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In this paper one is concerned with linear operators mapping an 

n-dimensional CODplex 1nner-product space X into it.self. 'lbe space 

X 1s called "unitary" and is eompoaed of the linear space of n-columns 

over the complex field C vitb a CODi'lex-valued inner product function 

de1'1ned on the eroes-product. 

If f : X ... X is a linear operator I the problem ia to deviSe e. 

method of caLeul.atiDg all the eigenvalues and eigenepaces of f suita.

bl.e tor use with a high-speed digital C01Zp.lter. 1bis involves findiDg 

a scalar Ao e C and a maximl linearly independent set 8 e x au.ch t.bat 

f '!:1 = A '::.1 tor all '!:1 E s. Each mmber >-. ia called an eigenwJ.u.e , 

and each corresponding veet.or an eigenvector. 1he subspace generated 

by the elements of Sis called the eigenspace corre6P()nding t.o the 

eigenvalue. 

The problem bas the geoJDEttric interpretation of finding those 

vectors.! who8e directions remin invariant under r. 1be eigenval.ue 

A is then the factor by which the norm of auch a vector is changed. 

If x 1s an eigenvector corresponding to~, it follow from the defin-- --
ing equation t .! o 1\. .! that a .! for all O -I a E C is also an eigen-

vector corresponding to Ae Thus no geaerallty is lost 1n asouming 

the eigenvectors have unit length. 

Sinc.e a linear operator 1s completely determined by specifying 
r .,,. 

l 
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the images under the operator ot an orthonorms.l set ot basis vectors 

tor x, one can view any operator as giving rise to a unique n x n 

matrix A. 1\1-e problem then corresponds to solving the system of bom::>

geneous linear equations (A - i\ I)_!= .Q lfhere I 1s then x n unit 

matrix detem2ned by the iden~ity operator l on X into itself. Alge

braically, this 1s equivalent to a.sk:tng tor t.boSe values of i\ that 

allow the S7Stem of n equations in the n unknown coord1na.tes of ~ to 

possess non•tr:1 vial solution vectors. Such a sol.ut.ion exists 1f' and 

only it the detem:hw1t of the matrix of coett1c1ents is zero. Ex

pe.nsion of tb.18 detenliuaut Jields an n'th degree~ 1n i\ and 

is called the characterlsti.c polynomial 0£ A and denoted by PA (i\) • 

'l'he n com.pl.ex zeros ot pA (i\) are the eigeavalues of f, and the set of 

k distinct . zeros 1s called the spectrum of f and denoted by i\( f) or 

i\(A) . A particular eigenval.u.e 1n the spectrum ot t is denoted by 

i\1 (t) or i\1 (A} and simply by i\1 \'hen there is no contusion concerning 

the operator 1D:V'olved. When the elements of the ,spectrum are real, 

they are assumed ordered as follows: i\ > i\ > ••• > A._ • Since the 
1 2 ·it 

dimension ot the space is finite and defined over the complex :field, 

the spectrum conta.tns at least one element and thus a non-empty eigen-

space exists. 

'!be 110st succeastul numerical D:rthods at present are applied to 

linear opera.tors that give rise to real, S)'11ID8tric matrices; and 

probably the best of these are those that 'f11A'3' be termed "indirect 

methods" in which evaluation of the determinant by way of the charac

teristic po~ 1s avoided. (Givens1 1951+ and von Holdt, 1956) . 

In aJ.l these method& no at.tempt is made to determine the eig-enspa.ces 

ot dimension greater than one; and in same, no eigenvectors are eal.C'll-
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lated at al.L. 'lbe procedure developed in this paper is a II direct 

methodu wb1cb evaluates the determ1na.nt for ea.ch approximating eigen,. 

ve.lue although. the ana.1.yt,ic expression for the characteristic poly

nomial is not known. Although the application or the method is to 

linear operat.ors, no restriction at all is placed on the tn,e of 

matrices 'Which they determine; and the eigenspaces a.re foW1d :for ea.ch 

element in tbe spectrum. 

Probably one of the most basic reasons for wanting to soJ.ve such 

a problem stems f'rom the need to solve a system of n linear differ-

ential equations vhich are encountered 1n a wide variety of fields . 

One met.hod used in finding a sol utiCll of the system employs the 

eigenvalue technique. It primes denote diff'erentiation with respect 

to a va.riable t , then the system can be written 1n matrix no·tation 

as x ' • A x where x ' and x are n-column vectors and A is the n x n - - - -
DBtrix of coefficients. One seeks a solution of the form.! = ! i·t 
where .! is an n:-column vector. Differentiation of the trial solution 

vector followed by substitution int.he mtrix equation l.eads to an 

equivalent system .! ).. e'kt = A .! i'"'t or (A - ).. I )! i•·t = .Q• 'lhus an 

eigenvalue >.., together w1 th a corresponding eigenvector .!, yields a 

solution vector .! = ! i'· t o:f t.he system of ditterentiaJ. equations . 

1he same substitution will yield a solution for a second order system 

ot linear d1fterent1&l equations. 



CHAPmR II 

HO'lWr.tOB 

The Wlderlying linear space ot n-oolumns over the field ot com

plex numbers C will also be denotecl b7 the s1Jllbol x. Points or 

vectors in X are represented by undencored letters such as! or z• 
In this paper one is restricted to tbe subset of linear t'unctiona 

which forms a subspace ot the space of all f\metions on X into itself. 

Use is also made of the fact that thia su.l>set torms a linear space 

with addition, scalar multipl1cat1on, and composition of tunctions 

defined as follows: 

1. (f + g).! = t .! + g .! 

2. (a f),! • a t ! 

, . (f g),! = f(g ,!) 

where f : X .... X, g : X -. X, a e c, and f(,!) or t .! 1s the value of t 

evaluated at x. Since t is linear, t(a .! + b ,l) • a t ! + 'b f z for 

all,!, .l EX and tor all a, b E c. B(t) and R(t) denote respectively 

the null space and range space ot f, and these subspaces are subsets 

of X defined as fbllovs: 

N(t) = (! E X : f .! • .Q} 

R( f } Ill Cl E X : z • t .! tor some.! E X} • 
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'.the point ~ with a left subscript is a. row vector in X and 

'!!k Witb a right superscript a column vector. If a. e C, then a 1B 

considered as an ordered pair of real numbers (a1 ,b1 ) where 

a = a1 + 1 b1 , and i e C is the ordered pair (a1,-b1 ) the COllfl)lex 

conJugate ot a. 

1'be ordered set E • {!1)~1 of orthonormal column vectors is 

chosen aa a fixed basis in x. 'l'he word "ordered11 refers to vector 

pos1t1on in E regarded as a row vector (.!1 , t1', • • •, !n) in which 

the elements are wu t column vectors and mutually orthogonal. It 

! E X 1s arbitrary, then!= ea d' 1.s a linear combination of the 

elements of E 'Where the repeated index indicates suaration. UnlesG 

it is stated otherwue, t.b.e range of a repeated index a is suc:h that 

a • l, 2, • •• , n. 'lbws the notation ! cs ea cl' means ! • e1 1x + 

l' 2x + ••• + !n nx• '11he elements ot the set (1x)~ 1 belong to C 

and are called the coordinates or components ot .! relative to the 

ba.eia E. The &Wl'ID&tiOn convention is to 'be invoked only when the 

repeat.eel index is a loVer case Greek letter. '.the notation!k kx is 

then ml.t1pU.cation ot the k'th entry in E b;y tbe scalar kx. It 

should be noted tb.at no restriction 1a pl.aced cm the pc>sition of the 

repeated index as a subscript or superacript. 

A column vector .!k, its transpose '?.!k, 8Dd its conJuga.te tra.ns

* k pose .! are written as follows: 

k 
X = -

• k [ -k -k • • • -xk] ! • 1 x , 2x , ' n . 



6 

The n x n matrix A in vbieh the entries 1n colmml J are the COilf.PO• 

nent& 1n basis E of the image vectors {t .!J1;_1 is called. "the matrix 

tor the operator f : X -+ X vitb. roo-pect to the basis E1' . If' P..1 )~1 

n 
is the set ot zeros of PA(~), it is known that the llUll1ber a = J1. ~i 

is the sum of the pr1nciple diagoml elements of A. ibJ.s. Dt.ld>er 1s 

called the trace of A and dem>ted b-y trace (A). Since E 1a an 

ordered orthomrml. set, A 1s uniqueJ.7 detel'214ned and Vill be in

terpreted as a linear operator on the n-dimens1onal space X into it

self' under the assignment ! ... A ! where A ! 18 computed using ordi

.nary mtrix ml t1;plieat1on. 'lhus all statements me.de concerning 

propertiea o£ eigenvalues and eigenvectors ·Of Unear operators on an 

n-(U.mensionaJ. space can be translated into statement& concerniDg 

n x n matrices e.nd vice versa. An atteq,t 1s made in the fonulstion 

and proof of stateaenta to use the language that avoids cUJlbersome 

notation and otters greater clarity. 

In the notat1on A • ( 1aJ), were 1 and J are respectively the 

row and column indices, the matrix A is considered as a aet of n 

col.w:ms or n rows 1n which 1aJ • 1(A)J denotes t.be element 1n the 

i't.b row ad J'th column of A. 'lhe vector !J or (A)J 1& the J'th 

column and i.! or 1(A) tbe 1'th row vector. 'lhus for then x n identi• 

ty matrix I .. (1oJ) the &pbol .§.J is t.be column with entries l if 

1 u J and O if 1 7 J . S1:mUarq ~ J.s the row with entries l when 

J a i a.nrl. 0 if J # 1. For n 2 2 the notation JAi is the determ1na.n1. 

of A m:l the nodulus of tbe single entry 1.f no l . U IAl ¢ 01 then 

A ie said to be non-singular; and 1n tbJ.s case., tbe inverse atrix 

denoted by A-1 exists eu.ch that AA-1 = A-1A a: I . If A 1s the n X n 

matrix determined by a lineer operator r., then A-1 exists 1.f and only 
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if N(t) = (2) • 

If S and 'l' are sul>sets of x, then tbe set difference 1s S --T = 
(! ~ s 3 .! f T) . 'lbe set of all lineer combinations of elemnt.s of S 

is called the "11near manifold ot sn or the subspace generated by S 

and denoted by M(S) . If Sc T and M(S) = T, then T is tbe subspace 

gen.emted or spmmed by S and the dimension ot 'l' 1s equal to the 

number of vectors 1n a maximal Un.ea.rly independent .aet contained 1n 

s. 1'b.1s d1menaion 1s abbreriated e.s dJ.m T or dim M(S) . lf M(S) = 

(2}, then M(S) is called the tr1v1al su._bape.ee. 

ln this piper one is concerned w1 th square matrices only. If A 

is an n x n square matrix, then the symbol r(A) deno-tes the rank of A. 

'D1e rank ot A is denned to be the mx:lmtm 1lU1Dber ot linearly' inde

pendent column vect.ors contained 1n A. (Amir - tabez and Fass, 1962). 

Since rank is an invariant tunction ot mtnces under elementary row 

transfonations, this number 1s determined by exmn1u1ng the matrix in 

its pi.votal. form wbicb is d1seuseed 1n Chapter V. 

Det1ni t.ion 2 . l . A non-empty set S C X sueb that (2) • S 1s 

linearly independent .U no element ot S is a linear cod>i

nation 0£ other elemmta of S . otherwise S 1s said to be a. 

linearl.7 dependent set. 



CBAPl'ER Ill 

For tbe complex inner-product space one defines a certain tune-

tion of two vectors which spa the cross-product of the linear space 

X into the field ot CODIPlex numbers C. This tunction is called the 

inner product; and 1f the vectors are .!,Z, the inn.er product of.! with 

z is denoted by <.!,z). 'lb.e inner-product function 1s torml.ly analo

gous to the dot product of ordinary vector analysis, and its proper

ties are contained in the following definition. 

Definition 3.1. A complex linear space X is eall.ed an inner

product space 1f there is defined on X x X a complex-valued 

function (.!>Z) (called the inner product of.! with z) with the 

following properties: 

l. (,!,Z + !) • (.!,z) + (,!,!)• 

2 . (_!,a z) • a(_!,.l) , fGr all a £ c. 

-'• C.!,z) = {z,.!) • 

4. (x,x) ~ O and (x,x) I O 1f x F o. --- -..... .... -

It is seen from this definition that condition (3) implies (x,.x) is --
real; and as a consequence of the properties listed, (,!,Z) bas the 

further properties: 

5. (,! + Z,!) = (,!,!) + (z,.!) • 

8 



6. (a ,?!,,l) = a(,?S,,l), tor all a EC • 

'lbe formula given in tbe toll.owing definition tor computing the 

inner product satieties the properties stated in Definition 3. 1. 

It is this inner product that is used throughout this paper. 

9 

Definition }. 2. It !,l e X have coniponents (1x)~1 a.nd {1y}~1 

respectivel)' relative to E, tbe nu.mber (,!,z) =; <:7 is the 

1mler product of.! with Z• 

It can be &bown that 1t X 1a an inner-product space, then (,:,,!)1/ 2 

has the properties ot a norm. (~lor, 1961). One wrttee II~; = 

(x,x)1/ 2 and. calls this DW!lber the norm or length ot the vector x. -- -
If 11.!!I = l, then .! is a unit vector; and two non-zero vectors .! and 

z W1tb (,!,Z) • o e.re said to be orthogonal and wr1tten_!J.z. For 

the basis E it follows t.hat (,!:1,.!J) • 1aJ the Kronecker delta. 

Definition 3. 3. The transposed conJugate of a mtnx A 

• is called the adJo1nt mtrix Gt A and denoted by A. It 

• A. • A, then A. 1s called aelt•ac)Joint. 

Det1n.1 'Uon 2• 4. U f and. s a.re 11.near opeNtors on X ... X 

and if (t .:,z) .. (_!,gz) tor all .!,Zs x, then g is called 

* • the &c1Jo.1Dt operator ot f and denoted. by t . It t • t, 

then f 1s cal.led self-ad.Joint. For the C01U1X)S1tion of two 

* • • functions the usu.al rule holds that (t g) • g t . 
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Theorem 3. 1. * If f is the ad.Joint operator or f : X ... X and 

* A is the matriX fort relative to E, then A 1s the matrix 

• :for f relative to E. 

* Proof.. :By asswaption (f .!,z) • (,!, t z) for all !,.l c X and 

tor A• (1aJ) , t .!J • / 13aJ. One lets B • (1bj) be the 

matrix for *t and &hoWS that 1i.J = (f .!J,!l> = (,!J,*t .!:1> • 
Jb1• Using the properties ot the inner product and the fact 

that Eis orthonormal it follows that 

( J * 1) , .. J a 1) 1, .. J a) 1 a i .! , f .! • \! ,.! 0b • J> \! ,,! = ab l' = J b 

1.he preced.iDg theorem shows that any linear operator f on the . .. 
finite dimensional space X bas a tmique adJoint f, and tis com-

* pletely defined by A 'Where A 1a the matrix tor f relative to E. 

Lemma j . l . An operator t : X ... X is self-ad.Joint if and only 

U' (,!, t ,!) is real for all .! e x. 



ll 

• * Proof. If' t = f, then (.!,f ::> = (f .:,!) = ( f ,:,,!) = (,!,f .:> 
and hence (x.f x) is real. Conversely, it (.!,f ,:) is real tor .. 
all x G X, then (x,f x) = (t x,x) = (x, t x) wbicl1 implies that - ..... ... ......... - ...... .. 
t = t and conseqt1ently t 1s selt-aiiJoint. 

It foll.owe iDl:rlediatel)' from the preceding lerma that tb.e oper-

• * a.tors f + f and 1( t - t) are self-ad.Joint; and if g is eeU'-adJoiat, 

then a g 1s sett-ad.Joint it and only U' a EC is real . 'ale number i 

eixploJed above 1s the ordered pair (0,1) . 'lb.us any operator f : X-. X 
l .. 

has a uniCJ.Wit Ce.rteaian decomposition. f =· g + 1 h With g = 2( f + f) 

1• and h • 2( t - .f) lilere· g and h are self-a.dJoint. 

Lemma } . 2 . If t : X ... X is self-adJoint, then the eigenvalues 

~ t are real; .and the eigenvectors corresponding to di.stinct 

Proof. If >... is an eigenvalue with corresponding eigeDvector .!, 

• then t x • t x • >.. x. Using the properties of tbe inner prod,. - - -
uet it foll.ova that>..(,:,_!) = (!,>.. ,!) = (,!,f .:> • (* t ~!) = 

(>.. .!,!) = I(,!,,!) and hence >.. • t since (,!,,!) 1S real and non

zero for .! F _Q.. 'lhus the eigenvalues are real.. Suppose now 

that µ '# >... is an eigenvalue vith eigenvector z. lb.en t .l • µ. z 
and it follows that t1(=1z> • C.!,Jl z) = <.:,f z) = (*f .:,z) = 

( f' .:,z) • (>.. .!,,l) = >..(.!,z) . 1herei"ore (µ - >..H.:,z> • O; and 

since µ 'F ,..., we have <.!,z) • 0 and consequently .! ..L Z • 

If t : X ... X 1s a.elf-ad.Joint Vi.th spectrum >..(t)# it is known 
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by Fischer's Minimax Principle that >..1 (f) • 11.!Uu; 1 (_!,f' _!) and ~(f) = 
int 11.!!I • 1 (i:,t !>• (Amir - Moez and Fass, 19()2) . In what follows a,,.(g) 

and y(b) are respectively the spectrum& of the selt-adJoint opera.tore 

g and h in the Cartesian decomposition of a given operator. By Lemtm 

} . 2 the opectrums contain only real numbers. 

k 1heora ,.2. It t: X -tX has eigenvalues >..(t) • ((a1,o1))1i=1 

and Carteeia.n decomposition g + 1 h, tben 

Proof. Let x 'With llxll • l be an eigenvector oft corresponding - -
to the eigenvalue >..1 (t). 'lben 'by Fischer' o Min:tMX Principle 

~(s) ~ C.!,8.!) ~ µ1(g) and 7k(h) ~ (.!,h .!) ~ 11(h). Using the 

definitions of g and b. and the properties ot t.he inner product 

function one has 

which proves the first assertion. Similarly 
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and thu.s the second assertion is established. 

Thu.s for an, ope.rat.or f with Carteeian (}ecom,pos1t:1on g + i h, 

tbe eigenvalues off JDWJt Ue in the rectangle 1n the eOlllplex plane 

determ1ned by tb.e ca.rtesian product ot the cJ.oaed intervals 

(tJ.it(g); a&1 (g)J arsd (7k(h); 11 (h)) . Since the operators g and bare 

self ad.Joint, each cozmu.tes with its ad.Joint e.nd hence belong& to 

tb.e class ot normal operators. The normal operators on an n-

dh,ens:lonal. space are lcDOW to 'be diaaonal., and aa operator is 

diagonal U and onl.y if it baa n linearly independent eigenvectors . 

It follows that the e1genvalu.es of g and hare real W1tb each having 

n linearly 1n.dependent eigenvectors, and tbe basic powr method is 

applicable to CODJPU.te their max1mwa and m.int•va eigenvalues. (Bodevig, 

1959) . Numerical techniques usiag the power method, or var1atiou ot 

the power method in some eases, bave 'been developed to approxuate 

these extremal values with a hisb degree of accuracy. However, for 

the iterative sel:leme described 1n Chapter vm the following rougll 

approximatiou to the vertices of Rare sutticient and are mre 

readily obtained. 

Theorem 3 .~. Let the set p..1 )~01 be the zeros ot the chara.c

teristic pol.7n0m1al determined by the aelf-adJoint operator 

t : X-+ x. It {!J)~::ir:l 1: any eet of orthonormal column vectors 

1n x, then (f sa,sa) • l: ~1• 
- - l.ol 
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Proof. Since t 1s selt-adJo11lt, there exists a set (!1)t:1 

of orthonormal. vectors eucb. that t :.1 aa >..1 ! 1, i • l, 2, • • • 1 

n. Since this aet is a basis for x, !J • !a rf J, J • l, 2, 

• • • , n. Now taking the inner product of both aides with !a 

gives (!f.J ,:;'1') = cfJ(!a,!a) • r.fJ and hence .!J a (!,J ,!a)'!:.a• 

'l'hen t !J • (!J ,!a)t !a • >..a(!J ,!a)!a and ( f !J ,!J) = 

>.. ( sJ xa)(xa sJ) • ). (sJ xa)(sJ xa) • ). I (sJ xa) l2 • Nov 
a - '- - '- a - '- - '- a - '-

n 
ounn1ng on J gives (t /,/)•"-a ~l(!J,!a)l2 • )..Jl,!,2 • 

n 
But 11!~12 • l and hence >..Jl,!~12 • J1 >..1• 

Coro\J.& }.3.1. If' A • ( 1aJ) 1& the mtrix for f relative 

to E, then (t e0 ,ea) • trace (A) = a.a. 
- - a 

1root. Follovs directly from the det1nit1on of tbe trace (A) 

and the tact that this muaber is equal to the sum of the 

eigenvalues ot A. 

Corolw, }.3.2, The operator t2 : X -. X has the set (1'.~ )~ 1 
n 

as its eigenvalues and (£2 !a,!a) • Ji >.~. 

• *. • Proof. t2 = ft since t 1s self-adJoint, and ( ff) = ff 

illlplies that t2 is self-adJotnt. Since t ! 1 • >..1 ·!/, then 

t:2 :.1 = >..1 (t -=.1) • >..~ !i ~lies that >..~ 18 an eigeaval.ue of 

r2. 

Theorem ; .4. Let g + 1 b l>e the cartesia.n dec0llf90&1t1on of 
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t : X -+X. Let (µ1)~1 and (71)~1 be respectively the eigen-

values of the n x n mo.trices G • C1s-') and B • (1bJ) where Q 

and Hare determined respectively by the operators g and h 

relative to E. Then 

Proof. Since g is self-ad.Joint it follows from Corollary 3. 3.2 

which proves the first aasertion. 'lbe second assertion follows 

trom 'lbeorem 3. 3 and Corollary 3. 3.1 since 

'l'he last tw assertions are proved in exactly the same 'Wa':1' uaing 

the operator h instead of g . 

The bounds found here are probably not the best that one could 
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obtain. At the n1 th iteration, caleu.lations are carried oat in a 

rectangle whose area is appl"OXiDl!l.tely the area ot the original rec

tangle R multiplied by a factor ot 1/22 n. For this reason very 

crude approximations are adequate. Actually the iterative process 

described 1n Cb.apter VIII requires that all t.be eigenvalues of a 

given operator must lie in the interior of a square. 'Dlis can be 

arq square that aonta1ns the rectangle R, bu.tone usually chooses 

the square such that one side coincides with one ot the two longest 

sides of R. 



It has alrea.<1¥ been pointed out t.hat the mat highly developed 

spectral tb.eor;y in numerical. ana.l.ysis is that tor self-ad.Joint oper

ators. 'l'bese are the operators that give rise to seU'•ad,Joint •tri

ces relative to the basis E. The domhw1t tact about such operators 

is that there exists an orthonormal basis tor X BUCb that the ztrix 

determ:t.ned b7 the operator relative to this basis is d.1.agonal . 

{Householcler, 1953). IJ.he elements on the d1.asonal are the eigenval.aes 

ot the operator. '.Ibis 1s the 'basis tor tbe tact that self-adjoint 

operators determine their eigenvalues very well, 1. e. , &Jml.l changes 

in the elements of the matrix produce aDBU changes 1n the eigenvalues. 

'Ibis form of stab1li'Q' does not neces&al'ily hold tor operators that 

give rise to general mtrices. Consider for e.xan;;>l.e., the 10 x 10 

natr1.x A ot the following form: 

r , 
..... _) 

• 
• 

17 

• 
( ~-.'i 
\.._., I 

,. _., 
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AU elements in A are zero except tor th.e first superdia.go.nal, all 

ot 'Whose elements are unity, and the element 1 (A)10 whose value 1s 

£ . It 1s ea.sil7 seen that PA (A) = >..10 - e; and 11" E is zero, the 

only eigeuvalue of A :la zero vi th algebraic muJ.tiplic1ty ten. If 

E = 10-10 andm is the f1rst principal. n'th root ot unity, then 

{'01 • 10-1)~ 18 the set ot eigerMllues of A vit.b each having modu

ll.\B io-1 • Thus a change of 10-10 in one element of A p%0duced a 

change in JiQduli of the eigenvalues ld' as great. 1bis 1& indica

tive ot *8.t 11»q happen 1n general, and aucb a mtrix does not 'Wll 

determ1ne its eigenvalues. Pm'bably DO numerical method can give 

good &D6Wers to a problem s1rn1lar to this it the elements of the 

ma'triX are measured quantities, and the accuracy ot the results 1a 

expected to be as good as the data. It 1& quite possible in the 

ideal situation that diat.inct eigenvalues a.re sutticientq separated 

1n modulus. It 18 not procla1me4 that the method given 1n this pa.per 

ldll give sood results in all pl'Qblems. It is bel1eve~ however., 

that the met.bod vill bandl.e practical problemG even those that give 

rise to repeated eigenvalue&. 

If pA()..) is the cbamcteristie po~al oft with spectrum 

"'-(f), then ·es.eh element in )..(f) is a zero of pA(>..) of some multi

plicity a1, 1 o l, 21 •••, k . 1be nud>er a1t 1s ca.ll.ed tbe "algebraic 

multipUeity'' of the eigenvalue >..1(f) llit.h ~ a1 • n and the factor-
k a 

imtion at pA()..) given b7 pA()..) • Jll"' - )..1(t}J 1 • Each eigenvalue 

"'°i (f) bas at least one associated eigenvector. ~e maximl number ot 

linearly independent eigenvectors associated With the eJ.genvalue ~1(t) 

1s called the n geometric zwl M,pUc1 ty' of ).i ( f) and denoted by Si• 

1b.e linear manifold or this max1Dal set 1s the eigenspa.ce 0:t t aasooJr. 
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a.ted with )..1 (t) . The method developed here tor numerical COJJlPutation 

of the eigenvalues is restricted perhaps since one of the basic re-

quirements laid down is that the e igenspace be found for each eigen

vaJ.ue. ibat this requirement is satisfied is demonstrated in Corol-

lar, 5.3.2. 

'l'he name "deflation" is given to any teolmique used a.tter 

finding one eigenvalue and corresponding eigenspace to reduce the 

original problem to one 1n which the ltDo1m valu.e and vector or 

vectors are no longer present. It is believed that the present 

method has greatly redu.ced the complexity ot this problem, and the 

reduction is found in part 1n the proof of the following. 

Lemma 4 . l . If f : X ... X bas an eigenval.ue ~1 (f) whose algebraic 

an.d geometric multiplicities are respectively a1 and s1, "I.hen 

gi s a1• 

Proof. Let (!k)~1 be the linearly independent set generating 

the eigenspace associat"4 with )..1(t) . Complete this set to a 

baai·B B tor x. One now constructs the matrix A tort relative 

to B. Since ti' • )..1 {t)_!k by assWQption, the first g1 colWDllB 

ot A will be )..1 (t)~\ k • l, 2, •••, g1• It follows that the 

first e;1 columns of the ma.tri.X (A - "- I) will then be 

k ~ {>..1{t) - >..~, k • l, 2, • • •, g1 and hence ()..1{t) - )..) is a 

factor of pA{>..) and thus s1 :s: a1• 

It will be seen tbat the method employed is direct in that for a 

given).. a polynomial Pn(>,.) is evaluated which is proportional to 
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PA(>..) t and deflation is obtained by considering the expression 

Pn().)/tr (>..1 (f) • >..) gi were the first k distinct eigenvalues are 

know. 



S PIVOTAL MATRIX AND ITS PROPERTIES 

Let A be an n x n matrix relative to E tor the operator 

t : X-. x. The nons1ngular n x n elementary mtrice& GiJ' o1(c) 

and G1J(c) are called 'l'ypes I, Il and III respectively. Employ

ing the usu.al definition of matrix multiplication, these matrices 

are defined as follows: 

Type I . The natrix GiJ A is the matrix A with 

rows 1 a.ad J interchanged. 

Type II. The mtrix o1 ( c )A is the m trix A with 

row 1 multiplied by a non-zero constant c e c. 

Type III . The matrix o1ic)A is the matrix A 

With row J replaced 'by c 1.! + i!' i . e . , the row 

J 1a replaced by the sum of c tirEs row 1 and 

row J. 

These three types of matrices as defined here are elementary 

row transformations 'Which are applied on the left of a given oper-

ator 1n matrix representation. 'l'he1 are used here 1n reducing n x n 

matrices to pivotal form which is defined in Definition 5. 2. It can 
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be shown that the rank function of mtrices is an invariant under 

row equivalence. (Stoll, 1952) . 

Definition 5.1. Two mtrioes a.re row equivalent it one can 

be obtained from the other by a finite succession of ele-

mentary row operations . 

'l'hllS matrices A and Bare row equivalent if B =GA where G 

is a noneingul.ar finite prod.uot of elementary mtrices. 

Definition 5.2. A square matrix P • ( 1pJ) 1s called a 

pivotal mt.rix 1t the toll.owing conditions hold: 

; . 

'lhus it is seen that a pivotal matrix is by definition upper 

triangular and tba.t the elements on the main diagonal are either zero 

or one. The naine given to the matrix comes from the tact that in tbe 

reduction of a matrix to pivotal form one chooses the element of 

maximum absolute value in a given colUDIJl and shifts this element to 

a position on the ma.in diagonal. In the construction process de-

scribed in the next theorem, it becomes apparent that this is done 

to give greater accuracy and less round-oft error in the numerical 



computations that are necessary for such a reduction. 

Theorem 5 .1. Every square DB trix A = ( 1 a J ) is row equi vs.

lent to a pivotal matrix. 

Proof. The proof is constructive and in the construction 
jl. 

the columns of A are taken care of one by one. Let a be 

the non-zero column of A with smallest index J1 and kaj1 

the largest in absolute value of its non-zero entries. 

Mul.t1ply A 1n success~on by Gk(k:ji), okJ( -Ja Ji) , J = 

l, 2, •••, k - 1, k + 11 •••, n and GkJ • The result is a 
1 

row equivalent mtrix P = G A with 1(P )j = O for i ~ j 
l. 1 1 

jl. J 
and J < J , (P ) = 6 1 , and G a product of at most n + l 

l. 1 - l. 

elementary matrices, :I.he transformations GkJ( -Ja J' are 
Jl. 

applied to reduce the elements J8· , j = l, 2, • • •, k - l, 

k + 11 •••, n to zero; and of course, are not applied if 

the element is alrea.~ zero. Next locate in P, with row J 
1 l. 
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deleted, the non-zero column with smallest index J2 > J1 , and 
j 

let ka 2 be the largest in absolute value of the non-zero 

entries in column J2 excluding the entry appearing 1n row J1 • 

Multiply Pi by Gk ( k:J;) , GkJ( "J"·j2
), J a l, 2, "•, 

k - l, k + 11 •••, n and °itJ
2 

in succession. These multipli

cations do not affect the columns of P1 with column index 

J < J2 • This follows since all columns of P1 with column 

J1 J1 index less than J1 are zero columns, (P1 ) = §. , and 



any eolumn with index i such that J1 < 1 < J2 must have aU 

zero entries except possibly the entey appear1Dg 1n J (P 1 ) . 
J. 

~ reault is o. row equivalent matrix P2 • 02 01 A 'With 

J ~ h 
1(P2 ) = O tor i > J and J s; J2 , (P2 ) = §. and °:a G1 a 

product of at mst 2(n + l) elementary m.trices. 1he 

p-1"0cess terminates 1n m ~ n steps and P • Gm • Gm-1. ••• 

G1 • A 1zwo1ve& the multiplicatiml of' A by a .finite number 

of elementary me.trices. By constructicn it 18 aeen that P 

satiatiea eond.itions {l) and (2) in the det1nition or a 

pivotal matrix. 1'o show that condition (3) is also sa.tis

.t1ed, let 3PJ or; 0 and assume there exists some k > J such 

that :lk # o . 1ben 't!k o Oby condition (2), but this 1s 

tiqposs1ble since by condition ( l) and by asaumpt.U>n 1~ • O 

tor 1 :? J and tbe transi"ormtion °itJ of Type I could be 

appUoo... 
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A simple example 1a given beloW (using a 4 x 4 real natrix A) to 

help clarli'y the JlllDarS.cal p1."0cedure used in obtaining the pivotal 

form.. ibe last matrix given 1n tbe sequence of redt.u:tions 1s the 

piwtal form P ot A. ~ transfol"lDBtiona used in tbe reduction ( ap,

plied f'rom left to riS)lt) are as follows: 
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1':le numbers in parenthesis above the arrows 'below refer to the 

sequence ot transformations given above. 'lh.ese were applied to the 

matrices on the left to obtain those on the rigilt of the arrow. 

r ,..., -1 
I l ~ n ' 1 
I 

\_, 

- I - 2 0 
/\ :: 

I 4 - 2 -I 

12 5 -I -I 

r1 % -'/2 -Y2 

'. I ) 0 Y2 -Yz ~ 
.6. ···-····-> .. P, 

0 % _3~ -~ 

1. .. ..0 -V2 'h. ~ 

I 0 2 v~ 
r r · \ 0 -I - 'I,, 

D .\~- S,... .: p2 , I 

0 0 0 21~ 

I_ 0 0 0 1/3 

·" 
,., ,--.! 

"l 
·J c.. 

I •") -I ·) 
P. (3)aio- l ~ 

:: p 
2 ! ) ."'\ '1 -i I ., ._/ 

' l 

! ') 
L - 0 (') ,. 



Before discuseiDg some at the properties of a pivotal mtrix,-

it UIJq be advantageous to exam:Soe the me.trtx P just obtained. First, 

the r(A) is three since there are three linearly independent colwnns 

1n P. 1h1a int)l1es that the dete.minant of A is zero, and there 

exists a one dimensional. subspace belonging to N(A) . 1be veetor 

T x • (-2, 1., l, 0) apana this subspace. 1111s vector is obtained -
from P by eomputJ.ng .! • ! 8 - i". 1beorem 5.} shows t.nat a llDl'e 

geneml re&Ult 1s true. 

Theorem 5.2. If P • ( 1pJ) = (,E1 , 'R,2 , ... , Rn) 1s a pivotal 

mtnx, then 'if!- • P. 

hoot'. The element in the 1' th row and J' th column of p2 

is given by 1 (:P2)J Q 1P''· r/J . If 1p1 • O, then by defin.1-

ti<m ,,_ 1s a zero row, and hence 1(1'2)J = 1p0 <PJ = 1(P)J = o. 

Ii" 1p1 = l and 1pk = 0 for k !: J., then 1(:P2)J = 1P',. ,PJ • 

1PJ • 1 (P).1 . If 1p1 111 l and 1pk 'f O tor k ,;. 1, then ~k • o 

'1ill1eh implies ~ = O and hence ~J .• O for J • l, 2, •••, n . 

Thus 1(r)J • 1P'1 c/J = 1PJ • 1(P)J . 

Corollary 5.2.1. If' .:1 1a any column of a pivotal IDBtrix P, 

1 1 
then P .! • .! • 

column vector of P. 



matrix obtained from an n x n mt:r1x B su.ch that P ;:;; G B. 

Let {SJ ) be the non-zero vectors contained 1n the set 

~J • .ltl), J • l., 21 .. •, n. 'l'hen {SJ} is a set of m ~ n 

linearly independent vectors spanning N(B) . 

1 l i i i 
B .! • B(! ... i ) IP B ~ - B .E • 

and b.ence i}· c N(B) . It there ex:tsto scalers (1a)~1 c C 

not au of Vlucb. are zero such tba.t !a aa = ~, then tor 

some ta F o, /' • • } Jk t Ja. li'ov / c (SJ) l.Jlipl.1ee 

!k 11- ik and heace ~k • o. But thia iJrlllies that .,,,. = .2, 

ud thus it toll.ws for the k'tb couv;,onent of .!k tbat 

eince i!J a o, 3 • 1, 21 •••, k • 11 k + l, •• •, m. But 
. k k k k 

b7 definition of.! it toll.ow that kx • ._P., ... t9 = l 

since 'lf!Jk • o. Tb.is is a oontru.d1ct1on and hence (SJ) is 

a linearl,)' 1ndependent set. Since P • GB and G is non-
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sirlgul.a.1", it follows that dim R(P) = dim R(B) . Since !. i, 

1 • l, 2, ... , (n - m) are linearly independent columns or 
3 J 

P and P !! i = ~ i, it follow that dim R(P) = dim R(B) ~ 

n - m, so tba.t d1m N(B) = n - dim R(B) ~ n - (n - m) a m. 

Since (SJ} contains m linearly independent vectors tbat 

belong to lf{B), it follows tbat dim U(B) = m and heace (S .1) 

sputs lf(B) . 

CoroU,arz 5.3.1. If B al (A - >-.1(t) I) lilere A 18 the D X n 

matrix tor an operator t with eigenvalue \,Ct), then gJ = 

m = n - r(P) where gJ is the 3eometric Dlltipllcity ot the 

eigenvalue >-_,(f) and P tbe pivotal form ot B. 

k Proof.. 1be pl'OGf 1s J.mmed1ate wen one notes tbat each .! £ 
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(s3) 1s an eigenvector corresponding to the eigenvalue >.J(t)., 

a.nd {SJ) 1s a l1aee.rly independent eet of m vectors spaim1 ng 

N(B) . 

Corollaey 5•2•2• l:f B = (A • AJ(t) I), then M((SJ}) is the 

e1genspace ot A assoeiat.ed w1 th the eigenvalue "°J ( t) . 

Proof. 1he set {BJ) is 11nearly independent and it .!kc {SJ), 

tben .!k E ll(B) . Since {SJ} 18 a. na.ximl linearly bldependent 

set, it tol.lowG that M((s3)) 1& the eigenspace. 

In the next chapter an "al.m::>st tr1Emgul.a.r" atrix is defined, 

and a method 1& given for reducing o.ny- matrix A to an al.moat. tr1-
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angular form B 'Whose eigenvalues are the same as A. ibe results of 

the present chapter are applied to the lll!ltrix (B - >-. I) lilhere >-. is 

an approximation to aa eigenvalue of ll . In ib.eorem 7.1 it 1s show 

t.hat tbe determinant of (B - >-. I) can be ealew.ated b7 eval.l.lating 

a polynamial P (>..). ibis evaluation d.epen4s on reducing the matrix . n 

(B - )I. I) to a pivotal fom P. An appro.x.i.mation >-.3 is close to an 

actual eigenve.lue w-en the DDdw.us or norm oz P11(>..3) is smll. If' 

\, is considered the J'tb iterate 1n a -sequence or sppl"OX1mationa 

and the norm of Pn(>..J) appl.'08eAes zero, then the sequence approaches 

an eigenve.lu.e of A. Since t.he pivotal torm is obtained at each step 

e1genspa.ce • . 



Definit.ioll 6. l . . A square matrix A is al.met lower tria.nglllar 

if 1aJ = O for J > 1 + 1.. 

I:f f : X -+ X and. A 18 the n x n matrix determined by t relative 

to E, then A can be reduced to an alm:lst triangnl a.r matrix B whose 

eigemraluea a.re tbe 6aD'! as A. The process 1s a geneml.1zation of 

a.n 1• of J . w. Givens (1956) in his method or solVins the eigen-

DetinltJ.on 6.2. An operator f is unitary if the composit.ion 

* tt 1s the identity operator. 

* If t is un:ito.ey, then from Defin1Uon 6.2 (~z) = ( ff ,!,,l) = 
(f' ,!,f _z) for all ~Z, E Xe 1bua upon setting '¥, • ~ it follows that 

l! f ,!1!2 • !i_!il2 • Tb.is implies that N(t) = {Q) so that f has an inverse 

• • * * and C 1 • f . Since ft= (t f )( tr1 ) = t( tt) r 1 = l, it follows 

* tba:t t is &lso unitary. The matrix determined by the unitary 

operator t relative to 8ZlY orthonormal basi s is also call ed unitary. 

Definition 6.3. It Ti, J is an n x n unitary matrix and 1bJ 

* is zero in tbe matrix B = Ti, J A Ti, J then T1, J is a plane 

30 
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rotation mtrtx. 

If an arrow is read as "1s replaced b)"', then a rotation matrix 

1B obtained from the unit mtrix where i+1a1• 1 ... c., /J ... c, 1+1&3 ..., 

-s, and l'i+l -+ a . 'lbwa a rotation llBtrix bas the to1lowing form: 

T = ' 

I ' j 

0 

i +- I 

i + I 
C 

i+l 
· S 
J 

0 

* • A direct calculation show that T1,J Ti,.J • T1,J T1,J :a I provided 

_2 2 . . . ( J) • c- + s • l; and for the matrix 1b ~ T1,.J A Ti,J" the element 

1oJ bas the value e 1aJ - s 1a1+1 • lt' now c ands a.re cbo&en au.ch 

that c = 8 1+1/{( 4 1+1)2 + { 8 J)211/2 and 8 • aJ/[( a1+1)2 + 
1 1 i i i 

( 1a4')2)J./2 , then c2 + s2 = l and 1'bJ • o. It should be noted that 

• T1,J applied on the right and T1,J applied on tbe lert of a ztrix 



affects only the ( i + l) 'th and J • th columns and rows. To obtain 

the alllDst tria.tJ.gul.ar fo~ one begins witb. the rotation mtrix T 1,s 

* to reduce 1a3 to zem and sets A1 = T113 A T1 , 3 • t1a.1Dg the matrix 

• A one computes T1 A T1 , sad the result iS a natrix A .... sueh 
1 ,4 1 ,, 5 

that 1 (A2 ) 8 = 1 (A2 )'4 = 0 since the element 1 (A1 )
3 1a not atteeted. 

'lhe process is eontinued across the fir&t 1')W until the rotation 

T1 is applied vitb the reeul t that 1 (A ..,)J • 0 tor J = 3, 4, • .. , ,n n-~ 
n. For the matrix~ one begins vith the rotation T24 to annihi-

late 2 (An-a)" and continues acrou the aeeond row terminating V1 th 

T ... . In general one amtlb1lates in order the elements 1n each row 
2, ... 

1 using the mtation a.trices Ti,J' J = 1 + 2, 1 + 3, •••, n where 

l,; 1 s: n - 2. Ot course 1f the e.leuient is alreaq zero, the rota-

t1on is mt applied; and a brief eaJ.culation show t.bat at mat 

}<n - l)(n - 2) rotations are needed to bring the mtrtx A into the 

form ( 1bJ) = B • •'l' A 'l llhere 1bJ • 0 tor J > 1 + l and 'l' = T • •• 1,s 
• Since (B - ).. I) • ( T A T • >.. I) T T ••• T T ••• 'l' • 1,n 2,• a,n e,s 11-2,n 

• • • = ( 'l' A T - ).. T T) • T(A • >.. I) T, 1t follows that IB - >.. I I = 

IA - 1'. II and hence the eigenvalues of B are the 88me as t.hose o:f A. 

I:t B bu an eigenvalue 1'. with correspond.1.Dg eigenvector.!, then 

• B x • >.. x implies that T A T x = >.. x or A T x • >.. T x and hence T x - - - - ... - .... 
is the corresponding eigenvector of A. It sllould be noted that f'.rom. 

a C01qpt1tational standpoint T is obtained if the columns of tbe unit 

natriX are operated on precisely as are the columns ot A 1n the 

reduction. 1h18 will avoid full mtri.x uw.tiplication. 1.1he preced

ing establ1ehes the following. 

'lheorem 6. l. A well-defined aequence ot unitary trausfor-
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mations, affecting at each step only two rows and tvo columns, 

will reduce an arbitrary n x n matrix A to an almost. lower 

trianguJ.ar matrix B whose eigenvalues coincide with those of 

A; and 11' ! is an eigenvector of ll, then T ! 1s an eigenvector 

ot A where Tis the product of the unitary transformations 

defined above. 



CHAPl£R VII 

.. 
In this chapter B e T A T is the matrix obtained by 1beorem 6 . 1 

from the n x n uat.rl.x A determiaed by the operator t : X ... x . It has 

been shown that IB ... A II • IA - A IJ = pA (A) vhere the mtrix tor 

the operator (B - A I) bas t.be following 1'onu 

' b2 b-A ,"\ ,J 0 I I \J 

hi 
., 

.... b3 b-- A 0 0 2 ·-· 2 ,:_ 

'8 .>.. I} --\ .. - -
I 2 ~' 4 n 

n - , ti n- , b n- , b n - 1t· n - 1 b 

L 
I ? ~ a r, 

n b nb- n h"' nb nb- .>.. 

One considers the elements on the tirBt super-diagonal of 
r n-1 J 

(B ... A I) and aen.nes a constant k • (-1)n+-1 l J!1 1b1+1 • It 1s 

assumed through 'lb:eorem 7.1 that k is not zero. 'lhe case where 
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one or mre o:f tlle elements in this product are zero is considered 

later. It will be shown tbat k is the proportionality constant which 

occurs 1n the special vay that the determinant of (B - 1'. I) is evalu-

at.ed for 93X1' given value of"-• 

U ~J 1s an n-colwnn vector with COlfl)Onents (1xJ}~,! then the 

n equations in the n unknown coarponent& of x.J for the hon>geneo\1$ -
system (B - ).J I)~J • .Q can be written as tollovs: 

P (). ) • ( b1 - A ) XJ + b2 XJ + 0 • XJ + • • • + 0 • XJ = 0 
1 J 1 J 1 1 2 s n 

• • • 
• • • 
• • • 

It should be pointed out that the n'tb equation above defines the 

polynomial Pn(>..) = nba axJ - >..nxJ . 'l'beorem 7.1 of this chapter shows 

that this polynom:ial evaluated for a given value of 1'. 1B proportional 

to the determinant of the operator (E - >.. I) . Tb.is determinant ia an 

n'th degree polynomial in>.. with the same zeros a.a the characteristic 

polynomial pA (>..) . Under the as&umption that k 'I- o, one can show tbat 

Pn("-) can also be regarded as an n'th degree polynomial 1n >.. . Jlor 
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consider the set {P1(>.) • o}t! of linear equations defined above. 

Since k 1 01 one can solve tor 2 xJ in P 1 (>.) = O obta:lning a Unear ex

pression 1n >.. Substitution of this value of 2xJ 1n P2 (),.) = 0 shows 

that 3 x.J is a quadratic expression in >. . If one continues these suc

cessive aubstitutioDS throusb Pn.{"-) • o, the n'tb component can be 

represented as a polynomial. in>. of degree (n - 1) . Thus P11(),.) = 

nba a~ - >.nxJ ean be regarded u an n• th degree poi,nom:tal 1n "-• 

Suppose now that >.J is an a.pprox1mt1on to an eigeJ'lValue of B. 

'Die iterative process in the next chapter will prod.uce a s.eqaence (>.J) 

such that (IP n (>-J) ( ) .... o. Thus t.he sequence P.,. J) approaches an eigen

value ot ~ vhich by Theorem 6. l is al.so an eigenvalue of A. 'lhe com

ponents of the vector xJ used 1n tbe evaluation of tbe norm ot P (>.") 
- n ~ 

are cbo&en 1n a special way. The choice of !J depends on the pivotal 

form of a certain mtrix that 1S cl0&el.y related to matrix B. This 

related matrix, which depends on>. and 1s denoted by M, is constructed 

in such a~ that N(M - >. I) always contains a non-zero vector vhere 

I is the (n + l) x (n + l) identity mtrtx.. 

Consider now the (n + l) x (n + l) matrix M vi.th the following 

form: 

r 
I b2 ,b 0 0 I 0 0 
I 2 . 3 

2b 2b 20 ('\ ,..,, 0 0 

{ M) -

n b nb2 n 
b3 

n 
b4 

0 0 0 0 

\,,. 
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It should be noted that the matrix M contains the matrix.Bas a. sub-

matrix 1n the upper left band corner. '.lhe entries 1n the (n + l)st 

row and column a.re &ll zero except n-1 (M)11 and n(M)n 'Which nave the 

values land).. respectively. 'lhus any value for).. is an eigenvalue 

ot M since the matrix (M - ).. I) contains a zero rov and conHquently 

IM - >...II .. o. 'lhe mtrix Mis almost lower triangular by construe-

tio~ and the product of its first su,perdiagona.l elements is the 

eonstant k defined earlier. '!'he matrix M Just defined and the assump,, 

tion that k 1 Oare used in the following 

Lenaa 7.1. '!he null space of the operator {M - >. I) for a 

fixed value of >... is non-trivial; and if ~J with components 

( xj)z:rt-1 is a.nv solution tben t.be N'\fflTY'\nent xJ is different 1 ia:1 -..,,, , ---.r- 1 

from zero . 

Proot. Tb.at non-trivial solutions exist tollovs from the 

fact that IM - >-. I I • O for every value of ).. . Ir ).. has the 

f1xed value )..J' then by 'lbeorem 5.:, the null space of 

(M - )..JI) 1e generated by the set {SJ) of linearly inde

pendent column vectors . Let xJ E N(M - )..JI) and assume 

1xJ = o. 1hen the f1rst equation 1n tbe system (M - "°J I)~J • ,2 

implies that xJ • 0 since (M)1 • O, 1 = }, 4, •••, (n + 1) . 
2 l. 

But then the second equation ilqplies that 3 xJ = O since 2 (M)1 aa 

o, 1 ... 4, 5, • • •, ( n + l) • The same reasoning carried through 

the n'th equation 1n the system implies that !J is the zero 

vector. 1h1s is a contradiction since xJ c (SJ) and cannot 

be the null vector. 



Several important observations can be JJBde concerning the GOlu

tions of the system (M - >.J I)!J = .Q• A basiS (SJ) for N(M •>.JI) 

is obtained by rec1uciDg the matrix (M - \, I) to pivotal form P 

'Nbere P = G(.M - ). J I) . 1h1s reduct.ion Will never af't'ect the bottom 

row of all zeros., so ~n+l subtracted from the last column of P will 

always be in the baBis tor the null space o.f (M - >-. j I) . Nov tile 

last coluran of P 1.s simply the effect ot G on tbe (n + l)-colWllll 

n vector ~ , and the transpose of this last col.umn always bas the f'orm 

( 1,J,. ~, ... , n,,J' o) . Si.nee by Lemma 7.1 tbe first component can

not be zero., one can define t.be n-column vector "!!J with components 

{1-,J/ 1,-1}~,. 1 \there 1x-' 1a unity. It "!!J 1s the vector Just de.fined 

and (P 1 C\1 ))~l. the set defined earlier for the system (B - \, I )!J = 

Q., then it tol.lovs direetl.7 that l\(>-J) • O tor 1 = l., 2., •••, 

(n - l). It ts tbi8 vector ,t t.hat is used in tbe next theorem which 

8.hovs that P ().J) • ba xJ - (). 4 ) xj is proportional. to the determi-
D. n a "n 

nant of (B - "-J I) . 

1beorem 7.1. Let P be the pivotal form of (M - ).j l) and 

(1.,J., 2.,J, •••, n.,J, 0) the transpose of the last column or 

P. It ~J is an n-column vector Vi.th components {1;/ 1.,J)~=l" 

then pA().J) = k • PnC\1) . 

Proof. Consider the mtrix fOl" (13 - >-.J 1) in which the first 

colWIID. 1& multiplied by 1xJ. Bow one multiplies column two 

by 2 xJ and adds to column one~ mul:tiplies colwm three by 5 ~ 

a.nd adds to column one~ and eo on until column n is multiplied 

by ,d'j and added to column one. 'lhe result is a matrix B1 



whose detemina.nt valae is the same as (B - A I) . Since 

xj = l, B bas the fol.loving form: 
1 1 

F; (A j } 
? 

,h- 0 0 

Pz {Ai) 
2 b3 0 (2b->..j} 2 

(81) = 

0 

0 

2 3 4 n 
P0 _ 1(X j) n-t0 n-,o n-,b . . . n-,o 

bz b3 b4 n 
Pn(Xj} . ( b->d 

n n n n J 

Now by assumption P1(AJ) -= 0 for i = 1, 2, •••, (n - l) . 

'l'hu.a expandi.l2g in terms of the tirst column, one obtains 

IB - AJ If o PA (AJ) • IB1 I • k • Pn(AJ) . '!bis result 

f'oll.ov8 since the eoi"actor of t.be element P11(\1) in !B1 1 

is (-l)ltf-1 times the determ1Dant of tbe subma.tr:Lx ot order 

(n - l) obtained from B1 by deleUng the first column and 

last row. 1h18 submatrix is lower tr1angul.ar,. and the 

value ot its determinaDt 1s the product or it.s diagonal 

elements. B~i. this produ.ct multiplied by (-l)D+l. was 

p!"e'Viousl¥ defined as the constant k. 

~ 

It was pointed out earlier that no use was ma.de of the last row 

of zeros 1!'l (M - )..JI) when this matri.X vas reduced to pivotal torm. 

'lbus from a computational standpoint this la.st row 'Ba)" simply be ig

nored. 'lbe first n components o:t the vector (1 ,-3, 2 -,J,. ... , n..,J, O), 

vh.1ch were used to obtain !J, are then the etf'eet of G on the n-column 

n vector! where P = G(B - AJ I) is the pivotal f'rom. ot (B - AJ I) . 
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But since G w1ll be the inverse of (B - )..J I) if )..J is not an eigen

value of B, one may as well record G by operating on I as the reduc

tion proceed&. ihen the transpose ot the last column of G Will be 

the vector ( 1;, ~, • • •, ~) . 1b1s observation 18 used 1n the 

next chapter 1n producing the sequence of approxine:tions ().. j} from 

'Which the sequence ff Pn("-J) IJ 1-s ceJ.ew.ated. 

In the cue k D O one or mre ot the elements 1b1+1 , 1 = l, 2, 

•• •, (n - l) must be zero. When this occurs the complexity of the 

pmbl.em is actuall.y reduced. Be.tore stating a general procedure-, it 

is believed that the folloving exanele corresponding to a 9 x 9 

matrix :tor the a.llrDst t.r1angular mtr1x B wlll help to clarify the 

procedure.. Consider the matriX B obtained from A vith tne fol.loving 

fom: 

{8) : 

X 0 0 

X 0 0 0 0 0 0 :}: 
- --·---~--,.,.._ ____ ..... 

X 

X 

X 

X 

X 

X 

X 

I 
X I 

X 

X 

X X 

X 0 

~ 
X X 

X X 

0 0 0 0 

0 0 0 0 

o o o o I 
"-·- - --- --~ - --

x X Q o! X X X X 

~ - i 
X X X X X X X O I 

~ 
X X X X X X X X 

I 
X X X X X 

i 
X . ! X X 

"-- - ---------' ...J 
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Let A1 , Aa, and A5 denote respectively the 2 x 2, 3 x 5, and 4 x 4 

matrices indi.cated 1n blocked form above. Then using Laplace's ex-

pana1on theorem it is aeen that }B • ).. I l = IA1 ... >-. I J • IA2 • ).. I I • 
IA3 ... ii. I I, and hence PA(>,.) = PA (>,.) • PA ('1..) • PA (>,.). 1bus an 

1 2 3 
eigetlvalue ot any- of the three smaller matrices is al.so an eigenvalue 

ot A. Since all of theee matrices are almost triaDgular with the 

product of their first superdia,gonal elements different from zero, 

Lemim 7 . 1 and 'Dleorem 7 .l C81'l be appU.ed to obtain the eigenvalues and 

eigena-pe.ces. Once an eigemralue 1s found, then one uses Corollary 

5.3 .2 to obta.1n the corresponding eigenapaee. 

In the exampl.e above one notes by 1heorem 7 .l that PA (>,.) = 
.. 1 8 

k1 Pn (1\), 1 • l,. 2, :, where k,_ • lb2, ~ c 1!Js ib1+1, k3 :i 1Ua ibi+i, 
1 s 

and n1 is the size of A1• If K • ti k1, then one can write pA (A) = 

4 
K A Pk(>..) . In general then, using the teclm1que described above, 

one can write pA (>..) aa a product of' J ~ n polynomials. For each i 

such tbe.t l $; i ~ J the po~ pA (>..) is proportional to P ("-)• 
1 ni 

1bu8 if' K is the product of the non-zero elements on the first auper
J 

diagonal. o£ B, then one can vrite pA ().) c K J1 P n (ii.). ihe proceas 
1 

reduces then to finding the eigenvalue& in turn of the smller 

uatrices. 



CHAPl'ER VIII 

Let A be the 11 X n DBtrix determined by f : X ... X relati.ve to E 

• and B = TA T the alJnost lover triangular mt-rix obtained fl'Olll A. 

For each. app~tion )..J to an eigenvalue of B,. one determines the 

vector ~J by 1\leorem 7 . 1 such that P1().J) • 0 for 1 = l, 2, •••, 

(n - l) . It E > 0 is arbitrarily 811Bl.l and IP4 ().J)I < e, then ).J 1s 

arbitrarily close to an eigenval.ue ot A with correspcmd:lng eigenVectQr 

!J• 'l'he aim then 1s to construct a sec:pm.ee (>-_,} of approxim&tiolls 

such that the seqaence {IPn(>ti.J)l} converges to zero. 

'Die fir&t pl'Oeess described here to obtain the sequence {). J} 1s 

one for which the author bas been unable to determine conditions lhicb. 

would insure that { f P n (>-J) I } 1a a null sequence. However, the segµence 

(Aj} does converge by the nature 1n which the next approximation is 

chosen; and consequently, the sequence (IPn(>-_,) I) mwrt. approach a 

limit. It is eonJectured that one can always choose a sequence (A.J) 

in a prescribed -way such that this limit is zero, and. hence an eigen

value can l>e found. 1h1s conJecture 1a based on the results obtained 

in sol Ying numerous experl.mental problems on a digital ooaputer. Be

fore diacuss.ing the construction process of the sequence{>-_,}, it J1:tii1Y 

be instruetive to discuss some ot these results. Since pA (>-) can be 

calculated tor 801' value of' >-, the pMCess of t1nding an eigenvalue of 

A 1s equivalent to f'inding a zero of an n'tb degree pol.yDomi.al though 



tbe analytic expressi.on for pA (>..} 1s not known. 1hus the proceS& may 

be used to find the zeros or any explicit poJ.ynomial, and the reaults 

given 1n Tables I and II vere obtained using polynomials of degree six 

and ten respectively. 1b.e results in i'able I ·show that the process 

can find the zeros although all the zeros are very close with almost 

equal mdul.1. 1be zeros ot the po~ in Tal,le II oecur 1n 

widely separated groups llbere the zeros in each group are again close 

togetber with al.mat equal BIOdul.1. If' one compares the columns of 

calculated z:eros with tboue tor toe aet.ual zeros, it v.Ul be seen that 

In order to construct. the sequence P.j) it is &.impler to assume 

that all the zeros ot pA (>..) lie in the interior of a square D vhich 

contains tbe rectangle determined 1n Chapter III. 9le boundaries of 

Dare pe.rallel to the rectangula.r axes in the complex plane witb tbe 

length of ea.ch aide delloted by d. 'l'o start the iterati.ve process one 

divides D into quadrants {Q1)';_1 and computes the 1::.(lPn("-1>ll 
'Where A.1 is the center of Q1• The first element in the sequence {>..3) 

is then the approximation that corresponds to this m~n1mum. Suppose 

that >..1 is one ( there my be more tban one) of the app.roximtions for 

'Which this minimum is attained. One now constNCts a 8Q).ltU'e D1 that 

contains quadrant ~ with the restr1et1on that D 1 c D. 'lbe length o£ 

each aide ot D1 is 4i • ( 0. 5 + a)d where O ,; a < 0. 5. 'lb.us if a • o, 

then D coineides vi.th the quadrant Q • Bow on.e divides the square 
1 1 

D1 into quadrant& (~ }t_1 and agai.n computes ~ (IP n (>..1) I} where >..1 

is now the center of Qt. The second element 1n the sequence {A J) is 

then the appl"OX1.lm.tJ.on that corresponds to this minimHm. As.suming 



i 

0 

l 

2 

' 4 

' 6 

0 ...$ ( 0.0000000 X 10 , •l. 00,}292 X lu-) 

( 6.2550U7 X 10", 6.2550U7 X lo') 

(-:,.2431428 X 10", 0.0000000 X lOO) 

( 4.~o669 X l<f3 1 •4.4ai.0669 X 1<>3) 

( 0.0000000 X lOO, 6.9747711 X la2) 

( .. 2 . 8<),t)l.99 'X lol 1 •2.89}0499 .X lol) 

( 1.0000000 X lOO, 0. 0000000 X lOO) 

Actual Zems 

(4.8350, 4.8'50) 

(4.8200 I 4.82oo) 

(4.8100 , 4. 8100) 

(1'..S,55 , 4.S,55) 

(4.8000 , 4.8000) 

(4.a,oo , 4.S}oo) 

{4.a,,oooo, 4.s,;oooo> 
{4.8200000 , 4.8200000) 

(4.8099999 , 4.8099999) 

(4.8354999, 4.8354999) 

(4.8000000, 4.SOOOOOO) 

(4 . 8300000 , 4 . 8300000) 



1 

0 

l 

2 

' 4 

5 

6 

7 

8 

9 

10 

Actual Zeros 

(-100 , 100) 

(•101 I 100) 

( .. 101, 101) 

( 200, 300) 

( 201 , ,oo> 
( 201. , :,01) 

( 001 I 000) 

( 000 , 001) 

( 001 , OOl) 

( 299 , -099) 

TABLE II 

10 
t(z) • }: (a.1, b1) z1 

1•o 

(a1,bi) 

( 5.2564917 X loJ.8 ) •2.94,75105 X loJ-6 ) 

( ... 3.36'6498 X 1018 1 l .239380} X 1<>17 ) 

( ... 6. l77l9t)0 X 1018 1 • l .0493940 X loJ.?) 

( 4.277196() X lol8 1 9e522ll40 X 10115) 

( 8.0'+6()358 X loJ.8 , 9. 5298119 X 10.U) 

(•8.869990() .X 1012 , 1.4'61220 X loJ.2). 

(-1.487462, X lrJ'8 1 .5. '4,03,76 X loJ-0) 

( 8.1432931 X l<f18 , 5.43204.99 >< l .a°7) 

(.3.9491,00 X 10°9 , 5.4320499 X lOOS) 

(•6. 0100000 X la°2 , •l.10,0000 X 1<>°3) 

( l . 0000000 X lOOO 1 0.0000000 X 10°") 

Calculated Zeros 

(•l.0000000 X lG°2 , l . 0000000 X lo<>-2) 

(-l. 0100000 )( lcf'2 , l.0000000 X lcf'2) 

(• l .0100000 X 10°2 , l . 0100000 X 1<>°2) 

( 2. 0000000 X l~ 1 3. 0000000 X 1002) 

( 2. 0100000 X l<i'2 1 !i.0000000 X 1<>°2) 

( 2.0100000 X lcf'2 , .5.0100000 )( lcP'2) 

( 9.99()9999 X lO•l 1 -J.i..6481.929 X 10-8 ) 

( l.9()72;92 X lO•ll, l.0000000 X lOOO) 

( 9•9999999 X 10-1 , 9•9999999 X 10.1 ) 

( 2 . 99()0000 X 1002 , -9.,90()0000 X lo01 ) 
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ta.ins quadrant Q; with tbe restriction that D2 c D1 and the length 

ot each side of D2 being d2 • (0. 5 + a.)d1 • '!ban the entire process 

is repeated. Before giving the general formal.a for constructing the 

square Dn+1 from Dn' it may be helptw. to eoneider the folloving dia

gram sbow1ng the const.1'\lction of the first t1IO squares :from the 

donain D. 

02 0 1 I 
I 10:.. o• ' 

I 

• ' I t -- - - -, • • I 
>-2 A1 

l 
_J ,,. 

--
1 I',' l ,-..1 

''"" 3 I ',J .. 
t • • • I >. ~ I ). 4 I I '---- -

03 -
04 

o, 

• • 
"-:; X4 

I_ ____ . ___ J - - _ i 
0 D 

The first square shows the quadrants ot D with D1 (indicated in tb.e 

first square in dotted lines) CGDStru.cted about Q1 tor a• 0. 05. 'Dle 

second aqua.re snows the (J.uadrt.mta of D1 with D2 shown in dotted lines 

and constru.cted about ~ for the same value of a . In general then 1f 

D n is divided into quadrant& (Q~}t,1, one computes ~ (IP n (11.1 )I } 

'Where >..1 is the center of ~ . Assuming tba.t ~ corresponds to tb1s 

minimum, one then const.ructs tbe square Dnt-1 which contains quadrant 

Q.,n such that D.-1 c D and d • (0. 5 + a.)d • 'lhe calculation& in 
·1.c. ...... n n+i n 

Tables I and II were obtaine,d for a= 0. 05. 

Since the construct.ion process produces a nested seqwmce of 
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squares with Dn+l. properly contained in Dn' the sequence {>..J} must 

converge vhicb implies that the sequence {IP n (>.. J) I } must also con

verge. A siJJlple caleul.ation shows t.b.at for small values or a the 

length of dn is approxilratel.y (l/2n)d and l>-n+1 - ).nl < (l/~2 )d. 

For the test problems that have been done, there is evidence t.b.at 

the me-tbod is most ettec.tive when the e1genvalues a.re relatively 

close t.ogether. 1he following show that d can be made unity by a 

simple transfonaa.tion tbat puts the eigenvalues int.he unit c1rc1e 

with trace zero. 1he transformation 1G easily recovered and does 

not destroy the al.JlDst triangul&r c.banLeter. 

Let a,b E C with a 1 o, and. Ma 1::. ( Iv 11) where V 1 a.re the 

vertices of the rectangle that contains the set {>..1)~- ot eigen-
n . ~1 

values of B. '!hen IB - ). I I = J 1 (>..1 • >..) = PA(>..), and 

I a B + b I - A. I I = anlB - ~ ; b) I I = 

an 1Ui(>-1 - >.. ; b) • Ji. (a >-1 + b - >..) 

so that the set (µ1)~1 where "t c: a 1-..1 + b contains the eigenvalues 

of a B + b I w1tb multipl1e1ties included. It T denotea the trace ot 
n n 

B, then trace (a B + b I) = iki"i cs a J 1>..1 + n b = a T + n b; and it 

follows that trace (a B + b I) r.: 0 for b • -a T/n. Furtbtll"m)re 

and for a= n/(n M + !Tl) it follows that h.1.11 < l, 1 = l, 2, •••, n. 

Also 11' .! i& an eigenvector or a B + b I corresponding to 1,11, then 

(a B + b I).:f = (µ.1 ),! = (a A1 + b)_!. Sinee a I- o, th18 implies t.lta.t 

.! is an eigenvector 0£ B correspond1ng to the eigenvalue A1• 

The success of~ iterative method& will of'ten depend on good 
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first a.pproximationa. Although. this does not hold for the method 4e-

scribed above, it is true of Newton's method tor finding the zeros of 

a polynomial. .. (Householder, 1953) . For the appllcat.ion of Newton's 

met.hod, it is believed that the met.bod of nested squares can be used 

to great advantage 1n obta1ning first gue&&es using only a few iter

ations .. It may be adva.ntageous to uae the transformed matrix Yi.th 

eigemralues 1n the unit circle. ln &r:Q" case ffUPpose this ha.s been 

done to obtain an approxiat.ion ~n to a zero of PA(>..) = fB • >.. II . 
U P o G(B - "'n I) is the pivotal form of (B - )..n I) and ).11 is 

not an eigenval.ue ot B, then G 1s the inverse ot (B - )..n I)J and 

where 1(c)J :ts the cofactor of _,{B - >..11 1)1• UaiDg this result and 

the definition tor the derivative of a determinant, it tollow.s for 

where the prime denotes ditterentia.tion and pl()..n) 1s the derivative 

of I» - >. If with respect to ).. evaluated tor"' • >..n• 1hus Bewton•s 

method can. be applied to obtain )..n+i as the next a.ppro..··d.ma.t1on 'Where 

pA()..n) l l 
>. • ).. • • >-. + • ).. + • 

n+1 n p ' (>.. ) n trace (B • >.. zr1 n trace (G) 
A n n 

Sin.ee the trace (G) 1B know. for each a.pproximt.ion >.11, the iterative 

process is established to obtain the sequence {>.J). In oitber method 
n gi 

one uses Pn(>..J)/t1 ()..J - ~1) f'or the test of convergence where 

eigenvalues tx1)~i have al.re~ been determined, a.id g1 is the alge

braic multiplicity of the eigenvalue >..1 obtained by Coro11.a.ry 5. 3.1. 



CHAPTER IX 

SUMMARY 

The problem discussed in this thesis is tha:t, of devisi.ng a 

method for calculating all the eigenvalues and corresponding eigen

spaees of a linear operator suitable tor use with a high-speed dig

ital conputer. 'lbe eigenvalues a.nd eigenspa.ces are found using the 

unique n:atrix A that is determined by the operator relative to a 

fixed orthonormal bas:Ls. Using a sequence of unitary transforma

tions the n:atrix A 1s first reduced to an almost lower triangular 

matrix B vi.th the same eigenvalues as A. It is shown that every 

square matrix is row equivalent to a pivotal form from which the null 

space of the original matrix can be determined. For ea.ch approxima

tion "° to an eigenvalue of A, the determinant of (B - >.. I) can be 

calculated although tbe a.nalytic expression for the characteristic 

polynomial. is not known. Bounds for the spectrum of the operator are 

calculated, and two iterative methods are developed producing a 

sequence of approximations converging to an eigenvalue. 

The mst successful numerical methods at the present time are 

applied to linear operators that give rise to real synmetric IIBtrices, 

and probably the best of these are those that may be termed indirect 

methods in which evaluation of the determinant is avoided. 'lhe 1 ter

ative procedures developed in this thesis are direct methods which 

evaluate the characteristic polynomial for ea.ch approximating eigen-

49 
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va.lu.e . One ot the procedures Wile& the vell known lewton' s method tor 

finding the roots of a pol.ynom:l.al . It is also well lmown that tb.e 

success of this method 1n eome oaoes depends on good first approxiJII&... 

t1ons . The other method uses a sequence ot nested squares. to produce 

e. sequence of approximat1ollG conveI"ging to an eigenvalue . ~is 

method can be uaed to obtain good atart.ing vaJ.u.ea tor Newton's met.bod 

u.sing onl¥ the ti.rat. tew 1tera.t.1ons , or it 'IDtJl1 be uq,loyed as a sepa

rate routine to calculate the roots at a general pol.ytlomial. . Once an 

eigenvalue is found using either method, the correspondinc eigenspa.ce 

is obtained simultaneously f'rom the pivotal torm. Both procedures 

avoid the uaual.17 clitticul.t problem ot detl.ation. 



Aitken. A. c. tt1be Evaluation at tbe Latent Boots and Latent Vectors 
ot a Matrix. n ~~1!!sP of the Bopl Society !!!. !!1n~. 
Section A, 57 (l.937 1: PP• Q..;ai. 

Bodmdg, E. Matrix Calculus. Hev York: Amsterdam Interscienee 
1'&blishers, ls,)9. 

Brau.er, Altred. "Boundu for Cbaracte-ri.stic Boot.a ot Matrices • ., 
Ha.t10Dal »~ ot Standa:da, Afil:1ed Matbematics Series, 29 
(1953), pp. 101-lit. 

Browe, E. 11'. "Limits to tbe ~tie Roots 0£ a Matrix . .. 
Amer:Lcan Matheare.tieal Man!:9ll* 46 ( 1939), PP• 252-265. 

Feller, w. and o. E. Forsythe. "Hew Matrix T.ransfcmzat1ons tor Ob
tain1Dg Cbamcter1atic Vectors. 0 ~l.y .!£ Appµed Mat.h&
matiea, 8 (1951), PP• '25-}31. 

Givens,, W. "Compu;ta..tion ot P1aae Unitai, Rotations Tranafol.1.W'l-g a 
Genenl. Matrix t.o Ti1aagw.ar Form." Journal. ot tbe§&.SoeJ.et,J tor 
Industrial!!!! Afil:l.ed Mathematica, 6 (l§;U),pp. · 51. -

• ''lfume.rical Compv.tation ot the Cllaracter1st1c Values of a 
---iteal.-· S,-etn.e Matnx. " ~ .8191! Bational Labomtorz, OBNL

~, 1~. 

Greenata.dt, J . "A Method tor Finding Boots of Arhitrary Matrices.•• 
Matbematical i'ables !!! Other!!!!! ,!2 Coaq)u;tation, 9 (1955), 
pp. 47.52. 

Heatenes, M. R. "Deteminatiou of Eigeuv.al.w,s aac1 Eigeavactors of 
Matrices. 0 Be.tJ.onal Bunau. .!.f Sta;w:ia.ris, Applied Mat.bemat1cs 
Series, 29 (1953), PP• 8§:95. 

Hildebrand., F. ». lntl'oduetion .!2 Numerical :!Pll!:ta. New York: 
McGraw-Rill Book &fl'IPEIQY, Inc., 1955. 

Householder, Alston s . Prue!,il.es g£. Numerical :!Pll!is• Nev York: 
McGraw-Hill Book Coupmy, Inc • ., 1953. 

51 



Householder, Alston s. "Unitary Triangularization of a Bons)'lllnetric 
Matrix. " Joumal of the Associa.tion tor Computing Machioer;y, 5 
(1958), pp. 339-'42. 

James, G. and R. c. James, Eds. Mathematics Dictionary. Princeton: 
D. Van Nostrand Company, Inc . , 1959. 

Kincaid, W. M. "Bwuerical Methods tor Finding Characteristic Boots 
and Vectors of Ma.trieea. " Quarterly of Applied Mathe111atics, 5 
(l947)ll PP• 320-345. 

Lanczos, Cornelius . Applied. Analyeia. Englewood Clit:ts., New Jersey: 
Prentice Hall, Inc. , 1956. 

Lotk.in, M. "Cbaracter1st1c ValUf:IS ot Azbitraey Matrices . " Quarterly 
of Applied Mathemtics, 14 (1956), PP• 267-275. 

Stoll, Hobert R. Linear Algebra and MatriX 1:heory. New York: 
McGraw-Blll Book Comps,yq, Inc . , 1952. 

Ta.¥lor, Angus E. Introduction to Fuctional Anal.pis. Nev York: 
JohD Wiley and Son~ Inc. ,1961. 

Tra.wl&lq, Olp. 11Bolmds tor Characteriatlc Roots ot Matrices. '' Duke 
Ma.t.hematieal Joumal, 15 (19+8), pp. 1045-1044. 

von Holdt, Ri.chal'd E. "An Iterative Procedw'e tor the Calculation ot 
the Eigenvalues awl Eiaenvectoi.'8 ot a Real Symmetric Matrix. " 

. Journal ot the .Assoeiation ta1· Conputing Machinery, .5 (1956), 
pp. 223-239. 

Wielandt, H. "Inclusion 1beorema for Etgenvalu.es. " ?lat1onal Bureau 
ot Standards, Applied Mat.hemat:iea Series, 29 (1953), PP• 75-79. 

Wil.k:lnson, J. H. "StabU1ty of the Bedt1Ct1on ot a Matrix to Aloost 
'l'rlangular and Tr1angw..ar Forms by Elementary Transformations. " 
Journal of the Aaaociation for Comfuting Machineq, 6 (1959), 
pp. }36-,00. 

• "The Use or Iterative Metbod.s for FindiDg the Latent Roots 
--a.n-d Vectors of Matrices . " Matb.emat-ical Tables and Other Aids 

to Computation, 9 (1955), PP• i.84-191. 



VITA 

Paul Eugene Harper 

Candidate for the Degree of 

lbctor ot Brl.losopby 

'lheais: EIGEIVAW.iS AUD EIGDISPAC&S OF GENERAL LIHEAB OPERA!l'OBS ON 
A FIHITE DIMmSIOBAL INHER•PBOWC'l SB\CE 

Major Field: Mathemattcs 

Biographical.: 

Personal Iata: Born aetU" Oe.rvin, Okl MOUB:, November 6, 1923, 
the son of llbeeler R. and Bertha Belle Harper. 

Education.: Attended grade school in Lincoln and Eldorado, 
Oklahoma; graduated from L1ncoln Hip School in 194,2; 
received t4e Bachelor of Science degree from t.he Oregon 
State Uzu.versity, with a m,Jor 1n MatbemUea, in June, 
1~9; received the Master of Science degree from the 
Oregon State Um.versity, nth a DaJor in Matb.-enatie&, 
in August., 1950; attendecl tbe Los Al.am:>s Graduate Center 
of the Univerait,y of lfew Mexico; completed req\lirements 
tor the Doet.or of PhUoaopby degree 1n Ma¥, l~. 

Professional experience: Joined the Los Alam a Scientific 
Laboratory, Loe Alamc>&, New Mexico, aa a Be8earcb 
Aseistant in September, 1950; was pJ'OIDOted to Statt 
Member ill January., l~; served as an applied matbema.
tician on a variety ot sc1ent1tic problems, with 
constantly growing intereat in numerical analysis and 
comp\lter applications.; was cboeen 1n 1960 to complete 
requirements tor the Doctor ot Pb1l.oaopby degree vith 
the support of the Los Alamos Scientific Laboratory's 
Advanced s~ Program. 




