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PREFACE

c"

continuous, transformations, namely connectiviiy meps, locel

connectivity waps, and peripherally continuous functions.
1s an introductory chepter giving the

transformations. The material in Chay

directed to the graph of

I1Z deals with the specific problem of showing the equivalence of the

’l A

above mentioned transformetions on a suitably restricted

5 yd B ) L T .
Chapter IV certain results for continuocus fumctions / 9 /(nusbers in

trackets refer 10 the bibliography at the snd of the ps rer} are

;l)

to peripherally continucus functicns. A sunmmary of results iz contained
in Chapter V.

Indebtedness is acknowledged to the members of my advisory

committee; to Dr. 1. Wayne dohnson, Head of the I

)

of this thesis.
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CHAPIER I
INTRODUCTION

.

levoted to the development of certain properties
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of connectivity maps, local connschivity waps, peripherally continucu

transformations, and relatiounships awong thess non-continuous mapplngs.

John Nash and O. H., Hamilton have defined in ifé / &nd / 5

s

N 3 t

regpectively, the comnectivity map and the peripherally continusus trang-
2 - - - - : ™0 TF . .
formation., J. Stallings has defined in / QLJ the Jocal connectivity map.

e 3 x - T o ey " 3 £ n
In his doctoral thesis and in f'&mf Paul E. long developed certain

propertisg and relatioanships and other diszcentinucus meppin
7 s PR S P X S = o sy :'mz s £ wj. 7 . 5 “f

The present paper ls an oubgrowih of papers / 3 /, /% jf, and f & /.
Mz g < b Sy 3 Yy L e B Y ‘_B“! yl
The results in this paper rvely heavily vpon Whyburn / G /

In Chspter II some properties of connectivity maps and peripheralli;

‘\“

siven, Among these are some sufficlent

function, and it is found that if the graph of e connectivity map is

semi=locally comnected the Tunction is continuvous. Two conditions ars
also given such that if elther is lmposed oun the graph of a peripherally
continucus function, the function is a connectivity map. The latter part
of the chapter is concernsd with seguences of funciions, and one result
is that the limitv of a uniformly convergent seguence of peripherally
ccntlnlour functions is peripherally continuous.

In Chapter III & proof 1s given that on a locally peripherally



connected space having the Brouwer Property II every peripherally
continuous function is & connectivity map. In [_8_7 Stallings has shown
that on a locally peripherelly connected polyhedron every locel
connectivity map, and hence every connectivity mep, is peripherslly
continuous. Combining these results, we have that on a locally
peripherally connected polyhedron having the Brouwer Property II local
connectivity maps, connectivity maps, and peripherally continuous
functions are equivalent.

Chapter IV is concerned with upper semi=-continuous decompositions
of the domain space, and factorization of connectivity meps and of
peripherally continuous functions. It is well known that a continuous
function f can be factored into a composite £ = f_f. where both factors

23

| is wonotone, end f, is light /9 /. The mein result

of Chapter IV is that this factorization also holds for peripherally

are continuous, T

continuous functions where the factor f2 is peripherally continuous.
A similar result is obtained for connectivity maps if an added assumption
is made on the function.

The definitions of the above mentioned transformations will now be
given. These and other functions defined throughout this paper are not
necessarily continuous although all results apply to continuous functions.

Definition 1.1. A connectivity map from & space 8 into a space T

is a mapping f such that the induced map g of 5 into S;XiT, defined by

g(p) = (p X £(p)), transforms connected subsets of S onto connected

subsets of SXT [6_7

Definition 1.2. A mapping f of a space S into & space T is called

peripherally continuous if and only if for each point p in S and each

pair of open sets U and V containing p and f(p), respectively, there



A\ )

is an open set DC::U containing p such that ¥ transforms the boundary
F of D into V /3 7.

Definition 1.3, A mepping f from & space S into a space T is called

a local connectivity wap if there is & covering [I&x} of S by open sets
such that f restricted to U, is a connectivity map for every O [f8;7.

If U is a subset of a gpace S the boundary of U will be dencted
by F(U); and if £ is a tvansformation of the space S into the space T
and M is a subset of S5 the graph map of M under f, which consists of
points (p:xif(p)), p in M, will be denoted by g{M). Other definitions
will be given as needed throughout the paper. All topological spaces

considered are at least regular and T, unless othervise stated, and all

1

metrlc spaces are separable.



CHAPTER II
SOME PROPERTIES OF DISCONTINUOUS FUNCTIONS

let f be a mapping of the space S into the space T and g the induced
graph map of S into 8 X T. This chapter is concerned with the relation-
ship between f and g, and conditions on g(S), the graph of f, which will
impose certain conditions on f. A well known result is that f is
continuous if and only if g is a homeomorphism [Té, P 76;7. If Sand T
are compact Hausdorff spaces and S is locally connected, then g being
continuous implies g(S) is locally connected zrb, De 26_7l If S and T
are Tl spaces and S is locally compact, then g being continuous implies
g(8) is locally compact /9, p. 279 /. If one requires that g(8) be
compact, then it is easy to show that g, and hence f, is continuous.

Unless explicitly stated the terms mapping, function, and trans-
formation will not imply continuity. The following propositions are

concerned with properties of f and the graph map g.

Proposition 2.1. If f is an open mapping of the space S into the

space T, then the graph map g is an open mapping of S into S8 X T.
Proof. ILet U be an open set in S and p X f(p) a point of g(U).
Then p is in U, £(p) is in £(U), and £(U) is open by hypothesis.
Therefore U X £(U) is open in 8 X T and (U X £(U))[ ) g(S) is an open set
in g(8) containing p X f(p) and contained in g(U). Therefore p X f(p) is
an interior point of g(U) and g(U) is open. Thus g is an open mapping.
Proposition 2.2, If f is a mapping of the compact T, space 8 into

1

the Tl space T and if g is closed, then f is a closed mapping.




Proof. Let A be a closed subset of S and let q be a limit point
of f(A). Then there is a segquence {%(pn}v of distinct points of f(A)
converging to q such that P, is in A. S8ince A is a closed subset of a
compact set, A is compact and some subsequence {%ni} ofﬂ{p%} has a
sequential limit point p in A. Then pnix f(pni) > p X q, and
pni)( f(pni) is in g(A) and g(A) closed implies that p x q is in g(A).
Thus f(p) = q and f£(p) is in f(A). Therefore f(A) is closed and f is
a closed mapping.

Example 1. This example is to show that if f is e closed mapping
the graph map g 1s not necessarily closed. Iet S = (O;ﬂ LJ.(E:}, and
T = [-1,1], and define a mapping f of S into T by f(x) = sin(%), x # 2,
and f(2) = 0. Then f is & closed mapping, but the set (0,1] is closed
in S and g((0,1] ) is not closed in g(S) since (2,£(2)) is & limit
point of g((0,1] ). Thus g is not a closed mapping.

Proposition 2.3. If f is & wapping of the T, space S into the T,

3
space T and K is a connected subset of g(S), then g-l(K) is connected

in S.

Proof. Suppose g 1K) = M{ JN, where M and N are mutually
separated. Then K = g(M)( Jg(N) and g(M)(1g(N) = ¢ since M IN = ¢.
Therefore one of g(M) and g(N) must contain a limit point of the other.
Let p X £(p) be a limit point of g(N) belonging to g(M). Then there is
a sequence {qn X f(qn)} of points in g(N) converging to p X f(p). Now
q, is in N, point p is in M and QU3 This implies that p is a limit
point of N belonging to M contradicting M and N being mutually separated.
Therefore g-l(K) is connected.

Proposition 2.4. If f is a mapping of the space S into the space T,

then f is peripherally continuous if and only if g is peripherally

continuous.



Proof. Suppose f is peripherally continuous. Let p be a point of
S and let U and V be open sets containing p and p X f£(p), respectively,
where V is of the form H X K with H open in S and K open in T. Then
H(MU is an open set containing p and K is an open set containing f(p).
Since f is peripherally continuous there is an open set D(_ (HE(U)
conteining p such that £(F(D))(T K. Thus g(F(D))(C V end g is periph-
erally continuous.

Conversely, suppose g is peripherally continuous. ILet p be a point
of S and U and V open sets containing p and f(p), respectively. Then
U X V is an open set containing p X £(p) and hence there exists an open
set D{_ U and conteining p such that g(F(D)){(_ (U X V). Therefore
£(F(D))(__V and f is peripherally continuous.

Definition 2.1. A space S is said to be semi-locally connected at

a point p if for every open set U containing p there is an open set V
containing p and contained in U such that S - V has a finite number of
components. A space S is semi-locally connected if S5 is semi~locally
connected at each of its points /9, p. 19_/.

The next two theorems give conditions which imply continuity of a
function.

Theorem 2.1. If f is a connectivity mapping of the T, space S8 into

1
the T, space T and g(S) is semi-locally connected, then f is continuous.
Proof. BSuppose f is not continuous at a point p in S. Then g is
not continuous at p and hence there is a sequence {pn} of points of S
converging to p but{:pn X f(pn)} does not converge to p X f(p). Since
g(S) is semi-locally connected there is an open set U containing p X f(p)
such that p_ X f(pn) is not in U for infinitely many n and g(S) - U has
6nly a finite number of components. Then infinitely many P, x f.'(pn) lie

in a single component K of g(S) - U. Now K |_J{p X f(p)} is not



connected but g-l(K L {p X £(p )} ) = g“l(l{) LJ {p} is connected since
by Proposition 2.3 g-l(K) is connected and p is & limit point of g'l(K).
The reeson that p is a limit point of g‘l(x) is that infinitely many
P, X f(pn) lie in K and hence infinitely many p_ lie in g'l(x) and p - P
Since f is a connectivity map and g—l(K)L_)‘{p} is connected, the set
g(g'l(K) U {p} )=K|J {p % f(p)} is connected. This is a contra-
diction and therefore f is continuous.

Corollary 2.1. If f is a connectivity mapping of the T, space S

1
into the T:L space T and g(S) is locally compact and locally connected,

then f is continuous.

Proof. Every locally compact and locally connected space is
semi~-locally connected'Z-Q, o B 2q;7. Hence Theorem 2.1 implies f is
continuous.

Example 2. This example is to show that one cannot expect the graph
of a locally connected, locally compact set to be locally connected and
locally compact for connectivity maps or peripherally continuous functions
even if the mapping is open. let f(x) = sin(-—i-), o< x <1, and £(0) =0.
This is a connectivity map since the graph of any connected subset of
Eo,l) is connected. The mapping is also peripherally continuous since
it is continuous everywhere except at zero and is peripherally continuous
at that point. The mepping is also open, since if I is any open interval
contained in (0,1), then £(I) is an open interval, and if I is an open
intervel containing zero, then £(I) = [-1,1 ]. The graph of this
function is neither locally connected nor locally compact. This example
also shows that even though a connectivity map or peripherally continuous
function is open it need not be continuous.

Theorem 2.2. Let f be a mapping of the T. space 8 onto the semi=-

5

locally connected T, space T with the following properties:

1



(a) f is finite - to - 1 onto T,

(b) the inverse image f-l(H) of a closed set H in T has closed

components, and

(¢) if H is & connected subset of T, then every component of f-l(H)

maps onto all of H.
Then f is a continuous function.

Proof. If f is not continuous at a point p in S, then there is an
open set V containing f(p) such that if U is any open set containing p,
£(U) is not a subset of V. Since T is semi-locally connected, there is
an open set W(_ V and conteining f(p) such that T - W has a finite number
of components, Cl’ oos ’Cn' Now T - W closed implies that the Ci are
closed, i =1, ... ,n, and f finite - to - 1 implies that f_l(Ci),
i=1, ... ,n, has a finite number ¢of components KiJ’ d =3, < s0y 5
since each component maps onto all of Ci'

The point p is a limit point of at least one component of f-l(Ci)
for some 1. For suppose that for every i, i =1, ... ,n, p is not a
limit point of any component of f_l(Ci). Then there is an open set U

iJ

such that p is in U, , and (Uij)(“1(xij) =g, J=1, ... ,ny, and

iJ

i=1, ... ,n. If U denotes the intersection of all the sets U then

1§’
U is an open set containing p and £(U)( (T - W) = ¢§. Thus £(U) is a
subset of W and therefore is contained in V. This contradicts the
hypothesis that f£(U) is not contained in V for any open set U. Thus p
is & limit point of some component of some f‘l(ci). But p is not in
f-l(ci) contradicting the hypothesis that f_l(Ci) has closed components.

Therefore f is continuous.

Definition 2.2. A wmapping f of the space S into the space T is

called a C -~ mapping if for every point p in S, every pair of open sets

U and V containing p and f(p), respectively, and every non-degenerate



subset M of S having the property that M L_}{P} is connected, then there
is a point q in U( M distinct from p such that £(q) is in V(Long).

In ["h_7 Long has shown that if f is peripherally continuous and N
is closed, then f-l(N) has closed components. He has also shown this
for the C - mepping, end in / 3_/ Hamilton has shown this for the
connectivity map. Therefore, Theorem 2.2 remains valid if part (b) of
the hypothesis is replaced by the requirement that the mapping be one of
the above. Also, Theorem 2.2 implies that there does not exist a 2 - to -
1 C - map, connectivity map, or peripherally continuous function f on an
n-cell, n=1, 2, 3, onto itself such that if H is a connected subset
of the n - cell, then each component of f"l(H) meps onto all of H. For
if such a function did exist it would be continuous by Theorem 2.2
contradicting the fact that no such 2 - to ~ 1 mapping exists /1 7, / 7/.

Example 3. This example is to show that if f is a one - to - one
connectivity map or peripherally continuous function, f_l need not be a
connectivity map or peripherally continuous function. Iet A be the set
[-1,0){_J (0,1), B = (-1,1), end let £(x) = x - 1 if x ¢ (0,1) and
flx) = x+1if x ¢ [-1,0). The mapping thus defined is continuous and
therefore a connectivity map and a peripherally continuous function. It
is also one - to - one. However, fﬂl(x) = x-1if x ¢ [0,1) and
f_l(x) =x+ 1 1if x ¢ (-1,0). Now no connected set containing zero has
a connected graph and hence f-l is not a connectivity map nor is it
peripherally continuous at zero.

The next two theorems give conditions on the graph map g which will
imply that a peripherally continuous function is a connectivity map.

Theorem 2.3. Iet f be & peripherally continuous mepping from the '1‘l

space S into the Tl space T. If for every connected set K in S, g(K) has
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a finite number of components, then f is a connectivity map.

Proof. Since f is peripherally continuous, g is peripherally
continuous by Proposition 2.4,

let K be a connected subset of S and suppose g(K) is not connected.

By hypothesis g(K) has a finite number of components, Cl’ A ,Cn. Then

) = Uy, 1= Ush(e,), e g(c)ME™(ey) = ¢ stnce 0,70, = 4,
R ;ince K is connected not all the g'l(ci) are mutually separated.
Let p be & point of g-l(Ci) which is a limit point of ng'l(cj), i 8
Then p must be a limit point of some g-l(Cj). Now p y??%p) is in C, &nd
there is an open set V containing p x f(p) such that Vka = ¢, k 1‘ k,
since the Ck are mutually separated. ILet U be any open set containing p.
Then g peripherally continuous implies there is an open set D[::U and
containing p such that g(F(D))(__ V. By Proposition 2.3, g-l(CJ) is
connected since Cj is connected. Since p is a limit point of g'l(cj),
then g-l(cj) is non-degenerate and the open set D can be chosen such
that g-l(cé) has points interior to D and exterior to D. Therefore g—l(cj)
has points in common with F(D) since g'l(cj) is connected. Thus g(F(D))
is not a subset of V. This involves & contradiction and hence g(K) must
be connected. Therefore f is a connectivity map.

Theorem 2.4. Let f be a peripherally continuous mapping of the T,

space 5 into the T, space T. If for every non-degenerate connected set

5

K in S, g(K) has no degenerate components, then f is & connectivity mep.
Proof. Suppose f is not a connectivity map. Then there is a non-

degenerate connected set K in S such that g(K) = M{_ )N, where M and N

are mutually separated. By hypothesis the components of M and N are non-

degenerate. Hence, g_l(M) and g_l(N) have non-degenerate components.

For suppose the point p is a component of g“l(M). Then g(p) = p }:f(p)

lies in some non-degenerate component C of M and g‘l(c) is connected.
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Therefore g'l(c) = p and this contradicts g being a one - to - one
mepping.

Now M{N = ¢ implies g~ (M)( g™ (N) = ¢, and K = g™ ()| Jg™ (V)
being connected implies g—l(M) and g-l(N) are not mutually separated.
Let p be a point of g'l(u) which is a limit point of g'l(n). Then
P /< f(p) is in M and there is an open set V containing p x £(p) such
that V[ )N = ¢ since M and N are mutually separated. lLet U be an open
set containing p. Then Ur*]g_l(N) # ¢ since p is & limit point of
g-l(N). Hence U intersects some non-degenerate component C of g-l(N).
Since g 1is peripherally continuous there is an open set W containing p
and contained in U such that C does not lie wholly in W and g(F(W)(_ V.
Then C;wa, but C[ IW # ¢ implies the connected set C has points interior
to W and points exterior to W which means that F(W)[ |C # ¢. This is a
contradiction since g(F(W)){ vV, g(c)C Nand V[ IN=¢. Thus f is a
connectivity map.

Theorem 2.5. let f be a connectivity mep from the Tl space S into
the Tl space T. If V is an open subset of T and K is a non-degenerate
component of f'l(v), then any point p in the closure of X such that p is
not in K has the property that f(p) is in F(V).

Proof. let p be a limit point of K which is not in K. 8Since
K{_J{p} is connected and connectivity functions map connected sets onto
connected sets, f(K[_J[p]) - f(K)L_]{f(pi} is connected. Now f(K) is
contained in V and f(p) is not in V, and £(K)|_J [?(pé} connected implies
f(p) is a limit point of £(K). Hence f(p) is & limit point of V not in
V. Therefore f(p) is in F(V).

Theorem 2.6. Let f be a connectivity mapping of the locally
connected and connected T. space 8 into the T

1 1.
subset of T, then f-l(V) is dense-in-itself.

space T. If V is an open
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Proof. Suppose f‘l(V) is not dense-in-itself. Then there is a
point p in f-l(V) and an open set U containing p such that U - {p]
contains no point of f-l(v). Since S is locally connected the component
C of U containing p is open. Then C X V is an open set in 8 X T
containing only the point p X f(p) of g(C). This implies g(C) is not
connected contradicting the hypothesis that f is a connectivity mep.
Therefore every point of f"l(v) is a limit point of f'l(v) and hence
f-l(V) is dense-in-itself.

The following two theorems are concerned with sequences of functions
and properties of the limit function.

Theorem 2.7. Let fn be a mapping of the space S into the metric
gspace T, n= 1, 2, ies » If fn -+ f uniformly on S and M is a subset of
S, then f(M) is the limiting set of {fn(M)} :

Proof. Denote by L the limiting set of {fn(M)} . Then £(M)(_ L.
Denote by d the metric for T and suppose there is a point z in L which
does not belong to EZES. Then b = d(z,%fﬁ)):bto since z is not a limit
point of £(M). If e = % and U is the spherical neighborhood of z with
radius €, then U(*ngﬁj = . Since the convergence is uniform a positive
integer N exists such that for every pair of positive integers n and m
such that n::>N and m:)>N, d(fn(x},fm(x))<i:§ for every x in S. Since L
is the limiting set of {fn(Mi} there is an integer n::>N and a point y
in M such that fn(y) is in U. Then d(fn(y),fk(y))<-;- for every k >N.
Since fk(y) is in U for every k >N, then f(y) is in U. This implies z
is a limit point of £(M). This involves a contradiction and hence

L=rf(M).

Corollary 2.2. If, in Theorem 2.7, each fn maps connected sets
onto connected sets, M is connected, and EZlfn(M) is compact, then f(M)

is & continuum.
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Proof. This follows directly from Theorem 58 page 23 of [ 5_/.

Theorem 2.8. Iet fn be a peripherally continuous mapping of the
space S into the metric space T, n=1, 2, ... . If fn - f uniformly on
8, then f is peripherally continuous.

Proof. Let p be 2 point of S and U and V open sets containing p and
f(p), respectively. There is an e::>0 such that the spherical neighbor-
hood R of f(p) with radius € is contained in V. ILet R' be the spherical
neighborhood of f(p) of radius E . Since the convergence is uniform
there is a positive integer N such that for every nj:>N, d(fn(x),f(x))<i:f
for every x in S. Choose nojb’ﬂ. Then f_ (p) is in R' and since £ 1is
peripherally continuous at p there is an ogen set D containing p ando
conteined in U such that f (F(D))(_R'.

If y is a point of F(D(;, then

a(£(y),£(p)) Lale, (v),£(y)) + alf, (¥),£(p)).

Now d(fn(y),f(y))<:ﬁ-by thg uniform convergence and d(fn(y),f(p))
is less than OE since fn(y) is in R'. Hence d(f(y),f(p))<§,oand £(y)
is in R. Thus f(F(D))CoR __Vand D is the required neighborhood. Hence
f is peripherally continuous.

Example 4. This example is to show that the limit of & sequence of
connectivity maps or peripherally continuous functions need not be of the
same type. The sequence of continuous functions fn(x) = x" on i@,lj
converges to f(x) = 0, x # 1 and £(1) = 1, which is neither a connectivity

map nor peripherally continuous.



CHAPTER III

THE EQUIVALENCE OF CONNECTIVITY MAPS
AND PERIPHERALLY CONTINUOUS FUNCTIONS
O A CERTAIN SPACE

In this chapter equivalence, under certain conditions on the domain
space, of the peripherally continuous function, connectivity mep, and
local connectivity mep is established.

0. H. Hamilton 173_7 stated a theorem, which wes somewhat
generalized and completely proved by Stallings 1f11;7, to the effect that
on a locally peripherally connected polyhedron into a regular Hausdorff
space, every local connectivity map, and hence every connectivity map,
is peripherally continuocus. One of the main results of this paper is
the converse of this theorem,

Definition 3.1. A space S5 is said to be locally peripherally

connected at the point p if for every open set U containing p there is

an open set V containing p and contained in U such that F(V) is connected.
A space is locally peripherally connected if it is locally peripherslly
connected at every point [_8_7.

Stallings in‘[_8_7 has shown that if f is a peripherally continuous
mapping of the locally peripherally connected space S into the space T
and p is a point of S, then for every pair of open sets U and V containing
p and f(p), respectively, there is a connected neighborhood N of p
contained in U such that F(N) is connected and £(F(N))(__V. This
property is used to a great extent throughout the rest of this paper.

Another property that will be imposed on the domain space of a

1k
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function is the following.

Property II(Brouwer Property). If M is a closed connected subset
of S and C is a component of S -~ M, then the boundary of C is a closed
and connected set [ 10_7.

The following lemma plays an important role in the proof of
Theorem 3.1.

Iemma 3.1. Let W be an open connected subset of the locally
peripherally connected Moore space 5 such that F(W) is connected.

Let W, and W, be open connected sets such that ulr‘] W, ¥ d; r(wl) and
F(He) are connected, and 'ﬁ'l[_J iQCw. If H5 = (Tn'lu WQ)U(UCG), where
Cy } 1is the collection of all components of W - (WlL ) WE) such that

F(Cy) (CF(W,)_JF(W,), and if C is the component of W - CAWLN
containing the connected set F(W), then

(1) F(ug) (CF(W)JFW,),

(2) W= CLJW,,

(3) W, is open and connected, and

3
() if the space S has Property II, F(HB) is connected.

Proof of (1). Suppose there is an x € F(WB) - (F(HI)UF(WE)),
Then there is an open connected set G such that F(@) is connected, x & G,
and Eﬁ(ilu 'i'ia) = ¢. Since r(ca)C(r(w:L)Ur(we)), then x § ¢, for
any @, Therefore x is a limit point of Uca such that x ¢ I_Jca. This
implies G must intersect infinitely many C,. If caCG for some O, then
F(Ca) (G since C, 1s closed. This is a contradiction since F(Ca) is
contained in F(W,)| JF(W,). Therefore, if C [ 1G # §, then C, has points
interior to G and points exterior to G. This implies F(G)[ ) Cop # ¢ since
Co i connected. Now F(G)ﬂF(Ca) = ¢ since Eﬂ(ilt_jﬁa) = ¢, Hence
F(g) = (F(g) - ca)U(r(G)ﬂ Cq)s where F(G) - C, and F(G)( ) C, are nen-

empty and mutually separated., This contradicts F(G) being connected.
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Thus F(WB)C (¥ (wl}ur\wz,),

Proof of (2)., If X is a component of W - (W;,_U wa) such that
K()C = ¢, then F(K)C:»(F(Wj)L_jF(We)}, For suppose there is a point x
in F(X) - (F(WI)UF(WQ)). Since X is closed, x € K. Now K - (F(Wl)UF(We))
(,

is egual to i_jKd, where iﬂd} is the collection of components of the set

K - (F{Wl)L_JF(wg)}e Then each K, is elsc & component of W - (CL_JWE)
since K()C, = ¢, K |C = § and hence (K - (F (W) F(Wg)))ﬂ(CU§5)

is empty. Since W - (CK_JWS) is open K, is open and F(Kx)[::C(_JﬁS.

But }'Eaﬁc = ¢ implies F(Ka)CE% . Now {3“5 = (i«?B - F(WB)UF(WB) and

W, - F(WB) is an open set disjoint from K . Therefore F(K&)[::F(WB). Now

3

K= (K - F(Wﬁ))U(KﬁF(wB)). Therefore, since x ¢ (F(K) - F(WB)),

then x ¢ Kd for some O. But x ¢ interior %i since interior Kd is contained
in interior K. Therefore x ¢ F(QE). This is & contradiction since
F(Ka),CF(W’_Z))C(F(wl)UF(WE)), Bence F(K)(_ (F(w,)|_JF(W,)). Now
suppose there is a point x ¢ (W - (C\_jWi))e Then x is in some component
Kof W - (wlu wg). By the sbove argument F({K)}{ (F(Wl)UF(Wg)) and

o
= .
W = Cl ,wﬁ"

hence K = C_ for some ¢. But Qm[::w5“ This contradiction implies that

Proof of {3). Since cﬁw5 =¢ and C is closed W ~ C =W =~ C = W,

is open. Also, W, is connected since WqL_JWQ is connected and each Qm

o 1
3
is counnected and Ca(_jwlt_sz ¥ d.

Proof of (%). Since W, is open, F(Wﬁ)[—jw5 = ¢ and hence F(W3)[::C'

#

Therefore Wé("}c F(W5). Since W, is closed and S has Property 11,

3
every component of 5 - ﬁs has connected beoundary. The continuum C
contains F(W5), and W5 is connected. Hence, by Theorem 34 page 103 of

1_5;7, ng—10 = F(W5) is connected.

The following theorem is the converse of Hamilton's and Stallings'

theorem 173%7: LT8;7°
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Theorem 3.1. If £ is a peripberally continucus mapping of the
localliy p@riph@mlly connected Moore space 8 having Property II inte
the spece T end iF 8 X T is completely wnorm&l, then f 1ls a connectivity
BED .

Proof. Suppose that I is not & connectivity wap and let A be &
connscted subset of S such that gla) = M{_j®, where M and N are mutually
separated. Let g°l(M) = H and g"l(m) @ K, Then A = §UJX, where H[ 1K
is empty. Sin;ze A is copnected H and, K are not separated and hence ope
wust contaim & limit point of tﬁe other, Iet p be & point of H which is
& limit point of K, Since 8 X T is completely normal there sxist open
dlsjoint sets W and V in S >< T containing M and ¥, respeciively.

iet R be @n open set containing p such that A is net costained
enbirely in R, Then f peripherally centinuous znd S locally peripher@lly
connected implies there is an open connected set W comitaining p and
contained in R such thet W and F(W) are both counscted end g{F(Ww))(_ ¥
[’857, B8ince p is a limit point of K there is & psint ¢ of K ia W,

Iet @ be the collection of all open conmected sets D such thei
qis in D, D(_W, D and F(D) are connected, and g(F(R)) (V. The
collection Q is nomsempty since f is peripberally continuous at the
point q. Denote by Q* the point-set union of all sgets in Q. Then Qéx
is an open subset of W, Ogugider the boundary F(Q*) of @7, If
F(QT) A = §, then A = (A - @) J(a[e") and & - 6" and AMGY are
mamally. separated. For A - § o ¢ since 4 does not lie wholly in @
and Aﬂﬁf # since g is in A,ﬁ@.'a’o Further, alMe’ is open in A and
hence cainot c@nté,in 2 limit point of A = Q+,, and any limit poiant of
A(MQT which is in A = & 1is in F(Q) which is disjolot from A, Thus,
sime & = Qﬂﬂ‘ and Aﬁ@% are disjoint; they are mut;u&lly S@parated and

this comtiradicts A beink conmected. Th@ref@re.ﬁ’{@gﬂv)(—}ﬁ; o d.
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2
e

Since F(Q (A # ¢, either F{Q ) contains & point of H or & point

- « . 3 ;
of K. Suppose there is & point h in F{Q ){ ]H. Then there is an open

set E containing h but mot g such that F(E) is connected and g(F(E))(_

Since h is a limit point of Q+, E must intersect some set D belonging to

the collection @. HNow EgZiD since h is ju E =~ D and IK;tE since q is in
1 h

D - E. Thus E and D bo ave points interior and exterior to one

another and F(D) and ¥(Z) being comnnected implies F(D)[ JF(E) # ¢. But

£

this contradicts the fact that g{F D))V, glfE))( Vend UMV =

Hence F(Q+)rhlﬂ = ¢ and therefore F(Qﬁ){ﬂﬁK # ¢.

l

. - + .
let k be a point of F{Q ){ K. Now k is not a point of F(W) since

- -

g(F(W)) is contained in U and g{k) is in V. Thus X is in W and there is

an open connected set W, containing k snd contained in W such that T(Wl,

o

. —— S
is connected, W,(__ W end g{F(ﬂl;)F V. Since kX is & 1limit point of Q

I i in the coll i uch that W .
there is a set W, in the cellection Q such tha l(‘)wg # ¢

How form the set w5 referred to in lemma 3.1. By this lemma the

set W, is open, comnected, F{W

) is connected, W

> 3

1 - Y 2 . b3 —r I o -
Furtier, g(F(WB;)C::V since F<d§)fl_f(wl)L_JF\w2)‘ Therefore W5 possesses

o belong tc @, but W, is not in Q since k is in
»

(W, and q ¢ W5

N

ot

all the requircments
o ~F e . e N ‘ . : .
(ﬂ5[ F(Q )). Therefore the essumption that g{A) is not connected leads
to & contradiction. Hence f is a connectivity map.

Thy 73 g +2 . "DS 14 s 4 8"7,‘ ‘e

e explicit statement of Stasllings' thecrem '/ 1s as follows:

If £ 1s a local connectivity wapping of the locelly peripherally
connected polyhedron P into s regular Hausdorff spsce ¥, then f is peri-
pherally continuous. Since every connectivity map is a local connectivity
map this theorem implies that under these conditions a connectivity map
is also peripherally continuous. In view of this and Theorem 3.1, if S
is & locally peripherally connected polyhedron having Property II, and T

o4

is a regular Hausdorff space such that 5 X T is completely normal, then
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local connectivity maps, connectivity maps, and peripherally continuous
functions from S to T are equivalent. In particular, if f is a mapping
of the n-cell I, n =2, 3, ... , into itself, then there is no distinction
among these functions, since for n>l, the n-cell has all the required
properties. In the case of a l-cell these functions are no longer
equivalent. In.[_h_7 Iong hes shown that a connectivity map of a l-cell
into itself is peripherally continuous and gives an example to show that
the converse is not true. The following theorem will complete the theory
of equivalence of the local connectivity map and the connectivity map of
a n-cell, n=1, 2, ... ; into itself.

Theorem 3.2. If f is a local connectivity map of the closed unit
interval I into itself, then f is a connectivity uap.

Proof. Since f is a local connectivity map there is an open
covering {Ua} of I such that f restricted to Ua is & connectivity mep
for each &, BSince I is compact the covering-{qz} can be reduced to an
irreducible number of intervals, {al,bl), (ae,be), S (a.n,bn] , where
ai<i:ai+l<<:bi<i‘bi+l, &, =0, b =1, and f is & connectivity map on
each interval.

let K be any cconnected stvbset of I. Then K has one the forms
[a.,b:} , (a,0), [a,b], or (a,b:l . Without loss of generality one can
assume that al< al b, and a < b\<\‘cn. Only the case where K = [a,bj
will be considered since the other three cases are similar,

The set K can be written K = Kﬁ[al,bl)UKm(ae,be)...UK [—](a.n,bn]
where Km[al’bl)’ Kr_](ae,ba), ves Km(an,bn] are all connected, and
each set intersects the preceeding one and the succeeding one. Since f
is a connectivity map on each interval the graph of each of the above
sets is connected and each has a point in common with the succeeding one.

Hence g(K) is connected and f is s connectivity map.
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Example 5. This example is to show that a locel connectivity me
need not be either s connectivity wmsp or a peripherally continuous
function. Iet A be the set of polnts (x,y) guch that O<<ﬁ<<:1.and
y = sin(%), p = (0,1) and ¢ = {0,-1)., let S = AU[pUq:( and T = AlJfp'| qy
where p' = (1,0) and g' = (~1,0). Define the mapping f of 8 into T as
follows. Let f be the identity mepping on A and let f(p) = p' and
f(q) = q'. Iet H bevthe open rectangle given by ﬂl<::x<::1, -lﬁ<:yw<:2,
and let X be the open rectangle given by -1<x <1, -2<y<1. Then
the two sets H' = H{ 1S and K' = X[ 18 form an open covering of S, Also
q ¢ H' and p # K'. Since f is continuous when restricted to any conuected
subset of either H' or K', then f is a connectivity map on H' and on X'.
However, f is not a commectivity map on 8 since £(S) is not connected.
Further, f 1s not peripheralliy continuous at either p or q since there
is no neighborhood of p or of ¢ whose boundary maps into & neighborhcod
of p' or of q', respectively.

Theorem 2.8, page 13, of this paper gtates that the limit function
of & uniformly convergent sequence of peripherally continuocus functions
is peripherally continuous. If the space S satisfies the hypothesis of
Theorem 3.1 and Stallings' theorem, then the limit of a uniformly

convergent sequence of connectivity waps 1s a conunectivity map.



CHAPTER IV

UPPER SEMI-CONTINUOUS DECOMPOSITIONS AND THE REIATED
FACTORIZATION OF CONNECTIVITY MAPS AND
FPERTPHERALLY CONTINUOUS FUNCTIONS

This chapter is devoted to the study of the relationship between
discontinuous functions and the decomposition of the domain space into
upper semi-continuous collections. Related to this i1s the factorization
of functions and the properties possessed by the factors. For continuous
transformations Whyburn, in 179;7, Chapters VII and VIII, has a thorough
exposition. The theorems in the present chapter will show that many of
the classical results for continuous functicns have their counterpart
for some special discontinuoué functions, namely the peripherally
continuous functions, and the connectivity maps.

In order that the work have a semblance of completeness some
definitions and theorems will now be quoted from Whyburn 179_7 and
Mcore [f5_7, In what follows continuity is not assumed for any function
unless explicitly stated. The work in 179;7 sssumes that all spaces are
separable and metric. For this reason many of the theorems in this
chapter assume this also.

Definition 4.1. A collection @ of mutually exclusive closed point

sets is said to be upper semi-continuous if and only if it is true that
if g is a point set of the collection G and {gn}.is a sequence of point
sets of this collection and, for each n, &, and bn are points of g, and
the seguence {an} has & sequential limit point lying in g, then every

P 0 R . R
infinite subsequence of [bn, hes a subgequence having a sequential limit
i {

. e

o



point that lies in g ZﬁS, p. 273 /.

A useful characterization of upper semi-continuity is

Theorem 4.1, In a compact metric space S & necessary and sufficient
condition that a collection G of closed sets be upper semi-continuous is
that for any sequence (gn} of elements of G with g )(lim inf gn) 4 d,
where g is in G, then lim sup gn[::g Lﬁb, Do l22m7.

Definition 4.2. A collection G of disjoint closed sets in a space

S is sald to be semi-~closed if any convergent sequence of sets of G
+ +
whose limit set intersects 3 - G coanverges te = single point of 8 - G,
+ ) . . s
where G denctes the point-set union of all sets in G ZT?, p. 131 7.

Definition %4.3. 1In a metric space S a collection of sets is called

a null collection if end omly if for any e:>>0; at most a finite number
of its elements are of diameter >'e 179, P. 67_7‘

Definition L. k. A collection G of disjoint subsets of the space S

will be called non-~separated provided that no element of G separates in
S two points belonging te any other single element of G Zfb} . M2;7.

Definition 4.5. A non-separated collection G of subsets of the

space 3 will be called saturated provided that if g is in G and p 1s any
point of 8 - g, there exists at least one element g' of @ which separates

pand g in 8 /9, p. 45 7.

If f is a continuous function from a space 3 into a space T and C
is & closed subset of T, the set f-l(C) ig closed. Tor a connectivity
map or & peripherally continucus function the components of f"l(C) are
closed 173_7, th‘7, The following two theorems and the resulting
corecllaries give sowme more information concerning fﬁl(C)s

Theorem 4.2, et f be a connectivity wapping of the compact, semi-

locally connected space 5 inte the T, space T. If C is a closed subset

1

=1 R .
of T, then the components of f ~(C) form a semi-closed collection.
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Proof. Bince T is & connectivity map and € is closed, the

.
PPt ., " .. 0
components of £ {C) are closed / 3 /. Iet iM

~ -

(¢) with & non~empty limiting set M. Since

he a convergent

-
o

sequence of components of f

;._.!

S is compact iﬂ)Mn is compact and hence M is connected Zf?, p. 15_7.
Suppose M is non-degenerate and that M[ (8 - f"l(C)) #d. let x

-

be a point of M such that x is not in £ 7(C) and let y be a point of M

s , . . r
distinct from x. Then there is a sequence of points *yn} of M converging
to y. Since S is semi-locally connected there is an open set U containing
x such that Y, isnot in U, n= 1, 2, ... , @and 3 ~ U has a finite numbar
of components, Ki, ses g Kj.‘ Since there are only & finite number of
the Ki’ some Ki must intersect infinitely many M_ since Yn is in8 - U
£ Denote these by M_,. Then D = K, | J(/ JM ) J{xli

or gll n. Denocte these by | "r hen D = Kot n‘)* 1 Xiis &

connected subset of 5 and f a connectivity map implies that the graph

g(D) is connected.

——

Now UﬂKi = ¢ and f(g\JMn,)ﬂ(T - ¢) = ¢ since f(iJMn,)i\;C.
But x is in U and £(x) is in T - C since x is not in f_l(C). Thus
U X(T - C) is an open set in 8 X T containing only the point g{x) of
g(D). This contradicts g{D) being connected. Therefore either M is
contained in f“l(C) or M is a single point. Thus the components of £ (C)
form & semi-closed collection.

Theorem 4.3, Iet f be 2 peripherally continuous mapping of the

compact, locally peripherally connected space 3 into the regular T, space

1
T. If C is a closed subset of T, then the components of f~l(C) form a

semi~closed collection.
Proof. The components of f‘l(C) are closed by [ %, p. 639 /. Iet
fgn} be a convergent sequence of components of fm*(C) and let lim g, = L.

QY

’ -1
Suppose L1 (5 - £

(€)Y # ¢ and let a e L[ 1{8 - £77(C)). Iet b be any

other point of L. If nc such point exists, then L = %ﬁ and f'l(C) is
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semi~-closed. Since {gn} is a sequence of connected sets and E:jg; i
compact, L is connected fMQ, )P 15“7 Since I contains the two distinct
points & and b, L is non-degenerate and hence {gn} has no null sub-
gsequence. Without loss of generality we can assu@e there is an e:>>0
such that diameter g ‘»e for every n.

Iet [Un} and {Vn}'be seguences of copen sets closing down on a and
f(a), respectively, such that diameter Un<iie, F(Un) is connected, and
f(F(Un))[::Vn, for every n. Since diameter gn;;>e, diameter Un<<:e, and
F(Un) and g are connected, it follows that F(Un)f—ig # @. let a be a
point of F(U )(‘]g . Bince the sequences (U } and 5 } are closing down
on a and f(a), respectively, & - & and f(Pn) - f(a). But a €8,
implies that f(an) € Cand a ¢ L’”}(S - l( ) implies f{a) ¢ C. Thus,
f{a) is a limit point of C not in C contradicting that C is closed.

Therefore elther L» E (C) or L is a single point, and the compeonents of

f-l(C} form & semi-closed collection.

Corollary k.1, Under the hypothesis of Theorem 4.2 or Thecrem 4.3,

the collection of components of f-l(C) form an upper semi-continuous
collection.

Proof. The set f@l(C) is a semi~closed set by the two previous
theorems. Theorem (5.2) of 179, oI 152;7 states that the collection of
all components of any semi-closed set forms an upper semi-continuous
collection in a compact space.

Corollary 4.2. Under the hypothesis of Theorem 4.2 or Theorem 4.3,

]

the collection of non-degenerate components of f ~(C) forms an FU set.
Proof. The set fﬂl(c) is a semi-closed set by the two previous

theorems. By Theorem (5.41) of 179, p. 132_/ the union of &ll non-

degenerate components of a semi-closed set is an FU get, if S is compact.
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Corollary %.%. Under the hypothesis of Theorem 4.2 or Theovewm 4.3,

for every 0, the uricn of all compon
P

E.EI

diametezf>>e is closed,
/

‘“l 7
!

Proof. The set £ () is semi-closed by the two previous theo

By Theorem (5.4} of /9, p. 132 /, in & coupsact space & necessary and

b

sufficient condition that a set be semi-closed is that for every EL:>Q
the union of all components of di&metexf;;e is a closed set.

For a continuous mspping f of a cowpact space 3 into a space T it
iz Known ETQ, D lﬁawf that the coliection of components of the sets

o1 . . - . .
v}, where is a point of T, forms an upper sewl-continuous
E y b ¥
decomposition of 8. The next three theorems give some informaticn, in

this respect, for connectivity maps znd peripherally continuous functions.

—n } e S N $ et by v 3 o e
Theorem L. L, let £ be & connectivity mepping of the metric space
8 dnto the T, space T. If § iz decomposed inte the colliection 87 of sll

components of the gets £ (v where v is & point of T, sad 1f 8 ig &
Y > P J

.

null collection, then S° is upper semi-continucus

°

Proof. Since T is & T, space, v 8 point of T implies y is & closed

=1
set, and £ a connectivity map implies the components of ¢ ~(y) are

and 1s therefore upper semi-continuous jué; . 1347,
xS 1 Pag 2 o 3
Theorem 4.5. Iet f be a connectivity mapping of the compsct metric
space 8 into the T, space T. If &', the decomposition of & into the
. wdm N . H
- ‘ '}_,
coll £

ection of all components of the sets £ {y), where v is & point of
T, is a satursted collection, then

Proof. The cellection 8' is n

disjoint continua. Thus 2' is & non-

and is therefore upper sewmi-continuous z 9, p. 12?m7.
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Theorems 4.4 and 4,5 remain velid if the hypothesis that f be a
connectivity mapping be replaced by f being a peripherally continuocus
function since if C is a closed subset of T, then f"l(C) has closed
components / 4 7.

Theorem 4.6, Iet f be a peripherally continuous mapping of the
locelly peripherally connected, compact metric space S5 into the regular
Tl space T, let S' be the decomposition of S into the components of
the sets f—l(y), where y is a point of T. Then S' is an upper semi-
continuous decomposition of 8.

Proof. The elements of S' are closed since y is closed in T and
f is peripherally continuous /4, p. 659_7: Since 8 is compact S' is &
collection of disjoint compact continua filling up S. By Theorem k.1,
S' is upper semi-continuwous if and only if {gnE is any sequence of sets
from S' and g[ |(1im inf gn) # ¢, then lim sup‘gn{::g, where g is in S°,

To this end let a be a point of g{ )(1im inf gn), let L = 1lim sup g8,
and let p be a point of L distinct from a. If no such point exists,
then L = £a} and hence L[::g. Now there exists & convergent subsequence

(e lof (g |
sLgm.:}of ggnf

2

such that lim g . = K{_Land p is in X /5, p. 24 7.

Then we have lim inf gn[::lim inf g1 and hence & is a point of K. Since

the g ; are connected and {_Jgni is compact the set K is connected

[Tb, P. 15_7. Now jgnii is not a null sequence since K is non-degenerate.

W
Hence there is an e:>>0 such that infinitely many gni have diametex':>e,

=

Without loss of generality assume all the 83 have diametexj:;e. Let g
e

be an arbitrary point of K. Iet {Ual andivnz be sequences of open sets

closing down on q and f(q), respectively, such that diameter Un<<:e,

L
be sequences of open sets closing down on a and f(a), respectively, such

. — 3 o
F(Un) is connected, and f(F(Un))l__Vh, for every n. let {Wn} and anJ
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that diameter Wn<<:e, F(Wn) is connected, and f(F(Wn)){i:Rn, for every n.
Every open set containing a intersects all but a finite number of
817 and every open set conteining ¢ intersects all but a finite number
of AR Hence there 1s an integer k such that for every ij>>k,
F(Uni)("}gni # ¢ and F(Wni){m}gni # ¢ since diemeter gni:;ge, diameter U .
is less than ¢, diameter Wni<: €, and all the 8,4 &re connected., Let a;
be a point of F(Wni)("\gni gnd let g, be & point of F(Uni)(~§gni. Then
2, > 8, q; > 9 f(ai) - f(a), and f(qi) - £(q). But &, and q, belonging
to g 5 imply f(ai) = f(qi). Therefore f(a) = £f{q) = f(g). Since q was
an arbitrary point of K we have f£(K). f(g). Therefore Kii:f-l(f(g))
and since X is connected and X ‘g # ¢, K| 'g. Now p was an arbitrary
point of L which is in XK. Thus p is in g and Li:jg. This shows that
1lim sup gn{::g and hence 5' is an upper semi-continuous decomposition
of 8,
Using the upper semi-continuous decomposition of the domain space
8 continuous fﬁnction f can be factored into a composite f = fafl, where
f, is & monotone continuous function, and f

1 2
function 179, o 14147. The definition of monotone and light will now

is a light continuous

be given, and some anslogous results for peripherally continuous functions
and connectivity meps will be proved.

Definition 4.6. A mepping £ of a space S into & space T is called

monotone if f-l(y) is connected for every point y in T. The mapping is
called light if f-l(y) is totally disconnected / 9, p. 130_7/.

In 179;7 this definition is given in terms of continuous mappings.
Here continuity is not assumed.

Theorem 4.7, Iet f be & peripherally continuous mapping of the

locally peripherally connected, cowpact metric space S5 into the regular
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T, space T, Then f can be factored into the composite I = f.f
o

7
e

J,WER

f, is a continucus monctone wapping of 5 onto the upper semi-continuous
wle

decomposition S' of § into the components of £ “(y), v 2 point of T, and

f2 is a light, peripherally continuous wapping from S' into T,

Proof. The existence of the upper semi-continuous decomposition
8! of 8 is guaranteed by Theorem L4.6. As in the analogeous theorem
concerning continuous functions, the mapping fl of 8 onto 3', defined by
f{x) = g, where g is the element in 8' containing x, is monotone and
continuvous Zﬁ@, D 12747.

Define the mapping T, of 8' into T by fg(g) = y, wvhere g is a
component of ful(y)‘ Then £, is light since the elements of fél(y) are
the components of f‘l(y) and these form a totally disconnecied set in 57,
For if H is any non-degenerate subcollection of f;l(y), then H is
connected in &' if and only if H+, the point-get uwnion in S of sets in H,
is connected ZfS, . 275w7. Now H being non-degenerate implies H+
contains more than one component of f“l(y) and hence 1s not connected,
Thus H is not connected and f2 is & light mepping.

By definition of fl and fg, fom= fgfl’ Therefore it remains to show
that f2 is peripher&lly continuous.

With this in mind, let g be an element in 3' and let U be a
connected region in S“containing g, and V an open set in T containing
fE(g)* Then U+, the point-set union in S of elements in U, is open in
3 Z?@, D, 125;7, and since g is compact there is an open set W(::U+
containing g such that if h is in S' and h(\W # ¢, then h[::U+
175, P. 277;7. Since f is peripherally continuous, for every x in g
there is an open set R conteining x such that Ex{jjw, F(Rx) is connected

and f(F(Rx))[::V. Now-{Rk} » X in g, 1s an open covering of g and g



compact lmplies there is & finite subcoilection R, ..., Rn covering g.
., o .
Hence R = gﬂﬁﬁi is sn open set contsining g and contained in W, snd
L=
o § T nl - Y e 4 T"(v*‘ T ey
F{m}{”“{wjf(ﬁi} implies F{F{R))} ¥,

- N ¢ o o
let H be the collection of all elements h in 5' such that hi R,

The collection 8 ¢ ¢ since g{ R. Also, H{_ ¥ and H is open in 8§'

[TB, P QYTM;. iet B te the collection of all elements h in 8' such

that hi F(R) # ¢, Now if B = ¢, then U' = A*L_JK*, where A is the

2

: . o ; + . oor = - .
collection of elements in U lying wholly in U =~ R and K ig the

- . . . ‘ . . .t o
collection of elements in U lying wholly in R, Bubt A snd K are

e

1,

. + o, - 51 s
mutually separated. This means U iz not connected and hence ¥ is not
connected in 8' /5, p. 275 /. This contradiction implies B # #.

Wow £(F(R)){ V and £(h) = £ (h} is & single point in V for every

’[O

e . -+ . . o . 5 .
h in B. Hence £(B ) = £.{B) is contained in V., We need only show that
L

F(H)( B and then H will be the desired open set contained in

o]

peripheral continuity of fg* To this end let h be an element of F(H)

3]
|

and suppose hf 1F(R) = ¢. Then since h is not in H, we have h{ (S -

hich is open in 8. ILet M be the collazction of all g in &' such that
g (8~ R). Then M is an open set in ' contsining h, but containing
no element of H. This contradicts h being & voundary element of H.
Thue F(HE){ B and the proof is completed.

If it is assumed that the collection 8° of components of ful(y),

y a point of T, gives an upper semi-continucus decomposition of S, then
the next theorem gives an analogous Tactorization of 2 counnectivity
mapping from the space 8 into the space T. The following lemma 1s needed
in the proof of this theorew.

Temma 4.1. If G is an upper semi-continucus decomposition of 3,

hen G X T iz an uvpper semi-continuous decomposition of S X‘T
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+

- .
Proof. Since G = 8, (¢ X T)

3
{ be a
@

=8 XT., let . %
T, le Lgn.x -
sequence of elements of GM T and let 8, % tn be a point in g, X tn such
that sn>< tn -+ 8% 5, where s )Wt is in g t and g W t is an element of
¢ X T. Then s, 8 where s 1s in g, end t - t. iet {an)< tn} be any
other sequence such that s %t is in t sand letla X t .\ be
q/ il 2 b 8, Xt nfx‘ ni
any subsequence of {an>< tn} . Since G is upper semi-continuous there
L
I b . .
is a subsequence ;a__ ., of a_ .\ such that a ., > &, where a is in g.
1 ni’ Cni} ni
Bence &, X t ;. » & >(t, vhere a t is in g X t, and G X T is upper
semi~continuous.
Theorem 4.8. Iet f be a connectivity map from the compact metric

space S into the T. space T. If the decowposition S' of S into the

1
. . -1 \ :

collection of all components of the sets T (y), where y 1s a point of

T, is upper semi-continuous, then f can be factored intc the composite

£ = fEfl’ vhere f, is a monotcne continuous mapping of S onto S', and f

is a light, connectivity mepping from S' into T.

[

Proof. Just as in Theorem 4.7, define a mapping f, of 8 onto 8' by

1
fl(x) = h, where h is the element of S' containing x. By hypothesis 35!

is upper semi-continuous, and hence f, is monotone and continuous

i
[9, p. 127.7.

Again, as in Theorem 4.7, define the mapping f, of S' into T by

2

Pl

f2(h) = y, where h is & component of £ ~(v). Then f., is light since

2

f;l(y) is totally disconnected in 8', and by definition of f; and f,,

1

T = fgfj. It remains to show that f9 is a connectivity mep.

To prove this let g and &5 be the graph maps of f and fg,

respectively, and let H be a connected set in S'., Then g(H+) = [éQ(H5}+.
. . . : + O,

For if x is a point in g{(H ), then x = p X £(p), where p is in : {

h be the element in K containing p. Then h‘><f2(h) is a point in gE(H).
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oL
Hence {g EN (h}]r is contained in (“jT , and since p is in h and

l?E
flp) = fg(h) then p X £{p) is in th f (D " Therefore p X £(p) is
in le (07T apa o0 4 nte i 1yt
in [ge(HIJ and g(H ) is contsined in Lge(sz .

. ook s
Conversely, let x be a point in ‘gE(H)§ . Then there is an h \'fn(h}

s

“‘b

such that % isg in

f_,r:'}“l

< E(h:] , and therefore there is a point p in h

e

\
K

o

such that x = p X f(p) since £ (h) = £{p). Thue x is in g(&") and hence

§ (H)J

.y 1+ s $ 2 2 fart ) e 2 r"e“ f-’
{ge(Hll is conteined in gl{¥ ). Therefore giH ) = @

o

Now S' being upper semi-continuous implies that H is connected if
' + 1 = 'f"-' [y N3 oI . »
sgnd only if H 1is connected Zw,, P c7);7. Since f is a connectivity
2y s 3 P ”'\“3‘{' I m "’y
map, g(H ) is connected ard therefore ig?LH/s is connected. Then 5' X T
being upper semi~-continuous by Lemme 4,1 implies go{H) is connected,

Thus f2 is & connectivity wmap and the theorem is proved.
Theorem 4.9. Iet f be & connectivity mapping of the compact,

semi~locally connected metric space 5 into the T1 space T. Iet y be a

point of T and 8' the decomposition of S into the components of f“l(y)
and the individual points of S - fwl(y). Then £ can be factored into
the composite f= fgfq: where fl is a continuous mepping of S onto S'
which is monotone on S and one-to-one on S5 - fql(y), and f2 is a
connectivity map from S° into‘T which 1s light on the set of components
of fml(y).

Proof. Since T is a Tl space, the point y is a closed subset of T
and Theorem %.2 and Corollary L.l imply that the components of f-l(y)
form a semi-closed, upper semi-continuous collection. By Theorem {(5.1)
page 131 of Zf9;7, the collection S}, consisting of the components of
f“l(y) and the individual points of S - f"l(y), is an upper semi-
continuous decomposition ¢f 8 into disjoint continua.

As in Theorem 4,7, define the uwspping f £, of $ onto 8' by flx) = g,



i
(18]

where g is the element in 8' containing x. 3By L 9, p. 12 7_7 f
monotone and continucus. Define the mepping £, of 3' into T by
La
. . -1
fg(g) = 7, where z = £{g). The mapping £, is one-~to-one on S - £ (y)

o sas T e s . - -1 .
by definition, and £, is light on the set of components of f (y) since

2
PO |
“{y) = £ “(y) which is to*slly disconnected in 8'., By definition of
f, and fg, f= ”?fl It remains to show that fP is & connectivity mep.

2

The proof of this is identical toc the preof of the corresponding fact in
Theorem 4.8.

Theorem 4.10., Iet f be a peripherally continuous mapping of the

locelly peripherally connected, comwpact metric space 8 into the regular

Tl space T, Iet y ve a point of T and 8' the decomposition of 8§ into the
-1 A s . . - LS :

components of £ ~(y) and the individual points of 8 - £ “(y). Then T

can be factored into the composite f = £ f., where f. is a continuous

1

o

mapping of 5 into f

i

which ig wmonotone on S and one-to~-one on 8 ~ § (V),

e

and f, is a peripherally continuous wapping of §' into T which is light
on ths set of components of ¥ ~(y),

Proof, 8ince T is a T, space, the point y is a closed subset of T

:
o
o - 1 a - . - "J
and Theorem 4.% and Corcllary 4.1 iwplies that the compcnents of £ (y)
form & semi-closed, upper semi-continuous collection. By Theorem (5.1)

o
page 131 of [/ 9f7, the collection 87, consisting of the components of

4]

-1 . e sa . ~1 X
f “(y) and the individual points of 8 ~ £ ~{y), is an upper semi~

Fal

continuous decomposition of 8§ into disjolnt continua.

As in Theorem 4.7, define the mapping T, of S onto §' by fx) = g,

9

-t

. »

where g 1ls the element in S' contasining x. By jf?, e l£7;7 fl .3

monotone and continuous. Define the mapping T, of 3' into T by

2
) . . AL
f,(8) = z, where z = f{g). The mapping f, 1s ocne-to-ome on § - £ ~{y)

by definition, and f, ig light on the sets of components of £ ~(y) since
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f;l(y) = f“l(y) which is totally disconnected in 8'. By definition of
fl and fg, = f2f1' it remsins to show that f2 is peripherally
continuous. The proof of this is identical tc the proof of the
corresponding fact in Theorem 4.7.

For continuous mappings there is an "¢ - " characterization of the
property of being light ZTQ, P. 131_7. That this is also true for
peripherally continuous transformetions is the content of the next

theoren,

Theorem 4.11. Iet f be 2 peripherslly continuous mapping of the

locally peripherally connected, compact metric space S onto the compact
metric space T. A necessary and sufficient condition that f be light
is thet for every e::>0 there is a 5::>O such that if A is any continuum
in T such that diameter A< 5, then any component of f-l(A) hes diameter
less then e.

Proof. Assume that f is a light mapping and suppose there is an
s:>>0 such that for every 6:>>0 there is a continuum A, in T such that

B

diameter A6<i & but there is & component C_. of f'l(Aa) such that

§]
diameter Ga:;ze. Choose a sequence of positive real numbers {Snl
J

converging to zero, Then for each 5n there is a continuum An[::T, and

-1 . R '

¢ of 4 .
g component C, of f (An) such that diameter An<<:5n and diameter Cn;;;e.
Since S5 and T are compact the seguence {An] and {Fn} can be chosen to be
convergent.
Since diameter A <i & and ® - O, diameter A - O and hence

n n n n
lim An = {p} , & single point in T. Now dismeter Cn;;;e for every n
implies that {Cn} is a sequence of non-degenerste connected sets and S
compact implies lim Cn = C is a non-degenerate continuum [—5, P 25;7.

Iet x be a point of € and let {[&1] be & sequence of open sets
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closing down on x such that diameter Un<: €, and {:an} a sequence of
open sets closing down on f(x) such thet F(Un) is connected and
f(F(Un))[::Vn. Then since U intersects infinitely many C,, F(Un)

intersects infinitely many C et x be a point in F(Un)r-]ck. Then

x
f(xn) is in V_and we have x -~ x and f(xn) -» f(x). But x & point of
C, implies that f(xn) is in f(Ak) and lim A, = {p] . Therefore f(xn) - P
Hence f(x) = p and x is a point of f-l(p). Since x was an arbitrary
point of C we have C{::f‘l(p). But f'l(p) is totally disconnected since
f is light. This involves a contradiction since C is non-degenerate.
Therefore the condition holds.

If the condition is assumed to hold, then f is light regardless
of whether or not f is peripherally continucus. For let p be a point
of T and suppose there is a non-degenerate component C of f—l(p). If
O<€ <diameter C, then there is a B>0 such that if A is any
continuum containing p with diameter <8, then every component of f—l(A)
has diameter < €. But C is contained in f-l(A) and hence is contained
in some component C'. Then diameter C'< € on the one hand and
e < diameter C < diameter C' on the other, which is & contradiction and
thus £ *(p) is totally disconnected /9, p. 131 7.

The following theorem gives a necessary and sufficient condition
for a monotone peripherally continuous function to be open. This result
is then used to obtain a sufficient condition for continuity of a
peripherally continuous function.

Theorem 4.12. let f be a monotone peripherally continuous mepping

of the locally peripherally connected, compact metric space S onto the

regular Tl space T. Then f is an open mapping if and only if for every

sequence {yn} of peints of T with sequentiasl limit point y ,
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a £y ) = £7(y).

Proof. Suppose f is an open mapping and let {:yn} be a sequence
of points of T with sequentiel limit point y. Iet g = f"l(yn) and
g = f-l(y). Since f is monotone and peripherally continuous and S is
compect g, and g are compact continua. let x be a point of g and
suppose there is an open set U containing x such that Uf'\gn = ¢ for
infinitely many n. Then, since f is open, f(U) is an open set in T
containing y such that f(U)f"\yn = ¢ for infinitely many n. This
contradicts the hypothesis that the sequence { yn} converges to y.
Therefore every open set containing x intersects all but a finite number
of g , and thus x is in lim inf g . Hence g 1lim inf g, Since 8,
the collection fwl(y), y & point of T, is upper semi-continuous,
lim sup gan. Therefore we have gClim inf gnc lim sup gnC g,
which implies that lim g = g. In other words, lim f-l(xA'= f-l(y).

Conversely, suppose U is an open set in S such that £(U) is not
open. Then there is & point y in f£(U) and a sequence [yh] of points
of T - £(U) such that Y, = ¥. By hypothesis lim f"l(yn) - £"3(y).
Now Uf'Wf_l(yn) = ¢ for every n since ¥ ¢ £(U). But UMg # ¢ since
y = £(g) and y e £(U), where g = f-l(y). Hence U intersects all but a
finite number of f'l(yn). This contradiction implies f(U) is open and
therefore f is an open mapping.

Theorem 4.13. Iet f be a peripherally continuous mepping of the

locally peripherally connected, compact metric space S onto the compact,

regular Tl space T, If f is an open monotone mapping,then f is

continuous.

X_ . be a sequence of points in S with sequential

Proof. Ilet
——— n

i

LS

limit point x. Let f(xn). Since T is compact, some subsequence
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‘£ yni} of {:yn} hes a sequential limit point y in T, By Theorem

-1 “lp. el e “ -1
4,12, lim f (yni) = £ (y). Since X X, X x and x , € f (yni).

ni
Therefore x € f‘l(y) and y = f(x). Since every sequence {:xnl

J
converging to x has a subsequence {xni] converging to x such that
f(xni) - f(x), £ is continuous at x.

Theorem 4.13% implies, in particular, that if f is a one-to-one,
open, peripherally continuous transformation of an n-cell onto itself,
11;;2, then f is continuous. This is also true for a connectivity map
since the two mappings are equivalent on n-cells, nJ;;E. In Z_h_7
Tong has shown that a one-to-one connectivity map of a l-cell into
itself is continuous and gives an example to show that this is not
necessarily true for peripherally continuous functions.

The next theorem gives a sufficient condition on the upper semi-
continuous decomposition space S' to imply continuity of a peripherally

continuous function.

Theorem 4.14, Let f be a peripherally continuous mapping of the

locally peripherally connected, compact metric space S into the regular

Tl space T, If S', the upper semi~continuous decomposition of S into

the components of sets f”l(y), y & point of T, has no null subcollection,
then f is continuous.
Proof. Ilet {:xnf. be a sequence of points of S with the sequential

limit point x. Suppose infinitely many x, ere in the same element h in

8'. Since h is compact, some subseguence ixni? of .’xn‘. has a seg-

- L

vential limit point in h which must be x since X, > X. Hence X4 "X
and f(xni) = f(x) implies that f(xni) - £(x).
Now suppose only a finite number of x, are in any one element in S'.

Without loss of generality we can assume that each X is in a distinct hn.
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let h be the element in S' conteining x. Then h[ )(1lim inf hn) # ¢ end
S' upper semi-continuous implies lim sup hnc::h. Iet L = lim sup hn.

Then x € L, and by Theorem 58 page 23 of 1??1;7, L is a continuum. Since
S is compact, L is compact, and by 1“5, P 2&_7 some subsequence {;hni}

of ( h 1 is convergent. Iet K= lim h
L= - | n

s
] Then lim inf hnk__lim inf hn

i.
implies x € K. The set K is non-degenerate since S8' has no null sub-

i

collection. let € = diameter K. Then there is an € such that
0 < e, < € such that infinitely msny h , have diameter >e,. Let {un}
and [Vﬁ} be sequences of open sets closing down on x and f(x),

respectively, such that diameter Un<< €, F(U ) is connected, and

l’
f(F(Un))f::Vn. Then since diameter Un<(:el, F(Un) intersects infinitely
many h ;. leta € F(Un)f*]hni. Then f(an) €V end f(an) - f(x) since

{:Vn} closes down on f(x). But f(an) = f(xni) and thus f(xni) - £(x).

The sbove argument shows that for every sequence {:xn} such that
x = X there is a subsequence {:xni] of {xn] such that f(xni) - £(x).

This implies f is continuous at Xx.

As Exemple 3 of Chepter II indicates, one cannot expect the
inverse image of & connected set to be connected under a connectivity
map or peripherally continuous function. However, the next theorem
gives a condition which will force a peripherally continuous function
to have this property. This result is then used to obtain a sufficient
condition for continuity of a peripherally continuous function.

Theorem h.lﬁ. Iet f be an open, monotone, peripherally continuous
mepping of the locally peripherally connected, compact metric space S

onto the regular T. space T. If K is a connected subset of T, then

1
f-l(K) is a connected subset of S.

Proof. Suppose f"l(K) = M(_JN, where M and N are mutually



(M) 1£{). Then there is & point ¥, in M such that f{xl) = y and &
-1
point x,. in N such that f(xg) = y. Hence £ {y) V¥ # ¢ and
fm "

-1 L. . . -] R
£ (y)(ﬂ\ﬂ % ¢. This is o contradiction since £ ~(y) is connected snd

M and N are mutuslly separated., Therefore £{M)[ 1£(N) = . Since X is

H

connected one of £{(M) and f£(N) must contain a limit point of the other,
Iet y € £(M) such that vy is a limit point of f(N). Then there iz a

sequence {_yq} of pointe of £(N) such that Y, = ¥. By Theorem k.12,

every n, f"l(y)[::m, and M and § sre mutually separated. The assumption
that fnl(K) is not connected leads to & contradiction and hence f'l(K}
is connected.

Theorem 4.16, Iet f be an open, monotone, peripherally continuocus

mapping of the locally peripherslly connected, compact wetric space S

onto the semi~-locally connected, regular T. space T. Then f is

1
continuous.
Proof. BSuppose f is not continuous. Then there is & point x in B
5 : ‘1 . P ) R e s L oef
and a sequence {:xp, of points of § such that x — x but f(xn) 4 £{x).
1
1] Y

Since T is sgemi-locally connected there is an open set U containing £{x)

such that T ~ U has a finite number of components, K., ..., Kh’ and

l’
infinitely many f(xn) are in T - U, Hence infinitely many f(xp) are in

" -1 . . s .
some K,. By Theorem 4.15, T {Ki) is comnected, and x is a limit point

-

vos . -1
nfinitely wany x_ are in f (Ki) and x_ - X.

=

Since H = f '(Ki)LJ {x} iz non-degenerate, € = diameter H > 0.

B ) . . .
t { Un§ and {:Vn} be sequences of open sets closing dowr on % and

N . . : e .
f{x), respectively, such that dismeter Un<<:e, v Y, ?(Jn) is

connected

., and £{F{ . Since diameter U <« ¢ and F
n : n

(Un) and
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fwl(Ki) are connected, (U ye” l(Kl) ¢ ¢. Iet a_ be a point in
F(Un){”1f_l(Ki). Then & - X since { } closes down on x, and

W

f(an) ~ £(x) since f(an) is in V_ and { closes down on f£(x). This
implies that {x) is a limit point of “i’ This ig a contradiction since
f(x) € U and f(an) ¢ U for every n. Therefore f must be continuous.

Corollary 4.k, If in Theorem +.L6 the hypothesis that T be semi-

locally connected is replaced by T being locally connected and locally
compact, then f is continuous.

Proof. Every locally connected, locally compact space is semi-
locally connected [TQ, P. 20_7@ Hence Theorem 4,16 implies f is
continuous.

Example 6. Theorems 4.12, 4,15, and 4.16 are concerned with open,
monotone, peripherally continuous transformaetions. The following example,
continuous mapping of a closed 2-cell into itgelf need not be continuous,
The mepping is defined as follows. Let I be the closed circular 2-cell
of radius 1 and center at the origin. Iet (r,J) be the polar coordinates
of points in I, and let C be a topological ray with endpoint at (0,0)
which has each point of F(I), the boundary of I, as a limit point, but
whose intersection with a circle of rsdius r, O$§:r<<:l, consists of
one and only one point. For each point (r,¢) of I, O<<:r<§;l, let
f(r,¥) be the point of C whose distance from the origin is 1 - r. Iet
£(0,0) be a particular point O' of F(I). Hamilton has shown that f is
a connectivity map and hence is peripherally continuous. The mapping is
monotone since the inverse image of any point on the topologicel ray C
is a circle and f-l(O') = (0,0). The mapping is open since the image of

any open disc i1s an open segment or an open subray of the ray C if it
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does not contain (0,0). If it contains (0,0), then its image is a

subray of C plus the point O' which is open in ci_j[o'}.. This‘mapping
has one discontinuity, namely the origin., Note that the image Cl_){pf}

is neither compact nor semi-locally connected, If it were combact, then
Theorem %.13 would imply continuity, and if it were semi-locally conﬁected
Theorem 4%.16 would imply continuity.

Exemple 7. The following is an examplé of a peripherally
continuous transformation of a 2-cell onte itself, and hence is also a
connectivity map. The mapping is described as follows. Let I be the
closed circular 2-cell with center at (0,0) and radius 1. Iet (r,#) be
the polar coordinates of points of I, Let f(r;¢) = (r',§') where

2n+2 2n+l

. 1
r' = 2 r+31f2n+l r<2,n=o,1,...,r'=2 r - 3 if

1 1 . - .
;é"ﬁ<r ?ﬁl’nzl’ 2, ve.,8ndr' =0if r=0, Let §' = ¢ + r'2n,

The function r' meps the interval 0\<\r\<l onto the interval -1\< r'< 1
infinitely many times. The graph of r' would be as follows.

x’

AN

®) \ /3 J/u, -.,. 3/a. [
.
!

a

Figure 1
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The function ¢' = ¢ + r'2n gives a twisting effect. The image of

Osgjrsgil and ¢ = O would be as follows,

Figure 2

. - - . .
The image of O<(r<(1, g = ¢6 would be the same as that in Figure 2
roteted through the angle ¢0.
From the nature of the function r' the set given by - LrL . 5
22n+l A 22n
1 1 .
-2-2—E< r oo g fixed, n =1, 2, ...,
2

¢ fixed, n =0, 1, ..., and
have the same imege for the same value of ¢. For ¢ = O the image would
be as in Figure 2, The image for any other value of ¢ would be that of
Figure 2 rotated through the angle {f.

The mapping f is continuous everywhere except at (0,0); Considering
the function r' and Figure 1, it can be seen that all circles with
center at (O;O) with radius r = 3/2%, n =1, 2, ..., map onto (0,0).
Thus if U and V are open sets containing (0,0) and £(0,0), respectively,

there exists a positive integer n such that the circle Cn of radius



r = 3/2" with center at (0,0) is contained in U and f(Cn) = (0,0) e V.
Therefore f is peripherally continuous at (0,0).

The function f is not wonotone due to the fact that r' is not a
monotone function of r. Further, f is not an open mapping. For,
referring to Figure 3, the image f(A) of the region A bounded by r = 11/16
end r = 13/16 , § = 0 and ¢ = ¢0, is the shaded shell, and the image
(0,0) of the point p = (5/u,¢o/e) is not an interior point of f£(A)
while p is an interior point of A, Thus f does not necessarily map
open sets onto open sets. The interior of circles with center at (0,0)

n

map onto 81l of I. All circles with center at (0,0) with radius r = 1/2",

n=0, 1, ..., are mapped onto F(I).

Figure 3



CHAPTER V
SUMMARY

This paper is primarily concerned with two types of non-continuous
functions, namely connectivity mappings, and peripherally continuous
transformations.

Focusing attention on the graph of a function,‘it is found that
a connectivity map will be continuous if its graph is semi-locally
connected. As a corollary to this, a connectivity map will be
continuous if its graph is locally compact and locally connected.
Bufficient conditions on a finite-to-one, onto mapping f, in order that
it be continuous, is that the inverse image f-l(H) of a closed set H
has closed components, and f be gquasi-monotone in the sense that if H
is connected, every component of f-l(H) maps onto all of H.

Sufficient conditions that a peripherally continuous function be a
connectivity wap is that the graph of a comnected set either has a
finite number of components, or has no degenerate components. A
connectivity mapping £ of S into T preserves boundary points in the sense
that if V is open in T and K is & non-degenerate component of f~l(V),
then any point p in f, such that p is not in K; has the property that
£(p) 1s in F(V). In this same setting it is found that £ +(V) is dense-
in-itself. As a final result in Chapter II, the limit of a uniformly
convergent sequence of peripherally continuous functions is peripherally
continuous.

One of the main results of the paper 1s contained in Chapter III.

b3
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On a locally peripherally comnected polyhedron having Brouwer Property II
such that S>x<T'is completely normal and T 1ls a regular Hausdorff speace,
connectivity maps, locel connectivity maps, and peripherally continuous
functions from 8 into T are indistinguishable. This implies, in
particular, that there is no distinction among these functions on an
n~cell into itself, n =2, 3, ... . An example is given to show that

in genersl a local connectivity map is not necessarily a connectivity
map .

In Chapter IV some classical results for continuous functions are
extended to peripherally continuous functions, and connectivity maps.
One of the more interesting resulis being that a peripherally continuous
function £ on & locally peripherally connected, compact metric space
induces an upper semi-continuous decomposition of the domain space,
which in turn sllows a factorization f = fgfl, where fl is a monotone,
continuous function and f2 is a light, peripherally continuous function.
This is in complete analogy with the continuous case. With the
hypothesis that a connectivity map f induces an upper semi-continuous
decomposition of the domain space, f can also be factored f = fzfl’
where in this case f2 is a light, connectivity map.

An "e ~ 8" characterization of a peripherally continuous function
f, on a locally peripherally connected, compact wmetric space S into a
compact metric sgpace T, being light is that for every e:>>0 there is a
8 >0 such that if A is any subcontinuum of T such that diameter A<[8,
then any component of f-l{A) has diameter less than €.

A necessary and sufficient condition that a monotone, peripherally

continuous transformation f of a locally peripherally connected, compact

metric space S onto & regular T, space T be open is that if Y, v in T,

1
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then lim f-l(yn) = f—l(y). This condition is then used to show that if
T is compact and f is open and monotone, then f is continuous. An
example is given to show that an open, wonotone, peripherslly continuous
function is not necessarily continuous.

Ancther sufficient condition for continuity of a peripherslly
continuous function f is that the upper semi-continuous decompositibn s
of the domain S into the components of f-l(y), where y varies over the
range T, is that S' contain no null subcollection. |

An example is given to show that in general the inverse image of a
connected set is not necessarily commected under a peripherally
continuous function. However, if the space is a locally peripherally
connected, compact metric space and the function is open and monotone,
then it possesses this property. Under these conditions a sufficient
condition that the function be continucus is that the range be semi-
locally connected. As a particular application, every monotone, open,
peripherally continuous transformation of an n-cell, n:;;Q, onto itself
must be continuous.

Some questions for further study might include the following. Is
it possitle for a peripherally continuous transformation of an n-cell I,
n:;;2, into I to be diécontinuous at every poinﬁ of a dense subset?

Can it be discontinuous at évery point of an open set? Related to this
is & question posed by Long th_7. Is the set of points of discontinuity
of a peripherslly contingous“function or connectivity map a set of the
firsﬁ category? It would Bevboth interesting and useful to have an
example of a peripherally continuous transformation of an n-cell, n:>

-

into itself which has an infinite number of points of discontinuity. To

2,

the writer's knowledge no such example has been given.
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Further, under what conditions will f~1 be a8 connectivity map if f
is a one~-to-one connectivity map? Also, can sny of the results for
peripherally continuous transformetions be extended to the more general
C - mapping? Finally, the proofs of theorems in Chapter IV rely on the
fact that the domain space is locally peripherally comnected. Can s

method be devised so that this hypothesis can be dropped or modified?
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