9608	D	$\frac{50-65}{55}$	$\frac{65-95}{75}$	$\begin{aligned} & 10-15 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 4.2 \end{aligned}$	1	1-2		Umeimkulu
9609	D	$\begin{aligned} & 50-65 \\ & 55 \end{aligned}$	$\begin{aligned} & 65-80 \\ & 70 \end{aligned}$	$\begin{aligned} & 10-15 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 4-8 \\ & 6.5 \end{aligned}$	1	1-2		Ixopo
96102	D	$\begin{aligned} & 31-42 \\ & 37 \end{aligned}$	$\begin{aligned} & 56-65 \\ & 61 \end{aligned}$	$\begin{aligned} & 8=12 \\ & 10.0 \end{aligned}$	0	1.	1	60	Richmond
9610 b	D	$\begin{aligned} & 25-31 \\ & 28 \end{aligned}$	$\begin{aligned} & 65-72 \\ & 69 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 10.6 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.7 \end{aligned}$	1	1-2	60	Richmond
96100	D	$\begin{aligned} & 36-43 \\ & 40 \end{aligned}$	$\begin{aligned} & 71-85 \\ & 79 \end{aligned}$	$\begin{aligned} & 17-20 \\ & 18.3 \end{aligned}$	$\begin{aligned} & 5-9 \\ & 4.3 \end{aligned}$	1	1-2	60	Richmond
9611.	D	$\begin{aligned} & 35-55 \\ & 40 \end{aligned}$	$\begin{aligned} & 60-70 \\ & 65 \end{aligned}$	$\begin{aligned} & 10-11 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 0-1 \\ & 0.1 \end{aligned}$	1	1-2		Machadodorp
9612	D	$\begin{aligned} & 30-50 \\ & 36 \end{aligned}$	$\begin{aligned} & 50-75 \\ & 55 \end{aligned}$	$\begin{aligned} & 8-12 \\ & 9.6 \end{aligned}$	0	1	1-2		Roodeplaat

TABLE I (Continued)

Name and No.	GH	IPA	LLR	PR	SR	S	P	2 n	Origin
9613	D	$\begin{aligned} & 28-35 \\ & 30 \end{aligned}$	$\begin{aligned} & 60-70 \\ & 65 \end{aligned}$	$\begin{aligned} & 8-10 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 0-3 \\ & 0.5 \end{aligned}$	1	1-3		Pretoria
9614	D	$\begin{aligned} & 22-30 \\ & 25 \end{aligned}$	$\begin{aligned} & 50-65 \\ & 55 \end{aligned}$	$\begin{aligned} & 8-10 \\ & 8.9 \end{aligned}$	$\begin{aligned} & 0-3 \\ & 0.5 \end{aligned}$	1	1-3		Koster
9093	P	$\begin{aligned} & 6-12 \\ & 9 \end{aligned}$	$\begin{aligned} & 46-56 \\ & 51 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	0	1	1-3	60	$\frac{\text { INDIA }}{\text { Poona }}$
9095	P	$\begin{aligned} & 6-20 \\ & 14 \end{aligned}$	$\begin{aligned} & 55-65 \\ & 60 \end{aligned}$	$\begin{aligned} & 3-8 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 0-8 \\ & 0.8 \end{aligned}$	1	$0-1$	60	Panchgani
9097	P	$\begin{aligned} & 19-23 \\ & 21 \end{aligned}$	$\begin{aligned} & 58-59 \\ & 59 \end{aligned}$	$\begin{aligned} & 7-8 \\ & 7.7 \end{aligned}$	0	1	0-2	60	Mt. Abu
2654	P	$\begin{aligned} & 7-9 \\ & 8 \end{aligned}$	$\frac{43-50}{46}$	$\begin{aligned} & 4-5 \\ & 4.3 \end{aligned}$	0	1	1-2	40	Coimbatore
43946	P	$\begin{aligned} & 16-23 \\ & 20 \end{aligned}$	$\begin{aligned} & 54-65 \\ & 60 \end{aligned}$	$\begin{aligned} & 7-9 \\ & 7.8 \end{aligned}$	0	1	1-2	40	Dehra Dun
5396	P	$\begin{aligned} & 27-65 \\ & 33 \end{aligned}$	$\begin{aligned} & 52-65 \\ & 57 \end{aligned}$	$\begin{aligned} & 9-14 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 0-10 \\ & 7.4 \end{aligned}$	1	$0-1$	40	Belatal
8280	P	$\begin{aligned} & 33-58 \\ & 42 \end{aligned}$	$\begin{aligned} & 54-68 \\ & 58 \end{aligned}$	$\begin{aligned} & 13-22 \\ & 15.8 \end{aligned}$	$\begin{aligned} & 0-3 \\ & 0.8 \end{aligned}$	1	0-3	40	Lonavia

TABLE I (Continued)

Name and No.	GH	LPA	LLR	PR	SR	S	P	2 n	Origin
8283	P	$\begin{aligned} & 6-11 \\ & 8 \end{aligned}$	$\begin{aligned} & 40-47 \\ & 44 \end{aligned}$	$\begin{aligned} & 4=5 \\ & 4.3 \end{aligned}$	0	1	1-2	40	Rajkot
8285	P	$\begin{aligned} & 10-18 \\ & 14 \end{aligned}$	$\begin{aligned} & 46054 \\ & 51 \end{aligned}$	$\begin{aligned} & 5-7 \\ & 6.0 \end{aligned}$	0	1	$0-1$	40	Rajket
8285-3b	P	$\begin{aligned} & 19-35 \\ & 26 \end{aligned}$	$\begin{aligned} & 67-100 \\ & 89 \end{aligned}$	$\begin{aligned} & 6-9 \\ & 7.5 \end{aligned}$	0	1	$0-2$	40	Rajkoto
8287	P	$\begin{aligned} & 13-20 \\ & 17 \end{aligned}$	$\begin{aligned} & 48-61 \\ & 55 \end{aligned}$	$\begin{aligned} & 506 \\ & 5.5 \end{aligned}$	0	1	0-3	40	Mulsh:
8299	P	$\begin{aligned} & 39-40 \\ & 40 \end{aligned}$	$\begin{aligned} & 50-53 \\ & 52 \end{aligned}$	$\frac{11-13}{12}$	0	1	1-2	40	Malavli
8308	P	$\begin{aligned} & 9-13 \\ & 11 \end{aligned}$	$\begin{aligned} & 47-50 \\ & 49 \end{aligned}$	$\begin{aligned} & 5-6 \\ & 5.2 \end{aligned}$	0	1	$0-1$	40	Saurashtra
89812	P	$\begin{aligned} & 22-36 \\ & 30 \end{aligned}$	$\begin{aligned} & 47-73 \\ & 60 \end{aligned}$	$\begin{aligned} & 7-14 \\ & 9.9 \end{aligned}$	$\begin{aligned} & 0-8 \\ & 2.7 \end{aligned}$	1	$0-4$	40	Jammu
8985 b	P	$\begin{aligned} & 10-17 \\ & 12 \end{aligned}$	$\begin{aligned} & 52-55 \\ & 53 \end{aligned}$	$\begin{aligned} & 4=8 \\ & 6.0 \end{aligned}$	0	1	1-2	40	Dalhousie
8987 b	P	$\begin{aligned} & 10-17 \\ & 13 \end{aligned}$	$\begin{aligned} & 51-60 \\ & 56 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.7 \end{aligned}$	0	1	1-2	40	Mandit
9090b	P	$\begin{aligned} & 10-19 \\ & 16 \end{aligned}$	$\begin{aligned} & 49-66 \\ & 58 \end{aligned}$	$\begin{aligned} & 4-7 \\ & 5.8 \end{aligned}$	0	1	0-1	40	Delhi

TABLE I (Continued)

Name and No.	GH	LPA	LER	PR	SR	Pits		2 n	Origin
9096	P	$\begin{aligned} & 9-32 \\ & 23 \end{aligned}$	$\begin{aligned} & 65-83 \\ & 74 \end{aligned}$	$\begin{aligned} & 5-9 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 0-8 \\ & 1.6 \end{aligned}$	1	0-3	40	Mt. Abu
9098	P	$\begin{aligned} & 15-27 \\ & 21 \end{aligned}$	$\begin{aligned} & 68-77 \\ & 68 \end{aligned}$	$\begin{aligned} & 5-10 \\ & 7.3 \end{aligned}$	0	1	$0-2$	40	Baroda
B. longifolia									INDIA
8300	E	$\begin{aligned} & 30-40 \\ & 36 \end{aligned}$	$\begin{aligned} & 35-55 \\ & 52 \end{aligned}$	$\begin{aligned} & 10-16 \\ & 14 \end{aligned}$	0	1	0	20	Poona
8301	E	$\begin{aligned} & 3550 \\ & 42 \end{aligned}$	$\begin{aligned} & 50-70 \\ & 65 \end{aligned}$	$\begin{aligned} & 20-40 \\ & 32.0 \end{aligned}$	$\begin{aligned} & 0-8 \\ & 1.0 \end{aligned}$	1	0	20	Poona
B. panormitana									AFRICA
									ETHIOPIA
4518	D	$\begin{aligned} & 31-49 \\ & 37 \end{aligned}$	$\begin{aligned} & 68 \sim 92 \\ & 76 \end{aligned}$	$\begin{aligned} & 10-16 \\ & 13.1 \end{aligned}$	$\begin{aligned} & 0-22 \\ & 5.0 \end{aligned}$	8	$\stackrel{\square}{4}$	60	Awash
									MOROCCO
5402	D	$\begin{aligned} & 42-60 \\ & 53 \end{aligned}$	$\begin{aligned} & 61-66 \\ & 63 \end{aligned}$	$\begin{aligned} & 10-18 \\ & 14.2 \end{aligned}$	$\begin{aligned} & 1-3 \\ & 2.3 \end{aligned}$	1	0	60	Tamanor
									RHODESIA
9447	D	$\begin{aligned} & 18-35 \\ & 25 \end{aligned}$	$\begin{aligned} & 62-67 \\ & 65 \end{aligned}$	$\begin{aligned} & 7-12 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 0-3 \\ & 2.0 \end{aligned}$	1	*	50	Balla Balla

TABLE I (Continued)

Name and No.	GH	LPA	LLR	PR	SR	Pits		2 n	Origin
9487	D	$\begin{aligned} & 20-34 \\ & 25 \end{aligned}$	$\begin{aligned} & 48=65 \\ & 55 \end{aligned}$	$\begin{aligned} & 7-10 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 0-1 \\ & 0.4 \end{aligned}$	\dagger	t		Bulawayo
9497	D	$\begin{aligned} & 20-40 \\ & 35 \end{aligned}$	$\begin{aligned} & 60-85 \\ & 70 \end{aligned}$	$\begin{aligned} & 10-15 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 2-4 \\ & 1.5 \end{aligned}$	\&	\pm		Wankie
									SOUTH AFRICA
9598	D	$\begin{aligned} & 28-39 \\ & 33 \end{aligned}$	$\begin{aligned} & 71-78 \\ & 74 \end{aligned}$	$\begin{aligned} & \frac{13-17}{15.0} \end{aligned}$	$\begin{aligned} & 0-7 \\ & 4.3 \end{aligned}$	1	p		Roedtan
9676	D	$\begin{aligned} & 22-26 \\ & 24 \end{aligned}$	$\begin{aligned} & 60-69 \\ & 65 \end{aligned}$	$\begin{aligned} & 8-10 \\ & 9.2 \end{aligned}$	0	2	*		Machadodorp
9683	D	$\begin{aligned} & 40-65 \\ & 50 \end{aligned}$	$\begin{aligned} & 65-85 \\ & 70 \end{aligned}$	$\begin{aligned} & 10-12 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 0-3 \\ & 1.5 \end{aligned}$	+	0		Marble Hail
9684	D	$\begin{aligned} & 38-46 \\ & 42 \end{aligned}$	$\begin{aligned} & 70-86 \\ & 79 \end{aligned}$	$\begin{aligned} & 12-14 \\ & 13.2 \end{aligned}$	$\begin{aligned} & 3-6 \\ & 4.5 \end{aligned}$	+	0	50	Nylstroom
9685	D	$\begin{aligned} & 30-36 \\ & 34 \end{aligned}$	$\begin{aligned} & 80-86 \\ & 82 \end{aligned}$	$\begin{aligned} & 11-12 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 2-4 \\ & 2.5 \end{aligned}$	p	0	50	Marble Hall
B. pertusa									INDIA
4806	P	$\begin{aligned} & 8=23 \\ & 16 \end{aligned}$	$\begin{aligned} & 49-55 \\ & 51 \end{aligned}$	$\begin{aligned} & 608 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.5 \end{aligned}$	1	-	40	Hyderabad

TABLE I (Continued)

Name and No.	GH	LPA	LLR	PR	SR	S	P	2 n	Origin
5301	P	$\begin{aligned} & 10-20 \\ & 16 \end{aligned}$	$\begin{aligned} & 45-55 \\ & 49 \end{aligned}$	$\begin{aligned} & 609 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	1	0	40	Delhis
5309	F	$\begin{aligned} & 5-12 \\ & 9 \end{aligned}$	$\begin{aligned} & 36-45 \\ & 40 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.3 \end{aligned}$	0	2	0	40	Dehra Dun
5403	P	$\begin{aligned} & 15-24 \\ & 19 \end{aligned}$	$\begin{aligned} & 55-65 \\ & 57 \end{aligned}$	$\begin{aligned} & 509 \\ & 7.0 \end{aligned}$	0	1	0	40	Mathura
5406	P	$\begin{aligned} & 7-14 \\ & 11 \end{aligned}$	$\begin{aligned} & 45-55 \\ & 50 \end{aligned}$	$\begin{aligned} & 406 \\ & 500 \end{aligned}$	0	1	0	40	Delhi
5408 b	P	$\begin{aligned} & 7-8 \\ & 7 \end{aligned}$	$\begin{aligned} & 43-45 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 5.0 \end{aligned}$	0	1	0	40	Bareilly
6152	P	$\begin{aligned} & 10-16 \\ & 15 \end{aligned}$	$\begin{aligned} & 42-50 \\ & 49 \end{aligned}$	$\begin{aligned} & 5-9 \\ & 6.3 \end{aligned}$	0	1	0	40	W. Bengal
8279	P	$\frac{11-23}{17}$	$\begin{aligned} & 45-56 \\ & 51 \end{aligned}$	$\begin{aligned} & 6-7 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 0-1 \\ & 0.5 \end{aligned}$	1	0	40	Bormbay
8281	P	$\begin{aligned} & 14-17 \\ & 15 \end{aligned}$	$\begin{aligned} & 43-61 \\ & 54 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 6.3 \end{aligned}$	0	1	0	40	Nasrapur
82822	P	$\begin{aligned} & 8-10 \\ & 9 \end{aligned}$	$\begin{aligned} & 40-43 \\ & 42 \end{aligned}$	$\begin{aligned} & 4-6 \\ & 5.0 \end{aligned}$	0	1	0	40	Sangamner
8282b	P	$\begin{aligned} & 10-24 \\ & 18 \end{aligned}$	$\begin{aligned} & 56-63 \\ & 60 \end{aligned}$	$\begin{aligned} & 5-8 \\ & 6.7 \end{aligned}$	0	1	0	40	Sangamner

TABLE I (Continued)

Name and No.	GH	IPA	ILR	PR	SR	S		2n	Origin
8284	P	$\frac{11-28}{18}$	$\begin{aligned} & 66-77 \\ & 71 \end{aligned}$	$\begin{aligned} & 5-8 \\ & 7.1 \end{aligned}$	0	1	0	40	Rajkot
8285-3a	P	$\frac{11}{14}-18$	$\frac{46-57}{48}$	$\begin{aligned} & 5-7 \\ & 5.8 \end{aligned}$	0	1	0	40	Rajkoto
8286	P	$\begin{aligned} & 9-18 \\ & 14 \end{aligned}$	$\begin{aligned} & 35-46 \\ & 42 \end{aligned}$	$\begin{aligned} & 5-8 \\ & 6.6 \end{aligned}$	0	1	0	40	Mulshis
8288\%	P	$\begin{aligned} & 6-15 \\ & 12 \end{aligned}$	$\frac{47-50}{47}$	$\begin{aligned} & 4-7 \\ & 5.5 \end{aligned}$	0	1	0	40	Purundai
8289\%	P	$\begin{aligned} & 8-20 \\ & 16 \end{aligned}$	$\begin{aligned} & 47-52 \\ & 49 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.5 \end{aligned}$	1	0	40	Kandalah
8289 b	P	$\begin{aligned} & 9-21 \\ & 14 \end{aligned}$	$\begin{aligned} & 38-46 \\ & 43 \end{aligned}$	$\begin{aligned} & 5-11 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 0-8 \\ & 2.7 \end{aligned}$	1	0	40	Kandalah
8290	P	$\begin{aligned} & 5-9 \\ & 8 \end{aligned}$	$\begin{aligned} & 38-53 \\ & 47 \end{aligned}$	$\begin{aligned} & 3-4 \\ & 3.7 \end{aligned}$	0	1	0	40	Panchgani
8292	P	$\begin{aligned} & 8-13 \\ & 11 \end{aligned}$	$\frac{41-50}{46}$	$\begin{aligned} & 6.8 \\ & 6.8 \end{aligned}$	0	1	0	40	Kotharud
8886\%	P	$\begin{aligned} & 5-19 \\ & 14 \end{aligned}$	$\begin{aligned} & 59-71 \\ & 66 \end{aligned}$	$\begin{aligned} & 4-8 \\ & 6.5 \end{aligned}$	0	1	0	40	Ajmer
8962	P	$\begin{aligned} & 34-48 \\ & 40 \end{aligned}$	$\begin{aligned} & 65-80 \\ & 74 \end{aligned}$	$\begin{aligned} & 9-12 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 6-23 \\ & 10.2 \end{aligned}$	1	0	40	Kangra

TABLE I (Continued)

Name and No.	GH	IPA	LLR	PR	SR	S		2x	Origin
8977 a	P	$\begin{aligned} & 27-30 \\ & 29 \end{aligned}$	$\begin{aligned} & 63-67 \\ & 65 \end{aligned}$	$\begin{aligned} & 10.11 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 2.0 \end{aligned}$	1	0	40	Dehre Dun
8980	P	$\frac{18-29}{21}$	$\begin{aligned} & 48-69 \\ & 59 \end{aligned}$	$\begin{aligned} & 5-11 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 3.8 \end{aligned}$	1	0	40	Euliundux
89817	P	$\begin{aligned} & 8-38 \\ & 16 \end{aligned}$	$\begin{aligned} & 51-67 \\ & 57 \end{aligned}$	$\begin{aligned} & 4-8 \\ & 5.0 \end{aligned}$	0	1	0	40	Jmmu
8982	P	$\begin{aligned} & 8-30 \\ & 19 \end{aligned}$	$\begin{aligned} & 51-66 \\ & 58 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 6.9 \end{aligned}$	$\begin{aligned} & 0-3 \\ & 0.6 \end{aligned}$	1	0	40	Pathanket
89848	P	$\begin{aligned} & 12-24 \\ & 17 \end{aligned}$	$\begin{aligned} & 53-59 \\ & 56 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.5 \end{aligned}$	1	0	40	Pathankot
8985\%	P	$\begin{aligned} & 8-27 \\ & 16 \end{aligned}$	$\begin{aligned} & 48-60 \\ & 55 \end{aligned}$	$\begin{aligned} & 4-8 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 1.0 \end{aligned}$	1	0	40	Dalhousie
8986	P	$\begin{aligned} & 14-25 \\ & 18 \end{aligned}$	$\begin{aligned} & 45-58 \\ & 50 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 0-1 \\ & 0.2 \end{aligned}$	1	0	40	Kangra
8987\%	P	$\begin{aligned} & 16-30 \\ & 22 \end{aligned}$	$\begin{aligned} & 55-61 \\ & 59 \end{aligned}$	$\begin{aligned} & 509 \\ & 7.3 \end{aligned}$	0	1	0	40	Mandi
89882	P	$\begin{aligned} & 16-45 \\ & 25 \end{aligned}$	$\begin{aligned} & 48-75 \\ & 61 \end{aligned}$	$\begin{aligned} & 8-12 \\ & 9.9 \end{aligned}$	$\begin{aligned} & 0-12 \\ & 5.1 \end{aligned}$	1	0	40	Nahan
8988b	P	$\begin{aligned} & 7-20 \\ & 15 \end{aligned}$	$\begin{aligned} & 53-66 \\ & 60 \end{aligned}$	$\begin{aligned} & 4-6 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 0-1 \\ & 0.3 \end{aligned}$	1	0	40	Nahan

TABLE I (Continued)

Name and No.	GH	LPA	ITR	PR	SR	Pits		2 n	Origin
8988¢	P	$\begin{aligned} & 17-19 \\ & 28 \end{aligned}$	$\begin{aligned} & 53-66 \\ & 57 \end{aligned}$	$\begin{aligned} & 6-7 \\ & 6.3 \end{aligned}$	0	1	0	40	Nahan
8989	P	$\begin{aligned} & 21-36 \\ & 27 \end{aligned}$	$\begin{aligned} & 54-62 \\ & 58 \end{aligned}$	$\begin{aligned} & 8-13 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 1-? \\ & 4.0 \end{aligned}$	1	0	40	Alwaxe
9090a	P	$\frac{11-25}{19}$	$\frac{41-52}{56}$	$\begin{aligned} & 5-9 \\ & 7.7 \end{aligned}$	0	1	0	40	Dolhs
9091	P	$\frac{13-22}{16}$	$\begin{aligned} & 55067 \\ & 68 \end{aligned}$	$\begin{aligned} & 6-7 \\ & 6.3 \end{aligned}$	0	1	0	40	Delhi
9092	P	$\begin{aligned} & 4-14 \\ & 8 \end{aligned}$	$\frac{40-50}{45}$	$\begin{aligned} & 5-7 \\ & 6.2 \end{aligned}$	0	1	0	40	Poona
									PAKISTAN
4635 II	P	$\begin{aligned} & 31-35 \\ & 33 \end{aligned}$	$\begin{aligned} & 57-62 \\ & 60 \end{aligned}$	$\begin{aligned} & 8-9 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 1.0 \end{aligned}$	1	0	40	Sargodha
			-.						CEYEON
4021	P	$\begin{aligned} & 13-23 \\ & 17 \end{aligned}$	$\begin{aligned} & 45-64 \\ & 51 \end{aligned}$	$\begin{aligned} & 5-8 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.3 \end{aligned}$	1	0	40	Peradeniya
									CHINA
6154	P	$\begin{aligned} & 8-12 \\ & 9 \end{aligned}$	$\begin{aligned} & 38-40 \\ & 39 \end{aligned}$	$\begin{aligned} & 4-5 \\ & 4.7 \end{aligned}$	0	1	0	40	Yunnan

TABLE I (Continued)

Name and No.	GH	LPA	LIR	PR	SR	Pits		2 n	Origin
									AFRICA
									SENEGAL
5431	D	$\begin{aligned} & 16-23 \\ & 19 \end{aligned}$	$\begin{aligned} & 52-64 \\ & 58 \end{aligned}$	$\begin{aligned} & 7-9 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0.8 \end{aligned}$	1	+	40	Dakar
									KENYA
5467	D\%	$\begin{aligned} & 9-20 \\ & 16 \end{aligned}$	$\begin{aligned} & \frac{47-61}{56} \end{aligned}$	$\begin{aligned} & 6-9 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 0-1 \\ & 0.3 \end{aligned}$	1	¢	40	Kitale
									RHODESIA
9479	D_{\uparrow}	$\begin{aligned} & 36-48 \\ & 41 \end{aligned}$	$\begin{aligned} & 60-65 \\ & 63 \end{aligned}$	$\begin{aligned} & 12-14 \\ & 13.2 \end{aligned}$	0	1	+	40	Kafue
9480	D	$\begin{aligned} & 18-26 \\ & 23 \end{aligned}$	$\begin{aligned} & 44-53 \\ & 50 \end{aligned}$	$\begin{aligned} & 8-11 \\ & 9.2 \end{aligned}$	0	1	4	40	Zimba
948.1	D\%	$\begin{aligned} & 23-28 \\ & 25 \end{aligned}$	$\begin{aligned} & 50-52 \\ & 51 \end{aligned}$	$\frac{21-13}{11.5}$	0	1	\dagger	40	Lupaniz
9482	D_{\uparrow}	$\begin{aligned} & 17-24 \\ & 22 \end{aligned}$	$\begin{aligned} & 46-52 \\ & 50 \end{aligned}$	$\begin{aligned} & 7-10 \\ & 9.2 \end{aligned}$	0	1	*	40	Shabisi

TABLE I (Continued)

| Name and No, | GH | LPA | LLR | PR | SR | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TABLE I (Continued)

Name and No.	GH	LPA	LILR	PR	SR			2 n	Origin
									SOUTH AFRICA
9682	D 4	$\begin{aligned} & 20-47 \\ & 35 \end{aligned}$	$\begin{aligned} & 59-69 \\ & 63 \end{aligned}$	$\begin{aligned} & 7-14 \\ & 12.2 \end{aligned}$	$\begin{aligned} & 2-15 \\ & 9 \end{aligned}$	0	0	40	Pretoria
sFor each collection, the first line lists mange and the second mean in respect to the characters studied.									
GH. $-G$ Gowh habit: E-Arecty Es-exect and robust: D-decumbexts Dp-sulms betoming eregt from short creping bases P =prostrate.									
LPA 0 Length primary axis of inflorescence in millimeters.									
LLR.olength longest racme in millimeterg.									
PR. - Number of primary racemes.									
SR.coNumber of secondary and tertiary xacemes.									
S.osessile spikelets.									
P. - Pedicellate spikelets.									
Pitsoormetraces $O_{3} 1_{3} 2_{3} 3_{3}$ Honumber of pits present on lower glume									

LEGEND TO PLATE I

Soattex diagram indicating morphological affinities.

* : Bothriochloa pertusa (Indian)
- Bothriochloa pertusa (Afroican)

O: Bothriochloa insculpta (African)
*: Bothriochioa inseulpta (Indian)
(0): Bothriochloa panormitana (African)
() Bothriochloa decipiens (Austrolian)
(O): Bothriochloa decipiens (Australian)
(*) Bothriochloa radicans (African)

PLATE I

RATIO OF AVERAGE PRIMARY AXIS LENGTH/RACEME LENGTH

Raceme number and order of branching. $-\infty$ Raceme number pex inflores cence varies within a species. The range, characteristic of a species, is usually present within a singla plant. For this reason, average number of racemes per inflorescence is a relatively stable characteristic. The two varieties of B. deaipiens (Plate I) differ conspicuously from each other in this respect. Similarly, Bo pertusa is mostly characterized by fewer racemes per inflorescence than are the other species studied.

The racemes are subdigitately arranged in whorls on two or more nodes of the primary axis, or else more or less opposite, or alternating. Node number is usually correlated with raceme number, but is a less reliable character than the latter. The racemes are simple or divided. The lower ones are usually divided into secondary and tertiary branches in specimens referable to B. decipiens var. cloncurrensis, B. insculpta, B. longifolia and B. panormitana. Simple racemes usually characterize B. pertusa, B. radicans, and typical representatives of B. decipiens. $^{\text {. }}$

Pits on the glumes. $-\infty$ This character usually forms the basis for separating B. insculpta, Bo pertusa and Bo radicans from each other. Typically, B. pertusa is characterized by pitted sessile and non-pitted pedicellate spikelets. On this basis Maire (1952, 1959) reeognized Bo pertusa var panormitans to include the Sicilian Bo panormitana, and B. pertusa var. maroccana to include African plants resembling those from Sicily. The variety Bo pertusa var. tunetana A. Camus was recoge nized by Maire (1959) to include African plants differing from B. pertusa var. maroccana mainly in theire reduced size. Growth habit, inflorescence structure and eytogenetical data indicate that B. panormitana and Bo pertusa war. maroceana are more closely related to B. insculpta. Similarly, B. pertusa var. tunetana resembles B. radicans
except for pit characters. The Indian representatives of Bo insculpta, as recognized by Bor (1960), have pitted sessile and pedicellate spikelets that are characteristic of this species, but they resemble B. pertusa in most other morphological features. Numerous African plants resembling Bo insculpta in growth habit, inflorescence structure and cytology, have only the lower sessile spikelets on each raceme pitted, and the pedicellate ones are either faintly pitted or not pitted at all.

Glume pubescence. -a The lower glume of sessile spikelets are usually pilose below the middle, but in most Indian specimens of B. insculpta the sessile spikelets are giabrous. Degree of pubescence is variable in all the species studied. The lower glume of pedicellate spikelets is essentially glabrous below the middle in all the species studied. Above the middle the lower glumes of both sessile and pedicellate spikelets axe often shortily ciliate along the margins.

Hairs on the culm-nodes. - The nodes may be glabrous, bearded all over, or the hairs may form a distinct ring below each node. Glabrous nodes characterize Bo decipiens and most of the African specimens referable to B_{0} pertusa. Indian representatives of B_{0} pertusa and the African Bo radicans usually have a ring of short or long hairs at the base of the nodes. Nore rarely the nodes are completely glabrous or woolly all over. Woolly nodes were often encountered in Bo panormitana and Bo insculpta. The Iower nodes on a culm are sometimes more or less woolly all over while the hairs are arranged in a ring on the upper nodes. Very rarely the nodes were found to be glabrous in members of Bo insculpta.

Growth habit. ∞ The species were found to be quite consistent in
respect to this character. An erect growth habit characterizes Bo decipiens and B. longifolia, while members of Bo pertusa and Indian representatives of B. insculpta are typically prostrate plants. Rambing culms, which ofiten grow erect at first and then bend over to become erect again at flowering time, are characteristic of African Bo insculpta, Bo panormitana and Bo pertusa var. maroccana. The flowering culms of Bo radicans and Bo pertusa var. tunetana arise from a short oreeping base which is often strongly branched at the lower nodes.

Leaf shape. The leaves are nore or less linearolanceolate and extremely variable in length. They are mostly basal, but often also cauline. In Indian representatives of B. pertusa the basal leaves are shorter and more lanceolate than the cauline ones. Extremely long, linear leaves characterize B. Iongifolia. In general African represen tatives of Bo insculpta have broader and longer leaves than Indian specimens.

Long, bulbous-based hairs ate often present on the upper surface of the leaves. These are usually more prominent and frequent in members of B. radicans.

Cytogeography. Curomosome numbers encountered are $2 \mathrm{n}=20_{2}$ 40, 50 and 60. The only diploid $(2 n=20)$ is Bo longifolia endemic to southern India. Typical representatives of B. pertusa are tetraploid. and extend from West Pakistan through India and southern Asia to Indonesia. African representatives of this species are tetraploid, pentaploid or hexaploid. Both Bo pertusa var. tunetana ($2 n=40$) and B. pertusa var maroccana $(2 \pi=50,60)$ appeaw to be widely distributed in Africa. The African representatives of Boinseulpta are pentaploid
or hexaploid, and widely distributed throughout the tropical and subtropical regions of this continent. The Indian representatives of B. insculpta are confined to the more tropical regions s_{s} and these plants are either tetraploid or hexaploid.

Typically B. panormitana is confined to Sicily. African plants resembling this species in detail (B. pertusa var. maroccana) extend from Moroceo to southern Africa. Plants from Sicily were not available for cytological study. North African plants that should be referred to B. panormitana are hexaploid.

Crossing data \rightarrow Attempts at crossing the various species and varieties are indicated in Table II. Celarier and Harlan (1956) demone strated that diploid ($2 n=20$) representatives of Bothriochloa reproduce sexually, while polyploids axe usually apomicts. The diploid sexual species E. longifolia was not used as a parent in hybridization experic ments. Emasculation of the apomiotic polyploid species followed by pollination with a morphologically distantly related species usually provided no seedset at all, whille attempted crosses between morphologio cally similar species generally produce some seedset, although usually no hybrids. Harlan et $21 .(2948,1961)$ demonstrated that these polyploids are pseudogamous gametophytic apomicts and always require pollinam tion for parthenogenetic development of the cytologically unreduced female gamete. Apparently only pollen from closely related species, as was demonstrated by de Wet and Richardson (1963), can induce parthenogenetic development of the gametes. On this basis, the species usually recognized appears to be well isolated genetically. Some degree of affinity can be demonstrated between Bo radicans and tetraploid African representatives of Bo pertusa, while the Indian representatives appear

TABLE II
ATTEMPTED HYBRIDS

Parents	Origin	No. Emasculations		
B. insculpta ($2 \mathrm{n}=60$)	Africa			
X B_{0} decipiens ($2 \mathrm{n} \approx 40$)	Australia	40	0	0
x B. ewartiana ($2 \mathrm{~m}=40$)	Australia	40	0	0
x B. Elabra (2 n m 40)	Africa	3500	6	0
x B. grahami ${ }^{\text {a }}$ ($2 \mathrm{n}=40$)	India	495	0	0
x B. insculpta ($\overline{2} \mathrm{n}=40$)	India	80	0	0
x B. insculpta (2a $=50$)	Africa	240	4	0
x B. pertusa (2n m 40)	India	1070	3	0
x $\vec{B}_{\text {. }}$ pertusa ($\left.2 \mathrm{n}=40\right)$	Africa	260	3	0
\times B. radicans (2 n a 40)	Afroica	280	0	0
B. insculpta (2 n ¢ 50)	Africa			
X Bo glabra ($2 \mathrm{n}=50$)	Africa	760	2	0
x B. grahamij (2n- 40)	India	80	0	0
x B. insculpta (2 m - 60)	Africa	178	6	0
	India	120	10	0
B. pertusa ($2 \mathrm{n}=40$)	India			
xB. ewartiana $(2 n=60)$	Australia	195	0	0
	Africa	730	2	0
\times B. grahamii ($2 \mathrm{n}=10$)	India	280	0	0
x B. insculpta ($\left.\bar{T}_{n}-50\right)$	Africa	80	0	0
x B. inseulpta ($20=60$)	Africa	650	10	0
$\times \bar{B}_{0}$ ischaemum (2 n e 40)	Europe	190	0	0
x B. radicans (2 n - 40)	Africz	480	0	0
	Africa	40	10	0
x B. pertusa (2n $=\sqrt{0}$)	Africa	280	10	0
B. pertusa $(2 n=40)$	Africa			
\times B. gIabra $(2 n=40)$	Africa	568		
x E. grahamis $(2 n$ e 40$)$	Indie	40	0	0
x B. insculpta (2 = 50)	Aftrica	80	6	0
$\times \bar{B}_{0}$ insculpta (2 n -60)	Africa	89	2	0
x B. pertusa (2n $=40$).	India	80	10	0
B. panormitana ($2 n=60$)	Afroica			
X Bo inscuipta ($2 \mathrm{n}=50$)	Africa	40	2	0
x E. Insculpta (2n e 60)	Africa	320	6	0

TABLE II (Continued)

Parents	Oroigin	No. Emasculations		Noo Hybrids
B. radicans ($2 \mathrm{n}=40$)	Africa			
x Bo glabra ($2 \mathrm{n}=40$)	Africa	390	4	0
x E. grahamix (2ns 40)	India	580	5	0
x B. insculpta ($\overline{\mathrm{E}} \mathrm{n}=60$)	Africa	170	2	0
x E. pertusa (2 n - 40)	India	280	0	0
\times B. pertusa ($2 \underline{n}-40$)	Africa	190	10	0
B. decipiens ($2 n=40$)	Australia			
x Bo pertusa ($2 \mathrm{n}=40$)	India	180	0	0
x B. radicans ($2 \mathrm{n}=40$)	Africa	21.0	0	0
Bo ewartiana ($2 \mathrm{n}=60$)	Australia			
X B. insculpta ($2 \mathrm{n}=60$)	Africa	390	0	0
B. ischaemum ($2 \mathrm{n}=40$)	Europe			
x Bopertusa (2 m - 40)	India	190	0	0
B. glabra (2 n - 40)	Afrima			
x Bo inseulpta ($2 \mathrm{n}=50$)	Africa	140	1	0
x B. insculptim (2n 60)	Afmica	620	10	0
x E. panormitana (2n o 60)	Africa	320	2	0
x B. pertusa (2n - 40)	India	700	1	0
$x \bar{B}_{\text {. }}$ pertusa (2 n a 40)	Africa	390	5	0
x B. radicans ($2 \mathrm{n}=40$)	Africa	390	2	0
B. grahamif ($2 n=40$)	India			
X B_{0} insculpta (2n m 50)	Aftica	280	1	0
x $\overline{\mathrm{B}}_{\mathrm{B}}$ Insculpta $(2 \bar{n}=60)$	Africa	1600	2	0
* $\overline{\mathrm{B}}$. panormitana $(2 n=60$)	Africa	280	2	0
x E. pertusa (2n = 40)	India	580	2	0
\times B. pertusa ($2 \mathrm{~m}=40)$	Africa	620	15	4
x B. radicans (2 n 40)	Africa	300	12	0

to be only distantly related to this strictly African species. Morphologically Bo insculpta appears to be related to Eo panormitana and pollen of either one induced seedset in the other. Morphological relationships betwsen hewaplaid Bo insculpta and tetraploid Bo glabra was pointed out earlier, and this is further indicated by seedset percentage.

The only hybrids obtained were from a cross between a facultative apomictic plant of Bo grahamil (Haines) Bor and Bo pertusa (4n) collected in Senegal. This particular plant induced 10 per cent seed set in Bo radicans, and the lattes species induced 12 per cent seed set in B. grahamii. Hybrids, however, between Bo radicans and B. grahamii were not obtained. Indian representatives of B o pertusa induced only 2 per cent seed set in B. grohamisio The latter species apparentiy combine genes of various other species of Bothriochloa as well as of the related Dichanthium annulatum (Forssk.) Stapf (Harlan, Chheda and Richardson, 1962). This apparently enables it to hybridize rather easily with various other species. Morphological data suggest that B. insculpta represents a cross botween B. glabra and some African representative of B. pertusa. Hamlan ot al. (1958) demonstrated that both the cytologically reduced, as well as unreduced female gametes of these facultative apomicts, may function sexually. The hexaploid may combine four basic genomes of E. glabra and two of African B. pertusa. Pentaploid representatives of B_{i} insculpta may represent hybrids between hexaploid and tetraploid Afzican plants. Cytologically these polyploids behave like segmental allopolyploids as defined by Stebbins (1947). Chheda and Harlan (1963), however, demonstrated that in Bothriochloa hybrids, chromosome pairing takes place preferentially
between genomes, and that genetically controlled non-homologous pairing often takes place.

From a biosystematic point of visw, the species B. decipiens, Bo Insculpta, B. Iongifolia, Bo pertuaa, Bo panomitana, and B. radicans are distinot taxonomio waits. The Indian representatives of B. insculpta could more naturally be treated as a variety of \underline{B}_{0} pertusa. The African plants usually referred to B_{0} pertusa are of two distinct morphological types. The tetraploid Bo pertusa var. tunetana appears to be identical with B. Intermedia var. acidula (Stapf) C. E. Hubbard. Morphological and genetical data suggest that these plants are closely related to Bo radicans. The hexaploid and pentaploid plants usually referred to B_{0} pertusa var. maroccana are morphologically identical to the Sicilian hexaploid $\underset{=}{\text { Bo panormitana. These plants appear to be }}$ related to Bo insculpta (5 n, $6 n$). A detailed taxonomic treatment of these species will be presented elsewhere.

Conclusions

1. Morphological and cytogenetical data indicated that the species B. decipiens (Hacko) E.E. Frubbog B. insculpta (Hochsto) Ao Camus, Bo longifolia (Hacko) Bor, B. panormitana (Pari.o) Pilger, Bo pertusa (Linno) A Camus, and Bo radicane (Lehmo) A. Camus are variable, but distinct taxonomic uritis.
2. From a biosystematio point of view glume characteristics, on which the Glassification of these speries were usually based, appeared to be unreliable.
3. Indian representatives of the more commonly African B. insculpta could more naturally be transferred to the Asiatic B_{0} pertusa as a
variety.
4. The African Bo pertusa var. maroccana Maire could not consistently be separated from the Sicilian Bo panormitana, and this species could be treated as a varaety of B. insculpta.
5. The recently described Bo pertusa var. tunetana A. Camus from Tunesia was found to be idenbical to Bo intermedia var. acidula (Stapf) C. E. Hubbard. Oytogenetical and morphological data suggested that these plants should be regarded as a variety of Bo radicans.

CHAPPER III

bIOSYSTEMATTCS OF BOTHRTOCHLOA PERTUSA

The most extensive taxonomic study of B. pertusa (Linn.) A. Camus (Gramineae) was by Hackel (1889) who included this species in Andropogon subgenus Amphilophis. Nash (1903) raised this subgenus to generic rank, and Camus (1931) demonstrated that the species included in Amphilophis Nash should be referred to Bothriochloa O. Kuntze.

The species Ao pertusus (tinn.) Willd. as recognized by Hackel (1889) is polymorphic and widely distrributed. On the basis of gross morphological characters numerous varieties and subvarieties were recognized, many of which were later raised to specific rank. More recently Blatter and McCann (1935) indicated that Amphilophis pertusus (Linno) Stapf, even in the reestricted sense as recognized by them is extremely variable.

The present study deals primarily with Indian and Southoeasto Asian representatives of the B. pertusa complex. Morphological and cytological data were studied in an effort to resolve the taxonomic status of this species.

Material and Methods

Seed collected in nature were germinated, and the plants grown in a uniform nursery as suggested by Celarier and Harlan (1956). Morphologi= cal data are based on a study of these plants as well as investigations
at the Herbarium of the Royal Botanic Gardens at Kew, England (K), and the Rijksherbarium at Leiden, Holland (I). Specimens studied cytologim cally are filed with the Oklahoma State University at Stillwater. Chromosome numbers were determined from developing microsporocytes stained with aceto-carmine.

Syzonymy

The species Holcus pertusus Linn.g on which Andropogon pertusus (Iinn.) Willd. was based, sefers to a plant collected in the East Indies (Mant. Alt. 301. 1771). Typically this species is a creeper, rooting at the nodes where it forms tufts of short leaves with longer cauline leaves on the geniculately ascending flowering culms. The $3=11$ racemes are digitately arranged on a short primary axis, the rachis, joints, and pedicels are densely ciliate, giving the racemes a silky appearance. Sessile spikelets are oblong-lanceolates the lower glume is subchartace ous, more or less hairy below the midide, with a deep pit (indentation) above the middle; the upper glume is lanceolate, membraneous and glabrous. The lemma of the lower floret is awniess and empty; the lemma of the upper floret forms the base of an amn and includes a flower. Pedicellate spikelets resemble the sessile ones, but they are usually narrower, neither pitted nor awned, and male or neuter.

The varieties recognized by Hackel (1889) were variously classified into species by modern taxonomists (Table III). Hubbard (1934) gave the Australian Ao pertusus var decipiens Hack. specific rank. Blake (1944) demonstrated conclusively that this Australian species, first identified by Brown (1810) with Ao pertusus, differs from the latter in the largers more lanceolate sessile spikelets with a solitary stamen and the

TABLE III

CLASSIFICATION OF ANDROPOGON PERTUSUS

Andropogon Lirn．Bothriochloa O．Ktze

A．pertusus var．barbatias A．Camus，Bo pertusa（Linn．）A．Camus，Ann． Anam $_{9}$ Phancrung Chevalier Soc．Linn．Lyon 1930 76：164． 30541 et $30546(P)$ ． 1931．

A．pertusus var．capensis Hack．B．insculpta（Hochst．）A．Carms， Africa，Key River，Drege 4325．．loc．eit． 165.

A．pertusus var．decipiens Hack．B．decipiens（Hack．）G．E．Hubbard， Australia，Queensland， Kew BaIl．1934：L4L．1934． O＇Shannon s．n．（BRI）．

A．pertusus var．insculptus
（Hochst．）Hack．Africa，
B．insculpta（Hochst．）A．Camus ${ }_{9}$ Abyssinia，Schimper son． Qx Herb．Hook．（K）．

A．pertusus var．insculptus subvar．Bo insculpta（Hochsto）A．Camus， biofoveolatus（Steud．）Hack．loc．cit．according to Bor India，Wight Herb．Andropogon No． 156 （K）． （1960）：B．pertusa var． bifoveoleta（Steud．）de Wet et Higgins comb．nov．
 Abyssinia，Sehimper 80 （K）．

A．pertusus var．longifolius Hack．Bo longifolia（Hacko）Bor，Grasses India，Madras Wallich 8803 ex Herb．Wight（K）． Burma，Ceyl．Ind．Pakist．： 108，1960．

A．pertusus var．maroccanum Maire． Africa，Morocco，Mare et Wilczek son．（Herb。Univ。 Algeriensis）。

Ao pertusus var．panormitanus $\frac{(\text { Pario }) \text { Hack．Sicily Falermo．}}{\text { ．F }}$ Herb．Parlatore．

Bo pertusa var．maroccana Maires Buil．Soc．Hist．Nat．Afr． Nord 31：45．1940．

Bo panormitana（Parlo）Pilger in
A．pertusus var．vegetior Hack． Africa，Sudan，Schweinfurth 1027 （K）。

A．pertusus var．wightii Hack． India，Wight 1696 （K）。
Bo insculpta var．vegetior（Hack。） C．E．Hubbard Kew Bull．1934\％ 109．1934．

B．pertusa（Linno）A．Camus，Loc． cito．
greatly reduced pedicellate apikelets.
Camus (1931) reised the African A. pertusus vax. Insculptus subvar. trifoveolatus Hack. to specific rank. This species, B. insculpta (Hochsto.) A。Camus, differg very conspicuously from typical Ao pertusus. The type of A. insculptus Hochst., Schimper No. 80 (K) from Abyssinia ${ }_{3}$ is a robust plant with mostily cauline leaves, decumbent culms, and the pedicellate spikelets are 1-3 pitted. Stapf (1917) demonstrated that A. pertusus var. eapensis Hack. (Drege 4325 , Key River, So. Africa) should be included in Ao inseulptus. Bor (1960) referred the Indian A. pertusus var. insculptus subraw. bifoveolatus (Steud.) Hacko, and Ao Subunifoveolatus Steud. to Bo insculpta. These Indian plants differ from each other primariny in pit characteristics. The type of A. bifoveolatus Steud. Wight Herb. No. $156(\mathrm{~K})$, resembles Ao insculptus in respect to pit characteristios, but the plant is more slender, and the lower giume of the sessile spikelets is completely glabrous. Some Indian specimens have only some of the sessile spikelets distinctiy pitted and the pedicellate spikelets may be pitted ar not pitted in the same raceme. These chaxacteristics describe the type of A. subunifoveo latus. Herb. Hohenacker 918 (K), in detail.

The Indian Ao pertusue vax. longifolius Hacko was given specific rank by Bor (1960) who demonstrated that it undoubtedly represents a good species. The type, Willich 8803 (K) collected at Madras, represents an erect, tufted plant with 30 - 40 centimeters long linear leaves. The sessile spikelets are distinctly pitted, and as is characteristic of A. pertusus, the pedicellate spikelets are unpitted.

The Indian varieties Ao pertusus var. wightii Hack. Wight Cat. No. 1696) with villous sheaths and the more common Ao pertusus var. genuinus

Hack. with more or less giabrous sheaths, should be included in typical A. pertusus as suggestad by Hooker (1897). Both of these varieties are characterized by unpitted pedicellate spikelets.

Hackel (1889) regarded Ao panomitamus Paxlog distributed in Sicily and Northwestern Africa, as a variety of A. pertusus. Pilger (1940) transferred this variety to Bothriociloa and gave it specific rank. A specimen collected at the type locality Palermo, Ball s.n. ex Herb. Parlatoreanum (K), wes ztudied. This specimen differs from typical representatives of $A \circ$ pertusus in being a robust plant with decumbent culms and the lower primary reames are strongly divided.

The African A. pertusus var. vegetior Hack. was transferred to B. insculpta as a variety by Hubbard (1934). The type, Schweinfurth 1027 (K) from the Sudan, resmbiles Bo insculpta in spikelet morphology, but the primary axis of the inflorescence is elongated, exceeding the lower racemes in iength. As indsated by Hubbard (1934) this variety definitely does not belong with Bo pertusa.

Camus (1919) described Ao pertusus var. barbatus from Anam (Chevalier 3054 et 30546), buti recognized no varieties when this species was transferred to Bothriochloa (Camus, 1931). This yariety could evidentiy be included in typacal Bo pertusa.

Maire (1940) described Bo pertusa var. maroccana, and Maire (1941) demonstrated the presence of B_{0} pertusa var. maroccana forma emasculata. This variety resemblew Bo panormitana (Pari.) Pilger in growth habit and gross morphological characters (Maris, 1952) and defiritely does not belong with Bo pertusa. Similariy Bo pertusa var. tunetana from Tunesiag described by Camss (1.957), could more naturally be excluded from $B_{\text {. }}$ pertusa. Maire (1959) pointed out that Bo pertusa vax. tunetana differs
from B_{0} pertusa var. maroceana in having glabrous nodes, from B. panormitana by its scabrous leaves, and from both by its small size.

Morphology

Bor (1960), although recognizing Bo pertusa in its restricted sense, pointed out that this species extends eastward from Arabia to Southeeast Asia, and that it is also present in tropical Africa. Chippindall (1955) and Stuxgeon (1956) deronstrated that Bo pertusa is not present in southern Africa. The present study indicated that typical representatives of E_{0} pertusa are absent from the natural flora of Africa, but that it was introduced fron India and became established to a limited extent in some tropical regions.

The Indian representatives of Ao pertusus as recognized by Hackel (1889) were subdivided by Bor (1960) mong Bo insculpta (Hochst.) A. Camus, Bo longifolia (Hack.) Bor and Bo pertusa (Linno) A. Camus. These, and morphologically similar Indian species, may be distinguished, the one from the other, by the following key characteristics:

1. Lower glume of aessile spikelets hairy below the middle.
2. Lower glume of sessile pikelets with one, rarely two circular pits.
3. Racenes mostly $9-15$ in number, up to 8 centimeters longs planta decumbent or erect Bo kuntzeana
4. Racemes mostly $2-12$ in mumber up to 5 centimeters long; plants prostrate, flowering culms decumbent Bo pertusa
5. Lower glume of sessile spikeleta with a slit-like depressiong plants decumbent or reat
B. kuntzeana
6. Lower glume of sessile spikelets glabrous below the middle, ox
essentially so.
7. Lower glume of sessile spikelet not pitted.
8. Lower glume of pedicellate spikelet with a slit-like
depression on the back
B. kuntzeana
9. Lower glume of pedicellate spikelets rounded on the back, never pitted.
10. Pedicel of pedicellate spikelets grooved Bo foulkesii
11. Pedicel of pedicellate spikelets solid B. concanensis
12. Lower glume of sessil. spikelets pitited.
13. Lower glume of pediceliate spikelets with I-4 circular pits B. insculpta
14. Lower glume of pedicellate spikelets not pitted, or with a slit-like depression.
15. Lower glume of sessile spikelets coriaceousg pedicellate spikelets not pitted B. Iongifolia
16. Lower glume of sessile spikelets membraneous to chartaceous pedicallate spikelets usually with a slit-like depression Bo kuntreana

The species, as recognized by Bor (1960), are quite distinet. Herbarium studies, however, revealed that the Indian representatives of Bo insculpta differ conspicuously from African material included in this species. Typical representatives of Bo pertusa extend throughout India to Ceylon and eastward to Indonesia. These are prostrate plants with decumbent flowering culms; $2-12$ memes per inflorescence with only the lower ones sometimes divided: the lower glume of sessile spikelets pilose below the middle and distinctily pitted, and the lower glume of pedicellate spikelsts essentially glabrous and never pitted.

Plants with the sessile spikelets distinctly pitted and the pedicellate ones l-4 pitted, which Bor (1960) included in B. insculpta, similarly extend from India to Indonesia. They differ from African representatives of Bo insculpta in the following salient morphological features. The Indian plants are less robust, with the culms geniculately ascending from a creeping base, the lower giume of sessile spikelets is more obtuse, and completely glabrous on the back. From B. pertusa these specimens differ mainly in respect to the presence of pits on the pedicellate spikelets, and the tufts of leaves at the lower nodes of the culms are longer and more linear. Some specimens resemble Bo pertusa more closely in having the pedfcellate spikelets only faintly pitteds or only some pedicellate spikelets in a raceme distinctly pitted. Many of these specimens are often difficult to distinguish from Bo kuntzeana (Hack.) Henr. on the basis of spikelet morphology. In the latter species, the lower glume of sessile spikelets often has a distinct slit-like pit, and the lower glume of pedicellate spikelets may be rounded on the back, have a slit-1ike depression, or else pitted and non-pitted pedicellate spiksetes may be present in the same inflorescence. This species differs from Bo pertusa and the Indian Bo insculpta very distinctly in growth habit and inflorescence moxphology. Hooker (1897) and Blatter and MoCann (1935) denonstrated that Andropogon kuntzeanus Hack. is characterizod by tall, erect culms; the racemes are densely fascicled and the rachis and pedicels are plumosely ciliate with long hairs.

Blatter and McCann (1935) suggested that, only from genetical tests could we expect to get an insight into the natural variation of B. pertusa. Attempted crosses between various biotypes of Bo pertusa, as
well as between this and other species were unsuccessful. Celarier and Harlan (1958) demonstrated that B. pertasa, and B. insculpta reproduce by means of gametophytic apomixis. Hamian et 21. (1958, 1961) indicated that diploid representatives of Bothmionhloa reproduce sexually, tetraploids are mostly facultative apomicts and higher polyploids are essentially obligate apomicts. Harlan (1963) reported that B. kuntzeana and B. longifolia are diploids (2a $=20$). Typical representatives of Bo pertusa are all tetraploids $(2 \mathrm{n}=140)$, African representatives of B. insculpta are pentaploid (2ne50) or hexaploid ($2 \mathrm{n}=60$), and Indian representatives of the latter species are tetraploid or hexaploid. Hybrid data presented by de wet, Borgaonkar, and Richardson (1963) indicated that tetraploid, pentaploid and hexaploid collections of B. pertusa and Bo insculpta are essentially obligate apomicts.

From a taxonomid point of view the diploid B. kuntzeana is a distinct species. With the Indian ropresentatives removed from B. insculpta, the African representatives form a more or less natural group. These Indian plants with pitted pedicellate spikelets could be regarded as apomictic biotypss of B. pertusa. Bebcock and Stebbins (1938). Gustafsson (1946, 19472 b) and Stebbins (1950) demonstrated that agamospecies are ofton highly variable. Variation in chromosome number is probably due to hybridization. Clausen (1954, 1961) indicated apomixis may actually facilitate occasional hybridization. In apomicts the cytologically reduced or unreduced female gamete may function sexually, giring rise to hexaploids among a hybrid progeny of tetraploid parents.

Taxonomy

The species B. pertusa as recograimed in this study may be charaoterized as followsq

BOTHRIOCHLOA PERTUSA (Linn.) A OMus, Ann. Soc. Linn. Lyon 1930, 76: 164.
1931. Based on Holcus pestusus Hime.

Holcus pertusus Linn. Mant. Alt. 301. 1771. Type not seen.
Andropogon pertusus (tinn.) Wildog Sp. P1. 4: 922. 1806. Not of Stapf 1895.
A. pertusus var. barbatus A. Pamus, Bull. Muso Hist. Nat. Paris 25: 370.
1919. Annam Chewalier 3054, 30546.
A. pertusus var. wightii Hack. in D. C. Monogr. Phan. 6: 481. 1889.

India Wight 1696.
A. pertusus var. insculptras subrar. bifoveclatus (Steud.) Hack in DC.,

1oc. cit. 483. Based on Ao subunifeveclatus Steud. et A. bifoveo-
1atus Steudel.
A. bifoveolatus Steud.s Syn. Pl. GLum. 1: 380, 1854. India, Wight Herb. Andropogon No. $156(\mathrm{~K})$.
A. subunifoveolatus Steud. 10 coc . cit. 380. India, Herb. Hohenacker No.
$918(\mathrm{~K})$ 。
Ao angustifolius Pari. Flo Palerm. 1. 369. 1845. Not of Sibth. et Sm. 1806 , misapplied by fariatore.

Lepeocercis pertusa (Limo) Haskk. P1. Jay. Far. 52. 2848.
Amphilophis pertusa (Linno) Hash ex Stapf in Agric. News W. Ind. 15: 179. 1916.

Distribution: Extends Irom Pakistan to Ceylon and Indonesia. Introduced into twopieal and abtiopical wegions of both the Old and New World (Plate II).

LEGEND TO PLATE II

Distribution of Bothrojochloa pertusa.

PLATE II

Cytology: Segnental allopolyploids oharacterized by $2 n=40$ and 60 chromosomes. At meiosis, during microsporogenesis, the chromosomes mostly form bivalents, although some chromosomes may fail to pair or associate into multivalents.

Description: Perennial, prostrate or rambling, flowering culms geniculately ascending, rooting at the lower nodes; nodes bearded to glabrous. Leaves $5-20$ centimeters long, linear, the lower often short and crowded at the base of the stem, glabrous, pubescent or sparingly pilose, margins often scabrod sheaths terete or slightly compressed, shorter than the internodes, often sparingly pilose: ligule a ciliate membrane.

Racemes $2-15$, subdigitately arranged on a short primary axis exceeded in length by the lower racemes; rachis and pedicels slender ${ }^{\circ}$ densely ciliate. Sessile spikelets bisexual, rarely, the lowest on 2 raceme, male, $3-4$ millimeters long, oblong lanceolate, callus bearded. Lower glume with a deep pito above the middle, sometimes with a trace of a second pit also present, glabrous or more frequently hairy below the middle, 5-9-nerved, margins narrowly incurved; upper glume lanceolate, acuminate, $3-5-$ nerved, often slightly longer than the lower glume, usually glabrous, sarely ciliclate at the apex. Lemma of empty lowex floret linearoblong, nerveless, glabrous; lema of bisexual upper floret forming the base of a well developed awn, palea absento Pedicellate spikelets like the sessile, but narrowex, awnless, male or neuter. Lower glume usuaily not pitted, 7-13-nerved, glabrous or ciliate, rarely 1 -4-pittedy upper glume $3-5$-nerved, glabrous: lemma of lower floret linear-oblong, of upper floret small or absent.

Two warietien (Plate III) are recognized on the basis of pittedness

LEGEND TO PLATE III

Extremes of morphological variation in leaf and inflorescence characteristics.

Figure 1. Typical Bothriochloa pertusa var. pertusa
Figure 2. Bothriochloa pertusa var. bifoveolata

PLATE III

Fig. 1

Fig. 2
of the pedicellate spikelets (Plate IV).
Bothriochloa pertusa var. pertusa. Based on Holcus pertusus Linn. loc. cit.

Characterized by pitted sessile, and non pitted pedicellate spikew lets. The lowest pedicellate spikelet on a raceme may occasionally be pitted. Plant studied aytologically are tetraploid ($2 \underline{n}=40$).

Specimens studied: PAKISTAN: Sargodha, Okla 4635-2. INDIA: Wight 1696: Ajmere, 0kla 8886a: Kangra, 0kla 8962, 8986; Dehra Dun, Okla 5309, 8977a; Jullundur, Okla 8980; Jammu, Okla 8981b; Patharikot, Okla 8982, 8984a: Dalhousie, Okla 8985a; Mandi: Okla 8987a; Nahan, Okla 8988 ag b: Alwar, OkIa 8989: New Delhi, OkIa 54.06, 6840, 9090a, 9091: Mathura, Okla 5403; West Bengal, Okla 6152; Bangalore, Okla 8251; Coimbatore, Okla 5408b; Fyberabad, Okla L806a: Madras, Gamble 10830, 12740 (K): Mysore, Meebold 10576 (K); Poona, Okla 9092; Khandala, Okla 8279, 8289: Sangamner, Okla 8282as Rajkot, Okla 8284, 8285-3b; Mulshi, Okla 8286, 8287, Panchgani, Okla 8290, 8291: Kotharud, Okla 8292. CEYLON: Uva, Ballard $1128(\mathrm{~K}) ;$ Okla 4021 , 7500. BUPMA: Kyaukpya, Wallace 90LI (K). CHINA: Southern, 0kla 6154. INDONESIA: Java, van 0ostroom 12645 (L), van Stennis 17450,1747 (L), Backer 3755 (L): Timors van Stennis 17978 (L) 。

Bothriochloa pertusa yer. bifoveolatus (Steud.) de Wet et Higgins comb. nov. Based on Andropogon bifoveolatus Steud. loc. cito Wight Herb. Andropogon No. $156(\mathrm{~K})$.

Characterized by heving both the sessile and pedicellate spikelets pitted, the latter often with $2-4$ pits. Pitted and not pitted pedicellate spikelets are sometimes present in the same raceme or inflorescence. Plants studied eytologically are tetraploid ($2 \mathrm{n}=40$) or hexaploid

Legend to rlate IV

Spikelet morphology.

Figure 1. Bothriochloa pertusa wex. pertusa
Figure 2 and 3. Bothriochloa pertusa var. bifoveolata

$$
\frac{\sqrt{46}}{26}
$$

$(2 n-60)$ 。
Specimens studied: INDIA: Dalhousie, Okla 8984 , 8985b; Mandi, Okla 8987b: New Delhi, Okla 5301, 9094, 9095: Dehra Dun, Okla 4394b: Belatal, Okla 5396; Jamme Okla 8981a: Coimbatore, Fischer 1407 (K), Narayanaswamy 3188 (K), Okla 2654: Panchgani., Okla 9094, 9095; Mt. Abu, Okla 9096, 9097, 9098; Khandala, Okla 8283, 8299: Lonavla, Okla 8280; Jammu, Okla 8281, 8281a; Sangamner, Okla 8282; Rajkot Okla 8285-1, 8285-3b; Mulshi, Okla 8287; Saurastra, Okla 8308; Nilgiris, Schmidt S.n. (K), Perrottet 1311, 1314 (K), Gamble 15321, 20720 (K), Wight 3394 (K); Pulneys, Bourne 1027 , 1028, 1340 (K): Silver Falls, Bourne 1943 (K). INDONESIA: Java, Okla 5585; Sumba, de Froideville 1621, 1982 (L), Hoekstra 19 (L).

Conclusions

1. Typically Bo insculpta (Hochsto) Stapf is confined to Africa and B. pertusa extends from West Pakistan eastward.
2. When these two species are separated on the basis of spikelet structure some African specimens are usually included in B. pertusa and some Asiatic specimens in B_{o} insculpta.
3. It was suggested that the African plants be excluded from B. pertusa.
4. The Indian plants usually classified with B. insculpta could more naturally be included in B. pertusa.
5. Indian representatives of B_{0} insculpta differ from Bo pertusa mainly in the presence of indentations on the lower glume of pedicellate spikelet, and resemble African B. insculpta mainly in respect to this characteristic.
6. The new combination Bo pertusa var bifoveolatus (Steud.) de Wet et Higgins was proposed to include Indian plants usually classified with Bo insculpta.

CHAPTER IV

BIOSYSTEMATICS OF BOTHRIOCHLOA INSCULPTA AND B. RADICANS

Stapf (1917) indicated that Bo insculpta (Hochst.) A. Camus $^{\text {in }}$ (Gramineae) is a polymorphic species, widely distributed throughout the tropical and subtropical regions of Africa. Bor (1960) pointed out that this species extends into India, but de Wet and Higgins (1963) demonstrated that the Indian representatives could more naturally be included in B. pertusa (Linno) A。Camus.

The African representatives of Bothriochloa 0. Kuntze are usually subdivided, on the basis of inflorescence structure, into two major groups: First, the extremely variable Be glabra (Roxb.) A. Camus which $^{\text {g }}$. is characterized by numerous, more or less divided racemes arranged along an elongated primary axis. Second, a group of species characterized by relatively few racemes subdigitately arranged along a short primary axis. The latter group was studied in an effort to determine the taxonomic status of the various species usually recognized.

Material and Methods

Morphological data are based on studies at the herbarium of the Royal Botanic Garden at Kew, England; the Rijksherbarium at Leiden, Holland; the Jardin Botanique de l'Etat $^{\prime}$ at Brussels, Belgium; as well as on studies of plants grown in a uniform nursery at Stillwater Oklahoma. Herbarium specimens of plants studied morphologically and oytologically
are filed with the Oklahoma State University. Chromosome numbers were determined from developing microsporcytes stained with acetomearmine.

> Morphology and Discussion

African representatives of Bothriochloa were variously subdivided into species and varieties by Stapf (1917), Camus (1931), Maire (1952, 1959), and Jacques - Felix (1962).

The species and Farieties usually recognized may be distinguished, the one from the other, by the following key characteristics:

1. Racemes arranged on an elongated primary axis, exceeding the lower racemes in length.
2. Sessile spikelets pitted or not pitted; pedicellate spikelets rarely pittedg often only some spikelets in a raceme pitted
B. glabra
3. Sessile spikelets pitted pedicellate spikelets consistently $1-4$ pitted B. insculpta var. vegetior
4. Racemes subdigitately arranged on a short primary axis, usually distinctly shorter than the lower racemes.
5. Spikelets never pitted。
6. Plants erect, tufted culms not excessively branched
B. ischaemum
7. Plants strongly branched from a slightly decumbent base
B. radicans
8. Sessile spikelets usually distinctly pitted§ pedicellate spikelets pitted or not pitted.
9. Pedicellate spikelets consistently l-4 pitted

Bo insculpta var. insculpta
5. Pedicellate spikelets pitted or not pitted in the same inflorescence, rarely consistently non-pitted.
6. Plants small, slender, forming dense tufts from a decumbent base.
7. Sessile spikelets linear to lanceolateoblong; pits small, often absent or present in the same inflorescence B. intermedia var. acidula
7. Sessile spikelets oblong; pits conspicuous
B. pertusa var. tunetana
6. Plants more robust, rambling, with the flowering culms geniculately ascending。
8. Upper glume of sessile spikelets mucrorate; lower glume of pedicellate spikelets involute
B. panormitana
8. Upper glume of sessile spikelets acute; lower glume of pedicellate spikelets two-keeled

> B. pertusa var. maroccana

Celarier and Harlan (1958) indicated that Bo ischaemum (Linno) Keng extends across southern Europe, and along the mountainous regions of Asia to the China coasto Maire (1959) pointed out that this species is also present in the Atlas mountain region of North Africa. These African representatives are typical representatives of the species and easy to distinguish on the basis of growth habit from the widely distributed African Bo radicans (Lehmo) Ao Camus.

Hackel (1889) treated Andropogon radicans Lehm. as a variety of A. ischaemum Linn., and Stapf (1907) described A. ischaemum var. Somalensis to inciude a plant collected in Somaliland (Appleton s.n.9 K)。

Both of these varieties were cited by Stapf (1917) as synonyms for Amphilophis radicans which was later transferred to Bothriochloa by Camus (1931). Plants with slender, erect or slightly decumbent culms, linear leaves which are often pilose and few-15 racemes with non pitted spikelets typically characterize Be radicans. Plants referable to B. intermedia var. acidula (Stapf) C. E. Hubbard, and to B. pertusa var. tunetana A. Camus differ from B. radicans mainly in respect to the presence or absence of pits on the spikelets.

Stapf (1917) tentatively described Amphilophis intermedia var. acidula to include a variable group of plants from Africa and the West Indies. The West Indian material at Kew were subdivided by Stapf (The Agric. News W. Indies 15, No. 368: 179. 1916) into three groups. First, plants resembling Andropogon ischaemum var. americanus Hack. which were included in a new species A. feracidulus. Second, plants with glabrous culm nodes and pitted sessile spikelets which resemble A. panormitanus Parlatore Third a variable group of plants representing a hybrid complex involving various Old World species.

The African material is quite distinct from the West Indian plants. The type, Johnson 1017 from the Gold Coast (K) represents a small semierect plant with glabrous nodes; racemes arranged along a short primary axis, with the lower racemes divided; sessile spikelets pitted and the pedicellate spikelets not pitted. It is almost impossible to distinguish between this plant, and specimens included by Camus (1957) in B. pertusa var. tunetana. From a taxonomio point of view Bo intermedia var. acidula and B. pertusa var. tunetane should be united into a single taxonomic unit. The specific name B. intermedia can not be accepted. The type for B. intermedia, Brown 6184 from Keppel Bay, Australia (BM), is
characterized by an inflorescence with numerous racemes arranged along an elongated primary axis which exceed the lower racemes in length. The specific name B. pertusa is commonly accepted for African plants with pitted sessile spikelets on subdigitately arranged racemes (Jacquesmelix, 1962; Maire, 1959; Bor, 1960). Typically, Bo pertusa is confined to India and Southoeast Asia. The morphology of this species was fully discussed by de Wet and Higgins (1963) who demonstrated that the African representatives differ from more typical members of B_{o} pertusa in growth habit. These African plants resemble Bo radicans in detail, except for the pitted sessile, and occasionally pitted pedicellate spikelets. For these reasons they could more naturally be included as a variety of B. radicans.

Maire (1952) included the Sicilian species Bo panormitana (Parlo) Pilger as a variety of B o pertusas and pointed out that it resembles B. pertusa var. maroccana very closely. The latter variety differs from B. panormitana mainly in hawing the pedicellate spikelets nevex pitted. Typical representatives of B. parormitana have the pedicellate spikelets often faintly pitted。 Gross morphological characters are so similar that Bo pertusa var. panormitana (Parlo) Maire et Weiller and Bo pertusa var. maroccana should be combined into a single taxonomic unit. These plants differ conspicuously from Bo pertusa (Iinno) A. Camus in growth habit. These African plants are robust, with erect culms from a rambling base. Typically B. pertusa is a small creeper with tufts of short leaves at the lower nodes, and longer more linear cauline leaves on the ascend ing flowering culms. In growth habit B. panormitana resembles Bo insculpta in detail.

The most common African species is B insculpta oharacterized by
pitted sessile and pedicellate spikelets, the latter usually with 2-4 distinct indentations. These are mostly robust plants erect or ascending from a decumbent base. Extremely robust, suberect plants with numerous, often strongly divided racemes are usually hexaploid ($2 \underline{n}=60$)。 Smaller plants with the flowering culms ascending from a decumbent base, and with few-15 racemes are mostly pentaploid ($2 \underline{n}=50$). The characteristics of the pentaploids describe the type, Schimper s. $\underline{\text {. }}$. from Abyssinia (K), in detail. These morphological and cytological differences, however, are not sufficiently distinct to allow for the recognition of different varieties. Sone specimens, resembling the pentaploid representatives of B 。insculpta, differ from this species in pittedness of the spikelets. The pedicellate spikelets are either non - pitted or only faintly pitted, and the sessile spikelets may be pitted, or only the lower ones on a raceme may be pitted. Except that they are distributed in tropical and subtropical Africa, rather than North Africa and Sicily, these specimens resemble Be panormitana in detail. The latter species is typically a hexaploid, and the tropical African plants resembling B. panormitana are either pentaploid or hexaploid. Morpholog ical and cytological data suggest that B. panormitana is widely distributed in Africa, and could more naturally be classified as a variety of B. insculpta.

The variety \underline{B}_{0} insculpta var. vegetior (Hack.) Hubbard, based on Schweinfurth 1027 (K), collected in the Sudan, more naturally belongs with Bo glabra (Roxb.) A. Camus. It resembles Bo insculpta only in having the pedicellate spikelets $2-4 \sim$ pitted. Pittedness of the spikelets is a variable character, and African representatives of B. glabra are often characterized by pitted or non-pitted spikelets in the same raceme.

Plants studied cytologically are tetraploid with $\underline{\underline{n}}=40$ chromosomes rather than pentaploid or hexaploid as characteristic of B. insculpta.

Cytologically the African representatives of Bothriochloa behave like segmental allopolyploids as defined by Stebbins (1947). The species B. radicans, B. intermedia var. acidula, Bo glabra, and B. insculpta var. vegetior are tetraploid while B. panormitana and B. insculpta var. insculpta are characterized by pentaploid and hexaploid races. Harlan et al. (1961), and de Wet, Borgaonkar and Richardson (1963) demonstrated that these polyploids are facultative apomicts. Natural hybridization apparently takes place occasionally between Bo radicans with non-pitted spikelets, and B. intermedia var. acidula with pitted sessile spikelets. This could explain the origin of plants with indistinct pits on the lower glumes, as well as those with only some sessile apikelets distinctly pitted.

Morphologically, hexaploid B. insculpta appears to represent a hybríd between a plant resembling the pentaploid race of $\underline{B}_{\text {. insculpta }}$ and tetraploid Bo glabra. Harlan et al. (1958) demonstrated experimentally that in Bothriochloa, the cytologically unreduced female gamete of facultative apomictic tetraploids may function sexually to produce hexaploid hybrids. A tetraploid race of Bo insculpta, however, appears to be absent. Tetraploid B. radicans or Bo intermedia var. acidula may be the one parent, and could have crossed with Bo glabra to produce the hexaploid Bo insculpta. Similarly ${ }_{2}$ these tetraploid species may have crossed with the hexaploid, giving rise to the pentaploid race. Attempted hybrids, in various combinations, between these species have so far failed. Cytologically it would not appear as if Bo insculpta represents an interspecific hybrid of the type discussed
above. The chromosomes mostly associate into pairs although univalents and/or multivalents were occasionally observed. Chheda and Harlan (1963) demonstrated, however, that in artificially produced hybrids among species of Bothriochloa chromosome pairing takes place preferentially and bivalent formation is the rule.

Taxonomy

The taxonomy of B. ischaemum was fully discussed by Celarier and Harlan (1957). In Africa this species is apparently confined to the Atlas Mountains of North Africa. Genetically B. ischaemum appears to be only distantly related to the more typically African representatives of Bothriochloa. The widely distributed (Africa to Australia) B. glabra was not studied in detail, and will not be included in the present taxonomic treatment. Morphological data, however, suggested that this species may have contributed towards the origin of B o insculpta. The remaining African species and varieties will be described in detail. BOTHRIOCHLOA RADICANS (Lehno) A. Camus, Ann. Soc. Linn. Lyon 1930, 76: 164. 1931. Based on Andropogon radicans Lehm.

Andropogon radicans Lehmo, Ind. Sen. Hort. Hamb. 1828. Type not seen. A. ischaemum var. radicans Hack. in DC., Monogr. Phan. 6: 476. 1889. Based on Ao radicans Lehm.
A. ischaemum var. somalensis Stapf, Kew Bull. 1907: 210. 1907. Somaliland, Appleton s.n. (K).

Amphilophis radicans (Lehmo) Stapf in Prain Fl. Trop. Afr. 9: 172. 1917. Based on A. radicans Lehm.

Andropogon pertusus Stapf, Kew Bull. 1895: 209. 1895. Not of Willd. 1806: also of Stapf in Prain, loce cit: 175 , excluding synonyms.

Amphilophis intermedia var. acidula Stapf in Prain, loc. cit.: 174. Gold Coast, Christiansborg, Johnson 1017 (K). Bothriochloa intermedia var. acidula (Stapf) C. E. Hubb.g Kew Bull. 1934: 109. 1934.
B. pertusa var. tunetana A. Camus in Dubuis et Faurel, Bull. Soc. Hist. Nat. Afr. Nord 48: 478. 1957. Tunisia, Serres s.n. (Type in Herb. L. Faurel).

Distribution: Widespread in Africa (Plate V).
Cytology: Segmental allotetraploid; $2 \underline{n}=40$ chromosomes mostly forming bivalents during microsporogenesis. Univalents and/or multivac lents were occasionally observed.

Description: Perennial, slender, culms up to 50 centimeters tall, erect, or ascending from a short creeping base, with tufts of leaves and shoots, often rooting at the nodes; if erect, sparingly branched. Leafosheaths glabrous or bearded at the nodes; ligule truncate and ciliate: leafoblades linear up to 10 centimeters longs sparingly hairy or pilose, rarely glabrous.

Racemes few-15, subdigitately arranged, longer than the primary axis of the inflorescence, mostly undivided ${ }_{3}$ rarely the lowest raceme branched. Sessile spikelets linear - oblong, 2-3 millimeters long, bisexual; callus bearded. Glumes equal in size; lower glume hairy towards the base and along the margins near the apex pitted or not pitted, of ten with pitted and not pitted spikelets in the same raceme; upper glume lanceolate, oliate upwards. Iemma of empty lower floret hyalines lemma of bisexual upper floret forming the base of a welldeveloped awn. Pedicellate spikelets male or neuter, as long as or slightly shorter than, the sessile spikelets, glabrous, rarely faintly

LEGEND TO PLATE V

Distribution of Bothrioohloa insculpta and Bothriochloa radicans.

O: Bothriochioa insculpta var. insculpta

- Bothriochloa insculpta var. panormitana
(0): Bothriochloa radicans var. radicans
- Bothriochloa radicans var. acidula

PLATE V

pitted．
Two varieties are recognized on the basis of pit characteristics． B．radicans var．radicans．Based on A．radicans Lehm．，with neither the sessile nor the pedicellate spikelets ever pitted（Plate VI）．

Specimens studied：SOMALILAND：Hasuslawe，Glover and Gilliland 985（ K ）；Hargeisa，Glover and Gilliland 14（ K ）．SUDAN：Kapoeta， Myers 13991 （K）Equatoria，Jackson 823 （K）。UGANDA：Moholuya，Thomas $3949(\mathrm{~K})$ ；Karamoja，Thomas 3184 （ K ）。 TANGANYIKA：Tarangire River， Lamprey 280 （ K ）：Manyara，Fitmgerald 2126 （K）；Moshi，Webster To 265 （K）．KENYA：Makipenzis Bally 9737 （K）：Moyale，Gillett 12853（K）； Athi River Bogdan 1575 （K）：Suk Reserve，Bogdan 2998 （K）；Okla 3055， Okla 5468．CONGO：Albert National Park，Germain 2983（K），Lebrun 9248（K）．ANGOLA：Gossenweiller 8409（K）．BECHUANALAND：Drummond and Seagrief 5240 （K）。 RHODESIA：Banket，Okla 9440：Balla Balla，Okla 9488：Filabusi，Okla 9489．SOUTH AFRICA：Pretoria，Qkla 9682. B．radicans var．acidula（Stapf）de Wet et Higgins comb．nov．Based on Amphilophis intermedia var．acidula Stapf．Also included in this variety are African plants referred to Bo pertusa by Stapf （1917）and B．pertusa var．tunetana A．Camus（Plate VII）． Differs from typical representatives of the species in having at least some sessile spikelets in an inflorescence pitted，and the pedicellate spikelets occasionally faintly pitted．

Specimens studied：SENEGAL：Dakar，Okla 5431；Baldwin 5721（K）． GHANA：Apam，Hall 1775 （K）：Christiansborg，Johnson 1017 （Type，K）． SOMALILAND：Boroma，Hemming 1282 （ K ）．ETHIOPIA：Messanona，Mooney 7050 （K）．UGANDA：Serere，Harker 227 （K）．TANGANYIKA：Eanong， Fitzgerald 2230 （K）。KENYA：Kibwezi，Webster 135 （K）：Kitale，

IEGEND TO PLATE VI

Bothriochloa radicans var. acidula.

Figure 1. Decumbent plant
Figure 2. Plant with erect culms from a short prostrate base

PLATE VI

Fig. 1

Fig. 2

LEGEND TO PLATE VII

Bothriochloa radicans var. radicans.

Figure 1. Erect plant
Figure 2. Decumbent plant

PLATE VII

Fig. 1

Fig. 2

Okla 5467. RHODESIA: Mazabuka, Okla 9479: Zimba, Okla 9480\% Lupani. Okla 9481: Shabisi, Okla 9482.

BOTHRIOCHLOA INSCULPPA (Hochst.) A. Camus, Ann. Soc. Linn. Lyon 1930, 76: 165. 1931. Based on Andropogon insculptus Hochst. Andropogon insculptus Hochst. ex. Rich., Tent. Fl. Abyss. 2: 458. 1851. Africa, Abyssinia, Schimper s.n. ex Herb. Hook. (K). A. pertusus var. insculptus (Hochst.) Hack. in DC., Monogr. Phan. 6: 483. 1889. Based on A. insculptus Hochst.
A. pertusus var. insculptus subvar. trifoveolatus Hack. in DC., loc. cit. 483. Africa, Abyssinia, Sehimper 80 (K).
A. pertusus var. maroccanum Maire, Bull. Soc. Hist. Nat. Afr. Nord 19: 65. 1928. Africa, Morocco, Maire et Wilczek (Herb Univ. Algeriensis).

Amphilophis insculpta (Hochst.) Stapf in Prain, Fl. Trop. Afr. 9: 176. 1917. Based on Ao insoulptus Hochst.

Bothriochloa panormitana (Parl.) Pilger in Engl. et Prantl, Nat. Pflanzenfam. 14s: 161. 1940. Based on Ao panormitanus Parl. Andropogan panormitanus Parlo, Fl. Ital. 1: 140. 1848. Palermo, Monte Pellegro, Sicily.

Bothriochloa pertusa var. maroccana Maire, Bull. Soc. Hist. Nat. Afr. Nord. 31: 45. 1940. Based on A. pertusus var. maroccanum Maire. B. pertusa var. panormitana (Parlo) Maire et Weiller in Maire, Fl. Afr. Nord 1: 279. 1952. Based on Bo panormitana (Parl.) Pilger. Distribution: Widespread in tropical and subtropical Africa; also in Morocco, Sicily, Canary Islands, and introduced to the New World (Plate V).

Cytology: Segmental allohexaploid and allopentaploids; $2 n=50$ and
$2 n=60$ chromosomes mostiy associate into bivalents during microsporogenesis. Multivalents and univalents were often observed.

Description: Perennial, robust, tufted, culms up to 120 centimeters tall, often rather slender and rambling, usually decumbent to suberects nodes pilose. Leafosheaths glabrous or hairy, shorter than the internodes; ligule short and scarious; leaf-blades linear, contracted at the base up to 25 centimeters long, rarely pubescent.

Racemes few to many, subdigitately arranged on a primary axis exceeded by the lower racemes in length. Sessile spikelets bisexual, linear-oblong 3-4.5 millimeters long. Lower glume sparingly hairy or pilose below the middle, $7-9$-nerved, usually pitted, rarely only the lower sessile spikelets in a raceme with distinct pits; upper glume lanceolate with ciliate margins. Lema of empty lower floret oblong, hyaline; lemma of bisexuel upper floret forming the hyaline base of a well developed awn. Palea absent. Pedicellate spikelets male or neuter, well developed, linear \rightarrow oblong. Lower glume glabrous, pitted or rarely not pitted, usually with $2-4$ pits arranged in a row along the back, sometimes with only some pedicellate spikelets in a raceme or inflorescence pitted, upper glume as long as the lower, acute.

This is an extremely variable species, and is subdivided into two varieties.

Bo insculpta var. insculpta. Based on Andropogon insculptus Hochst.
loc. cit. from Abyssinia, Schimper S.n. ex Herb. Hook. (K).
(Plate VIII).
Characterized by having both the sessile and pedicellate spikelets distinctly pitted, the latter usually with $2-4$ pits arranged in a row along the back of the lower glume. In respect to growth habit, two

IEGEND TO PLATE VIII

Bothriochloa insculpta var. inseulpta.

Figure 1. Robusts suberect plant with $2 n=60$
Figure 2. Slender plant with rambling culms and $2 n=50$

PLATE VIII

Fig. 1

Fig. 2
races may be recognized: extremely robust plants which are suberect, with numerous racemes per inflorescence, and more slender plants with rambling culms heving fewer racemes per inflorescence. The more slender plants are usually pentaploid, while the robust specimens are hexaploid.

Specimens studzed: SUDAN: Equatoria, Myers 9221. ETHIOPIA: Jimma, Mooney $6260(\mathrm{~K}), \mathrm{OkIa} 4517$, 9407, 9408, 9409. NYASILAND: Zomba, Wiehe N509 (K). UGANDA: Karamaja. Hudson 266 (K) : Masaka, Michelmore 1337 (K). TANGANYIKA: Míssenya, Okla 2584; N'gong, van Someren 9552 (K): Kabete, Edwards 2493 (K)。 KENYA: Kitale, Okla 3109; Nairobi, Okla 3239; Yatta plains, Edwards 81 (K). CONGO: Yangambi, Okla 3667: Kasonsero, Bequaert 5038 (BRLU): Kabare, Bequart 5329 (BRLU). RUANDA: Troupin 5789 (BRLU). NO. RHODESIA: Livingston, Okla 9443: Kafue, Okla 9441: Zimba, Okla 9456a. SO. RHODESIA: Rusape, Fitt 69 (K): Banket, Okla 9438, 9439: Choma, 0kla 9442: Wankie, Okla 9444: Chilimanzi, Okla 9448: Enkeldoorn, 0kla 9449 Lupani. OkIa 9504a. SOUTH AFRICA: TRANSVAAL: Pretoria, Okla 8588, 9567, 9568\% Hercules, Okla 9569\% Swartspruit, Okla 9570, 9571: Brits, Okla 9572, 9573: Lydenburg, Okla 9574 , 9575 , 9577: Graskop, 0kla 9578: Pilgrims Rest, Okla 9579 : Witrevier, Okla 9580; Nelspruit, 0kla 9581; Barberton, Okla 9582, 9583: Komatipoort, Okla 9584: Middelburg, Okla 9591: Groblersdal, 0kla 9592, 9593, 9594: Marble Hall, Okla 9595: Nylstroom, Okla 9596: Roedtan, Okla 9597. 9599: Naboomspruit. 0kla 9600: Warmbaths, Okla 9601. NATAL: New Castle, Okla 9602: Stanger, Okla 9603; Umhlanga, 0kla 9604: Port Shepstone, Okla 9605: Harding, Okla 9606: Ixopo, Okla 9608: Richmond, 0kla 9609, 9610. SWAZILAND: Goba, Okla 9588: Stegi, 0kla 9589: Bremersdorp, Okla 9590.
B. insculpta var. panormitana (Parl。) de Wet et Higgins comb. nov.

Based on Andropogon panormitanus Parl. loc. cit. from Sicily,
Palermo, Herb. Parlatore (Plate IX).
This variety is recognized to include plants referred to Bothriochloa panomitana (Parlo) Pilger. This species is usually recognized to include only plants from southern Italy and Sicily. Maire (1952) referred this species to B. pertusa (Lim.) A. Camus as a variety, and included the North African material resembling plants from Sicily in Bo pertusa var. maroccana.

These two varieties, as recognized by Maire (1952), resemble typia dal Indian representatives of B_{o} pertusa mainly in having the sessile spikelets pitted, and the pedicellate ones usually not pitted. Growth habits however, is typically $\underline{B}_{\text {o }}$ insculpta. The plants are relatively robust ramblers rather than small creepers, with longer leaves than those characteristic of B. pertusa.

Plants included in Bo insculpta var. panormitana differ from typical representatives of Bo insculpta primarily in pittedness of the spikelets. Pit characters are variable. The sessile spikelets are usually distinctiy pitted, but pits are sometimes absent from the upper spikelets of each racsme. The pedicellate spikelets may be faintly pitted, or some spikelets in a raceme may be distinctly l-4-pitted. Plants studied cytologically are pentaploid or hexaploido

Specimens studied: EUROPE: Sicily, Palermo, Ross 293 (K), Schultz 644 (G). CANAFY ISLANDS: Las Falmas, Gelert, son. (K). MOROCCO: Adadir, F.A.O. Rome No. 3442 comp. with type (K); Tamanor, Okla 5402. SUDAN: Mahaitabal. Andrews 3954 (K): SOMALILAND: Buramo, Farquharson LS (K): Medisha, Glover and Gilliland 939 (K). ETHIOPIA: Jimma, Okla L518:

LEGEND TO PLATE IX

Bothriochloa insculpta var. panormitana.

Figure l. Slender plat with rambling oulms and $2 n=50$
Figure 2. Robust. decumbent plant with $2 n=60$

PLATE IX

Fig. 1

Fig. 2

Alamata Ghat, Mooney 8597 (K)。 UGANDA: Karamaja, Thomas 2964 (K); Katwe, Thomas 4153 (K). KENYA: Machakos, Bogdan 1300 (K); Moyale, Grillett 14153 (K). TANGANYIKA: Lake Proviace, Greenway 7416 (K); Kilimanjaro, Greenway 6709 (K). CONGO: Nyakosi, Lebrun 9248 (BRLU): Albert Park, Troupin 8976 (BRLU): Ruzizi, Taton 1021 (BRLU). RHODESIA: Balla Balla, Okla 9447: Bulawayo, Okla 9487: Wankie, Okla 9497. SOUTH AFRICA: Roedtan, Okla 9598, 9685: Machadodorp, Okla 9676; Bronkhorstspruit, Okla 9679: Marble Hall, Okla 9683; Nylstroom, Okla 9684.

Conclusions

l. On the basis of pit characteristics, two varieties of Bo radicans are recognized. They are Bo radicans var. radicans, and Bo radicans var. acidula (Stapf) de Wet et Higgins comb. nove, based on Amphilophis intermedia var. acidula Stapf.
2. Bothriochloa insculpta is an extremely variable species and is subdivided into two varieties. These are B. insculpta var. insculpta, and B. insculpta var. panormitana (Parl.) de Wet et Higgins comb. nov. based on Andropogon panormitanus Parlatore.

CHAPTER V

CYTOLOGY OF THE BOTHRIOCHLOA PERTUSA COMPLEX

The taxonomy of Andropogon pertusus (Linn.) Willd. was fully discussed by Hackel (1889). This large and morphologically variable species was later transferred to Bothriochloa O. Kuntze by Camus (1931), and subdivided into Bo decipiens (Hacko) C. E.Hubbos B. insculpta (Hochsto) A. Camus, Bo longifolia (Hack.) Bar, and Bo pertusa (Linn。) A Camus. The cytology of these species as well as the related B_{0} radicans (Lehm.) A. Camus was studied. The data will be discussed in relation to the origin of the complex as a whole.

Material and Methods

Cytological stadies were made from developing microspore mother cells stained with aceto-ammine. Each collection of a species represents an original seed sample grown in a uniform nursery as described by Celarier and Hatlan (1956). Chromosome behavior was studied in an average of 20 cells for each collection.

Churomoscme Number and Behavior

The cytological data are summarized in Table IV and Plate X. The chromosome number of B. decjpiens ($2 \mathrm{~m}=40$) was previously reported by Harlan et al. (1961). This species is characterized by two distinct morphological types (Blake, 1944) robust plants referred to as

TABLE IV
GYTOLOGY OF BOTHRIOCHLOA PERTUSA COMPLEX

Name	$\begin{gathered} \text { No. } \\ \text { Collections } \end{gathered}$	2 n	Chromosome Association*			
			I	II	III	IV
B. decipiens var.						
			0	20	0	0
B. decipiens var.						
			0	20	0	0
B. insculpta var.						
			5.0	19.8	0.2	1.2
	52	60	0-32	14-30	0-2	$0-4$
			4.7	24.9	0.1	1.3
B. insculpta var.						
			7.3	19.7	0.3	0.6
	5	60	2×8	$23-30$		0-3
			3.8	27.1		0.5
B. longifolía	3	20	0	10	0	0
			0	10	0	0
Bo pertusa var.						
			0.7	17.9	0.1	0.8
B. pertusa var.						
			2.3	16.1	0.1	1.3
	3	60	$0 \cdot 4$	22-25	0	$2-3$
			1.2	24.8	0	2.3
B. radicans var.						
			1.9	18.5	0.1	0.2
B. radicans var.						
			2.9	17.5	0.3	0.3

*Both range and average number of chromosome configurations are indicated.

LEGEND TO PLATE X

Chromosome configurations.

Figure 1. Metaphase I ($2 \mathrm{n}=20$)
Figure 2. Anaphase $I(2 n=40)$
Figure 3. Anaphase $I(2 \underline{n}=50)$
Figure 4. Anaphase $I(2 n=60)$
Figure 5. Metaphase $I(2 n=40)$ showing univalents, bivalents, trivalents and quadrivalents

Figure 6. Telophase $\mathrm{I}(2 \mathrm{n}=60)$ showing bridges, fragments and laggards

PLATE X

Fig。 1

Fig． 2

Fig。 3

Fig。 4

Fig． 5

Fig。 6
B. decipiens var. cloncurrensis (Domin) C. E. Hubbe, and smaller plants included in B. decipiens var. decipiens (Hack.) C. E. Hubbard. Both varieties are tetraploid ($2 \mathrm{n}=40$) and the chromosomes associate strictly into bivalents during meiosis of microsporogenesis. This species reproo duces strictly by sexual means (de Wet, Borgaonkar and Richardson, 1963).

Chromosome numbers of $2 \underline{n}=50$ and $2 n=60$ were reported in the morphologically variable B, insculpta by de Wet and Anderson (1956), Celarier and Harlan (1957), de Wet (1958) and Harlan et al. (1958). Two varieties are recognized, B. insculpta var. insculpta (Hochst.) A. Camus with both the sessile and pedicellate spikelets pitted, and B. insculpta var. panormitana (Parl.) de Wet et Higgins with pitted and non pitted spikelets in the same raceme. Both varieties are character. ized by pentaploid ($2 \underline{n}=50$) and hexaploid ($2 \underline{n}=60$) races, and reproduce by means of gametophytic apomixis. They behave cytologically like segmental allopolyploids as defined by Stebbins (1947). The chromosomes of the hexaploids often associated strictly into bivalents, but univalents, trivalents and tetravalents were commonly encountered. The different collections studied behave essentially alike cytologically. The pentaploids are cytologically more irregular than the hexaploids. The chromosomes never associate strictily into bivalents, and never more than 22 pairs were observed in a cell. Trivalents were rare, univalents common, and at least one tetravalent was present in most of the cells studied.

The Indian B_{0} longifolia is a diploid ($2 \mathrm{n}=20$). Harlan (1963) and de Wet, Borgaonkar and Richardson (1963) demonstrated that a number of other Indian endemics. Bo compressa (Hookofo) Henr., Bo concanensis (Hook。f.) Henro, B. foulkesid (Hook。fo) Henro, and B. kuntzeana (Hack.)

Henro, are diploids. These diploid species reproduce sexually, and their chromosomes associate strictly into bivalents during meiosis.

Typical representatives of B. pertusa are tetraploid apomicts. The chromosomes generally associate into bivalents, with univalents and multivalents only occasionally present. Plants referred to B. pertusa var. bifoveolata (Steud.) de Wet et Higgins were included in B. insculpta by Bor (1960). This variety is Indian rather than African in distribution, and resembles Bo pertusa rather than B. insculpta in morphological characters, except for pitted pedicellate spikelets. Members of B. pertusa var. bifoveolata are tetraploid or hexaploid apomicts. Cytology of the tetraploids is comparatively regular. The hexaploids are characterized by the presence of two or three tetravalents in each cell studied.

The African Be radicans with non-pitted spikelets never formed a part of Andropogan pertusus as recognized by Hackel (1889). Atypical specimens with pitted sessile spikelets, included in B. radicans var. acidula (Stapf) de Wet et Higgins, were often confused with the Indian B. pertusa (Stapf, 1917). Both varieties are apomictic tetraploids. The chromosomes usually form bivalents during meiosis, but some chromosones may fail to pair, or associate into multivalents.

Discussion

The sexually reproducing B_{0} decipiens from Australia does not seem to be closely related to the Indian B. longifolia and B. pertusa, or the African B. insculpta and B. radicans. Blake (1944) demonstrated affinities between B. decipiens ($2 \mathrm{n}=40$) and the hexaploid Australian species B. ambigua S.T. Blake. Their resemblance to B. pertusa is
only in respect to the occasionally pitted sessile spikelets.
The apomictic B. pertusa is widely distributed in the tropical and subtropical regions extending from West Pakistan to Indonesia. The diploid Indian species B_{0} foulkesii, B_{0} longifolia and Bo kuntzeana resemble B_{0} pertusa in respect to inflorescence structure. These diploids, however, are xobust, erect or decumbent grasses while B_{0} pertusa is a slender prostrate plant with geniculately ascending flowering culms. They apparently did not contribute directly towards the origin of tetraploid B. pertusa.

Cytological data presented auggest that B_{0} pertusa is a segmental 2llotetraploid to which the genomes $\mathrm{BBB}_{2} \mathrm{~B}_{2}$ were assigned by Harlan et al. (1961). The B and B_{2} genomes are sufficiently different to allow strict bivalent formation, but closely enough related for occasional multivalents to be produced during meiosis. Celarier and Harlan (1957) demon* strated that both the cytologically reduced as well as unreduced female gamete of facultative apomictic Bothriochloa species can function sexually. Hexaploid plants of B. pertusa var. bifoveolata could have originated from the fertilization of a cytologically unreduced female gamete. Apparently typical Bo pertusa (with non-pitted pedicellate spikelets) and B. pertusa var. bifoveolata often hybridize in nature. This could explain the presence of both tetraploid and hexaploid plants with only some of the pedicellate spikelets pitted, or all of them faintly pitted.

Hexaploids that originated from hybridiaation between tetraploid members of B_{0} pertusa must be assigned an $\mathrm{BBBB}_{2} \mathrm{~B}_{2} \mathrm{~B}_{2}$ genomic constitution. Plants combining wo basic genomes in three doses each should be characterized by frequent trivalent formation during meiosis.

Trivalents, however, were never observed, whereas two or three tetravalents were present in each cell studied. The maximum number of bivalents observed was 25 , and univalents were usually present. Chheda and Harlan (1963) demonstrated experimentally that in Bothriochloa hybrids of this nature chromosome pairing takes place preferentially. The 40 chromosomes ($\mathrm{BBB}_{2} \mathrm{~B}_{2}$) derived from the one parent pair preferentially anong oach other. The presence of more than 20 bivalents demonstrate some degree of homology between the remaining B and B_{2} basic genomes. This mode of chronosome association will give rise to the formation of tetravalents rather than trovalents, as was observed in the naturally occuring hexaploids.

The African species Bo radicans $(2 n=40)$ and Be insculpta $(2 n=50$ and $2 n=60$) are morphologically allied. Harlan et al. (1961) suggested that hexaploid B. insculpta represents a hybrid between the segmental allotetraploid B_{0} intermedia $\left(B_{x} B_{X} B_{X}^{\ell} B_{X}^{1}\right)$ and B_{0} pertusa $\left(B B B_{2} B_{2}\right)$, which includes the complete chromosome complement of the last mentioned species. These authors, however, did not study B. radicans, and the available morphological data suggest that this species rather than B. pertusa may represent one of the parents of Bo insculpta. The absence of B pertusa from the natural flora of Africa, and the sympatric distribution of B_{0} radicans and B_{0} intermedia on this continent, further suggest that Bo insculpta could have originated from hybridization between them.

Natural hybridigation between Bo intermedia ($2 \mathrm{~m}=40$) and B. pertusa $(2 \underline{n}=40)$ apparently takes place in India. Two oollections, Okla 9108 from near Delhi, and Okla 8299 from near Poona, having $2 n=60$ and $2 n=40$ chromosomes respectively, may represent products of such a cross.

Typically Bo intermedia is a robust, erect grass with the lower racemes of the inflorescence far exceeded by the primary axis in length. In contrast, B. pertusa is a slender creeper with subdigitately arranged racemes. These hybrids are robust plants with decumbent culms and the racemes are arranged on the slightly elongated primary axis of the inflorescence.

African plants of Bothriochloa with open false panicles are usually referred to B. glabra (Chippindall, 1955). Bor (1960) indicated that this species, with its strongly divided racemes, is closely allied to Bo intermedia which has mostly simple racemes. African plants with simple and divided racemes were commonly encountered. Similarly members of B. insculpta are characterized by strongly branched or simple racemes. African plants will be referred to as B. glabra and the genome constitum tion $B_{x} B_{x} B_{x}^{3} B_{X}^{l}$ is assigned to these segmental allotetraploids. Typical representatives of ${ }_{-}^{B}$. radicane are erect, and tufted plants characterized by nonopitted spikelets, while Bo radicans var. acidula has erect culms which arise from a short prostrate base, and the sessile spikelets are usually pitted. This segmental allotetraploid species is assigned the genome constitution $B_{3} B_{3} B_{3} B_{3}$.

Hexaploid representatives of both Bo insculpta var. insculpta and B. insculpta var. panomitana are of two morphological types; extremely robust, suberect plants, and more slendex decumbent plants. Although artificial hybrids between Bo radioans and Be glabra could not be produced, morphological data suggest that the suberect plants combine the complete chromosome complement of Bo glabra and the haploid genomes of B. radicans var. acidula. Similarly, the more slender, decumbent hexaploids may combine the complete chromosome complement of B. radicans
var. acidula and the haploid genomes of B. glabra.
Cytologically these two morphological types ($\mathrm{B}_{\mathrm{x}} \mathrm{B}_{\mathrm{x}} \mathrm{B}_{\mathrm{x}}{ }^{8} \mathrm{~B}_{x}^{9} \mathrm{~B}_{3} \mathrm{~B}_{3}$ and $\mathrm{B}_{3} \mathrm{~B}_{3} \mathrm{~B}_{3}^{1} \mathrm{~B}_{3}^{9} \mathrm{~B}_{\mathrm{x}} \mathrm{B}_{\mathrm{x}}^{8}$) behave essentially alike. The chromosomes often associate strictly into bivalents, al though tetravalents were encountered in some cells. Chromosome pairing apparently takes place preferentially between chromosomes derived from the cytologically unreduced gamete. Some degree of homology between the chromosomes of the B_{3} and B_{3}, as well as between the B_{X} and B_{X}^{0} basic genomes allows for the formation of additional bivalents. The low frequency of multivalents suggests that little or no homology exists between the basic genomes of B. glabra and B. radicans.

Pentaploid representatives of $\mathrm{B}_{\text {• }}$ insculpta may represent backcross populations to either of the two parents. They are extremely variable morphologically. Cytologically, following preferential chromosome pairing in the hexaploids, these pentaploids may be of four basic genome combinations as follows:

$$
\begin{aligned}
\mathrm{B}_{x} B_{x} B_{x}^{q} B_{x}^{0} B_{3} B_{3}-x-B_{x} B_{x} B_{x}^{q} B_{x}^{q} & =B_{x} B_{x} B_{x}^{0} B_{x}^{q}\left(B_{3}\right) \\
-x-B_{3} B_{3} B_{3} B_{3} & =B_{x} B_{x}^{1} B_{3} B_{3}\left(B_{3}^{q}\right) \\
B_{3} B_{3} B_{3}^{q} B_{3}^{q} B_{x} B_{x}-x-B_{x} B_{x} B_{x}^{q} B_{x}^{q} & =B_{3} B_{3}^{9} B_{x} B_{x}\left(B_{x}^{0}\right) \\
-x-B_{3} B_{3} B_{3}^{q} B_{3}^{1} & =B_{3} B_{3} B_{3}^{q} B_{3}^{q}\left(B_{x}\right)
\end{aligned}
$$

Preferential chromosome pairing between homologous chromosomes, and pairing between partially homologous chromosomes when their close homologous are absent, apparently gave rise to an average of 20 bivalents, as was observed in these pentaploids. The 10 chromosomes of the additional basic genome were often present as univalents, or they contributed towards the formation of trivalents and tetravalents.

Conclusions

1. The Australian B. decipiens ($2 \underline{n}=40$) and B. ambigua ($2 \underline{n}=60$) are morphologically allied, sexually reproducing allopolyploids based on \underline{n} : 10 。
2. The Indian endemic Bo longifolia is a sexually reproducing diploid.
3. The remaining species studied are gametophytic apomicts, and behave cytologically like segmental allopolyploids.
4. Tetraploid and hexaploid races characterize Bo pertusa.
5. Cytological and morphological data indicated that the hexam ploids originated from the fertilization of a cytologically unreduced gamete.
6. Bothriochloa radicans and B. glabra are tetraploids, while B. insculpta is characterized by pentaploid and hexaploid races.
7. Morphological data indicated that hexaploid Bo insculpta could have originated from a cross between plants resembling B. radicans and B. glabra.
8. These hexaploids aye of two morphological types, and it was proposed that the one combines the complete chromosome complement of B. glabra and the haploid complement of Bo radicans, while the other originated from fertilization of the cytologically unreduced gamete of B. radicans.
9. Pentaploids apparently represent backcross populations to either parent.

SUMMARY

The morphological characters of species and varieties recogniaed as valid taxonomic units are summarized in Table V.

The species B_{0} decipiens (Hack.) C. E. Hubbos Bo insculpta (Hochst.) A. Camus, Bo longifolia (Hack.) Bor, Bo panormitana (Parl.) Pilger, B. pertusa (Linn.) A. Camus, and B. radicans (Lehm.) A. Camus were classically treated as varieties of Andropogon pertusus (Linn.) Willd. Morphological and cytogenetidal data indicated that these are variable, but distinct taxonomic units. From a biosystematic point of view ${ }_{2}$ glume characteristics of which the classification of these species were usually based, appeared to be unreliable. Indian representatives of the more commonly African B. inseulpta could more naturally be transo ferred to the Asiatic B_{0} perotusa as a variety. The African Bo pertusa var. maroccana Maire could not consistently be separated from the Sicilian B. panormitana, and this species should be treated as a variety of B. insculpta. The recently described B. pertusa var. tunetana A. Camus from Tunesia was found to be identical to B. intermedia var. acidula (Stapfo Co E. Hubbard. Cytogenetical and morphological data suggested that these plants should be regarded as a variety of B. radicans.

Typically B. insculpta is confined to Africa and Bo pertusa extends from West Pakistan eastward. When these two species are separated on

TABLE V
MORPHOLOGY OF THE BOTHRIOCHLOA PERTUSA COMPLEX

Name	2 n	$\begin{array}{r} \mathrm{GII} \\ \mathrm{Pi} 1 \\ \mathrm{Ses} . \end{array}$		Pedicel Groove	$\begin{array}{r} \text { Raceme } \\ \text { Prim. } \\ \hline \end{array}$	No. Sec.	$\begin{aligned} & \text { Ratio* } \\ & {\text { L. } \cdot{ }_{0} A_{0}}^{L_{0} L_{\circ} R_{0}} \end{aligned}$	Growth Habit	Distribution
B. concanensis	$\begin{aligned} & 20 \\ & 50 \end{aligned}$	-	-	-	3-10	0-3	0.37	Erect Robust	India; Western Ghats
B. $\frac{\text { decipiens }}{\text { var. decipiens }}$	40	\#	-	+	$2-7$	0	0.14	Erect Slender	Australia
var. cloncurrensis	40	+	-	\uparrow	4-26	$0-10$	0.28	Erect Robust	Australia
B. foulkesii	20	-	-	\%	$3-10$	$0-4$	0.38	Erect Robust	Indiag Nilgiris
$\text { Bo insculpta } \frac{\text { var. insculpta }}{}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	¢	+	+	4-28	0-21	0.43	Decumbent Robust	Africa
var. panormitana	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	¢	\pm	\$	7-18	0-22	0.49	Decumbent Robust	Africag Sicily
B. kuntzeana	20	\$	\pm	+	10-25	0-5	0.79	Erect Robust	India; southern
B. Iongifolia	20	8	-	+	5-18	0-2	0.68	Erect Robust	India; southeastern
B. $\frac{\text { pertusa }}{\text { var. pertusa }}$	40	\dagger	-	+	3-13	0-7	0.29	Prostrate Slender	India to Indonesia
var. bifoveolata	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	+	\pm	+	3-28	0-10	0.27	Prostrate Slender	India to Indonesia
$\text { B. } \frac{\text { radicans }}{\text { var. radicans }}$	40	\cdots	-	+	5-19	0-17	0.57	Decumbent Slender	Africa
var. acidula	40	4	-	¢	$8-14$	$0-1$	0.48	Decumbent Slender	Africa

the basis of spikelet structure some African specimens are usually included in B. pertusa and some Asiatic specimens in B. insculpta. It was suggested that the African plants be excluded from B. pertusa. They differ from this species mainly in the presence of indentations on the lower glume of pedicellate spikelets, and resemble Bo insculpta mainly in respect to this characteristic. The new combination B. pertusa var. bifoveolatus (Steud.) de Wet et Higgins was proposed to include Indian plants usually classified with B. insculpta. Bothriochloa radicans is strictly African in its distribution. On the basis of pit characteristics, two varieties, \underline{B}_{0} radicans var. radicans and B. radicans var. acidula (Stapf) de Wet et Higgins comb. nov. (based on Amphilophis intermedia var. acidula Stapf), were recognized. Bothriochloa insculpta is an extremely variable species and is subdivided into two varieties. These are B. insculpta var. insculpta and B. insculpta var. panormitana (Parl.) de Wet et Higgins comb. nov. based on Andropogon panormitanus Parlatore.

The cytology of a number of morphologically similar Bothriochloa species were studied. The Australian B. decipiens $(2 \underline{n}=40)$ and B. ambigua ($2 \underline{n}=60$) are morphologically allied, sexually reproducing allopolyploids based on $\underline{n}=10$. The Indian endemic \underline{B}. longifolia is a sexually reproducing diploid. The remaining species studied are gametophytic apomicts, and behave cytologically like segmental allopolyploids. Tetraploid and hexaploid races characterize B. pertusa. Cytological and morphological data indicated that the hexaploids originated from the fertilization of a cytologically unreduced gamete. Bothriochloa radicans and B. glabra are tetraploids, whereas B. insculpta is characterized by pentaploid and hexaploid races. Morphological data
indicated that hexaploid B. insculpta could have originated from a cross between plants resembling B. radicans and B. glabra. These hexaploids are of two morphological types and it was proposed that the one combines the complete chromosome complement of B_{0}. glabra and the haploid complement of B. radicans, while the other originated from fertilization of the cytologically unreduced gamete of Bo radicans. Pentaploids apparently represent backeross populations to either parent.

IITERATURE CITED

Babcock, E. B. and G. Li. Stebbins. 1938. The American species of Crepis: their relationships and distribution as affected by polyploid and apomixis. Carnegie Inst. Washington Pubi. 504: 1-199.

Baker, H. G. 1952. The ecospeciesmonelude to discussion. Evolution 6: 61-68.

Bell, C. R. 1954. The Sanicula crassicaulis Complex (Umbelliferae): A study of variation and polyploidy. Univ. Calif. Publ. Bot. 27: 133-230.

Blake, S.T. 1944. Monographic studies in the Australian Andropogoneae I. Univ. Queensl. Papers Dept. Biol. 2: 1-62.

Blatter, E.J. and C. McCann. 1935. The Bombay grasses. Scio Monogr. Impr. Council Agric. Res. India 5: 1-111.

Bor, N. I. 1960. Grasses of Burma, Coylon, India and Pakistan. Pergamon Press, Iondon. .

Brown, Ro 1810. Prodromus florae Novae Hollandiae I. Iondon.
Camp, W. H. and C. I. Gilly. 1943. The structure and origin of species. Brittonia 4: $323-385$ 。

Camus, A. 1919. Andropogon pertusus var. barbatus. Bull. Kus. Hist. Nat. Paris 25:370.

Camus, A. 1931. Le genre Bothriochlo』. Ann. Soc. Linn. Lyon 1930, 76: 162-165.

Camus, A. 1957. Bothriochloa pertusa var. tunetana. Bull. Soc. Hist. Nat. Afr. Nord 48: 478.

Celarier, R. Po 1956. A cytogenetical survey of the Andropogon ischaemum complex. Ph. D. Thesis. Agricultural and Mechanical College of Texas.

Celarier, R. Po and Jo Ro Farlan. 1956. An Andropogoneae garden in Oklahoma. Taxon 5: 183-186.

Celariers R. Po and Jo Ro Harlan. 1957. Apomixis in Bothriochloas Dichanthium and Capillipedium. Phytomorph. 7: 93-102.

Celarier，R．Po and Jo Ro Harlan。 1958．The cytogeography of the Bothriochloa ischaemum complex．Jour．Linn．Soc．Bot．55：755－760．

Chheda，H．Ro and J．R．Harlan．1963．Mode of chromosome association in Bothriochloa hybrids．Caryologia 15：16l－476．

Chippindall，L．K．A．1955．A guide to the identification of grasses． In D．Meredith，Edi．tor；Grasses and pastures of South Africa． C．N．Ao，Parrow．

Clausen，J．1954．Partial apomixis as an equilibrium system in evolution．Caryologia 6： 469 c 479.

Clausen，J．1961．Introgression facilitated by apomixis in polyploid Poas．Euphytica 10：87－94．

Cockayne， I_{0} and H．H．Allan．2927．The bearing of ecological studies in New Zealand on botanical taxonomic conceptions and procedure． Jour．Ecol．15：259－270．
de Wet，J．M．J．1958．Additional chromosome numbers in Transvaal grasses．Cytologia 23：113－118．
de Wet，J．M．Jo and L．J．Anderson．1956．Chromosome numbers in Transvaal grasses．Cytologia 21：1－10。
de Wet，J．Mo Jo，D．S．Borgaonkar，and W．L．Richardson． 1963. Chromosome number and mode of reproduction in the Bothriochloininae． Caryologia（In press）．
de Wet，J．M．Jo and M．L．Higgins．1963．Biosystematics of Bothriochloa pertusa．Bull．Torrey Bot．Club（In press）．
de Wet，J．M．Jo and Wo I．Richardsono 1963．Morphological variation and species relationships in Dichanthium．Phyton 20：19－28．

Dobzhansky，Th．194．Genetics and the origin of species．Revised ed．Columbia University Press．New York．

Du Rietz，G。E．1930．The fundamental units of biological taxonomy． Svensk．Bot．Tidski．24：333－426．

Fernald，M．L．1933．Recent discoveries in the Newfoundland flora Rhodora 35：327－346．

Gould，F．W．1956．Chromosome counts and cytotaxonomic notes on grasses of the tribe Andropogoneae．Amer．Jour．Bot．43：395－404．

Gustafsson，A．1946．Apomixis in higher plants I．The mechanism of apomixis．Lund Univ．Arsskr． $42: 1 \cdots 68$.

Gustafsson，A． 1947 a．Apomixis in higher plants II．The casual aspect of apomixis．Lund Univ．Arsskr．43：69－180．

Gustafsson, A. 1947 b. Apomixis in higher plants III. Biotypes and species formation. Lund Univ. Arsskx. 43: 181-370.

Hackel, E. 1889. Monographia Andropogonearum. In de Candolle, Monogr. Phan. 6. Paris.

Hara, H. 1962. Racial differences in widespread species with special reference to those common to Japan and North America. Amer. Jour. Bot. 49: 647-652.

Harlang J. R_{0} 1963. Two kinds of gene centers in Bothriochloininae. Amer. Nat. 67: 91-98.

Harlan, J. Ro, R. Po Celarier, W. L. Richardson, Mo H. Brooks and K. L. Mehra. 1958. Studies on Old World bluestems II. Okla. Agri. Exp.Sta.Tech. Bull. T-72s I-23.

Harlan, Jo Ro, Ho Ro Chheda and W. L. Richardson. 1962. Range of hybridization with Bothricchloa intermedia (R . Bro.) A. Camus. Crop Sci. 2: 480~483.

Harlan, J. $R_{0}, J_{0} M$. Jo de Wet, W. L. Richardson and H. R. Chheda. 1961. Studies on Old World bluestem III. Okla. Agric. Exp. Sta. Tech. Bull. T-92: 1-30.

Heckard, L. H. 1960. Taxonomic studies in the Phacelia magellanica polyploid complex. Univ. Calif. Publ. Bot. 32: l-126.

Henrard, J. Th. 1940. Notes on the nomenclature of some grasses I. Blumea 3: 411-480.

Henrard, J. The 194. Notes on the nomenclature of some grasses II. Blumea $4: 496-538$.

Herter, W. Go 1940. Plantae Uruguayenses novae vel oxiticae III. Rev. Sud. Amer. Bot. 6: 129-155.

Hooker, J. D. 1897. Flora of British India. Reeve and Co. London.
Hubbard, C. E. 1934. Gramineae Australiensis. II. Kew Buil. 1934: 444-451.

Jacques ${ }^{-m e l i x}, H_{0}$ 1962. Les Graminees D^{0} Afrique Tropicale. I.R.A.T. Paris.

Lyve, A. 1943. Cytogenetic studies on Rumex subgenus Acetosella. Hereditas 30: 1-136.

I\&ve, A。 1951. Taxonomical evaluation of polyploids. Caryologia 3: 263-284.

Idve, Ao 1954. The foundations of eytotaxonomy. VIII. Congres Int.

LAve，A．1960．Taxonomy and chromosomes－a reiteration．Feedes Repert．62：192－202．

Lyve，A．1962．The biosystematic species concept．Preslia 34\％ 127－139．

L\＆ve，A．and D．L8ve．1942．Chromosome numbers of Scandinavian plant species．．Bot．Notiser 1942：19－59．

Ltve，A．and D．Ldve．1948．Chromosome numbers of Northern plant species．Icel．Univ．Inst，Appl．Sci．s Dept．Agric．Rep．B 3 3 263－284．

L8ve，A ，and D．L8ve．1954．Cytotaxonomical studies on the northern bedstraw．Amer．Midl．Natural．52：88－105．

LHve，A．and D．Idve．1956．Cytotaxonomical conspectus of the … Icelandic flora．Acta Horti Gotob．20：65－291．

L8ve，A．，D．L\＆ve and Mo．Raymond．1957．Cytotaxonomy of Carex section © Capillares．Canad．Jour．Bot． $35: 715-761$ ．

Maire $_{3}$ Ro 1928．Andropogon pertusus var．maraccanum Maire．Bull．$^{\text {19 }}$ Soc．Hist．Nat．Afr．Nord（Alger．）19：65．

Maire，R．1940．Contributions a l＇etude de la flore de I^{0} Afrique du Nord．Soc．Hist．Nato Afro．Nord 31：99－114．

Maire，R．194l．Bothriochloa pertusa var．maroccana forma emasculata． Bull．Soc．Hist．Nat．Afro Nord 32： 216.

Maire，R．1952．Flose de IrAfrique du Nord，vol．1．Gxamineae． Lechevalier，Faris．

Maire，R．1959．Flore de 10Afrique du Nord，vol．6．Monocotyledonae． Lechewalier，Paris．

Mason，H．L．1950．Taxonomy，systematic botany and biosystematics． Madrono 10：193－208．

Muntzing，Aos O．Tedin and GoTuresson．1931．Field studies and experimental methods in taxonomy．Hereditas 15：1－12．

Nash，G．Vo 1903．Gramineae．In Small，Fl．Southeast U．S．New Yorko
Parodi，L．R．1958．Gramineas Bonaerenses．Acme Agency，Buenos Aires．
Pilger，Ro 1940．Gramineae．In Engler and Prantl，Die Natarl． Pflanzenfom。2，14＊。 Leipzig。

Pilger，R．1950．Gramineae III。 In Engler and Prantl，Die Naturl． Pflanzenfam．Leipzig．

Richardson. W. L. 1958. A technique of emasculating small grass florets. Ind. Jour. Genet. PI. Breed. 8: 69m73.

Stapfs 0. 1895. Andropogon pertusus. Kew Bull. 1895: 209.
Stapf. O. 1907. Andropogon ischaemum var. somalensis. Kew Bull. 1907: 210.

Stapf, O. 1917. Gramineae. In Prain, Fl. Trop. Afr. 9: 1-768.
Stebbins, G. L. 194i. Apomixis in the angiosperms. Bot. Rev. 7: 507-542.

Stebbins, G. L. 1947. Types of polyploids; their classification and significance, Advo, Genet. 1: 403-429.

Stebbins, G. L. 1950. Variation and evolution in plants. Columbia University Press, New York.

Sturgeon, K.E. 1956. A revised list of grasses of Southern Rhodesia, Part XI. Rhodesia Agric. Jour. 53: l-33.

Turesson, G. 1926. Studjen ther Festuca ovina I. I. Normalgeschlechtliche, halb und ganavivipare Typen noxdischer Herkunft. Hereditas 8: 161-206。

Turesson, G. 1929. Zur Natur und Begrenzung der Arteinheiten. Hereditas 12: 323-334.

Turesson, G_{0} 1943. Variation in the apomictic microspecies of Alchemilla vulgaris I. Bot. Not. (Lund): $473-427$.

Turrill, W. B. 1938. Material fose a study of taxonomic problems in Taraxacum. Bot. Soce and Exch. Club of the Brit. Isi. 11: 570 589.

Valentine D. $^{\text {D. 1949. The units of experimental taxonomy }}$ Acta Biotheoretica 9: 75~88.

Valentine, D. Ho 1950. Gytology, genetics and classificationo Nature.166: 769.

VITA

Mary Louise Higgins
Candidate for the Degree of
Dostor of Philosophy

Thesis: VARIATION AND SPECIES RELATIONSHIP IN THE BOTHRIOCHLOA PERTUSA COMPLEX

Major Field: Botany Minor Field: Genetics
Biographical:
Personal Data: Born near Cuervo, New Mexico, the daughter of James Fred and Demarious Waddell Higgins.

Education: Attended grade school at True, El Valle, and Santa Rosa, New Mexico; graduated from Santa Rose High School; received the Bachelor of Science degree from New Mexico State University, with a major in Biology, in August, 1946; received the Master of Science degree from the Oklahoma State University, with a major in Natural Science, in August, 1958% completed requirements for the Doctor of Philosophy degree in May, 1964。

Professional experience: Taught Biology, Tucumeari Public Schools, Tucumeari. New Mexico, 1949-57, 1958-59, and 1961: was Participant, National Science Foundation Academic Year, Oklahoma State University, $1957-58 \%$ served as partotime Instructor, Department of Microbiology, Oklahoma State University, $1959-60 \%$ served as Graduate Teaching Assistant, Department of Botany and Flant Pathology, Oklahoma State University, 1962063 z and Research Associate, Department of Biochemistry, Okiahoma State University, 1963-64.

