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final draft of this thesis; to Mrs, Barbara C, Powell, who did the
illustrations; and to Miss Katherine Heinz of the LASL Library for
her assistance in locating and obtaining many reference publications,
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State University faculty members: Professors Roy B, Deal, Jr,, Olan
H, Hamilton, John E, Hoffwan, Carl E, Marshall, and Jan J, Tuma., Dr,
Roy B, Deal, Jr,, was my thesis adviser, His guidance and interest
are gratefully acknowledged,

Even with all the help given by those listed above and by many
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years would have been even more disheartening without my family. To
my boys, Romny and Bryce and Dana, who never understood why I had to
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CHAPTER 1
INTRODUCTION

In this paper one is concerned with linear operators mapping an
n-dimensional complex inner-product space X into itself, The space
X is called "unitary” and is composed of the linear space of necolumns
over the complex field C with a complex-valued imner product function
defined on the cross~-product,

If £ : X X is a2 linear operator, the problem is to devise a
method of calculating all the eigenvalues and eigenspaces of f suita-
ble for use with a high-speed digital computer., This involves finding
a scalar A € C and a maximal linearly independent set § C X such that
£ x* = A x* for a1l x* ¢ S. Each number \ is called an eigenvalue,
and each corresponding vector an eigenvector, The subspace generated
by the elements of 5 is called the eigenspace corresponding to the
eigenvalue,

The problem has the geometric interpretation of finding those
vectors x whose directions remain invariant under f, The eigenvalue
A is then the factor by which the norm of such a vector is changed.
If x is an eigenvector corresponding to A, it follows from the defin-
1ngeqmtianf_§=h_z_£that35foralloifaeCisé.laoaneigm-
vector corresponding to A, Thus no generality is lost in assuming
the eigenvectors have unit length,

Since a linear operator is completely determined by specifying
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the images under the operator of an orthonormal set of basis vectors
for X, one can view any operator as giving rise to a unigue n X n
matrix A, The problem then corresponds to solving the system of homo-
geneous linear equations (A - A I)x = O where I is the n X n unit
matrix determined by the identity operator 1 on X into iteelf, Alge-
braically, this is equivalent to asking for those values of A that
allov the system of n equations in the n unknown coordinates of X to
possess non~-trivial solution vectors., Such a solution exists if and
only if the determinant of the matrix of coefficients is zero, Ex-
pansion of this determinant yields an n'‘th degree polynomial in A and
is called the mm;ucmMorAenddmtedbypA(h).
'Ihencmlaxzemofpa(k)mtheeimlmoff, and the set of
k distinet zeros is called the spectrum of f and demoted by A(f) or
AA). A particuler eigenvalue in the spectrum of f is denoted by
Li(f) or hi(A) and simply by A, when there is no confusion concerning
the operator involved, When the elements of the spectrum are real,
they are assumed ordered as follows: hz > ke > see > ).k. Since the
dimension of the space is finite and defined over the complex field,
the spectrum contains at least one element and thus a non-empty eigen-
space exists,

The most successful numerical methods at present are applied to
linear operators that give rise to real, symmetric matrices; and
probably the best of these are those that may be termed "indirect
methods” in which evaluation of the determinant by way of the charac-
teristic polynomial is avoided, (Givens, 1954 and von Holdt, 1956).
In all these methods no attempt is made to determine the eigenspaces
of dimension greater than one; and in some, no eigenvectors are calcu-



lated at all, The procedure developed in this paper is a “"direct
method" which evaluates the determinant for each approximating eigen-
value although the analytic expression for the characteristic poly-
nomial is not known. Although the application of the method is to
linear operators, no restriction at all is placed on the type of
matrices which they determine; and the eigenspaces are found for each
element in the spectrun.

Probably one of the most basic reasons for wanting to solve such
a problem stems from the need to solve a system of n linear differ-
ential equations which are encountered in a wide variety of fields,
One method used in finding a solution of the system employs the
elgenvalue technique, If primes denote differentiation with respect
to a varisble t, then the system can be written in matrix notation
as x’ = A x vhere x’ and x are n-colusn vectors and A is the n X n

matrix of coefficients., One seeks a solution of the form x = ¥ e“'

vhere v is an n-column vector. Differentiation of the trial solution

vector followed by substitution in the matrix equation leads to an

t N

eqlx..‘.n-rall.em‘t.s:rai;ent_'\ihe’k -Axetor(A—hI)}_r_ektug. Thus an

eigenvalue A, together with a corresponding eigenvector v, yields a
solution vector x = ¥ &t of the system of differential equations.
The same substitution will yield a solution for & second order system

of linear differential equations,



CHAPTER II1
NOTATION

The underlying linear space of n-columns over the field of com~
plex numbers C will also be denoted by the symbol X. Points or
vectors in X are represented by underscored letters such as X or Y.
In this paper one is restricted to the subset of linear functions
which forms a subspace of the space of all functions on X into itself.
Use is also made of the fact that this subset forms a linear space
with addition, scalar multiplication, and composition of functions

defined as follows:

lo (f+g)x=fx+gx
2. (af)x=afx

3¢ (£ g)x = £(g x)

vhere £ : X =X, gt X =X, a € C, and £(x) or £ x is the value of £
evaluated at x. Since f is linear, f(ax+b y)=a fx+ b f y for
all x, y € X and for all 8, b € Co N(f) and R(f) denote respectively
the null space and range space of f, and these subspaces are subsets
of X defined as follows:

N(f)u@lixzfgf-_g]

R(f) = (yeX: y=1 x for some x € X) »



The point o= with a left subscript is a row vector in X and
x* vith @ right superscript a colwmn vector. If a ¢ C, then a is
considered as an ordered pair of real numbers (a,,b,) where
a=a, +1b, and @ ¢ C 1s the ordered pair (a,,~b,) the complex
conjugate of a.

The ordered set E = @1)2_1 of orthonormal column vectors is
chosen as a fixed basis in X. The word “ordered” refers to vector
position in E regarded as a row vector (e*, ¢, ¢+, €") in which
the elements are unit column vectors and mutually orthogonal. If
% € X is arbitrary, then__zgueadxisaunmrmimtionof the
elemente of E vhere the repeated index indicates summation. Unless
it is stated otherwise, the range of a repeated index @ is such that
=1, 2, *ve, n, Thus the mtationﬁ-eaaxmg_:-e" WX+
€@ x+ vee 4 " o+ The elements of the set [1::]:#1 belong to C
and are called the coordinates or components of x relative to the
basis E, The summation convention is to be invoked only when the
repeated index is a lover case Greek letter. Tne notation __e_k x is

K

then multiplication of the k'th entry in E by the scalar e It

should be noted that no restriction is placed on the position of the
repeated index as a subscript or superscript.
A column vector gk, its transpose Tﬁk, and its conjugate trans-

*
pose _:gk are written as follovs:

1"k
k
k & Tk k k k
= | e |y X =[x, X7, et pxT],
X
_n_-
*k . 7K .. =
x =[x, X, » o5 ]
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The n X n matrix A in wvhich the entries in columm J are the compo-
n

J=1
for the operator £ : X - X with respect to the basis E", If [?uj_];m1

n
is the set of zeros of p,(\), itiskznmthatthemmran&lk

nente in basis E of the imege vectors (f 5‘1] is called "the matrix

i
is the sum of the principle diagonal elements of A, This number is

called the trace of A and denoted by trace (A), Since E is an
ordered orthonormal set, A is uniquely determined and will be in-
terpreted as a linear operator on the n~dimensional space X into it~
self under the assignment X —» A X where A x is computed using ordi-
nary matrix multiplication, Thus all statements made concerning
properties of eigenvalues and eigenvectors of linear operators on an
n-dimensional space can be translated into statements concerning

n X n matrices and vice versa, An attempt is made in the formulation
and proof of statements to use the language that avoids cunbersome
notation and offers greater clarity.

In the notation A = (,ad), waere 1 and J are respectively the
row and column indices, the matrix A is considered as a set of n
colume or n rows in which 1&‘1 = j.(A»)'1 denotes the element in the
i'th row and j'th colum of A, memtnrgJor(A)JistheJ'th
colmmand*gorits)thei'thmmmr. Thus for the an X n identi-
ty matrix I = (;59) the symbol 59 s the column vita entries 1 ir
i=Jand 0if 17 J. Simllarly ,b is the rov with entries 1 when
J=4iand 0 if J# 4, For n = 2 the notation |A| is the determinant
of A and the modulus of the single entry if n= 1, If |A| # 0, then
A 1s said t0 be non-singular; and in this case, the inverse matrix
denoted by A! exists such that AA™ = A"*A = I, IfA is then X n

matrix determined by a linear operator f, then A" exists if and only
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If 8 and T are subsets of X, then the set difference is 5~T =
{(se€85 >5 ¢ T). The set of all linear combinations of elements of S
is called the "linear manifold of S" or the subspace gemerated by S
and denoted by M(S)e If SC T and M(S) = T, then T is the subspace
generated or spanned by S and the dimension of T is equal to the
number of vectors in a maximal linearly independent set contained in
S8, This dimension is abbreviated as dim T or dim N(S), If M(8) =
{0), then M(S) is called the trivial subspace,

In this psper one is concerned with square matrices only., If A
is an n X n square matrix, then the symbol r(A) denotes the rank of A,
The rank of A is defined to be the maximum number of linearly inde-
pendent columm vectors contained in A, (Amir - Moez and Fass, 1962),
Since rank is an invarlant function of matrices under elementary row
transformations, this number is determined by examining the matrix in
its pivotal form which is discussed in Chapter V,

Definition 2,1 A non~empty set S C X such that @]*Sis

linearly independent if no element of € is a linear combi-
nation of other elements of S, Otherwise £ is said to be a

linearly dependent set.



CHAPTER III
BOUNDS FOR THE SPECTRUM

For the complex inner-product space one defines a certain funce-
tion of two vectors vwhich maps the cross-product of the linear space
X into the field of complex numbers C, This function is called the
inner product; and if the vectors are X,y, the inner product of x with
Y is denoted by (x,y). The inner-product function is formslly analo-
gous to the dot product of ordinary vector analysis, and its proper-
ties are contained in the following definition,

Definition 3.1. A complex linear space X is called an inner-

product space if there is defined on X ¥ X a complex-valued
function (x,y) (called the inner product of x with y) with the
following properties:

1. (x,y+2)=(xy)+ (x,2).

2, (x,ay)=a(x,y), forall accC,

Je (!,I) - (Isf)t
by (x,x) 2 0 and (x,x) # 0 4 x # O,

It is seen from this definition that condition (3) implies (x,x) is
real; and as a consequence of the properties listed, (x,y) has the

further properties:

5 (x+3,2) = (x,2) + (3,2) «
8



6. (a x,y) = a(x,y) , forallaeC,
The formula given in the following definition for computing the
inner product satisfies the properties stated in Definition 3.1.

It is this inner product that is used throughout this paper.

Definition 3.2, If x,y € X have components ( 1::]’11,1 and ( 15'];1

respectively relative to E, the number (x,y) = a'i o is the
inner product of x with y.

It can be shown that if X is an immer-product space, then (3;_,_,5)1/2
has the properties of a norm. (Taylor, 1961). One writes |x =
(5,_5)’*/ 2 and calls this nunber the norm or length of the vector x.
If |[xl = 1, then x 1s a unit vector; and two non-zero vectors x and
¥ vith (x,y) = O are said to be orthogonal and written x L y. For

the basis E it follows that (gi,gd) = 163 the Kronecker delta.

Definition 3.3. The transposed conjugate of a matrix A

is called the adjoint matrix of A and denoted by 'A. If
®

A="A, then A is called self-adjoint.

Definition 3.4, If f and g are linear operators on X =X
and if (f x,y) = (x,8 y) for ell x,y € X, then g is called
the adjoint operator of £ and denoted by 'f£. If £ = 2,
then £ is called self-adjoint, For the composition of two
functions the usual rule holds that (£ g) = & £
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%
Theorem 3,1, If f is the adjoint operator of £ : X = X and

%
A is the matrix for f relative to E, then A is the matrix

»
for f relative to E,

™
Proof, By assumption (f x,y) = (x, £ y) for all X,y € X and

forA-(iaJ),r_gJ-; ad, Oneletsna(ib‘j)bethe

B
= *

matrix for *f and shows that 1&‘1 = (f 3",21) = (_g“, rgi) =

Jbi. Using the properties of the inner product and the fact

that E is orthonormal it follows that

(£ e%e") = (& oleh) -

)

ga%) = 2!, ) = o P -

and similarly

(_e‘j.'f 31) « (g",_e“ abi) = abi(g",g“) = ab" Jb"‘ = Jbi

But (£ eJ,e?) = (e3,"¢ e') by Detinition 3.4, and hence

) = ot

*
4 3 and thus B = A.

The preceding theorem shows that any linear operator f on the
S *
finite dimensional space X has a unique adjoint f, and f is com~

%
pletely defined by A where A is the matrix for £ relative to E,

Lemma 3.1, An operator £ : X =X is self-adjoint if and only

if (x,f x) 4s real for all x ¢ X,
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B e ™
Proof, If £= £, them (X,f Xx) = (£ x,x) = ( £ x,x) = (x,f x)
and hence (x,f x) is real., Comversely, if (x,f x) is real for
all x € X, then (x,f x) = (f x,x) = (5,‘1' x) vhich implies that
£ = "f and consequently f is self-adjoint,

It follows immediately from the preceding lemma that the oper-
ators £+ £ and 1('f - £) are self-adjoint; and if g is self-adjoiut,
then a g is self-adjoint if and only if a € C is real, The number i
employed sbove is the ordered pair (0,1). Thus any operator £ : X = X
has a unique Cartesian decomposition f = g+ 1 h with g=3( £ + f)
snd h = 3("f - £) vhere g and h are self-adjoint,

Lemma 5.2, If £ : X =X is self-adjoint, then the eigenvalues
of f are real; and the eigenvecltors corresponding to distinect

eigenvalues are orthogonal,

Proof, If A is an eigenvalue with corresponding eigenvector x,
thenf_g-'f_:g-h_x_;. Using the properties of the inner prod-
uct it follows that A(x,x) = (XA x) = (x,£ x) = (£ x,x) =

(» x,x) = X(x,x) and hence A = X since (x,x) is real and non-
zero for x # 0. Thus the eigenvalues are real, Suppose now
that u # A is en eigenvalue vith eigenvector y. Then £ y = p y
and it follows thet u(x,y) = (k) = (x2 y) = (£ x,y) =

(f x,5) = (A x,5) = Mx,y)e Therefore (u - A)(x,y) = 0; and
since u # A, we have (x,y) = O and consequently x . y.

If £ : X =X ie self-adjoint with spectrum A(f), it is known
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by Fischer's Minimax Principle that A (f) = ”zﬁ“f L% x) and A (£) =
!Ildj';nf I(E’f %)e (Amir - Moez and Fass, 1962). In what follows u(g)
and v(h) are respectively the spectrums of the self-adjoint operators
g and h in the Cartesian decomposition of a given operator. By Lemma
3.2 the spectrums contain only real numbers,

Theorem 3.2, If £ : X - X has eigenvalues A(f) = “a‘i’bi)]i-:.

and Cartesian decomposition g + i h, then

o wle) sa <p(g),1=1,2, o, kand
2. 7k(h) = bi < 73(}1) ’ i= l’ 2, v°v, k ,

Proof, Let x with (x| = 1 be an eigenvector of £ corresponding
to the eigenvalue hi(f). Then by Fischer's Minimax Principle
i (8) < (%,€ ) < p (g) and 7, (h) = (x,h x) < 7,(h)s Using the
definitions of g and h and the properties of the imner product
function one has

(w8 2) = 3 (e + 2x) = (T 0) + (1F 0] -
HETH + (3,2 0] = 2NTH + A, (2)] = o,

which proves the first assertion, Similarly

(xh x) = 32, ("t - )x) = H(xr2) - (2] =
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%”.’E:f x) - (%£x)] = %n:im - 2 (£)] = b,

and thus the second assertion is established,

Thus for any operator f with Cartesian decomposition g + i h,
the eigenvalues of £ must lie in the rectangle in the complex plane
determined by the Cartesian product of the closed intervals
[w(e),u ()] and [7,(n),7,(h)]. Since the operators g and h are
self adjoint, each commutes with its adjoint and hence belongs to
the class of normal operators, The normal operators on an n-
dimensional space are known to be diagonal, and an operator is
diagonal if and only if it has n linearly independent eigenvectors,
1t follows that the elgenvalues of g and h are real with each having
n linearly independent eigenvectors, and the basic power method is
applicable to compute their maximum and minimun eigenvalues, (Bodevig,
1959), Numerical techniques using the power method, or variations of
the powver method in some cases, have been developed to approximate
these extremal values with a high degree of accuracy., However, for
the iterative scheme described in Chapter VIII the following rough
approximations to the vertices of R are sufficient and are more

readily obtained,

Theorem 3,35, Let the set [Lil":u be the zeros of the charac-

teristic polynomial determined by the self-adjoint operator
fi: X=X, If E"]:;“1 is any set of orthomormal columm vectors
n

in X, then (f _sa,_ga) = 5 l‘i'
i=1
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Proof, Since f is self-adjoint, there exists a set @i]?’u
of orthonormal vectors such that f 3_;_1 =Ny xi, i=1, 2, e,
n. Since this set is a basis for X, 8% = x® xJ, 5 =1, 2,
*e*, n, Now taking the inner product of both sides with _35

gtves (89,57 = xI(%x% = x) and hence 87 = (7, x%)x"
Then £ 89 = (89,2%)2 x¥ = & (89,x%)x% and (£ g7,8) -
ndehx 0% 8%) = & (61,59(0,5% = 2 ()12 How
sumuing on J gives (£ &,8°) = & J&I(g",z_c“)l" = 2 Jx%.

n
But qua = 1 and hence x&lﬁla inz Ao

Corollary 3e3.ls If A = (ia'j) is the matrix for f relative
to B, then (f _ga,_ga) = trace (A) = aa“.

Proof, Follows directly from the definition of the trace (A)

and the fact that this nuwber is equal to the sum of the

eigenvalues of A,

rollary 5.5.2. The operator £ x -» X has the set [J\.a)hl
asitaeigemlueaand(fas “ = Z‘.lka

&
Proof, £2 = '£f since £ is self-adjoint, and ~( ££) = "£f

i i

implies that f= is self-adjoint, Since £ x~ = A, x*, then

i
= 5‘ = xi(r _:giJ = xi _:51 implies that ;..i is an eigenvalue of

ﬁ.

Theorem 3,4, Let g + 1 h be the Cartesian decomposition of
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fi: XX, Let (“1,:-1 and [71]:“ be respectively the eigen-

values of the n X n matrices G = (13‘1) and H = (1h‘1) vhere G
and H are determined respectively by the operators g and h
relative to E, Then

1o, < (@ P12
2, w, = g%-ul @ P13/
3. 7, % la'ﬁﬁ cl,lct"]‘/‘2
b g, 2 p% -l B ap’]‘/"

Proof, Bince g is self-adjoint it follows from Corollary 3.3.2
that

Be e (@B e - (@B - 2 P

which proves the first assertion, The second assertion follows

from Theorem 3,3 and Corollary 3.3.l1 since

o o e = % - al| = - P P

The last two assertions are proved in exactly the same way using

the operator h instead of g.

The bounds found here are probably not the best that one could
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obtain, At the n'th iteration, calculations are carried out in a
rectangle whose area is approximately the area of the original rec-
tangle R multiplied by a factor of 1/2%, For this reason very
crude approximations are adequate, Actually the iterative process
described in Chapter VIII requires that all the eigenvalues of a
given operator must lie in the interior of a square, This can be
any square that contains the rectangle R, but one usually chooses
the square such that one side coincides with one of the two longest

sides of R,



CHAPTER IV
THE ZEROS OF THE CHARACTERISTIC POLYNOMIAL

It haes already been pointed out that the most highly developed
spectral theory in numerical analysis is that for self-adjoint oper-
ators., These are the operators that give rise to self-adjoint matri-
ces relative to the basis E, The dominant fact about such operators
is that there existes an orthonormal besis for X such that the matrix
determined by the operator relative to this basis is diagonal.
(Householder, 1953). The elements on the diagonal are the eigenvalues
of the operator, This is the basis for the fact that self-adjoint
operators determine their eigenvalues very well, i.e., small changes
in the elements of the matrix produce small changes in the eigenvalues.
This form of etability does not necessarily hold for operators that
give rise to general matrices, Consider for example, the 10 X 10

matrix A of the following form:

17
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All elements in A are zero except for the first superdiagonal, all
of whose elements are unity, and the element 1(&)“’ whose value is
€ Itueaaﬂyseanthatpa(k)-hm-es and if ¢ is zero, the
only eigenvalue of A is zero with algebraic multiplicity ten, If
€ = 10710 and ® is the first principal n'th root of unity, then
(o‘-lc-ljg_oismeaetore:gmmmofaummmmm
lus 10"%, Thus a change of 10°2° in one element of A produced a
change in moduli of the eigenvalues 10®° as great. This is indica-
tive of what may happen in general, and such a matrix does not well
determine its eigenvalues, Probably no numerical method can give
good answers to a problem similar to this if the elements of the
matrix are measured quantities, and the accuracy of the results is
expected to be as good as the data, It is quite possible in the
ideal situation that distinct eigenvalues are sufficiently separated
in modulus, It is not proclaimed that the method given in this paper
will give good results in all problems, It is believed, however,
that the method will handle practical problems even those that give
rise to repeated eigenvalues,

If p, (M) is the characteristic polynomial of f with spectrum
A(£), then each element in A(f) is a zero of pA(L) of some multi-
plicity a;, i =1, 2, *ee, ke !hemernikucalledthe'algebrnic
miltiplicity” of the eigenvalue Li(f) with hzl a, = n and the factor-
ization of p, (M) given by p,(A) = T]'{a. A (£) ]“1. Each eigenvalue

A;(£) has at least one associated eigenvector. The maximel muiber of
linearly independent eigenvectors associated with the eigenvalue ki(f)
is called the "geometric multiplicity” of A,(f) and demoted by g
The linear manifold of this maximal set is the eigenspace of I associ~



19
ated with xi(r). The method developed here for numerical computation
of the eigenvalues is restricted perhaps since one of the basic re-
Quirements laid down is that the eigenspace be found for each eigen~
value, That this requirement is satisfied is demonstrated in Corol-
lary 5e3e26

The name "deflation" is given to any technique used after
finding one eigenvalue and corresponding eigenspace to reduce the
original problem to one in which the known value and vector or
vectors are no longer present, It is believed that the present
method has greatly reduced the complexity of this problem, and the
reduction is found in part in the proof of the following,.

Lemma 4,1, If £ : X = X has an eigenvalue ki(f) whose algebraic
and geometric multiplicities are respectively ay and 84, waen

8y 5 By

Proof. Let @k]i'lbe the linearly independent set generating
the eigenspace associated with ki(f). Complete thie set to a
basig B for X, One nov constructs the matrix A for f relative
to B, Since f _:_:k = hi(f)_gk by assumption, the first g, colums
of A will be A (£)8", k= 1, 2, **+, g,. It follows that the
first g; columns of the matrix (A = A I) will then be

8113

(Ay(2) - A", k=1, 2, *o+, g and hence (A,(£) - A) a

factor of pA(k) and thus g, < a,.
It will be seen that the method employed is direct in that for a
given A a polynomial Pn(k) is evaluated which is proportional to
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pﬁ(h), and deflation is obtained by considering the expression

g
P_(M) j:[(xi(r) - A) * uhere the first k distinct eigenvalues are

known,



CHAPTER V
THE PIVOTAL MATRIX AND ITS PROPERTIES

Let A be an n X n matrix relative to E for the operator
£ : X +X, The nonsingular n X n elementary matrices G“, Gi(c)
and G, J(c) are called Types I, II and III respectively., Employ-
ing the usual definition of matrix multiplication, these matrices

are defined as follows:

Type I. The matrix GiJ A is the matrix A with

rows 1 and j interchanged.

Type II, The matrix Gi(c]A is the matrix A with

row i multiplied by a non-zero constent ¢ e C,

Type 1II, The matrix Gu(c)ﬁ is the matrix A

vith row J replaced by c 12 + ,a, i,e,, the row

J_
J is replaced by the sum of ¢ times row i and

rov J.

These three types of matrices as defined here are elementary
row transformations which are applied on the left of a given oper-
ator in matrix representation, They are used here in reducing n X n

matrices to pivotal form which is defined in Definition 5.2, It can

2l
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be shown that the rank function of matrices is an invariant under

rowv equivalence, (Stoll, 1952).

Definition 5.,1. Two matrices are rov equivalent if one can

be obtained from the other by a finite succession of ele-

mentary row operations,

Thus matrices A and B are rov equivalent if B = G A where G

is a nonsingular finite product of elementary matrices.

Definition 5.2. A square matrix P = ( 1p") is called a

pivotal matrix if the following conditions hold:

1. 09 =0fori>

i i i

De 191"0'*12-2'

Thus it is seen that a pivotal matrix is by definition upper
triangular and that the elements on the main diagonal are either zero
or one, The name given to the matrix comes from the fact that in the
reduction of a matrix to pivotal form one chooses the element of
maximum absolute value in a given column and shifts this element to
a position on the main diagonal, In the construction process de-
scribed in the next theorem, it becomes apparent that this is done

to give greater accuracy and less round-off error in the numerical
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computations that are necessary for such a reduction,

Theorem 5,1, Every square matrix A = ( j'a':‘) is row equiva-

lent to a pivotal matrix,

Proof., The proof is constructive and in the construction
J

the columns of A are taken care of one by one. Let a 3 be

the non-zero colum of A vith smallest index J and ka'j"

the largest in absolute value of its non-zero entries,

1 J
Multiply A in succession by Gk —_J: ’ de( -J& J') » d =
a

k

1, 2, eee, k=1, k+ 1, *es, n and de « The result is a
1

rov equivalent matrix P, = G A with i(1=1)-1 =0 for i >
and J < J, (PlJ =8 *, and G a product of at most n + 1

J
elementary matrices., The transformations Gk.j( - Ja. 1)are

applied to reduce the elements .a %, j=1, 2, eee, k = 1,

J
k+ 1, «es, n to zero; and of course, are not applied if

the element is already zero., Next locate in Px’ with row ,11
deleted, the non-zero column with smallest index j, > J y and
kada be the largest in absolute value of the non-zero
entries in column J, excluding the entry appearing in row .‘}1.

J
1 ® eee
Multiply PJ. by Gk —'Ta ’ Gk:'(-d& ), J=1, 2 ’
a

k
k-1, k+ 1, eee, n and de in succession, These multipli-
2

let

cations do not affect the columns of P:. with column index

Jd < .‘}2. This follows since all columms of P1 with column
dy

J
index less than j, are zero columns, (Pl) . % *, and
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anyeolmwiﬂ:indexismhthat,jl<i<32mthaveau
zero entries except possibly the entry appearing in JJ.(P‘)'
’mareaultisamvequivaLentmtrixPasGaGlhﬁth
1(P2)J-Otor1>3mdjs,12, (Pa)&ngjaandc&aala
product of at most 2(n + 1) elementary matrices, The
pmcessteminatesmmSnztepaandP-GnOGn_l see
(I}1 * A involves the multiplication of A by a finite number
of elementary matrices. By construction it is seen that P
satisfies conditions (1) and (2) in the definition of a
pivotal matrix, To show that condition (3) is also satis-
fied, 1¢bdp‘1-0andmmthmmumk>33uch
tha.tapkfo. Mkpk-()'byconditm(.‘?), but this is
impossible since by condition (1) and by assumption ,»° = 0
roriz,jandthetmformtmcuorhpelemndbe

applied,

A simple example is given below (using a 4 X 4 real matrix A) to
help clarify the mumerical procedure used in obtaining the pivotal
form, The last matrix given in the seguence of reductions is the
pivotal form P of A, The transformations used in the reduction (ap-

plied from left to right) are as follows:
1. 6(/2),06,,(-1), ¢, 1), 6 (-1),q,
2. G4(2/3) , Gy, (=5/2) , G, (-1/3, G,,(1/2) , G,

30 G,(3) , G,(~1/3) , G,,(1/3) , G 4(-2/3)
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The numbers in parenthesis above the arrows below refer to the
sequence of transformations given above., These were applied to the
matrices on the left to obtain those on the right of the arrow,

- '
- -7 ) |
| ] a4 -2 -
2 5 i} ~| |
T o -Y% *5’2“-
e O l’:‘! "lé 'é
£ ol F
0 Eé _Bé _Ié
0 % % %
0 2 wn
O | -' ‘V?,
B A= z Pz
O O O %
O 0 0 Ya
K - i
2 B | -1 )
yen o
| 9 ~
s & 3 1
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Before discussing some of the properties of a pivotal matrix,

it may be advantageous to examine the matrix P just obtained, First,

the r(A) is three since there are three linearly independent columns
in P, This implies that the determinant of A is zero, and there
exists a one dimensional subspace belonging to N(A), The vector

Tx- (-2, 1, 1, 0) spans this subspace, This vector is obtained

e

from P by computing x = 3° - p®, Theorem 5.5 shows that a more
general result is true,

Theoren 5.2, 1f P = (,09) = (g%, p%, *++, p™) 1s a pivotal

matrix, then P° = P,

Proof., The element in the i'th row and J'th column of P
1s given by ,(P°)d = % pJ. 1r 191 = 0, then by defini-

tion 42 is a zero row, and hence 1(1’2)‘, = 1p°ap‘1 = j'(P)'j = 0,

1p1-1andipk-0fork?‘ 1, thani(PE)Jaipaap'jn
1p3-1(P)J. Ifipinlandipk#omrk# i,thankpkao

it

which mpneskp-omnemekp-’-ororasl, 2, eee, n,
mus (%)) = 5% oY= Y= (@)Y

Corollary 5.2,1. If 51 is any column of a pivotal matrix P,

then Pzi ‘_x_io

Proof, The proof is immediate since FPF = P, s.nd_{iisa.

columm vector of P,

Theorem 5.3, Let P = (;3%) = (g%, 2%, **+, p") be a pivotal
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mtrix obtained from an n X n matrix B such that P = G B,
Let {8 J] be the non-zero vectors contained in the set
@"- J], d=1, 2, eee, n, Then [SJ] isasetofm=n

linearly independent vectors spanning N(B).

Proofs Let x" ¢ (5,). Ten since F* = P,

351-5(9_1-21)-3.6_1-321-

G""PQ"-G“PQ"‘:G‘:‘Ei-G‘:‘R"-Q

and hence x* € N(B)., If there exists scalers {,a)] ¢ C
not all of which are zero such that x” a = 0, then for
n
some .a ¥ 0, xk---“?- z x" 8e !lokaclsluwl.tes
k . a = d . J

k- Fk
k k
- e.ndhencekpkno. But this implies that .p = O,
and thus it follows for the k'th component of _:gk that

n n
“ :a. 2k(kbi B kp‘j)da) = f;'(.\?k ka Ja) =0

since . p9 =0, J=1, 2, oo, k=1, k41, eee, m But
by definition of x* it follows that \x" = 8" - " =1

since kp“-o. This is a contradiction and hence (sdl is
a linearly independent set, ESince P= G B and G is non-
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Ji
’

singular, it follows that dim R(P) = dim R(B). Since &

i=1, 2, se, (n - m) are linearly independent columns of
PmdPg_Jiugai, it follows that dim R(P) = dim R(B) >
n-mn 0 that dAim N(B) = n - ém R(B) <n - (n - m) = n,
Since (SJ] contains m linearly independent vectors that
belong to N(B), it follows that dim N(B) = m and hence [SJ]

spans N(B).

Corollary 5.5.1, IfB = (A - \(f) I) where A 18 the n X n
matrix for an operator f with eigenvalue hj(f), then EJ =
n=n - r(P) vhere 8 is the geometric multiplicity of the
eigenvalue LJ(f) and P the pivotal form of B,

Proof, The proof is immediate when one notes that each x° e
(SJ] is an eigenvector corresponding to the eigenvalue A.J(r),
and (53] is & linearly independent set of m vectors spanning
N(B).

Corollary 5.3.2. If B = (A - ha(f) I), then MN( [5‘1]) is the
eigenspace of A associated with the eigenvalue A.J(f).

Proof. The set (8,) is linearly independent and if x° ¢ 6,
thenik ¢ N(B), Since (SJ] is a maximal linearly independent

set, it follows that H([BJ]) is the eigenspace,

In the next chapter an "almost triangular” matrix is defined,
and a method is given for reducing any matrix A to an almost tri-



29
angular form B whose eigenvalues are the same as A, The results of
the present chapter are applied to the matrix (B - A I) where A is
an approximation to an eigenvalue of B, In Theorem 7.1 it is shown
that the determinant of (B - A I) can be calculated by evaluating
a polynomial Pn(k). This evaluation depends on reducing the metrix
(B -xN1I)t apivotal fom P, Anappmx:lmt:l.onkJ is close to an
actual eigenvalue when the modulus or norm of Pn(:\J) is small, If
A.J is considered the j'th iterate in a sequence of approximations
and the norm of Pn(kJ) approaches zero, then the sequence approaches
an eigenvalue of A, Since the pivotal form is obtained at each step

in the iteration, one obtains simltaneously the corresponding

eigenspace,



CHAPTER VI
REDUCTION OF A MATRIX TO ALMOST TRIANGULAR FORM

Definition 6.1, A square matrix A is almost lower triangular

:I.fia'j-Ofor.1>1+1.

If £f: X—-X and A is the n X n matrix determined by £ relative

to E, then A can be reduced to an almost triangular matrix B whose
eigenvalues are the same as A, The process is a generalization of
an idea of J, W, Givens (1958) in his method of solving the eigen-

value problem for real symmetric matrices,

Definition 6.2, An operator f is unitary if the composition

*
ff is the identity operator,

If £ is unitary, then from Definition 6.2 (x,y) = ( £f x,3) =
(f x,£ y) for all x,y € X, Thus upon setting y = x, it follows that
if %2 = x|, This implies that N(f) = (0) so that f has an inverse

® M

+* +* *
and ™} = £, Since £ £ = (f £)(£f"2) = £( £f) £} = 1, it follows
that .f is also unitary. The matrix determined by the unitary
operator f relative to any orthonormal basis is also called unitary,

Definition 6.3, If ‘1‘1 3 is an n X n unitary matrix and 1b'}
»

»
is zero in the matrix B = T AT then T is lane
x 1,0 2 14,3 3,5 WD

30
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rotation matrix,

If an arrov is read as "is replaced by", then a rotation matrix

is obtained from the unit matrix where 1ﬂa“‘ -c, JBJ -c, 316‘1 -

-s, and Jai*‘ -8, Thus & rotation matrix has the following form:

' O

i+ J

% %
A OWs T T = =
direct calculation sh that W T:I., 3 Ti, 3 I provided

¢® + 62 = 1; and for the matrix (,b9) = T, ., A T, ., the element
i i,J i,J

1b‘1hasthevalmcia‘1-siaiﬂ. If now ¢ and s are chosen such
that ¢ = ia.:""':"/ [(iaiﬂ')z + ( 1&")2]1/ Z2and s = 15'1/ [« 131"'1)2 +
(f\v‘)"’]"/2 , thznc2+s‘gsland1b‘1-0. It should be moted that

Tiéappnedontheri@tand.ﬁl'iJappliedmthelai‘tofamtrix
» ?
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affects only the (i + 1)'th and j'th columns and rows, To obtain
the almost triangular form, one begins with the rotation matrix 1‘1 é

’

s ™
to reduce .2 to zero and sets Az '.'l'l"3 A T;,a' Using the matrix

Aloneeoaputea'Tl" A, T, ., and the result is & matrix A, such
that 1(Az)’um I(Aa)‘-Oaincaﬂxeele-snt I(A;)anmt affected,
The process is continued across the first row until the rotation

T, o is applied vith the Tesult that (A ) =0tor je3,h, oo,
n. For the matrix A . one begins with the rotation T  to emnini-
late 2(1!.“)‘ and continues across the second row terminating with
Tz,n‘ In general one annihilates in order the elements in each row
1usingthemtationmtr1cos!’ila, J=41+2, 1+ 3, vee, n vhere
l<i<n-2, Of course if the element is already zero, the rota-
tion is not applied; and a brief calculation shows that at most

%’{n-l)(n-a)mtatimsmneedadtohringthemtmninmthe
fom(th)-B-'TA'.ruhm1b3-oror3>1+1andrs'rl'a e

T T ess T T _ eee T Since (B-AI)= ("TAT-ATI)

1,n "2,4 2,n '8,s n-2,n°
=("rar-a"r?)="Pa-AI)T, 1t follows that |B - A I| =
|A = A 1| and hence the eigenvalues of B are the same as those of A,
If B has an eigenvalue A with corresponding eigenvector x, then
B}_-Ll:inpliesthat'TAT_gahgorATg-kTEmdhenceTi
is the corresponding eigenvector of A, It should be noted that from
a computational standpoint T is obtained if the columns of the unit
matrix are operated on precisely as are the columms of A in the
reduction, This will avoid full matrix multiplication, The preced-

ing establishes the following.

Theorem 6,1. A well-defined sequence of unitary transfor-
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mations, affecting at each step only two rows and two columms,
will reduce an arbitrary n X n matrix A to an almost lower
triangular matrix B whose elgenvalues coincide with those of
A; and if x is an eigenvector of B, then T x is an eigenvector
of A where T is the product of the unitary transformations

defined above,



CHAPTER VII
THE POLYNOMIAL Pn(k)

%
In this chapter B= T A T is the matrix obtained by Theorem 6,1

from the n X n matrix A determined by the operator £ : X - X, It has

bematmwnthatlB-hI[-|A-7\I[-pa(k)uhemthemm::for

the operator (B - A I) has the folloving form:

! 2
lb—n ll?- o 0 D
o 2 3 .
(B - \I) =
J 2 2 4 n
n-1@ n-10 n-ib n-ib " b
! P o} a (o
nb nb nb nb S e Y
One considers the elements on the first super-diagonal of
ar1| o Lin
(B - A I) and defines a constant k = (-1) ltxr-lxib It is

assumed through Theorem 7.1 that k is not zero,

The case wvhere
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one or more of the elements in this product are zero is considered
later, It will be shown that k is the proportionality constant which
occurs in the special way that the determinant of (B - A I) is evalu-
ated for any given value of A,

.'[t;"‘I is an n-column vector with components (13:‘1);1, then the
nequstimsinthenmhnunmmtsof&" for the homogeneous
system (B - A, I)x’ = 0 can be written as follovs:

Py(A ) = (* - :n_,),,::J + ¥ v 00 e eeeroe oo

P,(A) = bt 1x" + (- n.").,?x‘1 + b° ax" + see 0o nx" =0

xJ + b2 X9 4 b xJ 4 oo 4 b

2
Pn-:.(h,j)‘n-ab 1 n-1" =2 n-1" a n-1 o

J LR ] n - J =
Pn(kd) = n‘b" Xt nb"’ 2:‘1 + nb° axJ + + (b "J)n" 0

It should be pointed out that the n'th equation above defines the

polynomial P _(A) = nb“ axJ “ knxJ. Theorem 7.1 of tais chapter shows
that this polynomial evaluated for a given value of A is proportional
to the determinant of the operator (B - A I). This determinant is an
n'th degree polynomial in A\ with the same zeros as the characteristic
polynomial pA(h). Under the assumption that k # 0, one can show that

Pn(k] can also be regarded as an n'th degree polynomial in A, For
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consider the set (Pi(?\) = o]ti of linear equations defined above,
Since k # 0, one can solve 13c>x'2x‘3 m?l(k) = 0 obtaining a linear ex-
pression in A, Substitution of this value of x) in P_(A) = O shows
that ax'j is a quadratic expression in A, If one continues these suc-
cessive substitutions through Pn-‘.” = 0, the n'th component can be
represented as a polynomial in A of degree (n - 1), Thus Pn(?s) =
nbaaxj -;\nxJ can be regarded as an n'th degree polynomial in A,

Suppose now that A 3 is an approximation to an eigenvalue of B.
The iterative process in the next chapter will produce a sequence (A .j]
such that [!Pn(ha)ll - 0. Thus the segquence {J\J] approaches an eigen~
value of B which by Theorem 6.1 is also an eigemvalue of A, The com-
ponents of the vector 54 used in the evaluation of the norm of Pn(’"j)
are chosen in a special way, ’J‘Etmc:m'.v.‘l.cecafl:"j depends on the pivotal
form of a certain matrix that is closely related to matrix B, This
related matrix, which depends on A and is demoted by M, is constructed
in such a way that N(M - A I) always contains a non-zero vector vhere
Iis the (n+ 1) X (n + 1) identity matrix,

Consider now the (n + 1) X (n + 1) matrix M with the following

form:
~ -
b B0 0 0 3
0 . LB 0 o .
(M) =
{ 2 3 4 n
b Wb b b b |
0 0 0 0 0 A
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It should be noted that the matrix M contains the matrix B as a sub-
matrix in the upper left hand corner, The entries in the (n + 1)st
rov and column are all zero except n-x(”)n and n(u)n which have the
values 1 and A respectively, Thus any value for A is an eigenvalue
of M since the matrix (M - A I) contains a zero row and consequently
[M = A I] = 0. The matrix M is almost lower triangular by construc-
tion, and the product of its first superdiagonal elements is the
constant k defined earlier, The matrix M Just defined and the assump-

tion that k # O are used in the following

Lemme 7.1, The null space of the operator (M - A I) for a
fixed value of A is non-trivial; and if _:EJ with components
{ 1x"]g:: is any solution, then the component IXJ is different

from zero.

Proof, That non-trivial solutions exist follows from the
fact that |M - A I| = O for every value of A, If A has the
fixed value A,, then by Theorem 5.5 the null space of

(M - A.J I) is generated by the set (SJ) of linearly inde-
pendent column vectors, Let ;_cJ € N(M - Ay I) and assume

J.::'1 = 0, Then the first equation in the system (M - LJ I)_.a_g‘il =0
implies that .?J:“l = 0 since 1(M)1 =0, i=3, 4, ¢¢¢, (n+1),
But then the second equation implies that ax" = 0 since 2(1-1)1 =
0, =14, 5 see, (n+ 1), The same reasoning carried through
the n'th equation in the system implies that _§‘1 is the zero
vector, This is a contradiction since 5‘1 e (8 J] and cannot

be the null vector,
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Several important observations can be made concerning the solu-
tions of the system (M - A, T)x’ = 0. A ‘basis {5,) for N(N - A, I)
is obtained by reducing the matrix (M - J\J 1) to pivotal form P
vhere P = G(M - AJ I). This reduction will never affect the bottom
row of all zeros, so 8™ subtracted from the last column of P will
always be in the basis for the null space of (u-m.‘1 I). HNow the
last column of P is simply the effect of G on the (n + 1)-column
vector 5", and the transpose of this last column always has the form
(Ir’, EyJ, eee, nyJ, 0). Since by Lemma 7.1 the first component can-
not be zero, one can define the n~column vector _:5'1 with components
{1"1/;"1]!;-; vhere z"J is unity, If _:5“ is the vector just defined
and (1%'10\4)]"1‘“1 the set defined earlier for the system (B- A, 1)xd =
0, then it follows directly that P"(LJ) =0 fori=1, 2, eee,
(n - 1), It is this vector;‘j that is used in the next theorem which
shows that B (A,) = 2 X - (A.J)nx" 1s proportional to the determi-
nant of (B - My 1)«

Theorem 7.1, Let P be the pivotal form of (M - kJ 1) and
(1"1» Ey", ooe, nr’, 0) the transpose of the last colum of
P. If _JEJ is an n-column vector with components (13"/1)"1]::1,
then py(A,) = k « P ().

Proof, Comsider the matrix for (B --JLJ I) in which the first
colum is miltiplied by ,x%, MNow one miltiplies colum two
by axa and adds to column one, multiplies column three by axJ
and adds to column one, and s0 on until column n is multiplied

bynxjmdaddedtomlmone. The result is a matrix B,
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vhose determinant value is the same as (B - A I). Since

1::'} =1, Bl has the following form:

P () h° 0 0

2

(B|) = : *
2 3 4 n
Pa-ij) qyb P L
n
P b B b=y

Now by assumption Pi(’*a) =0fori=1, 2, *s+, (n-1),
Thus expanding in terms of the first columm, one cbtains
|B - My 1] = pA(J\J) = [Bll =k o Pn(?sa). This result
follows since the cofactor of the element Pn(h.a) in |Bll
is (-1)"™1 times the determinant of the submatrix of order
(n - 1) obtained from B, by deleting the first column and
last rov, This submatrix is lower triangular, and the
value of its determinant is the product of its diagonal
elements, Bui this product multiplied by (-1)**! was

previously defined as the constant k.

It was pointed out earlier that no use was made of the last row

of zeros in (M - A, I) when this matrix was reduced to pivotal form,

J
Thus from a computational standpoint this last row may simply be ig-

¥, 0),

n'
vhichwereusedtoobtain_zg“, are then the effect of G on the n-columm

nored, The first n components of the vector (ly‘j, 2.7", sae.

vector 8" vhere P = G(B - A, I) is the pivotal from of (B - A, I).
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Butaimerillbetheinmmof(B-kJI)i.f;'a.Jismtaneiam-
value of B, one may as well record G by operating on I as the reduc-
tion proceeds, Then the transpose of the last column of G will be
the vector (I;f‘, 35 eoo, ¥)). Tis observation is used in the
next chapter in producing the sequence of approximations {AJ] from
vhich the sequence []Pn(l.a)ll is calculated,

In the case k = O one or more of the elements ,bi*, 121, 2,
ses, (n - 1) must be zero, When this occurs the complexity of the
problen is actually reduced, Before stating a general procedure, it
is believed that the following example corresponding to a 9 X 9
matrix for the almost triangular matrix B will help to clarify the
procedure, Consider the matrix B obtained from A with the following

form:
— -1
X X O O g 0 $ ) 0
%
\\3 O O O 9] O O
x X | \ \ - .’
\'x
Ny
X X X X\Q Q O 0 0
X X X X X 0 0 O O
b
Py .
(B) = x x X X X 0 0 O U
! N
N\
X X X b ¢ X X x\\o O
X % X X X X X x\o
X X X X X 4 X X X
x X X X X X X X X |
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Let A , A, and A, denote respectively the 2 X 2, 5 X 3, and & x &
matrices indicated in blocked form above, Then using Laplace's ex-
pansion theorem it is seen that |B - A I| = IAl-Lll . IAa-J\.II .
Ay =% 3|, and hence. () = gy (A) < 3y (M) <3y (M) s on
eigenvalue of any of the three smaller matrices is also an eigenvalue
of A, Since all of these matrices are almost triangular with the
product of their first superdiagonal elements different from zero,
Lemma 7.l and Theorem 7.l can be applied to obtain the eigenvalues and
eigenspaces, Once an eigenvalue is found, then one uses Corollary

5.3.2 to obtain the corresponding eigenspace.
In the example above one notes by Theorem T.l that Py \) =
- &

L3 -]

i+a i

kipni(;\,),1-1,2,3vhemk1-1ba,k2-1§aib » kg = I BT,
a

and n, is the sizeofki. IfK =

1 then one can write pA(L) =

IT

i=1 ki'
4

K bl-la Pk(k). In general then, using the technigue described above,

ommmmph(h)uspmtofdsnpom. For each i

suchthatlsis;)mprA(x)upmmmmen(h).
i i
Thus if K is the product of the non~zero elements on the first super-

diagonal of B, then one can write PA(” =K P (M) The process
1

i Fa
reduces then to finding the eigenvalues in turn of the smaller

mtrices,



CHAPTER VIII
THE SEQUENCE ()

Let A be the n X n matrix determined by f : X = X relative to E
and B= T A T the almst lower triangular matrix obtained from A.
ForeachappmﬂmtiothtoanoigmvaIneofB, one determines the
vector 5'1 by Theorem 7.1 such that P_,‘(xal =0fori=1 2, eve,
(n-1)s If €> 0 is arbitrarily small and an(hJ)l <e, then i, is
arbitrarily close to an eigenvalue of A with corresponding eigenvector
5‘1. The aim then is to construct a sequence ().J) of approximations
such that the sequence [Ipn(xJ)IJ converges to zero.

The first process described here to obtain the sequence [LJ] is
one for which the author has been unable to determine conditions uhich
would insure that (IPn(kJ)I] is a null sequence, However, the sequence
[kdl does converge by the nature in which the next approximation is
chosen; and consequently, the sequence (| (A,)|) must approach a
limit, It is conjectured that one can always choose a seguence (LJ]
in a prescribed way such that this limit is zero, and hence an eigen-
value can be found, This conjecture is based on the results obtained
in solving numerous experimental problems on a digital computer, Be-
fore discussing the conmstruction process of the seguence [LJ], it may
be instructive to discuss some of these results, Since pA(k) can be
calculated for any value of A, the procees of finding an eigenvalue of

A is equivalent to finding a zero of an n'th degree polynomial though

L2
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the analytic expression for pA(x) is not known, Thus the process may
be used to find the zeros of any explicit polynomial, and the results
given in Tables I and II were obtained using polynomials of degree six
and ten respectively., The results in Teble I show that the process
can find the zeros although all the zeros are very close with almost
equal modulli, The zeros of the polynomial in Table II occur in
widely separated groups where the zeros in each group are again close
together with almost equal moduli, If one compares the columns of
calculated zeros with those for the actusl zeros, it will be seen that
the zeros were determined with remarkable accuracy.

In order to construct the sequence D.J] it is simpler to assume
thatallthezemofph(m lie in the interior of a square D which
contains the rectangle determined in Chapter III. The boundaries of
D are parallel to the rectangular axes in the complex plane with the
length of each side denoted by d. To start the iterative process one
divides D into quadrants {q,)  and computes tne T3z, (1P (A,)|)
uhmhi iathecenterotQi. The first element in the sequence {7\3]
is then the approximation that corresponds to this minimum, OSuppose
that A, is one (there may be more than one) of the approximations for
which this minimum is attained. Ommvmnatmcuaaqgmrenl that
contains quadrant Q, with the restriction that D, < D, The length of
each side of D, is d, = (0.5 + a)d where 0 < a < 0,5, Thus if a = 0,
then D coincides with the quadrant Q . Now one divides the square
D, into quadrants (@}}% & and again computes 12"12‘(|Pn(x1)l] vhere A,
mwwthecmteroni. The second element in the sequence D‘.jl is
then the approximation that corresponds to this minimum, Assuming
that this approximation is A,, one constiructs a square De that con-



TABLE I

£(z) E(b)i
= i ]
a Pl

- S R m = ©

Actual Zeros

(448350 , 4.8350)
(448200 , 4.8200)
(448100 , 4.8100)
(48355 , 4.8355)
(4.8000 , 4.8000)
(448300 , 4.83500)

( 040000000 x 10° , -1,0053292 x 10°%)
( 6.2950117 x 10* , 6.2550117 X 10%)
(-3.2431428 x 10* | 0,0000000 x 10°)
( 44840669 X 10° |, -4 uB40669 x 10%)
( 0,0000000 X 10° , 6.974TTAL X 10%)
(-2.8950499 x 10* , -2.8930499 x 10%)
( 1.0000000 x 10° , 0.0000000 x 10°)

Calculated Zeros

(4,8350000 , 4.8350000)
(4.8200000 , 4,8200000)
(4.8099999 , 4.8099999)
(48354999 , 4.8354999)
(448000000 , k.8000000)
(48300000 , 4.8300000)
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=
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Actual Zeros

(-100 ,
(-101 ,

(-101 ,

(20,
(oo,

(o001,
(299,

100)
100)
101)
300)
300)
301)

001)
001)

TABLE II

z

(a,,,)

( 5.2564917 x 10%¢ ,
(=3.3636498 x 10
(=6.1772960 x 10%® |
( 4.2771960 x 10%¢ |
( 8.0460358 x 10*® |
(-848699900 x 102 |
(-1.,4874623 x 10°® |
( 2,1432931 x 10%® |
(-3.9491300 x 10°% |
(-640100000 x 10°% |
( 1.0000000 x 10°° ,

-2,9475105 x 10°)
1,2593803 x 10*7)
~1,0493940 x 10%7)
9.5221140 x 10*S)
945298119 X% 10%*)
1.4361220 x 10*2)
~543403376 x 10%°)
54320499 x 10°7)
5.4320499 X 10°%)
~1,1050000 x 10%°)
0.0000000 x 10°°)

Calculated Zeros

(=1.0000000 X 10°2
(~1.0100000 X 10°2
(=1,0000000 x 10°%
( 2,0000000 x 10°2
( 2,0100000 x 10°®
( 2.0100000 x 10°%
( 949999999 x 107*
( 149072392 x 10732
( 9.9999999 x 1072
( 2.9900000 x 10°2

, 1.0000000 X

 §

2

1.0000000 X
1.,0100000 x
340000000 X
540000000 X
30100000 x
-4 ,6481929 x
1.0000000 X
949999999 *
=9+9000000 %

10°2)
10°2)
10°2)
10%%)
10°2)

1078)
10°°)
10°%)
10°%)

k5
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tains quadrant QF with the restriction that D, © D, and the length
of each side of D being d, = (0s5 + a)dl. Then the entire process
is repeated, Before giving the general formule for constructing the
square D N from Dn’ it may be helpful to consider the following dia-

gram showing the construction of the first two squares from the

domain D,
Q T ol It a,
2 : i . i
i ! Az £y
. } . l I .'_-"-‘5
X i A lf:; ' *:;
4 1 > | ‘.___3__1 4
i __ 7 3 :
Q =] = e = 0,
3 '34 | i
» . i |
Az Ag | i
. L e e e e e e e - i
O D

The first square shows the quadraats of D with D, (indicated in the
first square in dotted lines) comstructed about q, for a = 0,05, The
aacondsqurenhoutheqmdmntsofDlvithDEahamindottedunes
mdmtmtedahathéforthesamvaluaofa. In general then if
n min
Dn is divided into gquadrants {Qil‘;pl, one computes m[an(hi)l}
uhemxi ist.hacenteron';. Asmm:lngthathkeomaponds to this
minimam, one then constructs the square r.)m1 which contains quadrant
n
@ such that D CD andd = (0.5 + a)dn. The calculations in
Tables I and II were obtained for a = 0,05.

Since the construction process produces a nested sequence of
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squares with D = properly contained in D , the sequence {n J] must
converge which implies that the seguence £IPn(?~JJ|l must also con-
verge., A simple calculation shows that for small values of a the
length of & is approximately (1/2°)d and ey = Myl < (1/2™2)a,
For the test problems that have been done, there is evidence that
the method is most effective when the eigenvalues are relatively
close together, The following shows that d can be made unity by a
simple transformation that puts the eigenvalues in the unit circle
with trace zero, The transformation is easily recovered and does

not destroy the almost triangular character,

max
1<ise

vertices of the rectangle that contains the set ["1]2-1 of eigen-

leta,beCwitha# 0, and M = (lvil)mmViax‘em

n
values of B, Then |B - A I| = JL (A =) =p,(A), and

]aB*-'hI-h.IIuanIB-c;b)Il-

n bt
n A-D
a H(Li-_a-)gi}:fl(axi-rb-x)

so that the set [n)n vhere pu, = a A, + b contains the eigenvalues
1'i=2 i

i
of a B+ b I with multiplicities included, If T denotes the trace of
n n
B, then trace (aB+bI)-Auinaiz.lxi-l-nb-aT-i-nb; and it

follows that trace (a B+ b 1) = 0 for b = -a T/n, Furthermore
lu1| = |a A -8 T/n| < lal(lhil + |T|/n) < |a|(¥ + [P|/n) ,

and for a = n/(n M + |T]) it follows that Ipil <1, i=1, 2, s*s, u,
Alsoif_gismeigmvectorofa]!+b1eorreapondingtoui, then
(aB+bI)§-(u1)§=(ak1+b)_x_. Since a # 0, this implies that
x is an eigenvector of B corresponding to the eigenvalue )’1'

The success of many iterative methods will often depend on good
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first approximations, Although this does not hold for the method de-
scribed above, it is true of Hewton's method for finding the zeros of
e polynomial. (Householder, 1953). For the application of Newton's
method, it is believed that the method of nested squares can be used
to great advantage in obtaining first guesses using only a few iter-
ations, It may be advantageous to use the transformed matrix with
eigenvalues in the unit cirele, In any case suppose this has been
done to obtain an approximation A to @ zero of p,(A) = IB - A I,

IfPaG(B-LnI) is the pivotal form of (B-Lnl) and A is

not an eigenvalue of B, then G is the inverse of (B-AnI); and
-1
trace (C) = |B - ) 1| trace [(B - A I)"*] = p,(A ) trace (G)

where ((C)J 15 the cofactor of BNy 1)1, Using this result and
the definition for the derivative of a determinant, it follows for

py(A) = [B - A I| that
n
pa(r,) = -, cofactor (;b* - &) = - trace (C) = -p,(r) trace (G)

where the prime denotes differentiation and p;t(hn) is the derivative
of |B - A I| with respect to A evaluated for A = A . Thus Newton's
method can be applied to obtain Knu as the next approximation where

ALY 1 . 1
o+l n Pi(hn) n LTR0e (B . hn I)-], n trace IGI

Since the trace (G) is known for each approximation A,» the iterative
process is established to obtain the sequence (J\J]. In either method
n 8
II i i
one uses Pn(kd)/ :D-:I.(LJ hi) for the test of convergence where
eigenvalues {7\1];1 have already been determined, and &5 is the alge-

braic multiplicity of the eigenvalue 7"1 obtained by Corollaxy 5.3.1.



CHAPTER IX

SUMMARY

The problem discussed in this thesis is that of devising a
method for calculating all the eigenvalues and corresponding eigen-
spaces of a linear operator suitable for use with a high-speed dig-
ital computer, The eigenvalues and eigenspaces are found using the
unique matrix A that is determined by the operator relative to a
fixed orthonormal basis, Using a sequence of unitary transforma-
tions the matrix A is first reduced to an almost lower triangular
matrix B wvith the same eigenvalues as A, It is shown that every
square matrix is row equivalent to a pivotal form from which the null
space of the original matrix can be determined, For each approxima-
tion A to an eigenvalue of A, the determinant of (B - A I) can be
calculated although the analytic expression for the characteristic
polynomial is not known., Bounds for the spectrum of the operator are
calculated, and two iterative methods are developed producing a
sequence of approximations converging to an eigenvalue,

The most successful numerical methods at the present time are
applied to linear operators that give rise to real symmetric matrices,
and probably the best of these are those that may be termed indirect
methods in which evaluation of the determinant is avoided, The iter-
ative procedures developed in this thesis are direct methods which

evaluate the characteristic polynomial for each approximating eigen-
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value, One of the procedures uses the well known Newton's method for
finding the roots of a polynomial, It is also well known that the
success of this method in some cases depends on good first approxima~
tions, The other method uses a sequence of nested squares to produce
a sequence of approximations converging to an eigenvalue, This
method can be used to obtain good starting values for Newton's method
using only the first few iterations, or 1t may be employed as a sepse-
rate routine to calculate the roots of a general polynomial, Once an
eigenvalue is found using either method, the corresponding eigenspace
is obtained simultaneously from the pivotal form, Both procedures
avoid the usually difficult problem of deflation,
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